WO2016107314A1 - 风力发电机组的输出功率补偿方法、装置和系统 - Google Patents

风力发电机组的输出功率补偿方法、装置和系统 Download PDF

Info

Publication number
WO2016107314A1
WO2016107314A1 PCT/CN2015/094823 CN2015094823W WO2016107314A1 WO 2016107314 A1 WO2016107314 A1 WO 2016107314A1 CN 2015094823 W CN2015094823 W CN 2015094823W WO 2016107314 A1 WO2016107314 A1 WO 2016107314A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
output power
average
ambient temperature
unit
Prior art date
Application number
PCT/CN2015/094823
Other languages
English (en)
French (fr)
Inventor
欧发顺
李健
Original Assignee
北京金风科创风电设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京金风科创风电设备有限公司 filed Critical 北京金风科创风电设备有限公司
Priority to ES15874994T priority Critical patent/ES2838684T3/es
Priority to KR1020177020332A priority patent/KR101973881B1/ko
Priority to US15/539,429 priority patent/US10190575B2/en
Priority to AU2015374696A priority patent/AU2015374696B2/en
Priority to EP15874994.5A priority patent/EP3242011B1/en
Publication of WO2016107314A1 publication Critical patent/WO2016107314A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/028Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/043Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/103Purpose of the control system to affect the output of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/103Purpose of the control system to affect the output of the engine
    • F05B2270/1033Power (if explicitly mentioned)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/303Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/325Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/335Output power or torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to the field of wind power technologies, and in particular, to a method, device and system for output power compensation of a wind power generator set.
  • units With the continuous increase of the installed capacity of wind turbines (referred to as "units"), the industry's performance requirements for the units are also getting higher and higher.
  • a gain value for tracking the maximum wind energy utilization is involved. The more consistent the gain value is with the actual wind energy resource, the unit's control strategy can capture the wind energy more accurately and improve. The amount of electricity generated by the unit. If the gain value deviates from the actual situation, it will affect the effect of the control strategy and affect the unit's ability to capture wind energy, thus affecting the unit's power generation.
  • the parameters closely related to the gain value some are closely related to the characteristics of the unit itself, such as the tip speed ratio and the wind energy utilization coefficient, and there are also parameters closely related to wind resources, such as air density.
  • the parameters such as the tip speed ratio and the wind energy utilization coefficient are fixed with the completion of the unit design, and it is difficult to modify the design and control, and the air density varies with the geographical position of the wind farm.
  • the annual average air density is often used, or the annual average air temperature is calculated to obtain the annual average air density, and then the annual average air density is used to calculate the gain value in the speed torque control strategy. Since the air density is greatly affected by the season and temperature, it is obvious that the gain value calculated by this method always has a large deviation from the actual value. At the same time, the method fails to consider different unit individuals under different terrain conditions and different seasons. There is a difference in the individual power output and consumption, resulting in a personalized difference in the respective gain values.
  • Embodiments of the present invention provide an output power compensation method, apparatus, and system for a wind power generator to achieve output power compensation for a running fan to ensure stable output power of the unit.
  • an embodiment of the present invention provides a method for compensating an output power of a wind power generator, including:
  • the first ambient temperature in the current period and the average value of the first ambient temperature in the previous period are greater than a preset temperature threshold, the first ambient temperature is averaged according to the current period and the previous period.
  • the difference between the values is power compensated for the unit output power collected at the end of the current period to ensure that the unit output power is stable; the temperature threshold is that the wind turbine is in a full state
  • the power of the Internet is equal to the corresponding ambient temperature value at rated power.
  • An embodiment of the present invention further provides an output power compensation device for a wind power generator, comprising:
  • a first obtaining module configured to obtain an average value of a first ambient temperature of an environment in which the wind turbine is located in each cycle
  • a first collecting module configured to collect a unit output power of the wind power generator corresponding to an end time of each cycle
  • a compensation module configured to: if the first ambient temperature average value in the current period and the first ambient temperature average value in the previous period are greater than a preset temperature threshold, according to the current period and the previous period The difference between the average values of the first ambient temperatures is power compensated for the output power of the unit collected at the end of the current period to ensure that the output power of the unit is stable; the temperature threshold is the wind turbine In the full state, the power of the Internet is equal to the corresponding ambient temperature value at the rated power.
  • An embodiment of the present invention provides an output power compensation system for a wind power generator, comprising: a cluster controller and a single controller disposed on each of the wind turbines;
  • the stand-alone controller includes:
  • a single machine acquisition module for obtaining an average value of a first ambient temperature of an environment in which the wind turbine is located in each cycle
  • a single-machine acquisition module configured to collect the output power of the unit corresponding to the wind turbine at the end of each cycle
  • a stand-alone compensation module configured to receive power compensation by the control of the cluster controller for the output power of the unit collected at an end time of the current period
  • the cluster controller includes:
  • a cluster obtaining module configured to obtain, from each of the single-machine controllers, an average value of a first ambient temperature of an environment in which the wind turbine is located in each cycle;
  • a cluster collection module configured to collect, from each of the single-machine controllers, a unit output power corresponding to the wind turbine at an end time of each cycle;
  • a cluster compensation module configured to: if the first ambient temperature average corresponding to each of the wind turbines in the current cycle and the first ambient temperature average in the previous week are greater than a corresponding pre-corresponding to the wind turbine
  • the set temperature threshold is controlled according to the difference between the average value of the first ambient temperature in the current period of each of the wind turbines and the previous one of the previous period, and the corresponding single machine controller collects the end time of the current period.
  • the output power of the unit is subjected to power compensation to ensure that the output power of each unit is stable; and the temperature threshold is an ambient temperature value corresponding to the rated power of the wind power generator in a full-state state.
  • the method, device and system for output power compensation of a wind power generator provided by an embodiment of the present invention, by introducing a temperature threshold and combining the output power of the wind power generator with the change of the ambient temperature, performing power compensation on the unit output power of the unit, To ensure that the unit output power is stable.
  • the technical solution of the embodiment of the invention can be applied to various wind power generator sets.
  • FIG. 1 is a flow chart of a method for an embodiment of an output power compensation method for a wind power generator according to the present invention
  • FIG. 2a is a flowchart of a method for acquiring a temperature threshold in the embodiment shown in FIG. 1 according to the present invention
  • FIG. 2b is a schematic diagram showing an annual variation curve of an average self-consumption power in a full-sending state according to an embodiment of the present invention
  • 2c is a schematic diagram showing an annual variation curve of an average unit output power in a full-state state according to an embodiment of the present invention
  • 2d is a schematic diagram showing a year-round variation curve of a second ambient temperature average value according to an embodiment of the present invention
  • FIG. 3 is a flow chart of a method for another embodiment of an output power compensation method for a wind power generator according to the present invention.
  • FIG. 4a is a schematic structural view of an embodiment of an output power compensation device for a wind power generator according to the present invention.
  • FIG. 4b is a schematic structural view of another embodiment of an output power compensation device for a wind power generator according to the present invention.
  • FIG. 4c is a schematic structural view of still another embodiment of an output power compensation device for a wind power generator according to the present invention.
  • 5a is a schematic structural view of an embodiment of an output power compensation system for a wind power generator according to the present invention.
  • 5b is a schematic structural view of a single-machine controller in an output power compensation system of a wind power generator provided by the present invention
  • FIG. 5c is a schematic structural diagram of a cluster controller in an output power compensation system of a wind power generator provided by the present invention.
  • FIG. 1 is a flow chart of a method for an output power compensation method of a wind power generator according to an embodiment of the present invention.
  • the execution body of the method may be an output power compensation system in the unit, or a compensation device or module integrated in the system. .
  • the output power compensation method of the wind power generator specifically includes:
  • At least one sampling time point may be set on average in each of the above periods, and the temperature of the environment in which the wind power generator is located is measured by the temperature measuring device as the first ambient temperature when each sampling time point arrives, and all the measurements are obtained by the measurement.
  • An ambient temperature is used to calculate a corresponding first ambient temperature average over each cycle by a method such as weighted averaging or algebraic averaging.
  • S102 Collect the output power of the unit corresponding to the wind turbine at the end of each cycle.
  • the output power of the unit converts the wind energy absorbed by the blades into electric energy per unit time.
  • the output power is affected by the wind energy utilization coefficient of the blades and the mechanical transmission efficiency of the unit.
  • the unit output power is the net power, that is, the power delivered to the grid, after deducting its own consumption rate. The following relationship exists between these three powers:
  • the unit When the power of the Internet is greater than or equal to the rated power of the unit itself, the unit supplies power to the grid with the rated power; when the power of the grid is less than the rated power of the unit itself, the unit supplies power to the grid with the power of the grid.
  • the power consumption of the unit itself is the power consumed by the unit's own electrical components, and its size is related to the working state of each electrical component in the unit;
  • the output power of the group is closely related to the ambient temperature, and the influence of the ambient temperature is more obvious. The reason is that as the ambient temperature increases, the air density decreases, causing the output power of the unit to drop at the same wind speed.
  • the unit needs to consume more energy for heat dissipation, which leads to an increase in the power consumption of the unit itself.
  • the decrease in output power of the unit and the increase in power consumption of the unit will result in a decrease in the power consumption of the unit, and the increase in the power consumption of the unit itself may be equivalent to the equivalent of the unit output power.
  • the unit output power can be compensated according to the change of the ambient temperature to ensure the unit output power is stable, thereby stabilizing the unit's power and thus stabilizing.
  • the amount of power generated by the unit's external network S103, if the average value of the first ambient temperature in the current period and the average value of the first ambient temperature in the previous period are greater than a preset temperature threshold, according to the average value of the first ambient temperature in the current period and the previous period.
  • the difference is power compensated for the output power of the unit collected at the end of the current period to ensure that the output power of the unit is stable;
  • the temperature threshold is the corresponding ambient temperature value when the power of the wind turbine is equal to the rated power in the fully-on state.
  • the actual unit output power of the unit decreases as the ambient temperature rises. This means that in the winter with lower temperature, the output power of the unit will be relatively large. After deducting the average self-consumption power of the unit itself, the power of the unit in winter will still be higher than the rated power of the unit, which enables the unit to supply the power grid with rated power. Power is supplied. In the summer, especially in the case of high temperature, the output power of the unit will be relatively small. After deducting the average power consumption of the unit itself, the power of the unit in summer is likely to be lower than the rated power of the unit. The unit can only use the actual power. Power is supplied to the grid, which reduces the overall power generation of the unit.
  • the unit When the unit is running in the full state, and when the ambient temperature is higher than the above temperature threshold, the current output power of the unit is low, and the unit may not be able to supply power to the grid with the rated power. Therefore, in order to make the output power of the unit in the full-state state as much as possible, the unit can supply power to the external power grid with the rated power.
  • the temperature threshold is used as a reference point, and the first ambient temperature average value in the current period is used. And the first environment during the previous week If the average temperature is greater than the temperature threshold, the power output of the unit output collected at the end of the current period is compensated according to the difference between the current period and the average value of the first ambient temperature in the previous period to ensure the output power of the unit. stable.
  • the corresponding compensated power is The absolute value of the absolute value is smaller; on the contrary, the absolute value of the power corresponding to the compensation is larger. If the first ambient temperature average value in the current period and the first ambient temperature average value in the previous week period are both greater than the temperature threshold value, and the first ambient temperature average value in the current period is greater than the first ambient temperature average value in the previous week period. , the corresponding compensation power is positive; otherwise, the corresponding compensation power is negative, thus ensuring the unit output power is stable.
  • the above scheme of determining and compensating the output power of the unit by using the temperature threshold is also applicable when the unit is operating in a non-full state.
  • the reason is that the unit output power corresponding to the unit decreases with the increase of the ambient temperature. Applicable in any state. Therefore, in the present embodiment, when the unit output power of the unit is compensated, the output power of the unit to be compensated is the unit output power of each unit in the operating state (full state or non-full state).
  • the specific method of power compensation can be completed by torque compensation, that is, the specific power value compensated is converted into the extra torque output of the unit, thereby improving the output power of the unit.
  • torque compensation that is, the specific power value compensated is converted into the extra torque output of the unit, thereby improving the output power of the unit.
  • the manner in which the specific power compensation is adopted in this embodiment is not limited.
  • the output power compensation method of the wind power generator provided by the embodiment of the present invention, by introducing a temperature threshold and combining the output power of the wind power generator with the change of the ambient temperature, power compensation of the unit output power of the unit to ensure the unit output The power is stable.
  • the technical solution of the embodiment of the invention can be applied to various wind power generator sets.
  • FIG. 2a is a flow chart of a method for acquiring a temperature threshold in the embodiment shown in FIG. 1 according to the present invention. As shown in FIG. 2a, the method for obtaining the temperature threshold specifically includes:
  • S201 Acquire an average unit output power and an average grid power of the wind turbine in the full year of the whole year.
  • the ambient wind speed has a greater impact on the output power of the unit, and indirectly affects the power of the grid. Therefore, when the average unit output power and average grid power of the wind turbines in the full-year state are obtained, the average unit output power and average grid power are obtained. Should take into account the effects of wind speeds in different environments Specific gravity and role.
  • step S201 provides a specific implementation manner of step S201, including steps (steps 1 to 3) as follows:
  • Step 1 Collect the unit output power, the grid power and the ambient wind speed value of the wind turbine corresponding to each sampling time in the whole year;
  • the above three collected data can be used as collection samples for historical data of unit operation.
  • all running transient data instantaneous time can be 20ms, 1s or 7s
  • each sample point corresponds to one sampling moment.
  • 7s operation instantaneous data is used to correspond to one sampling time.
  • the historical data of the operation of the unit is collected, and the unit output power, the net power and the ambient wind speed value of the wind turbine corresponding to the sampling time are obtained.
  • Step 2 Calculate the unit output power, the grid power and the ambient wind speed value of the wind turbines collected at each sampling time in the whole year according to the month, and calculate the output power of each unit and the power of the grid in different ambient wind speeds. The corresponding average value under the segment.
  • the data Before the data is statistically analyzed, the data can be screened to ensure the validity of the final result, such as data of the unit's limited power operation and small wind speed data (corresponding data when the ambient wind speed is lower than 2 m/s).
  • the data of the unit in the full-sending state is extracted as the data to be processed in this step.
  • the data collected at each sampling time can be first processed according to the ambient wind speed, and each bin corresponds to a fixed ambient wind speed segment, for example, when the ambient wind speed is between 4.75 m/s and 5.25 m/s.
  • the corresponding ambient wind speed segment is 5m/s; then the unit output power, the grid power and the ambient wind speed value of the above-mentioned extracted unit in the full-state state are counted according to the month, and the output power and the grid power of each unit are calculated in different environments.
  • the corresponding average value under the wind speed segment For example, the algebraic average of the unit output power and the grid power corresponding to each month in different ambient wind speed segments can be taken as the corresponding average value in the corresponding wind speed segment.
  • Step 3 According to the average value of the unit output power and the grid power of each month under different ambient wind speed segments, obtain the average unit output power and average grid power of the wind turbines in each month of the year.
  • the algebraic mean or weighted average of the average output power of the unit and the power of the Internet in each ambient wind speed segment can be used as the corresponding average unit output power or average grid power of each unit in the full-on state.
  • the acquisition unit is full.
  • the specific method used for the corresponding average unit output power or average grid power of each month in the state of the transmission is not limited.
  • the difference between the average unit output power and the average on-grid power of the wind turbine in the full-year state for each month can be taken as the average self-consumption power of each month.
  • the average self-consumption power of each month obtained is obtained by curve fitting in a two-dimensional coordinate system to form a full-year variation curve of the average self-consumption power in the full-state state.
  • FIG. 2b is a schematic diagram showing the annual variation curve of the average self-consumption power under the full-state state (rated power of 1500 KW) according to the embodiment. As shown in Fig. 2b, the abscissa is time and the ordinate is the average self-consumption power in the full-state state.
  • the average unit output power of the wind turbine in the full-year state is calculated by curve fitting to construct the annual variation curve of the average unit output power in the full-state state.
  • FIG. 2c is a schematic diagram showing the annual variation curve of the average unit output power in the full-state state (rated power of 1500 KW) provided in the embodiment. As shown in Fig. 2c, the abscissa is time and the ordinate is the average unit output power in the full state.
  • the curve value in FIG. 2c is correspondingly subtracted from the curve value in FIG. 2b, and the corresponding time point when the obtained difference is equal to 1500 KW (rated power) is determined as the above specific time point.
  • the specific time point appears at two points A and B.
  • FIG. 2 is a schematic diagram showing the annual variation curve of the second ambient temperature average value provided by the embodiment. As shown in Figure 2d, the abscissa is time and the ordinate is the second ambient temperature average of the environment in which the unit is located.
  • the above temperature threshold can be set to 13 ° C.
  • the method for obtaining a temperature threshold determines the average on-line power of the unit by using the first two curves by constructing an annual variation curve of the average unit output power, the average self-consumption power, and the second ambient temperature average of the unit; Using a specific on-grid power equal to a specific time point corresponding to the rated power lock, and locking the temperature threshold in the annual variation curve of the second ambient temperature average according to the specific time point, thereby implementing a specific method for determining the temperature threshold, The determined temperature threshold is made more informative.
  • FIG. 3 is a flow chart of a method for compensating an output power of a wind power generator according to another embodiment of the present invention, which may be regarded as a specific implementation manner of the embodiment shown in FIG. 1.
  • the embodiment further refines step S103, that is, introduces a rate of change function.
  • the specific acquisition method of the change rate function is:
  • the method for compensating the output power of the wind turbine shown in FIG. 3 may specifically include the following steps:
  • the difference between the average value of the first ambient temperature in the current period and the previous week ie, the increment of the average value of the first ambient temperature in the previous week
  • ⁇ y the increment ⁇ x.
  • the average unit output power increment ⁇ y corresponding to the difference is obtained as the unit output power increment.
  • the unit output power increment is used as the power compensation amount to perform power compensation on the unit output power collected at the end time of the current period to ensure that the unit output power is stable;
  • the temperature threshold is the power of the wind power generator in the full-state state.
  • the corresponding ambient temperature value equal to the rated power.
  • step S103 For the specific compensation method and principle, refer to the corresponding content in step S103, and no further details are provided herein.
  • steps S303 to S304 can be regarded as the thinning mode of step S103.
  • the output power compensation method of the wind power generator provided by the embodiment of the present invention introduces the concept of the change rate function on the basis of the embodiment shown in FIG. 1 and averages the first ambient temperature in the current period and the previous period. The difference between the values is substituted into the rate of change function to solve the specific value of the power compensation, so that the compensation of the output power of the unit is more precise.
  • the solution of the embodiment can further solve the obtained temperature threshold by referring to the method described in FIG. 2a to further correct and optimize the process of obtaining the power compensation amount.
  • FIG. 4a is a schematic structural view of an embodiment of an output power compensation device for a wind power generator according to the present invention, which can be used to perform the method steps of the embodiment shown in FIG. 1, as shown in FIG. 4a, the output power compensation device of the wind power generator set.
  • the first acquiring module 41, the first collecting module 42 and the compensating module 43 are:
  • the first obtaining module 41 is configured to obtain a first ambient temperature average value of the environment in which the wind power generator is located in each cycle;
  • the first collecting module 42 is configured to collect the output power of the unit corresponding to the wind turbine at the end of each cycle;
  • the compensation module 43 is configured to: if the first ambient temperature average value in the current period and the first ambient temperature average value in the previous period are greater than a preset temperature threshold, according to the first ambient temperature average in the current period and the previous period The difference between the values is power compensated for the unit output power collected at the end of the current period to ensure that the unit output power is stable;
  • the threshold is the ambient temperature value corresponding to the rated power of the wind turbine in the fully-on state.
  • the output power compensation device of the wind power generator may further include:
  • the second obtaining module 44 is configured to obtain an average unit output power and an average grid power of the wind turbines in the full year of the whole year;
  • the first processing module 45 is configured to calculate an average self-power consumption of the wind turbine in each month of the whole year according to the average unit output power and the average grid power of the wind turbine in the full-year state, and calculate the curve through the curve.
  • the annual variation curve of the average self-consumption power in the full-scale state is constructed;
  • the second processing module 46 is configured to construct an annual variation curve of the average unit output power in the full-state state by curve fitting of the average unit output power of the wind turbine in the full-year state;
  • the extraction module 47 is configured to extract a time-average curve of the average unit output power corresponding to the annual change curve of the average self-consumption power, and obtain a time point at which the difference is equal to the rated power as a specific time point;
  • the third processing module 48 is configured to obtain an average value of the second ambient temperature of the environment in which the wind turbine is in the full year of the whole year, and construct a full average of the second ambient temperature in the full state by curve fitting.
  • the determining module 49 is configured to determine a temperature threshold according to a second ambient temperature average corresponding to the specific time point in the annual variation curve of the second ambient temperature average.
  • the foregoing second obtaining module 44 may specifically include:
  • the collecting unit 441 is configured to collect the output power, the net power and the ambient wind speed value of the wind turbine generating unit corresponding to each sampling moment in the whole year;
  • the first processing unit 442 is configured to collect the output power, the power of the grid, and the ambient wind speed of the wind turbine set collected at each sampling time in the whole year according to the month, and calculate the output power of the unit and the Internet respectively. The corresponding average value of power under different ambient wind speed segments;
  • the second processing unit 443 is configured to obtain an average unit output power and an average on-line power of the wind generator set in the full-year state according to the average value of the unit output power and the grid power in different ambient wind speed segments. .
  • the output power compensation device of the wind power generator may further include:
  • the fourth processing module 50 is configured to calculate, according to the annual variation curve of the average unit output power and the annual variation curve of the second ambient temperature average, the unit output power of the wind turbine in the full-state state varies with the second ambient temperature. Rate of change function.
  • the foregoing compensation module 43 may specifically include:
  • a third processing unit 431, configured to substitute a difference between the current period and the first ambient temperature average value in the current period into the change rate function to obtain a unit output power increment corresponding to the difference;
  • the compensation unit 432 is configured to perform power compensation on the unit output power collected at the end time of the current period by using the unit output power increment as the power compensation amount.
  • the method steps of the embodiment shown in FIG. 3 can be performed by the output power compensation device of the wind power generator shown in FIG. 4c, and the principle of the steps will not be described herein.
  • the output power compensation device of the wind power generator provided by the embodiment of the present invention performs the above-mentioned method of FIG. 2a and FIG. 3 , and the technical effects achieved by the embodiment are related to the second embodiment and the third embodiment, and details are not described herein again.
  • the embodiment further provides an output power compensation system for the wind power generator, comprising: a cluster controller 53 and a single machine control set on each wind power generator 51. 52; wherein:
  • the stand-alone controller 52 includes:
  • the single machine acquisition module 521 is configured to obtain a first ambient temperature average value of the environment in which the wind power generator is located in each cycle;
  • the single-machine acquisition module 522 is configured to collect the output power of the unit corresponding to the wind turbine at the end of each cycle;
  • the unitized compensation module 523 is configured to receive power compensation by the control of the cluster controller for the unit output power collected at the end time of the current period;
  • the cluster controller 53 includes:
  • the cluster obtaining module 531 is configured to obtain, from each stand-alone controller, an average value of a first ambient temperature of an environment in which the wind turbine is located in each cycle;
  • the cluster collection module 532 is configured to collect, from each stand-alone controller, a unit output power corresponding to the wind turbine at the end time of each cycle;
  • the cluster compensation module 533 is configured to: if the first ambient temperature average corresponding to each wind turbine in the current period and the first ambient temperature average in the previous period are greater than a preset temperature threshold corresponding to the corresponding wind turbine, The difference between the current ambient temperature of each wind turbine and the first ambient temperature average during the previous week controls the corresponding stand-alone controller to perform power compensation on the output power of the unit collected at the end of the current cycle to ensure the output of each unit.
  • the power threshold is stable; the temperature threshold is a corresponding ambient temperature value of the wind power generator when the power of the grid is equal to the rated power in the full state.
  • the single controller 52 may be specifically configured as a compensation system for controlling the operation of the wind turbine 51 on the wind turbine 51.
  • the cluster controller 53 may be applied to the entire wind farm, and each of the wind farms
  • the stand-alone controller 52 performs a master control system for adjustment control.
  • FIG. 1, FIG. 2a and FIG. 3 can be implemented by using the output power compensation system of the wind power generator shown in this embodiment, and the principle of the steps is not described herein.
  • the output power compensation system of the wind power generator provided by the embodiment can realize that all wind power generators in a wind farm respectively perform power compensation on the first output power value of the current time according to the personalized data of the unit, thereby improving the power consumption. Group control operability within the wind farm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)

Abstract

一种风力发电机组的输出功率补偿方法,包括:获取风力发电机组在各周期内所处环境的第一环境温度平均值;采集风力发电机组在各周期的结束时刻对应的机组输出功率;若当前周期内第一环境温度平均值和上一周期内第一环境温度平均值均大于预设的温度阈值,则根据当前周期内与其上一周期内第一环境温度平均值之间的差值对当前周期的结束时刻采集的机组输出功率进行功率补偿,以确保机组输出功率稳定;所述温度阈值为风力发电机组在满发状态下其上网功率等于额定功率时对应的环境温度。该方法可在夏季对运行中的风机进行输出功率补偿,提高了机组的发电量。还披露了一种风力发电机组的输出功率补偿装置和系统。

Description

风力发电机组的输出功率补偿方法、装置和系统 技术领域
本发明涉及风电技术领域,尤其涉及一种风力发电机组的输出功率补偿方法、装置和系统。
背景技术
随着风力发电机组(简称“机组”)装机容量的不断提高,行业对机组的性能要求也越来越高。在机组功率满发转速下的转速转矩控制策略中,涉及一个跟踪最大风能利用捕获的增益值,该增益值与实际风能资源情况越吻合,机组的控制策略就能更加准确的捕获风能,提高机组的发电量。如果该增益值与实际发生了偏离,则会影响控制策略的效果,影响机组捕获风能,从而影响机组发电量。在与该增益值密切相关的参数中,有的与机组自身的特性密切相关,比如叶尖速比和风能利用系数等,也有与风资源密切相关的参数,如空气密度等。叶尖速比和风能利用系数等参数随着机组设计的完成而固定,难以进行设计和控制上的修改,而空气密度随着风电场地理位置的不同而各有区别。
现在的控制策略中,往往采用年平均空气密度,或者采取年平均气温经过计算得到年平均空气密度,然后利用这个年平均空气密度计算转速转矩控制策略中的增益值。由于空气密度受季节和温度影响较大,显然用这种方法计算出来的增益值总是与实际值有较大的偏差,同时该方法未能考虑不同机组个体在不同的地形条件下,不同季节下自身功率输出和消耗的不同,所导致的各增益值存在的个性化差别。
发明内容
本发明的实施例提供一种风力发电机组的输出功率补偿方法、装置和系统,以实现对运行中的风机进行输出功率补偿,确保机组输出功率稳定。
为达到上述目的,本发明的实施例提供了一种风力发电机组的输出功率补偿方法,包括:
获取风力发电机组在各周期内所处环境的第一环境温度平均值;
采集所述风力发电机组在各周期的结束时刻对应的机组输出功率;
若当前周期内所述第一环境温度平均值和上一周期内所述第一环境温度平均值均大于预设的温度阈值,则根据当前周期内与其上一周期内所述第一环境温度平均值之间的差值对所述当前周期的结束时刻采集的所述机组输出功率进行功率补偿,以确保所述机组输出功率稳定;所述温度阈值为所述风力发电机组在满发状态下其上网功率等于额定功率时对应的环境温度值。
本发明的实施例还提供了一种风力发电机组的输出功率补偿装置,包括:
第一获取模块,用于获取风力发电机组在各周期内所处环境的第一环境温度平均值;
第一采集模块,用于采集所述风力发电机组在各周期的结束时刻对应的机组输出功率;
补偿模块,用于若当前周期内所述第一环境温度平均值和上一周期内所述第一环境温度平均值均大于预设的温度阈值,则根据当前周期内与其上一周期内所述第一环境温度平均值之间的差值对所述当前周期的结束时刻采集的所述机组输出功率进行功率补偿,以确保所述机组输出功率稳定;所述温度阈值为所述风力发电机组在满发状态下其上网功率等于额定功率时对应的环境温度值。
本发明的实施例提还供了一种风力发电机组的输出功率补偿系统,包括:集群控制器和设置在各所述风力发电机组上的单机控制器;
所述单机控制器,包括:
单机获取模块,用于获取风力发电机组在各周期内所处环境的第一环境温度平均值;
单机采集模块,用于采集所述风力发电机组在各周期的结束时刻对应的机组输出功率;
单机补偿模块,用于接受所述集群控制器的控制对当前周期的结束时刻采集的所述机组输出功率进行功率补偿;
所述集群控制器,包括:
集群获取模块,用于从各所述单机控制器上获取其所在风力发电机组在各周期内所处环境的第一环境温度平均值;
集群采集模块,用于从各所述单机控制器上采集所述风力发电机组在各周期的结束时刻对应的机组输出功率;
集群补偿模块,用于若当前周期内各所述风力发电机组对应的所述第一环境温度平均值和上一周期内所述第一环境温度平均值均大于相应所述风力发电机组对应的预设的温度阈值,则根据各所述风力发电机组当前周期内与其上一周期内所述第一环境温度平均值之间的差值控制相应所述单机控制器对所述当前周期的结束时刻采集的所述机组输出功率进行功率补偿,以确保各所述机组输出功率稳定;所述温度阈值为所述风力发电机组在满发状态下其上网功率等于额定功率时对应的环境温度值。
本发明实施例提供的风力发电机组的输出功率补偿方法、装置和系统,通过引入温度阈值,并结合利用风力发电机组的输出功率随环境温度的变化情况,对机组的机组输出功率进行功率补偿,以确保机组输出功率稳定。本发明实施例的技术方案可以适用于各种风力发电机组。
附图说明
图1为本发明提供的风力发电机组的输出功率补偿方法一个实施例的方法流程图;
图2a为本发明提供的图1所示实施例中温度阈值的获取方法流程图;
图2b为本发明实施例提供的满发状态下平均自身消耗功率的全年变化曲线示意图;
图2c为本发明实施例提供的满发状态下平均机组输出功率的全年变化曲线示意图;
图2d为本发明实施例提供的第二环境温度平均值的全年变化曲线示意图;
图3为本发明提供的风力发电机组的输出功率补偿方法另一个实施例的方法流程图;
图4a为本发明提供的风力发电机组的输出功率补偿装置一个实施例的结构示意图;
图4b为本发明提供的风力发电机组的输出功率补偿装置另一个实施例的结构示意图;
图4c为本发明提供的风力发电机组的输出功率补偿装置又一个实施例的结构示意图;
图5a为本发明提供的风力发电机组的输出功率补偿系统一个实施例的结构示意图;
图5b为本发明提供的风力发电机组的输出功率补偿系统中单机控制器的结构示意图;
图5c为本发明提供的风力发电机组的输出功率补偿系统中集群控制器的结构示意图。
具体实施方式
实施例一
图1为本发明提供的风力发电机组的输出功率补偿方法一个实施例的方法流程图,该方法的执行主体可以为机组中的输出功率补偿系统,或是集成在该系统中的补偿装置或模块。如图1所示,该风力发电机组的输出功率补偿方法具体包括:
S101,获取风力发电机组在各周期内所处环境的第一环境温度平均值。
其中,在上述各周期内可以平均设置至少一个采样时刻点,在每个采样时刻点到来时通过温度测量装置测量风力发电机组所处环境的温度作为第一环境温度,并通过测量得到的所有第一环境温度来通过如加权平均或代数平均的方法计算得到各周期内对应的第一环境温度平均值。
S102,采集风力发电机组在各周期的结束时刻对应的机组输出功率。
机组输出功率为单位时间内将叶片吸收的风能转化为电能的大小,该输出功率受叶片的风能利用系数和机组机械传动效率影响。在实际应用场景中,机组输出功率扣除自身消耗率后为上网功率,即输送到电网上的功率。这三种功率之间存在如下关系:
机组输出功率-自身消耗功率=上网功率
当上网功率大于或等于机组自身的额定功率时,则机组以该额定功率向外加电网进行供电;当上网功率小于机组自身的额定功率时,则机组以该上网功率向外加电网进行供电。
在实际应用场景中,机组的自身消耗功率为机组自身的电气部件正常工作所消耗的功率,其大小与机组内各电气部件的工作状态相关;机 组输出功率除了与机组自身的电气部件相关外,还与环境温度有着密切的关系,且环境温度对其的影响更为明显。原因在于,当环境温度升高时,空气密度减小,使得在相同风速下机组的输出功率下降。同时,当环境温度升高时,机组需要消耗较多的能量用于散热,从而导致机组自身消耗功率升高。机组输出功率下降以及自身消耗功率升高都会导致机组的上网功率下降,而机组的自身消耗功率的升高也可以变相的等价为机组输出功率下降。
由此获悉,如果找到一个机组其机组输出功率随环境温度的变化规则,则可以根据环境温度的变化对机组输出功率进行功率补偿,以确保机组输出功率稳定,进而稳定机组的上网功率,从而稳定机组对外网的发电量。S103,若当前周期内第一环境温度平均值和上一周期内第一环境温度平均值均大于预设的温度阈值,则根据当前周期内与其上一周期内第一环境温度平均值之间的差值对当前周期的结束时刻采集的机组输出功率进行功率补偿,以确保机组输出功率稳定;所述温度阈值为风力发电机组在满发状态下其上网功率等于额定功率时对应的环境温度值。
在实际应用场景中,机组的实际机组输出功率是随着环境温度的上升而下降的。这意味着在温度较低的冬季,机组输出功率会比较大,扣除机组本身的平均自身消耗功率,冬季机组的上网功率依然会高于机组的额定功率,这使得机组能够以额定功率向外加电网进行供电。而在夏季特别是温度很高的情况下,机组输出功率会比较小,扣除机组本身的平均自身消耗功率,夏季机组的上网功率很可能会低于机组的额定功率,机组只能以实际上网功率向外加电网进行供电,这使得机组的整体发电量降低。机组在满发状态下,从冬季到夏季过渡的连续升温过程中或者从夏季到冬季过渡的连续降温过程中,必然存在一个特定的温度点,在这个温度点上,机组的机组输出功率减去平均自身消耗功率刚好等于机组的额定功率,本实施例中将这个温度点值记为温度阈值。
在机组运行于满发状态下,且当环境温度高于上述温度阈值时,表征当前机组输出功率较低,可能无法满足机组以额定功率向外加电网进行供电。因此,为了尽可能使机组在满发状态下的机组输出功率能够满足机组以额定功率对外加电网进行供电,本实施例以上述温度阈值作为基准点,若当前周期内上述第一环境温度平均值和上一周期内第一环境 温度平均值均大于该温度阈值,则根据当前周期内与其上一周期内第一环境温度平均值之间的差值对当前周期的结束时刻采集的机组输出功率进行功率补偿,以确保机组输出功率稳定。
例如,若当前周期内上述第一环境温度平均值和上一周期内第一环境温度平均值均大于该温度阈值,且两个第一环境温度平均值的差值较小,则对应补偿的功率的绝对值则较小;反之,对应补偿的功率的绝对值则较大。若当前周期内上述第一环境温度平均值和上一周期内第一环境温度平均值均大于该温度阈值,且当前周期内上述第一环境温度平均值大于上一周期内第一环境温度平均值,则对应补偿的功率为正值;反之,对应补偿的功率为负值,从而确保机组输出功率稳定。
在机组运行于非满发状态下,上述利用温度阈值判断并补偿机组输出功率的方案也同样适用,原因在于,机组对应的机组输出功率随着环境温度的增加而减小的规律在机组运行于任何状态下都适用。因此,本实施例中,在对机组的机组输出功率进行补偿时,被补偿的机组输出功率为机组各运行状态(满发状态或非满发状态)下的机组输出功率。
本实施例中,功率补偿的具体方式可以通过扭矩补偿来完成,即将所补偿的具体功率值折算为机组额外扭矩输出,从而提高机组输出功率。根据机组的扭矩控制原理,在机组达到额定转速及达到额定功率段时,还需要将机组的最大扭矩和设定扭矩同步进行补偿。本实施例中对具体功率补偿采用的方式不作限定。
本发明实施例提供的风力发电机组的输出功率补偿方法,通过引入温度阈值,并结合利用风力发电机组的输出功率随环境温度的变化情况,对机组的机组输出功率进行功率补偿,以确保机组输出功率稳定。本发明实施例的技术方案可以适用于各种风力发电机组。
实施例二
图2a为本发明提供的图1所示实施例中温度阈值的获取方法流程图。如图2a所示,该温度阈值的获取方法具体包括:
S201,获取风力发电机组在满发状态下全年各月份的平均机组输出功率和平均上网功率。
在实际应用场景中,环境风速对机组输出功率的影响较大,间接的也影响到上网功率,因此在获取风力发电机组在满发状态下全年各月份的平均机组输出功率和平均上网功率时,应考虑到不同环境风速的影响 比重和作用。
具体地,本实施例给出了步骤S201的一种具体实现方式,包括步骤(步骤1~步骤3)如下:
步骤1:采集全年中各采样时刻对应的风力发电机组的机组输出功率、上网功率和环境风速值;
上述三种采集的数据可以机组运行的历史数据作为采集样本。在具体采集过程中可以全年中的所有运行瞬时数据(瞬时时间可以为20ms,1s或7s)作为样本点,每个样本点对应一个采样时刻。本实施例中采用7s运行瞬时数据来对应一个采样时刻。在各采样时刻点,对机组的运行的历史数据进行采集,获取该采样时刻对应的风力发电机组的机组输出功率、上网功率和环境风速值。
步骤2:将全年中各采样时刻采集的风力发电机组在满发状态下的机组输出功率、上网功率和环境风速值按月份进行统计,分别计算各月份机组输出功率、上网功率在不同环境风速段下对应的平均值。
在对数据进行统计之前,可以先对数据进行筛选,以保证最终结果的有效性,如剔除机组限功率运行下的数据、小风速数据(环境风速低于2m/s时对应的数据)。
为了在后续步骤中利用上网功率等于额定功率来确定温度阈值,本步骤中还要提取机组在满发状态下的数据作为后续待处理的数据。
在数据处理过程中,可将各采样时刻采集的数据先按环境风速进行分仓处理,每个仓对应一个固定的环境风速段,例如环境风速在4.75m/s~5.25m/s之间时对应的环境风速段为5m/s;然后将上述提取的机组在满发状态下的机组输出功率、上网功率和环境风速值按月份进行统计,分别计算各月份机组输出功率、上网功率在不同环境风速段下对应的平均值。例如,可将各月份对应的机组输出功率、上网功率在不同环境风速段内的代数平均值作为其在相应风速段内对应的平均值。
步骤3:根据各月份机组输出功率、上网功率在不同环境风速段下对应的平均值,获取风力发电机组在全年各月份的平均机组输出功率和平均上网功率。
例如,可将各月份对应的机组输出功率、上网功率在各环境风速段内的平均值的代数平均值或加权平均值作为机组在满发状态下各月份相应的平均机组输出功率或平均上网功率。本实施例中对获取机组在满 发状态下各月份相应的平均机组输出功率或平均上网功率所采用的具体方法不作限定。
S202,根据风力发电机组在满发状态下全年各月份的平均机组输出功率和平均上网功率,计算风力发电机组在全年各月份的平均自身消耗功率,并通过曲线拟合构建满发状态下平均自身消耗功率的全年变化曲线。
例如,可将风力发电机组在满发状态下全年各月份的平均机组输出功率和平均上网功率的差值作为各月份的平均自身消耗功率。将获取的各月份的平均自身消耗功率通过曲线拟合在二维坐标系下形成满发状态下平均自身消耗功率的全年变化曲线。图2b为本实施例提供的满发状态(额定功率为1500KW)下平均自身消耗功率的全年变化曲线示意图。如图2b所示,横坐标为时间,纵坐标为满发状态下的平均自身消耗功率。
S203,将风力发电机组在满发状态下全年各月份的平均机组输出功率通过曲线拟合构建满发状态下平均机组输出功率的全年变化曲线。
图2c为本实施例提供的满发状态下(额定功率为1500KW)平均机组输出功率的全年变化曲线示意图。如图2c所示,横坐标为时间,纵坐标为满发状态下的平均机组输出功率。
S204,提取平均机组输出功率的全年变化曲线对应减去平均自身消耗功率的全年变化曲线得到的差值等于额定功率的时间点作为特定时间点。
例如,将图2c中的曲线值对应减去图2b中的曲线值,得到的差值等于1500KW(额定功率)时对应的时间点确定为上述特定时间点。如在图2d所示曲线图中,该特定时间点出现在A和B两点。
S205,获取风力发电机组在全年各月份所处环境的第二环境温度平均值,并通过曲线拟合构建第二环境温度平均值的全年变化曲线。
图2d为本实施例提供的第二环境温度平均值的全年变化曲线示意图。如图2d所示,横坐标为时间,纵坐标为机组所处环境的第二环境温度平均值。
S206,根据第二环境温度平均值的全年变化曲线中,特定时间点对应的第二环境温度平均值确定温度阈值。
例如,从图2d中可以看出,上述通过图2b和图2c确定的特定时 间点(A点和B两点)在图中对应的第二环境温度平均值大约为13℃,因此,可将上述温度阈值设置为13℃。
本发明实施例提供的温度阈值的获取方法,通过构建机组的平均机组输出功率、平均自身消耗功率和第二环境温度平均值的全年变化曲线,利用前两种曲线确定机组的平均上网功率;利用平均上网功率等于额定功率锁定对应的特定时间点,并根据该特定时间点在第二环境温度平均值的全年变化曲线中锁定温度阈值,由此实现了确定温度阈值的一种具体方法,并使确定的温度阈值更具有参考性。
实施例三
图3为本发明提供的风力发电机组的输出功率补偿方法另一个实施例的方法流程图,该方法可视为图1所示实施例的一种具体实现方式。如图3所示,本实施例在图1所示方法实施例的基础上,对步骤S103做了进一步的细化,即引入了变化率函数。具体地,结合图2a所示实施例的相关步骤,该变化率函数的具体获取方法为:
根据图2a所示实施例中获得的平均机组输出功率的全年变化曲线以及第二环境温度平均值的全年变化曲线,计算风力发电机组在满发状态下的机组输出功率随第二环境温度变化的变化率函数。例如,可以在图2c和图2d中以时间点为对应关系,选取有限个平均机组输出功率和第二环境温度平均值的数组,然后将这些数组在二维坐标系中进行直线拟合,形成的直线对应的函数形如y=p*x+q,并将Δy=p*Δx确定为上述变化率函数,其中,p、q为常数;x、Δx分别为第二环境温度平均值和其增量;y、Δy分别为平均机组输出功率和其增量。
在引入了变化率函数的基础上,图3所示的风力发电机组的输出功率补偿方法可具体包括如下步骤:
S301,获取风力发电机组在各周期内所处环境的第一环境温度平均值;
S302,采集风力发电机组在各周期的结束时刻对应的机组输出功率;
上述步骤S301~S302的具体执行过程可参见步骤S101~S102的相应内容。
S303,若当前周期内第一环境温度平均值和上一周期内第一环境温度平均值均大于预设的温度阈值,则将当前周期内与其上一周期内第一 环境温度平均值之间的差值代入变化率函数中,以获取差值对应的机组输出功率增量。
例如,将将当前周期内与其上一周期内第一环境温度平均值之间的差值(即上一周期内第一环境温度平均值的增量)作为增量Δx代入上述变化率函数Δy=p*Δx中,获取该差值对应的平均机组输出功率增量Δy作为上述机组输出功率增量。
S304,将机组输出功率增量作为功率补偿量对当前周期的结束时刻采集的机组输出功率进行功率补偿,以确保机组输出功率稳定;所述温度阈值为风力发电机组在满发状态下其上网功率等于额定功率时对应的环境温度值。
具体补偿方式及原理可参见步骤S103中的相应内容,在此不作赘述。
上述步骤S303~S304可视为步骤S103的细化方式。
本发明实施例提供的风力发电机组的输出功率补偿方法,在图1所示实施例的基础上,引入了变化率函数的概念,并通过将当前周期内与其上一周期内第一环境温度平均值之间的差值代入变化率函数中,来求解功率补偿的具体数值,使对机组输出功率的补偿更加精确化。同时,本实施例方案还可以引用图2a所述方法求解得到的温度阈值来对获得功率补偿量的过程进行进一步的修正优化。
实施例四
图4a为本发明提供的风力发电机组的输出功率补偿装置一个实施例的结构示意图,可用于执行图1所示实施例的方法步骤,如图4a所示,该风力发电机组的输出功率补偿装置具体包括:第一获取模块41、第一采集模块42和补偿模块43,其中:
第一获取模块41,用于获取风力发电机组在各周期内所处环境的第一环境温度平均值;
第一采集模块42,用于采集风力发电机组在各周期的结束时刻对应的机组输出功率;
补偿模块43,用于若当前周期内第一环境温度平均值和上一周期内第一环境温度平均值均大于预设的温度阈值,则根据当前周期内与其上一周期内第一环境温度平均值之间的差值对当前周期的结束时刻采集的机组输出功率进行功率补偿,以确保机组输出功率稳定;所述温度 阈值为风力发电机组在满发状态下其上网功率等于额定功率时对应的环境温度值。
进一步的,如图4b所示,在图4a所示实施例的基础上,上述风力发电机组的输出功率补偿装置还可以包括:
第二获取模块44,用于获取风力发电机组在满发状态下全年各月份的平均机组输出功率和平均上网功率;
第一处理模块45,用于根据风力发电机组在满发状态下全年各月份的平均机组输出功率和平均上网功率,计算风力发电机组在全年各月份的平均自身消耗功率,并通过曲线拟合构建满发状态下平均自身消耗功率的全年变化曲线;
第二处理模块46,用于将风力发电机组在满发状态下全年各月份的平均机组输出功率通过曲线拟合构建满发状态下平均机组输出功率的全年变化曲线;
提取模块47,用于提取平均机组输出功率的全年变化曲线对应减去平均自身消耗功率的全年变化曲线得到的差值等于额定功率的时间点作为特定时间点;
第三处理模块48,用于获取满发状态下风力发电机组在全年各月份所处环境的第二环境温度平均值,并通过曲线拟合构建满发状态下第二环境温度平均值的全年变化曲线;
确定模块49,用于根据第二环境温度平均值的全年变化曲线中,特定时间点对应的第二环境温度平均值确定温度阈值。
进一步的,上述第二获取模块44可以具体包括:
采集单元441,用于采集全年中各采样时刻对应的风力发电机组的机组输出功率、上网功率和环境风速值;
第一处理单元442,用于将全年中各采样时刻采集的风力发电机组在满发状态下的机组输出功率、上网功率和环境风速值按月份进行统计,分别计算各月份机组输出功率、上网功率在不同环境风速段下对应的平均值;
第二处理单元443,用于根据各月份机组输出功率、上网功率在不同环境风速段下对应的平均值,获取风力发电机组在满发状态下全年各月份的平均机组输出功率和平均上网功率。
上述图2a所示实施例的方法步骤可通过图4b所示的风力发电机组 的输出功率补偿装置执行完成,在此对其步骤原理不作赘述。
进一步的,如图4c所示,在图4b所示实施例的基础上,上述风力发电机组的输出功率补偿装置还可以包括:
第四处理模块50,用于根据平均机组输出功率的全年变化曲线以及第二环境温度平均值的全年变化曲线,计算风力发电机组在满发状态下的机组输出功率随第二环境温度变化的变化率函数。
进一步的,在图4c所示实施例中,上述补偿模块43可以具体包括:
第三处理单元431,用于将当前周期内与其上一周期内第一环境温度平均值之间的差值代入变化率函数中,以获取差值对应的机组输出功率增量;
补偿单元432,用于将机组输出功率增量作为功率补偿量对当前周期的结束时刻采集的机组输出功率进行功率补偿。
上述图3所示实施例的方法步骤可通过图4c所示的风力发电机组的输出功率补偿装置执行完成,在此对其步骤原理不作赘述。
本发明实施例提供的风力发电机组的输出功率补偿装置,执行上述图2a和图3的方法,其所实现的技术效果已经在实施例二和实施三部分所涉及,在此不再赘述。
进一步的,如图5a、图5b和图5c所示,本实施例还提供了一种风力发电机组的输出功率补偿系统,包括:集群控制器53和设置在各风力发电机组51上的单机控制器52;其中:
单机控制器52,包括:
单机获取模块521,用于获取风力发电机组在各周期内所处环境的第一环境温度平均值;
单机采集模块522,用于采集风力发电机组在各周期的结束时刻对应的机组输出功率;
单机补偿模块523,用于接受所述集群控制器的控制对当前周期的结束时刻采集的所述机组输出功率进行功率补偿;
集群控制器53,包括:
集群获取模块531,用于从各单机控制器上获取其所在风力发电机组在各周期内所处环境的第一环境温度平均值;
集群采集模块532,用于从各单机控制器上采集风力发电机组在各周期的结束时刻对应的机组输出功率;
集群补偿模块533,用于若当前周期内各风力发电机组对应的第一环境温度平均值和上一周期内第一环境温度平均值均大于相应风力发电机组对应的预设的温度阈值,则根据各风力发电机组当前周期内与其上一周期内所述第一环境温度平均值之间的差值控制相应单机控制器对当前周期的结束时刻采集的机组输出功率进行功率补偿,以确保各机组输出功率稳定;所述温度阈值为风力发电机组在满发状态下其上网功率等于额定功率时对应的环境温度值。
其中,上述各单机控制器52可以具体为设置在风力发电机组51上的用于控制风力发电机组51运行的补偿系统;上述集群控制器53具体可以为应用于整个风电场,对风电场内各单机控制器52进行调节控制的主控系统。
进一步的,采用本实施例所示的风力发电机组的输出功率补偿系统可以实现如图1、图2a和图3所示实施例的方法步骤,在此对其步骤原理不作赘述。
本实施例提供的风力发电机组的输出功率补偿系统,可实现对一个风电场内的所有风力发电机组依据机组的个性化数据分别对其当前时刻的第一输出功率值进行功率补偿,进而提高了风电场内的群控操作性。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (11)

  1. 一种风力发电机组的输出功率补偿方法,其特征在于,包括:
    获取风力发电机组在各周期内所处环境的第一环境温度平均值;
    采集所述风力发电机组在各周期的结束时刻对应的机组输出功率;
    若当前周期内所述第一环境温度平均值和上一周期内所述第一环境温度平均值均大于预设的温度阈值,则根据当前周期内与其上一周期内所述第一环境温度平均值之间的差值对所述当前周期的结束时刻采集的所述机组输出功率进行功率补偿,以确保所述机组输出功率稳定;所述温度阈值为所述风力发电机组在满发状态下其上网功率等于额定功率时对应的环境温度值。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    获取所述风力发电机组在满发状态下全年各月份的平均机组输出功率和平均上网功率;
    根据所述风力发电机组在满发状态下全年各月份的平均机组输出功率和平均上网功率,计算所述风力发电机组在全年各月份的平均自身消耗功率,并通过曲线拟合构建满发状态下所述平均自身消耗功率的全年变化曲线;
    将所述风力发电机组在满发状态下全年各月份的平均机组输出功率通过曲线拟合构建满发状态下所述平均机组输出功率的全年变化曲线;
    提取所述平均机组输出功率的全年变化曲线对应减去所述平均自身消耗功率的全年变化曲线得到的差值等于额定功率的时间点作为特定时间点;
    获取满发状态下所述风力发电机组在全年各月份所处环境的第二环境温度平均值,并通过曲线拟合构建满发状态下所述第二环境温度平均值的全年变化曲线;
    根据所述第二环境温度平均值的全年变化曲线中,所述特定时间点对应的所述第二环境温度平均值确定所述温度阈值。
  3. 根据权利要求2所述的方法,其特征在于,所述获取所述风力发电机组在满发状态下全年各月份的平均机组输出功率和平均上网功率,包括:
    采集全年中各采样时刻对应的所述风力发电机组的机组输出功率、上网功率和环境风速值;
    将所述全年中各采样时刻采集的所述风力发电机组在满发状态下的机组输出功率、上网功率和环境风速值按月份进行统计,分别计算各月份所述机组输出功率、所述上网功率在不同环境风速段下对应的平均值;
    根据所述各月份所述机组输出功率、所述上网功率在不同环境风速段下对应的平均值,获取所述风力发电机组在满发状态下全年各月份的平均机组输出功率和平均上网功率。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    根据所述平均机组输出功率的全年变化曲线以及所述第二环境温度平均值的全年变化曲线,计算所述风力发电机组在满发状态下的机组输出功率随所述第二环境温度变化的变化率函数。
  5. 根据权利要求4所述的方法,其特征在于,所述根据当前周期内与其上一周期内所述第一环境温度平均值之间的差值对所述当前周期的结束时刻采集的所述机组输出功率进行功率补偿,包括:
    将所述当前周期内与其上一周期内所述第一环境温度平均值之间的差值代入所述变化率函数中,以获取所述差值对应的机组输出功率增量;
    将所述机组输出功率增量作为功率补偿量对所述当前周期的结束时刻采集的所述机组输出功率进行功率补偿。
  6. 一种风力发电机组的输出功率补偿装置,其特征在于,包括:
    第一获取模块,用于获取风力发电机组在各周期内所处环境的第一环境温度平均值;
    第一采集模块,用于采集所述风力发电机组在各周期的结束时刻对应的机组输出功率;
    补偿模块,用于若当前周期内所述第一环境温度平均值和上一周期内所述第一环境温度平均值均大于预设的温度阈值,则根据当前周期内与其上一周期内所述第一环境温度平均值之间的差值对所述当前周期的结束时刻采集的所述机组输出功率进行功率补偿,以确保所述机组输出功率稳定;所述温度阈值为所述风力发电机组在满发状态下其上网功率等于额定功率时对应的环境温度值。
  7. 根据权利要求6所述的装置,其特征在于,还包括:
    第二获取模块,用于获取所述风力发电机组在满发状态下全年各月份的平均机组输出功率和平均上网功率;
    第一处理模块,用于根据所述风力发电机组在满发状态下全年各月份的平均机组输出功率和平均上网功率,计算所述风力发电机组在全年各月份的平均自身消耗功率,并通过曲线拟合构建满发状态下所述平均自身消耗功率的全年变化曲线;
    第二处理模块,用于将所述风力发电机组在满发状态下全年各月份的平均机组输出功率通过曲线拟合构建满发状态下所述平均机组输出功率的全年变化曲线;
    提取模块,用于提取所述平均机组输出功率的全年变化曲线对应减去所述平均自身消耗功率的全年变化曲线得到的差值等于额定功率的时间点作为特定时间点;
    第三处理模块,用于获取满发状态下所述风力发电机组在全年各月份所处环境的第二环境温度平均值,并通过曲线拟合构建满发状态下所述第二环境温度平均值的全年变化曲线;
    确定模块,用于根据所述第二环境温度平均值的全年变化曲线中,所述特定时间点对应的所述第二环境温度平均值确定所述温度阈值。
  8. 根据权利要求7所述的装置,其特征在于,所述第二获取模块包括:
    采集单元,用于采集全年中各采样时刻对应的所述风力发电机组的机组输出功率、上网功率和环境风速值;
    第一处理单元,用于将所述全年中各采样时刻采集的所述风力发电机组在满发状态下的机组输出功率、上网功率和环境风速值按月份进行统计,分别计算各月份所述机组输出功率、所述上网功率在不同环境风速段下对应的平均值;
    第二处理单元,用于根据所述各月份所述机组输出功率、所述上网功率在不同环境风速段下对应的平均值,获取所述风力发电机组在满发状态下全年各月份的平均机组输出功率和平均上网功率。
  9. 根据权利要求8所述的装置,其特征在于,还包括:
    第四处理模块,用于根据所述平均机组输出功率的全年变化曲线以及所述第二环境温度平均值的全年变化曲线,计算所述风力发电机 组在满发状态下的机组输出功率随所述第二环境温度变化的变化率函数。
  10. 根据权利要求9所述的装置,其特征在于,所述补偿模块包括:
    第三处理单元,用于将所述当前周期内与其上一周期内所述第一环境温度平均值之间的差值代入所述变化率函数中,以获取所述差值对应的机组输出功率增量;
    补偿单元,用于将所述机组输出功率增量作为功率补偿量对所述当前周期的结束时刻采集的所述机组输出功率进行功率补偿。
  11. 一种风力发电机组的输出功率补偿系统,其特征在于,包括:集群控制器和设置在各所述风力发电机组上的单机控制器;
    所述单机控制器,包括:
    单机获取模块,用于获取风力发电机组在各周期内所处环境的第一环境温度平均值;
    单机采集模块,用于采集所述风力发电机组在各周期的结束时刻对应的机组输出功率;
    单机补偿模块,用于接受所述集群控制器的控制对当前周期的结束时刻采集的所述机组输出功率进行功率补偿;
    所述集群控制器,包括:
    集群获取模块,用于从各所述单机控制器上获取其所在风力发电机组在各周期内所处环境的第一环境温度平均值;
    集群采集模块,用于从各所述单机控制器上采集所述风力发电机组在各周期的结束时刻对应的机组输出功率;
    集群补偿模块,用于若当前周期内各所述风力发电机组对应的所述第一环境温度平均值和上一周期内所述第一环境温度平均值均大于相应所述风力发电机组对应的预设的温度阈值,则根据各所述风力发电机组当前周期内与其上一周期内所述第一环境温度平均值之间的差值控制相应所述单机控制器对所述当前周期的结束时刻采集的所述机组输出功率进行功率补偿,以确保各所述机组输出功率稳定;所述温度阈值为所述风力发电机组在满发状态下其上网功率等于额定功率时对应的环境温度值。
PCT/CN2015/094823 2014-12-30 2015-11-17 风力发电机组的输出功率补偿方法、装置和系统 WO2016107314A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES15874994T ES2838684T3 (es) 2014-12-30 2015-11-17 Método, dispositivo y sistema para compensar la potencia de salida de conjunto generador de aerogenerador
KR1020177020332A KR101973881B1 (ko) 2014-12-30 2015-11-17 윈드 터빈 발전기 세트의 출력 전력을 보상하기 위한 방법, 디바이스 및 시스템
US15/539,429 US10190575B2 (en) 2014-12-30 2015-11-17 Method, device and system for compensating output power of wind turbine generator set
AU2015374696A AU2015374696B2 (en) 2014-12-30 2015-11-17 Method, device and system for compensating output power of wind turbine generator set
EP15874994.5A EP3242011B1 (en) 2014-12-30 2015-11-17 Method, device and system for compensating output power of wind turbine generator set

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410838656.0A CN104564529B (zh) 2014-12-30 2014-12-30 风力发电机组的输出功率补偿方法、装置和系统
CN201410838656.0 2014-12-30

Publications (1)

Publication Number Publication Date
WO2016107314A1 true WO2016107314A1 (zh) 2016-07-07

Family

ID=53081400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/094823 WO2016107314A1 (zh) 2014-12-30 2015-11-17 风力发电机组的输出功率补偿方法、装置和系统

Country Status (7)

Country Link
US (1) US10190575B2 (zh)
EP (1) EP3242011B1 (zh)
KR (1) KR101973881B1 (zh)
CN (1) CN104564529B (zh)
AU (1) AU2015374696B2 (zh)
ES (1) ES2838684T3 (zh)
WO (1) WO2016107314A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114615776A (zh) * 2022-03-09 2022-06-10 珠海市圣昌电子有限公司 一种电源过热保护分阶段降载方法及系统

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104564529B (zh) * 2014-12-30 2017-07-14 北京金风科创风电设备有限公司 风力发电机组的输出功率补偿方法、装置和系统
CN106704100B (zh) * 2016-12-30 2019-07-02 北京金风科创风电设备有限公司 风力发电机组、风力发电机组功率控制方法及装置
US11365718B2 (en) * 2017-06-07 2022-06-21 Vestas Wind Systems A/S Adaptive estimation of available power for wind turbine
CN109973299B (zh) * 2017-12-27 2020-03-17 新疆金风科技股份有限公司 风力发电机组的功率补偿的控制方法及装置
CN109973298B (zh) * 2017-12-27 2020-03-17 新疆金风科技股份有限公司 风电机组功率补偿的控制方法及装置
CN109372690B (zh) * 2018-12-29 2022-12-13 新疆金风科技股份有限公司 风力发电机组的功率控制方法、装置、电子设备及介质
CN109854447A (zh) * 2019-03-13 2019-06-07 国电联合动力技术有限公司 风电机组的高温智能运行控制系统及方法
CN110061522B (zh) * 2019-04-29 2021-01-26 明阳智慧能源集团股份公司 一种风电场自动发电系统控制方法
CN111852788B (zh) * 2019-04-30 2022-07-15 北京金风科创风电设备有限公司 风电机组的功率损耗异常的诊断方法和装置
CN113090453B (zh) * 2019-12-23 2023-03-03 新疆金风科技股份有限公司 风力发电机组的控制方法、装置和风力发电机组
CN111648915B (zh) * 2020-05-21 2021-04-16 浙江大学 风力发电机的冷却控制方法、系统、设备及存储介质
CN114444291B (zh) * 2022-01-20 2023-02-10 中节能风力发电股份有限公司 一种风机发电量损失精细化测算方法、系统、设备和介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7476987B2 (en) * 2006-04-25 2009-01-13 The University Of New Brunswick Stand-alone wind turbine system, apparatus, and method suitable for operating the same
EP2128385A2 (en) * 2008-05-16 2009-12-02 Frontier Wind, LLC. Wind turbine with deployable air deflectors
CN102954858A (zh) * 2011-08-17 2013-03-06 通用电气公司 风力发电机以及检测风力发电机异常运行条件的方法
CN103244351A (zh) * 2012-02-10 2013-08-14 西门子公司 改进的用于风轮机的噪声减小控制
CN103782143A (zh) * 2011-09-07 2014-05-07 科电公司 用于估计半导体芯片温度的方法和设备
US9018782B2 (en) * 2010-09-30 2015-04-28 Vestas Wind Systems A/S Over-rating control in wind turbines and wind power plants
CN104564529A (zh) * 2014-12-30 2015-04-29 北京金风科创风电设备有限公司 风力发电机组的输出功率补偿方法、装置和系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10109553B4 (de) 2001-02-28 2006-03-30 Wobben, Aloys, Dipl.-Ing. Luftdichteabhängige Leistungsregelung
CA2564494A1 (fr) * 2006-10-18 2008-04-18 Boralex Inc. Systeme pour controler une eolienne
US20080112807A1 (en) 2006-10-23 2008-05-15 Ulrich Uphues Methods and apparatus for operating a wind turbine
CA2714855A1 (en) * 2009-06-05 2010-12-05 Mitsubishi Heavy Industries, Ltd. Wind turbine generator, method of controlling the same, and wind turbine generating system
US7880320B2 (en) * 2009-10-30 2011-02-01 General Electric Company System, device, and method for controlling a wind turbine using seasonal parameters
US9127642B2 (en) * 2011-03-29 2015-09-08 General Electric Company Methods for adjusting the power output of a wind turbine
CN102767473B (zh) * 2012-07-31 2015-05-06 国电联合动力技术有限公司 风电机组控制策略的最优增益在线计算方法、系统及装置
DK2719895T3 (en) 2012-10-09 2017-10-30 Ge Renewable Tech Method for monitoring a wind turbine
US9228568B2 (en) * 2013-03-06 2016-01-05 General Electric Company Methods for scheduling the replacement of wind turbine batteries and related systems

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7476987B2 (en) * 2006-04-25 2009-01-13 The University Of New Brunswick Stand-alone wind turbine system, apparatus, and method suitable for operating the same
EP2128385A2 (en) * 2008-05-16 2009-12-02 Frontier Wind, LLC. Wind turbine with deployable air deflectors
US9018782B2 (en) * 2010-09-30 2015-04-28 Vestas Wind Systems A/S Over-rating control in wind turbines and wind power plants
CN102954858A (zh) * 2011-08-17 2013-03-06 通用电气公司 风力发电机以及检测风力发电机异常运行条件的方法
CN103782143A (zh) * 2011-09-07 2014-05-07 科电公司 用于估计半导体芯片温度的方法和设备
CN103244351A (zh) * 2012-02-10 2013-08-14 西门子公司 改进的用于风轮机的噪声减小控制
CN104564529A (zh) * 2014-12-30 2015-04-29 北京金风科创风电设备有限公司 风力发电机组的输出功率补偿方法、装置和系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114615776A (zh) * 2022-03-09 2022-06-10 珠海市圣昌电子有限公司 一种电源过热保护分阶段降载方法及系统

Also Published As

Publication number Publication date
EP3242011A1 (en) 2017-11-08
US20170356419A1 (en) 2017-12-14
EP3242011B1 (en) 2020-10-07
KR101973881B1 (ko) 2019-04-29
EP3242011A4 (en) 2018-08-15
CN104564529A (zh) 2015-04-29
ES2838684T3 (es) 2021-07-02
AU2015374696A1 (en) 2017-08-03
AU2015374696B2 (en) 2018-07-26
US10190575B2 (en) 2019-01-29
CN104564529B (zh) 2017-07-14
KR20170098288A (ko) 2017-08-29

Similar Documents

Publication Publication Date Title
WO2016107314A1 (zh) 风力发电机组的输出功率补偿方法、装置和系统
Dai et al. Research on power coefficient of wind turbines based on SCADA data
Fathabadi Novel highly accurate universal maximum power point tracker for maximum power extraction from hybrid fuel cell/photovoltaic/wind power generation systems
US10731630B2 (en) Extended reaction power for wind farms
Zhao et al. Wind power smoothing by controlling the inertial energy of turbines with optimized energy yield
Zhong et al. Power reserve control with real-time iterative estimation for PV system participation in frequency regulation
CN102797631B (zh) 一种风电机组的最优增益在线自校正方法、系统及其装置
CN101860044A (zh) 风电场无功电压的协调控制方法
Chandra et al. Impact of SCIG, DFIG wind power plant on IEEE 14 bus system with small signal stability assessment
US9970415B2 (en) Method and system for managing loads on a wind turbine
CN105259971B (zh) 一种优化的mppt算法
Goudarzi et al. Aerodynamic and electromagnetic analysis of a variable electromotive-force generator for a wind turbine
CN111027179B (zh) 一种计及辅助调频服务的双馈风电场的等值建模方法
CN114033617B (zh) 一种控制参量自适应调整的可控风力发电方法及系统
Bouchafaa et al. Improvement of the performances MPPT system of wind generation
Yusong et al. Horizontal axis wind turbine MPPT control research
Shi et al. Effects of wind generation uncertainty and volatility on power system small signal stability
CN104564519A (zh) 桨距角控制与超级电容相结合的风电入网功率控制方法
Wu et al. A review of frequency regulation of DFIG-based wind farms
Tatsuta et al. A wind turbine simulator for adjusting the moment of inertia of a wind power generation system using a DC motor
CN202811198U (zh) 一种风电机组的最优增益在线自校正装置
Zhang et al. A Novel Frequency Control Method for Smart Buildings With Wind Power System Integration Considering Turbulence Characteristics
Zhao et al. Analysis of subsynchronous oscillation characteristics and its dominant factors in the DFIG-based wind farm with fixed series compensation
CN102235305A (zh) 一种风力发电变桨模糊控制方法
Li et al. Overview of Maximum Power Point Tracking Control Method for Wind Power Generation System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15874994

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15539429

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015874994

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177020332

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015374696

Country of ref document: AU

Date of ref document: 20151117

Kind code of ref document: A