WO2016107189A1 - 一种通信装置及其方法 - Google Patents

一种通信装置及其方法 Download PDF

Info

Publication number
WO2016107189A1
WO2016107189A1 PCT/CN2015/087079 CN2015087079W WO2016107189A1 WO 2016107189 A1 WO2016107189 A1 WO 2016107189A1 CN 2015087079 W CN2015087079 W CN 2015087079W WO 2016107189 A1 WO2016107189 A1 WO 2016107189A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency resource
information
subband
sub
control channel
Prior art date
Application number
PCT/CN2015/087079
Other languages
English (en)
French (fr)
Inventor
南方
余政
张向东
夏金环
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201580071380.0A priority Critical patent/CN107113852B/zh
Publication of WO2016107189A1 publication Critical patent/WO2016107189A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • Embodiments of the present invention relate to a communication apparatus and a method thereof, and, in particular, to an uplink control information transmitting apparatus, a receiving apparatus, and a method thereof through a physical uplink control channel.
  • MTC Machine Type Communication
  • the bandwidth of the signal that the terminal can support is usually less than the system's maximum system bandwidth (or the maximum channel bandwidth, or the maximum bandwidth configured by the transmission bandwidth configuration) or no larger than the specific system bandwidth (or a specific channel). Bandwidth, or the specific bandwidth configured for the transmission bandwidth configuration).
  • LTE Long Term Evolution
  • the system can determine the required system bandwidth among the 6 system bandwidths. For example, when the determined system bandwidth in the LTE system is 20 MHz, if a terminal supports only 5 MHz bandwidth. Obviously the bandwidth of the terminal cannot cover the entire system bandwidth of 20MHz.
  • the limitation of terminal capabilities is not considered in the prior art. Therefore, when the limited terminal, that is, the low complexity or low cost terminal, the supported bandwidth cannot cover the entire system bandwidth, the signal of the terminal cannot be compatible with the system bandwidth.
  • the embodiment of the present invention provides an uplink information sending apparatus, a receiving apparatus, and a method, so as to ensure that a restricted terminal uploads uplink control information, fully utilizes a peak rate of uplink data, or ensures uplink data receiving performance.
  • an embodiment of the present invention provides an uplink control information sending apparatus, where The bandwidth supported by the sending device is smaller than the system bandwidth, and the system bandwidth includes multiple frequency resources, and the sending device includes:
  • a processing unit configured to determine a first parameter p1; the first parameter is less than or equal to a first quantity; the first quantity is a quantity of frequency resources that can be accommodated by a bandwidth supported by the sending device;
  • the processing unit is configured to determine frequency resource information according to the first parameter
  • the processing unit is configured to map a physical uplink control channel to a frequency resource indicated by the frequency resource information;
  • a sending unit configured to send uplink control information by using the physical uplink control channel.
  • an embodiment of the present invention provides a method for transmitting uplink control information, where a bandwidth supported by a terminal is smaller than a system bandwidth, and the system bandwidth includes multiple frequency resources, and the method includes the following steps:
  • the first parameter is less than or equal to a first quantity; the first quantity is a quantity of frequency resources that can be accommodated by a bandwidth supported by the terminal;
  • an embodiment of the present invention provides an uplink control information receiving apparatus, where a bandwidth supported by a terminal is smaller than a system bandwidth, and the system bandwidth includes a plurality of frequency resources, and the receiving apparatus includes:
  • a processing unit configured to determine a first parameter p1; the first parameter is less than or equal to a first quantity; the first quantity is a quantity of frequency resources that can be accommodated by a bandwidth supported by the terminal;
  • the processing unit is configured to determine frequency resource information according to the first parameter
  • the processing unit is configured to map a physical uplink control channel to a frequency resource indicated by the frequency resource information;
  • a receiving unit configured to receive uplink control information by using the physical uplink control channel.
  • an embodiment of the present invention provides an uplink control information receiving method, where a bandwidth supported by a terminal is smaller than a system bandwidth, and the system bandwidth includes multiple frequency resources, and the method includes the following steps:
  • the first parameter is less than or equal to a first quantity; the first quantity is a quantity of frequency resources that can be accommodated by a bandwidth supported by the terminal;
  • an embodiment of the present invention provides an uplink control information sending apparatus, where a bandwidth supported by the sending apparatus is smaller than a system bandwidth, and the system bandwidth includes a plurality of frequency resources, and the sending apparatus includes:
  • a processing unit configured to determine first frequency resource information and second frequency resource information, where the second frequency resource indicated by the second frequency resource information and the first frequency resource indicated by the first frequency resource information
  • the frequency width is less than or equal to the bandwidth supported by the transmitting device
  • the processing unit is configured to map a physical uplink control channel to a first frequency resource indicated by the first frequency resource information in a first time slot of a subframe; and to perform a second time slot of the subframe in a second time slot of the subframe
  • the physical uplink control channel is mapped to the second frequency resource indicated by the second frequency resource information
  • a sending unit configured to send uplink control information by using the physical uplink control channel.
  • an embodiment of the present invention provides a method for transmitting uplink control information, where a bandwidth supported by a terminal is smaller than a system bandwidth, and the system bandwidth includes multiple frequency resources, and the method includes the following steps:
  • an embodiment of the present invention provides an uplink control information receiving apparatus, where a bandwidth supported by a terminal is smaller than a system bandwidth, and the system bandwidth includes a plurality of frequency resources, and the receiving apparatus includes:
  • a processing unit configured to determine first frequency resource information and second frequency resource information, where the second frequency resource indicated by the second frequency resource information and the first frequency resource indicated by the first frequency resource information
  • the frequency width is less than or equal to the bandwidth supported by the terminal
  • the processing unit is configured to map a physical uplink control channel to a first frequency resource indicated by the first frequency resource information in a first time slot of a subframe; and to perform a second time slot of the subframe in a second time slot of the subframe
  • the physical uplink control channel is mapped to the second frequency resource indicated by the second frequency resource information
  • a receiving unit configured to receive uplink control information by using the physical uplink control channel.
  • an embodiment of the present invention provides an uplink control information receiving method, where a bandwidth supported by a terminal is smaller than a system bandwidth, and the system bandwidth includes multiple frequency resources, and the method includes the following steps:
  • an embodiment of the present invention further provides a system having the above-described transmitting device, the above receiving device, and a corresponding method.
  • an embodiment of the present invention further provides a further system and corresponding method having the above-described transmitting device and the above receiving device.
  • an embodiment of the present invention provides a communications apparatus, including:
  • a processing unit configured to determine a first parameter p1; the first parameter is less than or equal to a first quantity; the first quantity is a quantity of frequency resources that can be accommodated by a bandwidth supported by the sending device;
  • the processing unit is configured to determine frequency resource information according to the first parameter
  • the processing unit is configured to map a physical uplink control channel to a frequency resource indicated by the frequency resource information;
  • transceiver unit configured to send or receive uplink control information by using the physical uplink control channel.
  • an embodiment of the present invention provides a communication method including:
  • the first parameter is less than or equal to a first quantity; the first quantity is a quantity of frequency resources that can be accommodated by a bandwidth supported by the terminal;
  • an embodiment of the present invention provides a terminal 1300, including:
  • a processing unit configured to determine at least two sub-bands, where the sub-band includes at least one frequency resource, where a bandwidth of each sub-band is less than or equal to a bandwidth supported by the terminal;
  • the processing unit is further configured to determine third frequency resource information according to the sub-band area physical uplink control channel resource index, where the third frequency resource information indicates a third frequency resource of the frequency resources included in the at least two sub-bands
  • the sub-band area physical uplink control channel resource index indicates the at least two Physical uplink control channel resources in the subband;
  • the processing unit is further configured to map a physical uplink control channel to the third frequency resource;
  • transceiver unit configured to send the uplink control information by using the physical uplink control channel.
  • an embodiment of the present invention provides a communication method including:
  • the sub-band comprising at least one frequency resource, the bandwidth of each sub-band being less than or equal to a bandwidth supported by the terminal;
  • the third frequency resource information is determined according to the sub-band area physical uplink control channel resource index, where the third frequency resource information indicates a third frequency resource of the frequency resources included in the at least two sub-bands, and the sub-band area is physically uplinked. Controlling a channel resource index indicating physical uplink control channel resources in the at least two subbands;
  • the embodiment of the present invention provides that the access network device includes:
  • a processing unit configured to determine at least two sub-bands, where the sub-band includes at least one frequency resource, where a bandwidth of each sub-band is less than or equal to a bandwidth supported by the terminal;
  • the processing unit is further configured to determine third frequency resource information according to the sub-band area physical uplink control channel resource index, where the third frequency resource information indicates a third frequency resource of the frequency resources included in the at least two sub-bands
  • the sub-band area physical uplink control channel resource index indicates a physical uplink control channel resource in the at least two sub-bands
  • the processing unit is further configured to map a physical uplink control channel to the third frequency resource;
  • transceiver unit configured to receive the uplink control information by using the physical uplink control channel.
  • an embodiment of the present invention provides a communication method, including:
  • the sub-band comprising at least one frequency resource, the bandwidth of each sub-band being less than or equal to a bandwidth supported by the terminal;
  • the third frequency resource information is determined according to the sub-band area physical uplink control channel resource index, where the third frequency resource information indicates a third frequency resource of the frequency resources included in the at least two sub-bands, and the sub-band area is physically uplinked. Controlling a channel resource index indicating physical uplink control channel resources in the at least two subbands;
  • embodiments of the present invention also provide a system and corresponding method having the above communication device and/or the above terminal and/or the above access network device.
  • the sent uplink control information can be limited to the bandwidth supported by the terminal, thereby ensuring
  • the restricted terminal transmits uplink control information, which fully utilizes the peak rate of the uplink data or ensures the reception performance of the uplink data.
  • Figure 1 is a schematic diagram of a communication system
  • 3 is a schematic diagram of physical resource mapping of a conventional PUCCH
  • FIG. 4 is a schematic diagram of frequency physical resources according to an embodiment of the present invention.
  • FIG. 5 is still another schematic diagram of a frequency physical resource according to an embodiment of the present invention.
  • FIG. 6 is still another schematic diagram of a frequency physical resource according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a minimum wideband frequency resource index, a maximum broadband frequency resource index, and a center frequency resource index of a frequency physical resource according to an embodiment of the present invention
  • FIG. 8 is still another schematic diagram of a frequency physical resource according to an embodiment of the present invention.
  • FIG. 9 is still another schematic diagram of a frequency physical resource according to an embodiment of the present invention.
  • FIG. 10 is still another schematic diagram of a frequency physical resource according to an embodiment of the present invention.
  • FIG. 11 is still another schematic diagram of a frequency physical resource according to an embodiment of the present invention.
  • FIG. 12 is still another schematic diagram of a frequency physical resource according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of an uplink information sending apparatus according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of an uplink information sending method according to an embodiment of the present invention.
  • FIG. 15 is a schematic diagram of an uplink information receiving apparatus according to an embodiment of the present invention.
  • FIG. 16 is a schematic diagram of an uplink information receiving method according to an embodiment of the present invention.
  • FIG. 17 is a schematic diagram of an uplink information transmitting apparatus according to an embodiment of the present invention.
  • FIG. 18 is a schematic diagram of an uplink information sending method according to an embodiment of the present invention.
  • FIG. 19 is a schematic diagram of an uplink information receiving apparatus according to an embodiment of the present invention.
  • FIG. 20 is a schematic diagram of an uplink information receiving method according to an embodiment of the present invention.
  • 21 is a schematic diagram of a communication system in accordance with an embodiment of the present invention.
  • FIG. 22 is a schematic diagram of still another communication system in accordance with an embodiment of the present invention.
  • FIG. 23 is a schematic diagram of physical uplink control channel physical resource mapping according to an embodiment of the present invention.
  • FIG. 24 is still another schematic diagram of physical uplink control channel physical resource mapping according to an embodiment of the present invention.
  • FIG. 25 is still another schematic diagram of physical uplink control channel physical resource mapping according to an embodiment of the present invention.
  • FIG. 26 is still another schematic diagram of physical uplink control channel physical resource mapping according to an embodiment of the present invention.
  • FIG. 27 is still another schematic diagram of physical uplink control channel physical resource mapping according to an embodiment of the present invention.
  • FIG. 28 is a schematic diagram of a communication device according to an embodiment of the present invention.
  • 29 is a schematic diagram of a communication method according to an embodiment of the present invention.
  • FIG. 30 is a schematic diagram of a terminal according to an embodiment of the present invention.
  • FIG. 31 is a schematic diagram of a communication method according to an embodiment of the present invention.
  • FIG. 32 is a schematic diagram of an access network device according to an embodiment of the present invention.
  • FIG. 33 is a schematic diagram of a communication method according to an embodiment of the present invention.
  • FIG. 34 is a schematic diagram of a communication system according to an embodiment of the present invention.
  • 35 is a schematic diagram of yet another communication system in accordance with an embodiment of the present invention.
  • the present invention is mainly applied to an LTE system or an advanced Long Term Evolution (LTE-A) system.
  • LTE-A Long Term Evolution
  • the present invention is also applicable to other communication systems, as long as there is an entity in the communication system that can transmit uplink control information, and other entities in the communication system can receive uplink control information.
  • FIG. 1 shows a communication system consisting of a base station and UE1 to UE6, in which at least one of UE1 to UE6 can transmit uplink information to a base station, and the base station can receive uplinks sent by at least one of UE1 to UE6. information.
  • UE4 to UE6 also form a communication system.
  • UE4 or UE6 can send uplink information to UE5, UE5 can receive uplink information sent by UE4 or UE6, and UE5 can further send uplink information to the base station.
  • a system performs data transmission through a physical resource block (PRB).
  • PRB physical resource block
  • System resources can be divided into subcarriers in frequency.
  • the subcarrier spacing can be 15 KHz.
  • FIG. 2 shows the resources occupied by one uplink subframe, and particularly shows the relationship between the bandwidth supported by the restricted terminal and the system bandwidth.
  • the ordinate is the frequency and the abscissa is the time.
  • System resources are divided in time into radio frames (also called system frames). Typically, one radio frame contains 10 subframes, one subframe is 1 ms long, and each subframe contains two slots.
  • System bandwidth is divided in frequency PRB, n PRB is the index of the PRB.
  • a PRB occupies a frequency resource of 180 kHz, that is, a frequency resource of one PRB contains 12 subcarriers.
  • the corresponding system bandwidth is 20MHz.
  • the bandwidth supported by the UE cannot cover the system bandwidth.
  • the system can divide at least one sub-band when communicating with the terminal.
  • a subband contains one or more frequency resources.
  • one subband may contain one or more PRBs, and may also contain one or more subcarriers.
  • the frequency width and frequency resource location of the frequency resources included in the subband may be predetermined or by the system root According to the site conditions. Usually, the frequency width occupied by one subband does not exceed the signal bandwidth supported by the terminal.
  • a restricted terminal can only receive or transmit signals in one subband.
  • the sub-bands may in turn be referred to as narrow bands.
  • the following describes the uplink control information.
  • the UE sends uplink control information through a physical uplink control channel (PUCCH).
  • PUCCH Physical uplink control channel
  • a conventional PUCCH occupies a frequency width of one PRB in frequency, and this one PRB may be a PRB at the edge of the system bandwidth.
  • the PUCCH mapped frequency resource has two different frequency positions. Therefore, when the first time slot of the same subframe occupies the PRB at the edge of the system bandwidth edge and the other time slot occupies the PRB at the other end of the system bandwidth edge, the subframe uses the frequency resources at both ends of the entire system bandwidth.
  • FIG. 3 is a schematic diagram of physical resource mapping of a conventional PUCCH.
  • the PUCCH is mapped to different PRBs.
  • the supported bandwidth is limited, and the entire system bandwidth cannot be covered, so that the restricted UE cannot transmit the uplink control information in the legacy LTE system.
  • the restricted UE wants to transmit the information carried by the PUCCH, it must adjust the sub-band of the transmitted signal between different time slots of one subframe, which brings additional complexity.
  • the UE cannot transmit data within the adjustment time, which causes waste of resources within the adjustment time.
  • the system uses only a part of the system bandwidth for data transmission, which causes the system bandwidth to be insufficiently utilized, affecting the peak rate of the uplink data or the receiving performance of the uplink data.
  • an embodiment of the present invention provides an uplink information transmission and reception scheme, so that a base station can reasonably schedule resources for a restricted terminal in the entire system bandwidth, and fully utilize system bandwidth.
  • the radio resource control signaling in all embodiments of the present invention may be a radio resource control public message. Order and/or radio resource control proprietary signaling.
  • the radio resource control common signaling may be one or more of system information, system information blocks, and main information blocks.
  • the media access control signaling may be a control element of media access control.
  • the physical layer signaling may be a control channel carrying control information.
  • the physical uplink control channel is used to carry uplink control information.
  • the uplink control information may be Acknowledgement (ACK) information, Negative Acknowledgment (Nack) information, Scheduling Request (SR), Channel State Information (CSI), Channel Quality Indicator ( At least one of a channel quality indicator (CQI), a rank indicator (RI), and a Precoding Matrix Indicator (PMI).
  • the physical uplink control channel PUCCH may also be an Enhanced Physical Uplink Control Channel (ePUCCH), a narrowband physical uplink control channel (Narrow Band PUCCH, NBPUCCH), and a machine type physical uplink control channel (Machine Type PUCCH, MPUCCH), or other channel carrying uplink control information.
  • ePUCCH Enhanced Physical Uplink Control Channel
  • NBPUCCH narrowband physical uplink control channel
  • Machine Type PUCCH MPUCCH
  • the present embodiment provides an uplink control information sending apparatus, wherein a bandwidth supported by the transmitting apparatus is smaller than a system bandwidth, and the system bandwidth includes multiple frequency resources.
  • the frequency resource that the bandwidth supported by the transmitting device can accommodate is that the system bandwidth includes some of the plurality of frequency resources.
  • the transmitting device can only send uplink information in a part of the frequency resources in which the system bandwidth includes multiple frequency resources.
  • the transmitting device can be a user terminal, such as a User Equipment (UE).
  • the system bandwidth is the bandwidth of all frequency resources supported by the system, and the system bandwidth is divided into multiple frequency resources.
  • the frequency resource may be a resource occupied by a physical resource block (PRB) in frequency, or the frequency resource may also be a subcarrier.
  • PRB physical resource block
  • the transmitting apparatus 100 includes:
  • the processing unit 102 is configured to determine a first parameter p1; the first parameter is less than or equal to a first quantity; the first quantity is a quantity of frequency resources that can be accommodated by a bandwidth supported by the sending device;
  • the processing unit 102 is configured to determine frequency resource information according to the first parameter
  • the processing unit 102 is configured to map a physical uplink control channel to a frequency resource indicated by the frequency resource information;
  • the sending unit 101 is configured to send uplink control information by using the physical uplink control channel.
  • the transmitted uplink control information can be limited to the bandwidth supported by the transmitting device, thereby ensuring limited terminal transmission.
  • the uplink control information and the restricted terminal transmission uplink control information are not always at the center of the system bandwidth, and the peak rate of the uplink data or the reception performance of the uplink data is sufficiently ensured.
  • the processing unit determines that the first parameter p1 can be in multiple ways.
  • the processing unit is configured to determine a second parameter m * according to the physical uplink control channel resource index, where the second parameter is less than or equal to the first quantity; and determine the first parameter according to the second parameter.
  • the processing unit configured to determine the second parameter m * according to the physical uplink control channel resource index, may include: the processing unit, configured to determine a physical uplink control channel resource index according to at least one of the following parameters: a radio resource The parameters included in the radio resource control (RRC) signaling, the parameters included in the physical layer signaling, and the first control channel element of the physical downlink control channel (PDCCH) carrying the downlink control information (control channel element) The sequence number of the first enhanced control channel element (ECCE) of the enhanced physical downlink control channel (EPDCCH) carrying the downlink control information, carrying the downlink control information The sequence number of the first control channel element of the physical downlink control channel of the machine type communication; the processing unit, configured to determine the second parameter m * according to the physical uplink control channel resource index, where the second parameter is less than or equal to Said the first quantity.
  • RRC radio resource control
  • PDCCH physical downlink control channel
  • ECE enhanced control channel element
  • EPDCCH enhanced physical downlink control channel
  • the PDCCH or the EPDCCH may be another channel for carrying downlink control information, such as a physical downlink control channel for device type communication carrying downlink control information.
  • the CCE or ECCE may also be an element constituting other channels for carrying downlink control information, such as control channel elements constituting a physical downlink control channel of machine type communication.
  • the processing unit is configured to determine, according to the physical uplink control channel resource index, a second parameter m * :
  • the physical downlink control channel may be a PDCCH, or an EPDCCH, or another channel for carrying downlink control information.
  • the control channel element may be a CCE, or an ECCE, or an element constituting other channels for carrying downlink control information.
  • the downlink control information includes resource scheduling information of a Physical Downlink Shared Channel (PDSCH), and the physical uplink control channel carries a response or negative response information to the PDSCH.
  • PDSCH Physical Downlink Shared Channel
  • a physical uplink control channel resource In order to make the second parameter less than or equal to the first quantity, a physical uplink control channel resource
  • the maximum value of the quote needs to be less than a certain value, such as the maximum value is less than 2047.
  • the processing unit configured to determine the first parameter according to the second parameter, may use the following formula:
  • N NB is the first quantity
  • m * is the second parameter
  • p1 is the first parameter
  • n s is a slot number
  • n sf is a subframe number.
  • X is a parameter related to at least one of n s , n sf , radio frame number, and the number of uplink subframes included between the start subframe in which the uplink control information is transmitted and the current subframe.
  • X is n sf .
  • X is 10 ⁇ SFN+n sf
  • SFN is a radio frame number.
  • X is the number of subframes or uplink subframes included between the start subframe to the current subframe in which the uplink control information is transmitted.
  • Y is a predefined parameter, or Y is a parameter related to the physical uplink control channel hopping granularity, or Y is a parameter related to the physical uplink control channel hopping period.
  • the frequency resource mapped by the physical uplink control channel may change, which is called physical uplink control channel frequency hopping.
  • the frequency resource of the physical uplink control channel mapping changes once every G subframes, which is called the physical uplink control channel frequency hopping granularity.
  • the change rule of the frequency resource of the physical uplink control channel mapping is repeated every H subframes, and the H subframes are referred to as a physical uplink control channel hopping period.
  • Y is the physical uplink control channel frequency hopping granularity.
  • the physical uplink control channel hopping may occur in multiple subframes in which the physical uplink control channel is mapped or the transmitting unit sends uplink control information. That is, in a plurality of subframes before and after the frequency resource of the physical uplink control channel mapping changes, the transmitting unit transmits the same uplink control information.
  • X and Y determine the moment of physical uplink control channel hopping.
  • the base station selects the value of the RRC signaling configuration, selects the CCE constituting the PDCCH, and selects the ECCE constituting the EPDCCH, so that the calculated value of m ranges from 0 to 5, thereby The value ranges from 0 to 2. The value ranges from 3 to 5.
  • the value of the first parameter determined by the UE is not greater than 6.
  • Fig. 4 exemplarily shows the relationship of frequency resources and time slots obtained according to the formula (1).
  • Fig. 5 exemplarily shows the relationship of frequency resources and time slots obtained according to the formula (2).
  • Figure 5 and equation (2) show that the first parameter p1 is determined from the physical uplink control channel resource index.
  • Fig. 6 exemplarily shows the relationship of frequency resources and time slots obtained according to the formula (3).
  • Fig. 23 exemplarily shows the relationship of frequency resources and time slots obtained according to the formula (4).
  • Fig. 24 exemplarily shows the relationship of frequency resources and time slots obtained according to the formula (5).
  • Fig. 25 exemplarily shows the relationship of frequency resources and time slots obtained according to the formula (6).
  • the processing unit determines that the first parameter p1 can be in the second mode of the multiple manners, and the processing unit is configured to determine that the first parameter p1 includes:
  • N NB is the first quantity
  • m is a parameter determined according to a physical uplink control channel resource index
  • p1 is the first parameter
  • n s is a slot number
  • n PRB Is an intermediate variable.
  • the physical uplink control channel resource index may be an existing PUCCH index.
  • the value of p1 ranges from 0 to 5 and is not greater than 6.
  • the processing unit determines that the first parameter p1 can be in the third mode of the multiple manners, and the processing unit is configured to determine that the first parameter p1 includes: the processing unit, configured to control channel resources according to physical uplink The index determines the first parameter p1.
  • the processing unit is configured to determine a physical uplink control channel resource index according to at least one of the following parameters: a parameter included in the radio resource control RRC signaling, a parameter included in the physical layer signaling, and a downlink control information
  • a parameter included in the radio resource control RRC signaling a parameter included in the physical layer signaling
  • a downlink control information The sequence number of the first control channel element CCE of the physical downlink control channel PDCCH, the sequence number of the first enhanced control channel element ECCE of the enhanced physical downlink control channel EPDCCH carrying the downlink control information, and the machine type communication carrying the downlink control information
  • the sequence number of the first control channel element of the physical downlink control channel; the processing unit configured to determine the first parameter p1 according to the physical uplink control channel resource index.
  • the processing unit is configured to determine, according to the physical uplink control channel resource index, a first parameter p1:
  • the other parameters are specifically described in the first manner in which the processing unit determines the first parameter p1, and details are not described herein again.
  • the maximum value of the physical uplink control channel resource index needs to be smaller than a certain value, for example, the maximum value is less than 2047.
  • the manner of determining the first parameter p1 may limit the sent uplink control information to the bandwidth supported by the transmitting device, thereby ensuring that the restricted device transmits the uplink control information, and fully utilizes the peak rate of the uplink data or guarantees. Receive performance of upstream data.
  • the concept of subbands can be introduced.
  • the invention is not limited to the necessity of using subbands to determine frequency resource information. It can be understood that, in some specific ways, the concept of subbands is not used, and the range of frequency resources used can also be limited to a certain range to produce the same technical effect.
  • One or more sub-bands may be included in the system bandwidth, the sub-band having a bandwidth less than or equal to a bandwidth supported by the transmitting device, the sub-band including at least one frequency resource,
  • the processing unit configured to determine frequency resource information according to the first parameter, may include:
  • the processing unit is configured to determine first information of the subband, and the processing unit is configured to determine the frequency resource information according to the first information of the subband and the first parameter p1.
  • the first information of the subband includes one of: a subband index, a minimum wideband frequency resource index of a frequency resource included in the subband, a maximum broadband frequency resource index of the frequency resource included in the subband, and the The center frequency resource index of the frequency resource contained in the subband.
  • the center frequency resource index is used to indicate the center frequency of the subband.
  • the processing unit may further determine a center frequency point of the subband by using configuration information of a center frequency point of the other subbands, thereby determining a center frequency resource index.
  • the index of the system bandwidth divided into multiple sub-bands is a sub-band index.
  • the sub-band index is numbered from 0.
  • the sub-band index may also be numbered from 1.
  • the physical resource mapping method of the corresponding physical uplink control channel belongs to the protection scope of the embodiment of the present invention.
  • the index of the system bandwidth divided into multiple frequency resources is a broadband frequency resource index.
  • the value range of the broadband frequency resource index is 0 to the number of frequency resources included in the system bandwidth. For example, the range of values can be
  • the broadband frequency resource index may also be numbered starting from 1, and the physical resource mapping method of the corresponding physical uplink control channel belongs to the protection scope of the embodiment of the present invention.
  • the processing unit configured to determine the first information of the subband includes: the processing unit determines the first information of the subband according to a predetermined specification.
  • the pre-defined provisions include:
  • the sub-band is a sub-band of the edge of the system bandwidth, and the processing unit is configured to be used according to the sub-band Obtaining the first information of the sub-band; or
  • the sub-band is a sub-band used by the sending device to send uplink information, and the processing unit is configured to obtain first information of the sub-band according to the sub-band;
  • the processing unit is configured to determine the sub-band according to a sub-band and a duplex distance used by the sending device to receive downlink information, the processing unit, configured to obtain the sub-band according to the sub-band First information.
  • the subband of the above system bandwidth edge means that there is no subband closer to the edge of the system bandwidth than the first subband or the last subband of the subbands included in the system bandwidth.
  • all the sending devices send the uplink control information on the frequency resources included in one of the subbands included in the system bandwidth, or perform resource mapping on the physical uplink control channel.
  • the one subband may be the first subband or the last subband of the subbands included in the system bandwidth.
  • the transmitting device may also send uplink data or perform resource mapping of a Physical Uplink Shared Channel (PUSCH) on the frequency resource included in the one subband.
  • PUSCH Physical Uplink Shared Channel
  • the uplink information includes one of uplink control information, uplink data, and uplink reference signal.
  • the downlink information includes one of downlink control information, downlink data, a positive response, a negative response, and a downlink reference signal.
  • the duplex distance is used to indicate the frequency interval between the transmitting device transmitting the uplink information and receiving the downlink information.
  • the processing unit configured to determine the first information of the subband includes: the processing unit determines the first information of the subband according to a predefined rule.
  • the predefined rules include:
  • the processing unit is configured to determine first information of the subband according to a subframe number.
  • the sub-band index is determined as an example for explanation.
  • the predefined rule is that the first information of the subband changes once every T subframes.
  • T is the subband change period T.
  • the subband variation period T may also be referred to as the time interval of the subband variation.
  • the first information of the subband is the same as the first information of the initial subband, and the first information of the T+a subframe subband starts to change.
  • a is a fixed natural number.
  • the transmitting device does not send uplink data or uplink control information.
  • the predefined rule is that when the physical uplink control channel hops, the first information of the subband changes.
  • the frequency hopping does not occur in the physical uplink control channel, that is, within the frequency hopping granularity, the first information of the subband does not change.
  • Each physical uplink control channel hopping period sub-frame, the change rule of the first information of the sub-band is repeated once.
  • the first information of the subband may be determined according to the first information change rule of the subband.
  • the first information offset, Q is the number of subbands or the number of frequency resources included in the system bandwidth.
  • the first information change rule of the subband may also be the first information change pattern of the subband.
  • the first information change pattern of the subband may be predefined by the system, or the processing unit is determined by receiving at least one of radio resource control signaling, media access control signaling, and physical layer signaling.
  • the first information change pattern of the subband is used to specify first information of a subband in each subframe.
  • the first subband and the second subband are included in the system bandwidth, wherein the frequency resource included in the first subband and the frequency location of the frequency resource included in the second subband are symmetric about the center frequency of the system bandwidth.
  • the first information change rule of the subband may further be: if the first information of the subband before the change is the first information of the first subband, the first information of the changed subband is the first of the second subband The first information of the changed sub-band is the first information of the first sub-band.
  • a schematic diagram of the first sub-band, the second sub-band, and the sub-band variation is shown in FIG. 24 or 25.
  • the processing unit is configured to determine, according to a preset, first information of the initial subband, an initial subframe of the subband change, a subband change period T, a first information offset SBoffset of the subband, and a system bandwidth. At least one of the number of subbands included in the system bandwidth and the number of frequency resources included in the system bandwidth.
  • the processing unit is configured to determine, by using at least one of radio resource control signaling, media access control signaling, and physical layer signaling, a first sub-band of the initial sub-band, and an initial sub-band change. At least one of a frame, a subband change period T, a first information offset SBoffset of the subband, a number of subbands included in the system bandwidth, and a number of frequency resources included in the system bandwidth.
  • the processing unit is configured to determine that the time interval of the subband change is that the processing unit maps a physical uplink control channel to subframes of multiple subframes on a frequency resource indicated by the frequency resource information. The approximate number of the number.
  • the processing unit, configured to determine the first information of the subband includes: the processing unit, configured to determine, by receiving at least one of radio resource control signaling, media access control signaling, and physical layer signaling The first information of the subband.
  • the physical uplink control channel resource index may be a number of physical uplink control channel resources in one subband, or may be a number of physical uplink control channel resources in multiple subbands. That is, the sub-band area physical uplink control channel resource index. There may be multiple physical uplink control channel resources on one frequency resource of one subframe, and the multiple physical uplink control channel resources are code division multiplexed.
  • the processing unit, configured to determine the first information of the subband includes: the processing unit, configured to determine, according to the subband area physical uplink control channel resource index, the first information of the subband.
  • the processing unit is configured to determine a sub-band area physical uplink control channel resource index according to at least one of the following parameters: a parameter included in the radio resource control RRC signaling, a parameter included in the physical layer signaling, and a downlink control information
  • the processing unit is configured to determine, by receiving the system information block SIB, the first information of the first subband, and determine, according to the first information of the first subband, the first of the second subband information.
  • the processing unit determines the sub-band index of the first sub-band by receiving the system information block, and determines the second sub-item according to the sub-band index of the first sub-band
  • the subband index of the band is incremented or decremented by 1 for the subband index of the first subband.
  • the processing unit determines the first subband by receiving the system information block.
  • the subband index determines that the subband index of the second subband is incremented by one for the subband index of the first subband according to the subband index of the first subband.
  • the processing unit determines, by receiving the system information block, that the minimum wideband frequency resource index of the frequency resource included in the first subband is f NB1_min , and the smallest wideband frequency resource according to the frequency resource included in the first subband is obtained .
  • the index determines that the minimum wideband frequency resource index of the frequency resource included in the second subband is among them, Is the number of frequency resources included in the system bandwidth, and N NB is the first quantity.
  • the processing unit determines the first information of the second sub-band according to the first information of the first sub-band, thereby saving the first information and the base station used by the base station to configure the first sub-band The signaling overhead of the first information of the second subband.
  • the processing unit, for determining the first information of the subband may also adopt the following manner:
  • NB_Idx is the sub-band index
  • N NB is the first quantity
  • Is the number of frequency resources included in the system bandwidth
  • Q is the number of subbands included in the system bandwidth.
  • n s is a slot number.
  • the first parameter p1 when the first information of the subband changes, the first parameter p1 also changes, that is, the first information of the subband and the first parameter p1 change simultaneously.
  • the first parameter p1 can be changed according to formula (5) or formula (6).
  • X and Y both determine the timing at which the first parameter p1 changes, and also determine the timing at which the first information of the sub-band changes.
  • the processing unit for determining the first parameter p1, further includes: if the first parameter p1 determined by the processing unit before the change of the first information of the sub-band is p1_pre, when the first information of the sub-band changes, The first parameter p1_after determined by the processing unit update is N NB -1-p1_pre, where N NB is the first quantity.
  • FIG. 24 or 25 A schematic diagram in which the first information of the sub-band and the first parameter p1 change simultaneously is shown in FIG. 24 or 25.
  • the frequency parameter of the physical uplink control channel before and after the frequency hopping is symmetric about the center of the system bandwidth, and the uplink control information transmission is split for the uplink data transmission frequency resource, and the peak of the uplink data is ensured.
  • the rate or the reception performance of the uplink data is guaranteed.
  • the index in which the subband is divided into a plurality of frequency resources is a subband frequency index.
  • the value of the sub-band frequency resource index ranges from 0 to the number of frequency resources included in the sub-band.
  • the sub-band frequency resource index may also be numbered starting from 1, and the physical resource mapping method of the corresponding physical uplink control channel belongs to the present invention. The scope of protection of the embodiments.
  • the frequency resource information may be an index of a subband frequency resource, and a bandwidth of the subband is equal to a bandwidth supported by the sending device.
  • the processing unit is configured to determine the frequency resource information according to the first information of the subband and the first parameter p1, including: the subband frequency resource index is equal to the first parameter p1, where the sub The frequency resource indicated by the frequency resource index is a frequency resource in the subband.
  • the frequency resource information is a first broadband frequency resource index
  • the bandwidth of the subband is equal to a bandwidth supported by the sending device
  • the processing unit is configured to use the sub Determining the frequency resource information includes: the first information of the band and the first parameter p1:
  • the first information of the subband is a center frequency resource index f NB — c of the frequency resource included in the subband , and the first broadband frequency resource index
  • the first information of the subband is a center frequency resource index of the frequency resource included in the subband, and the center frequency resource index has two indexes, and the two center frequency resource indexes are smaller.
  • One is recorded as a center frequency resource index f NB_c1
  • the first wideband frequency resource index n PRB_NB f NB_c1 - N NB /2 + 1 + p1.
  • the first information of the subband is a center frequency resource index of the frequency resource included in the subband, and the center frequency resource index has two indexes, and the two center frequency resource indexes are larger.
  • One is recorded as a center frequency resource index f NB_c2
  • the first wideband frequency resource index n PRB_NB f NB_c2 - N NB / 2 + p1.
  • N NB is the first quantity.
  • the physical uplink control channel can also perform frequency hopping as follows.
  • the first broadband frequency resource index that has been determined is n PRB_NB_pre
  • the processing unit is configured to determine that the first broadband frequency resource index includes: the processing unit, Determining, by the first broadband frequency resource index and the first broadband frequency resource change rule, a first broadband frequency resource index n PRB_NB_after after the first information of the subband is changed ; wherein the first broadband frequency resource rule is: among them Is the number of frequency resources included in the system bandwidth.
  • the processing unit is configured to determine, according to a predetermined specification, a time interval in which the frequency resource information changes in the multiple subframes or a subframe in which the frequency resource information changes;
  • the processing unit is configured to determine, by using at least one of radio resource control signaling, media access control signaling, and physical layer signaling, a time interval or a frequency at which the frequency resource information changes. a subframe in which the resource information changes;
  • the processing unit is configured to determine that the time interval in which the frequency resource information changes is a divisor of the number of subframes of the multiple subframes.
  • the frequency hopping mode of the physical uplink control channel can ensure that the frequency resources mapped before and after the frequency hopping of the physical uplink control channel are symmetric about the center of the system bandwidth, and the uplink control information transmission is separated from the uplink data transmission frequency resource, and the uplink data is ensured.
  • the peak rate or the reception performance of the uplink data is guaranteed.
  • the processing unit is configured to map the physical uplink control channel to the frequency resource indicated by the frequency resource information, including: the processing unit, configured to be in at least one subframe Mapping a physical uplink control channel to a frequency resource indicated by the frequency resource information.
  • the processing unit When the processing unit performs the uplink control information transmission, if the physical uplink control channel is mapped to the frequency resource indicated by the frequency resource information in multiple subframes, the uplink control information or the physical uplink control channel may be covered. Enhanced to meet the requirements of coverage.
  • the processing unit is configured to map the physical uplink control channel to the frequency resource indicated by the frequency resource information, including:
  • the processing unit is configured to map a physical uplink control channel to a frequency resource indicated by the frequency resource information in a first time slot of a previous one of the two subframes, where the previous subframe Another time slot does not perform mapping of the physical uplink control channel;
  • the processing unit is configured to map a physical uplink control channel to a frequency resource indicated by the frequency resource information in a second time slot of a subsequent one of the two subframes, where the subsequent subframe Another time slot does not perform mapping of the physical uplink control channel;
  • the processing unit is configured to map a physical uplink control channel to a frequency resource indicated by the frequency resource information in a previous one of the two subframes, where a subsequent one of the two subframes does not Perform mapping of physical uplink control channels; or
  • the processing unit is configured to map a physical uplink control channel to a frequency resource indicated by the frequency resource information in a subsequent one of the two subframes, where a previous subframe in the two subframes is not Perform mapping of physical uplink control channels.
  • At least one time slot is reserved in the adjacent subframes, so that the transmitting device and the system have time to adjust the frequency band to adapt the entire system bandwidth, thereby completing the uplink information transmission and fully utilizing the system bandwidth to ensure The peak rate of uplink data or the reception performance of uplink data.
  • the processing unit when two of each of the two subframes Gap will be physically up control
  • the channel is mapped to the frequency resource indicated by the frequency resource information.
  • the physical resource mapping method of the physical uplink control channel in the embodiment of the present invention maps the physical uplink control channel into one sub-band of one subframe, so that the mapped frequency width does not exceed that supported by a low-complexity or low-cost terminal.
  • the terminal may send the uplink control information in one sub-band of one subframe, and the sub-band that the terminal sends the uplink control information is not always in the center of the system bandwidth, thereby avoiding the complexity of sending the uplink control information, waste of resources, and uplink of other terminals.
  • the problem of reduced data peak rate is not always in the center of the system bandwidth, thereby avoiding the complexity of sending the uplink control information, waste of resources, and uplink of other terminals.
  • This embodiment provides an uplink information sending method, which is consistent with the uplink information sending apparatus of the first embodiment.
  • the object of the invention, the technical means, and the technical effects obtained by the features in the method are the same as those of the first embodiment, and are not described again.
  • For the specific implementation process please refer to the method implemented by the device embodiment in the first embodiment.
  • the method described in this embodiment can be used by a terminal, such as a user equipment (UE).
  • UE user equipment
  • the embodiment provides a method for transmitting uplink control information. As shown in FIG. 14, the bandwidth supported by the terminal is smaller than the system bandwidth, and the system bandwidth includes multiple frequency resources.
  • the method includes the following steps:
  • Step 201 Determine a first parameter p1; the first parameter is less than or equal to a first quantity; and the first quantity is a quantity of frequency resources that can be accommodated by a bandwidth supported by the terminal;
  • Step 202 Determine frequency resource information according to the first parameter.
  • Step 203 Map a physical uplink control channel to a frequency resource indicated by the frequency resource information.
  • Step 204 Send uplink control information by using the physical uplink control channel.
  • the transmitted uplink control information can be limited to the bandwidth supported by the transmitting device, thereby ensuring limited terminal transmission.
  • Uplink control information making full use of the peak rate of uplink data or guaranteeing Receive performance of row data.
  • the determining the first parameter p1 includes:
  • the first parameter is determined according to the second parameter.
  • determining, according to the physical uplink control channel resource index, the second parameter m * including:
  • a physical uplink control channel resource index according to at least one of the following parameters: a parameter included in the radio resource control RRC signaling, a parameter included in the physical layer signaling, and a first control of the physical downlink control channel PDCCH carrying the downlink control information
  • the sequence number of the channel element CCE, the sequence number of the first enhanced control channel element ECCE of the enhanced physical downlink control channel EPDCCH carrying the downlink control information, and the first control channel of the physical downlink control channel of the machine type communication carrying the downlink control information The serial number of the element;
  • the PDCCH or the EPDCCH may be another channel for carrying downlink control information, such as a physical downlink control channel for device type communication carrying downlink control information.
  • the CCE or ECCE may also be an element constituting other channels for carrying downlink control information, such as control channel elements constituting a physical downlink control channel of machine type communication.
  • determining the first parameter according to the second parameter includes:
  • N NB is the first quantity
  • m * is the second parameter
  • p1 is the first parameter
  • n s is a slot number
  • n sf is a subframe number
  • X is a parameter related to at least one of n s , n sf , a radio frame number, and a number of uplink subframes included between a start subframe in which uplink control information is transmitted and a current subframe.
  • X is n sf .
  • X is 10 ⁇ SFN+n sf
  • SFN is a radio frame number.
  • X is the number of subframes or uplink subframes included between the start subframe to the current subframe in which the uplink control information is transmitted.
  • Y is a predefined parameter, or Y is a parameter related to the physical uplink control channel hopping granularity, or Y is a parameter related to the physical uplink control channel hopping period.
  • the frequency resource mapped by the physical uplink control channel may change, which is called physical uplink control channel frequency hopping.
  • the frequency resource of the physical uplink control channel mapping changes once every G subframes, which is called the physical uplink control channel frequency hopping granularity.
  • the change rule of the frequency resource of the physical uplink control channel mapping is repeated every H subframes, and the H subframes are referred to as a physical uplink control channel hopping period.
  • Y is the physical uplink control channel frequency hopping granularity.
  • the physical uplink control channel hopping may occur in multiple subframes in which the physical uplink control channel is mapped or the transmitting unit sends uplink control information. That is, in the plurality of subframes before and after the change of the frequency resource of the physical uplink control channel mapping, the transmitting unit transmits the same uplink control information.
  • X and Y determine the moment of physical uplink control channel hopping.
  • the determining the first parameter p1 includes:
  • N NB is the first quantity
  • m is a parameter determined according to a physical uplink control channel resource index
  • p1 is the first parameter
  • n s is a slot number
  • n PRB Is an intermediate variable.
  • the physical uplink control channel resource index may be an existing PUCCH index.
  • m is determined in the same way as the existing PUCCH.
  • Determining the first parameter p1 in a third manner of the plurality of manners, determining the first parameter p1 comprises: determining the first parameter p1 according to the physical uplink control channel resource index.
  • the physical uplink control channel resource index is determined according to at least one of the following parameters: a parameter included in the radio resource control RRC signaling, a parameter included in the physical layer signaling, and a physical downlink control channel PDCCH carrying the downlink control information.
  • the sequence number of a control channel element CCE, the sequence number of the first enhanced control channel element ECCE of the enhanced physical downlink control channel EPDCCH carrying the downlink control information, and the first of the physical downlink control channel of the machine type communication carrying the downlink control information The sequence number of the control channel elements; determining the first parameter p1 according to the physical uplink control channel resource index.
  • one way to determine the first parameter p1 according to the physical uplink control channel resource index is:
  • the other parameters are specifically as described in the first embodiment, and are not described herein again.
  • the maximum value of the physical uplink control channel resource index needs to be smaller than a certain value, for example, the maximum value is less than 2047.
  • the system bandwidth includes one or more subbands, where the bandwidth of the subband is less than or equal to a bandwidth supported by the terminal, and the subband includes at least one frequency resource.
  • the determining frequency resource information according to the first parameter includes:
  • the frequency resource information is determined according to the first information of the subband and the first parameter p1.
  • the determining the first information of the subband includes:
  • the subband is a subband of the edge of the system bandwidth, and the first information of the subband is obtained according to the subband;
  • the sub-band is a sub-band used by the terminal to send uplink information last time, and the first information of the sub-band is obtained according to the sub-band;
  • Determining the first information of the subband by receiving at least one of radio resource control signaling, media access control signaling, and physical layer signaling;
  • the meaning of the subband of the bandwidth edge of the above system is that there is no subband included in the bandwidth of the system.
  • the first subband or the last subband is closer to the subband of the edge of the system bandwidth.
  • the uplink information includes one of uplink control information, uplink data, and uplink reference signal.
  • the downlink information includes one of downlink control information, downlink data, acknowledgement, negative acknowledgement, and downlink reference signal.
  • NB_Idx_pre is the first information of the subband before the change
  • NB_Idx_after is the first information of the changed subband
  • SBoffset is the first information offset of the subband
  • Q is the number of subbands or the frequency included in the system bandwidth. The number of resources.
  • the first subband and the second subband are included in the system bandwidth, wherein the frequency resource included in the first subband and the frequency location of the frequency resource included in the second subband are symmetric about the center frequency of the system bandwidth.
  • the first information change rule of the subband may further be: if the first information of the subband before the change is the first information of the first subband, the first information of the changed subband is the first of the second subband The first information of the changed sub-band is the first information of the first sub-band.
  • the method further includes
  • the subband variation period T may also be referred to as the time interval of the subband variation.
  • determining the subband change The time interval is a divisor that maps the physical uplink control channel to the number of subframes of the plurality of subframes on the frequency resource indicated by the frequency resource information.
  • the physical uplink control channel resource index may be a number of physical uplink control channel resources in one subband, or may be a number of physical uplink control channel resources in multiple subbands. That is, the sub-band area physical uplink control channel resource index. There may be multiple physical uplink control channel resources on one frequency resource of one subframe, and the multiple physical uplink control channel resources are code division multiplexed.
  • determining the first information of the subband includes: determining first information of the subband according to the subband area physical uplink control channel resource index. Determining a sub-band area physical uplink control channel resource index according to at least one of the following parameters: a parameter included in the radio resource control RRC signaling, a parameter included in the physical layer signaling, and a physical downlink control channel PDCCH carrying the downlink control information.
  • a parameter included in the radio resource control RRC signaling a parameter included in the physical layer signaling
  • PDCCH carrying the downlink control information
  • the sequence number of a control channel element CCE, the sequence number of the first enhanced control channel element ECCE of the enhanced physical downlink control channel EPDCCH carrying the downlink control information, and the first of the physical downlink control channel of the machine type communication carrying the downlink control information The sequence number of the control channel elements.
  • the first information of the subband includes one of: a subband index, a minimum wideband frequency resource index of the frequency resource included in the subband, and a maximum broadband frequency resource of the frequency resource included in the subband The index, the center frequency resource index of the frequency resource included in the subband.
  • the meaning of the above-mentioned sub-band change period T is that it changes once every T subframe sub-bands.
  • the index of the system bandwidth divided into multiple sub-bands is a sub-band index.
  • the index of the system bandwidth divided into multiple frequency resources is a broadband frequency resource index.
  • the first information of the first subband is determined by receiving a system information block; and the first information of the second subband is determined according to the first information of the first subband.
  • the subband of the first subband Index and subband index of the second subband If it is a continuous natural number, the subband index of the first subband is determined by receiving the system information block, and the subband index of the second subband is determined as the subband index of the first subband according to the subband index of the first subband. Add 1 or subtract 1. For example, if the subband index of the first subband is an even number and the subband index of the second subband is the smallest odd number of the subband index of the first subband, the subband index of the first subband is determined by receiving the system information block. The subband index of the second subband is determined to be the subband index of the first subband plus one according to the subband index of the first subband.
  • the first information of the first subband is a minimum wideband frequency resource index of a frequency resource included in the first subband
  • the first information of the second subband is a minimum of a frequency resource included in the second subband.
  • the minimum wideband frequency resource index of the frequency resource included in the first subband is determined to be f NB1_min by receiving the system information block, and the second broadband frequency resource index of the frequency resource included in the first subband is used to determine the second
  • the minimum wideband frequency resource index of the frequency resource included in the subband is among them, Is the number of frequency resources included in the system bandwidth, and N NB is the first quantity.
  • the first information of the subband is a subband index
  • the determining the first information of the subband includes:
  • NB_Idx is the sub-band index
  • N NB is the first quantity
  • Is the number of frequency resources included in the system bandwidth
  • Q is the number of subbands included in the system bandwidth.
  • n s is a slot number.
  • the first parameter p1 when the first information of the subband changes, the first parameter p1 also changes, that is, the first information of the subband and the first parameter p1 change simultaneously.
  • the first parameter p1 can be changed according to formula (5) or formula (6).
  • X and Y both determine the timing at which the first parameter p1 changes, and also determine the timing at which the first information of the sub-band changes.
  • the determining the first parameter p1 further includes: if the first parameter p1 before the change of the first information of the sub-band is p1_pre, when the first information of the sub-band changes, the first parameter p1 determined by the update is N NB -1 -p1_pre, where N NB is the first quantity.
  • FIG. 24 or 25 A schematic diagram in which the first information of the sub-band and the first parameter p1 change simultaneously is shown in FIG. 24 or 25.
  • the frequency parameter of the physical uplink control channel before and after the frequency hopping is symmetric about the center of the system bandwidth, and the uplink control information transmission is split for the uplink data transmission frequency resource, and the peak of the uplink data is ensured.
  • the rate or the reception performance of the uplink data is guaranteed.
  • the frequency resource information is a sub-band frequency resource index
  • the bandwidth of the sub-band is equal to the bandwidth supported by the terminal, and determining, according to the first information of the sub-band and the first parameter p1
  • the index of the sub-band divided into multiple frequency resources is a sub-band frequency index, including:
  • the subband frequency resource index is equal to the first parameter p1, wherein the frequency resource indicated by the subband frequency resource index is a frequency resource in the subband.
  • the frequency resource information is a first broadband frequency resource index
  • the bandwidth of the sub-band is equal to a bandwidth supported by the terminal
  • the first information according to the sub-band and the first parameter p1 Determining the frequency resource information includes:
  • the first information of the subband is a center frequency resource index f NB — c of the frequency resource included in the subband , and the first broadband frequency resource index
  • the first information of the subband is a center frequency resource index of the frequency resource included in the subband, and the center frequency resource index has two indexes, and the two center frequency resource indexes are smaller.
  • One is recorded as a center frequency resource index f NB_c1
  • the first wideband frequency resource index n PRB_NB f NB_c1 - N NB /2 + 1 + p1.
  • the first information of the subband is a center frequency resource index of the frequency resource included in the subband, and the center frequency resource index has two indexes, and the two center frequency resource indexes are larger.
  • One is recorded as a center frequency resource index f NB_c2
  • the first wideband frequency resource index n PRB_NB f NB_c2 - N NB / 2 + p1.
  • N NB is the first quantity.
  • the physical uplink control channel can also perform frequency hopping as follows.
  • the first broadband frequency resource index that has been determined is n PRB_NB_pre
  • determining the first broadband frequency resource index includes: changing according to the first broadband frequency resource index and the first broadband frequency resource a rule, determining a first broadband frequency resource index n PRB_NB_after after the first information of the subband is changed; wherein the first broadband frequency resource rule is: among them Is the number of frequency resources included in the system bandwidth.
  • determining by using at least one of radio resource control signaling, media access control signaling, and physical layer signaling, a time interval in which the frequency resource information changes or a subframe in which the frequency resource information changes ;
  • the time interval for determining that the frequency resource information changes is a divisor of the number of subframes of the multiple subframes.
  • the frequency hopping mode of the physical uplink control channel can ensure that the frequency resources mapped before and after the frequency hopping of the physical uplink control channel are symmetric about the center of the system bandwidth, and the uplink control information transmission is separated from the uplink data transmission frequency resource, and the uplink data is ensured.
  • the peak rate or the reception performance of the uplink data is guaranteed.
  • mapping the physical uplink control channel to the frequency resource indicated by the frequency resource information includes:
  • the physical uplink control channel is mapped to the frequency resource indicated by the frequency resource information in at least one subframe.
  • the at least one subframe includes two adjacent subframes, and the first information of the subbands of the two subframes is different,
  • Mapping the physical uplink control channel to the frequency resource indicated by the frequency resource information including:
  • mapping a physical uplink control channel to the frequency resource in a previous one of the two subframes On the frequency resource indicated by the information, the mapping of the physical uplink control channel is not performed in the latter subframe of the two subframes; or
  • the frequency resource is a resource occupied by one physical resource block PRB in frequency; or the frequency resource is a subcarrier.
  • the present embodiment provides an uplink control information receiving apparatus, wherein a bandwidth supported by the terminal is smaller than a system bandwidth, and the system bandwidth includes multiple frequency resources.
  • the receiving device may be a base station device, such as an evolved base station (eNodeB).
  • the system bandwidth is the bandwidth of all frequency resources supported by the system, and the system bandwidth is divided into multiple frequency resources.
  • the frequency resource may be a resource occupied by a physical resource block (PRB) in frequency, or the frequency resource may also be a subcarrier.
  • PRB physical resource block
  • the receiving device 300 includes:
  • the processing unit 302 is configured to determine a first parameter p1; the first parameter is less than or equal to the first quantity; the first quantity is a quantity of frequency resources that can be accommodated by a bandwidth supported by the terminal;
  • the processing unit 302 is configured to determine frequency resource information according to the first parameter
  • the processing unit 302 is configured to map a physical uplink control channel to a frequency resource indicated by the frequency resource information;
  • the receiving unit 301 is configured to receive uplink control information by using the physical uplink control channel.
  • the uplink information can be received within the bandwidth supported by the terminal, thereby ensuring that the restricted terminal transmits the uplink control information and fully utilizes The peak rate of the uplink data or the reception performance of the uplink data is guaranteed.
  • the processing unit determines that the first parameter p1 can be in multiple ways.
  • the processing unit is configured to determine a second parameter m * according to the physical uplink control channel resource index, where the second parameter is less than or equal to the first quantity; and determine the first parameter according to the second parameter.
  • the processing unit configured to determine the second parameter m * according to the physical uplink control channel resource index, may include: the processing unit, configured to determine a physical uplink control channel resource index according to at least one of the following parameters: a radio resource The parameters included in the radio resource control (RRC) signaling, the parameters included in the physical layer signaling, and the first control channel element of the physical downlink control channel (PDCCH) carrying the downlink control information (control channel element) The sequence number of the first enhanced control channel element (ECCE) of the enhanced physical downlink control channel (EPDCCH) carrying the downlink control information, carrying the downlink control information The sequence number of the first control channel element of the physical downlink control channel of the machine type communication; the processing unit, configured to determine the second parameter m * according to the physical uplink control channel resource index, where the second parameter is less than or equal to Said the first quantity.
  • RRC radio resource control
  • PDCCH physical downlink control channel
  • ECE enhanced control channel element
  • EPDCCH enhanced physical downlink control channel
  • the PDCCH or the EPDCCH may be another channel for carrying downlink control information, such as a physical downlink control channel for device type communication carrying downlink control information.
  • the CCE or ECCE may also be an element constituting other channels for carrying downlink control information, such as control channel elements constituting a physical downlink control channel of machine type communication.
  • the processing unit is configured to determine, according to the physical uplink control channel resource index, a second parameter m * :
  • the physical downlink control channel may be a PDCCH, or an EPDCCH, or another channel for carrying downlink control information.
  • the control channel element may be a CCE, or an ECCE, or an element constituting other channels for carrying downlink control information.
  • the downlink control information includes resource scheduling information of a Physical Downlink Shared Channel (PDSCH), and the physical uplink control channel carries a response or negative response information to the PDSCH.
  • PDSCH Physical Downlink Shared Channel
  • the maximum value of the physical uplink control channel resource index needs to be smaller than a certain value, such as the maximum value is less than 2047.
  • the processing unit configured to determine the first parameter according to the second parameter, may use the following formula:
  • N NB is the first quantity
  • m * is the second parameter
  • p1 is the first parameter
  • n s is a slot number
  • n sf is a subframe number.
  • X is a parameter related to at least one of n s , n sf , radio frame number, and the number of uplink subframes included between the start subframe in which the uplink control information is transmitted and the current subframe.
  • X is n sf .
  • X is 10 ⁇ SFN+n sf
  • SFN is a radio frame number.
  • X is the number of subframes or uplink subframes included between the start subframe to the current subframe in which the uplink control information is transmitted.
  • Y is a predefined parameter, or Y is a parameter related to the physical uplink control channel hopping granularity, or Y is a parameter related to the physical uplink control channel hopping period.
  • the frequency resource mapped by the physical uplink control channel may change, which is called physical uplink control channel frequency hopping.
  • the frequency resource of the physical uplink control channel mapping changes once every G subframes, which is called the physical uplink control channel frequency hopping granularity.
  • the change rule of the frequency resource of the physical uplink control channel mapping is repeated every H subframes, and the H subframes are referred to as a physical uplink control channel hopping period.
  • Y is the physical uplink control channel frequency hopping granularity.
  • Physical Uplink Control Channel Frequency hopping may occur in multiple subframes in which the physical uplink control channel is mapped or the transmitting unit transmits uplink control information. That is, in a plurality of subframes before and after the frequency resource of the physical uplink control channel mapping changes, the transmitting unit transmits the same uplink control information.
  • X and Y determine the moment of physical uplink control channel hopping.
  • the base station selects the value of the RRC signaling configuration, selects the CCE constituting the PDCCH, and selects the ECCE constituting the EPDCCH, so that the calculated value of m ranges from 0 to 5, thereby The value ranges from 0 to 2. The value ranges from 3 to 5.
  • the value of the first parameter determined by the UE is not greater than 6.
  • Fig. 4 exemplarily shows the relationship of frequency resources and time slots obtained according to the formula (1).
  • Fig. 5 exemplarily shows the relationship of frequency resources and time slots obtained according to the formula (2).
  • Figure 5 and equation (2) show that the first parameter p1 is determined from the physical uplink control channel resource index.
  • Fig. 6 exemplarily shows the relationship of frequency resources and time slots obtained according to the formula (3).
  • Fig. 23 exemplarily shows the relationship of frequency resources and time slots obtained according to the formula (4).
  • Fig. 24 exemplarily shows the relationship of frequency resources and time slots obtained according to the formula (5).
  • Fig. 25 exemplarily shows the relationship of frequency resources and time slots obtained according to the formula (6).
  • the processing unit determines that the first parameter p1 can be in the second mode of the multiple manners, and the processing unit is configured to determine that the first parameter p1 includes:
  • N NB the number of frequency resources included in the system bandwidth
  • m is a parameter determined according to a physical uplink control channel resource index
  • p1 is the first parameter
  • n s is a slot number
  • nPRB is Intermediate variables.
  • N NB the number of frequency resources that the UE supports the transmission bandwidth
  • p1 ranges from 0 to 5 and is not greater than 6.
  • the processing unit determines that the first parameter p1 can be in the third mode of the multiple manners, and the processing unit is configured to determine that the first parameter p1 includes: the processing unit, configured to control channel resources according to physical uplink The index determines the first parameter p1.
  • the processing unit is configured to determine a physical uplink control channel resource index according to at least one of the following parameters: a parameter included in the radio resource control RRC signaling, a parameter included in the physical layer signaling, and a downlink control information Sequence of the first control channel element CCE of the physical downlink control channel PDCCH Number, the sequence number of the first enhanced control channel element ECCE of the enhanced physical downlink control channel EPDCCH carrying the downlink control information, and the sequence number of the first control channel element of the physical downlink control channel of the machine type communication carrying the downlink control information;
  • the processing unit is configured to determine the first parameter p1 according to the physical uplink control channel resource index.
  • the processing unit is configured to determine, according to the physical uplink control channel resource index, a first parameter p1:
  • the other parameters are specifically described in the first manner in which the processing unit determines the first parameter p1, and details are not described herein again.
  • the maximum value of the physical uplink control channel resource index needs to be smaller than a certain value, for example, the maximum value is less than 2047.
  • the method for determining the first parameter p1 can receive the uplink information within the bandwidth supported by the terminal, thereby ensuring that the restricted device transmits the uplink control information, fully utilizing the peak rate of the uplink data, or ensuring the receiving performance of the uplink data.
  • the concept of subbands can be introduced.
  • the present invention is not limited to the necessity of using subbands to determine frequency resource information. It can be understood that, in some specific ways, the concept of subbands is not used, and the range of frequency resources used can also be limited to a certain range to produce the same technical effect.
  • One or more sub-bands may be included in the system bandwidth, the sub-band having a bandwidth less than or equal to a bandwidth supported by the transmitting device, the sub-band including at least one frequency resource,
  • the processing unit configured to determine frequency resource information according to the first parameter, may include:
  • the processing unit is configured to determine first information of the subband, and the processing unit is configured to determine the frequency resource information according to the first information of the subband and the first parameter p1.
  • the first information of the subband includes one of: a subband index, a minimum wideband frequency resource index of a frequency resource included in the subband, a maximum broadband frequency resource index of the frequency resource included in the subband, and the The center frequency resource index of the frequency resource contained in the subband.
  • the center frequency resource index is used to indicate the center frequency of the subband.
  • the processing unit may further determine a center frequency point of the subband by using configuration information of a center frequency point of the other subbands, thereby determining a center frequency resource index.
  • the index of the system bandwidth divided into multiple sub-bands is a sub-band index.
  • the sub-band index is numbered from 0.
  • the sub-band index may also be numbered from 1.
  • the physical resource mapping method of the corresponding physical uplink control channel belongs to the protection scope of the embodiment of the present invention.
  • the index of the system bandwidth divided into multiple frequency resources is a broadband frequency resource index.
  • the value range of the broadband frequency resource index is 0 to the number of frequency resources included in the system bandwidth. For example, the range of values can be
  • the broadband frequency resource index may also be numbered starting from 1, and the physical resource mapping method of the corresponding physical uplink control channel belongs to the protection scope of the embodiment of the present invention.
  • the processing unit configured to determine the first information of the subband includes: the processing unit determines the first information of the subband according to a predetermined specification.
  • the pre-defined provisions include:
  • the sub-band is a sub-band of the edge of the system bandwidth, and the processing unit is configured to obtain the first information of the sub-band according to the sub-band;
  • the sub-band is a sub-band used by the sending device to send uplink information, and the processing unit is configured to obtain first information of the sub-band according to the sub-band;
  • the processing unit is configured to determine the sub-band according to a sub-band and a duplex distance used by the sending device to receive downlink information, the processing unit, configured to obtain the sub-band according to the sub-band First information.
  • the subband of the above system bandwidth edge means that there is no subband closer to the edge of the system bandwidth than the first subband or the last subband of the subbands included in the system bandwidth.
  • all the sending devices send the uplink control information on the frequency resources included in one of the subbands included in the system bandwidth, or perform resource mapping on the physical uplink control channel.
  • the one subband may be the first subband or the last subband of the subbands included in the system bandwidth.
  • the transmitting device may also send uplink data or perform resource mapping of a Physical Uplink Shared Channel (PUSCH) on the frequency resource included in the one subband.
  • PUSCH Physical Uplink Shared Channel
  • the uplink information includes one of uplink control information, uplink data, and uplink reference signal.
  • the downlink information includes one of downlink control information, downlink data, a positive response, a negative response, and a downlink reference signal.
  • the duplex distance is used to indicate the frequency interval between the transmitting device transmitting the uplink information and receiving the downlink information.
  • the processing unit configured to determine the first information of the subband includes: the processing unit determines the first information of the subband according to a predefined rule.
  • the predefined rules include:
  • the processing unit is configured to determine first information of the subband according to a subframe number.
  • the sub-band index is determined as an example for explanation.
  • the predefined rule is that the first information of the subband changes once every T subframes.
  • T is the subband change period T.
  • the subband variation period T may also be referred to as the time interval of the subband variation.
  • the first information of the subband is the same as the first information of the initial subband, and the first information of the T+a subframe subband starts to change.
  • a is a fixed natural number.
  • the transmitting device does not send uplink data or uplink control information.
  • the predefined rule is that when the physical uplink control channel hops, the first information of the subband changes. No jump occurs on the physical uplink control channel. Frequency, that is, within the frequency hopping granularity, the first information of the subband does not change.
  • Each physical uplink control channel hopping period sub-frame the change rule of the first information of the sub-band is repeated once.
  • the first information of the subband may be determined according to the first information change rule of the subband.
  • the first information offset, Q is the number of subbands or the number of frequency resources included in the system bandwidth.
  • the first information change rule of the subband may also be the first information change pattern of the subband.
  • the first information change pattern of the subband may be pre-defined by the system, or the processing unit determines the subband included in at least one of radio resource control signaling, media access control signaling, and physical layer signaling.
  • the first information changes the configuration information of the pattern.
  • the configuration information is used to configure a first information change pattern of the subband.
  • the first information change pattern of the subband is used to specify first information of a subband in each subframe.
  • the first subband and the second subband are included in the system bandwidth, wherein the frequency resource included in the first subband and the frequency location of the frequency resource included in the second subband are symmetric about the center frequency of the system bandwidth.
  • the first information change rule of the subband may further be: if the first information of the subband before the change is the first information of the first subband, the first information of the changed subband is the first of the second subband The first information of the changed sub-band is the first information of the first sub-band.
  • a schematic diagram of the first sub-band, the second sub-band, and the sub-band variation is shown in FIG. 24 or 25.
  • the processing unit is configured to determine, according to a preset, first information of the initial subband, an initial subframe of the subband change, a subband change period T, a first information offset SBoffset of the subband, and a system bandwidth. At least one of the number of subbands included in the system bandwidth and the number of frequency resources included in the system bandwidth.
  • the processing unit is configured to determine configuration information that includes at least one of the first information of the subband, such as radio resource control signaling, media access control signaling, and physical layer signaling, where the receiving device further Including a sending unit, configured to send at least one of the foregoing radio resource control signaling, media access control signaling, and physical layer signaling, where configuration information of the first information of the subband is used to configure the first information of the initial subband, The initial subframe of the subband change, the subband change period T, the first information offset SBoffset of the subband, the number of subbands included in the system bandwidth, and the number of frequency resources included in the system bandwidth.
  • configuration information that includes at least one of the first information of the subband, such as radio resource control signaling, media access control signaling, and physical layer signaling
  • the receiving device further Including a sending unit, configured to send at least one of the foregoing radio resource control signaling, media access control signaling, and physical layer signaling, where configuration information of the first information of the subband is used to
  • the processing unit is configured to determine that the time interval of the subband change is that the processing unit maps a physical uplink control channel to subframes of multiple subframes on a frequency resource indicated by the frequency resource information. The approximate number of the number.
  • the processing unit configured to determine the first information of the subband, includes: the processing unit, configured to determine at least one of a radio resource control signaling, a medium access control signaling, and a physical layer signaling
  • the configuration information of the first information of the band, the configuration information of the first information of the subband is used to configure the first information of the subband
  • the receiving device further includes a sending unit, configured to send the foregoing radio resource control signaling At least one of media access control signaling and physical layer signaling.
  • the physical uplink control channel resource index may be a number of physical uplink control channel resources in one subband, or may be a number of physical uplink control channel resources in multiple subbands. That is, the sub-band area physical uplink control channel resource index. There may be multiple physical uplink control channel resources on one frequency resource of one subframe, and the multiple physical uplink control channel resources are code division multiplexed.
  • the processing unit, configured to determine the first information of the subband includes: the processing unit, configured to determine, according to the subband area physical uplink control channel resource index, the first information of the subband.
  • the processing unit is configured to determine a sub-band area physical uplink control channel resource index according to at least one of the following parameters: a parameter included in the radio resource control RRC signaling, a parameter included in the physical layer signaling, and a downlink control information
  • the sequence number of the first control channel element CCE of the physical downlink control channel PDCCH, the sequence number of the first enhanced control channel element ECCE of the enhanced physical downlink control channel EPDCCH carrying the downlink control information, and the machine type communication carrying the downlink control information The first control channel element of the physical downlink control channel Serial number.
  • the processing unit is configured to determine first information of the first subband, and determine first information of the second subband according to the first information of the first subband;
  • the method further includes a sending unit, configured to send a system information block SIB, where the system information block includes configuration information of the first information of the first sub-band.
  • the processing unit determines the sub-band of the second sub-band according to the sub-band index of the first sub-band by determining the sub-band index of the first sub-band The index is 1 or minus 1 for the subband index of the first subband.
  • the processing unit determines the subband index of the first subband.
  • the subband index of the second subband is determined to be the subband index of the first subband plus one according to the subband index of the first subband.
  • the processing unit determines that the minimum broadband frequency resource index of the frequency resource included in the first subband is f NB1_min , and determines the second sub-frequency according to the minimum broadband frequency resource index of the frequency resource included in the first sub-band.
  • the minimum wideband frequency resource index with the included frequency resources is among them, Is the number of frequency resources included in the system bandwidth, and N NB is the first quantity.
  • the processing unit determines the first information of the second sub-band according to the first information of the first sub-band, thereby saving the first information and the base station used by the base station to configure the first sub-band The signaling overhead of the first information of the second subband.
  • the processing unit, for determining the first information of the subband may also adopt the following manner:
  • NB_Idx is the sub-band index
  • N NB is the first quantity
  • Is the number of frequency resources included in the system bandwidth
  • Q is the number of subbands included in the system bandwidth.
  • n s is a slot number.
  • the first parameter p1 when the first information of the subband changes, the first parameter p1 also changes, that is, the first information of the subband and the first parameter p1 change simultaneously.
  • the first parameter p1 can be changed according to formula (5) or formula (6).
  • X and Y both determine the timing at which the first parameter p1 changes, and also determine the timing at which the first information of the sub-band changes.
  • the processing unit for determining the first parameter p1, further includes: if the first parameter p1 determined by the processing unit before the change of the first information of the sub-band is p1_pre, when the first information of the sub-band changes, The first parameter p1_after determined by the processing unit update is N NB -1-p1_pre, where N NB is the first quantity.
  • FIG. 24 or 25 A schematic diagram in which the first information of the sub-band and the first parameter p1 change simultaneously is shown in FIG. 24 or 25.
  • the frequency parameter of the physical uplink control channel before and after the frequency hopping is symmetric about the center of the system bandwidth, and the uplink control information transmission is split for the uplink data transmission frequency resource, and the peak of the uplink data is ensured.
  • the rate or the reception performance of the uplink data is guaranteed.
  • the index in which the subband is divided into a plurality of frequency resources is a subband frequency index.
  • the value of the sub-band frequency resource index ranges from 0 to the number of frequency resources included in the sub-band.
  • the sub-band frequency resource index may also be numbered starting from 1, and the physical resource mapping method of the corresponding physical uplink control channel belongs to the present invention. The scope of protection of the embodiments.
  • the frequency resource information may be an index of a subband frequency resource, and a bandwidth of the subband is equal to a bandwidth supported by the terminal.
  • the processing unit is configured to determine the frequency resource information according to the first information of the subband and the first parameter p1, including: the subband frequency resource index is equal to the first parameter p1, where the sub The frequency resource indicated by the frequency resource index is a frequency resource in the subband.
  • the frequency resource information is a first broadband frequency resource index
  • the bandwidth of the sub-band is equal to a bandwidth supported by the terminal
  • the processing unit is configured to use, according to the sub-band Determining the frequency resource information includes: first information and the first parameter p1:
  • the first information of the subband is a center frequency resource index f NB — c of the frequency resource included in the subband , and the first broadband frequency resource index
  • the first information of the subband is a center frequency resource index of the frequency resource included in the subband, and the center frequency resource index has two indexes, and the two center frequency resource indexes are smaller.
  • One is recorded as a center frequency resource index f NB_c1
  • the first wideband frequency resource index n PRB_NB f NB_c1 - N NB /2 + 1 + p1.
  • the first information of the subband is a center frequency resource index of the frequency resource included in the subband, and the center frequency resource index has two indexes, and the two center frequency resource indexes are larger.
  • One is recorded as a center frequency resource index f NB_c2
  • the first wideband frequency resource index n PRB_NB f NB_c2 - N NB / 2 + p1.
  • N NB is the first quantity.
  • the physical uplink control channel can also perform frequency hopping as follows.
  • the first broadband frequency resource index that has been determined is n PRB_NB_pre
  • the processing unit is configured to determine that the first broadband frequency resource index includes: the processing unit, Determining, by the first broadband frequency resource index and the first broadband frequency resource change rule, a first broadband frequency resource index n PRB_NB_after after the first information of the subband is changed ; wherein the first broadband frequency resource rule is: among them Is the number of frequency resources included in the system bandwidth.
  • the processing unit is configured to determine, according to a predetermined specification, a time interval in which the frequency resource information changes in the multiple subframes or a subframe in which the frequency resource information changes;
  • the processing unit is configured to determine a time interval in which the frequency resource information changes or a subframe in which the frequency resource information changes, and perform radio resource control signaling, media access control signaling, and physical At least one of the layer signaling sends a time interval in which the frequency resource information changes or configuration information of a subframe in which the frequency resource information changes;
  • the processing unit is configured to determine that the time interval in which the frequency resource information changes is a divisor of the number of subframes of the multiple subframes.
  • the frequency hopping mode of the physical uplink control channel can ensure that the frequency resources mapped before and after the frequency hopping of the physical uplink control channel are symmetric about the center of the system bandwidth, and the uplink control information transmission is separated from the uplink data transmission frequency resource, and the uplink data is ensured.
  • the peak rate or the reception performance of the uplink data is guaranteed.
  • the processing unit is configured to map the physical uplink control channel to the frequency resource indicated by the frequency resource information, where the processing unit is configured to map the physical uplink control channel to the frequency resource in at least one subframe The frequency resource indicated by the information.
  • the processing unit When the processing unit performs the uplink control information transmission, if the physical uplink control channel is mapped to the frequency resource indicated by the frequency resource information in multiple subframes, the uplink control information or the physical uplink control channel may be covered. Enhanced to meet the requirements of coverage.
  • the processing unit is configured to map the physical uplink control channel to the frequency resource indicated by the frequency resource information, including:
  • the processing unit is configured to map a physical uplink control channel to a frequency resource indicated by the frequency resource information in a first time slot of a previous one of the two subframes, where the previous subframe Another time slot does not perform mapping of the physical uplink control channel;
  • the processing unit is configured to map a physical uplink control channel to a frequency resource indicated by the frequency resource information in a second time slot of a subsequent one of the two subframes, where the subsequent subframe Another time slot does not perform mapping of the physical uplink control channel;
  • the processing unit is configured to map a physical uplink control channel to a frequency resource indicated by the frequency resource information in a previous one of the two subframes, where a subsequent one of the two subframes does not Perform mapping of physical uplink control channels; or
  • the processing unit is configured to map a physical uplink control channel to a frequency resource indicated by the frequency resource information in a subsequent one of the two subframes, where a previous subframe in the two subframes is not Perform mapping of physical uplink control channels.
  • At least one time slot is reserved in the adjacent subframes, so that the terminal and the system have time to adjust the frequency band to adapt the entire system bandwidth, thereby completing the uplink information transmission, fully utilizing the system bandwidth, and ensuring uplink.
  • the peak rate of data or the reception performance of uplink data is reserved in the adjacent subframes, so that the terminal and the system have time to adjust the frequency band to adapt the entire system bandwidth, thereby completing the uplink information transmission, fully utilizing the system bandwidth, and ensuring uplink.
  • the processing unit when two of each of the two subframes The slots all map the physical uplink control channel to the frequency resource indicated by the frequency resource information.
  • the physical resource mapping method of the physical uplink control channel in the embodiment of the present invention maps the physical uplink control channel into one sub-band of one subframe, so that the mapped frequency width does not exceed that supported by a low-complexity or low-cost terminal.
  • the terminal may send the uplink control information in one sub-band of one subframe, and the sub-band that the terminal sends the uplink control information is not always in the center of the system bandwidth, thereby avoiding the complexity of sending the uplink control information, waste of resources, and uplink of other terminals.
  • the problem of reduced data peak rate is not always in the center of the system bandwidth, thereby avoiding the complexity of sending the uplink control information, waste of resources, and uplink of other terminals.
  • the embodiment provides an uplink information receiving method, which is consistent with the uplink information receiving apparatus of the third embodiment.
  • the object of the invention, the technical means, and the technical effects obtained by the features in the method are the same as those of the third embodiment, and are not described again.
  • the specific implementation process please refer to the method implemented by the device embodiment in the third embodiment.
  • the method described in this embodiment may be used by a base station device, such as an evolved base station (eNodeB).
  • eNodeB evolved base station
  • the embodiment provides a method for receiving uplink control information. As shown in FIG. 16, the bandwidth supported by the terminal is smaller than the system bandwidth, and the system bandwidth includes multiple frequency resources.
  • the method includes the following steps:
  • Step 401 Determine a first parameter p1; the first parameter is less than or equal to a first quantity; and the first quantity is a quantity of frequency resources that can be accommodated by a bandwidth supported by the terminal;
  • Step 402 Determine frequency resource information according to the first parameter.
  • Step 403 Map a physical uplink control channel to a frequency resource indicated by the frequency resource information.
  • Step 404 Receive uplink control information by using the physical uplink control channel.
  • the determining the first parameter p1 includes:
  • the first parameter is determined according to the second parameter.
  • determining, according to the physical uplink control channel resource index, the second parameter m * including:
  • a physical uplink control channel resource index according to at least one of the following parameters: a parameter included in the radio resource control RRC signaling, a parameter included in the physical layer signaling, and a first control of the physical downlink control channel PDCCH carrying the downlink control information
  • the sequence number of the channel element CCE, the sequence number of the first enhanced control channel element ECCE of the enhanced physical downlink control channel EPDCCH carrying the downlink control information, and the first control channel of the physical downlink control channel of the machine type communication carrying the downlink control information The serial number of the element;
  • the PDCCH or the EPDCCH may be another channel for carrying downlink control information, such as a physical downlink control channel for device type communication carrying downlink control information.
  • the CCE or ECCE may also be an element constituting other channels for carrying downlink control information, such as control channel elements constituting a physical downlink control channel of machine type communication.
  • determining the first parameter according to the second parameter includes:
  • N NB is the first quantity
  • m * is the second parameter
  • p1 is the first parameter
  • n s is a slot number
  • n sf is a subframe number.
  • X is a parameter related to at least one of n s , n sf , a radio frame number, and a number of uplink subframes included between a start subframe in which uplink control information is transmitted and a current subframe.
  • X is n sf .
  • X is 10 ⁇ SFN+n sf
  • SFN is a radio frame number.
  • X is the number of subframes or uplink subframes included between the start subframe to the current subframe in which the uplink control information is transmitted.
  • Y is a predefined parameter, or Y is a parameter related to the physical uplink control channel hopping granularity, or Y is a parameter related to the physical uplink control channel hopping period.
  • the frequency resource mapped by the physical uplink control channel may change, which is called physical uplink control channel frequency hopping.
  • the frequency resource of the physical uplink control channel mapping changes once every G subframes, which is called the physical uplink control channel frequency hopping granularity.
  • the change rule of the frequency resource of the physical uplink control channel mapping is repeated every H subframes, and the H subframes are referred to as a physical uplink control channel hopping period.
  • Y is the physical uplink control channel frequency hopping granularity.
  • the physical uplink control channel hopping may occur in multiple subframes in which the physical uplink control channel is mapped or the transmitting unit sends uplink control information. That is, in a plurality of subframes before and after the frequency resource of the physical uplink control channel mapping changes, the transmitting unit transmits the same uplink control information.
  • X and Y determine the moment of physical uplink control channel hopping.
  • the determining the first parameter p1 includes:
  • N NB is the first quantity
  • m is a parameter determined according to a physical uplink control channel resource index
  • p1 is the first parameter
  • n s is a slot number
  • n PRB Is an intermediate variable.
  • Determining the first parameter p1 in a third manner of the plurality of manners, determining the first parameter p1 comprises: determining the first parameter p1 according to the physical uplink control channel resource index.
  • the physical uplink control channel resource index is determined according to at least one of the following parameters: a parameter included in the radio resource control RRC signaling, a parameter included in the physical layer signaling, and a physical downlink control channel PDCCH carrying the downlink control information.
  • the sequence number of a control channel element CCE, the sequence number of the first enhanced control channel element ECCE of the enhanced physical downlink control channel EPDCCH carrying the downlink control information, and the first of the physical downlink control channel of the machine type communication carrying the downlink control information The sequence number of the control channel elements; determining the first parameter p1 according to the physical uplink control channel resource index.
  • one way to determine the first parameter p1 according to the physical uplink control channel resource index is:
  • the other parameters are specifically as described in the first embodiment, and are not described herein again.
  • the maximum value of the physical uplink control channel resource index needs to be smaller than a certain value, for example, the maximum value is less than 2047.
  • the system bandwidth includes one or more subbands, where the bandwidth of the subband is less than or equal to a bandwidth supported by the terminal, and the subband includes at least one frequency resource.
  • the determining frequency resource information according to the first parameter includes:
  • the frequency resource information is determined according to the first information of the subband and the first parameter p1.
  • the determining the first information of the subband includes:
  • the subband is a subband of the edge of the system bandwidth, and the first information of the subband is obtained according to the subband;
  • the sub-band is a sub-band used by the terminal to send uplink information last time, and the first information of the sub-band is obtained according to the sub-band;
  • the first information of the subband transmits at least one of the foregoing radio resource control signaling, media access control signaling, and physical layer signaling.
  • the subband of the above system bandwidth edge means that there is no subband closer to the edge of the system bandwidth than the first subband or the last subband of the subbands included in the system bandwidth.
  • the uplink information includes one of uplink control information, uplink data, and uplink reference signal.
  • the downlink information includes one of downlink control information, downlink data, acknowledgement, negative acknowledgement, and downlink reference signal.
  • NB_Idx_pre is the first information of the subband before the change
  • NB_Idx_after is the first information of the changed subband
  • SBoffset is the first information offset of the subband
  • Q is the number of subbands or the frequency included in the system bandwidth. The number of resources.
  • the first subband and the second subband are included in the system bandwidth, wherein the frequency resource included in the first subband and the frequency location of the frequency resource included in the second subband are symmetric about the center frequency of the system bandwidth.
  • the first information change rule of the subband may further be: if the first information of the subband before the change is the first information of the first subband, the first information of the changed subband is the first of the second subband The first information of the changed sub-band is the first information of the first sub-band.
  • the method further includes
  • the configuration information of the first information of the subband is used to configure the first information of the initial subband, the initial subframe of the subband change, the subband change period T, and the first of the subbands.
  • the information offset SBoffset at least one of the number of subbands included in the system bandwidth, and the number of frequency resources included in the system bandwidth.
  • the physical uplink control channel resource index may be a number of physical uplink control channel resources in one subband; or may be physical uplink control in multiple subbands.
  • the number of the channel resource that is, the sub-band area physical uplink control channel resource index.
  • determining the first information of the subband includes: determining first information of the subband according to the subband area physical uplink control channel resource index. Determining a sub-band area physical uplink control channel resource index according to at least one of the following parameters: a parameter included in the radio resource control RRC signaling, a parameter included in the physical layer signaling, and a physical downlink control channel PDCCH carrying the downlink control information.
  • a parameter included in the radio resource control RRC signaling a parameter included in the physical layer signaling
  • PDCCH carrying the downlink control information
  • the sequence number of a control channel element CCE, the sequence number of the first enhanced control channel element ECCE of the enhanced physical downlink control channel EPDCCH carrying the downlink control information, and the first of the physical downlink control channel of the machine type communication carrying the downlink control information The sequence number of the control channel elements.
  • the subband variation period T may also be referred to as the time interval of the subband variation.
  • determining a time interval of the subband change is a divisor of mapping a physical uplink control channel to a number of subframes of the multiple subframes on the frequency resource indicated by the frequency resource information.
  • the first information of the subband includes one of: a subband index, a minimum wideband frequency resource index of the frequency resource included in the subband, and a maximum broadband frequency resource of the frequency resource included in the subband The index, the center frequency resource index of the frequency resource included in the subband.
  • the meaning of the above-mentioned sub-band change period T is that it changes once every T subframe sub-bands.
  • the index of the system bandwidth divided into multiple sub-bands is a sub-band index.
  • the index of the system bandwidth divided into multiple frequency resources is a broadband frequency resource index.
  • the method further includes: determining first information of the first subband; determining first information of the second subband according to the first information of the first subband; and sending a system information block SIB
  • the system information block includes configuration information of the first information of the first sub-band.
  • the subband of the first subband Index and subband index of the second subband If the number is a continuous natural number, the subband index of the first subband is determined, and the subband index of the second subband is determined as the subband index of the first subband plus or minus according to the subband index of the first subband. 1.
  • the subband index of the first subband is an even number
  • the subband index of the second subband is smaller than the smallest odd number of the subband index of the first subband
  • the subband index of the first subband is determined, and The subband index of the first subband determines that the subband index of the second subband is incremented by one for the subband index of the first subband.
  • the first information of the first subband is a minimum wideband frequency resource index of a frequency resource included in the first subband
  • the first information of the second subband is a minimum of a frequency resource included in the second subband.
  • the broadband frequency resource index is determined, if the minimum wideband frequency resource index of the frequency resource included in the first subband is determined to be f NB1_min , the second subband can be determined according to the minimum wideband frequency resource index of the frequency resource included in the first subband.
  • the minimum wideband frequency resource index of the included frequency resource is among them, Is the number of frequency resources included in the system bandwidth, and N NB is the first quantity.
  • the first information of the subband is a subband index
  • the determining the first information of the subband includes:
  • NB_Idx is the sub-band index
  • N NB is the first quantity
  • Is the number of frequency resources included in the system bandwidth
  • Q is the number of subbands included in the system bandwidth.
  • n s is a slot number.
  • the first parameter p1 when the first information of the subband changes, the first parameter p1 also changes, that is, the first information of the subband and the first parameter p1 change simultaneously.
  • the first parameter p1 can be changed according to formula (5) or formula (6).
  • X and Y both determine the timing at which the first parameter p1 changes, and also determine the timing at which the first information of the sub-band changes.
  • the determining the first parameter p1 further includes: if the first parameter p1 determined before the change of the first information of the sub-band is p1_pre, when the first information of the sub-band changes, the first parameter p1 determined to be updated is N NB - 1-p1_pre, where N NB is the first quantity.
  • FIG. 24 or 25 A schematic diagram in which the first information of the sub-band and the first parameter p1 change simultaneously is shown in FIG. 24 or 25.
  • the frequency parameter of the physical uplink control channel before and after the frequency hopping is symmetric about the center of the system bandwidth, and the uplink control information transmission is split for the uplink data transmission frequency resource, and the peak of the uplink data is ensured.
  • the rate or the reception performance of the uplink data is guaranteed.
  • the frequency resource information is a sub-band frequency resource index
  • the bandwidth of the sub-band is equal to the bandwidth supported by the terminal, and determining, according to the first information of the sub-band and the first parameter p1
  • the index of the sub-band divided into multiple frequency resources is a sub-band frequency index, including:
  • the subband frequency resource index is equal to the first parameter p1, wherein the frequency resource indicated by the subband frequency resource index is a frequency resource in the subband.
  • the frequency resource information is a first broadband frequency resource index
  • the bandwidth of the sub-band is equal to a bandwidth supported by the terminal
  • the first information according to the sub-band and the first parameter p1 Determining the frequency resource information includes:
  • the first information of the subband is a center frequency resource index f NB — c of the frequency resource included in the subband , and the first broadband frequency resource index
  • the first information of the subband is a center frequency resource index of the frequency resource included in the subband, and the center frequency resource index has two indexes, and the two center frequency resource indexes are smaller.
  • One is recorded as a center frequency resource index f NB_c1
  • the first wideband frequency resource index n PRB_NB f NB_c1 - N NB /2 + 1 + p1.
  • the first information of the subband is a center frequency resource index of the frequency resource included in the subband, and the center frequency resource index has two indexes, and the two center frequency resource indexes are larger.
  • One is recorded as a center frequency resource index f NB_c2
  • the first wideband frequency resource index n PRB_NB f NB_c2 - N NB / 2 + p1.
  • N NB is the first quantity.
  • the physical uplink control channel can also perform frequency hopping as follows.
  • the first broadband frequency resource index that has been determined is n PRB_NB_pre
  • the determining the first broadband frequency resource index includes: according to the first broadband frequency resource index and the first broadband frequency a resource change rule, where the first broadband frequency resource index n PRB_NB_after after the change of the first information of the subband is determined; wherein the first broadband frequency resource rule is: among them Is the number of frequency resources included in the system bandwidth.
  • determining a time interval in which the frequency resource information changes or a subframe in which the frequency resource information changes and adopting at least one of radio resource control signaling, media access control signaling, and physical layer signaling. Transmitting a time interval in which the frequency resource information changes or configuration information of a subframe in which the frequency resource information changes;
  • the time interval for determining that the frequency resource information changes is a divisor of the number of subframes of the multiple subframes.
  • the frequency hopping mode of the physical uplink control channel can ensure that the frequency resources mapped before and after the frequency hopping of the physical uplink control channel are symmetric about the center of the system bandwidth, and the uplink control information transmission is separated from the uplink data transmission frequency resource, and the uplink data is ensured.
  • the peak rate or the reception performance of the uplink data is guaranteed.
  • mapping the physical uplink control channel to the frequency resource indicated by the frequency resource information includes:
  • the physical uplink control channel is mapped to the frequency resource indicated by the frequency resource information in at least one subframe.
  • the at least one subframe includes two adjacent subframes, and the first information of the subbands of the two subframes is different,
  • Mapping the physical uplink control channel to the frequency resource indicated by the frequency resource information including:
  • mapping a physical uplink control channel to the frequency resource in a previous one of the two subframes On the frequency resource indicated by the information, the mapping of the physical uplink control channel is not performed in the latter subframe of the two subframes; or
  • the frequency resource is a resource occupied by one physical resource block PRB in frequency; or the frequency resource is a subcarrier.
  • the present embodiment provides an uplink control information sending apparatus, wherein a bandwidth supported by the transmitting apparatus is smaller than a system bandwidth, and the system bandwidth includes multiple frequency resources.
  • the frequency resource that the bandwidth supported by the transmitting device can accommodate is that the system bandwidth includes some of the plurality of frequency resources.
  • the transmitting device can only send uplink information in a part of the frequency resources in which the system bandwidth includes multiple frequency resources.
  • the transmitting device can be a user terminal, such as a User Equipment (UE).
  • the system bandwidth is the bandwidth of all frequency resources supported by the system, and the system bandwidth is divided into multiple frequency resources.
  • the frequency resource may be a resource occupied by a physical resource block (PRB) in frequency, or the frequency resource may also be a subcarrier.
  • PRB physical resource block
  • the uplink control information sending apparatus 500 includes:
  • the processing unit 502 is configured to determine the first frequency resource information and the second frequency resource information, where the second frequency resource indicated by the second frequency resource information and the first frequency resource indicated by the first frequency resource information The frequency width between them is less than or equal to the bandwidth supported by the transmitting device;
  • the processing unit 502 is configured to map the physical uplink control channel to the first time slot of the subframe.
  • the first frequency resource indicated by the first frequency resource information is mapped to the second frequency resource indicated by the second frequency resource information in a second time slot of the subframe;
  • the sending unit 501 is configured to send uplink control information by using the physical uplink control channel.
  • the first frequency resource information and the second frequency resource information are determined, where the second frequency resource indicated by the second frequency resource information and the first frequency resource indicated by the first frequency resource information
  • the frequency width is less than or equal to the bandwidth supported by the transmitting device, and then the corresponding frequency resource mapping is determined, and the uplink control information is sent, and the sent uplink control information can be limited to the bandwidth supported by the transmitting device, thereby ensuring the limitation.
  • the terminal transmits the uplink control information, and the uplink control information transmitted by the restricted terminal is not always at the center of the system bandwidth, and the peak rate of the uplink data or the receiving performance of the uplink data is sufficiently ensured.
  • the processing unit configured to determine the first frequency resource information, includes:
  • the processing unit is configured to determine first frequency resource information according to m, where m is a parameter determined according to a physical uplink control channel resource index.
  • the physical uplink control channel resource index may be used to determine, according to at least one of the following parameters: a parameter included in the radio resource control (RRC) signaling, a parameter included in the physical layer signaling, and a bearer downlink control information.
  • RRC radio resource control
  • the number of the first control channel element (CCE) of the physical downlink control channel (PDCCH) and the enhanced physical downlink control channel (EPDCCH) carrying the downlink control information The first enhanced control channel element (ECCE) sequence number, and the sequence number of the first control channel element of the physical downlink control channel of the machine type communication carrying the downlink control information.
  • the physical uplink control channel resource index may be an existing PUCCH index. m is determined in the same way as the existing PUCCH.
  • the first frequency resource information is a first frequency resource index n PRB_NB_s1
  • the first frequency resource index is a broadband frequency resource index, where the system bandwidth is divided into multiple frequency resources, and the index is a broadband frequency.
  • the processing unit is configured to determine, according to the m, the first frequency resource information, including:
  • n PRB_NB_s1 m; (7)
  • n s is the slot number
  • the value range of the broadband frequency resource index is 0 to the number of frequency resources included in the system bandwidth.
  • the range of values can be
  • the broadband frequency resource index may also be numbered starting from 1, and the physical resource mapping method of the corresponding physical uplink control channel belongs to the protection scope of the embodiment of the present invention.
  • the m corresponding to each time slot may change.
  • the corresponding first frequency resource information has different values in different time slots.
  • the indicated frequency resources can be different in the system bandwidth. Frequency resources.
  • the processing unit configured to determine the first frequency resource information, includes:
  • the processing unit is configured to determine, according to m′, the first frequency resource information, where m′ is a parameter determined according to the sub-band regional physical uplink control channel resource index.
  • the system bandwidth includes one or more sub-bands having a bandwidth less than or equal to a bandwidth supported by the transmitting device, the sub-band including at least one frequency resource.
  • the physical uplink control channel resources in one or more sub-bands for the physical uplink control channel mapping in the system bandwidth are numbered, that is, the sub-band area physical uplink control channel resource index.
  • one way to determine m' according to the sub-band area physical uplink control channel resource index is:
  • the sub-band area physical uplink control channel resource index may be used to determine, according to at least one of the following parameters: parameters included in radio resource control (RRC) signaling, parameters included in physical layer signaling, and bearers.
  • RRC radio resource control
  • the sequence number of the first control channel element of the physical downlink control channel of the machine type communication of the downlink control information is the same as the determining manner of the existing PUCCH resource index.
  • the RRC signaling includes parameters and physical layers.
  • the value range of one or more of the parameters included in the signaling, the sequence number of the first control channel element, and the value range of the above parameters determining the index of the existing PUCCH resource are different.
  • the other parameters are specifically described in the first manner in which the processing unit determines the first parameter p1 in the first embodiment, and details are not described herein again.
  • the first frequency resource information is a third frequency resource index n PRB_NB_MUL_s1
  • the third frequency resource index is an index of the frequency resource included in the one or more sub-bands for the physical uplink control channel mapping
  • the processing unit for m 'to determine a first frequency resource information comprising the: the third frequency resource index n PRB_NB_MUL_s1 third frequency resource index, and the equation determined in the same n PRB_NB_MUL_s1:
  • X is included between the slot number n s , the subframe sequence number n sf , the radio frame sequence number, and the start subframe to the current subframe where the uplink control information is sent. At least one of the number of subframes or the number of uplink subframes.
  • X is n sf .
  • X is 10 ⁇ SFN+n sf
  • SFN is a radio frame number.
  • X is the number of uplink subframes included between the first subframe in which the uplink control information is transmitted and the current subframe.
  • Y is a predefined parameter, or Y is a parameter related to the physical uplink control channel hopping granularity, or Y is a parameter related to the physical uplink control channel hopping period.
  • the frequency resource mapped by the physical uplink control channel may change, which is called physical uplink control channel frequency hopping.
  • the frequency resource of the physical uplink control channel mapping changes once every G subframes, which is called the physical uplink control channel frequency hopping granularity.
  • the change rule of the frequency resource of the physical uplink control channel mapping is repeated every H subframes, which is called a physical uplink control channel frequency hopping period.
  • Y is the physical uplink control channel frequency hopping granularity.
  • the physical uplink control channel hopping may occur in multiple subframes in which the physical uplink control channel is mapped or the transmitting unit sends uplink control information. That is, in a plurality of subframes before and after the frequency resource of the physical uplink control channel mapping changes, the transmitting unit transmits the same uplink control information.
  • X and Y determine the moment of physical uplink control channel hopping.
  • the value range of the third frequency resource index is 0 to -1 of the frequency resource included in the one or more subbands for the physical uplink control channel mapping.
  • the range of values can be
  • the third frequency resource index may also be numbered from 1, and the physical resource mapping method of the corresponding physical uplink control channel belongs to the protection scope of the embodiment of the present invention.
  • 26 and 27 respectively illustrate the relationship of frequency resources and time slots obtained according to the equations (10), (11), respectively.
  • the processing unit is configured to determine the first frequency resource information according to m′, and further includes: mapping, by the processing unit, the physical uplink control channel to the first frequency in a first time slot of the subframe Mapping, on the first frequency resource indicated by the resource information, the physical uplink control channel to the first one of the plurality of subframes on the second frequency resource indicated by the second frequency resource information in the second time slot of the subframe a frame, the processing unit determines that the initial value of the frequency resource information is the third frequency resource index n PRB_NB_MUL_s1 ; in the plurality of subframes, the frequency resource information changes; if the frequency resource information changes before For the index n PRB_NB_MUL_s1_pre of the frequency resource included in the one or more sub-bands, when the frequency resource information changes, the processing unit updates the determined frequency resource information to be the frequency included in the one or more sub-bands Resource index among them Is the number of frequency resources included in the one or more sub-bands.
  • the processing unit is configured to determine, according to a predetermined specification, a time interval in which the frequency resource information changes in the multiple subframes or a subframe in which the frequency resource information changes;
  • the processing unit is configured to determine, by using at least one of radio resource control signaling, media access control signaling, and physical layer signaling, a time interval or a frequency at which the frequency resource information changes. a subframe in which the resource information changes;
  • the processing unit is configured to determine that the time interval in which the frequency resource information changes is a divisor of the number of subframes of the multiple subframes.
  • the processing unit is configured to determine the second frequency resource information in the same manner as the first frequency resource information. Therefore, the frequency width between the second frequency resource indicated by the second frequency resource information and the first frequency resource indicated by the first frequency resource information may be less than or equal to the bandwidth supported by the transmitting device.
  • the processing unit is configured to determine second frequency resource information, including: the processing order a unit, configured to determine second frequency resource information according to the first frequency resource information.
  • the width is less than or equal to the bandwidth supported by the transmitting device.
  • the first frequency resource information is a first frequency resource index n PRB_NB_s1
  • the first frequency resource index is a broadband frequency resource index
  • the second frequency resource information is a second frequency resource index n PRB_NB_s2
  • the second frequency resource index is a broadband frequency resource index
  • the processing unit configured to determine the second frequency resource information according to the first frequency resource information, includes:
  • the second frequency resource index is equal to the first frequency resource index, or
  • the processing unit is configured to determine second information of the subband,
  • the processing unit is configured to determine a second frequency resource index according to the first frequency resource index and the second information of the subband, or
  • the processing unit is configured to determine a second frequency resource index according to the first frequency resource index and the number of frequency resources that can be accommodated by the bandwidth supported by the sending device.
  • the system bandwidth includes one or more subbands, the subband has a bandwidth less than or equal to a bandwidth supported by the sending device, and the subband includes at least one frequency resource.
  • the frequency resource indicated by the second frequency index in FIG. 8 is different from the frequency resource indicated by the first frequency index and is within the bandwidth supported by the transmitting device.
  • the processing unit in the sending apparatus is configured to determine the second information of the subband by:
  • the processing unit determines the second information of the subband according to a predetermined specification.
  • the pre-defined provisions include:
  • the sub-band is a sub-band of the edge of the system bandwidth, and the processing unit is configured to obtain second information of the sub-band according to the sub-band;
  • the sub-band is a sub-band used by the sending device to send uplink information, and the processing unit is configured to obtain second information of the sub-band according to the sub-band;
  • the processing unit configured to determine the sub-band according to a sub-band and a duplex distance used by the sending device to receive downlink information, the processing unit, configured to obtain the sub-sub-band according to the sub-band The second information of the belt;
  • the subband of the above system bandwidth edge means that there is no subband closer to the edge of the system bandwidth than the first subband or the last subband of the subbands included in the system bandwidth.
  • all the sending devices send the uplink control information on the frequency resources included in one of the subbands included in the system bandwidth, or perform resource mapping on the physical uplink control channel.
  • the one subband may be the first subband or the last subband of the subbands included in the system bandwidth.
  • the transmitting device may also send uplink data or perform resource mapping of a Physical Uplink Shared Channel (PUSCH) on the frequency resource included in the one subband.
  • PUSCH Physical Uplink Shared Channel
  • the uplink information includes one of uplink control information, uplink data, and uplink reference signal.
  • the downlink information includes one of downlink control information, downlink data, a positive response, a negative response, and a downlink reference signal.
  • the duplex distance is used to indicate the frequency interval between the transmitting device transmitting the uplink information and receiving the downlink information.
  • the processing unit determines the second information of the subband according to a predefined rule.
  • the predefined rules include:
  • the processing unit is configured to determine second information of the subband according to a subframe number.
  • the second information of the subband may be a fixed function of the subframe number n sf .
  • the predefined rule is that the second information of the subband changes once every T subframes.
  • the predefined rule refer to the manner in which the first information of the sub-band changes once every T subframes in the first embodiment, and details are not described in this embodiment.
  • the processing unit is configured to receive radio resource control signaling and media access control signaling At least one of the physical layer signaling determines the second information of the subband.
  • the second information of the subband includes one of: a minimum broadband frequency resource index of a frequency resource included in the subband, a maximum broadband frequency resource index of a frequency resource included in the subband, The center frequency resource index of the frequency resource contained in the subband.
  • the minimum broadband frequency resource index, the maximum broadband frequency resource index, and the center frequency resource index are shown in FIG. 7 .
  • the center frequency resource index is used to indicate the center frequency of the subband.
  • the processing unit may further determine a center frequency point of the subband by using configuration information of a center frequency point of the other subbands, thereby determining a center frequency resource index.
  • the processing unit is further configured to determine a sub-band index, and determine second information of the sub-band according to the sub-band index.
  • the processing unit determines the sub-band index refer to the first embodiment, and details are not described in this embodiment.
  • the foregoing multiple implementation manners may determine the second information of the subband, so as to determine the second frequency resource index according to the first frequency resource index and the second information of the subband.
  • the bandwidth of the subband is equal to the bandwidth supported by the sending device, and the NNB is the number of frequency resources that the bandwidth supported by the sending device can accommodate.
  • the processing unit is configured to determine, according to the first frequency resource index and the second information of the subband, the second frequency resource index, including:
  • the second frequency resource index n PRB_NB_s2 f NB_min ⁇ 2 + N NB -1-n PRB_NB_s1 ;
  • the second frequency resource index n PRB_NB_s2 f NB_max ⁇ 2-N NB +1-n PRB_NB_s1 ;
  • the second frequency resource index n PRB_NB_s2 f NB_c ⁇ 2-n PRB_NB_s1 ;
  • the center frequency resource index has two indexes, and the two center frequency resource indexes are compared. The smaller one is recorded as the center frequency resource index f NB_c1 , and the larger one is recorded as the center frequency resource index f NB_c2 .
  • n PRB_NB_s2 f NB_c1 +f NB_c2 -n PRB_NB_s1 , or
  • n PRB_NB_s2 2 ⁇ f NB_c1 + 1-n PRB_NB_s1 , or
  • n PRB_NB_s2 2 ⁇ f NB_c2 -1-n PRB_NB_s1 .
  • the processing unit configured to determine, according to the first frequency resource index and the number of frequency resources that the bandwidth supported by the sending device can accommodate, the second frequency resource index includes:
  • the second frequency resource index Where A is a fixed parameter.
  • A is N NB is the number of frequency resources that the bandwidth supported by the transmitting device can accommodate.
  • the first frequency resource information is a third frequency resource index n PRB_NB_MUL_s1
  • the second frequency resource information is a fourth frequency resource index n PRB_NB_MUL_s2
  • the index is an index of the frequency resource included in the one or more sub-bands for the physical uplink control channel mapping
  • the processing unit configured to determine the second frequency resource information according to the first frequency resource information, includes:
  • the fourth frequency resource index is equal to the third frequency resource index.
  • the frequency width between the second frequency resource indicated by the second frequency resource information and the first frequency resource indicated by the first frequency resource information may be less than or equal to the bandwidth supported by the transmitting device.
  • the second frequency resource can be limited to a reasonable range. Therefore, the frequency width between the second frequency resource indicated by the second frequency resource information and the first frequency resource indicated by the first frequency resource information is less than or equal to the bandwidth supported by the transmitting device. Further, the purpose of the embodiment is implemented to complete the transmission of the uplink information, fully utilize the system bandwidth, and ensure the peak rate of the uplink data or the reception performance of the uplink data.
  • the processing unit is configured to: in a first time slot of the subframe, map the physical uplink control channel to the first frequency resource indicated by the first frequency resource information; in the second frame of the subframe The time slot is configured to map the physical uplink control channel to the second frequency resource indicated by the second frequency resource information, including:
  • the processing unit is configured to determine the one or more sub-bands
  • the processing unit is configured to map a physical uplink control channel to a first frequency resource indicated by the first frequency resource information in a first time slot of a subframe; and to perform a second time slot of the subframe in a second time slot of the subframe
  • the physical uplink control channel is mapped to the second frequency resource indicated by the second frequency resource information; the first frequency resource indicated by the first frequency resource information and the second frequency resource indicated by the second frequency resource information are A frequency resource in a frequency resource included in one or more sub-bands.
  • the one or more sub-bands are sub-bands for physical uplink control channel mapping.
  • the one or more sub-bands are determined by the processing unit by receiving a system information block.
  • Physical uplink control letter A schematic diagram of the frequency resource of the track map is shown in FIG. 26 or FIG.
  • the frequency resource mapped before and after the frequency hopping of the physical uplink control channel is symmetric about the center of the system bandwidth, and is reduced by the formula (10) or the formula (11), the manner of changing the frequency resource information, and the mapping manner of the physical uplink control channel.
  • the uplink control information transmission splits the uplink data transmission frequency resource, ensures the peak rate of the uplink data or ensures the receiving performance of the uplink data.
  • the multiple subbands include a first subband and a second subband, where the first subband includes a frequency resource and the second subband includes The frequency position of the frequency resource is symmetric about the center of the system bandwidth, as shown in FIG.
  • the processing unit is configured to determine the multiple subbands, including:
  • the processing unit is configured to determine first information of the first subband by receiving a system information block
  • the processing unit is configured to determine first information of the second sub-band according to the first information of the first sub-band;
  • the processing unit is configured to determine the first sub-band according to the first information of the first sub-band, and determine the second sub-band according to the second information of the second sub-band.
  • the first information of the subband includes one of: a subband index, a minimum wideband frequency resource index of the frequency resource included in the subband, a maximum broadband frequency resource index of the frequency resource included in the subband, and the The center frequency resource index of the frequency resource contained in the subband.
  • the processing unit determines the sub-band index of the first sub-band by receiving the system information block, and determines the second sub-item according to the sub-band index of the first sub-band
  • the subband index of the band is incremented or decremented by 1 for the subband index of the first subband.
  • the processing unit determines the first subband by receiving the system information block.
  • the subband index determines that the subband index of the second subband is incremented by one for the subband index of the first subband according to the subband index of the first subband.
  • the processing unit determines a subband index of the first subband and a subband index of the second subband Thereafter, the first sub-band and the second sub-band indicated by the sub-band index may be determined by the sub-band index and the predetermined sub-band and sub-band number.
  • the processing unit determines, by receiving the system information block, that the minimum wideband frequency resource index of the frequency resource included in the first subband is f NB1_min , and the smallest wideband frequency resource according to the frequency resource included in the first subband is obtained .
  • the index determines that the minimum wideband frequency resource index of the frequency resource included in the second subband is among them, Is the number of frequency resources included in the system bandwidth, and N NB is the first quantity.
  • the processing unit determines the minimum wideband frequency resource index of the frequency resource included in the first subband and the minimum wideband frequency resource index of the frequency resource included in the second subband, the minimum broadband frequency resource index and the subband are included
  • the number of frequency resources determines the first sub-band and the second sub-band.
  • the processing unit is configured to determine the multiple subbands, including:
  • the processing unit is configured to determine first information of the first subband by receiving a system information block
  • the processing unit is configured to determine the first sub-band according to the first information of the first sub-band;
  • the processing unit is configured to determine the second sub-band according to the first sub-band
  • the processing unit may determine the subband index of the first subband by receiving the system information block, and may be indexed by the subband.
  • the first sub-band indicated by the sub-band index is determined with a predetermined sub-band and sub-band number. From the frequency resource location included in the first sub-band, the frequency resource location symmetric with respect to the center of the system bandwidth of the frequency resource location included in the first sub-band may be determined, that is, the second sub-band is determined.
  • the broadband frequency resource index of one of the frequency resources included in the first subband is f NB1
  • the broadband frequency resource index of the frequency resource symmetric about the center of the system bandwidth is among them, Is the number of frequency resources included in the system bandwidth.
  • the foregoing two processing units are used to determine the manner of the multiple sub-bands, which saves signaling overhead of the first information used by the base station to configure the first sub-band and the first information of the second sub-band.
  • the processing unit is configured to: in a first time slot of the subframe, map the physical uplink control channel to the first frequency resource indicated by the first frequency resource information; in the second frame of the subframe The time slot is configured to map the physical uplink control channel to the second frequency resource indicated by the second frequency resource information, including:
  • the second time slot of one subframe maps the physical uplink control channel to the second frequency resource indicated by the second frequency resource information.
  • the processing unit When the processing unit performs the uplink control information transmission, if the physical uplink control channel is mapped to the frequency resource indicated by the frequency resource information in multiple subframes, the uplink control information or the physical uplink control channel may be covered. Enhanced to meet the requirements of coverage.
  • the at least one subframe includes two adjacent subframes, and the determined first frequency resources of the two subframes are different,
  • the processing unit is configured to map a physical uplink control channel to a first frequency resource indicated by the first frequency resource information in a first time slot of any one of the at least one subframe; Mapping the physical uplink control channel to the second frequency resource indicated by the second frequency resource information, where the second time slot of any one of the at least one subframe includes:
  • the processing unit is configured to map a physical uplink control channel to a first frequency resource indicated by the first frequency resource information in a first time slot of a previous one of the two subframes, where The other time slot of the previous subframe does not perform mapping of the physical uplink control channel; as shown in FIG. 10, the first time slot of the intermediate subframe maps frequency resources, and the second time slot does not map frequency resources, or
  • the processing unit is configured to map a physical uplink control channel to a second frequency resource indicated by the second frequency resource information in a second time slot of a subsequent one of the two subframes, where After one Another time slot of one subframe does not perform mapping of the physical uplink control channel; or
  • the processing unit is configured to map a physical uplink control channel to the first indication of the first frequency resource information, respectively, in a first time slot and a second time slot of a previous one of the two subframes On the second frequency resource indicated by the frequency resource and the second frequency resource information, the mapping of the physical uplink control channel is not performed in the next subframe of the two subframes; or
  • the processing unit is configured to map a physical uplink control channel to the first indication of the first frequency resource information, respectively, in a first time slot and a second time slot of a subsequent one of the two subframes On the second frequency resource indicated by the frequency resource and the second frequency resource information, the mapping of the physical uplink control channel is not performed in the previous subframe of the two subframes.
  • the frequency slots are not mapped in the two slots of the intermediate subframe, and the intermediate subframe is the previous subframe in the two subframes or the latter subframe in the two subframes.
  • At least one time slot is reserved in the adjacent subframes, so that the terminal and the system have time to adjust the frequency band to adapt the entire system bandwidth, thereby completing the uplink information transmission, fully utilizing the system bandwidth, and ensuring uplink.
  • the peak rate of data or the reception performance of uplink data is reserved in the adjacent subframes, so that the terminal and the system have time to adjust the frequency band to adapt the entire system bandwidth, thereby completing the uplink information transmission, fully utilizing the system bandwidth, and ensuring uplink.
  • the at least one subframe includes two adjacent subframes, and when the determined first frequency resources of the two subframes are the same, the processing unit, each of the two subframes
  • the first time slot of the frame maps the physical uplink control channel to the first frequency resource indicated by the first frequency resource information; and the second time slot of each subframe in the two subframes
  • the physical uplink control channel is mapped to the second frequency resource indicated by the second frequency resource information.
  • the physical resource mapping method of the physical uplink control channel of the embodiment of the present invention maps the physical uplink control channel into one sub-band of one subframe, so that the mapped frequency width does not exceed that of a low complexity or low-cost terminal.
  • the terminal may send the uplink control information in one sub-band of one subframe, and the sub-band that the terminal sends the uplink control information is not always in the center of the system bandwidth, thereby avoiding the complexity of sending the uplink control information, waste of resources, and uplink of other terminals. Data peak rate drop Low problem.
  • This embodiment provides an uplink information sending method, which is consistent with the uplink information sending apparatus of the fifth embodiment.
  • the object of the invention, the technical means, and the technical effects obtained by the features in the method are the same as those of the fifth embodiment, and are not described again.
  • For the specific implementation process please refer to the method implemented by the device embodiment in the fifth embodiment.
  • the method described in this embodiment can be used by a terminal, such as a user equipment (UE).
  • UE user equipment
  • the embodiment provides a method for transmitting uplink control information. As shown in FIG. 18, the bandwidth supported by the terminal is smaller than the system bandwidth, and the system bandwidth includes multiple frequency resources.
  • the method includes the following steps:
  • Step 601 Determine first frequency resource information and second frequency resource information, where a frequency between the second frequency resource indicated by the second frequency resource information and the first frequency resource indicated by the first frequency resource information Width, less than or equal to the bandwidth supported by the terminal;
  • Step 602 Map a physical uplink control channel to a first frequency resource indicated by the first frequency resource information in a first time slot of the subframe, and a physical uplink control channel in a second time slot of the subframe. Mapping to the second frequency resource indicated by the second frequency resource information;
  • Step 603 Send uplink control information by using the physical uplink control channel.
  • the first frequency resource information and the second frequency resource information are determined, where the second frequency resource indicated by the second frequency resource information and the first frequency resource indicated by the first frequency resource information
  • the frequency width is less than or equal to the bandwidth supported by the transmitting device, and then the corresponding frequency resource mapping is determined, and the uplink control information is sent, and the sent uplink control information can be limited to the bandwidth supported by the transmitting device, thereby ensuring the limitation.
  • the terminal transmits uplink control information, which fully utilizes the peak rate of the uplink data or ensures the reception performance of the uplink data.
  • the determining the first frequency resource information includes:
  • the first frequency resource information is determined according to m, where m is a parameter determined according to a physical uplink control channel resource index.
  • the first frequency resource information is a first frequency resource index n PRB_NB_s1
  • the first frequency resource index is a broadband frequency resource index
  • the system bandwidth is divided into multiple frequency resources
  • the index is a broadband frequency resource. index
  • Determining the first frequency resource information according to m including:
  • n PRB_NB_s1 m
  • n s is the slot number
  • the determining the second frequency resource information includes:
  • the second frequency resource information is determined according to the first frequency resource information.
  • the first frequency resource information is a first frequency resource index n PRB_NB_s1
  • the first frequency resource index is a broadband frequency resource index
  • the second frequency resource information is a second frequency resource index n PRB_NB_s2
  • the second frequency resource index is a broadband frequency resource index
  • Determining the second frequency resource information according to the first frequency resource information includes:
  • the second frequency resource index is equal to the first frequency resource index, or
  • the second frequency resource index is determined according to the first frequency resource index and the number of frequency resources that the terminal supports.
  • the system bandwidth includes one or more subbands, the bandwidth of the subband is less than or equal to the bandwidth supported by the terminal, and the subband includes at least one frequency resource.
  • the second information of the subband is determined by one of the following ways:
  • the subband is a subband of the edge of the system bandwidth, and the second information of the subband is obtained according to the subband;
  • the sub-band is a sub-band used by the terminal to send uplink information last time, and the second information of the sub-band is obtained according to the sub-band;
  • the second information of the subband is determined by receiving at least one of radio resource control signaling, media access control signaling, and physical layer signaling.
  • the second information of the subband includes one of: a minimum broadband frequency resource index of a frequency resource included in the subband, a maximum broadband frequency resource index of a frequency resource included in the subband, The center frequency resource index of the frequency resource contained in the subband.
  • the bandwidth of the subband is equal to the bandwidth supported by the terminal, and the NNB is the number of frequency resources that the bandwidth supported by the terminal can accommodate.
  • Determining, according to the first frequency resource index and the second information of the subband, the second frequency resource index including:
  • the second frequency resource index n PRB_NB_s2 f NB_min ⁇ 2 + N NB -1-n PRB_NB_s1 ;
  • the second frequency resource index n PRB_NB_s2 f NB_max ⁇ 2-N NB + 1-n PRB_NB_s1 ;
  • the second frequency resource index n PRB_NB_s2 f NB_c ⁇ 2-n PRB_NB_s1 ;
  • the center frequency resource index has two indexes, and the two center frequency resource indexes are compared. The smaller one is recorded as the center frequency resource index f NB_c1 , and the larger one is recorded as the center frequency resource index f NB_c2 .
  • n PRB_NB_s2 f NB_c1 +f NB_c2 -n PRB_NB_s1 , or
  • n PRB_NB_s2 2 ⁇ f NB_c1 + 1-n PRB_NB_s1 , or
  • n PRB_NB_s2 2 ⁇ f NB_c2 -1-n PRB_NB_s1 .
  • determining, according to the first frequency resource index and the number of frequency resources that the bandwidth supported by the terminal can accommodate, the second frequency resource index includes:
  • the second frequency resource index Where A is a fixed parameter.
  • A is N NB is the number of frequency resources that the bandwidth supported by the terminal can accommodate.
  • the physical uplink control channel is mapped to the first frequency resource indicated by the first frequency resource information; and in the second time slot of the subframe, the physical uplink control is performed.
  • Mapping the channel to the second frequency resource indicated by the second frequency resource information includes:
  • the second time slot of one subframe maps the physical uplink control channel to the second frequency resource indicated by the second frequency resource information.
  • the at least one subframe is two adjacent subframes, and the determined first frequency resources of the two subframes are different,
  • the second time slot of a subframe is configured to map the physical uplink control channel to the second frequency resource indicated by the second frequency resource information, including:
  • the time slot does not perform mapping of the physical uplink control channel
  • mapping a physical uplink control channel to the first frequency resource and the second indicated by the first frequency resource information, respectively, in a first time slot and a second time slot of a previous one of the two subframes On the second frequency resource indicated by the frequency resource information, the mapping of the physical uplink control channel is not performed in the next subframe of the two subframes; or
  • mapping a physical uplink control channel to the first frequency resource and the second indicated by the first frequency resource information, respectively, in a first time slot and a second time slot of a subsequent one of the two subframes
  • the mapping of the physical uplink control channel is not performed in the previous one of the two subframes.
  • the physical resource mapping method of the physical uplink control channel of the embodiment of the present invention maps the physical uplink control channel into one sub-band of one subframe, so that the mapped frequency width does not exceed that of a low complexity or low-cost terminal.
  • the terminal may send the uplink control information in one sub-band of one subframe, and the sub-band that the terminal sends the uplink control information is not always in the center of the system bandwidth, thereby avoiding the complexity of sending the uplink control information, waste of resources, and uplink of other terminals.
  • the problem of reduced data peak rate is not always in the center of the system bandwidth, thereby avoiding the complexity of sending the uplink control information, waste of resources, and uplink of other terminals.
  • the present embodiment provides an uplink control information receiving apparatus, wherein a bandwidth supported by the terminal is smaller than a system bandwidth, and the system bandwidth includes multiple frequency resources.
  • the receiving device may be a base station device, such as an evolved base station (eNodeB).
  • the system bandwidth is the bandwidth of all frequency resources supported by the system, and the system bandwidth is divided into multiple frequency resources.
  • the frequency resource may be a resource occupied by a physical resource block (PRB) in frequency, or the frequency resource may also be a subcarrier.
  • PRB physical resource block
  • the receiving device includes:
  • the processing unit 702 is configured to determine the first frequency resource information and the second frequency resource information, where the second frequency resource indicated by the second frequency resource information and the first frequency resource indicated by the first frequency resource information The frequency width between the two is less than or equal to the bandwidth supported by the terminal;
  • the processing unit 702 is configured to map the physical uplink control channel to the first time slot of the subframe.
  • the first frequency resource indicated by the first frequency resource information is mapped to the second frequency resource indicated by the second frequency resource information in a second time slot of the subframe;
  • the receiving unit 701 is configured to receive uplink control information by using the physical uplink control channel.
  • the first frequency resource information and the second frequency resource information are determined, where the second frequency resource indicated by the second frequency resource information and the first frequency resource indicated by the first frequency resource information
  • the frequency width is less than or equal to the bandwidth supported by the transmitting device, and the corresponding frequency resource mapping is determined, and the sent uplink control information can be limited to the bandwidth supported by the transmitting device, thereby ensuring that the restricted terminal transmits the uplink control information.
  • the uplink control information transmitted by the restricted terminal is not always at the center of the system bandwidth, and the peak rate of the uplink data or the receiving performance of the uplink data is fully ensured, and the peak rate of the uplink data is fully utilized or the receiving performance of the uplink data is guaranteed.
  • the processing unit configured to determine the first frequency resource information, includes:
  • the processing unit is configured to determine first frequency resource information according to m, where m is a parameter determined according to a physical uplink control channel resource index. Specifically, it can be similar to the determination method of m in the fifth embodiment.
  • the first frequency resource information is a first frequency resource index n PRB_NB_s1
  • the first frequency resource index is a broadband frequency resource index
  • the system bandwidth is divided into multiple frequency resources
  • the index is a broadband frequency resource.
  • the processing unit is configured to determine, according to the m, the first frequency resource information, including:
  • n PRB_NB_s1 m
  • n s is the slot number
  • the value range of the broadband frequency resource index is 0 to the number of frequency resources included in the system bandwidth.
  • the range of values can be
  • the broadband frequency resource index may also be numbered starting from 1, and the physical resource mapping method of the corresponding physical uplink control channel belongs to the protection scope of the embodiment of the present invention.
  • the m corresponding to each time slot may change.
  • the corresponding first frequency resource information has different values in different time slots.
  • the indicated frequency resources can be different in the system bandwidth. Frequency resources.
  • the processing unit is configured to determine second frequency resource information, including:
  • the processing unit is configured to determine second frequency resource information according to the first frequency resource information.
  • the width is less than or equal to the bandwidth supported by the transmitting device.
  • the first frequency resource information is a first frequency resource index n PRB_NB_s1
  • the first frequency resource index is a broadband frequency resource index
  • the second frequency resource information is a second frequency resource index n PRB_NB_s2
  • the second frequency resource index is a broadband frequency resource index
  • the processing unit configured to determine, according to the first frequency resource information, the second frequency resource information includes:
  • the second frequency resource index is equal to the first frequency resource index, or
  • the processing unit is configured to determine second information of the subband,
  • the processing unit is configured to determine a second frequency resource index according to the first frequency resource index and the second information of the subband, or
  • the processing unit is configured to determine a second frequency resource index according to the first frequency resource index and the number of frequency resources that the terminal supports.
  • system bandwidth includes one or more sub-bands, and the bandwidth of the sub-band is less than or equal to The bandwidth supported by the terminal, the subband includes at least one frequency resource.
  • the processing unit is configured to determine the second information of the subband by:
  • the processing unit determines the second information of the subband according to a predetermined specification.
  • the pre-defined provisions include:
  • the sub-band is a sub-band of the edge of the system bandwidth, and the processing unit is configured to obtain second information of the sub-band according to the sub-band;
  • the sub-band is a sub-band used by the terminal to send uplink information, and the processing unit is configured to obtain second information of the sub-band according to the sub-band;
  • the processing unit is configured to determine the sub-band according to a sub-band and a duplex distance used by the terminal to receive the downlink information, and the processing unit is configured to obtain the sub-band according to the sub-band. Two information.
  • the subband of the above system bandwidth edge means that there is no subband closer to the edge of the system bandwidth than the first subband or the last subband of the subbands included in the system bandwidth.
  • all the sending devices send the uplink control information on the frequency resources included in one of the subbands included in the system bandwidth, or perform resource mapping on the physical uplink control channel.
  • the one subband may be the first subband or the last subband of the subbands included in the system bandwidth.
  • the transmitting device may also send uplink data or perform resource mapping of a Physical Uplink Shared Channel (PUSCH) on the frequency resource included in the one subband.
  • PUSCH Physical Uplink Shared Channel
  • the uplink information includes one of uplink control information, uplink data, and uplink reference signal.
  • the downlink information includes one of downlink control information, downlink data, a positive response, a negative response, and a downlink reference signal.
  • the duplex distance is used to indicate the frequency interval between the transmitting device transmitting the uplink information and receiving the downlink information.
  • the processing unit determines the second information of the subband according to a predefined rule.
  • the predefined rules include:
  • the processing unit is configured to determine second information of the subband according to a subframe number.
  • the second information of the subband may be a fixed function of the subframe number n sf .
  • the predefined rule is that the second information of the subband changes once every T subframes.
  • the predefined rule refer to the manner in which the first information of the sub-band changes once every T subframes in the first embodiment, and details are not described in this embodiment.
  • the processing unit configured to determine configuration information of at least one of the second information including the subband, the second information of the radio resource control signaling, the media access control signaling, and the physical layer signaling, where the second subband
  • the configuration information of the information is used to configure the second information of the subband
  • the receiving device further includes a sending unit, configured to send at least one of the foregoing radio resource control signaling, media access control signaling, and physical layer signaling.
  • the second information of the subband includes one of: a minimum wideband frequency resource index of a frequency resource included in the subband, and a maximum broadband frequency resource of a frequency resource included in the subband Index, the center frequency resource index of the frequency resource included in the subband.
  • the center frequency resource index is used to indicate the center frequency of the subband.
  • the processing unit may further determine a center frequency point of the subband by using configuration information of a center frequency point of the other subbands, thereby determining a center frequency resource index.
  • the processing unit is further configured to determine a sub-band index, and determine second information of the sub-band according to the sub-band index.
  • the processing unit determines the sub-band index refer to the first embodiment, and details are not described in this embodiment.
  • the foregoing multiple implementation manners may determine the second information of the subband, so as to determine the second frequency resource index according to the first frequency resource index and the second information of the subband.
  • the bandwidth of the subband is equal to the bandwidth supported by the terminal, and the NNB is the number of frequency resources that the bandwidth supported by the terminal can accommodate.
  • the processing unit is configured to determine a second according to the first frequency resource index and the second information of the subband Frequency resource index, including:
  • the second frequency resource index n PRB_NB_s2 f NB_min ⁇ 2 + N NB -1-n PRB_NB_s1 ;
  • the second frequency resource index n PRB_NB_s2 f NB_max ⁇ 2-N NB +1-n PRB_NB_s1 ;
  • the second frequency resource index n PRB_NB_s2 f NB_c ⁇ 2-n PRB_NB_s1 ;
  • the center frequency resource index has two indexes, and the two center frequency resource indexes are compared. The smaller one is recorded as the center frequency resource index f NB_c1 , and the larger one is recorded as the center frequency resource index f NB_c2 .
  • n PRB_NB_s2 f NB_c1 +f NB_c2 -n PRB_NB_s1 , or
  • n PRB_NB_s2 2 ⁇ f NB_c1 + 1-n PRB_NB_s1 , or
  • n PRB_NB_s2 2 ⁇ f NB_c2 -1-n PRB_NB_s1 .
  • the processing unit configured to determine, according to the first frequency resource index and the number of frequency resources that the bandwidth supported by the terminal can accommodate, the second frequency resource index includes:
  • the second frequency resource index Where A is a fixed parameter.
  • A is N NB is the number of frequency resources that the bandwidth supported by the terminal can accommodate.
  • the second frequency resource can be limited to a reasonable range. Therefore, the frequency width between the second frequency resource indicated by the second frequency resource information and the first frequency resource indicated by the first frequency resource information is less than or equal to the bandwidth supported by the transmitting device. Further, the purpose of the embodiment is implemented to complete the transmission of the uplink information, fully utilize the system bandwidth, and ensure the peak rate of the uplink data or the reception performance of the uplink data.
  • the processing unit is configured to: in a first time slot of the subframe, map the physical uplink control channel to the first frequency resource indicated by the first frequency resource information; in the second frame of the subframe The time slot is configured to map the physical uplink control channel to the second frequency resource indicated by the second frequency resource information, including:
  • the second time slot of one subframe maps the physical uplink control channel to the second frequency resource indicated by the second frequency resource information.
  • the processing unit When the processing unit performs the uplink control information transmission, if the physical uplink control channel is mapped to the frequency resource indicated by the frequency resource information in multiple subframes, the uplink control information or the physical uplink control channel may be covered. Enhanced to meet the requirements of coverage.
  • the at least one subframe includes two adjacent subframes, and the determined first frequency resources of the two subframes are different,
  • the processing unit is configured to: in a first time slot of any one of the at least one subframe, Mapping a physical uplink control channel to the first frequency resource indicated by the first frequency resource information; mapping a physical uplink control channel to the second time slot of any one of the at least one subframe
  • the second frequency resource indicated by the second frequency resource information includes:
  • the processing unit is configured to map a physical uplink control channel to a first frequency resource indicated by the first frequency resource information in a first time slot of a previous one of the two subframes, where The other time slot of the previous subframe does not perform mapping of the physical uplink control channel; as shown in FIG. 10, the first time slot of the intermediate subframe maps frequency resources, and the second time slot does not map frequency resources, or
  • the processing unit is configured to map a physical uplink control channel to a second frequency resource indicated by the second frequency resource information in a second time slot of a subsequent one of the two subframes, where The other time slot of the latter subframe does not perform mapping of the physical uplink control channel;
  • the processing unit is configured to map a physical uplink control channel to the first indication of the first frequency resource information, respectively, in a first time slot and a second time slot of a previous one of the two subframes On the second frequency resource indicated by the frequency resource and the second frequency resource information, the mapping of the physical uplink control channel is not performed in the next subframe of the two subframes; or
  • the processing unit is configured to map a physical uplink control channel to the first indication of the first frequency resource information, respectively, in a first time slot and a second time slot of a subsequent one of the two subframes On the second frequency resource indicated by the frequency resource and the second frequency resource information, the mapping of the physical uplink control channel is not performed in the previous subframe of the two subframes.
  • the frequency slots are not mapped in the two slots of the intermediate subframe, and the intermediate subframe is the previous subframe in the two subframes or the latter subframe in the two subframes.
  • At least one time slot is reserved in the adjacent subframes, so that the terminal and the system have time to adjust the frequency band to adapt the entire system bandwidth, thereby completing the uplink information transmission, fully utilizing the system bandwidth, and ensuring uplink.
  • the peak rate of data or the reception performance of uplink data is reserved in the adjacent subframes, so that the terminal and the system have time to adjust the frequency band to adapt the entire system bandwidth, thereby completing the uplink information transmission, fully utilizing the system bandwidth, and ensuring uplink.
  • the at least one subframe includes two adjacent subframes, and in the two subframes
  • the processing unit maps the physical uplink control channel to the first indicated by the first frequency resource information in the first time slot of each of the two subframes.
  • the second time slot of each of the two subframes maps the physical uplink control channel to the second frequency resource indicated by the second frequency resource information.
  • the physical resource mapping method of the physical uplink control channel of the embodiment of the present invention maps the physical uplink control channel into one sub-band of one subframe, so that the mapped frequency width does not exceed that of a low complexity or low-cost terminal.
  • the terminal may send the uplink control information in one sub-band of one subframe, and the sub-band that the terminal sends the uplink control information is not always in the center of the system bandwidth, thereby avoiding the complexity of sending the uplink control information, waste of resources, and uplink of other terminals.
  • the problem of reduced data peak rate is not always in the center of the system bandwidth, thereby avoiding the complexity of sending the uplink control information, waste of resources, and uplink of other terminals.
  • This embodiment provides an uplink information receiving method, which is consistent with the uplink information receiving apparatus of the seventh embodiment.
  • the object of the invention, the technical means, and the technical effects obtained by the features in the method are the same as those of the seventh embodiment, and are not described again.
  • a base station device such as an evolved base station (eNodeB).
  • eNodeB evolved base station
  • the embodiment provides a method for receiving uplink control information. As shown in FIG. 20, the bandwidth supported by the terminal is smaller than the system bandwidth, and the system bandwidth includes multiple frequency resources.
  • the method includes the following steps:
  • the determining the first frequency resource information includes:
  • the first frequency resource information is determined according to m, where m is a parameter determined according to a physical uplink control channel resource index.
  • the first frequency resource information is a first frequency resource index n PRB_NB_s1
  • the first frequency resource index is a broadband frequency resource index
  • the system bandwidth is divided into multiple frequency resources
  • the index is a broadband frequency resource. index
  • Determining the first frequency resource information according to m including:
  • n PRB_NB_s1 m
  • n s is the slot number
  • determining the second frequency resource information includes:
  • the second frequency resource information is determined according to the first frequency resource information.
  • the first frequency resource information is a first frequency resource index n PRB_NB_s1
  • the first frequency resource index is a broadband frequency resource index
  • the second frequency resource information is a second frequency resource index n PRB_NB_s2
  • the second frequency resource index is a broadband frequency resource index
  • Determining the second frequency resource information according to the first frequency resource information includes:
  • the second frequency resource index is equal to the first frequency resource index, or
  • the second frequency resource index is determined according to the first frequency resource index and the number of frequency resources that the terminal supports.
  • the system bandwidth includes one or more subbands, the bandwidth of the subband is less than or equal to the bandwidth supported by the terminal, and the subband includes at least one frequency resource.
  • the second information of the subband is determined by one of the following ways:
  • the subband is a subband of the edge of the system bandwidth, and the second information of the subband is obtained according to the subband, wherein the meaning of the subband of the edge of the system bandwidth is that there is no more than the system bandwidth
  • the first subband or the last subband in the subband is closer to the subband of the edge of the system bandwidth.
  • the sub-band is a sub-band used by the terminal to send uplink information last time, and the second information of the sub-band is obtained according to the sub-band;
  • the method further includes: transmitting at least one of the foregoing radio resource control signaling, media access control signaling, and physical layer signaling.
  • the second information of the subband includes one of: a minimum broadband frequency resource index of a frequency resource included in the subband, a maximum broadband frequency resource index of a frequency resource included in the subband, The center frequency resource index of the frequency resource contained in the subband.
  • the bandwidth of the subband is equal to the bandwidth supported by the terminal, and the NNB is the number of frequency resources that the bandwidth supported by the terminal can accommodate.
  • Determining, according to the first frequency resource index and the second information of the subband, the second frequency resource index including:
  • the second frequency resource index n PRB_NB_s2 f NB_min ⁇ 2 + N NB -1-n PRB_NB_s1 ;
  • the second frequency resource index n PRB_NB_s2 f NB_max ⁇ 2-N NB +1-n PRB_NB_s1 ;
  • the second frequency resource index n PRB_NB_s2 f NB_c ⁇ 2-n PRB_NB_s1 ;
  • the center frequency resource index has two indexes, and the two center frequency resource indexes are compared. The smaller one is recorded as the center frequency resource index f NB_c1 , and the larger one is recorded as the center frequency resource index f NB_c2 .
  • n PRB_NB_s2 f NB_c1 +f NB_c2 -n PRB_NB_s1 , or
  • n PRB_NB_s2 2 ⁇ f NB_c1 + 1-n PRB_NB_s1 , or
  • n PRB_NB_s2 2 ⁇ f NB_c2 -1-n PRB_NB_s1 .
  • determining, according to the first frequency resource index and the number of frequency resources that the bandwidth supported by the terminal can accommodate, the second frequency resource index includes:
  • the second frequency resource index Where A is a fixed parameter.
  • A is N NB is the number of frequency resources that the bandwidth supported by the terminal can accommodate.
  • the physical uplink control channel is mapped to the first frequency resource indicated by the first frequency resource information; and in the second time slot of the subframe, the physical uplink control is performed.
  • Mapping the channel to the second frequency resource indicated by the second frequency resource information includes:
  • the second time slot of one subframe maps the physical uplink control channel to the second frequency resource indicated by the second frequency resource information.
  • the at least one subframe is two adjacent subframes, and the determined first frequency resources of the two subframes are different,
  • the second time slot of a subframe is configured to map the physical uplink control channel to the second frequency resource indicated by the second frequency resource information, including:
  • mapping a physical uplink control channel to the first frequency resource and the second indicated by the first frequency resource information, respectively, in a first time slot and a second time slot of a previous one of the two subframes On the second frequency resource indicated by the frequency resource information, the mapping of the physical uplink control channel is not performed in the next subframe of the two subframes; or
  • mapping a physical uplink control channel to the first frequency resource and the second indicated by the first frequency resource information, respectively, in a first time slot and a second time slot of a subsequent one of the two subframes
  • the mapping of the physical uplink control channel is not performed in the previous one of the two subframes.
  • the frequency resource is a resource occupied by one physical resource block PRB in a frequency band; or the frequency resource is a subcarrier.
  • a communication system 900 includes the transmitting device 901 of the first embodiment described above and/or the receiving device 902 of the third embodiment.
  • the system has the advantages of the first embodiment and/or the third embodiment and will not be described again.
  • a communication method of a communication system comprising the transmission method of the second embodiment described above and/or the reception method of the fourth embodiment.
  • the method has the advantages of the second embodiment and/or the fourth embodiment and will not be described again.
  • a communication system 1000 includes the transmitting device 1001 of the fifth embodiment described above and/or the receiving device 1002 of the seventh embodiment.
  • the system has the advantages of the fifth embodiment and/or the seventh embodiment and will not be described again.
  • a communication method of a communication system comprising the transmission method and/or the eighth implementation of the sixth embodiment described above
  • the receiving method of the example The method has the advantages of the sixth embodiment and/or the eighth embodiment and will not be described again.
  • the embodiment provides a communication device, wherein the bandwidth supported by the terminal is smaller than the system bandwidth, and the system bandwidth includes multiple frequency resources.
  • the system bandwidth refers to the bandwidth that an access network device, such as a base station, can support.
  • the terminal communicates with the access network device.
  • the communication device 1100 includes:
  • the processing unit 1101 is configured to determine a first parameter p1; the first parameter is less than or equal to a first quantity; the first quantity is a quantity of frequency resources that can be accommodated by a bandwidth supported by the sending apparatus;
  • the processing unit 1101 is configured to determine frequency resource information according to the first parameter
  • the processing unit 1101 is configured to map a physical uplink control channel to a frequency resource indicated by the frequency resource information;
  • the transceiver unit 1102 is configured to send or receive uplink control information by using the physical uplink control channel.
  • the communication device in this embodiment is similar to the uplink control information transmitting device 100 shown in FIG.
  • the functions of the processing unit 1102 and the steps performed are similar or identical to the processing unit 102 of the uplink control information transmitting apparatus of FIG.
  • the function and the steps performed by the transceiver unit 1101 are similar or identical to the transmitting unit 101 of the uplink control information transmitting apparatus of FIG.
  • the object of the invention, the technical means, and the technical effects obtained by the features of the communication device are the same as those of the first embodiment, and are not described again.
  • the communication device in this embodiment is similar to the uplink control information receiving device 300 shown in FIG.
  • the functions of the processing unit 1102 and the steps performed are similar or identical to the processing unit 302 of the uplink control information receiving apparatus of FIG.
  • the function of the transceiver unit 1101 and the steps performed are as shown in FIG.
  • the transmitting unit 301 of the medium uplink control information transmitting apparatus is similar or identical.
  • the object of the invention, the technical means, and the technical effects obtained by the features of the present communication device are the same as those of the third embodiment, and will not be described again.
  • This embodiment provides a communication method which is consistent with the communication apparatus of the eleventh embodiment.
  • the object of the invention, the technical means, and the technical effects obtained by the features in the method are the same as those of the eleventh embodiment, and will not be described again.
  • the bandwidth supported by the terminal is smaller than the system bandwidth, and the system bandwidth includes multiple frequency resources, and the system bandwidth refers to the bandwidth that the access network device, such as the base station, can support.
  • the terminal communicates with the access network device.
  • the method includes the following steps:
  • Step 2901 determining a first parameter p1; the first parameter is less than or equal to a first quantity; the first quantity is a quantity of frequency resources that can be accommodated by a bandwidth supported by the terminal;
  • Step 2902 determining frequency resource information according to the first parameter
  • Step 2903 Map a physical uplink control channel to the frequency resource indicated by the frequency resource information.
  • Step 2904 Send or receive uplink control information by using the physical uplink control channel.
  • This example provides a terminal.
  • this embodiment illustrates the technical solution with the uplink control information, It can be understood by those skilled in the art that the solution of this embodiment can also be applied to the transmission of other uplink information based on the same principle and concept.
  • the terminal 1300 includes:
  • the processing unit 1301 is configured to determine at least two sub-bands, where the sub-band includes at least one frequency resource, where a bandwidth of each sub-band is less than or equal to a bandwidth supported by the terminal;
  • the processing unit 1301 is further configured to determine third frequency resource information according to the sub-band area physical uplink control channel resource index, where the third frequency resource information indicates a third frequency of the frequency resources included in the at least two sub-bands a resource, the sub-band area physical uplink control channel resource index indicating a physical uplink control channel resource in the at least two sub-bands;
  • the processing unit 1301 is further configured to map a physical uplink control channel to the third frequency resource;
  • the transceiver unit 1302 is configured to send the uplink control information by using the physical uplink control channel.
  • the sent uplink control information may be restricted within the sub-band, that is, limited to the bandwidth supported by the transmitting device, thereby ensuring
  • the limited terminal transmits the uplink control information, which is beneficial to prevent the uplink control information from dividing the frequency resources in the uplink system bandwidth into several parts, thereby ensuring the peak rate of the uplink data and the receiving performance of the uplink data.
  • the processing unit determines that the at least two sub-bands can determine an even number of sub-bands, such as: 2 sub-bands, 4 sub-bands, and 6 sub-bands.
  • a subband index can be used.
  • the subband may also have a minimum wideband frequency resource index of the frequency resource included in the subband, a maximum wideband frequency resource index of the frequency resource included in the subband, and a center frequency resource index of the frequency resource included in the subband.
  • the processing unit may determine first information of the at least two subbands, where the first information of the subband includes at least one of: a subband index, and a minimum wideband frequency of the frequency resource included in the subband a resource index, a maximum broadband frequency resource index of the frequency resource included in the subband, and a center frequency resource index of the frequency resource included in the subband.
  • the relevant feature of the sub-band can be known Sex, that is, the sub-band is determined. For example, the width of the subband, all the frequency resources of the subband.
  • the terminal when there are two or more terminals, the terminal is divided into multiple terminal pairs, and the terminal pair is composed of a first terminal and a second terminal.
  • the third frequency resource indicated by the third frequency resource information determined by the first terminal and the third frequency resource indicated by the third frequency resource information determined by the second terminal are symmetric with respect to a center frequency of the system bandwidth.
  • the uplink control information is used to divide the frequency resources in the bandwidth of the uplink system into several parts, so that the uplink data can occupy the continuous frequency resources and reach the uplink data. Peak rate.
  • the frequency resources included in the even sub-bands are symmetric with respect to the center frequency of the system bandwidth, when an even number of terminals belong to the symmetric sub-bands, it is easier to make the frequency resources occupied by these even-numbered terminals relative to the system bandwidth.
  • the center frequency is symmetrical.
  • the at least two sub-bands include a first sub-band and a second sub-band
  • the first sub-band includes a frequency resource
  • the second sub-band includes a frequency resource that is symmetric with respect to a center frequency of the system bandwidth
  • the third frequency resource information of the first terminal indicates the third frequency resource in the frequency resource included in the first sub-band
  • the third frequency resource information of the second terminal indicates the frequency resource included in the second sub-band The third frequency resource in .
  • This embodiment also includes the case where the subbands are asymmetric, and the same effect can be achieved as long as the frequency resources occupied by the even terminals are symmetric with respect to the center frequency of the system bandwidth.
  • the processing unit determines at least two sub-bands, and the system information block SIB is received by the transceiver unit; and is used by the processing unit to determine the first information of the first sub-band by using the system information block SIB;
  • the first information of the first sub-band determines the second sub-band.
  • the characteristics of the second sub-band can be known based on the characteristics of the first sub-band and the second sub-band being symmetric with respect to the center frequency of the system bandwidth.
  • the processing unit determines the subband index of the first subband by receiving the system information block.
  • the subband index of the second subband may be determined to be 1 or minus 1 of the subband index of the first subband according to the subband index of the first subband.
  • the processing unit determines the first subband by receiving the system information block.
  • the subband index determines that the subband index of the second subband is incremented by one for the subband index of the first subband according to the subband index of the first subband.
  • the processing unit may determine the second sub-band according to the sub-band index of the second sub-band.
  • the processing unit determines, by receiving the system information block, that the minimum wideband frequency resource index of the frequency resource included in the first subband is f NB1_min , and the smallest wideband frequency resource according to the frequency resource included in the first subband is obtained .
  • the index determines that the minimum wideband frequency resource index of the frequency resource included in the second subband is among them, Is the number of frequency resources included in the system bandwidth, and N NB is the first quantity.
  • the processing unit may determine the second sub-band according to the minimum wideband frequency resource index of the frequency resource included in the second sub-band and the number of frequency resources included in the second sub-band.
  • the processing unit determines the subband index of the first subband by receiving the system information block, and the subband can be The index and the predetermined subband and subband number determine the first subband indicated by the subband index. From the frequency resource location included in the first sub-band, the frequency resource location symmetric with respect to the center of the system bandwidth of the frequency resource location included in the first sub-band may be determined, that is, the second sub-band is determined.
  • the broadband frequency resource index of one of the frequency resources included in the first subband is f NB1
  • the broadband frequency resource index of the frequency resource symmetric about the center of the system bandwidth is among them, Is the number of frequency resources included in the system bandwidth.
  • the processing unit determines the second information according to the first information of the first subband
  • the subband saves the first information used by the base station to configure the first subband and the signaling overhead of the second subband.
  • the sub-band area physical uplink control channel resource index indicates physical uplink control channel resources in the at least two sub-bands.
  • the physical uplink control channel resources in the at least two sub-bands are numbered, that is, the sub-band area physical uplink control channel resource index.
  • the number is a joint number of physical uplink control channel resources in the at least two subbands.
  • the following describes how to determine the physical uplink control channel resource index of the sub-band area, and may determine the sub-band area physical uplink control channel resource index according to at least one of the following parameters: the parameter included in the radio resource control RRC signaling, the physical layer signaling includes The parameter, the sequence number of the first control channel element CCE of the physical downlink control channel PDCCH carrying the downlink control information, the sequence number of the first enhanced control channel element ECCE carrying the enhanced physical downlink control channel EPDCCH carrying the downlink control information, and the bearer The sequence number of the first control channel element of the physical downlink control channel of the machine type communication of the downlink control information.
  • the determining manner of the physical uplink control channel resource index of the sub-band area is the same as the determining manner of the existing PUCCH resource index.
  • the RRC signaling includes parameters and physics. The value range of one or more of the parameters included in the layer signaling, the sequence number of the first control channel element, and the value range of the above parameters determining the index of the existing PUCCH resource are different.
  • the frequency resources included in the at least two sub-bands in this embodiment constitute an integrated frequency resource set.
  • a third frequency resource index n PRB_NB_MUL_s1 may be used.
  • the third frequency resource index may be a number of frequency resources included in the at least two sub-bands.
  • the value ranges from 0 to the number of frequency resources -1 included in the at least two subbands.
  • the value range can be 0 to
  • the third frequency resource index may also be numbered starting from 1, and the physical resource mapping method of the corresponding physical uplink control channel belongs to the protection scope of the embodiment of the present invention.
  • the processing unit may determine the third frequency resource information according to the sub-band area physical uplink control channel resource index, including:
  • the processing unit is configured to determine, according to the sub-band area physical uplink control channel resource index, a third parameter m′, where the m′ is less than or equal to a quantity of frequency resources included in the at least two sub-bands;
  • the third frequency resource index n PRB_NB_MUL_s1 is configured to determine, according to the sub-band area physical uplink control channel resource index, a third parameter m′, where the m′ is less than or equal to a quantity of frequency resources included in the at least two sub-bands.
  • one way to determine m' according to the sub-band area physical uplink control channel resource index is:
  • the sub-band area physical uplink control channel resource index is specifically described in the first manner in which the processing unit determines the first parameter p1 in the first embodiment, and details are not described herein again.
  • the determining, by the processing unit, the third frequency resource index n PRB_NB_MUL_s1 according to m′, may include:
  • X includes one or more or a combination of the following parameters:
  • Y includes one or more or a combination of the following parameters:
  • Pre-defined parameters frequency hopping granularity of the physical uplink control channel, and physical uplink control channel frequency hopping period.
  • X is n sf .
  • X is 10 ⁇ SFN+n sf
  • SFN is a radio frame number.
  • X is the number of subframes or uplink subframes included between the start subframe to the current subframe in which the uplink control information is transmitted.
  • the frequency resource mapped by the physical uplink control channel may change, which is called physical uplink control channel frequency hopping.
  • the frequency resource of the physical uplink control channel mapping changes once every G subframes, which is called the physical uplink control channel frequency hopping granularity.
  • the change rule of the frequency resource of the physical uplink control channel mapping is repeated every H subframes, and the H subframes are referred to as a physical uplink control channel hopping period.
  • Y is the physical uplink control channel frequency hopping granularity.
  • the physical uplink control channel hopping may occur in multiple subframes in which the physical uplink control channel is mapped or the transmitting unit sends uplink control information. That is, in a plurality of subframes before and after the frequency resource of the physical uplink control channel mapping changes, the transmitting unit transmits the same uplink control information.
  • X and Y determine the moment of physical uplink control channel hopping.
  • FIG. 26 shows a relationship of a third frequency resource index n PRB_NB_MUL_s1 and m' including a first sub-band and a second sub-band.
  • the third frequency resource information that has been determined is the third frequency resource index n PRB_NB_MUL_s1_pre ,
  • the information change rules are: among them The number of frequency resources included for the at least two sub-bands.
  • the above third frequency resource index is a number of frequency resources included in the at least two sub-bands, and is a relative index.
  • a broadband frequency resource index may also be used, where the broadband frequency resource index is an index of frequency resources included in the system bandwidth, and the system bandwidth is a communication with the terminal.
  • the bandwidth supported by the networked device In other words, the entire bandwidth supported by the access network device is divided into different frequency resources, and all of the frequency resources are indexed by the broadband frequency resource index. This is an absolute index.
  • the value of the broadband frequency resource index may range from 0 to the number of frequency resources included in the system bandwidth. For example, the range of values can be
  • the third frequency resource information that has been determined is a broadband frequency resource index n PRB_pre before the third frequency resource information is changed.
  • the processing unit is configured to determine, according to a predetermined specification, a time interval in which the third frequency resource information changes or a subframe in which the frequency resource information changes in the multiple subframes;
  • the processing unit is configured to determine, by using at least one of radio resource control signaling, media access control signaling, and physical layer signaling, a time interval or a change of the third frequency resource information. a subframe in which the frequency resource information changes;
  • the processing unit is configured to determine that a time interval during which the third frequency resource information changes is a divisor of the number of subframes of the multiple subframes.
  • mapping a physical uplink control channel to the third frequency resource Since the terminal needs preparation time when the frequency jumps, sufficient guard time is required to complete the frequency hopping preparation. It can be understood that the guard time can be one time slot or multiple time slots, or can be one subframe or multiple subframes.
  • Figure 27 shows the scheme of two time slots. In addition, it can also include the following solutions:
  • the processing unit is first in the previous one of the two subframes
  • the time slot maps the physical uplink control channel to the third frequency resource, and does not perform mapping of the physical uplink control channel in another time slot of the previous subframe;
  • the processing unit maps a physical uplink control channel to the third frequency resource in a second time slot of a subsequent one of the two subframes, and does not perform another time slot in the subsequent subframe Mapping of physical uplink control channels;
  • the processing unit maps a physical uplink control channel to the third frequency resource in a previous one of the two subframes, and does not perform physical uplink control channel mapping in a subsequent one of the two subframes ;
  • the processing unit maps a physical uplink control channel to the third frequency resource in a subsequent one of the two subframes, and does not perform physical uplink control channel mapping in a previous subframe of the two subframes.
  • the frequency resource in this embodiment may be a resource occupied by one physical resource block PRB in a frequency band, or may be another frequency resource having a bandwidth; or the frequency resource is a subcarrier in the LTE system or the like. concept.
  • the terminal in the embodiment of the present invention maps the physical uplink control channel into one sub-band of one subframe, so that the frequency width of mapping in one subframe does not exceed that supported by a low-complexity or low-cost terminal.
  • the bandwidth of the transmitted signal ensures that the terminal can send uplink control information.
  • the frequency resource mapped before and after the frequency hopping of the physical uplink control channel is symmetrical with respect to the system bandwidth center, and the uplink control information transmission is separated from the uplink data transmission frequency resource, and the guarantee is ensured.
  • the peak rate of the uplink data or the reception performance of the uplink data is guaranteed.
  • This example provides a communication method.
  • this embodiment illustrates the technical solution with the uplink control information
  • those skilled in the art can understand that the solution of this embodiment can also be applied to the transmission of other uplink information based on the same principle and concept.
  • For the specific implementation process please refer to the method implemented by the device embodiment in the thirteenth embodiment.
  • the method includes:
  • Step 1401 Determine at least two subbands, where the subband includes at least one frequency resource, and the bandwidth of each subband is less than or equal to a bandwidth supported by the terminal.
  • Step 1402 Determine third frequency resource information according to the sub-band area physical uplink control channel resource index, where the third frequency resource information indicates a third frequency resource of the frequency resources included in the at least two sub-bands, the sub-band
  • the regional physical uplink control channel resource index indicates physical uplink control channel resources in the at least two subbands
  • Step 1403 Map a physical uplink control channel to the third frequency resource.
  • Step 1404 Send the uplink control information by using the physical uplink control channel.
  • the sent uplink control information may be restricted within the sub-band, that is, limited to the bandwidth supported by the transmitting device, thereby ensuring
  • the limited terminal transmits the uplink control information, which is beneficial to prevent the uplink control information from dividing the frequency resources in the uplink system bandwidth into several parts, thereby ensuring the peak rate of the uplink data and the receiving performance of the uplink data.
  • At least two sub-bands can determine an even number of sub-bands, such as: 2 sub-bands, 4 sub-bands, and 6 sub-bands.
  • a subband index can be used.
  • the subband may also have a minimum wideband frequency resource index of the frequency resource included in the subband, a maximum wideband frequency resource index of the frequency resource included in the subband, and a center frequency resource index of the frequency resource included in the subband.
  • the first information of the at least two subbands is determined, and the first information of the subband includes at least one of: a subband index, a minimum wideband frequency resource index of a frequency resource included in the subband, The maximum broadband frequency resource index of the frequency resource included in the subband, and the center frequency resource index of the frequency resource included in the subband.
  • the terminal is divided into multiple terminal pairs, and the terminal pair is composed of a first terminal and a second terminal.
  • the third frequency resource indicated by the third frequency resource information determined by the first terminal and the third frequency resource indicated by the third frequency resource information determined by the second terminal are symmetric with respect to a center frequency of the system bandwidth.
  • the uplink control information is used to divide the frequency resources in the bandwidth of the uplink system into several parts, so that the uplink data can occupy the continuous frequency resources and reach the uplink data. Peak rate. It can be understood that when the frequency resources included in the even sub-bands are symmetric with respect to the center frequency of the system bandwidth, when an even number of terminals belong to the symmetric sub-bands, it is easier to make the frequency resources occupied by these even-numbered terminals relative to the system bandwidth.
  • the center frequency is symmetrical.
  • the at least two sub-bands include a first sub-band and a second sub-band
  • the first sub-band includes a frequency resource
  • the second sub-band includes a frequency resource that is symmetric with respect to a center frequency of the system bandwidth
  • the third frequency resource information of the first terminal indicates the third frequency resource in the frequency resource included in the first sub-band
  • the third frequency resource information of the second terminal indicates the frequency resource included in the second sub-band The third frequency resource in .
  • This embodiment also includes the case where the subbands are asymmetric, and the same effect can be achieved as long as the frequency resources occupied by the even terminals are symmetric with respect to the center frequency of the system bandwidth.
  • the following explains how to determine the subband.
  • the characteristics of the second sub-band can be known based on the characteristics of the first sub-band and the second sub-band being symmetric with respect to the center frequency of the system bandwidth.
  • the subband of the first subband is a continuous natural number
  • the sub-band index of the index and the second sub-band is a continuous natural number
  • the sub-band index of the first sub-band is determined by receiving the system information block, and the sub-band of the second sub-band is determined according to the sub-band index of the first sub-band
  • the index is 1 or minus 1 for the subband index of the first subband.
  • the subband index of the first subband is determined by receiving the system information block.
  • the subband index of the second subband is determined to be the subband index of the first subband plus one according to the subband index of the first subband.
  • the second sub-band can be determined according to the sub-band index of the second sub-band.
  • the first information of the first subband is a minimum wideband frequency resource index of a frequency resource included in the first subband
  • the first information of the second subband is a minimum of a frequency resource included in the second subband.
  • the minimum wideband frequency resource index of the frequency resource included in the first subband is determined to be f NB1_min by receiving the system information block, and the second broadband frequency resource index of the frequency resource included in the first subband is used to determine the second
  • the minimum wideband frequency resource index of the frequency resource included in the subband is among them, Is the number of frequency resources included in the system bandwidth, and N NB is the first quantity.
  • the second sub-band can be determined according to the minimum wideband frequency resource index of the frequency resource included in the second sub-band and the number of frequency resources included in the second sub-band.
  • determining the second sub-band according to the first information of the first sub-band saves signaling used by the base station to configure the first sub-band and the second sub-band signaling. Overhead.
  • the sub-band area physical uplink control channel resource index indicates physical uplink control channel resources in the at least two sub-bands.
  • the physical uplink control channel resources in the at least two sub-bands are numbered, that is, the sub-band area physical uplink control channel resource index.
  • the number is a joint number of physical uplink control channel resources in the at least two subbands.
  • the following describes how to determine the physical uplink control channel resource index of the sub-band area, and may determine the sub-band area physical uplink control channel resource index according to at least one of the following parameters: the parameter included in the radio resource control RRC signaling, the physical layer signaling includes The parameter, the sequence number of the first control channel element CCE of the physical downlink control channel PDCCH carrying the downlink control information, the sequence number of the first enhanced control channel element ECCE carrying the enhanced physical downlink control channel EPDCCH carrying the downlink control information, and the bearer The sequence number of the first control channel element of the physical downlink control channel of the machine type communication of the downlink control information.
  • the frequency resources included in the at least two sub-bands in this embodiment constitute an integrated frequency resource set.
  • a third frequency resource index n PRB_NB_MUL_s1 may be used.
  • the third frequency resource index may be a number of frequency resources included in the at least two sub-bands. The value ranges from 0 to the number of frequency resources -1 included in the at least two subbands.
  • the third frequency resource information may be determined according to the sub-band area physical uplink control channel resource index, including:
  • a third parameter m′ Determining, according to the sub-band area physical uplink control channel resource index, a third parameter m′, where the m′ is less than or equal to the number of frequency resources included in the at least two sub-bands; determining the third frequency resource index n PRB_NB_MUL_s1 according to m′ .
  • the determining, by the m′, the third frequency resource index n PRB_NB_MUL_s1 may include:
  • X includes one or more or a combination of the following parameters:
  • Y includes one or more or a combination of the following parameters:
  • Pre-defined parameters frequency hopping granularity of the physical uplink control channel, and physical uplink control channel frequency hopping period.
  • X is n sf .
  • X is 10 ⁇ SFN+n sf
  • SFN is a radio frame number.
  • X is the number of subframes or uplink subframes included between the start subframe to the current subframe in which the uplink control information is transmitted.
  • the frequency resource mapped by the physical uplink control channel may change, which is called physical uplink control channel frequency hopping.
  • the frequency resource of the physical uplink control channel mapping changes once every G subframes, which is called the physical uplink control channel frequency hopping granularity.
  • the change rule of the frequency resource of the physical uplink control channel mapping is repeated every H subframes, and the H subframes are referred to as a physical uplink control channel hopping period.
  • Y is the physical uplink control channel frequency hopping granularity.
  • the physical uplink control channel hopping may occur in multiple subframes in which the physical uplink control channel maps or transmits uplink control information. That is, the same uplink control information is transmitted in multiple subframes before and after the frequency resource of the physical uplink control channel mapping changes.
  • X and Y determine the moment of physical uplink control channel hopping.
  • FIG. 26 shows a relationship of a third frequency resource index n PRB_NB_MUL_s1 and m' including a first sub-band and a second sub-band.
  • the third frequency resource information that has been determined is the third frequency resource index n PRB_NB_MUL_s1_pre ,
  • the information change rules are: among them The number of frequency resources included for the at least two sub-bands.
  • the above third frequency resource index is a number of frequency resources included in the at least two sub-bands, and is a relative index.
  • a broadband frequency resource index may also be used, where the broadband frequency resource index is an index of frequency resources included in the system bandwidth, and the system bandwidth is a communication with the terminal.
  • the bandwidth supported by the networked device In other words, the entire bandwidth supported by the access network device is divided into different frequency resources, and all of the frequency resources are indexed by the broadband frequency resource index. This is an absolute index.
  • the value of the broadband frequency resource index may range from 0 to the number of frequency resources included in the system bandwidth.
  • the third frequency resource information that has been determined is a broadband frequency resource index n PRB_pre before the third frequency resource information is changed.
  • n PRB_pre a broadband frequency resource index
  • the third frequency resource information change rule Determining the broadband frequency resource index n PRB_after after the change of the third frequency resource information; wherein the third frequency resource information change rule is: among them Is the number of frequency resources included in the system bandwidth.
  • the guard time may be one time slot or multiple time slots, or may be one subframe or multiple subframes.
  • Figure 27 shows the scheme of two time slots. In addition, it can also include the following solutions:
  • the first time slot of the previous one of the two subframes will be physically uplinked. Mapping a control channel to the third frequency resource, and not mapping the physical uplink control channel in another time slot of the previous subframe; or
  • the latter one of the two subframes maps the physical uplink control channel to the third frequency resource, and the previous one of the two subframes does not perform mapping of the physical uplink control channel.
  • the frequency resource in this embodiment may be a resource occupied by one physical resource block PRB in a frequency band, or may be another frequency resource having a bandwidth; or the frequency resource is a subcarrier in the LTE system or the like. concept.
  • the communication method of the embodiment of the present invention maps the physical uplink control channel into one sub-band of one subframe, so that the frequency width of mapping in one subframe does not exceed the transmission signal supported by the terminal with low complexity or low cost.
  • the bandwidth ensures that the terminal can send uplink control information.
  • the frequency resource mapped before and after the frequency hopping of the physical uplink control channel is symmetrical with respect to the system bandwidth center, and the uplink control information transmission is separated from the uplink data transmission frequency resource, and the guarantee is ensured.
  • the peak rate of the uplink data or the reception performance of the uplink data is guaranteed.
  • the present example provides an access network device, which may be a base station device, such as an evolution. Base station (eNodeB) or similar device.
  • eNodeB Base station
  • this embodiment illustrates the technical solution with the uplink control information, those skilled in the art can understand that the solution of this embodiment can also be applied to the transmission of other uplink information based on the same principle and concept.
  • For the specific implementation process please refer to the method implemented by the terminal embodiment in the thirteenth embodiment.
  • the access network device 1500 includes:
  • the processing unit 1501 is configured to determine at least two sub-bands, where the sub-band includes at least one frequency resource, where a bandwidth of each sub-band is less than or equal to a bandwidth supported by the terminal;
  • the processing unit 1501 is further configured to determine third frequency resource information according to the sub-band area physical uplink control channel resource index, where the third frequency resource information indicates a third frequency of the frequency resources included in the at least two sub-bands a resource, the sub-band area physical uplink control channel resource index indicating a physical uplink control channel resource in the at least two sub-bands;
  • the processing unit 1501 is further configured to map a physical uplink control channel to the third frequency resource;
  • the transceiver unit 1502 is configured to receive the uplink control information by using the physical uplink control channel.
  • the received uplink control information may be restricted within the sub-band, that is, limited to the bandwidth supported by the transmitting device, thereby ensuring
  • the limited terminal transmits the uplink control information, which is beneficial to prevent the uplink control information from dividing the frequency resources in the uplink system bandwidth into several parts, thereby ensuring the peak rate of the uplink data and the receiving performance of the uplink data.
  • the processing unit determines that the at least two sub-bands can determine an even number of sub-bands, such as: 2 sub-bands, 4 sub-bands, and 6 sub-bands. To identify different subbands, a subband index can be used.
  • the subband may also have a minimum wideband frequency resource index of the frequency resource included in the subband, a maximum wideband frequency resource index of the frequency resource included in the subband, and a center frequency resource index of the frequency resource included in the subband. Therefore, the processing unit may determine first information of the at least two subbands, where the first information of the subband includes at least one of: a subband index, and a minimum wideband frequency of the frequency resource included in the subband Resource index, the maximum broadband frequency resource of the frequency resource included in the subband The index, the center frequency resource index of the frequency resource included in the subband.
  • the relevant characteristics of the sub-band can be known, that is, the sub-band is determined. For example, the width of the subband, all the frequency resources of the subband.
  • the terminal when there are two or more terminals, the terminal is divided into multiple terminal pairs, and the terminal pair is composed of a first terminal and a second terminal.
  • the third frequency resource indicated by the third frequency resource information of the first terminal determined by the processing unit and the third frequency resource indicated by the third frequency resource information determined by the second terminal are symmetric with respect to a center frequency of the system bandwidth.
  • the uplink control information is used to divide the frequency resources in the bandwidth of the uplink system into several parts, so that the uplink data can occupy the continuous frequency resources and reach the uplink data. Peak rate.
  • the frequency resources included in the even sub-bands are symmetric with respect to the center frequency of the system bandwidth, when an even number of terminals belong to the symmetric sub-bands, it is easier to make the frequency resources occupied by these even-numbered terminals relative to the system bandwidth.
  • the center frequency is symmetrical.
  • the at least two sub-bands include a first sub-band and a second sub-band
  • the first sub-band includes a frequency resource
  • the second sub-band includes a frequency resource that is symmetric with respect to a center frequency of the system bandwidth
  • the third frequency resource information of the first terminal indicates the third frequency resource in the frequency resource included in the first sub-band
  • the third frequency resource information of the second terminal indicates the frequency resource included in the second sub-band The third frequency resource in .
  • This embodiment also includes the case where the subbands are asymmetric, and the same effect can be achieved as long as the frequency resources occupied by the even terminals are symmetric with respect to the center frequency of the system bandwidth.
  • the processing unit determines at least two sub-bands, and may determine first information of the first sub-band; and further determine the second sub-band according to the first information of the first sub-band. Or, in the case where the first sub-band is known, the characteristics of the second sub-band can be known based on the characteristics of the first sub-band and the second sub-band being symmetric with respect to the center frequency of the system bandwidth.
  • the transceiver unit is configured to send a system information block SIB, where the system information block SIB includes configuration information of the first information of the first sub-band. So that the terminal can be based on the first information of the first sub-band Determining the second sub-band.
  • the processing unit determines the sub-band index of the first sub-band, and the sub-band index of the second sub-band is determined according to the sub-band index of the first sub-band Add 1 or subtract 1 to the subband index of the first subband.
  • the subband index of the first subband is an even number
  • the subband index of the second subband is a minimum odd number greater than the subband index of the first subband
  • the processing unit determines the subband index of the first subband
  • the subband index of the second subband is determined to be the subband index of the first subband plus one according to the subband index of the first subband.
  • the processing unit may determine the second sub-band according to the sub-band index of the second sub-band.
  • the processing unit determines that the minimum broadband frequency resource index of the frequency resource included in the first subband is f NB1_min , and determines the second sub-frequency according to the minimum broadband frequency resource index of the frequency resource included in the first sub-band.
  • the minimum wideband frequency resource index with the included frequency resources is among them, Is the number of frequency resources included in the system bandwidth, and N NB is the first quantity.
  • the processing unit may determine the second sub-band according to the minimum wideband frequency resource index of the frequency resource included in the second sub-band and the number of frequency resources included in the second sub-band.
  • the transceiver unit sends a system information block SIB, where the system information block SIB includes configuration information of the first information of the first sub-band, so that the terminal can be based on the first information of the first sub-band. Determining the second sub-band. The signaling overhead of the first information used by the base station to configure the first sub-band and the second sub-band is saved.
  • the sub-band area physical uplink control channel resource index indicates a physical uplink in the at least two sub-bands Control channel resources.
  • the physical uplink control channel resources in the at least two sub-bands are numbered, that is, the sub-band area physical uplink control channel resource index.
  • the number is a joint number of physical uplink control channel resources in the at least two subbands.
  • the following describes how to determine the physical uplink control channel resource index of the sub-band area, and may determine the sub-band area physical uplink control channel resource index according to at least one of the following parameters: the parameter included in the radio resource control RRC signaling, the physical layer signaling includes The parameter, the sequence number of the first control channel element CCE of the physical downlink control channel PDCCH carrying the downlink control information, the sequence number of the first enhanced control channel element ECCE carrying the enhanced physical downlink control channel EPDCCH carrying the downlink control information, and the bearer The sequence number of the first control channel element of the physical downlink control channel of the machine type communication of the downlink control information.
  • the frequency resources included in the at least two sub-bands in this embodiment constitute an integrated frequency resource set.
  • a third frequency resource index n PRB_NB_MUL_s1 may be used.
  • the third frequency resource index may be a number of frequency resources included in the at least two sub-bands. The value ranges from 0 to the number of frequency resources -1 included in the at least two subbands.
  • the processing unit may determine the third frequency resource information according to the sub-band area physical uplink control channel resource index, including:
  • the processing unit is configured to determine, according to the sub-band area physical uplink control channel resource index, a third parameter m′, where the m′ is less than or equal to a quantity of frequency resources included in the at least two sub-bands;
  • the third frequency resource index n PRB_NB_MUL_s1 is configured to determine, according to the sub-band area physical uplink control channel resource index, a third parameter m′, where the m′ is less than or equal to a quantity of frequency resources included in the at least two sub-bands.
  • the determining, by the processing unit, the third frequency resource index n PRB_NB_MUL_s1 according to m′, may include:
  • X includes one or more or a combination of the following parameters:
  • Y includes one or more or a combination of the following parameters:
  • Pre-defined parameters frequency hopping granularity of the physical uplink control channel, and physical uplink control channel frequency hopping period.
  • X is n sf .
  • X is 10 ⁇ SFN+n sf
  • SFN is a radio frame number.
  • X is the number of subframes or uplink subframes included between the start subframe to the current subframe in which the uplink control information is transmitted.
  • the frequency resource mapped by the physical uplink control channel may change, which is called physical uplink control channel frequency hopping.
  • the frequency resource of the physical uplink control channel mapping changes once every G subframes, which is called the physical uplink control channel frequency hopping granularity.
  • the change rule of the frequency resource of the physical uplink control channel mapping is repeated every H subframes, and the H subframes are referred to as a physical uplink control channel hopping period.
  • Y is the physical uplink control channel frequency hopping granularity.
  • the physical uplink control channel frequency hopping may occur in a plurality of subframes in which the physical uplink control channel is mapped or the receiving unit receives uplink control information. That is, in a plurality of subframes before and after the frequency resource of the physical uplink control channel mapping changes, the receiving unit receives the same uplink control information.
  • X and Y determine the moment of physical uplink control channel hopping.
  • FIG. 26 shows a relationship of a third frequency resource index n PRB_NB_MUL_s1 and m' including a first sub-band and a second sub-band.
  • the third frequency resource information that has been determined is the third frequency resource index n PRB_NB_MUL_s1_pre ,
  • the information change rules are: among them The number of frequency resources included for the at least two sub-bands.
  • the above third frequency resource index is a number of frequency resources included in the at least two sub-bands, and is a relative index.
  • a broadband frequency resource index may also be used, where the broadband frequency resource index is an index of frequency resources included in the system bandwidth, and the system bandwidth is a communication with the terminal.
  • the bandwidth supported by the networked device In other words, the entire bandwidth supported by the access network device is divided into different frequency resources, and all of the frequency resources are indexed by the broadband frequency resource index. This is an absolute index.
  • the value of the broadband frequency resource index may range from 0 to the number of frequency resources included in the system bandwidth.
  • the third frequency resource information that has been determined is a broadband frequency resource index n PRB_pre before the third frequency resource information is changed.
  • n PRB_pre a broadband frequency resource index
  • the third frequency resource information change rule Determining the broadband frequency resource index n PRB_after after the change of the third frequency resource information; wherein the third frequency resource information change rule is: among them Is the number of frequency resources included in the system bandwidth.
  • guard time can be one time slot or multiple time slots, or can be one subframe or multiple subframes.
  • Figure 27 shows the scheme of two time slots. In addition, it can also include the following solutions:
  • the processing unit is first in the previous one of the two subframes
  • the time slot maps the physical uplink control channel to the third frequency resource, and does not perform mapping of the physical uplink control channel in another time slot of the previous subframe;
  • the processing unit maps a physical uplink control channel to the third frequency resource in a second time slot of a subsequent one of the two subframes, and does not perform another time slot in the subsequent subframe Mapping of physical uplink control channels;
  • the processing unit maps a physical uplink control channel to the third frequency resource in a previous one of the two subframes, and does not perform physical uplink control channel mapping in a subsequent one of the two subframes ;
  • the processing unit maps a physical uplink control channel to the third frequency resource in a subsequent one of the two subframes, and does not perform physical uplink control channel mapping in a previous subframe of the two subframes.
  • the frequency resource in this embodiment may be a resource occupied by one physical resource block PRB in a frequency band, or may be another frequency resource having a bandwidth; or the frequency resource is a subcarrier in the LTE system or the like. concept.
  • the access network device in the embodiment of the present invention maps the physical uplink control channel into one sub-band of one subframe, so that the frequency width of mapping in one subframe does not exceed the low complexity or low-cost terminal.
  • the bandwidth of the supported transmit signal ensures that the terminal can send uplink control information.
  • the frequency resource mapped before and after the frequency hopping of the physical uplink control channel is symmetrical with respect to the system bandwidth center, and the uplink control information transmission is separated from the uplink data transmission frequency resource, and the guarantee is ensured.
  • the peak rate of the uplink data or the reception performance of the uplink data is guaranteed.
  • This example provides a communication method.
  • this embodiment illustrates the technical solution with the uplink control information
  • those skilled in the art can understand that the solution of this embodiment can also be applied to the transmission of other uplink information based on the same principle and concept.
  • For the specific implementation process please refer to the method implemented by the device embodiment in the fifteenth embodiment.
  • the method includes:
  • Step 1601 Determine at least two sub-bands, where the sub-band includes at least one frequency resource, where a bandwidth of each sub-band is less than or equal to a bandwidth supported by the terminal;
  • Step 1602 determining third frequency resource information according to the sub-band area physical uplink control channel resource index, where the third frequency resource information indicates a third frequency resource of the frequency resources included in the at least two sub-bands, the sub-band
  • the regional physical uplink control channel resource index indicates physical uplink control channel resources in the at least two subbands
  • Step 1603 Map a physical uplink control channel to the third frequency resource.
  • Step 1604 Receive the uplink control information by using the physical uplink control channel.
  • the received uplink control information may be restricted within the sub-band, that is, limited to the bandwidth supported by the transmitting device, thereby ensuring
  • the limited terminal transmits the uplink control information, which is beneficial to prevent the uplink control information from dividing the frequency resources in the uplink system bandwidth into several parts, thereby ensuring the peak rate of the uplink data and the receiving performance of the uplink data.
  • At least two sub-bands can determine an even number of sub-bands, such as: 2 sub-bands, 4 sub-bands, and 6 sub-bands.
  • a subband index can be used.
  • the subband may also have a minimum wideband frequency resource index of the frequency resource included in the subband, a maximum wideband frequency resource index of the frequency resource included in the subband, and a center frequency resource index of the frequency resource included in the subband.
  • the first information of the at least two subbands is determined, and the first information of the subband includes at least one of: a subband index, a minimum wideband frequency resource index of a frequency resource included in the subband, The maximum broadband frequency resource index of the frequency resource included in the subband, and the center frequency resource index of the frequency resource included in the subband.
  • the terminal when there are two or more terminals, the terminal is divided into multiple terminal pairs, and the terminal pair is composed of a first terminal and a second terminal.
  • the third frequency resource indicated by the third frequency resource information of the first terminal and the third frequency resource indicated by the third frequency resource information of the second terminal are symmetric with respect to a center frequency of the system bandwidth.
  • the uplink control information is used to divide the frequency resources in the bandwidth of the uplink system into several parts, so that the uplink data can occupy the continuous frequency resources and reach the uplink data. Peak rate.
  • the frequency resources included in the even sub-bands are symmetric with respect to the center frequency of the system bandwidth, when an even number of terminals belong to the symmetric sub-bands, it is easier to make the frequency resources occupied by these even-numbered terminals relative to the system bandwidth.
  • the center frequency is symmetrical.
  • the at least two sub-bands include a first sub-band and a second sub-band
  • the first sub-band includes a frequency resource
  • the second sub-band includes a frequency resource that is symmetric with respect to a center frequency of the system bandwidth
  • the third frequency resource information of the first terminal indicates the third frequency resource in the frequency resource included in the first sub-band
  • the third frequency resource information of the second terminal indicates the frequency resource included in the second sub-band The third frequency resource in .
  • This embodiment also includes the case where the subbands are asymmetric, and the same effect can be achieved as long as the frequency resources occupied by the even terminals are symmetric with respect to the center frequency of the system bandwidth.
  • the following explains how to determine the subband. Determining at least two sub-bands, determining first information of the first sub-band; and determining the second sub-band according to the first information of the first sub-band. Or the first subband is known In the case of the second sub-band, the characteristics of the second sub-band can be known based on the characteristics of the first sub-band and the second sub-band being symmetric with respect to the center frequency of the system bandwidth. That is, determining the first information of the first sub-band; determining the second sub-band according to the first information of the first sub-band.
  • the method also includes transmitting a system information block SIB, the system information block SIB including configuration information of the first information of the first sub-band.
  • the terminal can determine the second sub-band according to the first information of the first sub-band.
  • the subband of the first subband is a continuous natural number, and the sub-band index of the first sub-band is determined, and the sub-band index of the second sub-band is determined to be the first according to the sub-band index of the first sub-band
  • the subband index of the subband is incremented or decremented by one.
  • the subband index of the first subband is an even number
  • the subband index of the second subband is smaller than the smallest odd number of the subband index of the first subband
  • the subband index of the first subband is determined, and
  • the subband index of the first subband determines that the subband index of the second subband is incremented by one for the subband index of the first subband.
  • the second sub-band can be determined according to the sub-band index of the second sub-band.
  • the first information of the first subband is a minimum wideband frequency resource index of a frequency resource included in the first subband
  • the first information of the second subband is a minimum of a frequency resource included in the second subband.
  • the minimum wideband frequency resource index of the frequency resource included in the first subband is determined to be f NB1_min
  • the second subband is determined according to the minimum wideband frequency resource index of the frequency resource included in the first subband.
  • the minimum wideband frequency resource index of the frequency resource is among them, Is the number of frequency resources included in the system bandwidth, and N NB is the first quantity.
  • the second sub-band can be determined according to the minimum wideband frequency resource index of the frequency resource included in the second sub-band and the number of frequency resources included in the second sub-band.
  • a system information block SIB is transmitted, and the system information block SIB includes the first sub
  • the configuration information of the first information is taken, so that the terminal can determine the second sub-band according to the first information of the first sub-band.
  • the signaling overhead of the first information used by the base station to configure the first sub-band and the second sub-band is saved.
  • the sub-band area physical uplink control channel resource index indicates physical uplink control channel resources in the at least two sub-bands.
  • the physical uplink control channel resources in the at least two sub-bands are numbered, that is, the sub-band area physical uplink control channel resource index.
  • the number is a joint number of physical uplink control channel resources in the at least two subbands.
  • the following describes how to determine the physical uplink control channel resource index of the sub-band area, and may determine the sub-band area physical uplink control channel resource index according to at least one of the following parameters: the parameter included in the radio resource control RRC signaling, the physical layer signaling includes The parameter, the sequence number of the first control channel element CCE of the physical downlink control channel PDCCH carrying the downlink control information, the sequence number of the first enhanced control channel element ECCE carrying the enhanced physical downlink control channel EPDCCH carrying the downlink control information, and the bearer The sequence number of the first control channel element of the physical downlink control channel of the machine type communication of the downlink control information.
  • the frequency resources included in the at least two sub-bands in this embodiment constitute an integrated frequency resource set.
  • a third frequency resource index n PRB_NB_MUL_s1 may be used.
  • the third frequency resource index may be a number of frequency resources included in the at least two sub-bands. The value ranges from 0 to the number of frequency resources -1 included in the at least two subbands.
  • the third frequency resource information may be determined according to the sub-band area physical uplink control channel resource index, including:
  • a third parameter m′ Determining, according to the sub-band area physical uplink control channel resource index, a third parameter m′, where the m′ is less than or equal to the number of frequency resources included in the at least two sub-bands; determining the third frequency resource index n PRB_NB_MUL_s1 according to m′ .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供通信装置及方法。包括:确定第一参量p1;根据所述第一参量确定频率资源信息;将物理上行控制信道映射到所述频率资源信息指示的频率资源上;通过所述物理上行控制信道发送或者接收上行控制信息。本发明实施例可以将所发送的上行控制信息限制在终端所支持的带宽之内,从而保证了受限终端传输上行控制信息。

Description

一种通信装置及其方法 技术领域
本发明实施例涉及通信装置及其方法,尤其涉及通过物理上行控制信道的上行控制信息发送装置、接收装置及其方法。
背景技术
在机器类型通信(Machine Type Communication,MTC)通信系统中,由于终端设备,如用户设备(User Equipment,UE)数量众多,所以降低终端的复杂度或成本是一个重要的需求。
为了满足这种需求,终端所能支持的信号的带宽通常小于系统最大的系统带宽(或最大的信道带宽,或传输带宽配置所配置的最大带宽)或不大于特定的系统带宽(或特定的信道带宽,或传输带宽配置所配置的特定带宽)。
以长期演进(Long Term Evolution,LTE)通信系统为例,其规定了1.4MHz,3MHz,5MHz,10MHz,15MHz,20MHz 6种系统带宽。系统可以在这6中系统带宽中确定所需的系统带宽。例如,当LTE系统中的所确定的系统带宽是20MHz时,若某个终端仅支持5MHz的带宽。显然该终端的带宽不能覆盖整个系统带宽20MHz。
现有技术中并未考虑到终端能力受限的情况。所以当受限终端,即低复杂度或者低成本终端,所支持的带宽不能覆盖整个系统带宽时,会导致终端的信号无法兼容系统带宽。
发明内容
有鉴于此,本发明实施例提供了一种上行信息发送装置、接收装置及方法,以保证受限终端上传上行控制信息,充分利用上行数据的峰值速率或保证了上行数据的接收性能。
第一方面,本发明的实施例提供一种上行控制信息发送装置,其中所述发 送装置所支持的带宽小于系统带宽,所述系统带宽中包含多个频率资源,所述发送装置包括:
处理单元,用于确定第一参量p1;所述第一参量小于等于第一数量;所述第一数量为所述发送装置所支持的带宽所能容纳的频率资源的数量;
所述处理单元,用于根据所述第一参量确定频率资源信息;
所述处理单元,用于将物理上行控制信道映射到所述频率资源信息指示的频率资源上;
发送单元,用于通过所述物理上行控制信道发送上行控制信息。
第二方面,本发明的实施例提供一种上行控制信息发送方法,其中终端所支持的带宽小于系统带宽,所述系统带宽中包含多个频率资源,所述方法包括如下步骤:
确定第一参量p1;所述第一参量小于等于第一数量;所述第一数量为所述终端所支持的带宽所能容纳的频率资源的数量;
根据所述第一参量确定频率资源信息;
将物理上行控制信道映射到所述频率资源信息指示的频率资源上;
通过所述物理上行控制信道发送上行控制信息。
第三方面,本发明的实施例提供一种上行控制信息接收装置,其中终端所支持的带宽小于系统带宽,所述系统带宽中包含多个频率资源,所述接收装置包括:
处理单元,用于确定第一参量p1;所述第一参量小于等于第一数量;所述第一数量为所述终端所支持的带宽所能容纳的频率资源的数量;
所述处理单元,用于根据所述第一参量确定频率资源信息;
所述处理单元,用于将物理上行控制信道映射到所述频率资源信息指示的频率资源上;
接收单元,用于通过所述物理上行控制信道接收上行控制信息。
第四方面,本发明的实施例提供一种上行控制信息接收方法,其中终端所支持的带宽小于系统带宽,所述系统带宽中包含多个频率资源,所述方法包括如下步骤:
确定第一参量p1;所述第一参量小于等于第一数量;所述第一数量为所述终端所支持的带宽所能容纳的频率资源的数量;
根据所述第一参量确定频率资源信息;
将物理上行控制信道映射到所述频率资源信息指示的频率资源上;
通过所述物理上行控制信道接收上行控制信息。
第五方面,本发明的实施例提供一种上行控制信息发送装置,其中发送装置所支持的带宽小于系统带宽,所述系统带宽中包含多个频率资源,所述发送装置包括:
处理单元,用于确定第一频率资源信息和第二频率资源信息,其中所述第二频率资源信息所指示的第二频率资源与所述第一频率资源信息所指示的第一频率资源之间的频率宽度,小于等于发送装置所支持的带宽;
所述处理单元,用于在子帧的第一个时隙,将物理上行控制信道映射到所述第一频率资源信息指示的第一频率资源上;在子帧的第二个时隙,将物理上行控制信道映射到所述第二频率资源信息指示的第二频率资源上;
发送单元,用于通过所述物理上行控制信道发送上行控制信息。
第六方面,本发明的实施例提供一种上行控制信息发送方法,其中终端所支持的带宽小于系统带宽,所述系统带宽中包含多个频率资源,所述方法包括如下步骤:
确定第一频率资源信息和第二频率资源信息,其中所述第二频率资源信息所指示的第二频率资源与所述第一频率资源信息所指示的第一频率资源之间的 频率宽度,小于等于终端所支持的带宽;
在子帧的第一个时隙,将物理上行控制信道映射到所述第一频率资源信息指示的第一频率资源上;在子帧的第二个时隙,将物理上行控制信道映射到所述第二频率资源信息指示的第二频率资源上;
通过所述物理上行控制信道发送上行控制信息。
第七方面,本发明的实施例提供一种上行控制信息接收装置,其中终端所支持的带宽小于系统带宽,所述系统带宽中包含多个频率资源,所述接收装置包括:
处理单元,用于确定第一频率资源信息和第二频率资源信息,其中所述第二频率资源信息所指示的第二频率资源与所述第一频率资源信息所指示的第一频率资源之间的频率宽度,小于等于终端所支持的带宽;
所述处理单元,用于在子帧的第一个时隙,将物理上行控制信道映射到所述第一频率资源信息指示的第一频率资源上;在子帧的第二个时隙,将物理上行控制信道映射到所述第二频率资源信息指示的第二频率资源上;
接收单元,用于通过所述物理上行控制信道接收上行控制信息。
第八方面,本发明的实施例提供一种上行控制信息接收方法,其中终端所支持的带宽小于系统带宽,所述系统带宽中包含多个频率资源,所述方法包括如下步骤:
确定第一频率资源信息和第二频率资源信息,其中所述第二频率资源信息所指示的第二频率资源与所述第一频率资源信息所指示的第一频率资源之间的频率宽度,小于等于终端所支持的带宽;
在子帧的第一个时隙,将物理上行控制信道映射到所述第一频率资源信息指示的第一频率资源上;在子帧的第二个时隙,将物理上行控制信道映射到所述第二频率资源信息指示的第二频率资源上;
通过所述物理上行控制信道接收上行控制信息。
第九方面,本发明的实施例还提供了具有上述发送装置、上述接收装置的系统和对应的方法。
第十方面,本发明的实施例还提供了具有上述发送装置、上述接收装置的又一系统和对应的方法。
第十一方面,本发明的实施例提供了一种通信装置包括:
处理单元,用于确定第一参量p1;所述第一参量小于等于第一数量;所述第一数量为所述发送装置所支持的带宽所能容纳的频率资源的数量;
所述处理单元,用于根据所述第一参量确定频率资源信息;
所述处理单元,用于将物理上行控制信道映射到所述频率资源信息指示的频率资源上;
收发单元,用于通过所述物理上行控制信道发送或者接收上行控制信息。
第十二方面,本发明的实施例提供了一种通信方法包括:
确定第一参量p1;所述第一参量小于等于第一数量;所述第一数量为所述终端所支持的带宽所能容纳的频率资源的数量;
根据所述第一参量确定频率资源信息;
将物理上行控制信道映射到所述频率资源信息指示的频率资源上;
通过所述物理上行控制信道发送或者接收上行控制信息。
第十三方面,本发明的实施例提供了一种终端1300包括:
处理单元,用于确定至少两个子带,所述子带包含至少一个频率资源,所述每个子带的带宽小于等于所述终端所支持的带宽;
所述处理单元,还用于根据子带区域物理上行控制信道资源索引确定第三频率资源信息,所述第三频率资源信息指示所述至少两个子带所包含的频率资源中的第三频率资源,所述子带区域物理上行控制信道资源索引指示所述至少两个 子带中的物理上行控制信道资源;
所述处理单元,还用于将物理上行控制信道映射到所述第三频率资源;
收发单元,用于通过所述物理上行控制信道发送所述上行控制信息。
第十四方面,本发明的实施例提供了一种通信方法包括:
确定至少两个子带,所述子带包含至少一个频率资源,所述每个子带的带宽小于等于所述终端所支持的带宽;
根据子带区域物理上行控制信道资源索引确定第三频率资源信息,所述第三频率资源信息指示所述至少两个子带所包含的频率资源中的第三频率资源,所述子带区域物理上行控制信道资源索引指示所述至少两个子带中的物理上行控制信道资源;
将物理上行控制信道映射到所述第三频率资源;
通过所述物理上行控制信道发送所述上行控制信息。
第十五方面,本发明的实施例提供了接入网设备包括:
处理单元,用于确定至少两个子带,所述子带包含至少一个频率资源,所述每个子带的带宽小于等于终端所支持的带宽;
所述处理单元,还用于根据子带区域物理上行控制信道资源索引确定第三频率资源信息,所述第三频率资源信息指示所述至少两个子带所包含的频率资源中的第三频率资源,所述子带区域物理上行控制信道资源索引指示所述至少两个子带中的物理上行控制信道资源;
所述处理单元,还用于将物理上行控制信道映射到所述第三频率资源;
收发单元,用于通过所述物理上行控制信道接收所述上行控制信息。
第十六方面,本发明的实施例提供了一种通信方法包括:
确定至少两个子带,所述子带包含至少一个频率资源,所述每个子带的带宽小于等于终端所支持的带宽;
根据子带区域物理上行控制信道资源索引确定第三频率资源信息,所述第三频率资源信息指示所述至少两个子带所包含的频率资源中的第三频率资源,所述子带区域物理上行控制信道资源索引指示所述至少两个子带中的物理上行控制信道资源;
将物理上行控制信道映射到所述第三频率资源;
通过所述物理上行控制信道接收所述上行控制信息。
第十七方面,本发明的实施例还提供了具有上述通信装置和/或上述终端和/或上述接入网设备的系统和对应的方法。
通过上述方案,通过设定第一参量p1的值,进而确定对应的频率资源映射,并发送/接收上行控制信息,可以将所发送的上行控制信息限制在终端所支持的带宽之内,从而保证了受限终端传输上行控制信息,充分利用了上行数据的峰值速率或保证了上行数据的接收性能。
附图说明
图1为通信系统的示意图;
图2为物理资源的示意图;
图3为传统的PUCCH的物理资源映射的示意图;
图4为根据本发明实施例的频率物理资源的示意图;
图5为根据本发明实施例的频率物理资源的又一示意图;
图6为根据本发明实施例的频率物理资源的又一示意图;
图7为根据本发明实施例的频率物理资源的最小宽带频率资源索引、最大宽带频率资源索引、中心频率资源索引示意图;
图8为根据本发明实施例的频率物理资源的又一示意图;
图9为根据本发明实施例的频率物理资源的又一示意图;
图10为根据本发明实施例的频率物理资源的又一示意图;
图11为根据本发明实施例的频率物理资源的又一示意图;
图12为根据本发明实施例的频率物理资源的又一示意图;
图13为根据本发明实施例的上行信息发送装置的示意图;
图14为根据本发明实施例的上行信息发送方法的示意图;
图15为根据本发明实施例的上行信息接收装置的示意图;
图16为根据本发明实施例的上行信息接收方法的示意图;
图17为根据本发明实施例的上行信息发送装置的示意图;
图18为根据本发明实施例的上行信息发送方法的示意图;
图19为根据本发明实施例的上行信息接收装置的示意图;
图20为根据本发明实施例的上行信息接收方法的示意图;
图21为根据本发明实施例的通信系统的示意图;
图22为根据本发明实施例的又一通信系统的示意图;
图23为根据本发明实施例的物理上行控制信道物理资源映射的示意图;
图24为根据本发明实施例的物理上行控制信道物理资源映射的又一示意图;
图25为根据本发明实施例的物理上行控制信道物理资源映射的又一示意图;
图26为根据本发明实施例的物理上行控制信道物理资源映射的又一示意图;
图27为根据本发明实施例的物理上行控制信道物理资源映射的又一示意图。
图28为根据本发明实施例的通信装置示意图;
图29为根据本发明实施例的通信方法示意图;
图30为根据本发明实施例的终端的示意图;
图31为根据本发明实施例的通信方法示意图;
图32为根据本发明实施例的接入网设备的示意图;
图33为根据本发明实施例的通信方法示意图;
图34为根据本发明实施例的通信系统示意图;
图35为根据本发明实施例的又一通信系统示意图。
具体实施方式
本发明主要应用于LTE系统或高级的长期演进(LTE Advanced,LTE-A)系统。本发明也可以应用于其它的通信系统,只要该通信系统中存在实体可以发送上行控制信息,该通信系统中存在其它实体可以接收上行控制信息。
图1示出了一个由基站和UE1~UE6组成的通信系统,在该通信系统中,UE1~UE6中的至少一个可以发送上行信息给基站,基站可以接收UE1~UE6中的至少一个发送的上行信息。此外,UE4~UE6也组成一个通信系统,在该通信系统中,UE4或者UE6可以发送上行信息给UE5,UE5可以接收UE4或者UE6发送的上行信息,UE5还可以进一步发送上行信息给基站。
在传统的LTE系统中,系统通过物理资源块(Physical Resource Block,PRB)进行数据的传输。系统资源在频率上可以被划分成子载波。子载波的间隔可以是15KHz。
图2示出了一个上行子帧所占用的资源,特别示出了受限终端所支持的带宽与系统带宽的关系。纵坐标为频率,横坐标为时间。系统资源在时间上被划分为无线帧(也叫系统帧)。通常,一个无线帧包含10个子帧,一个子帧长1ms,每个子帧包含两个时隙。系统带宽在频率上划分为
Figure PCTCN2015087079-appb-000001
个PRB,nPRB为PRB的索引。一个PRB占据180KHz的频率资源,即一个PRB的频率资源包含12个子载波。以受限终端为低复杂度或低成本的用户设备为例,假设,该UE所能支持的发送信号带宽为1.4MHz或N(N是正整数,如N=6)个PRB。其对应的系统带宽为20MHz,显然,该UE所支持的带宽不能覆盖系统带宽。
系统与终端进行通信时可以划分至少一个子带。子带包含了一个或多个频率资源。如,一个子带可以包含一个或多个PRB,也可以包含一个或多个子载波。子带所包含的频率资源的频率宽度和频率资源位置可以是预先确定或由系统根 据现场条件配置的。通常,一个子带占用的频率宽度不超过终端支持的信号带宽。在一个子帧中,一个受限终端只能在一个子带中进行信号的接收或发送。所述子带又可以称作窄带。
以下针对上行控制信息进行说明。
在传统LTE系统中,UE通过物理上行控制信道(Physical uplink control channel,PUCCH)发送上行控制信息。传统的PUCCH在频率上占用1个PRB的频率宽度,这1个PRB可以是系统带宽边缘的PRB。在同一个子帧中的不同时隙中,PUCCH映射的频率资源具有两个不相同的频率位置。所以,当同一个子帧的第一个时隙占据系统带宽边缘一端的PRB,而另一个时隙占据系统带宽边缘另一端的PRB时,该子帧就使用了整个系统带宽两端的频率资源。
图3为传统的PUCCH的物理资源映射的示意图。当m取值不同时,PUCCH被映射到不相同的PRB。m是根据PUCCH资源索引获得的参数。可以看出,对于为m=0的情况,时隙0和时隙1分别被映射到了系统带宽的两端。而对于受限UE而言,其所支持的带宽有限,而不能覆盖整个系统带宽,使得受限UE无法在传统LTE系统中传输上行控制信息。在这种情况下,受限UE若要发送PUCCH承载的信息,就必须在一个子帧的不同时隙之间进行发送信号的子带的调整,这会带来额外的复杂度。考虑到发送信号的子带的调整时间,UE在调整时间之内无法发送数据,这会造成在调整时间之内的资源的浪费。另外,如果兼容受限UE的有限带宽,则系统仅使用系统带宽的一部分来进行数据传输,造成系统带宽不能充分利用,影响了上行数据的峰值速率或者上行数据的接收性能。
为了解决上述问题,本发明的实施例提供一种上行信息发送、接收方案,使得基站可以在整个系统带宽中为受限终端合理地调度资源,并充分利用系统带宽。
本发明的所有实施例中所述无线资源控制信令可以是无线资源控制公共信 令和/或无线资源控制专有信令。无线资源控制公共信令可以是系统信息、系统信息块、主信息块中的一种或多种。媒体接入控制信令可以是媒体接入控制的控制元素。物理层信令可以是携带控制信息的控制信道。物理上行控制信道用于承载上行控制信息。所述上行控制信息可以是肯定应答(Acknowledgement,ACK)信息、否定应答(Negative Acknowledgment,Nack)信息、调度请求(Scheduling Request,SR)、信道状态信息(Channel State Information,CSI)、信道质量指示(Channel quality indicator,CQI)、秩指示(rank indicator,RI)、预编码矩阵指示(Precoding Matrix Indicator,PMI)中的至少一种。所述物理上行控制信道PUCCH还可以是增强的物理上行控制信道(Enhanced Physical Uplink Control channel,ePUCCH),窄带物理上行控制信道(Narrow Band PUCCH,NBPUCCH),机器类型物理上行控制信道(Machine Type PUCCH,MPUCCH),或者其他承载上行控制信息的信道。
第一实施例
本实例提供一种上行控制信息发送装置,其中所述发送装置所支持的带宽小于系统带宽,所述系统带宽中包含多个频率资源。所述发送装置所支持的带宽所能容纳的频率资源是系统带宽包含多个频率资源中的部分频率资源。在一个子帧,所述发送装置只能在系统带宽包含多个频率资源中的部分频率资源发送上行信息。通常所述发送装置可以是用户终端,比如用户设备(UE)。系统带宽为系统所支持的所有频率资源的频带宽度,所述系统带宽被分为多个频率资源。所述频率资源可以为一个物理资源块(physical resource block,PRB)在频率上占据的资源,或者所述频率资源也可以为子载波。虽然本实施例是以上行控制信息说明技术方案,但是本领域技术人员可以理解,基于相同的原理和概念,本实施例的方案同样可以应用于其他上行信息的发送。
如图13所示,所述发送装置100包括:
处理单元102,用于确定第一参量p1;所述第一参量小于等于第一数量;所述第一数量为所述发送装置所支持的带宽所能容纳的频率资源的数量;
所述处理单元102,用于根据所述第一参量确定频率资源信息;
所述处理单元102,用于将物理上行控制信道映射到所述频率资源信息指示的频率资源上;
发送单元101,用于通过所述物理上行控制信道发送上行控制信息。
通过设定第一参量p1的值,进而确定对应的频率资源映射,并发送上行控制信息,可以将所发送的上行控制信息限制在发送装置所支持的带宽之内,从而保证了受限终端传输上行控制信息,并且受限终端传输上行控制信息不总是在系统带宽的中心,充分保证了上行数据的峰值速率或上行数据的接收性能。
所述处理单元,确定第一参量p1可以有多种方式。
第一种方式为,所述处理单元,用于根据物理上行控制信道资源索引确定第二参量m*,所述第二参量小于等于所述第一数量;再根据第二参量确定第一参量。
所述处理单元,用于根据物理上行控制信道资源索引确定第二参量m*,可以包括:所述处理单元,用于根据下述参量中的至少一种确定物理上行控制信道资源索引:无线资源控制(radio resource control,RRC)信令包含的参量、物理层信令包含的参量、承载下行控制信息的物理下行控制信道(physical downlink control channel,PDCCH)的第一个控制信道元素(control channel element,CCE)的序号、承载下行控制信息的增强的物理下行控制信道(enhanced physical downlink control channel,EPDCCH)的第一个增强的控制信道元素(enhanced control channel element,ECCE)的序号,承载下行控制信息的机器类型通信的物理下行控制信道的第一个控制信道元素的序号;所述处理单元,用于根据所述物理上行控制信道资源索引确定第二参量m*,所述第二参量小于等于所述第一数量。
可选的,所述PDCCH或者EPDCCH还可以是其它的用于承载下行控制信息的信道,比如是承载下行控制信息的机器类型通信的物理下行控制信道。所述CCE或者ECCE还可以是构成其它的用于承载下行控制信息的信道的元素,比如是构成机器类型通信的物理下行控制信道的控制信道元素。
例如,所述处理单元,用于根据物理上行控制信道资源索引确定第二参量m*的一种方式为:
Figure PCTCN2015087079-appb-000002
Figure PCTCN2015087079-appb-000003
其中,
Figure PCTCN2015087079-appb-000004
是所述物理上行控制信道资源索引。可选的,
Figure PCTCN2015087079-appb-000005
是由无线资源控制(Radio resource control,RRC)信令配置的参数,或者是由RRC信令配置的参数以及构成物理下行控制信道的第一个(最低的)控制信道元素的序号计算出来的参数。所述物理下行控制信道可以是PDCCH,或者EPDCCH,或者是其它的用于承载下行控制信息的信道。所述控制信道元素可以是CCE,或者ECCE,或者是构成其它的用于承载下行控制信息的信道的元素。所述下行控制信息包含物理下行共享信道(Physical Downlink Shared channel,PDSCH)的资源调度信息,所述物理上行控制信道承载了对所述PDSCH的应答或者否定应答信息。
Figure PCTCN2015087079-appb-000006
表示每个时隙用于物理上行控制信道格式2/2a/2b传输的可用PRB个数。
Figure PCTCN2015087079-appb-000007
表示在用于物理上行控制信道格式1/1a/1b和格式2/2a/2b混合映射的PRB中,用于物理上行控制信道格式1/1a/1b的循环移位的个数。
Figure PCTCN2015087079-appb-000008
是RRC信令配置的参数。
Figure PCTCN2015087079-appb-000009
是PRB在频域上包含的子载波的个数。
为了使得所述第二参量小于等于所述第一数量,物理上行控制信道资源索 引的最大值需要小于某一特定数值,比如最大值小于2047。
所述处理单元,用于根据第二参量确定第一参量可以使用如下公式:
Figure PCTCN2015087079-appb-000010
或者,p1=m*,                  (2)
或者
Figure PCTCN2015087079-appb-000011
或者
Figure PCTCN2015087079-appb-000012
或者
Figure PCTCN2015087079-appb-000013
或者
Figure PCTCN2015087079-appb-000014
其中,NNB为所述第一数量,m*为所述第二参量,p1为所述第一参量,ns是时隙序号,nsf是子帧序号。
Figure PCTCN2015087079-appb-000015
表示向下取整,X是和ns、nsf、无线帧序号、发送上行控制信息的起始子帧到当前子帧之间包含的上行子帧数中的至少一个有关的参数。例如X是nsf。又例如X是10×SFN+nsf,SFN是无线帧序号。又例如X是发送上行控制信息的起始子帧到当前子帧之间包含的子帧数或者上行子帧数。Y是预先定义的参数,或者Y是和物理上行控制信道跳频粒度有关的参 数,或者Y是和物理上行控制信道跳频周期有关的参数。物理上行控制信道映射的频率资源可以发生变化,称作物理上行控制信道跳频。物理上行控制信道映射的频率资源每G个子帧变化一次,称作物理上行控制信道跳频粒度。物理上行控制信道映射的频率资源的变化规律每H个子帧重复一次,则H个子帧称作物理上行控制信道跳频周期。例如Y是物理上行控制信道跳频粒度。物理上行控制信道跳频可以发生在物理上行控制信道进行映射或者所述发送单元发送上行控制信息的多个子帧中。即在物理上行控制信道映射的频率资源发生变化前后的多个子帧,所述发送单元发送相同的上行控制信息。X和Y确定了物理上行控制信道跳频的时刻。
例如,参考公式(1),当UE所支持的发送带宽在频率上只能容纳6个PRB时,UE所支持的发送带宽所能容纳的频率资源的个数是6,NNB=6。基站通过选择RRC信令配置的取值、选择构成PDCCH的CCE、选择构成EPDCCH的ECCE中的至少一种方法使得计算出来的m的值的取值范围是0~5,从而
Figure PCTCN2015087079-appb-000016
的取值范围是0~2,
Figure PCTCN2015087079-appb-000017
的取值范围是3~5,UE确定的第一参量的取值不大于6。
图4示例性示出了根据公式(1)获得的频率资源和时隙的关系。其中阴影部分为m*=0时的物理上行控制信道的物理资源。
图5示例性示出了根据公式(2)获得的频率资源和时隙的关系。其中阴影部分为m*=0时的物理上行控制信道的物理资源。图5和公式(2)示出了根据物理上行控制信道资源索引确定第一参量p1。
图6示例性示出了根据公式(3)获得的频率资源和时隙的关系。其中阴影部分为m*=0时的物理上行控制信道的物理资源。
图23示例性示出了根据公式(4)获得的频率资源和时隙的关系。其中阴影 部分为m*=0时的物理上行控制信道的物理资源和m*=1时的物理上行控制信道的物理资源。
图24示例性示出了根据公式(5)获得的频率资源和时隙的关系。其中阴影部分为m*=0时的物理上行控制信道的物理资源和m*=1时的物理上行控制信道的物理资源。
图25示例性示出了根据公式(6)获得的频率资源和时隙的关系。其中阴影部分为m*=0时的物理上行控制信道的物理资源和m*=1时的物理上行控制信道的物理资源。
由图4-6、图23-25可以看出m*=0或m*=1所对应的物理资源在子带范围内,根据m*的不同以及子带的不同可以实现在整个系统带宽内的调度。
所述处理单元,确定第一参量p1可以有多种方式中的第二种方式为,所述处理单元,用于确定第一参量p1包括:
Figure PCTCN2015087079-appb-000018
其中
Figure PCTCN2015087079-appb-000019
其中,
Figure PCTCN2015087079-appb-000020
是系统带宽中包含的频率资源的数量,NNB为所述第一数量,m为根据物理上行控制信道资源索引确定的参量,p1为所述第一参量,ns是时隙序号,nPRB是中间变量。所述物理上行控制信道资源索引可以是现有的PUCCH索引。m的确定方式和现有的PUCCH相同。例如,当系统带宽在频率上可以包含100个PRB时,
Figure PCTCN2015087079-appb-000021
nPRB取值范围是0~99。当UE所支持的发送带宽在频率上只能容纳6个PRB时,UE所支持的发送带宽所能容纳的频率资源的个数是6,NNB=6。
Figure PCTCN2015087079-appb-000022
p1的取值范围是0~5,不大于6。
所述处理单元,确定第一参量p1可以有多种方式中的第三种方式为,所述处理单元,用于确定第一参量p1包括:所述处理单元,用于根据物理上行控制信道资源索引确定第一参量p1。
具体的,所述处理单元,用于根据下述参量中的至少一种确定物理上行控制信道资源索引:无线资源控制RRC信令包含的参量、物理层信令包含的参量、承载下行控制信息的物理下行控制信道PDCCH的第一个控制信道元素CCE的序号、承载下行控制信息的增强的物理下行控制信道EPDCCH的第一个增强的控制信道元素ECCE的序号、承载下行控制信息的机器类型通信的物理下行控制信道的第一个控制信道元素的序号;所述处理单元,用于根据所述物理上行控制信道资源索引确定第一参量p1。
例如,所述处理单元,用于根据物理上行控制信道资源索引确定第一参量p1的一种方式为:
Figure PCTCN2015087079-appb-000023
Figure PCTCN2015087079-appb-000024
其中,
Figure PCTCN2015087079-appb-000025
是所述物理上行控制信道资源索引。
Figure PCTCN2015087079-appb-000026
以及其它参数具体如所述处理单元确定第一参量p1的第一种方式所述,此处不再赘述。
为了使得所述第一参量小于等于所述第一数量,物理上行控制信道资源索引的最大值需要小于某一特定数值,比如最大值小于2047。
上述确定第一参量p1的方式,可以将所发送的上行控制信息限制在发送装置所支持的带宽之内,从而保证了受限设备传输上行控制信息,充分利用了上行数据的峰值速率或保证了上行数据的接收性能。
为了更明确的说明确定频率资源信息的方式,可以引入子带的概念。但是, 本发明并不局限于必须使用子带才能确定频率资源信息。可以理解,在一些特定的方式中,不使用子带的概念,同样可以将所使用的频率资源范围限定在一定的范围内,以产生相同的技术效果。
系统带宽中可以包含一个或多个子带,所述子带的带宽小于等于所述发送装置所支持的带宽,所述子带包含至少一个频率资源,
所述处理单元,用于根据所述第一参量确定频率资源信息可以包括:
所述处理单元,用于确定子带的第一信息;所述处理单元,用于根据所述子带的第一信息和所述第一参量p1,确定所述频率资源信息。
所述子带的第一信息包括下述之一:子带索引,所述子带包含的频率资源的最小宽带频率资源索引,所述子带包含的频率资源的最大宽带频率资源索引、所述子带包含的频率资源的中心频率资源索引。中心频率资源索引用于指示所述子带的中心频点。所述处理单元还可以通过其他子带的中心频点的配置信息确定子带的中心频点,进而确定中心频率资源索引。
所述系统带宽被分为多个子带的索引为子带索引。本发明实施例以子带索引从0开始编号进行说明,子带索引也可以从1开始编号,其相应的物理上行控制信道的物理资源映射方法都属于本发明实施例的保护范围。所述系统带宽被分为多个频率资源的索引为宽带频率资源索引。所述宽带频率资源索引的取值范围是0~系统带宽包含的频率资源的个数-1。比如取值范围可以是
Figure PCTCN2015087079-appb-000027
所述宽带频率资源索引也可以从1开始编号,其相应的物理上行控制信道的物理资源映射方法都属于本发明实施例的保护范围。
所述处理单元,用于确定子带的第一信息包括:所述处理单元根据预先规定,确定子带的第一信息。
所述预先规定包括:
所述子带为系统带宽边缘的一个子带,所述处理单元,用于根据所述子带 得到所述子带的第一信息;或者,
所述子带为所述发送装置最近一次发送上行信息所使用的子带,所述处理单元,用于根据所述子带得到所述子带的第一信息;或者,
所述处理单元,用于根据所述发送装置最近一次接收下行信息所使用的子带和双工距离确定所述子带,所述处理单元,用于根据所述子带得到所述子带的第一信息。
上述系统带宽边缘的子带的含义是,不存在比所述系统带宽包含的子带中的第一个子带或者最后一个子带更靠近系统带宽边缘的子带。可选的,所有发送装置都在所述系统带宽包含的子带中的一个子带包含的频率资源上发送上行控制信息,或者进行物理上行控制信道的资源映射。所述一个子带可以是所述系统带宽包含的子带中的第一个子带或者最后一个子带。在所述一个子带包含的频率资源上,发送装置还可以发送上行数据,或进行物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的资源映射。
上述上行信息包括上行控制信息、上行数据、上行参考信号中的一种。上述下行信息包括下行控制信息、下行数据、肯定应答、否定应答、下行参考信号中的一种。上述双工距离用于表示发送装置发送上行信息和接收下行信息之间的频率间隔。
或者,所述处理单元,用于确定子带的第一信息包括:所述处理单元根据预先定义的规则,确定子带的第一信息。
所述预先定义的规则包括:
所述处理单元,用于根据子帧序号确定所述子带的第一信息。
以确定子带索引为例进行说明。预先定义的规则可以是子带索引NB_Idx=fun(nsf),其中fun(nsf)是和子帧序号nsf有关系的固定的函数,子帧序号nsf的范围是0~9。
或者,预先定义的规则是每T个子帧,子带的第一信息变化一次。T是子带变化周期T。子带变化周期T还可以称作子带变化的时间间隔。在从子带变化的初始子帧开始的T个子帧,子带的第一信息都和初始子带的第一信息相同,T+a个子帧子带的第一信息开始变化。a是固定的自然数。可选的,在T+1~T+a-1的子帧,发送装置不发送上行数据或者上行控制信息。或者,预先定义的规则是物理上行控制信道跳频时,子带的第一信息发生变化。在物理上行控制信道不发生跳频,即在跳频粒度之内,子带的第一信息不发生变化。每物理上行控制信道跳频周期个子帧,子带的第一信息的变化规律重复一次。
若子帧k的子带的第一信息发生变化,则可以根据子带的第一信息变化规则确定子带的第一信息。子带的第一信息变化规则为:NB_Idx_after=(NB_Idx_pre+SBoffset)mod Q,其中NB_Idx_pre为变化前的子带的第一信息,NB_Idx_after为变化后的子带的第一信息,SBoffset是子带的第一信息偏移量,Q为系统带宽中包含的子带个数或者频率资源个数。子带的第一信息变化规则还可以是子带的第一信息变化图样。所述子带的第一信息变化图样可以是系统预先定义的,或者所述处理单元通过接收无线资源控制信令、媒体接入控制信令、物理层信令中的至少一种确定的。所述子带的第一信息变化图样用于规定在每个子帧的子带的第一信息。
或者,在系统带宽中包含第一子带和第二子带,其中第一子带包含的频率资源和第二子带包含的频率资源的频率位置关于系统带宽中心频率对称。子带的第一信息变化规则还可以为:若变化前的子带的第一信息是第一子带的第一信息,则变化后的子带的第一信息是第二子带的第一信息;若变化前的子带的第一信息是第二子带的第一信息,则变化后的子带的第一信息是第一子带的第一信息。第一子带、第二子带以及子带变化的示意图如图24或25所示。
可选的,所述处理单元,用于根据预先规定确定初始子带的第一信息、子带变化的初始子帧、子带变化周期T、子带的第一信息偏移量SBoffset、系统带宽中包含的子带个数、系统带宽中包含的频率资源个数中的至少一种。
可选的,所述处理单元,用于通过接收无线资源控制信令、媒体接入控制信令、物理层信令中的至少一种确定初始子带的第一信息、子带变化的初始子帧、子带变化周期T、子带的第一信息偏移量SBoffset、系统带宽中包含的子带个数、系统带宽中包含的频率资源个数中的至少一种。
可选的,所述处理单元,用于确定所述子带变化的时间间隔为所述处理单元将物理上行控制信道映射到所述频率资源信息指示的频率资源上的多个子帧的子帧个数的约数。
或者,所述处理单元,用于确定子带的第一信息包括:所述处理单元,用于通过接收无线资源控制信令、媒体接入控制信令、物理层信令中的至少一种确定子带的第一信息。
需要说明的是,在本实施例中,所述物理上行控制信道资源索引可以是一个子带中的物理上行控制信道资源的编号;也可以是多个子带中的物理上行控制信道资源的编号,即子带区域物理上行控制信道资源索引。在一个子帧的一个频率资源上,可以有多个物理上行控制信道资源,所述多个物理上行控制信道资源是码分复用的。
或者,所述处理单元,用于确定子带的第一信息包括:所述处理单元,用于根据子带区域物理上行控制信道资源索引确定子带的第一信息。所述处理单元,用于根据下述参量中的至少一种确定子带区域物理上行控制信道资源索引:无线资源控制RRC信令包含的参量、物理层信令包含的参量、承载下行控制信息的物理下行控制信道PDCCH的第一个控制信道元素CCE的序号、承载下行控制信息的增强的物理下行控制信道EPDCCH的第一个增强的控制信道元素ECCE的序号、 承载下行控制信息的机器类型通信的物理下行控制信道的第一个控制信道元素的序号。
可选的,所述处理单元,用于通过接收系统信息块SIB确定所述第一子带的第一信息;根据所述第一子带的第一信息确定所述第二子带的第一信息。
例如当所述第一子带的第一信息是第一子带的子带索引,所述第二子带的第一信息是第二子带的子带索引时,第一子带的子带索引和第二子带的子带索引是连续的自然数,则所述处理单元通过接收系统信息块确定第一子带的子带索引,便可根据第一子带的子带索引确定第二子带的子带索引为第一子带的子带索引加1或减1。比如第一子带的子带索引是偶数,第二子带的子带索引是大于第一子带的子带索引的最小的奇数,则所述处理单元通过接收系统信息块确定第一子带的子带索引,便可根据第一子带的子带索引确定第二子带的子带索引为第一子带的子带索引加1。
又例如当所述第一子带的第一信息是第一子带包含的频率资源的最小宽带频率资源索引,所述第二子带的第一信息是第二子带包含的频率资源的最小宽带频率资源索引时,所述处理单元通过接收系统信息块确定第一子带包含的频率资源的最小宽带频率资源索引为fNB1_min,便可根据第一子带包含的频率资源的最小宽带频率资源索引确定第二子带包含的频率资源的最小宽带频率资源索引为
Figure PCTCN2015087079-appb-000028
其中,
Figure PCTCN2015087079-appb-000029
是系统带宽中包含的频率资源的数量,NNB为所述第一数量。
通过上述方式,所述处理单元根据所述第一子带的第一信息确定所述第二子带的第一信息,就节省了基站用于配置所述第一子带的第一信息和所述第二子带的第一信息的信令开销。
或者,所述处理单元,用于确定子带的第一信息还可以采用如下方式:
Figure PCTCN2015087079-appb-000030
或者
Figure PCTCN2015087079-appb-000031
其中NB_Idx为所述子带索引,NNB为所述第一数量,
Figure PCTCN2015087079-appb-000032
是系统带宽中包含的频率资源的数量,Q为系统带宽中包含的子带个数,
Figure PCTCN2015087079-appb-000033
m为根据物理上行控制信道资源索引确定的参量,可以类似于上述m*的确定方法,也可以根据已知的方式确定,ns是时隙序号。
可选的,当子带的第一信息发生变化时,第一参量p1也发生变化,即子带的第一信息和第一参量p1同时发生变化。
第一参量p1可以按照公式(5)或者公式(6)进行变化。此时,X和Y既确定了第一参量p1发生变化的时刻,也确定了子带的第一信息发生变化的时刻。
或者,所述处理单元,用于确定第一参量p1还包括:若子带的第一信息变化前所述处理单元确定的第一参量p1是p1_pre,则子带的第一信息变化时,所述处理单元更新确定的第一参量p1_after为NNB-1-p1_pre,其中NNB为所述第一数量。
子带的第一信息和第一参量p1同时发生变化的示意图如图24或25所示。
通过上述第一参量p1的变化方式,可以保证物理上行控制信道跳频前后映射的频率资源关于系统带宽中心对称,减少了上行控制信息传输对于上行数据传输频率资源的割裂,保证了上行数据的峰值速率或保证了上行数据的接收性能。
所述子带被分为多个频率资源的索引为子带频率索引。所述子带频率资源索引的取值范围是0~子带包含的频率资源的个数-1。所述子带频率资源索引还可以从1开始编号,其相应的物理上行控制信道的物理资源映射方法都属于本发明 实施例的保护范围。
所述频率资源信息可以为子带频率资源索引,所述子带的带宽等于所述发送装置所支持的带宽,
所述处理单元,用于根据所述子带的第一信息和所述第一参量p1,确定所述频率资源信息,包括:子带频率资源索引等于所述第一参量p1,其中所述子带频率资源索引指示的频率资源为所述子带中的频率资源。
本实施例中的发送装置,其中,所述频率资源信息为第一宽带频率资源索引,所述子带的带宽等于所述发送装置所支持的带宽,所述处理单元,用于根据所述子带的第一信息和所述第一参量p1,确定所述频率资源信息包括:
所述子带的第一信息为子带索引NB_Idx,所述第一宽带频率资源索引nPRB_NB=p1+NB_Idx×NNB
或者,所述子带的第一信息为子带包含的频率资源的最小宽带频率资源索引fNB_min,所述第一宽带频率资源索引nPRB_NB=p1+fNB_min;;
或者,所述子带的第一信息为子带包含的频率资源的最大宽带频率资源索引fNB_max,所述第一宽带频率资源索引nPRB_NB=fNB_max-NNB+1+p1。
或者,当NNB为奇数时,所述子带的第一信息为子带包含的频率资源的中心频率资源索引fNB_c,所述第一宽带频率资源索引
Figure PCTCN2015087079-appb-000034
或者,当NNB为偶数时,所述子带的第一信息为子带包含的频率资源的中心频率资源索引,所述中心频率资源索引有两个,将两个中心频率资源索引中较小的一个记为中心频率资源索引fNB_c1,所述第一宽带频率资源索引nPRB_NB=fNB_c1-NNB/2+1+p1。
或者,当NNB为偶数时,所述子带的第一信息为子带包含的频率资源的中心频率资源索引,所述中心频率资源索引有两个,将两个中心频率资源索引中较大的一个记为中心频率资源索引fNB_c2,所述第一宽带频率资源索引nPRB_NB=fNB_c2-NNB/2+p1。其中NNB为所述第一数量。
可选的,物理上行控制信道还可以按照如下方式进行跳频。在子带的第一信息变化前,已经确定的第一宽带频率资源索引为nPRB_NB_pre,所述处理单元,用于确定所述第一宽带频率资源索引包括:所述处理单元,用于根据所述第一宽带频率资源索引和第一宽带频率资源变化规则,确定子带的第一信息变化后的第一宽带频率资源索引nPRB_NB_after;其中所述第一宽带频率资源规则为:
Figure PCTCN2015087079-appb-000035
Figure PCTCN2015087079-appb-000036
其中
Figure PCTCN2015087079-appb-000037
是系统带宽中包含的频率资源的数量。
可选的,所述处理单元,用于根据预先规定确定在所述多个子帧中,所述频率资源信息发生变化的时间间隔或者所述频率资源信息发生变化的子帧;
可选的,所述处理单元,用于通过接收无线资源控制信令、媒体接入控制信令、物理层信令中的至少一种确定所述频率资源信息发生变化的时间间隔或者所述频率资源信息发生变化的子帧;
可选的,所述处理单元,用于确定所述频率资源信息发生变化的时间间隔为所述多个子帧的子帧个数的约数。
通过上述物理上行控制信道的跳频方式,可以保证物理上行控制信道跳频前后映射的频率资源关于系统带宽中心对称,减少了上行控制信息传输对于上行数据传输频率资源的割裂,保证了上行数据的峰值速率或保证了上行数据的接收性能。以下说明映射的方式。所述处理单元,用于将物理上行控制信道映射到所述频率资源信息指示的频率资源上,包括:所述处理单元,用于在至少一个子帧 将物理上行控制信道映射到所述频率资源信息指示的频率资源上。
当所述处理单元进行一次上行控制信息的发送时,如果在多个子帧将物理上行控制信道映射到所述频率资源信息指示的频率资源上,则可以对上行控制信息或者物理上行控制信道进行覆盖增强,满足覆盖的要求。
对于两个相邻的子帧的情况,当所述两个子帧的子带的第一信息不同时,
所述处理单元,用于将物理上行控制信道映射到所述频率资源信息指示的频率资源上,包括:
所述处理单元,用于在所述两个子帧中的前一个子帧的第一个时隙将物理上行控制信道映射到所述频率资源信息指示的频率资源上,在所述前一个子帧的另一个时隙不进行物理上行控制信道的映射;或者
所述处理单元,用于在所述两个子帧中的后一个子帧的第二个时隙将物理上行控制信道映射到所述频率资源信息指示的频率资源上,在所述后一个子帧的另一个时隙不进行物理上行控制信道的映射;或者
所述处理单元,用于在所述两个子帧中的前一个子帧将物理上行控制信道映射到所述频率资源信息指示的频率资源上,在所述两个子帧中的后一个子帧不进行物理上行控制信道的映射;或者
所述处理单元,用于在所述两个子帧中的后一个子帧将物理上行控制信道映射到所述频率资源信息指示的频率资源上,在所述两个子帧中的前一个子帧不进行物理上行控制信道的映射。
可以看出,相邻子帧之中至少留出了一个时隙,使得发送装置和系统有时间进行频带的调整,以适配整个系统带宽,从而完成上行信息的发送,充分利用系统带宽,保证上行数据的峰值速率或者上行数据的接收性能。
可选的,对于两个相邻的子帧的情况,当所述两个子帧的子带的第一信息相同时,所述处理单元,在所述两个子帧中每个子帧的两个时隙都将物理上行控 制信道映射到所述频率资源信息指示的频率资源上。
本发明实施例的物理上行控制信道的物理资源映射方法,将物理上行控制信道映射到一个子帧的一个子带内,从而映射的频率宽度不超过低复杂度或者低成本的终端所能支持的发送信号的带宽。终端可以在一个子帧的一个子带内发送上行控制信息,并且终端发送上行控制信息的子带不总是在系统带宽中心,从而避免了发送上行控制信息复杂度高、资源浪费、其他终端上行数据峰值速率降低的问题。
第二实施例
本实施例提供一种上行信息发送方法,该方法与第一实施例的上行信息发送装置一致。该方法中的特征所对应的发明目的、技术手段、获得的技术效果与第一实施例一致,不再赘述。具体实现的过程请可以参见第一实施例中装置实施例所实现的方法。本实施例所述的方法可以由终端使用,比如用户设备(UE)。为了表述清楚,说明如下。
本实施例提供一种上行控制信息发送方法,如图14所示,其中终端所支持的带宽小于系统带宽,所述系统带宽中包含多个频率资源,所述方法包括如下步骤:
步骤201,确定第一参量p1;所述第一参量小于等于第一数量;所述第一数量为所述终端所支持的带宽所能容纳的频率资源的数量;
步骤202,根据所述第一参量确定频率资源信息;
步骤203,将物理上行控制信道映射到所述频率资源信息指示的频率资源上;
步骤204,通过所述物理上行控制信道发送上行控制信息。
通过设定第一参量p1的值,进而确定对应的频率资源映射,并发送上行控制信息,可以将所发送的上行控制信息限制在发送装置所支持的带宽之内,从而保证了受限终端传输上行控制信息,充分利用了上行数据的峰值速率或保证了上 行数据的接收性能。
可选地,所述确定第一参量p1包括:
根据物理上行控制信道资源索引确定第二参量m*,所述第二参量小于等于所述第一数量;
根据第二参量确定第一参量。
可选地,根据物理上行控制信道资源索引确定第二参量m*,包括:
根据下述参量中的至少一种确定物理上行控制信道资源索引:无线资源控制RRC信令包含的参量、物理层信令包含的参量、承载下行控制信息的物理下行控制信道PDCCH的第一个控制信道元素CCE的序号、承载下行控制信息的增强的物理下行控制信道EPDCCH的第一个增强的控制信道元素ECCE的序号,承载下行控制信息的机器类型通信的物理下行控制信道的第一个控制信道元素的序号;
根据所述物理上行控制信道资源索引确定第二参量m*,所述第二参量小于等于所述第一数量。
可选的,所述PDCCH或者EPDCCH还可以是其它的用于承载下行控制信息的信道,比如是承载下行控制信息的机器类型通信的物理下行控制信道。所述CCE或者ECCE还可以是构成其它的用于承载下行控制信息的信道的元素,比如是构成机器类型通信的物理下行控制信道的控制信道元素。
可选地,根据第二参量确定第一参量包括:
Figure PCTCN2015087079-appb-000038
或者,p1=m*,或者
Figure PCTCN2015087079-appb-000039
或者
Figure PCTCN2015087079-appb-000040
或者
Figure PCTCN2015087079-appb-000041
或者
Figure PCTCN2015087079-appb-000042
NNB为所述第一数量,m*为所述第二参量,p1为所述第一参量,ns是时隙序号,nsf是子帧序号。X是和ns、nsf、无线帧序号、发送上行控制信息的起始子帧到当前子帧之间包含的上行子帧数中的至少一个有关的参数。例如X是nsf。又例如X是10×SFN+nsf,SFN是无线帧序号。又例如X是发送上行控制信息的起始子帧到当前子帧之间包含的子帧数或者上行子帧数。Y是预先定义的参数,或者Y是和物理上行控制信道跳频粒度有关的参数,或者Y是和物理上行控制信道跳频周期有关的参数。物理上行控制信道映射的频率资源可以发生变化,称作物理上行控制信道跳频。物理上行控制信道映射的频率资源每G个子帧变化一次,称作物理上行控制信道跳频粒度。物理上行控制信道映射的频率资源的变化规律每H个子帧重复一次,则H个子帧称作物理上行控制信道跳频周期。例如Y是物理上行控制信道跳频粒度。物理上行控制信道跳频可以发生在物理上行控制信道进行映射或者所述发送单元发送上行控制信息的多个子帧中。即在物理上行控制 信道映射的频率资源发生变化前后的多个子帧,所述发送单元发送相同的上行控制信息。X和Y确定了物理上行控制信道跳频的时刻。
可选地,所述确定第一参量p1包括:
Figure PCTCN2015087079-appb-000043
其中
Figure PCTCN2015087079-appb-000044
Figure PCTCN2015087079-appb-000045
是系统带宽中包含的频率资源的数量,NNB为所述第一数量,m为根据物理上行控制信道资源索引确定的参量,p1为所述第一参量,ns是时隙序号,nPRB是中间变量。所述物理上行控制信道资源索引可以是现有的PUCCH索引。m的确定方式和现有的PUCCH相同。
所获得的频率资源和时隙的关系可以参照图4、5、6、23、24、25。由图4-6、图23-25可以看出m*=0或m*=1所对应的物理资源在子带范围内,根据m*的不同以及子带的不同可以实现在整个系统带宽内的调度。
确定第一参量p1可以有多种方式中的第三种方式为,确定第一参量p1包括:根据物理上行控制信道资源索引确定第一参量p1。
具体的,根据下述参量中的至少一种确定物理上行控制信道资源索引:无线资源控制RRC信令包含的参量、物理层信令包含的参量、承载下行控制信息的物理下行控制信道PDCCH的第一个控制信道元素CCE的序号、承载下行控制信息的增强的物理下行控制信道EPDCCH的第一个增强的控制信道元素ECCE的序号、承载下行控制信息的机器类型通信的物理下行控制信道的第一个控制信道元素的序号;根据所述物理上行控制信道资源索引确定第一参量p1。
例如,根据物理上行控制信道资源索引确定第一参量p1的一种方式为:
Figure PCTCN2015087079-appb-000046
Figure PCTCN2015087079-appb-000047
其中,
Figure PCTCN2015087079-appb-000048
是所述物理上行控制信道资源索引。
Figure PCTCN2015087079-appb-000049
以及其它参数具体如第一实施例所述,此处不再赘述。
为了使得所述第一参量小于等于所述第一数量,物理上行控制信道资源索引的最大值需要小于某一特定数值,比如最大值小于2047。
可选地,所述系统带宽中包含一个或多个子带,所述子带的带宽小于等于所述终端所支持的带宽,所述子带包含至少一个频率资源,
所述根据所述第一参量确定频率资源信息包括:
确定子带的第一信息;
根据所述子带的第一信息和所述第一参量p1,确定所述频率资源信息。
可选地,所述确定子带的第一信息包括:
所述子带为系统带宽边缘的一个子带,根据所述子带得到所述子带的第一信息;或者,
所述子带为所述终端最近一次发送上行信息所使用的子带,根据所述子带得到所述子带的第一信息;或者,
根据终端最近一次接收下行信息所使用的子带和双工距离确定所述子带,根据所述子带得到所述子带的第一信息;或者,
根据子帧序号确定所述子带的第一信息;或者,
通过接收无线资源控制信令、媒体接入控制信令、物理层信令中的至少一种确定子带的第一信息;
上述系统带宽边缘的子带的含义是,不存在比所述系统带宽包含的子带中 的第一个子带或者最后一个子带更靠近系统带宽边缘的子带。上行信息包括上行控制信息、上行数据、上行参考信号中的一种。下行信息包括下行控制信息、下行数据、肯定应答、否定应答、下行参考信号中的一种。
可选地,所述确定子带的第一信息包括:根据子带的第一信息变化规则确定子带的第一信息;其中子带的第一信息变化规则为:NB_Idx_after=(NB_Idx_pre+SBoffset)mod Q,
其中NB_Idx_pre为变化前的子带的第一信息,NB_Idx_after为变化后的子带的第一信息,SBoffset是子带的第一信息偏移量,Q为系统带宽中包含的子带个数或者频率资源个数。
或者,在系统带宽中包含第一子带和第二子带,其中第一子带包含的频率资源和第二子带包含的频率资源的频率位置关于系统带宽中心频率对称。子带的第一信息变化规则还可以为:若变化前的子带的第一信息是第一子带的第一信息,则变化后的子带的第一信息是第二子带的第一信息;若变化前的子带的第一信息是第二子带的第一信息,则变化后的子带的第一信息是第一子带的第一信息。
可选地,所述方法还包括
根据预先规定确定初始子带的第一信息、子带变化的初始子帧、子带变化周期T、子带的第一信息偏移量SBoffset、系统带宽中包含的子带个数、系统带宽中包含的频率资源个数中的至少一种;
或者,通过接收无线资源控制信令、媒体接入控制信令、物理层信令中的至少一种确定初始子带的第一信息、子带变化的初始子帧、子带变化周期T、子带的第一信息偏移量SBoffset、系统带宽中包含的子带个数、系统带宽中包含的频率资源个数中的至少一种。
子带变化周期T还可以称作子带变化的时间间隔。可选的,确定所述子带变 化的时间间隔为将物理上行控制信道映射到所述频率资源信息指示的频率资源上的多个子帧的子帧个数的约数。
需要说明的是,在本实施例中,所述物理上行控制信道资源索引可以是一个子带中的物理上行控制信道资源的编号;也可以是多个子带中的物理上行控制信道资源的编号,即子带区域物理上行控制信道资源索引。在一个子帧的一个频率资源上,可以有多个物理上行控制信道资源,所述多个物理上行控制信道资源是码分复用的。
或者,确定子带的第一信息包括:根据子带区域物理上行控制信道资源索引确定子带的第一信息。根据下述参量中的至少一种确定子带区域物理上行控制信道资源索引:无线资源控制RRC信令包含的参量、物理层信令包含的参量、承载下行控制信息的物理下行控制信道PDCCH的第一个控制信道元素CCE的序号、承载下行控制信息的增强的物理下行控制信道EPDCCH的第一个增强的控制信道元素ECCE的序号、承载下行控制信息的机器类型通信的物理下行控制信道的第一个控制信道元素的序号。
可选地,所述子带的第一信息包括下述之一:子带索引,所述子带包含的频率资源的最小宽带频率资源索引,所述子带包含的频率资源的最大宽带频率资源索引、所述子带包含的频率资源的中心频率资源索引。
上述子带变化周期T的含义为,每经过T个子帧子带变化一次。所述系统带宽被分为多个子带的索引为子带索引。所述系统带宽被分为多个频率资源的索引为宽带频率资源索引。
可选的,通过接收系统信息块确定所述第一子带的第一信息;根据所述第一子带的第一信息确定所述第二子带的第一信息。
例如当所述第一子带的第一信息是第一子带的子带索引,所述第二子带的第一信息是第二子带的子带索引时,第一子带的子带索引和第二子带的子带索引 是连续的自然数,则通过接收系统信息块确定第一子带的子带索引,便可根据第一子带的子带索引确定第二子带的子带索引为第一子带的子带索引加1或减1。比如第一子带的子带索引是偶数,第二子带的子带索引是大于第一子带的子带索引的最小的奇数,则通过接收系统信息块确定第一子带的子带索引,便可根据第一子带的子带索引确定第二子带的子带索引为第一子带的子带索引加1。
又例如当所述第一子带的第一信息是第一子带包含的频率资源的最小宽带频率资源索引,所述第二子带的第一信息是第二子带包含的频率资源的最小宽带频率资源索引时,通过接收系统信息块确定第一子带包含的频率资源的最小宽带频率资源索引为fNB1_min,便可根据第一子带包含的频率资源的最小宽带频率资源索引确定第二子带包含的频率资源的最小宽带频率资源索引为
Figure PCTCN2015087079-appb-000050
其中,
Figure PCTCN2015087079-appb-000051
是系统带宽中包含的频率资源的数量,NNB为所述第一数量。
通过上述方式,根据所述第一子带的第一信息确定所述第二子带的第一信息,就节省了基站用于配置所述第一子带的第一信息和所述第二子带的第一信息的信令开销。
可选地,所述子带的第一信息是子带索引,所述确定子带的第一信息包括:
Figure PCTCN2015087079-appb-000052
或者
Figure PCTCN2015087079-appb-000053
其中NB_Idx为所述子带索引,NNB为所述第一数量,
Figure PCTCN2015087079-appb-000054
是系统带宽中包含的频率资源的数量,Q为系统带宽中包含的子带个数,
Figure PCTCN2015087079-appb-000055
m为根据物理上行控制信道资源索引确定的参量,ns是时隙序号。
可选的,当子带的第一信息发生变化时,第一参量p1也发生变化,即子带的第一信息和第一参量p1同时发生变化。
第一参量p1可以按照公式(5)或者公式(6)进行变化。此时,X和Y既确定了第一参量p1发生变化的时刻,也确定了子带的第一信息发生变化的时刻。
或者,用于确定第一参量p1还包括:若子带的第一信息变化前的第一参量p1是p1_pre,则子带的第一信息变化时,更新确定的第一参量p1为NNB-1-p1_pre,其中NNB为所述第一数量。
子带的第一信息和第一参量p1同时发生变化的示意图如图24或25所示。
通过上述第一参量p1的变化方式,可以保证物理上行控制信道跳频前后映射的频率资源关于系统带宽中心对称,减少了上行控制信息传输对于上行数据传输频率资源的割裂,保证了上行数据的峰值速率或保证了上行数据的接收性能。
可选地,所述频率资源信息为子带频率资源索引,所述子带的带宽等于所述终端所支持的带宽,根据所述子带的第一信息和所述第一参量p1,确定所述频率资源信息,所述子带被分为多个频率资源的索引为子带频率索引,包括:
子带频率资源索引等于所述第一参量p1,其中所述子带频率资源索引指示的频率资源为所述子带中的频率资源。
可选地,所述频率资源信息为第一宽带频率资源索引,所述子带的带宽等于所述终端所支持的带宽,所述根据所述子带的第一信息和所述第一参量p1,确定所述频率资源信息包括:
所述子带的第一信息为子带索引NB_Idx,所述第一宽带频率资源索引nPRB_NB=p1+NB_Idx×NNB
或者,所述子带的第一信息为子带包含的频率资源的最小宽带频率资源索 引fNB_min,所述第一宽带频率资源索引nPRB_NB=p1+fNB_min;;
或者,所述子带的第一信息为子带包含的频率资源的最大宽带频率资源索引fNB_max,所述第一宽带频率资源索引nPRB_NB=fNB_max-NNB+1+p1。
或者,当NNB为奇数时,所述子带的第一信息为子带包含的频率资源的中心频率资源索引fNB_c,所述第一宽带频率资源索引
Figure PCTCN2015087079-appb-000056
或者,当NNB为偶数时,所述子带的第一信息为子带包含的频率资源的中心频率资源索引,所述中心频率资源索引有两个,将两个中心频率资源索引中较小的一个记为中心频率资源索引fNB_c1,所述第一宽带频率资源索引nPRB_NB=fNB_c1-NNB/2+1+p1。
或者,当NNB为偶数时,所述子带的第一信息为子带包含的频率资源的中心频率资源索引,所述中心频率资源索引有两个,将两个中心频率资源索引中较大的一个记为中心频率资源索引fNB_c2,所述第一宽带频率资源索引nPRB_NB=fNB_c2-NNB/2+p1。其中NNB为所述第一数量。
可选的,物理上行控制信道还可以按照如下方式进行跳频。在子带的第一信息变化前,已经确定的第一宽带频率资源索引为nPRB_NB_pre,确定所述第一宽带频率资源索引包括:根据所述第一宽带频率资源索引和第一宽带频率资源变化规则,确定子带的第一信息变化后的第一宽带频率资源索引nPRB_NB_after;其中所述第一宽带频率资源规则为:
Figure PCTCN2015087079-appb-000057
其中
Figure PCTCN2015087079-appb-000058
是系统带宽中包含的频率资源的数量。
可选的,根据预先规定确定在所述多个子帧中,所述频率资源信息发生变 化的时间间隔或者所述频率资源信息发生变化的子帧;
可选的,通过接收无线资源控制信令、媒体接入控制信令、物理层信令中的至少一种确定所述频率资源信息发生变化的时间间隔或者所述频率资源信息发生变化的子帧;
可选的,确定所述频率资源信息发生变化的时间间隔为所述多个子帧的子帧个数的约数。
通过上述物理上行控制信道的跳频方式,可以保证物理上行控制信道跳频前后映射的频率资源关于系统带宽中心对称,减少了上行控制信息传输对于上行数据传输频率资源的割裂,保证了上行数据的峰值速率或保证了上行数据的接收性能。
可选地,将物理上行控制信道映射到所述频率资源信息指示的频率资源上,包括:
在至少一个子帧将物理上行控制信道映射到所述频率资源信息指示的频率资源上。
可选地,所述至少一个子帧包含两个相邻的子帧,并且所述两个子帧的子带的第一信息不同,
将物理上行控制信道映射到所述频率资源信息指示的频率资源上,包括:
在所述两个子帧中的前一个子帧的第一个时隙将物理上行控制信道映射到所述频率资源信息指示的频率资源上,在所述前一个子帧的另一个时隙不进行物理上行控制信道的映射;或者
在所述两个子帧中的后一个子帧的第二个时隙将物理上行控制信道映射到所述频率资源信息指示的频率资源上,在所述后一个子帧的另一个时隙不进行物理上行控制信道的映射;或者
在所述两个子帧中的前一个子帧将物理上行控制信道映射到所述频率资源 信息指示的频率资源上,在所述两个子帧中的后一个子帧不进行物理上行控制信道的映射;或者
在所述两个子帧中的后一个子帧将物理上行控制信道映射到所述频率资源信息指示的频率资源上,在所述两个子帧中的前一个子帧不进行物理上行控制信道的映射。
本实施例中,所述频率资源为一个物理资源块PRB在频率上占据的资源;或者所述频率资源为子载波。
第三实施例
本实例提供一种上行控制信息接收装置,其中终端所支持的带宽小于系统带宽,所述系统带宽中包含多个频率资源。通常所述接收装置可以是基站设备,比如演进基站(eNodeB)。系统带宽为系统所支持的所有频率资源的频带宽度,所述系统带宽被分为多个频率资源。所述频率资源可以为一个物理资源块(physical resource block,PRB)在频率上占据的资源,或者所述频率资源也可以为子载波。虽然本实施例是以上行控制信息说明技术方案,但是本领域技术人员可以理解,基于相同的原理和概念,本实施例的方案同样可以应用于其他上行信息的接收。
如图15所示,所述接收装置300包括:
处理单元302,用于确定第一参量p1;所述第一参量小于等于第一数量;所述第一数量为终端所支持的带宽所能容纳的频率资源的数量;
所述处理单元302,用于根据所述第一参量确定频率资源信息;
所述处理单元302,用于将物理上行控制信道映射到所述频率资源信息指示的频率资源上;
接收单元301,用于通过所述物理上行控制信道接收上行控制信息。
通过设定第一参量p1的值,进而确定对应的频率资源映射,并接收上行控制信息,可以在终端所支持的带宽之内接收上行信息,从而保证了受限终端传输上行控制信息,充分利用了上行数据的峰值速率或保证了上行数据的接收性能。
所述处理单元,确定第一参量p1可以有多种方式。
第一种方式为,所述处理单元,用于根据物理上行控制信道资源索引确定第二参量m*,所述第二参量小于等于所述第一数量;再根据第二参量确定第一参量。
所述处理单元,用于根据物理上行控制信道资源索引确定第二参量m*,可以包括:所述处理单元,用于根据下述参量中的至少一种确定物理上行控制信道资源索引:无线资源控制(radio resource control,RRC)信令包含的参量、物理层信令包含的参量、承载下行控制信息的物理下行控制信道(physical downlink control channel,PDCCH)的第一个控制信道元素(control channel element,CCE)的序号、承载下行控制信息的增强的物理下行控制信道(enhanced physical downlink control channel,EPDCCH)的第一个增强的控制信道元素(enhanced control channel element,ECCE)的序号,承载下行控制信息的机器类型通信的物理下行控制信道的第一个控制信道元素的序号;所述处理单元,用于根据所述物理上行控制信道资源索引确定第二参量m*,所述第二参量小于等于所述第一数量。
可选的,所述PDCCH或者EPDCCH还可以是其它的用于承载下行控制信息的信道,比如是承载下行控制信息的机器类型通信的物理下行控制信道。所述CCE或者ECCE还可以是构成其它的用于承载下行控制信息的信道的元素,比如是构成机器类型通信的物理下行控制信道的控制信道元素。
例如,所述处理单元,用于根据物理上行控制信道资源索引确定第二参量m*的一种方式为:
Figure PCTCN2015087079-appb-000059
Figure PCTCN2015087079-appb-000060
其中,
Figure PCTCN2015087079-appb-000061
是所述物理上行控制信道资源索引。可选的,
Figure PCTCN2015087079-appb-000062
是由无线资源控制(Radio resource control,RRC)信令配置的参数,或者是由RRC信令配置的参数以及构成物理下行控制信道的第一个(最低的)控制信道元素的序号计算出来的参数。所述物理下行控制信道可以是PDCCH,或者EPDCCH,或者是其它的用于承载下行控制信息的信道。所述控制信道元素可以是CCE,或者ECCE,或者是构成其它的用于承载下行控制信息的信道的元素。所述下行控制信息包含物理下行共享信道(Physical Downlink Shared channel,PDSCH)的资源调度信息,所述物理上行控制信道承载了对所述PDSCH的应答或者否定应答信息。
Figure PCTCN2015087079-appb-000063
表示每个时隙用于物理上行控制信道格式2/2a/2b传输的可用PRB个数。
Figure PCTCN2015087079-appb-000064
表示在用于物理上行控制信道格式1/1a/1b和格式2/2a/2b混合映射的PRB中,用于物理上行控制信道格式1/1a/1b的循环移位的个数。
Figure PCTCN2015087079-appb-000065
是RRC信令配置的参数。
Figure PCTCN2015087079-appb-000066
是PRB在频域上包含的子载波的个数。
为了使得所述第二参量小于等于所述第一数量,物理上行控制信道资源索引的最大值需要小于某一特定数值,比如最大值小于2047。所述处理单元,用于根据第二参量确定第一参量可以使用如下公式:
Figure PCTCN2015087079-appb-000067
或者,p1=m*,                (2)
或者
Figure PCTCN2015087079-appb-000068
或者
Figure PCTCN2015087079-appb-000069
或者
Figure PCTCN2015087079-appb-000070
或者
Figure PCTCN2015087079-appb-000071
其中,NNB为所述第一数量,m*为所述第二参量,p1为所述第一参量,ns是时隙序号,nsf是子帧序号。
Figure PCTCN2015087079-appb-000072
表示向下取整,X是和ns、nsf、无线帧序号、发送上行控制信息的起始子帧到当前子帧之间包含的上行子帧数中的至少一个有关的参数。例如X是nsf。又例如X是10×SFN+nsf,SFN是无线帧序号。又例如X是发送上行控制信息的起始子帧到当前子帧之间包含的子帧数或者上行子帧数。Y是预先定义的参数,或者Y是和物理上行控制信道跳频粒度有关的参数,或者Y是和物理上行控制信道跳频周期有关的参数。物理上行控制信道映射的频率资源可以发生变化,称作物理上行控制信道跳频。物理上行控制信道映射的频率资源每G个子帧变化一次,称作物理上行控制信道跳频粒度。物理上行控制信道映射的频率资源的变化规律每H个子帧重复一次,则H个子帧称作物理上行控制信道跳频周期。例如Y是物理上行控制信道跳频粒度。物理上行控制信道 跳频可以发生在物理上行控制信道进行映射或者所述发送单元发送上行控制信息的多个子帧中。即在物理上行控制信道映射的频率资源发生变化前后的多个子帧,所述发送单元发送相同的上行控制信息。X和Y确定了物理上行控制信道跳频的时刻。
例如,参考公式(1),当UE所支持的发送带宽在频率上只能容纳6个PRB时,UE所支持的发送带宽所能容纳的频率资源的个数是6,NNB=6。基站通过选择RRC信令配置的取值、选择构成PDCCH的CCE、选择构成EPDCCH的ECCE中的至少一种方法使得计算出来的m的值的取值范围是0~5,从而
Figure PCTCN2015087079-appb-000073
的取值范围是0~2,
Figure PCTCN2015087079-appb-000074
的取值范围是3~5,UE确定的第一参量的取值不大于6。
图4示例性示出了根据公式(1)获得的频率资源和时隙的关系。其中阴影部分为m*=0时的物理上行控制信道的物理资源。
图5示例性示出了根据公式(2)获得的频率资源和时隙的关系。其中阴影部分为m*=0时的物理上行控制信道的物理资源。图5和公式(2)示出了根据物理上行控制信道资源索引确定第一参量p1。
图6示例性示出了根据公式(3)获得的频率资源和时隙的关系。其中阴影部分为m*=0时的物理上行控制信道的物理资源。
图23示例性示出了根据公式(4)获得的频率资源和时隙的关系。其中阴影部分为m*=0时的物理上行控制信道的物理资源和m*=1时的物理上行控制信道的物理资源。
图24示例性示出了根据公式(5)获得的频率资源和时隙的关系。其中阴影部分为m*=0时的物理上行控制信道的物理资源和m*=1时的物理上行控制信道的物理资源。
图25示例性示出了根据公式(6)获得的频率资源和时隙的关系。其中阴影部分为m*=0时的物理上行控制信道的物理资源和m*=1时的物理上行控制信道的物理资源。
由图4-6、图23-25可以看出m*=0或m*=1所对应的物理资源在子带范围内,根据m*的不同以及子带的不同可以实现在整个系统带宽内的调度。
所述处理单元,确定第一参量p1可以有多种方式中的第二种方式为,所述处理单元,用于确定第一参量p1包括:
Figure PCTCN2015087079-appb-000075
其中
Figure PCTCN2015087079-appb-000076
其中,
Figure PCTCN2015087079-appb-000077
是系统带宽中包含的频率资源的数量,NNB为所述第一数量,m为根据物理上行控制信道资源索引确定的参量,p1为所述第一参量,ns是时隙序号,nPRB是中间变量。例如,当系统带宽在频率上可以包含100个PRB时,
Figure PCTCN2015087079-appb-000078
nPRB取值范围是0~99。当UE所支持的发送带宽在频率上只能容纳6个PRB时,UE所支持的发送带宽所能容纳的频率资源的个数是6,NNB=6。
Figure PCTCN2015087079-appb-000079
p1的取值范围是0~5,不大于6。
所述处理单元,确定第一参量p1可以有多种方式中的第三种方式为,所述处理单元,用于确定第一参量p1包括:所述处理单元,用于根据物理上行控制信道资源索引确定第一参量p1。
具体的,所述处理单元,用于根据下述参量中的至少一种确定物理上行控制信道资源索引:无线资源控制RRC信令包含的参量、物理层信令包含的参量、承载下行控制信息的物理下行控制信道PDCCH的第一个控制信道元素CCE的序 号、承载下行控制信息的增强的物理下行控制信道EPDCCH的第一个增强的控制信道元素ECCE的序号、承载下行控制信息的机器类型通信的物理下行控制信道的第一个控制信道元素的序号;所述处理单元,用于根据所述物理上行控制信道资源索引确定第一参量p1。
例如,所述处理单元,用于根据物理上行控制信道资源索引确定第一参量p1的一种方式为:
Figure PCTCN2015087079-appb-000080
Figure PCTCN2015087079-appb-000081
其中,
Figure PCTCN2015087079-appb-000082
是所述物理上行控制信道资源索引。
Figure PCTCN2015087079-appb-000083
以及其它参数具体如所述处理单元确定第一参量p1的第一种方式所述,此处不再赘述。
为了使得所述第一参量小于等于所述第一数量,物理上行控制信道资源索引的最大值需要小于某一特定数值,比如最大值小于2047。
上述确定第一参量p1的方式,可以在终端所支持的带宽之内接收上行信息,从而保证了受限设备传输上行控制信息,充分利用了上行数据的峰值速率或保证了上行数据的接收性能。
为了更明确的说明确定频率资源信息的方式,可以引入子带的概念。但是,本发明并不局限于必须使用子带才能确定频率资源信息。可以理解,在一些特定的方式中,不使用子带的概念,同样可以将所使用的频率资源范围限定在一定的范围内,以产生相同的技术效果。
系统带宽中可以包含一个或多个子带,所述子带的带宽小于等于所述发送装置所支持的带宽,所述子带包含至少一个频率资源,
所述处理单元,用于根据所述第一参量确定频率资源信息可以包括:
所述处理单元,用于确定子带的第一信息;所述处理单元,用于根据所述子带的第一信息和所述第一参量p1,确定所述频率资源信息。
所述子带的第一信息包括下述之一:子带索引,所述子带包含的频率资源的最小宽带频率资源索引,所述子带包含的频率资源的最大宽带频率资源索引、所述子带包含的频率资源的中心频率资源索引。中心频率资源索引用于指示所述子带的中心频点。所述处理单元还可以通过其他子带的中心频点的配置信息确定子带的中心频点,进而确定中心频率资源索引。
所述系统带宽被分为多个子带的索引为子带索引。本发明实施例以子带索引从0开始编号进行说明,子带索引也可以从1开始编号,其相应的物理上行控制信道的物理资源映射方法都属于本发明实施例的保护范围。所述系统带宽被分为多个频率资源的索引为宽带频率资源索引。所述宽带频率资源索引的取值范围是0~系统带宽包含的频率资源的个数-1。比如取值范围可以是
Figure PCTCN2015087079-appb-000084
所述宽带频率资源索引也可以从1开始编号,其相应的物理上行控制信道的物理资源映射方法都属于本发明实施例的保护范围。
所述处理单元,用于确定子带的第一信息包括:所述处理单元根据预先规定,确定子带的第一信息。
所述预先规定包括:
所述子带为系统带宽边缘的一个子带,所述处理单元,用于根据所述子带得到所述子带的第一信息;或者,
所述子带为所述发送装置最近一次发送上行信息所使用的子带,所述处理单元,用于根据所述子带得到所述子带的第一信息;或者,
所述处理单元,用于根据所述发送装置最近一次接收下行信息所使用的子带和双工距离确定所述子带,所述处理单元,用于根据所述子带得到所述子带的第一信息。
上述系统带宽边缘的子带的含义是,不存在比所述系统带宽包含的子带中的第一个子带或者最后一个子带更靠近系统带宽边缘的子带。可选的,所有发送装置都在所述系统带宽包含的子带中的一个子带包含的频率资源上发送上行控制信息,或者进行物理上行控制信道的资源映射。所述一个子带可以是所述系统带宽包含的子带中的第一个子带或者最后一个子带。在所述一个子带包含的频率资源上,发送装置还可以发送上行数据,或进行物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的资源映射。
上述上行信息包括上行控制信息、上行数据、上行参考信号中的一种。上述下行信息包括下行控制信息、下行数据、肯定应答、否定应答、下行参考信号中的一种。上述双工距离用于表示发送装置发送上行信息和接收下行信息之间的频率间隔。
或者,所述处理单元,用于确定子带的第一信息包括:所述处理单元根据预先定义的规则,确定子带的第一信息。
所述预先定义的规则包括:
所述处理单元,用于根据子帧序号确定所述子带的第一信息。
以确定子带索引为例进行说明。预先定义的规则可以是子带索引NB_Idx=fun(nsf),其中fun(nsf)是和子帧序号nsf有关系的固定的函数,子帧序号nsf的范围是0~9。
或者,预先定义的规则是每T个子帧,子带的第一信息变化一次。T是子带变化周期T。子带变化周期T还可以称作子带变化的时间间隔。在从子带变化的初始子帧开始的T个子帧,子带的第一信息都和初始子带的第一信息相同,T+a个子帧子带的第一信息开始变化。a是固定的自然数。可选的,在T+1~T+a-1的子帧,发送装置不发送上行数据或者上行控制信息。或者,预先定义的规则是物理上行控制信道跳频时,子带的第一信息发生变化。在物理上行控制信道不发生跳 频,即在跳频粒度之内,子带的第一信息不发生变化。每物理上行控制信道跳频周期个子帧,子带的第一信息的变化规律重复一次。
若子帧k的子带的第一信息发生变化,则可以根据子带的第一信息变化规则确定子带的第一信息。子带的第一信息变化规则为:NB_Idx_after=(NB_Idx_pre+SBoffset)mod Q,其中NB_Idx_pre为变化前的子带的第一信息,NB_Idx_after为变化后的子带的第一信息,SBoffset是子带的第一信息偏移量,Q为系统带宽中包含的子带个数或者频率资源个数。子带的第一信息变化规则还可以是子带的第一信息变化图样。所述子带的第一信息变化图样可以是系统预先定义的,或者所述处理单元确定无线资源控制信令、媒体接入控制信令、物理层信令的至少一种包含的所述子带的第一信息变化图样的配置信息。所述配置信息用于配置所述子带的第一信息变化图样。所述子带的第一信息变化图样用于规定在每个子帧的子带的第一信息。
或者,在系统带宽中包含第一子带和第二子带,其中第一子带包含的频率资源和第二子带包含的频率资源的频率位置关于系统带宽中心频率对称。子带的第一信息变化规则还可以为:若变化前的子带的第一信息是第一子带的第一信息,则变化后的子带的第一信息是第二子带的第一信息;若变化前的子带的第一信息是第二子带的第一信息,则变化后的子带的第一信息是第一子带的第一信息。第一子带、第二子带以及子带变化的示意图如图24或25所示。
可选的,所述处理单元,用于根据预先规定确定初始子带的第一信息、子带变化的初始子帧、子带变化周期T、子带的第一信息偏移量SBoffset、系统带宽中包含的子带个数、系统带宽中包含的频率资源个数中的至少一种。
可选的,所述处理单元,用于确定无线资源控制信令、媒体接入控制信令、物理层信令中的至少一种包含子带的第一信息的配置信息,所述接收装置还包括 发送单元,用于发送上述无线资源控制信令、媒体接入控制信令、物理层信令中的至少一种,子带的第一信息的配置信息用于配置初始子带的第一信息、子带变化的初始子帧、子带变化周期T、子带的第一信息偏移量SBoffset、系统带宽中包含的子带个数、系统带宽中包含的频率资源个数中的至少一种。
可选的,所述处理单元,用于确定所述子带变化的时间间隔为所述处理单元将物理上行控制信道映射到所述频率资源信息指示的频率资源上的多个子帧的子帧个数的约数。
或者,所述处理单元,用于确定子带的第一信息包括:所述处理单元,用于确定无线资源控制信令、媒体接入控制信令、物理层信令中的至少一种包含子带的第一信息的配置信息,所述子带的第一信息的配置信息用于配置所述子带的第一信息,所述接收装置还包括发送单元,用于发送上述无线资源控制信令、媒体接入控制信令、物理层信令中的至少一种。
需要说明的是,在本实施例中,所述物理上行控制信道资源索引可以是一个子带中的物理上行控制信道资源的编号;也可以是多个子带中的物理上行控制信道资源的编号,即子带区域物理上行控制信道资源索引。在一个子帧的一个频率资源上,可以有多个物理上行控制信道资源,所述多个物理上行控制信道资源是码分复用的。
或者,所述处理单元,用于确定子带的第一信息包括:所述处理单元,用于根据子带区域物理上行控制信道资源索引确定子带的第一信息。所述处理单元,用于根据下述参量中的至少一种确定子带区域物理上行控制信道资源索引:无线资源控制RRC信令包含的参量、物理层信令包含的参量、承载下行控制信息的物理下行控制信道PDCCH的第一个控制信道元素CCE的序号、承载下行控制信息的增强的物理下行控制信道EPDCCH的第一个增强的控制信道元素ECCE的序号、承载下行控制信息的机器类型通信的物理下行控制信道的第一个控制信道元素 的序号。
可选的,所述处理单元,用于确定所述第一子带的第一信息;根据所述第一子带的第一信息确定所述第二子带的第一信息;所述接收装置还包括发送单元,用于发送系统信息块SIB,所述系统信息块包含所述第一子带的第一信息的配置信息。
例如当所述第一子带的第一信息是第一子带的子带索引,所述第二子带的第一信息是第二子带的子带索引时,第一子带的子带索引和第二子带的子带索引是连续的自然数,则所述处理单元通过确定第一子带的子带索引,便可根据第一子带的子带索引确定第二子带的子带索引为第一子带的子带索引加1或减1。比如第一子带的子带索引是偶数,第二子带的子带索引是大于第一子带的子带索引的最小的奇数,则所述处理单元通过确定第一子带的子带索引,便可根据第一子带的子带索引确定第二子带的子带索引为第一子带的子带索引加1。
又例如当所述第一子带的第一信息是第一子带包含的频率资源的最小宽带频率资源索引,所述第二子带的第一信息是第二子带包含的频率资源的最小宽带频率资源索引时,所述处理单元确定第一子带包含的频率资源的最小宽带频率资源索引为fNB1_min,便可根据第一子带包含的频率资源的最小宽带频率资源索引确定第二子带包含的频率资源的最小宽带频率资源索引为
Figure PCTCN2015087079-appb-000085
其中,
Figure PCTCN2015087079-appb-000086
是系统带宽中包含的频率资源的数量,NNB为所述第一数量。
通过上述方式,所述处理单元根据所述第一子带的第一信息确定所述第二子带的第一信息,就节省了基站用于配置所述第一子带的第一信息和所述第二子带的第一信息的信令开销。
或者,所述处理单元,用于确定子带的第一信息还可以采用如下方式:
Figure PCTCN2015087079-appb-000087
或者
Figure PCTCN2015087079-appb-000088
其中NB_Idx为所述子带索引,NNB为所述第一数量,
Figure PCTCN2015087079-appb-000089
是系统带宽中包含的频率资源的数量,Q为系统带宽中包含的子带个数,
Figure PCTCN2015087079-appb-000090
m为根据物理上行控制信道资源索引确定的参量,可以类似于上述m*的确定方法,也可以根据已知的方式确定,ns是时隙序号。
可选的,当子带的第一信息发生变化时,第一参量p1也发生变化,即子带的第一信息和第一参量p1同时发生变化。
第一参量p1可以按照公式(5)或者公式(6)进行变化。此时,X和Y既确定了第一参量p1发生变化的时刻,也确定了子带的第一信息发生变化的时刻。
或者,所述处理单元,用于确定第一参量p1还包括:若子带的第一信息变化前所述处理单元确定的第一参量p1是p1_pre,则子带的第一信息变化时,所述处理单元更新确定的第一参量p1_after为NNB-1-p1_pre,其中NNB为所述第一数量。
子带的第一信息和第一参量p1同时发生变化的示意图如图24或25所示。
通过上述第一参量p1的变化方式,可以保证物理上行控制信道跳频前后映射的频率资源关于系统带宽中心对称,减少了上行控制信息传输对于上行数据传输频率资源的割裂,保证了上行数据的峰值速率或保证了上行数据的接收性能。
所述子带被分为多个频率资源的索引为子带频率索引。所述子带频率资源索引的取值范围是0~子带包含的频率资源的个数-1。所述子带频率资源索引还可以从1开始编号,其相应的物理上行控制信道的物理资源映射方法都属于本发明 实施例的保护范围。
所述频率资源信息可以为子带频率资源索引,所述子带的带宽等于所述终端所支持的带宽,
所述处理单元,用于根据所述子带的第一信息和所述第一参量p1,确定所述频率资源信息,包括:子带频率资源索引等于所述第一参量p1,其中所述子带频率资源索引指示的频率资源为所述子带中的频率资源。
本实施例中的接收装置,其中,所述频率资源信息为第一宽带频率资源索引,所述子带的带宽等于所述终端所支持的带宽,所述处理单元,用于根据所述子带的第一信息和所述第一参量p1,确定所述频率资源信息包括:
所述子带的第一信息为子带索引NB_Idx,所述第一宽带频率资源索引nPRB_NB=p1+NB_Idx×NNB
或者,所述子带的第一信息为子带包含的频率资源的最小宽带频率资源索引fNB_min,所述第一宽带频率资源索引nPRB_NB=p1+fNB_min;;
或者,所述子带的第一信息为子带包含的频率资源的最大宽带频率资源索引fNB_max,所述第一宽带频率资源索引nPRB_NB=fNB_max-NNB+1+p1。
或者,当NNB为奇数时,所述子带的第一信息为子带包含的频率资源的中心频率资源索引fNB_c,所述第一宽带频率资源索引
Figure PCTCN2015087079-appb-000091
或者,当NNB为偶数时,所述子带的第一信息为子带包含的频率资源的中心频率资源索引,所述中心频率资源索引有两个,将两个中心频率资源索引中较小的一个记为中心频率资源索引fNB_c1,所述第一宽带频率资源索引nPRB_NB=fNB_c1-NNB/2+1+p1。
或者,当NNB为偶数时,所述子带的第一信息为子带包含的频率资源的中心频率资源索引,所述中心频率资源索引有两个,将两个中心频率资源索引中较大的一个记为中心频率资源索引fNB_c2,所述第一宽带频率资源索引nPRB_NB=fNB_c2-NNB/2+p1。其中NNB为所述第一数量。
可选的,物理上行控制信道还可以按照如下方式进行跳频。在子带的第一信息变化前,已经确定的第一宽带频率资源索引为nPRB_NB_pre,所述处理单元,用于确定所述第一宽带频率资源索引包括:所述处理单元,用于根据所述第一宽带频率资源索引和第一宽带频率资源变化规则,确定子带的第一信息变化后的第一宽带频率资源索引nPRB_NB_after;其中所述第一宽带频率资源规则为:
Figure PCTCN2015087079-appb-000092
Figure PCTCN2015087079-appb-000093
其中
Figure PCTCN2015087079-appb-000094
是系统带宽中包含的频率资源的数量。
可选的,所述处理单元,用于根据预先规定确定在所述多个子帧中,所述频率资源信息发生变化的时间间隔或者所述频率资源信息发生变化的子帧;
可选的,所述处理单元,用于确定所述频率资源信息发生变化的时间间隔或者所述频率资源信息发生变化的子帧,并通过无线资源控制信令、媒体接入控制信令、物理层信令中的至少一种发送所述频率资源信息发生变化的时间间隔或者所述频率资源信息发生变化的子帧的配置信息;
可选的,所述处理单元,用于确定所述频率资源信息发生变化的时间间隔为所述多个子帧的子帧个数的约数。
通过上述物理上行控制信道的跳频方式,可以保证物理上行控制信道跳频前后映射的频率资源关于系统带宽中心对称,减少了上行控制信息传输对于上行数据传输频率资源的割裂,保证了上行数据的峰值速率或保证了上行数据的接收性能。
以下说明映射的方式。所述处理单元,用于将物理上行控制信道映射到所述频率资源信息指示的频率资源上,包括:所述处理单元,用于在至少一个子帧将物理上行控制信道映射到所述频率资源信息指示的频率资源上。
当所述处理单元进行一次上行控制信息的发送时,如果在多个子帧将物理上行控制信道映射到所述频率资源信息指示的频率资源上,则可以对上行控制信息或者物理上行控制信道进行覆盖增强,满足覆盖的要求。
对于两个相邻的子帧的情况,当所述两个子帧的子带的第一信息不同时,
所述处理单元,用于将物理上行控制信道映射到所述频率资源信息指示的频率资源上,包括:
所述处理单元,用于在所述两个子帧中的前一个子帧的第一个时隙将物理上行控制信道映射到所述频率资源信息指示的频率资源上,在所述前一个子帧的另一个时隙不进行物理上行控制信道的映射;或者
所述处理单元,用于在所述两个子帧中的后一个子帧的第二个时隙将物理上行控制信道映射到所述频率资源信息指示的频率资源上,在所述后一个子帧的另一个时隙不进行物理上行控制信道的映射;或者
所述处理单元,用于在所述两个子帧中的前一个子帧将物理上行控制信道映射到所述频率资源信息指示的频率资源上,在所述两个子帧中的后一个子帧不进行物理上行控制信道的映射;或者
所述处理单元,用于在所述两个子帧中的后一个子帧将物理上行控制信道映射到所述频率资源信息指示的频率资源上,在所述两个子帧中的前一个子帧不进行物理上行控制信道的映射。
可以看出,相邻子帧之中至少留出了一个时隙,使得终端和系统有时间进行频带的调整,以适配整个系统带宽,从而完成上行信息的发送,充分利用系统带宽,保证上行数据的峰值速率或者上行数据的接收性能。
可选的,对于两个相邻的子帧的情况,当所述两个子帧的子带的第一信息相同时,所述处理单元,在所述两个子帧中每个子帧的两个时隙都将物理上行控制信道映射到所述频率资源信息指示的频率资源上。
本发明实施例的物理上行控制信道的物理资源映射方法,将物理上行控制信道映射到一个子帧的一个子带内,从而映射的频率宽度不超过低复杂度或者低成本的终端所能支持的发送信号的带宽。终端可以在一个子帧的一个子带内发送上行控制信息,并且终端发送上行控制信息的子带不总是在系统带宽中心,从而避免了发送上行控制信息复杂度高、资源浪费、其他终端上行数据峰值速率降低的问题。
第四实施例
本实施例提供一种上行信息接收方法,该方法与第三实施例的上行信息接收装置一致。该方法中的特征所对应的发明目的、技术手段、获得的技术效果与第三实施例一致,不再赘述。具体实现的过程请可以参见第三实施例中装置实施例所实现的方法。本实施例所述的方法可以由基站设备使用,比如演进基站(eNodeB)。为了表述清楚,说明如下。
本实施例提供一种上行控制信息接收方法,如图16所示,其中终端所支持的带宽小于系统带宽,所述系统带宽中包含多个频率资源,所述方法包括如下步骤:
步骤401,确定第一参量p1;所述第一参量小于等于第一数量;所述第一数量为所述终端所支持的带宽所能容纳的频率资源的数量;
步骤402,根据所述第一参量确定频率资源信息;
步骤403,将物理上行控制信道映射到所述频率资源信息指示的频率资源上;
步骤404,通过所述物理上行控制信道接收上行控制信息。
可选地,所述确定第一参量p1包括:
根据物理上行控制信道资源索引确定第二参量m*,所述第二参量小于等于所述第一数量;
根据第二参量确定第一参量。
可选地,根据物理上行控制信道资源索引确定第二参量m*,包括:
根据下述参量中的至少一种确定物理上行控制信道资源索引:无线资源控制RRC信令包含的参量、物理层信令包含的参量、承载下行控制信息的物理下行控制信道PDCCH的第一个控制信道元素CCE的序号、承载下行控制信息的增强的物理下行控制信道EPDCCH的第一个增强的控制信道元素ECCE的序号,承载下行控制信息的机器类型通信的物理下行控制信道的第一个控制信道元素的序号;
根据所述物理上行控制信道资源索引确定第二参量m*,所述第二参量小于等于所述第一数量。
可选的,所述PDCCH或者EPDCCH还可以是其它的用于承载下行控制信息的信道,比如是承载下行控制信息的机器类型通信的物理下行控制信道。所述CCE或者ECCE还可以是构成其它的用于承载下行控制信息的信道的元素,比如是构成机器类型通信的物理下行控制信道的控制信道元素。
可选地,根据第二参量确定第一参量包括:
Figure PCTCN2015087079-appb-000095
或者,p1=m*,或者
Figure PCTCN2015087079-appb-000096
或者
Figure PCTCN2015087079-appb-000097
或者
Figure PCTCN2015087079-appb-000098
或者
Figure PCTCN2015087079-appb-000099
NNB为所述第一数量,m*为所述第二参量,p1为所述第一参量,ns是时隙序号,nsf是子帧序号。
Figure PCTCN2015087079-appb-000100
表示向下取整。X是和ns、nsf、无线帧序号、发送上行控制信息的起始子帧到当前子帧之间包含的上行子帧数中的至少一个有关的参数。例如X是nsf。又例如X是10×SFN+nsf,SFN是无线帧序号。又例如X是发送上行控制信息的起始子帧到当前子帧之间包含的子帧数或者上行子帧数。Y是预先定义的参数,或者Y是和物理上行控制信道跳频粒度有关的参数,或者Y是和物理上行控制信道跳频周期有关的参数。物理上行控制信道映射的频率资源可以发生变化,称作物理上行控制信道跳频。物理上行控制信道映射的频率资源每G个子帧变化一次,称作物理上行控制信道跳频粒度。物理上行控制信道映射的频率资源的变化规律每H个子帧重复一次,则H个子帧称作物理上行控制信道跳频周期。例如Y是物理上行控制信道跳频粒度。物理上行控制信道跳频可以发生在物理上行控制信道进行映射或者所述发送单元发送上行控制信息的多个子帧中。即在物理上行控制信道映射的频率资源发生变化前后的多个子帧,所述发送单元发送相同的上行控制信息。X和Y确定了物理上行控制信道跳频的时刻。
可选地,所述确定第一参量p1包括:
Figure PCTCN2015087079-appb-000101
其中
Figure PCTCN2015087079-appb-000102
Figure PCTCN2015087079-appb-000103
是系统带宽中包含的频率资源的数量,NNB为所述第一数量,m为根据物理上行控制信道资源索引确定的参量,p1为所述第一参量,ns是时隙序号,nPRB是中间变量。
所获得的频率资源和时隙的关系可以参照图4、5、6、23、24、25。由图4-6、图23-25可以看出m*=0或m*=1所对应的物理资源在子带范围内,根据m*的不同以及子带的不同可以实现在整个系统带宽内的调度。
确定第一参量p1可以有多种方式中的第三种方式为,确定第一参量p1包括:根据物理上行控制信道资源索引确定第一参量p1。
具体的,根据下述参量中的至少一种确定物理上行控制信道资源索引:无线资源控制RRC信令包含的参量、物理层信令包含的参量、承载下行控制信息的物理下行控制信道PDCCH的第一个控制信道元素CCE的序号、承载下行控制信息的增强的物理下行控制信道EPDCCH的第一个增强的控制信道元素ECCE的序号、承载下行控制信息的机器类型通信的物理下行控制信道的第一个控制信道元素的序号;根据所述物理上行控制信道资源索引确定第一参量p1。
例如,根据物理上行控制信道资源索引确定第一参量p1的一种方式为:
Figure PCTCN2015087079-appb-000104
Figure PCTCN2015087079-appb-000105
其中,
Figure PCTCN2015087079-appb-000106
是所述物理上行控制信道资源索引。
Figure PCTCN2015087079-appb-000107
以及其它参数具体如第 一实施例所述,此处不再赘述。
为了使得所述第一参量小于等于所述第一数量,物理上行控制信道资源索引的最大值需要小于某一特定数值,比如最大值小于2047。
可选地,所述系统带宽中包含一个或多个子带,所述子带的带宽小于等于所述终端所支持的带宽,所述子带包含至少一个频率资源,
所述根据所述第一参量确定频率资源信息包括:
确定子带的第一信息;
根据所述子带的第一信息和所述第一参量p1,确定所述频率资源信息。
可选地,所述确定子带的第一信息包括:
所述子带为系统带宽边缘的一个子带,根据所述子带得到所述子带的第一信息;或者,
所述子带为所述终端最近一次发送上行信息所使用的子带,根据所述子带得到所述子带的第一信息;或者,
根据终端最近一次接收下行信息所使用的子带和双工距离确定所述子带,根据所述子带得到所述子带的第一信息;或者,
根据子帧序号确定所述子带的第一信息;或者,
确定无线资源控制信令、媒体接入控制信令、物理层信令中的至少一种包含子带的第一信息的配置信息,所述子带的第一信息的配置信息用于配置所述子带的第一信息,发送上述无线资源控制信令、媒体接入控制信令、物理层信令中的至少一种。
上述系统带宽边缘的子带的含义是,不存在比所述系统带宽包含的子带中的第一个子带或者最后一个子带更靠近系统带宽边缘的子带。上行信息包括上行控制信息、上行数据、上行参考信号中的一种。下行信息包括下行控制信息、下行数据、肯定应答、否定应答、下行参考信号中的一种。
可选地,所述确定子带的第一信息包括:根据子带的第一信息变化规则确定子带的第一信息;其中子带的第一信息变化规则为:NB_Idx_after=(NB_Idx_pre+SBoffset)mod Q,
其中NB_Idx_pre为变化前的子带的第一信息,NB_Idx_after为变化后的子带的第一信息,SBoffset是子带的第一信息偏移量,Q为系统带宽中包含的子带个数或者频率资源个数。
或者,在系统带宽中包含第一子带和第二子带,其中第一子带包含的频率资源和第二子带包含的频率资源的频率位置关于系统带宽中心频率对称。子带的第一信息变化规则还可以为:若变化前的子带的第一信息是第一子带的第一信息,则变化后的子带的第一信息是第二子带的第一信息;若变化前的子带的第一信息是第二子带的第一信息,则变化后的子带的第一信息是第一子带的第一信息。
可选地,所述方法还包括
根据预先规定确定初始子带的第一信息、子带变化的初始子帧、子带变化周期T、子带的第一信息偏移量SBoffset、系统带宽中包含的子带个数、系统带宽中包含的频率资源个数中的至少一种;
或者,确定无线资源控制信令、媒体接入控制信令、物理层信令中的至少一种包含子带的第一信息的配置信息,发送上述无线资源控制信令、媒体接入控制信令、物理层信令中的至少一种,子带的第一信息的配置信息用于配置初始子带的第一信息、子带变化的初始子帧、子带变化周期T、子带的第一信息偏移量SBoffset、系统带宽中包含的子带个数、系统带宽中包含的频率资源个数中的至少一种。
需要说明的是,在本实施例中,所述物理上行控制信道资源索引可以是一个子带中的物理上行控制信道资源的编号;也可以是多个子带中的物理上行控制 信道资源的编号,即子带区域物理上行控制信道资源索引。在一个子帧的一个频率资源上,可以有多个物理上行控制信道资源,所述多个物理上行控制信道资源是码分复用的。
或者,确定子带的第一信息包括:根据子带区域物理上行控制信道资源索引确定子带的第一信息。根据下述参量中的至少一种确定子带区域物理上行控制信道资源索引:无线资源控制RRC信令包含的参量、物理层信令包含的参量、承载下行控制信息的物理下行控制信道PDCCH的第一个控制信道元素CCE的序号、承载下行控制信息的增强的物理下行控制信道EPDCCH的第一个增强的控制信道元素ECCE的序号、承载下行控制信息的机器类型通信的物理下行控制信道的第一个控制信道元素的序号。
子带变化周期T还可以称作子带变化的时间间隔。可选的,确定所述子带变化的时间间隔为将物理上行控制信道映射到所述频率资源信息指示的频率资源上的多个子帧的子帧个数的约数。
可选地,所述子带的第一信息包括下述之一:子带索引,所述子带包含的频率资源的最小宽带频率资源索引,所述子带包含的频率资源的最大宽带频率资源索引、所述子带包含的频率资源的中心频率资源索引。
上述子带变化周期T的含义为,每经过T个子帧子带变化一次。所述系统带宽被分为多个子带的索引为子带索引。所述系统带宽被分为多个频率资源的索引为宽带频率资源索引。
可选的,所述方法还包括:确定所述第一子带的第一信息;根据所述第一子带的第一信息确定所述第二子带的第一信息;发送系统信息块SIB,所述系统信息块包含所述第一子带的第一信息的配置信息。
例如当所述第一子带的第一信息是第一子带的子带索引,所述第二子带的第一信息是第二子带的子带索引时,第一子带的子带索引和第二子带的子带索引 是连续的自然数,则确定了第一子带的子带索引,便可根据第一子带的子带索引确定第二子带的子带索引为第一子带的子带索引加1或减1。比如第一子带的子带索引是偶数,第二子带的子带索引是大于第一子带的子带索引的最小的奇数,则确定了第一子带的子带索引,便可根据第一子带的子带索引确定第二子带的子带索引为第一子带的子带索引加1。
又例如当所述第一子带的第一信息是第一子带包含的频率资源的最小宽带频率资源索引,所述第二子带的第一信息是第二子带包含的频率资源的最小宽带频率资源索引时,则若确定了第一子带包含的频率资源的最小宽带频率资源索引为fNB1_min,便可根据第一子带包含的频率资源的最小宽带频率资源索引确定第二子带包含的频率资源的最小宽带频率资源索引为
Figure PCTCN2015087079-appb-000108
其中,
Figure PCTCN2015087079-appb-000109
是系统带宽中包含的频率资源的数量,NNB为所述第一数量。
通过上述方式,根据所述第一子带的第一信息确定所述第二子带的第一信息,就节省了基站用于配置所述第一子带的第一信息和所述第二子带的第一信息的信令开销。
可选地,所述子带的第一信息是子带索引,所述确定子带的第一信息包括:
Figure PCTCN2015087079-appb-000110
或者
Figure PCTCN2015087079-appb-000111
其中NB_Idx为所述子带索引,NNB为所述第一数量,
Figure PCTCN2015087079-appb-000112
是系统带宽中包含的频率资源的数量,Q为系统带宽中包含的子带个数,
Figure PCTCN2015087079-appb-000113
m为根据物理上行控制信道资源索引确定的参量,ns是时隙序号。
可选的,当子带的第一信息发生变化时,第一参量p1也发生变化,即子带的第一信息和第一参量p1同时发生变化。
第一参量p1可以按照公式(5)或者公式(6)进行变化。此时,X和Y既确定了第一参量p1发生变化的时刻,也确定了子带的第一信息发生变化的时刻。
或者,用于确定第一参量p1还包括:若子带的第一信息变化前确定的第一参量p1是p1_pre,则子带的第一信息变化时,更新确定的第一参量p1为NNB-1-p1_pre,其中NNB为所述第一数量。
子带的第一信息和第一参量p1同时发生变化的示意图如图24或25所示。
通过上述第一参量p1的变化方式,可以保证物理上行控制信道跳频前后映射的频率资源关于系统带宽中心对称,减少了上行控制信息传输对于上行数据传输频率资源的割裂,保证了上行数据的峰值速率或保证了上行数据的接收性能。
可选地,所述频率资源信息为子带频率资源索引,所述子带的带宽等于所述终端所支持的带宽,根据所述子带的第一信息和所述第一参量p1,确定所述频率资源信息,所述子带被分为多个频率资源的索引为子带频率索引,包括:
子带频率资源索引等于所述第一参量p1,其中所述子带频率资源索引指示的频率资源为所述子带中的频率资源。
可选地,所述频率资源信息为第一宽带频率资源索引,所述子带的带宽等于所述终端所支持的带宽,所述根据所述子带的第一信息和所述第一参量p1,确定所述频率资源信息包括:
所述子带的第一信息为子带索引NB_Idx,所述第一宽带频率资源索引nPRB_NB=p1+NB_Idx×NNB
或者,所述子带的第一信息为子带包含的频率资源的最小宽带频率资源索引fNB_min,所述第一宽带频率资源索引nPRB_NB=p1+fNB_min;;
或者,所述子带的第一信息为子带包含的频率资源的最大宽带频率资源索引fNB_max,所述第一宽带频率资源索引nPRB_NB=fNB_max-NNB+1+p1。
或者,当NNB为奇数时,所述子带的第一信息为子带包含的频率资源的中心频率资源索引fNB_c,所述第一宽带频率资源索引
Figure PCTCN2015087079-appb-000114
或者,当NNB为偶数时,所述子带的第一信息为子带包含的频率资源的中心频率资源索引,所述中心频率资源索引有两个,将两个中心频率资源索引中较小的一个记为中心频率资源索引fNB_c1,所述第一宽带频率资源索引nPRB_NB=fNB_c1-NNB/2+1+p1。
或者,当NNB为偶数时,所述子带的第一信息为子带包含的频率资源的中心频率资源索引,所述中心频率资源索引有两个,将两个中心频率资源索引中较大的一个记为中心频率资源索引fNB_c2,所述第一宽带频率资源索引nPRB_NB=fNB_c2-NNB/2+p1。其中NNB为所述第一数量。
可选的,物理上行控制信道还可以按照如下方式进行跳频。在子带的第一信息变化前,已经确定的第一宽带频率资源索引为nPRB_NB_pre,所述确定所述第一宽带频率资源索引包括:根据所述第一宽带频率资源索引和第一宽带频率资源变化规则,确定子带的第一信息变化后的第一宽带频率资源索引nPRB_NB_after;其中所述第一宽带频率资源规则为:
Figure PCTCN2015087079-appb-000115
其中
Figure PCTCN2015087079-appb-000116
是系统带宽中包含的频率资源的数量。
可选的,根据预先规定确定在所述多个子帧中,所述频率资源信息发生变化的时间间隔或者所述频率资源信息发生变化的子帧;
可选的,确定所述频率资源信息发生变化的时间间隔或者所述频率资源信息发生变化的子帧,并通过无线资源控制信令、媒体接入控制信令、物理层信令中的至少一种发送所述频率资源信息发生变化的时间间隔或者所述频率资源信息发生变化的子帧的配置信息;
可选的,确定所述频率资源信息发生变化的时间间隔为所述多个子帧的子帧个数的约数。
通过上述物理上行控制信道的跳频方式,可以保证物理上行控制信道跳频前后映射的频率资源关于系统带宽中心对称,减少了上行控制信息传输对于上行数据传输频率资源的割裂,保证了上行数据的峰值速率或保证了上行数据的接收性能。
可选地,将物理上行控制信道映射到所述频率资源信息指示的频率资源上,包括:
在至少一个子帧将物理上行控制信道映射到所述频率资源信息指示的频率资源上。
可选地,所述至少一个子帧包含两个相邻的子帧,并且所述两个子帧的子带的第一信息不同,
将物理上行控制信道映射到所述频率资源信息指示的频率资源上,包括:
在所述两个子帧中的前一个子帧的第一个时隙将物理上行控制信道映射到所述频率资源信息指示的频率资源上,在所述前一个子帧的另一个时隙不进行物理上行控制信道的映射;或者
在所述两个子帧中的后一个子帧的第二个时隙将物理上行控制信道映射到所述频率资源信息指示的频率资源上,在所述后一个子帧的另一个时隙不进行物理上行控制信道的映射;或者
在所述两个子帧中的前一个子帧将物理上行控制信道映射到所述频率资源 信息指示的频率资源上,在所述两个子帧中的后一个子帧不进行物理上行控制信道的映射;或者
在所述两个子帧中的后一个子帧将物理上行控制信道映射到所述频率资源信息指示的频率资源上,在所述两个子帧中的前一个子帧不进行物理上行控制信道的映射。
本实施例中,所述频率资源为一个物理资源块PRB在频率上占据的资源;或者所述频率资源为子载波。
第五实施例
本实例提供一种上行控制信息发送装置,其中所述发送装置所支持的带宽小于系统带宽,所述系统带宽中包含多个频率资源。所述发送装置所支持的带宽所能容纳的频率资源是系统带宽包含多个频率资源中的部分频率资源。在一个子帧,所述发送装置只能在系统带宽包含多个频率资源中的部分频率资源发送上行信息。通常所述发送装置可以是用户终端,比如用户设备(UE)。系统带宽为系统所支持的所有频率资源的频带宽度,所述系统带宽被分为多个频率资源。所述频率资源可以为一个物理资源块(physical resource block,PRB)在频率上占据的资源,或者所述频率资源也可以为子载波。虽然本实施例是以上行控制信息说明技术方案,但是本领域技术人员可以理解,基于相同的原理和概念,本实施例的方案同样可以应用于其他上行信息的发送。
如图17所示,所述上行控制信息发送装置500包括:
处理单元502,用于确定第一频率资源信息和第二频率资源信息,其中所述第二频率资源信息所指示的第二频率资源与所述第一频率资源信息所指示的第一频率资源之间的频率宽度,小于等于发送装置所支持的带宽;
所述处理单元502,用于在子帧的第一个时隙,将物理上行控制信道映射到 所述第一频率资源信息指示的第一频率资源上;在子帧的第二个时隙,将物理上行控制信道映射到所述第二频率资源信息指示的第二频率资源上;
发送单元501,用于通过所述物理上行控制信道发送上行控制信息。
本实施例通过确定第一频率资源信息和第二频率资源信息,其中所述第二频率资源信息所指示的第二频率资源与所述第一频率资源信息所指示的第一频率资源之间的频率宽度,小于等于发送装置所支持的带宽,进而确定对应的频率资源映射,并发送上行控制信息,可以将所发送的上行控制信息限制在发送装置所支持的带宽之内,从而保证了受限终端传输上行控制信息,并且受限终端传输上行控制信息不总是在系统带宽的中心,充分保证了上行数据的峰值速率或上行数据的接收性能。
所述处理单元,用于确定第一频率资源信息包括:
所述处理单元,用于根据m确定第一频率资源信息,其中m为根据物理上行控制信道资源索引确定的参量。所述物理上行控制信道资源索引可以用于根据下述参量中的至少一种确定:无线资源控制(radio resource control,RRC)信令包含的参量、物理层信令包含的参量、承载下行控制信息的物理下行控制信道(physical downlink control channel,PDCCH)的第一个控制信道元素(control channel element,CCE)的序号、承载下行控制信息的增强的物理下行控制信道(enhanced physical downlink control channel,EPDCCH)的第一个增强的控制信道元素(enhanced control channel element,ECCE)的序号、承载下行控制信息的机器类型通信的物理下行控制信道的第一个控制信道元素的序号。所述物理上行控制信道资源索引可以是现有的PUCCH索引。m的确定方式和现有的PUCCH相同。
可选地,所述第一频率资源信息为第一频率资源索引nPRB_NB_s1,所述第一频率资源索引为宽带频率资源索引,其中所述系统带宽被分为多个频率资源的索引为宽带频率资源索引,
所述处理单元,用于根据m确定第一频率资源信息,包括:
nPRB_NB_s1=m;                (7)
或者
或者
Figure PCTCN2015087079-appb-000118
其中
Figure PCTCN2015087079-appb-000119
是系统带宽中包含的频率资源的数量。ns是时隙序号。
所述宽带频率资源索引的取值范围是0~系统带宽包含的频率资源的个数-1。比如取值范围可以是
Figure PCTCN2015087079-appb-000120
所述宽带频率资源索引也可以从1开始编号,其相应的物理上行控制信道的物理资源映射方法都属于本发明实施例的保护范围。
如图8-11所示,每个时隙所对应的m可能会变化,对应的第一频率资源信息在不同的时隙的取值不同,所指示的频率资源可以取到系统带宽中的不同的频率资源。
或者,所述处理单元,用于确定第一频率资源信息包括:
所述处理单元,用于根据m'确定第一频率资源信息,其中m'为根据子带区域物理上行控制信道资源索引确定的参量。系统带宽中包含一个或多个子带,所述子带的带宽小于等于所述发送装置所支持的带宽,所述子带包含至少一个频率资源。对系统带宽中用于物理上行控制信道映射的一个或者多个子带中的物理上行控制信道资源进行编号,即为所述子带区域物理上行控制信道资源索引。
例如,根据子带区域物理上行控制信道资源索引确定m'的一种方式为:
Figure PCTCN2015087079-appb-000121
Figure PCTCN2015087079-appb-000122
其中,
Figure PCTCN2015087079-appb-000123
是所述子带区域物理上行控制信道资源索引。所述子带区域物理上行控制信道资源索引可以用于根据下述参量中的至少一种确定:无线资源控制(radio resource control,RRC)信令包含的参量、物理层信令包含的参量、承载下行控制信息的机器类型通信的物理下行控制信道的第一个控制信道元素的序号。可选的,所述子带区域物理上行控制信道资源索引的确定方式和现有PUCCH资源索引的确定方式相同。与现有PUCCH资源索引不同的是,为保证所述子带区域物理上行控制信道资源索引是一个或者多个子带中的物理上行控制信道资源的编号,所述RRC信令包含的参量、物理层信令包含的参量、第一个控制信道元素的序号中的一种或多种的取值范围和确定现有PUCCH资源索引的以上参量的取值范围不同。其它参数具体如实施例一中处理单元确定第一参量p1的第一种方式所述,此处不再赘述。
可选的,所述第一频率资源信息为第三频率资源索引nPRB_NB_MUL_s1,所述第三频率资源索引为所述用于物理上行控制信道映射的一个或者多个子带包含的频率资源的索引,
所述处理单元,用于根据m'确定第一频率资源信息,包括:所述第三频率资源索引nPRB_NB_MUL_s1和如下公式确定的第三频率资源索引nPRB_NB_MUL_s1相同:
Figure PCTCN2015087079-appb-000124
或者,
Figure PCTCN2015087079-appb-000125
其中
Figure PCTCN2015087079-appb-000126
是所述一个或者多个子带包含的频率资源的数量,X是和时隙序号ns、子帧序号nsf、无线帧序号、发送上行控制信息的起始子帧到当前子帧之间包含的子帧数或者上行子帧数中的至少一个有关的参数。例如X是nsf。又例如X是10×SFN+nsf,SFN是无线帧序号。又例如X是发送上行控制信息的起始子帧到当前子帧之间包含的上行子帧数。Y是预先定义的参数,或者Y是和物理上行控制信道跳频粒度有关的参数,或者Y是和物理上行控制信道跳频周期有关的参数。物理上行控制信道映射的频率资源可以发生变化,称作物理上行控制信道跳频。物理上行控制信道映射的频率资源每G个子帧变化一次,称作物理上行控制信道跳频粒度。物理上行控制信道映射的频率资源的变化规律每H个子帧重复一次,称作物理上行控制信道跳频周期。例如Y是物理上行控制信道跳频粒度。物理上行控制信道跳频可以发生在物理上行控制信道进行映射或者所述发送单元发送上行控制信息的多个子帧中。即在物理上行控制信道映射的频率资源发生变化前后的多个子帧,所述发送单元发送相同的上行控制信息。X和Y确定了物理上行控制信道跳频的时刻。
所述第三频率资源索引的取值范围是0~所述用于物理上行控制信道映射的一个或者多个子带包含的频率资源的个数-1。比如取值范围可以是
Figure PCTCN2015087079-appb-000127
所述第三频率资源索引也可以从1开始编号,其相应的物理上行控制信道的物理资源映射方法都属于本发明实施例的保护范围。
图26、图27分别示例性示出了根据公式(10)、(11)获得的频率资源和时隙的关系。其中阴影部分为m*=0时的物理上行控制信道的物理资源和m*=1时 的物理上行控制信道的物理资源。
可选的,所述处理单元,用于根据m'确定第一频率资源信息,还包括:在所述处理单元在子帧的第一个时隙将物理上行控制信道映射到所述第一频率资源信息指示的第一频率资源上,在子帧的第二个时隙将物理上行控制信道映射到所述第二频率资源信息指示的第二频率资源上的多个子帧中的第一个子帧,所述处理单元确定所述频率资源信息的初始值为所述第三频率资源索引nPRB_NB_MUL_s1;在所述多个子帧中,所述频率资源信息发生变化;若所述频率资源信息变化前为所述一个或者多个子带包含的频率资源的索引nPRB_NB_MUL_s1_pre,则在所述频率资源信息变化时,所述处理单元更新确定的所述频率资源信息为所述一个或者多个子带包含的频率资源的索引
Figure PCTCN2015087079-appb-000128
其中
Figure PCTCN2015087079-appb-000129
是所述一个或者多个子带包含的频率资源的数量。
可选的,所述处理单元,用于根据预先规定确定在所述多个子帧中,所述频率资源信息发生变化的时间间隔或者所述频率资源信息发生变化的子帧;
可选的,所述处理单元,用于通过接收无线资源控制信令、媒体接入控制信令、物理层信令中的至少一种确定所述频率资源信息发生变化的时间间隔或者所述频率资源信息发生变化的子帧;
可选的,所述处理单元,用于确定所述频率资源信息发生变化的时间间隔为所述多个子帧的子帧个数的约数。
可选的,所述处理单元,用于确定第二频率资源信息的方式和用于确定第一频率资源信息的方式相同。从而就可以使得所述第二频率资源信息所指示的第二频率资源与所述第一频率资源信息所指示的第一频率资源之间的频率宽度,小于等于发送装置所支持的带宽。
可选地,所述处理单元,用于确定第二频率资源信息,包括:所述处理单 元,用于根据第一频率资源信息确定第二频率资源信息。
根据第一频率资源信息确定第二频率资源信息,从而就可以使得所述第二频率资源信息所指示的第二频率资源与所述第一频率资源信息所指示的第一频率资源之间的频率宽度,小于等于发送装置所支持的带宽。
可选地,所述第一频率资源信息为第一频率资源索引nPRB_NB_s1,所述第一频率资源索引为宽带频率资源索引,所述第二频率资源信息为第二频率资源索引nPRB_NB_s2,所述第二频率资源索引为宽带频率资源索引,
则所述处理单元,用于根据第一频率资源信息确定第二频率资源信息包括:
第二频率资源索引等于第一频率资源索引,或者
所述处理单元,用于确定子带的第二信息,
所述处理单元,用于根据第一频率资源索引以及子带的第二信息确定第二频率资源索引,或者
所述处理单元,用于根据第一频率资源索引以及发送装置所支持的带宽所能容纳的频率资源的数量确定第二频率资源索引。
其中,所述系统带宽中包含一个或多个子带,所述子带的带宽小于等于所述发送装置所支持的带宽,所述子带包含至少一个频率资源。
可以看出图8中第二频率索引指示的频率资源与第一频率索引指示的频率资源不同,并处于发送装置所支持的带宽内。
可选地,所述的发送装置中所述处理单元,用于确定子带的第二信息通过下述方式:
所述处理单元根据预先规定,确定子带的第二信息。
所述预先规定包括:
所述子带为系统带宽边缘的一个子带,所述处理单元,用于根据所述子带得到所述子带的第二信息;
或者,所述子带为所述发送装置最近一次发送上行信息所使用的子带,所述处理单元,用于根据所述子带得到所述子带的第二信息;
或者,所述处理单元,用于根据所述发送装置最近一次接收下行信息所使用的子带和双工距离确定所述子带,所述处理单元,用于根据所述子带得到所述子带的第二信息;。
上述系统带宽边缘的子带的含义是,不存在比所述系统带宽包含的子带中的第一个子带或者最后一个子带更靠近系统带宽边缘的子带。可选的,所有发送装置都在所述系统带宽包含的子带中的一个子带包含的频率资源上发送上行控制信息,或者进行物理上行控制信道的资源映射。所述一个子带可以是所述系统带宽包含的子带中的第一个子带或者最后一个子带。在所述一个子带包含的频率资源上,发送装置还可以发送上行数据,或进行物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的资源映射。
上述上行信息包括上行控制信息、上行数据、上行参考信号中的一种。上述下行信息包括下行控制信息、下行数据、肯定应答、否定应答、下行参考信号中的一种。上述双工距离用于表示发送装置发送上行信息和接收下行信息之间的频率间隔。
或者,所述处理单元根据预先定义的规则,确定子带的第二信息。
所述预先定义的规则包括:
所述处理单元,用于根据子帧序号确定所述子带的第二信息。比如子带的第二信息可以是子帧序号nsf的固定函数。
或者,预先定义的规则是每T个子帧,子带的第二信息变化一次。具体可以参考第一实施例中每T个子帧,子带的第一信息变化一次的变化方式,本实施例不再赘述。
或者,所述处理单元,用于通过接收无线资源控制信令、媒体接入控制信 令、物理层信令中的至少一种确定子带的第二信息。
上述多种实现方式,可以从多种可能的方式达到相同的效果,进而实现本发明实施例的目的。
可选地,所述子带的第二信息包括下述之一:所述子带包含的频率资源的最小宽带频率资源索引,所述子带包含的频率资源的最大宽带频率资源索引,所述子带包含的频率资源的中心频率资源索引。所述最小宽带频率资源索引、最大宽带频率资源索引、中心频率资源索引示意图如图7所示。中心频率资源索引用于指示所述子带的中心频点。所述处理单元还可以通过其他子带的中心频点的配置信息确定子带的中心频点,进而确定中心频率资源索引。
可选的,或者,所述处理单元,还用于确定子带索引,并根据子带索引确定子带的第二信息。所述处理单元确定子带索引的方式可以参见第一实施例,本实施例不再赘述。
上述多种实现方式都可以确定子带的第二信息,从而根据第一频率资源索引以及子带的第二信息确定第二频率资源索引。
可选地,所述子带的带宽等于所述发送装置所支持的带宽,NNB是所述发送装置所支持的带宽所能容纳的频率资源的数量,
则所述处理单元,用于根据第一频率资源索引以及子带的第二信息确定第二频率资源索引,包括:
若所述子带的第二信息为所述子带包含的频率资源的最小宽带频率资源索引fNB_min,则第二频率资源索引nPRB_NB_s2=fNB_min×2+NNB-1-nPRB_NB_s1
若所述子带的第二信息为所述子带包含的频率资源的最大宽带频率资源索引fNB_max,则第二频率资源索引nPRB_NB_s2=fNB_max×2-NNB+1-nPRB_NB_s1
当NNB为奇数时,若所述子带的第二信息为所述子带包含的频率资源的中心 频率资源索引fNB_c,则第二频率资源索引nPRB_NB_s2=fNB_c×2-nPRB_NB_s1
当NNB为偶数时,若所述子带的第二信息为所述子带包含的频率资源的中心频率资源索引,所述中心频率资源索引有两个,将两个中心频率资源索引中较小的一个记为中心频率资源索引fNB_c1、较大的一个记为中心频率资源索引fNB_c2,则
第二频率资源索引nPRB_NB_s2=fNB_c1+fNB_c2-nPRB_NB_s1,或者
第二频率资源索引nPRB_NB_s2=2×fNB_c1+1-nPRB_NB_s1,或者
第二频率资源索引nPRB_NB_s2=2×fNB_c2-1-nPRB_NB_s1
可选地,所述处理单元,用于根据第一频率资源索引以及发送装置所支持的带宽所能容纳的频率资源的数量确定第二频率资源索引包括:
第二频率资源索引
Figure PCTCN2015087079-appb-000130
或者,第二频率资源索引
Figure PCTCN2015087079-appb-000131
或者,第二频率资源索引
Figure PCTCN2015087079-appb-000132
其中A是固定的参数。比如A是
Figure PCTCN2015087079-appb-000133
NNB是所述发送装置所支持的带宽所能容纳的频率资源的数量。
可选的,所述第一频率资源信息为第三频率资源索引nPRB_NB_MUL_s1,所述第 二频率资源信息为第四频率资源索引nPRB_NB_MUL_s2,所述第三频率资源索引以及所述第四频率资源索引为所述用于物理上行控制信道映射的一个或者多个子带包含的频率资源的索引,所述处理单元,用于根据第一频率资源信息确定第二频率资源信息包括:
第四频率资源索引等于第三频率资源索引。
从而就可以使得所述第二频率资源信息所指示的第二频率资源与所述第一频率资源信息所指示的第一频率资源之间的频率宽度,小于等于发送装置所支持的带宽。
可以看出,通过上述方式,可以将第二频率资源限制在合理的范围内。从而第二频率资源信息所指示的第二频率资源与所述第一频率资源信息所指示的第一频率资源之间的频率宽度,小于等于发送装置所支持的带宽。进而实现本实施例的目的,完成上行信息的发送,充分利用系统带宽,保证上行数据的峰值速率或者上行数据的接收性能。
可选的,所述处理单元,用于在子帧的第一个时隙,将物理上行控制信道映射到所述第一频率资源信息指示的第一频率资源上;在子帧的第二个时隙,将物理上行控制信道映射到所述第二频率资源信息指示的第二频率资源上,包括:
所述处理单元,用于确定所述一个或者多个子带;
所述处理单元,用于在子帧的第一个时隙,将物理上行控制信道映射到所述第一频率资源信息指示的第一频率资源上;在子帧的第二个时隙,将物理上行控制信道映射到所述第二频率资源信息指示的第二频率资源上;所述第一频率资源信息指示的第一频率资源以及所述第二频率资源信息指示的第二频率资源是所述一个或者多个子带包含的频率资源中的频率资源。
所述一个或者多个子带是用于物理上行控制信道映射的子带。可选的,所述一个或者多个子带是所述处理单元通过接收系统信息块确定的。物理上行控制信 道映射的频率资源的示意图如图26或图27所示。
通过公式(10)或公式(11)、所述频率资源信息的变化方式以及上述物理上行控制信道的映射方式,可以保证物理上行控制信道跳频前后映射的频率资源关于系统带宽中心对称,减少了上行控制信息传输对于上行数据传输频率资源的割裂,保证了上行数据的峰值速率或保证了上行数据的接收性能。
可选的,当所述处理单元用于确定所述多个子带时,所述多个子带包含第一子带和第二子带,其中第一子带包含的频率资源和第二子带包含的频率资源的频率位置关于系统带宽中心对称,如图27所示。
在一种方式中,所述处理单元,用于确定所述多个子带,包括:
所述处理单元,用于通过接收系统信息块确定第一子带的第一信息;
所述处理单元,用于根据所述第一子带的第一信息确定第二子带的第一信息;
所述处理单元,用于根据所述第一子带的第一信息确定所述第一子带,根据所述第二子带的第二信息确定所述第二子带。
其中,子带的第一信息包括下述之一:子带索引,所述子带包含的频率资源的最小宽带频率资源索引,所述子带包含的频率资源的最大宽带频率资源索引、所述子带包含的频率资源的中心频率资源索引。
例如当所述第一子带的第一信息是第一子带的子带索引,所述第二子带的第一信息是第二子带的子带索引时,第一子带的子带索引和第二子带的子带索引是连续的自然数,则所述处理单元通过接收系统信息块确定第一子带的子带索引,便可根据第一子带的子带索引确定第二子带的子带索引为第一子带的子带索引加1或减1。比如第一子带的子带索引是偶数,第二子带的子带索引是大于第一子带的子带索引的最小的奇数,则所述处理单元通过接收系统信息块确定第一子带的子带索引,便可根据第一子带的子带索引确定第二子带的子带索引为第一子带的子带索引加1。所述处理单元确定第一子带的子带索引和第二子带的子带索引 之后,就可以由所述子带索引和预先规定的子带及子带编号确定所述子带索引指示的第一子带和第二子带。
又例如当所述第一子带的第一信息是第一子带包含的频率资源的最小宽带频率资源索引,所述第二子带的第一信息是第二子带包含的频率资源的最小宽带频率资源索引时,所述处理单元通过接收系统信息块确定第一子带包含的频率资源的最小宽带频率资源索引为fNB1_min,便可根据第一子带包含的频率资源的最小宽带频率资源索引确定第二子带包含的频率资源的最小宽带频率资源索引为
Figure PCTCN2015087079-appb-000134
其中,
Figure PCTCN2015087079-appb-000135
是系统带宽中包含的频率资源的数量,NNB为所述第一数量。所述处理单元确定第一子带包含的频率资源的最小宽带频率资源索引和第二子带包含的频率资源的最小宽带频率资源索引之后,就可以由所述最小宽带频率资源索引和子带包含的频率资源的个数确定所述第一子带和第二子带。
在另一种方式中,所述处理单元,用于确定所述多个子带,包括:
所述处理单元,用于通过接收系统信息块确定第一子带的第一信息;
所述处理单元,用于根据所述第一子带的第一信息确定所述第一子带;
所述处理单元,用于根据所述第一子带确定所述第二子带;
例如当所述第一子带的第一信息是第一子带的子带索引,则所述处理单元通过接收系统信息块确定第一子带的子带索引,就可以由所述子带索引和预先规定的子带及子带编号确定所述子带索引指示的第一子带。由所述第一子带包含的频率资源位置,就可以确定与第一子带包含的频率资源位置关于系统带宽中心对称的频率资源位置,即确定了所述第二子带。比如所述第一子带包含的其中一个频率资源的宽带频率资源索引为fNB1,则其关于系统带宽中心对称的频率资源的宽带频率资源索引为
Figure PCTCN2015087079-appb-000136
其中,
Figure PCTCN2015087079-appb-000137
是系统带宽中包含的频率资源的数量。
上述两种所述处理单元用于确定所述多个子带的方式,节省了基站用于配置所述第一子带的第一信息和所述第二子带的第一信息的信令开销。
可选地,所述处理单元,用于在子帧的第一个时隙,将物理上行控制信道映射到所述第一频率资源信息指示的第一频率资源上;在子帧的第二个时隙,将物理上行控制信道映射到所述第二频率资源信息指示的第二频率资源上,包括:
在至少一个子帧中的任意一个子帧的第一个时隙,将物理上行控制信道映射到所述第一频率资源信息指示的第一频率资源上;在所述至少一个子帧中的任意一个子帧的第二个时隙,将物理上行控制信道映射到所述第二频率资源信息指示的第二频率资源上。
当所述处理单元进行一次上行控制信息的发送时,如果在多个子帧将物理上行控制信道映射到所述频率资源信息指示的频率资源上,则可以对上行控制信息或者物理上行控制信道进行覆盖增强,满足覆盖的要求。
可选地,所述至少一个子帧包括两个相邻的子帧,并且在所述两个子帧的确定的第一频率资源不同,
所述处理单元,用于在至少一个子帧中的任意一个子帧的第一个时隙,将物理上行控制信道映射到所述第一频率资源信息指示的第一频率资源上;在所述至少一个子帧中的任意一个子帧的第二个时隙,将物理上行控制信道映射到所述第二频率资源信息指示的第二频率资源上,包括:
所述处理单元,用于在所述两个子帧中的前一个子帧的第一个时隙将物理上行控制信道映射到所述第一频率资源信息指示的第一频率资源上,在所述前一个子帧的另一个时隙不进行物理上行控制信道的映射;如图10所示,中间子帧的第一时隙映射了频率资源,在第二时隙不映射频率资源,或者
所述处理单元,用于在所述两个子帧中的后一个子帧的第二个时隙将物理上行控制信道映射到所述第二频率资源信息指示的第二频率资源上,在所述后一 个子帧的另一个时隙不进行物理上行控制信道的映射;或者
所述处理单元,用于在所述两个子帧中的前一个子帧的第一个时隙和第二个时隙分别将物理上行控制信道映射到所述第一频率资源信息指示的第一频率资源和所述第二频率资源信息指示的第二频率资源上,在所述两个子帧中的后一个子帧不进行物理上行控制信道的映射;或者
所述处理单元,用于在所述两个子帧中的后一个子帧的第一个时隙和第二个时隙分别将物理上行控制信道映射到所述第一频率资源信息指示的第一频率资源和所述第二频率资源信息指示的第二频率资源上,在所述两个子帧中的前一个子帧不进行物理上行控制信道的映射。
如图11-12所示,中间子帧的两个时隙都未映射频率资源,中间子帧为所述两个子帧中的前一个子帧或者所述两个子帧中的后一个子帧。
可以看出,相邻子帧之中至少留出了一个时隙,使得终端和系统有时间进行频带的调整,以适配整个系统带宽,从而完成上行信息的发送,充分利用系统带宽,保证上行数据的峰值速率或者上行数据的接收性能。
可选的,所述至少一个子帧包括两个相邻的子帧,并且在所述两个子帧的确定的第一频率资源相同时,所述处理单元,在所述两个子帧中每个子帧的第一个时隙,都将物理上行控制信道映射到所述第一频率资源信息指示的第一频率资源上;在所述两个子帧中每个子帧的第二个时隙,都将物理上行控制信道映射到所述第二频率资源信息指示的第二频率资源上。
本发明的实施例的物理上行控制信道的物理资源映射方法,将物理上行控制信道映射到一个子帧的一个子带内,从而映射的频率宽度不超过低复杂度或者低成本的终端所能支持的发送信号的带宽。终端可以在一个子帧的一个子带内发送上行控制信息,并且终端发送上行控制信息的子带不总是在系统带宽中心,从而避免了发送上行控制信息复杂度高、资源浪费、其他终端上行数据峰值速率降 低的问题。
第六实施例
本实施例提供一种上行信息发送方法,该方法与第五实施例的上行信息发送装置一致。该方法中的特征所对应的发明目的、技术手段、获得的技术效果与第五实施例一致,不再赘述。具体实现的过程请可以参见第五实施例中装置实施例所实现的方法。本实施例所述的方法可以由终端使用,比如用户设备(UE)。为了表述清楚,说明如下。
本实施例提供一种上行控制信息发送方法,如图18所示,其中终端所支持的带宽小于系统带宽,所述系统带宽中包含多个频率资源,所述方法包括如下步骤:
步骤601,确定第一频率资源信息和第二频率资源信息,其中所述第二频率资源信息所指示的第二频率资源与所述第一频率资源信息所指示的第一频率资源之间的频率宽度,小于等于终端所支持的带宽;
步骤602,在子帧的第一个时隙,将物理上行控制信道映射到所述第一频率资源信息指示的第一频率资源上;在子帧的第二个时隙,将物理上行控制信道映射到所述第二频率资源信息指示的第二频率资源上;
步骤603,通过所述物理上行控制信道发送上行控制信息。
本实施例通过确定第一频率资源信息和第二频率资源信息,其中所述第二频率资源信息所指示的第二频率资源与所述第一频率资源信息所指示的第一频率资源之间的频率宽度,小于等于发送装置所支持的带宽,进而确定对应的频率资源映射,并发送上行控制信息,可以将所发送的上行控制信息限制在发送装置所支持的带宽之内,从而保证了受限终端传输上行控制信息,充分利用了上行数据的峰值速率或保证了上行数据的接收性能。
可选地,所述确定第一频率资源信息包括:
根据m确定第一频率资源信息,其中m为根据物理上行控制信道资源索引确定的参量。
可选地,所述第一频率资源信息为第一频率资源索引nPRB_NB_s1,所述第一频率资源索引为宽带频率资源索引,所述系统带宽被分为多个频率资源的索引为宽带频率资源索引,
所述根据m确定第一频率资源信息,包括:
nPRB_NB_s1=m;或者
Figure PCTCN2015087079-appb-000138
或者
Figure PCTCN2015087079-appb-000139
其中
Figure PCTCN2015087079-appb-000140
是系统带宽中包含的频率资源的数量。ns是时隙序号。
可选地,所述确定第二频率资源信息,包括:
根据第一频率资源信息确定第二频率资源信息。
可选地,所述第一频率资源信息为第一频率资源索引nPRB_NB_s1,所述第一频率资源索引为宽带频率资源索引,所述第二频率资源信息为第二频率资源索引nPRB_NB_s2,所述第二频率资源索引为宽带频率资源索引,
根据第一频率资源信息确定第二频率资源信息包括:
第二频率资源索引等于第一频率资源索引,或者
确定子带的第二信息,并根据第一频率资源索引以及子带的第二信息确定第二频率资源索引,或者
根据第一频率资源索引以及终端所支持的带宽所能容纳的频率资源的数量确定第二频率资源索引。
其中,所述系统带宽中包含一个或多个子带,所述子带的带宽小于等于所述终端所支持的带宽,所述子带包含至少一个频率资源。
可选地,所述子带的第二信息通过下述方式之一确定:
所述子带为系统带宽边缘的一个子带,根据所述子带得到所述子带的第二信息;
所述子带为所述终端最近一次发送上行信息所使用的子带,根据所述子带得到所述子带的第二信息;
根据终端最近一次接收下行信息所使用的子带和双工距离确定所述子带,根据所述子带得到所述子带的第二信息;
根据子帧序号确定所述子带的第二信息;
通过接收无线资源控制信令、媒体接入控制信令、物理层信令中的至少一种确定子带的第二信息。
可选地,所述子带的第二信息包括下述之一:所述子带包含的频率资源的最小宽带频率资源索引,所述子带包含的频率资源的最大宽带频率资源索引,所述子带包含的频率资源的中心频率资源索引。
可选地,所述子带的带宽等于所述终端所支持的带宽,NNB是所述终端所支持的带宽所能容纳的频率资源的数量
根据第一频率资源索引以及子带的第二信息确定第二频率资源索引,包括:
若所述子带的第二信息为所述子带包含的频率资源的最小宽带频率资源索引fNB_min,则第二频率资源索引nPRB_NB_s2=fNB_min×2+NNB-1-nPRB_NB_s1
若所述子带的第二信息为所述子带包含的频率资源的最大宽带频率资源索 引fNB_max,则第二频率资源索引nPRB_NB_s2=fNB_max×2-NNB+1-nPRB_NB_s1
当NNB为奇数时,若所述子带的第二信息为所述子带包含的频率资源的中心频率资源索引fNB_c,则第二频率资源索引nPRB_NB_s2=fNB_c×2-nPRB_NB_s1
当NNB为偶数时,若所述子带的第二信息为所述子带包含的频率资源的中心频率资源索引,所述中心频率资源索引有两个,将两个中心频率资源索引中较小的一个记为中心频率资源索引fNB_c1、较大的一个记为中心频率资源索引fNB_c2,则
第二频率资源索引nPRB_NB_s2=fNB_c1+fNB_c2-nPRB_NB_s1,或者
第二频率资源索引nPRB_NB_s2=2×fNB_c1+1-nPRB_NB_s1,或者
第二频率资源索引nPRB_NB_s2=2×fNB_c2-1-nPRB_NB_s1
可选地,根据第一频率资源索引以及终端所支持的带宽所能容纳的频率资源的数量确定第二频率资源索引包括:
第二频率资源索引
Figure PCTCN2015087079-appb-000141
或者,第二频率资源索引
Figure PCTCN2015087079-appb-000142
或者,第二频率资源索引
Figure PCTCN2015087079-appb-000143
其中A是固定的参数。比如A是
Figure PCTCN2015087079-appb-000144
NNB是所述终端所支持的带宽所能容纳 的频率资源的数量。
可选地,在子帧的第一个时隙,将物理上行控制信道映射到所述第一频率资源信息指示的第一频率资源上;在子帧的第二个时隙,将物理上行控制信道映射到所述第二频率资源信息指示的第二频率资源上,包括:
在至少一个子帧中的任意一个子帧的第一个时隙,将物理上行控制信道映射到所述第一频率资源信息指示的第一频率资源上;在所述至少一个子帧中的任意一个子帧的第二个时隙,将物理上行控制信道映射到所述第二频率资源信息指示的第二频率资源上。
可选地,所述至少一个子帧为两个相邻的子帧,并且在所述两个子帧的确定的第一频率资源不同,
在至少一个子帧中的任意一个子帧的第一个时隙,将物理上行控制信道映射到所述第一频率资源信息指示的第一频率资源上;在所述至少一个子帧中的任意一个子帧的第二个时隙,将物理上行控制信道映射到所述第二频率资源信息指示的第二频率资源上,包括:
在所述两个子帧中的前一个子帧的第一个时隙将物理上行控制信道映射到所述第一频率资源信息指示的第一频率资源上,在所述前一个子帧的另一个时隙不进行物理上行控制信道的映射;或者
在所述两个子帧中的后一个子帧的第二个时隙将物理上行控制信道映射到所述第二频率资源信息指示的第二频率资源上,在所述后一个子帧的另一个时隙不进行物理上行控制信道的映射;或者
在所述两个子帧中的前一个子帧的第一个时隙和第二个时隙分别将物理上行控制信道映射到所述第一频率资源信息指示的第一频率资源和所述第二频率资源信息指示的第二频率资源上,在所述两个子帧中的后一个子帧不进行物理上行控制信道的映射;或者
在所述两个子帧中的后一个子帧的第一个时隙和第二个时隙分别将物理上行控制信道映射到所述第一频率资源信息指示的第一频率资源和所述第二频率资源信息指示的第二频率资源上,在所述两个子帧中的前一个子帧不进行物理上行控制信道的映射。
本发明的实施例的物理上行控制信道的物理资源映射方法,将物理上行控制信道映射到一个子帧的一个子带内,从而映射的频率宽度不超过低复杂度或者低成本的终端所能支持的发送信号的带宽。终端可以在一个子帧的一个子带内发送上行控制信息,并且终端发送上行控制信息的子带不总是在系统带宽中心,从而避免了发送上行控制信息复杂度高、资源浪费、其他终端上行数据峰值速率降低的问题。
第七实施例
本实例提供一种上行控制信息接收装置,其中终端所支持的带宽小于系统带宽,所述系统带宽中包含多个频率资源。通常所述接收装置可以是基站设备,比如演进基站(eNodeB)。系统带宽为系统所支持的所有频率资源的频带宽度,所述系统带宽被分为多个频率资源。所述频率资源可以为一个物理资源块(physical resource block,PRB)在频率上占据的资源,或者所述频率资源也可以为子载波。虽然本实施例是以上行控制信息说明技术方案,但是本领域技术人员可以理解,基于相同的原理和概念,本实施例的方案同样可以应用于其他上行信息的接收。
如图19所示,所述接收装置包括:
处理单元702,用于确定第一频率资源信息和第二频率资源信息,其中所述第二频率资源信息所指示的第二频率资源与所述第一频率资源信息所指示的第一频率资源之间的频率宽度,小于等于终端所支持的带宽;
所述处理单元702,用于在子帧的第一个时隙,将物理上行控制信道映射到 所述第一频率资源信息指示的第一频率资源上;在子帧的第二个时隙,将物理上行控制信道映射到所述第二频率资源信息指示的第二频率资源上;
接收单元701,用于通过所述物理上行控制信道接收上行控制信息。
本实施例通过确定第一频率资源信息和第二频率资源信息,其中所述第二频率资源信息所指示的第二频率资源与所述第一频率资源信息所指示的第一频率资源之间的频率宽度,小于等于发送装置所支持的带宽,进而确定对应的频率资源映射,可以将所发送的上行控制信息限制在发送装置所支持的带宽之内,从而保证了受限终端传输上行控制信息,并且受限终端传输上行控制信息不总是在系统带宽的中心,充分保证了上行数据的峰值速率或上行数据的接收性能,充分利用了上行数据的峰值速率或保证了上行数据的接收性能。
可选地,所述处理单元,用于确定第一频率资源信息包括:
所述处理单元,用于根据m确定第一频率资源信息,其中m为根据物理上行控制信道资源索引确定的参量。具体可以类似于第五实施例中m的确定方法。
可选地,所述第一频率资源信息为第一频率资源索引nPRB_NB_s1,所述第一频率资源索引为宽带频率资源索引,所述系统带宽被分为多个频率资源的索引为宽带频率资源索引
所述处理单元,用于根据m确定第一频率资源信息,包括:
nPRB_NB_s1=m;或者
Figure PCTCN2015087079-appb-000145
或者
Figure PCTCN2015087079-appb-000146
其中
Figure PCTCN2015087079-appb-000147
是系统带 宽中包含的频率资源的数量。ns是时隙序号。
所述宽带频率资源索引的取值范围是0~系统带宽包含的频率资源的个数-1。比如取值范围可以是
Figure PCTCN2015087079-appb-000148
所述宽带频率资源索引也可以从1开始编号,其相应的物理上行控制信道的物理资源映射方法都属于本发明实施例的保护范围。
如图8-11所示,每个时隙所对应的m可能会变化,对应的第一频率资源信息在不同的时隙的取值不同,所指示的频率资源可以取到系统带宽中的不同的频率资源。
可选地,所述处理单元,用于确定第二频率资源信息,包括:
所述处理单元,用于根据第一频率资源信息确定第二频率资源信息。
根据第一频率资源信息确定第二频率资源信息,从而就可以使得所述第二频率资源信息所指示的第二频率资源与所述第一频率资源信息所指示的第一频率资源之间的频率宽度,小于等于发送装置所支持的带宽。
可选地,所述第一频率资源信息为第一频率资源索引nPRB_NB_s1,所述第一频率资源索引为宽带频率资源索引,所述第二频率资源信息为第二频率资源索引nPRB_NB_s2,所述第二频率资源索引为宽带频率资源索引,
所述处理单元,用于根据第一频率资源信息确定第二频率资源信息包括:
第二频率资源索引等于第一频率资源索引,或者
所述处理单元,用于确定子带的第二信息,
所述处理单元,用于根据第一频率资源索引以及子带的第二信息确定第二频率资源索引,或者
所述处理单元,用于根据第一频率资源索引以及终端所支持的带宽所能容纳的频率资源的数量确定第二频率资源索引。
其中,所述系统带宽中包含一个或多个子带,所述子带的带宽小于等于所 述终端所支持的带宽,所述子带包含至少一个频率资源。
可选地,所述处理单元,用于确定子带的第二信息通过下述方式:
所述处理单元根据预先规定,确定子带的第二信息。
所述预先规定包括:
所述子带为系统带宽边缘的一个子带,所述处理单元,用于根据所述子带得到所述子带的第二信息;
或者,所述子带为所述终端最近一次发送上行信息所使用的子带,所述处理单元,用于根据所述子带得到所述子带的第二信息;
或者,所述处理单元,用于根据终端最近一次接收下行信息所使用的子带和双工距离确定所述子带,所述处理单元,用于根据所述子带得到所述子带的第二信息。
上述系统带宽边缘的子带的含义是,不存在比所述系统带宽包含的子带中的第一个子带或者最后一个子带更靠近系统带宽边缘的子带。可选的,所有发送装置都在所述系统带宽包含的子带中的一个子带包含的频率资源上发送上行控制信息,或者进行物理上行控制信道的资源映射。所述一个子带可以是所述系统带宽包含的子带中的第一个子带或者最后一个子带。在所述一个子带包含的频率资源上,发送装置还可以发送上行数据,或进行物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的资源映射。
上述上行信息包括上行控制信息、上行数据、上行参考信号中的一种。上述下行信息包括下行控制信息、下行数据、肯定应答、否定应答、下行参考信号中的一种。上述双工距离用于表示发送装置发送上行信息和接收下行信息之间的频率间隔。
或者,所述处理单元根据预先定义的规则,确定子带的第二信息。
所述预先定义的规则包括:
所述处理单元,用于根据子帧序号确定所述子带的第二信息。比如子带的第二信息可以是子帧序号nsf的固定函数。
或者,预先定义的规则是每T个子帧,子带的第二信息变化一次。具体可以参考第一实施例中每T个子帧,子带的第一信息变化一次的变化方式,本实施例不再赘述。
或者,所述处理单元,用于确定无线资源控制信令、媒体接入控制信令、物理层信令中的至少一种包含子带的第二信息的配置信息,所述子带的第二信息的配置信息用于配置所述子带的第二信息,所述接收装置还包括发送单元,用于发送上述无线资源控制信令、媒体接入控制信令、物理层信令中的至少一种。
上述多种实现方式,可以从多种可能的方式达到相同的效果,进而实现本发明实施例的目的。
可选地,参见图7,所述子带的第二信息包括下述之一:所述子带包含的频率资源的最小宽带频率资源索引,所述子带包含的频率资源的最大宽带频率资源索引,所述子带包含的频率资源的中心频率资源索引。中心频率资源索引用于指示所述子带的中心频点。所述处理单元还可以通过其他子带的中心频点的配置信息确定子带的中心频点,进而确定中心频率资源索引。
可选的,或者,所述处理单元,还用于确定子带索引,并根据子带索引确定子带的第二信息。所述处理单元确定子带索引的方式可以参见第一实施例,本实施例不再赘述。
上述多种实现方式都可以确定子带的第二信息,从而根据第一频率资源索引以及子带的第二信息确定第二频率资源索引。
可选地,所述子带的带宽等于所述终端所支持的带宽,NNB是所述终端所支持的带宽所能容纳的频率资源的数量,
所述处理单元,用于根据第一频率资源索引以及子带的第二信息确定第二 频率资源索引,包括:
若所述子带的第二信息为所述子带包含的频率资源的最小宽带频率资源索引fNB_min,则第二频率资源索引nPRB_NB_s2=fNB_min×2+NNB-1-nPRB_NB_s1
若所述子带的第二信息为所述子带包含的频率资源的最大宽带频率资源索引fNB_max,则第二频率资源索引nPRB_NB_s2=fNB_max×2-NNB+1-nPRB_NB_s1
当NNB为奇数时,若所述子带的第二信息为所述子带包含的频率资源的中心频率资源索引fNB_c,则第二频率资源索引nPRB_NB_s2=fNB_c×2-nPRB_NB_s1
当NNB为偶数时,若所述子带的第二信息为所述子带包含的频率资源的中心频率资源索引,所述中心频率资源索引有两个,将两个中心频率资源索引中较小的一个记为中心频率资源索引fNB_c1、较大的一个记为中心频率资源索引fNB_c2,则
第二频率资源索引nPRB_NB_s2=fNB_c1+fNB_c2-nPRB_NB_s1,或者
第二频率资源索引nPRB_NB_s2=2×fNB_c1+1-nPRB_NB_s1,或者
第二频率资源索引nPRB_NB_s2=2×fNB_c2-1-nPRB_NB_s1
可选地,所述处理单元,用于根据第一频率资源索引以及终端所支持的带宽所能容纳的频率资源的数量确定第二频率资源索引包括:
第二频率资源索引
Figure PCTCN2015087079-appb-000149
或者,第二频率资源索引
Figure PCTCN2015087079-appb-000150
或者,第二频率资源索引
Figure PCTCN2015087079-appb-000151
其中A是固定的参数。比如A是
Figure PCTCN2015087079-appb-000152
NNB是所述终端所支持的带宽所能容纳的频率资源的数量。
可以看出,通过上述方式,可以将第二频率资源限制在合理的范围内。从而第二频率资源信息所指示的第二频率资源与所述第一频率资源信息所指示的第一频率资源之间的频率宽度,小于等于发送装置所支持的带宽。进而实现本实施例的目的,完成上行信息的发送,充分利用系统带宽,保证上行数据的峰值速率或者上行数据的接收性能。
可选地,所述处理单元,用于在子帧的第一个时隙,将物理上行控制信道映射到所述第一频率资源信息指示的第一频率资源上;在子帧的第二个时隙,将物理上行控制信道映射到所述第二频率资源信息指示的第二频率资源上,包括:
在至少一个子帧中的任意一个子帧的第一个时隙,将物理上行控制信道映射到所述第一频率资源信息指示的第一频率资源上;在所述至少一个子帧中的任意一个子帧的第二个时隙,将物理上行控制信道映射到所述第二频率资源信息指示的第二频率资源上。
当所述处理单元进行一次上行控制信息的发送时,如果在多个子帧将物理上行控制信道映射到所述频率资源信息指示的频率资源上,则可以对上行控制信息或者物理上行控制信道进行覆盖增强,满足覆盖的要求。
可选地,所述至少一个子帧包括两个相邻的子帧,并且在所述两个子帧的确定的第一频率资源不同,
所述处理单元,用于在至少一个子帧中的任意一个子帧的第一个时隙,将 物理上行控制信道映射到所述第一频率资源信息指示的第一频率资源上;在所述至少一个子帧中的任意一个子帧的第二个时隙,将物理上行控制信道映射到所述第二频率资源信息指示的第二频率资源上,包括:
所述处理单元,用于在所述两个子帧中的前一个子帧的第一个时隙将物理上行控制信道映射到所述第一频率资源信息指示的第一频率资源上,在所述前一个子帧的另一个时隙不进行物理上行控制信道的映射;如图10所示,中间子帧的第一时隙映射了频率资源,在第二时隙不映射频率资源,或者
所述处理单元,用于在所述两个子帧中的后一个子帧的第二个时隙将物理上行控制信道映射到所述第二频率资源信息指示的第二频率资源上,在所述后一个子帧的另一个时隙不进行物理上行控制信道的映射;或者
所述处理单元,用于在所述两个子帧中的前一个子帧的第一个时隙和第二个时隙分别将物理上行控制信道映射到所述第一频率资源信息指示的第一频率资源和所述第二频率资源信息指示的第二频率资源上,在所述两个子帧中的后一个子帧不进行物理上行控制信道的映射;或者
所述处理单元,用于在所述两个子帧中的后一个子帧的第一个时隙和第二个时隙分别将物理上行控制信道映射到所述第一频率资源信息指示的第一频率资源和所述第二频率资源信息指示的第二频率资源上,在所述两个子帧中的前一个子帧不进行物理上行控制信道的映射。
如图11-12所示,中间子帧的两个时隙都未映射频率资源,中间子帧为所述两个子帧中的前一个子帧或者所述两个子帧中的后一个子帧。
可以看出,相邻子帧之中至少留出了一个时隙,使得终端和系统有时间进行频带的调整,以适配整个系统带宽,从而完成上行信息的发送,充分利用系统带宽,保证上行数据的峰值速率或者上行数据的接收性能。
可选的,所述至少一个子帧包括两个相邻的子帧,并且在所述两个子帧的 确定的第一频率资源相同时,所述处理单元,在所述两个子帧中每个子帧的第一个时隙,都将物理上行控制信道映射到所述第一频率资源信息指示的第一频率资源上;在所述两个子帧中每个子帧的第二个时隙,都将物理上行控制信道映射到所述第二频率资源信息指示的第二频率资源上。
本发明的实施例的物理上行控制信道的物理资源映射方法,将物理上行控制信道映射到一个子帧的一个子带内,从而映射的频率宽度不超过低复杂度或者低成本的终端所能支持的发送信号的带宽。终端可以在一个子帧的一个子带内发送上行控制信息,并且终端发送上行控制信息的子带不总是在系统带宽中心,从而避免了发送上行控制信息复杂度高、资源浪费、其他终端上行数据峰值速率降低的问题。
第八实施例
本实施例提供一种上行信息接收方法,该方法与第七实施例的上行信息接收装置一致。该方法中的特征所对应的发明目的、技术手段、获得的技术效果与第七实施例一致,不再赘述。具体实现的过程请可以参见第七实施例中装置实施例所实现的方法。本实施例所述的方法可以由基站设备使用,比如演进基站(eNodeB)。为了表述清楚,说明如下。
本实施例提供一种上行控制信息接收方法,如图20所示,其中终端所支持的带宽小于系统带宽,所述系统带宽中包含多个频率资源,所述方法包括如下步骤:
确定第一频率资源信息和第二频率资源信息,其中所述第二频率资源信息所指示的第二频率资源与所述第一频率资源信息所指示的第一频率资源之间的频率宽度,小于等于终端所支持的带宽;
在子帧的第一个时隙,将物理上行控制信道映射到所述第一频率资源信息指示的第一频率资源上;在子帧的第二个时隙,将物理上行控制信道映射到所述 第二频率资源信息指示的第二频率资源上;
通过所述物理上行控制信道接收上行控制信息。
可选地,所述确定第一频率资源信息包括:
根据m确定第一频率资源信息,其中m为根据物理上行控制信道资源索引确定的参量。
可选地,所述第一频率资源信息为第一频率资源索引nPRB_NB_s1,所述第一频率资源索引为宽带频率资源索引,所述系统带宽被分为多个频率资源的索引为宽带频率资源索引,
所述根据m确定第一频率资源信息,包括:
nPRB_NB_s1=m;或者
Figure PCTCN2015087079-appb-000153
或者
Figure PCTCN2015087079-appb-000154
其中
Figure PCTCN2015087079-appb-000155
是系统带宽中包含的频率资源的数量。ns是时隙序号。
可选地,确定第二频率资源信息,包括:
根据第一频率资源信息确定第二频率资源信息。
可选地,所述第一频率资源信息为第一频率资源索引nPRB_NB_s1,所述第一频率资源索引为宽带频率资源索引,所述第二频率资源信息为第二频率资源索引nPRB_NB_s2,所述第二频率资源索引为宽带频率资源索引,
根据第一频率资源信息确定第二频率资源信息包括:
第二频率资源索引等于第一频率资源索引,或者
确定子带的第二信息,并根据第一频率资源索引以及子带的第二信息确定第二频率资源索引,或者
根据第一频率资源索引以及终端所支持的带宽所能容纳的频率资源的数量确定第二频率资源索引。
其中,所述系统带宽中包含一个或多个子带,所述子带的带宽小于等于所述终端所支持的带宽,所述子带包含至少一个频率资源。
可选地,所述子带的第二信息通过下述方式之一确定:
所述子带为系统带宽边缘的一个子带,根据所述子带得到所述子带的第二信息,其中所述系统带宽边缘的子带的含义是,不存在比所述系统带宽包含的子带中的第一个子带或者最后一个子带更靠近系统带宽边缘的子带。;
所述子带为所述终端最近一次发送上行信息所使用的子带,根据所述子带得到所述子带的第二信息;
根据终端最近一次接收下行信息所使用的子带和双工距离确定所述子带,根据所述子带得到所述子带的第二信息;
根据子帧序号确定所述子带的第二信息;
确定无线资源控制信令、媒体接入控制信令、物理层信令中的至少一种包含子带的第二信息的配置信息,所述子带的第二信息的配置信息用于配置所述子带的第二信息,所述方法还包括,发送上述无线资源控制信令、媒体接入控制信令、物理层信令中的至少一种。
可选地,所述子带的第二信息包括下述之一:所述子带包含的频率资源的最小宽带频率资源索引,所述子带包含的频率资源的最大宽带频率资源索引,所述子带包含的频率资源的中心频率资源索引。
可选地,所述子带的带宽等于所述终端所支持的带宽,NNB是所述终端所 支持的带宽所能容纳的频率资源的数量
根据第一频率资源索引以及子带的第二信息确定第二频率资源索引,包括:
若所述子带的第二信息为所述子带包含的频率资源的最小宽带频率资源索引fNB_min,则第二频率资源索引nPRB_NB_s2=fNB_min×2+NNB-1-nPRB_NB_s1
若所述子带的第二信息为所述子带包含的频率资源的最大宽带频率资源索引fNB_max,则第二频率资源索引nPRB_NB_s2=fNB_max×2-NNB+1-nPRB_NB_s1
当NNB为奇数时,若所述子带的第二信息为所述子带包含的频率资源的中心频率资源索引fNB_c,则第二频率资源索引nPRB_NB_s2=fNB_c×2-nPRB_NB_s1
当NNB为偶数时,若所述子带的第二信息为所述子带包含的频率资源的中心频率资源索引,所述中心频率资源索引有两个,将两个中心频率资源索引中较小的一个记为中心频率资源索引fNB_c1、较大的一个记为中心频率资源索引fNB_c2,则
第二频率资源索引nPRB_NB_s2=fNB_c1+fNB_c2-nPRB_NB_s1,或者
第二频率资源索引nPRB_NB_s2=2×fNB_c1+1-nPRB_NB_s1,或者
第二频率资源索引nPRB_NB_s2=2×fNB_c2-1-nPRB_NB_s1
可选地,根据第一频率资源索引以及终端所支持的带宽所能容纳的频率资源的数量确定第二频率资源索引包括:
第二频率资源索引
Figure PCTCN2015087079-appb-000156
或者,第二频率资源索引
Figure PCTCN2015087079-appb-000157
或者,第二频率资源索引
Figure PCTCN2015087079-appb-000158
其中A是固定的参数。比如A是
Figure PCTCN2015087079-appb-000159
NNB是所述终端所支持的带宽所能容纳的频率资源的数量。
可选地,在子帧的第一个时隙,将物理上行控制信道映射到所述第一频率资源信息指示的第一频率资源上;在子帧的第二个时隙,将物理上行控制信道映射到所述第二频率资源信息指示的第二频率资源上,包括:
在至少一个子帧中的任意一个子帧的第一个时隙,将物理上行控制信道映射到所述第一频率资源信息指示的第一频率资源上;在所述至少一个子帧中的任意一个子帧的第二个时隙,将物理上行控制信道映射到所述第二频率资源信息指示的第二频率资源上。
可选地,所述至少一个子帧为两个相邻的子帧,并且在所述两个子帧的确定的第一频率资源不同,
在至少一个子帧中的任意一个子帧的第一个时隙,将物理上行控制信道映射到所述第一频率资源信息指示的第一频率资源上;在所述至少一个子帧中的任意一个子帧的第二个时隙,将物理上行控制信道映射到所述第二频率资源信息指示的第二频率资源上,包括:
在所述两个子帧中的前一个子帧的第一个时隙将物理上行控制信道映射到所述第一频率资源信息指示的第一频率资源上,在所述前一个子帧的另一个时隙不进行物理上行控制信道的映射;或者
在所述两个子帧中的后一个子帧的第二个时隙将物理上行控制信道映射到所述第二频率资源信息指示的第二频率资源上,在所述后一个子帧的另一个时隙 不进行物理上行控制信道的映射;或者
在所述两个子帧中的前一个子帧的第一个时隙和第二个时隙分别将物理上行控制信道映射到所述第一频率资源信息指示的第一频率资源和所述第二频率资源信息指示的第二频率资源上,在所述两个子帧中的后一个子帧不进行物理上行控制信道的映射;或者
在所述两个子帧中的后一个子帧的第一个时隙和第二个时隙分别将物理上行控制信道映射到所述第一频率资源信息指示的第一频率资源和所述第二频率资源信息指示的第二频率资源上,在所述两个子帧中的前一个子帧不进行物理上行控制信道的映射。
可选地,所述频率资源为一个物理资源块PRB在频带上占据的资源;或者所述频率资源为子载波。
第九实施例
一种通信系统900,如图21所示,包括上述第一实施例的发送装置901和/或第三实施例的接收装置902。该系统具备第一实施例和/或第三实施例的优点,不再赘述。
一种通信系统的通信方法,包括上述第二实施例的发送方法和/或第四实施例的接收方法。该方法具备第二实施例和/或第四实施例的优点,不再赘述。
第十实施例
一种通信系统1000,如图22所示,包括上述第五实施例的发送装置1001和/或第七实施例的接收装置1002。该系统具备第五实施例和/或第七实施例的优点,不再赘述。
一种通信系统的通信方法,包括上述第六实施例的发送方法和/或第八实施 例的接收方法。该方法具备第六实施例和/或第八实施例的优点,不再赘述。
第十一实施例
本实施例提供一种通信装置,其中所述终端所支持的带宽小于系统带宽,所述系统带宽中包含多个频率资源。所述系统带宽是指接入网设备,如基站,所能支持的带宽。终端与所述接入网设备通信。
所述通信装置1100包括:
处理单元1101,用于确定第一参量p1;所述第一参量小于等于第一数量;所述第一数量为所述发送装置所支持的带宽所能容纳的频率资源的数量;
所述处理单元1101,用于根据所述第一参量确定频率资源信息;
所述处理单元1101,用于将物理上行控制信道映射到所述频率资源信息指示的频率资源上;
收发单元1102,用于通过所述物理上行控制信道发送或者接收上行控制信息。
本领域人员可以理解,本实施例中的通信装置类似于图13所示的上行控制信息发送装置100。所述处理单元1102的功能和所执行的步骤与图13中上行控制信息发送装置的处理单元102类似或者相同。具体可以参考第一实施例的内容,不再赘述。所述收发单元1101的功能和所执行的步骤与图13中上行控制信息发送装置的发送单元101类似或者相同。具体可以参考第一实施例的内容,不再赘述。本通信装置的特征所对应的发明目的、技术手段、获得的技术效果与第一实施例一致,不再赘述。
在另一种方案中,本领域人员可以理解,本实施例中的通信装置类似于图15所示的上行控制信息接收装置300。所述处理单元1102的功能和所执行的步骤与图15中上行控制信息接收装置的处理单元302类似或者相同。具体可以参考第三实施例的内容,不再赘述。所述收发单元1101的功能和所执行的步骤与图15 中上行控制信息发送装置的发送单元301类似或者相同。具体可以参考第三实施例的内容,不再赘述。本通信装置的特征所对应的发明目的、技术手段、获得的技术效果与第三实施例一致,不再赘述。
第十二实施例
本实施例提供一种通信方法,该方法与第十一实施例的通信装置一致。该方法中的特征所对应的发明目的、技术手段、获得的技术效果与第十一实施例一致,不再赘述。
该方法中,终端所支持的带宽小于系统带宽,所述系统带宽中包含多个频率资源,所述系统带宽是指接入网设备,如基站,所能支持的带宽。终端与所述接入网设备通信。
所述方法包括如下步骤:
步骤2901,确定第一参量p1;所述第一参量小于等于第一数量;所述第一数量为所述终端所支持的带宽所能容纳的频率资源的数量;
步骤2902,根据所述第一参量确定频率资源信息;
步骤2903,将物理上行控制信道映射到所述频率资源信息指示的频率资源上;
步骤2904,通过所述物理上行控制信道发送或者接收上行控制信息。
本领域人员可以理解,本实施例中的通信方法类似于图14所示的上行控制信息发送方法。具体步骤的执行类似与第二实施例的内容,不再赘述。
在另一种方案中,本领域人员可以理解,本实施例中的通信方法类似于图16所示的上行控制信息发送方法。具体步骤的执行类似与第四实施例的内容,不再赘述。
第十三实施例
本实例提供一种终端。虽然本实施例是以上行控制信息说明技术方案,但 是本领域技术人员可以理解,基于相同的原理和概念,本实施例的方案同样可以应用于其他上行信息的发送。
如图30所示,所述终端1300包括:
处理单元1301,用于确定至少两个子带,所述子带包含至少一个频率资源,所述每个子带的带宽小于等于所述终端所支持的带宽;
所述处理单元1301,还用于根据子带区域物理上行控制信道资源索引确定第三频率资源信息,所述第三频率资源信息指示所述至少两个子带所包含的频率资源中的第三频率资源,所述子带区域物理上行控制信道资源索引指示所述至少两个子带中的物理上行控制信道资源;
所述处理单元1301,还用于将物理上行控制信道映射到所述第三频率资源;
收发单元1302,用于通过所述物理上行控制信道发送所述上行控制信息。
通过确定至少两个子带,进而确定对应的频率资源映射,并发送上行控制信息,可以将所发送的上行控制信息限制在子带之内,即限制在发送装置所支持的带宽之内,从而保证了受限终端传输上行控制信息,有利于避免所述上行控制信息对上行系统带宽内的频率资源分割成几个部分,从而可以保证上行数据的峰值速率和上行数据的接收性能。
可选的,所述处理单元确定至少两个子带可以确定偶数个子带,比如:2个子带,4个子带,6个子带。为了标识不同的子带,可以使用子带索引。子带也可以具有所述子带包含的频率资源的最小宽带频率资源索引,所述子带包含的频率资源的最大宽带频率资源索引、所述子带包含的频率资源的中心频率资源索引。所以,所述处理单元可以确定所述至少两个子带的第一信息,所述子带的第一信息至少包括下述之一:子带索引,所述子带包含的频率资源的最小宽带频率资源索引,所述子带包含的频率资源的最大宽带频率资源索引、所述子带包含的频率资源的中心频率资源索引。通过所述子带的第一信息,可以知晓该子带的相关特 性,即确定了子带。比如子带的宽度,子带的所有的频率资源。
可选的,当有两个或者更多个终端时,所述终端划分成多个终端对,所述终端对有第一终端和第二终端组成。第一终端确定的第三频率资源信息指示的第三频率资源与第二终端确定的第三频率资源信息指示的第三频率资源相对于系统带宽的中心频率对称。这样有利于避免发送带宽受限的终端发送上行控制信息时,所述上行控制信息对上行系统带宽内的频率资源分割成几个部分,从而可以保证上行数据占用连续的频率资源,达到上行数据的峰值速率。
可以理解的,当偶数个子带包含的频率资源相对于系统带宽的中心频率对称时,当偶数个终端分属于对称的子带当中,更容易使得这些偶数个终端所占用的频率资源相对于系统带宽的中心频率对称。换言之,所述至少两个子带包含第一子带和第二子带,所述第一子带包含的频率资源与第二子带包含的频率资源相对于系统带宽的中心频率对称,其中,所述第一终端的第三频率资源信息指示所述第一子带所包含的频率资源中的第三频率资源,第二终端的第三频率资源信息指示所述第二子带所包含的频率资源中的第三频率资源。
本实施例还包含子带不对称的情况,只要偶数个终端所占用的频率资源相对于系统带宽的中心频率对称,同样可以完成相同的效果。
下面解释如何确定子带。所述处理单元确定至少两个子带,可以由所述收发单元接收系统信息块SIB;并由处理单元,用于通过所述系统信息块SIB确定所述第一子带的第一信息;进而根据所述第一子带的第一信息确定所述第二子带。或者在已知第一子带的情况下,可以根据第一子带与第二子带相对于系统带宽的中心频率对称的特性,知晓第二子带的特性。
例如当所述第一子带的第一信息是第一子带的子带索引,所述第二子带的第一信息是第二子带的子带索引时,第一子带的子带索引和第二子带的子带索引是连续的自然数,则所述处理单元通过接收系统信息块确定第一子带的子带索引, 便可根据第一子带的子带索引确定第二子带的子带索引为第一子带的子带索引加1或减1。比如第一子带的子带索引是偶数,第二子带的子带索引是大于第一子带的子带索引的最小的奇数,则所述处理单元通过接收系统信息块确定第一子带的子带索引,便可根据第一子带的子带索引确定第二子带的子带索引为第一子带的子带索引加1。所述处理单元根据所述第二子带的子带索引就可以确定第二子带。
又例如当所述第一子带的第一信息是第一子带包含的频率资源的最小宽带频率资源索引,所述第二子带的第一信息是第二子带包含的频率资源的最小宽带频率资源索引时,所述处理单元通过接收系统信息块确定第一子带包含的频率资源的最小宽带频率资源索引为fNB1_min,便可根据第一子带包含的频率资源的最小宽带频率资源索引确定第二子带包含的频率资源的最小宽带频率资源索引为
Figure PCTCN2015087079-appb-000160
其中,
Figure PCTCN2015087079-appb-000161
是系统带宽中包含的频率资源的数量,NNB为所述第一数量。所述处理单元根据所述第二子带包含的频率资源的最小宽带频率资源索引,以及第二子带包含的频率资源的数量就可以确定第二子带。
又例如当所述第一子带的第一信息是第一子带的子带索引,则所述处理单元通过接收系统信息块确定第一子带的子带索引,就可以由所述子带索引和预先规定的子带及子带编号确定所述子带索引指示的第一子带。由所述第一子带包含的频率资源位置,就可以确定与第一子带包含的频率资源位置关于系统带宽中心对称的频率资源位置,即确定了所述第二子带。比如所述第一子带包含的其中一个频率资源的宽带频率资源索引为fNB1,则其关于系统带宽中心对称的频率资源的宽带频率资源索引为
Figure PCTCN2015087079-appb-000162
其中,
Figure PCTCN2015087079-appb-000163
是系统带宽中包含的频率资源的数量。
通过上述方式,所述处理单元根据所述第一子带的第一信息确定所述第二 子带,就节省了基站用于配置所述第一子带的第一信息和所述第二子带的信令开销。
子带区域物理上行控制信道资源索引指示所述至少两个子带中的物理上行控制信道资源。对所述至少两个子带中的物理上行控制信道资源进行编号,即子带区域物理上行控制信道资源索引。在一个子帧的一个频率资源上,可以有多个物理上行控制信道资源,所述多个物理上行控制信道资源是码分复用的。所述编号是对所述至少两个子带中的物理上行控制信道资源进行的联合编号。
下面介绍如何确定子带区域物理上行控制信道资源索引,可以根据下述参量中的至少一种确定子带区域物理上行控制信道资源索引:无线资源控制RRC信令包含的参量、物理层信令包含的参量、承载下行控制信息的物理下行控制信道PDCCH的第一个控制信道元素CCE的序号、承载下行控制信息的增强的物理下行控制信道EPDCCH的第一个增强的控制信道元素ECCE的序号、承载下行控制信息的机器类型通信的物理下行控制信道的第一个控制信道元素的序号。可选的,所述子带区域物理上行控制信道资源索引的确定方式和现有PUCCH资源索引的确定方式相同。与现有PUCCH资源索引不同的是,为保证所述子带区域物理上行控制信道资源索引是所述至少两个子带中的物理上行控制信道资源的编号,所述RRC信令包含的参量、物理层信令包含的参量、第一个控制信道元素的序号中的一种或多种的取值范围和确定现有PUCCH资源索引的以上参量的取值范围不同。
本实施例中所述至少两个子带包含的频率资源构成了一个整合的频率资源集合。为了指示这些频率资源,可以使用第三频率资源索引nPRB_NB_MUL_s1。所述第三频率资源索引可以是对所述至少两个子带包含的频率资源的编号。取值范围是0~所述至少两个子带所包含的频率资源的数量-1。比如取值范围可以是0~
Figure PCTCN2015087079-appb-000164
所述第三频率资源索引也可以从1开始编号,其相应的物理上行控制 信道的物理资源映射方法都属于本发明实施例的保护范围。所述处理单元,可以根据子带区域物理上行控制信道资源索引确定第三频率资源信息,包括:
所述处理单元,用于根据子带区域物理上行控制信道资源索引确定第三参量m',所述m'小于等于所述至少两个子带所包含的频率资源的数量;根据m'确定所述第三频率资源索引nPRB_NB_MUL_s1
例如,根据子带区域物理上行控制信道资源索引确定m'的一种方式为:
Figure PCTCN2015087079-appb-000165
Figure PCTCN2015087079-appb-000166
其中,
Figure PCTCN2015087079-appb-000167
是所述子带区域物理上行控制信道资源索引。其它参数具体如第一实施例中处理单元确定第一参量p1的第一种方式所述,此处不再赘述。
其中,所述处理单元,根据m'确定所述第三频率资源索引nPRB_NB_MUL_s1,可以包括:
所述第三频率资源索引nPRB_NB_MUL_s1与m'的关系满足如下公式:
Figure PCTCN2015087079-appb-000168
或者,
Figure PCTCN2015087079-appb-000169
其中
Figure PCTCN2015087079-appb-000170
是所述至少两个子带所包含的频率资源的数量,
Figure PCTCN2015087079-appb-000171
表示向下 取整,
X包括以下参数的一个或者多个或者多个的组合:
时隙序号ns、子帧序号nsf、无线帧序号、发送上行控制信息的起始子帧到当前子帧之间包含的上行子帧数;
Y包括以下参数的一个或者多个或者多个的组合:
预先定义的参数、物理上行控制信道的跳频粒度,物理上行控制信道跳频周期。
例如X是nsf。又例如X是10×SFN+nsf,SFN是无线帧序号。又例如X是发送上行控制信息的起始子帧到当前子帧之间包含的子帧数或者上行子帧数。物理上行控制信道映射的频率资源可以发生变化,称作物理上行控制信道跳频。物理上行控制信道映射的频率资源每G个子帧变化一次,称作物理上行控制信道跳频粒度。物理上行控制信道映射的频率资源的变化规律每H个子帧重复一次,则H个子帧称作物理上行控制信道跳频周期。例如Y是物理上行控制信道跳频粒度。物理上行控制信道跳频可以发生在物理上行控制信道进行映射或者所述发送单元发送上行控制信息的多个子帧中。即在物理上行控制信道映射的频率资源发生变化前后的多个子帧,所述发送单元发送相同的上行控制信息。X和Y确定了物理上行控制信道跳频的时刻。
图26示出了包含第一子带和第二子带的第三频率资源索引nPRB_NB_MUL_s1与m'的关系。
可选的另一方面,如图27所示,同一终端所占用的第三频率资源可以发生变化,如m'=0从第一子带跳频到第二子带上。假设所述第三频率资源信息发生变化前,已经确定的第三频率资源信息为第三频率资源索引nPRB_NB_MUL_s1_pre
当所述第三频率资源信息发生变化时,根据所述第三频率资源信息变化规 则确定所述第三频率资源信息变化后的第三频率资源索引nPRB_NB_MUL_s1_after;其中所述所述第三频率资源信息变化规则为:
Figure PCTCN2015087079-appb-000172
Figure PCTCN2015087079-appb-000173
其中
Figure PCTCN2015087079-appb-000174
为所述至少两个子带所包含的频率资源的数量。
可以理解的是,以上第三频率资源索引是所述至少两个子带包含的频率资源的编号,是一种相对索引。
为了标识所述至少两个子带包含的频率资源,还可以使用宽带频率资源索引,所述宽带频率资源索引为系统带宽中包含的频率资源的索引,所述系统带宽为与所述终端通信的接入网设备所支持的带宽。换言之,将接入网设备所支持的整个带宽划分为不同的频率资源,将这些所有的频率资源用宽带频率资源索引进行标引。这是一种绝对索引。宽带频率资源索引的取值范围可以是0~系统带宽包含的频率资源的个数-1。比如取值范围可以是
Figure PCTCN2015087079-appb-000175
假设所述第三频率资源信息发生变化前,已经确定的第三频率资源信息为宽带频率资源索引nPRB_pre,当所述第三频率资源信息发生变化时,根据所述第三频率资源信息变化规则确定所述第三频率资源信息变化后的宽带频率资源索引nPRB_after;其中所述所述第三频率资源信息变化规则为:
Figure PCTCN2015087079-appb-000176
其中
Figure PCTCN2015087079-appb-000177
是系统带宽中包含的频率资源的数量。可选的,所述处理单元,用于根据预先规定确定在所述多个子帧中,所述第三频率资源信息发生变化的时间间隔或者所述频率资源信息发生变化的子帧;
可选的,所述处理单元,用于通过接收无线资源控制信令、媒体接入控制信令、物理层信令中的至少一种确定所述第三频率资源信息发生变化的时间间隔或者所述频率资源信息发生变化的子帧;
可选的,所述处理单元,用于确定所述第三频率资源信息发生变化的时间间隔为所述多个子帧的子帧个数的约数。以下介绍将物理上行控制信道映射到所述第三频率资源。因为终端在频率跳变时需要准备时间,所以需要足够的保护时间来完成跳频准备。可以理解的,保护时间可以是一个时隙或者多个时隙,也可以是一个子帧或者多个子帧。图27示出了两个时隙的方案。除此之外,还可以包括如下方案:
如果在两个相邻的子帧,所述处理单元确定的第三频率资源信息指示的第三频率资源不同,则,所述处理单元在所述两个子帧中的前一个子帧的第一个时隙将物理上行控制信道映射到所述第三频率资源,在所述前一个子帧的另一个时隙不进行物理上行控制信道的映射;或者
所述处理单元在所述两个子帧中的后一个子帧的第二个时隙将物理上行控制信道映射到所述第三频率资源,在所述后一个子帧的另一个时隙不进行物理上行控制信道的映射;或者
所述处理单元在所述两个子帧中的前一个子帧将物理上行控制信道映射到所述第三频率资源,在所述两个子帧中的后一个子帧不进行物理上行控制信道的映射;或者
所述处理单元在所述两个子帧中的后一个子帧将物理上行控制信道映射到所述第三频率资源,在所述两个子帧中的前一个子帧不进行物理上行控制信道的映射。
可以理解的,本实施例中的频率资源可以为一个物理资源块PRB在频带上占据的资源,也可以是其他具有带宽的频率资源;或者所述频率资源为LTE系统中的子载波或者类似的概念。
本发明实施例的终端,将物理上行控制信道映射到一个子帧的一个子带内,从而在一个子帧映射的频率宽度不超过低复杂度或者低成本的终端所能支持的 发送信号的带宽,保证了所述终端能够发送上行控制信息。通过本实施例第三频率资源信息的确定或变化方式,可以保证物理上行控制信道跳频前后映射的频率资源关于系统带宽中心对称,减少了上行控制信息传输对于上行数据传输频率资源的割裂,保证了上行数据的峰值速率或保证了上行数据的接收性能。
第十四实施例
本实例提供一种通信方法。虽然本实施例是以上行控制信息说明技术方案,但是本领域技术人员可以理解,基于相同的原理和概念,本实施例的方案同样可以应用于其他上行信息的发送。具体实现的过程请可以参见第十三实施例中装置实施例所实现的方法。
如图31所示,所述方法包括:
步骤1401,确定至少两个子带,所述子带包含至少一个频率资源,所述每个子带的带宽小于等于所述终端所支持的带宽;
步骤1402,根据子带区域物理上行控制信道资源索引确定第三频率资源信息,所述第三频率资源信息指示所述至少两个子带所包含的频率资源中的第三频率资源,所述子带区域物理上行控制信道资源索引指示所述至少两个子带中的物理上行控制信道资源;
步骤1403,将物理上行控制信道映射到所述第三频率资源;
步骤1404,通过所述物理上行控制信道发送所述上行控制信息。
通过确定至少两个子带,进而确定对应的频率资源映射,并发送上行控制信息,可以将所发送的上行控制信息限制在子带之内,即限制在发送装置所支持的带宽之内,从而保证了受限终端传输上行控制信息,有利于避免所述上行控制信息对上行系统带宽内的频率资源分割成几个部分,从而可以保证上行数据的峰值速率和上行数据的接收性能。
可选的,可以确定至少两个子带可以确定偶数个子带,比如:2个子带,4个子带,6个子带。为了标识不同的子带,可以使用子带索引。子带也可以具有所述子带包含的频率资源的最小宽带频率资源索引,所述子带包含的频率资源的最大宽带频率资源索引、所述子带包含的频率资源的中心频率资源索引。所以,确定所述至少两个子带的第一信息,所述子带的第一信息至少包括下述之一:子带索引,所述子带包含的频率资源的最小宽带频率资源索引,所述子带包含的频率资源的最大宽带频率资源索引,所述子带包含的频率资源的中心频率资源索引。可选的,当有两个或者更多个终端时,所述终端划分成多个终端对,所述终端对有第一终端和第二终端组成。第一终端确定的第三频率资源信息指示的第三频率资源与第二终端确定的第三频率资源信息指示的第三频率资源相对于系统带宽的中心频率对称。这样有利于避免发送带宽受限的终端发送上行控制信息时,所述上行控制信息对上行系统带宽内的频率资源分割成几个部分,从而可以保证上行数据占用连续的频率资源,达到上行数据的峰值速率。可以理解的,当偶数个子带包含的频率资源相对于系统带宽的中心频率对称时,当偶数个终端分属于对称的子带当中,更容易使得这些偶数个终端所占用的频率资源相对于系统带宽的中心频率对称。换言之,所述至少两个子带包含第一子带和第二子带,所述第一子带包含的频率资源与第二子带包含的频率资源相对于系统带宽的中心频率对称,其中,所述第一终端的第三频率资源信息指示所述第一子带所包含的频率资源中的第三频率资源,第二终端的第三频率资源信息指示所述第二子带所包含的频率资源中的第三频率资源。
本实施例还包含子带不对称的情况,只要偶数个终端所占用的频率资源相对于系统带宽的中心频率对称,同样可以完成相同的效果。
下面解释如何确定子带。可以接收系统信息块SIB;并通过所述系统信息块SIB确定所述第一子带的第一信息;进而根据所述第一子带的第一信息确定所述 第二子带。或者在已知第一子带的情况下,可以根据第一子带与第二子带相对于系统带宽的中心频率对称的特性,知晓第二子带的特性。例如当所述第一子带的第一信息是第一子带的子带索引,所述第二子带的第一信息是第二子带的子带索引时,第一子带的子带索引和第二子带的子带索引是连续的自然数,则通过接收系统信息块确定第一子带的子带索引,便可根据第一子带的子带索引确定第二子带的子带索引为第一子带的子带索引加1或减1。比如第一子带的子带索引是偶数,第二子带的子带索引是大于第一子带的子带索引的最小的奇数,则通过接收系统信息块确定第一子带的子带索引,便可根据第一子带的子带索引确定第二子带的子带索引为第一子带的子带索引加1。根据所述第二子带的子带索引就可以确定第二子带。
又例如当所述第一子带的第一信息是第一子带包含的频率资源的最小宽带频率资源索引,所述第二子带的第一信息是第二子带包含的频率资源的最小宽带频率资源索引时,通过接收系统信息块确定第一子带包含的频率资源的最小宽带频率资源索引为fNB1_min,便可根据第一子带包含的频率资源的最小宽带频率资源索引确定第二子带包含的频率资源的最小宽带频率资源索引为
Figure PCTCN2015087079-appb-000178
其中,
Figure PCTCN2015087079-appb-000179
是系统带宽中包含的频率资源的数量,NNB为所述第一数量。根据所述第二子带包含的频率资源的最小宽带频率资源索引,以及第二子带包含的频率资源的数量就可以确定第二子带。
通过上述方式,根据所述第一子带的第一信息确定所述第二子带,就节省了基站用于配置所述第一子带的第一信息和所述第二子带的信令开销。
子带区域物理上行控制信道资源索引指示所述至少两个子带中的物理上行控制信道资源。对所述至少两个子带中的物理上行控制信道资源进行编号,即子带区域物理上行控制信道资源索引。在一个子帧的一个频率资源上,可以有多个 物理上行控制信道资源,所述多个物理上行控制信道资源是码分复用的。所述编号是对所述至少两个子带中的物理上行控制信道资源进行的联合编号。
下面介绍如何确定子带区域物理上行控制信道资源索引,可以根据下述参量中的至少一种确定子带区域物理上行控制信道资源索引:无线资源控制RRC信令包含的参量、物理层信令包含的参量、承载下行控制信息的物理下行控制信道PDCCH的第一个控制信道元素CCE的序号、承载下行控制信息的增强的物理下行控制信道EPDCCH的第一个增强的控制信道元素ECCE的序号、承载下行控制信息的机器类型通信的物理下行控制信道的第一个控制信道元素的序号。
本实施例中所述至少两个子带包含的频率资源构成了一个整合的频率资源集合。为了指示这些频率资源,可以使用第三频率资源索引nPRB_NB_MUL_s1。所述第三频率资源索引可以是对所述至少两个子带包含的频率资源的编号。取值范围是0~所述至少两个子带所包含的频率资源的数量-1。
可以根据子带区域物理上行控制信道资源索引确定第三频率资源信息,包括:
根据子带区域物理上行控制信道资源索引确定第三参量m',所述m'小于等于所述至少两个子带所包含的频率资源的数量;根据m'确定所述第三频率资源索引nPRB_NB_MUL_s1
其中,根据m'确定所述第三频率资源索引nPRB_NB_MUL_s1,可以包括:
所述第三频率资源索引nPRB_NB_MUL_s1与m'的关系满足如下公式:
Figure PCTCN2015087079-appb-000180
或者,
Figure PCTCN2015087079-appb-000181
其中
Figure PCTCN2015087079-appb-000182
是所述至少两个子带所包含的频率资源的数量,
Figure PCTCN2015087079-appb-000183
表示向下取整,
X包括以下参数的一个或者多个或者多个的组合:
时隙序号ns、子帧序号nsf、无线帧序号、发送上行控制信息的起始子帧到当前子帧之间包含的上行子帧数;
Y包括以下参数的一个或者多个或者多个的组合:
预先定义的参数、物理上行控制信道的跳频粒度,物理上行控制信道跳频周期。
例如X是nsf。又例如X是10×SFN+nsf,SFN是无线帧序号。又例如X是发送上行控制信息的起始子帧到当前子帧之间包含的子帧数或者上行子帧数。物理上行控制信道映射的频率资源可以发生变化,称作物理上行控制信道跳频。物理上行控制信道映射的频率资源每G个子帧变化一次,称作物理上行控制信道跳频粒度。物理上行控制信道映射的频率资源的变化规律每H个子帧重复一次,则H个子帧称作物理上行控制信道跳频周期。例如Y是物理上行控制信道跳频粒度。物理上行控制信道跳频可以发生在物理上行控制信道进行映射或者发送上行控制信息的多个子帧中。即在物理上行控制信道映射的频率资源发生变化前后的多个子帧,发送相同的上行控制信息。X和Y确定了物理上行控制信道跳频的时刻。
图26示出了包含第一子带和第二子带的第三频率资源索引nPRB_NB_MUL_s1与m'的关系。
可选的另一方面,如图27所示,同一终端所占用的第三频率资源可以发生 变化,如m'=0从第一子带跳频到第二子带上。假设所述第三频率资源信息发生变化前,已经确定的第三频率资源信息为第三频率资源索引nPRB_NB_MUL_s1_pre
当所述第三频率资源信息发生变化时,根据所述第三频率资源信息变化规则确定所述第三频率资源信息变化后的第三频率资源索引nPRB_NB_MUL_s1_after;其中所述所述第三频率资源信息变化规则为:
Figure PCTCN2015087079-appb-000184
Figure PCTCN2015087079-appb-000185
其中
Figure PCTCN2015087079-appb-000186
为所述至少两个子带所包含的频率资源的数量。
可以理解的是,以上第三频率资源索引是所述至少两个子带包含的频率资源的编号,是一种相对索引。
为了标识所述至少两个子带包含的频率资源,还可以使用宽带频率资源索引,所述宽带频率资源索引为系统带宽中包含的频率资源的索引,所述系统带宽为与所述终端通信的接入网设备所支持的带宽。换言之,将接入网设备所支持的整个带宽划分为不同的频率资源,将这些所有的频率资源用宽带频率资源索引进行标引。这是一种绝对索引。宽带频率资源索引的取值范围可以是0~系统带宽包含的频率资源的个数-1。
假设所述第三频率资源信息发生变化前,已经确定的第三频率资源信息为宽带频率资源索引nPRB_pre,当所述第三频率资源信息发生变化时,根据所述第三频率资源信息变化规则确定所述第三频率资源信息变化后的宽带频率资源索引nPRB_after;其中所述所述第三频率资源信息变化规则为:
Figure PCTCN2015087079-appb-000187
其中
Figure PCTCN2015087079-appb-000188
是系统带宽中包含的频率资源的数量。
以下介绍将物理上行控制信道映射到所述第三频率资源。因为终端在频率跳变时需要准备时间,所以需要足够的保护时间来完成跳频准备。可以理解的, 保护时间可以是一个时隙或者多个时隙,也可以是一个子帧或者多个子帧。图27示出了两个时隙的方案。除此之外,还可以包括如下方案:
如果在两个相邻的子帧,所述确定的第三频率资源信息指示的第三频率资源不同,则,在所述两个子帧中的前一个子帧的第一个时隙将物理上行控制信道映射到所述第三频率资源,在所述前一个子帧的另一个时隙不进行物理上行控制信道的映射;或者
在所述两个子帧中的后一个子帧的第二个时隙将物理上行控制信道映射到所述第三频率资源,在所述后一个子帧的另一个时隙不进行物理上行控制信道的映射;或者
在所述两个子帧中的前一个子帧将物理上行控制信道映射到所述第三频率资源,在所述两个子帧中的后一个子帧不进行物理上行控制信道的映射;或者
在所述两个子帧中的后一个子帧将物理上行控制信道映射到所述第三频率资源,在所述两个子帧中的前一个子帧不进行物理上行控制信道的映射。
可以理解的,本实施例中的频率资源可以为一个物理资源块PRB在频带上占据的资源,也可以是其他具有带宽的频率资源;或者所述频率资源为LTE系统中的子载波或者类似的概念。
本发明实施例的通信方法,将物理上行控制信道映射到一个子帧的一个子带内,从而在一个子帧映射的频率宽度不超过低复杂度或者低成本的终端所能支持的发送信号的带宽,保证了所述终端能够发送上行控制信息。通过本实施例第三频率资源信息的确定或变化方式,可以保证物理上行控制信道跳频前后映射的频率资源关于系统带宽中心对称,减少了上行控制信息传输对于上行数据传输频率资源的割裂,保证了上行数据的峰值速率或保证了上行数据的接收性能。
第十五实施例
本实例提供一种接入网设备,所述接入网设备可以是基站设备,比如演进 基站(eNodeB)或者类似的设备。虽然本实施例是以上行控制信息说明技术方案,但是本领域技术人员可以理解,基于相同的原理和概念,本实施例的方案同样可以应用于其他上行信息的发送。具体实现的过程请可以参见第十三实施例中终端实施例所实现的方法。
如图32所示,所述接入网设备1500包括:
处理单元1501,用于确定至少两个子带,所述子带包含至少一个频率资源,所述每个子带的带宽小于等于终端所支持的带宽;
所述处理单元1501,还用于根据子带区域物理上行控制信道资源索引确定第三频率资源信息,所述第三频率资源信息指示所述至少两个子带所包含的频率资源中的第三频率资源,所述子带区域物理上行控制信道资源索引指示所述至少两个子带中的物理上行控制信道资源;
所述处理单元1501,还用于将物理上行控制信道映射到所述第三频率资源;
收发单元1502,用于通过所述物理上行控制信道接收所述上行控制信息。
通过确定至少两个子带,进而确定对应的频率资源映射,并接收上行控制信息,可以将所接收的上行控制信息限制在子带之内,即限制在发送装置所支持的带宽之内,从而保证了受限终端传输上行控制信息,有利于避免所述上行控制信息对上行系统带宽内的频率资源分割成几个部分,从而可以保证上行数据的峰值速率和上行数据的接收性能。可选的,所述处理单元确定至少两个子带可以确定偶数个子带,比如:2个子带,4个子带,6个子带。为了标识不同的子带,可以使用子带索引。子带也可以具有所述子带包含的频率资源的最小宽带频率资源索引,所述子带包含的频率资源的最大宽带频率资源索引、所述子带包含的频率资源的中心频率资源索引。所以,所述处理单元可以确定所述至少两个子带的第一信息,所述子带的第一信息至少包括下述之一:子带索引,所述子带包含的频率资源的最小宽带频率资源索引,所述子带包含的频率资源的最大宽带频率资源 索引、所述子带包含的频率资源的中心频率资源索引。通过所述子带的第一信息,可以知晓该子带的相关特性,即确定了子带。比如子带的宽度,子带的所有的频率资源。
可选的,当有两个或者更多个终端时,所述终端划分成多个终端对,所述终端对有第一终端和第二终端组成。所述处理单元确定的第一终端的第三频率资源信息指示的第三频率资源与第二终端确定的第三频率资源信息指示的第三频率资源相对于系统带宽的中心频率对称。这样有利于避免发送带宽受限的终端发送上行控制信息时,所述上行控制信息对上行系统带宽内的频率资源分割成几个部分,从而可以保证上行数据占用连续的频率资源,达到上行数据的峰值速率。
可以理解的,当偶数个子带包含的频率资源相对于系统带宽的中心频率对称时,当偶数个终端分属于对称的子带当中,更容易使得这些偶数个终端所占用的频率资源相对于系统带宽的中心频率对称。换言之,所述至少两个子带包含第一子带和第二子带,所述第一子带包含的频率资源与第二子带包含的频率资源相对于系统带宽的中心频率对称,其中,所述第一终端的第三频率资源信息指示所述第一子带所包含的频率资源中的第三频率资源,第二终端的第三频率资源信息指示所述第二子带所包含的频率资源中的第三频率资源。
本实施例还包含子带不对称的情况,只要偶数个终端所占用的频率资源相对于系统带宽的中心频率对称,同样可以完成相同的效果。
下面解释如何确定子带。所述处理单元确定至少两个子带,可以确定所述第一子带的第一信息;进而根据所述第一子带的第一信息确定所述第二子带。或者在已知第一子带的情况下,可以根据第一子带与第二子带相对于系统带宽的中心频率对称的特性,知晓第二子带的特性。
所述收发单元,用于发送系统信息块SIB,所述系统信息块SIB包含所述第一子带的第一信息的配置信息。从而使得终端可以根据所述第一子带的第一信息 确定所述第二子带。
例如当所述第一子带的第一信息是第一子带的子带索引,所述第二子带的第一信息是第二子带的子带索引时,第一子带的子带索引和第二子带的子带索引是连续的自然数,则所述处理单元确定第一子带的子带索引,便可根据第一子带的子带索引确定第二子带的子带索引为第一子带的子带索引加1或减1。比如第一子带的子带索引是偶数,第二子带的子带索引是大于第一子带的子带索引的最小的奇数,则所述处理单元确定第一子带的子带索引,便可根据第一子带的子带索引确定第二子带的子带索引为第一子带的子带索引加1。所述处理单元根据所述第二子带的子带索引就可以确定第二子带。
又例如当所述第一子带的第一信息是第一子带包含的频率资源的最小宽带频率资源索引,所述第二子带的第一信息是第二子带包含的频率资源的最小宽带频率资源索引时,所述处理单元确定第一子带包含的频率资源的最小宽带频率资源索引为fNB1_min,便可根据第一子带包含的频率资源的最小宽带频率资源索引确定第二子带包含的频率资源的最小宽带频率资源索引为
Figure PCTCN2015087079-appb-000189
其中,
Figure PCTCN2015087079-appb-000190
是系统带宽中包含的频率资源的数量,NNB为所述第一数量。所述处理单元根据所述第二子带包含的频率资源的最小宽带频率资源索引,以及第二子带包含的频率资源的数量就可以确定第二子带。
通过上述方式,所述收发单元发送系统信息块SIB,所述系统信息块SIB包含所述第一子带的第一信息的配置信息,从而使得终端可以根据所述第一子带的第一信息确定所述第二子带。就节省了基站用于配置所述第一子带的第一信息和所述第二子带的信令开销。
子带区域物理上行控制信道资源索引指示所述至少两个子带中的物理上行 控制信道资源。对所述至少两个子带中的物理上行控制信道资源进行编号,即子带区域物理上行控制信道资源索引。在一个子帧的一个频率资源上,可以有多个物理上行控制信道资源,所述多个物理上行控制信道资源是码分复用的。所述编号是对所述至少两个子带中的物理上行控制信道资源进行的联合编号。
下面介绍如何确定子带区域物理上行控制信道资源索引,可以根据下述参量中的至少一种确定子带区域物理上行控制信道资源索引:无线资源控制RRC信令包含的参量、物理层信令包含的参量、承载下行控制信息的物理下行控制信道PDCCH的第一个控制信道元素CCE的序号、承载下行控制信息的增强的物理下行控制信道EPDCCH的第一个增强的控制信道元素ECCE的序号、承载下行控制信息的机器类型通信的物理下行控制信道的第一个控制信道元素的序号。
本实施例中所述至少两个子带包含的频率资源构成了一个整合的频率资源集合。为了指示这些频率资源,可以使用第三频率资源索引nPRB_NB_MUL_s1。所述第三频率资源索引可以是对所述至少两个子带包含的频率资源的编号。取值范围是0~所述至少两个子带所包含的频率资源的数量-1。
所述处理单元,可以根据子带区域物理上行控制信道资源索引确定第三频率资源信息,包括:
所述处理单元,用于根据子带区域物理上行控制信道资源索引确定第三参量m',所述m'小于等于所述至少两个子带所包含的频率资源的数量;根据m'确定所述第三频率资源索引nPRB_NB_MUL_s1
其中,所述处理单元,根据m'确定所述第三频率资源索引nPRB_NB_MUL_s1,可以包括:
所述第三频率资源索引nPRB_NB_MUL_s1与m'的关系满足如下公式:
Figure PCTCN2015087079-appb-000191
或者,
Figure PCTCN2015087079-appb-000192
其中
Figure PCTCN2015087079-appb-000193
是所述至少两个子带所包含的频率资源的数量,
Figure PCTCN2015087079-appb-000194
表示向下取整,
X包括以下参数的一个或者多个或者多个的组合:
时隙序号ns、子帧序号nsf、无线帧序号、发送上行控制信息的起始子帧到当前子帧之间包含的上行子帧数;
Y包括以下参数的一个或者多个或者多个的组合:
预先定义的参数、物理上行控制信道的跳频粒度,物理上行控制信道跳频周期。
例如X是nsf。又例如X是10×SFN+nsf,SFN是无线帧序号。又例如X是发送上行控制信息的起始子帧到当前子帧之间包含的子帧数或者上行子帧数。物理上行控制信道映射的频率资源可以发生变化,称作物理上行控制信道跳频。物理上行控制信道映射的频率资源每G个子帧变化一次,称作物理上行控制信道跳频粒度。物理上行控制信道映射的频率资源的变化规律每H个子帧重复一次,则H个子帧称作物理上行控制信道跳频周期。例如Y是物理上行控制信道跳频粒度。物理上行控制信道跳频可以发生在物理上行控制信道进行映射或者所述接收单元接收上行控制信息的多个子帧中。即在物理上行控制信道映射的频率资源发生变化前后的多个子帧,所述接收单元接收相同的上行控制信息。X和Y确定了物 理上行控制信道跳频的时刻。
图26示出了包含第一子带和第二子带的第三频率资源索引nPRB_NB_MUL_s1与m'的关系。
可选的另一方面,如图27所示,同一终端所占用的第三频率资源可以发生变化,如m'=0从第一子带跳频到第二子带上。假设所述第三频率资源信息发生变化前,已经确定的第三频率资源信息为第三频率资源索引nPRB_NB_MUL_s1_pre
当所述第三频率资源信息发生变化时,根据所述第三频率资源信息变化规则确定所述第三频率资源信息变化后的第三频率资源索引nPRB_NB_MUL_s1_after;其中所述所述第三频率资源信息变化规则为:
Figure PCTCN2015087079-appb-000195
Figure PCTCN2015087079-appb-000196
其中
Figure PCTCN2015087079-appb-000197
为所述至少两个子带所包含的频率资源的数量。
可以理解的是,以上第三频率资源索引是所述至少两个子带包含的频率资源的编号,是一种相对索引。
为了标识所述至少两个子带包含的频率资源,还可以使用宽带频率资源索引,所述宽带频率资源索引为系统带宽中包含的频率资源的索引,所述系统带宽为与所述终端通信的接入网设备所支持的带宽。换言之,将接入网设备所支持的整个带宽划分为不同的频率资源,将这些所有的频率资源用宽带频率资源索引进行标引。这是一种绝对索引。宽带频率资源索引的取值范围可以是0~系统带宽包含的频率资源的个数-1。
假设所述第三频率资源信息发生变化前,已经确定的第三频率资源信息为宽带频率资源索引nPRB_pre,当所述第三频率资源信息发生变化时,根据所述第三频率资源信息变化规则确定所述第三频率资源信息变化后的宽带频率资源索引 nPRB_after;其中所述所述第三频率资源信息变化规则为:
Figure PCTCN2015087079-appb-000198
其中
Figure PCTCN2015087079-appb-000199
是系统带宽中包含的频率资源的数量。
以下介绍将物理上行控制信道映射到所述第三频率资源。因为终端在频率跳变时需要准备时间,所以需要足够的保护时间来完成跳频准备。可以理解的,保护时间可以是一个时隙或者多个时隙,也可以是一个子帧或者多个子帧。图27示出了两个时隙的方案。除此之外,还可以包括如下方案:
如果在两个相邻的子帧,所述处理单元确定的第三频率资源信息指示的第三频率资源不同,则,所述处理单元在所述两个子帧中的前一个子帧的第一个时隙将物理上行控制信道映射到所述第三频率资源,在所述前一个子帧的另一个时隙不进行物理上行控制信道的映射;或者
所述处理单元在所述两个子帧中的后一个子帧的第二个时隙将物理上行控制信道映射到所述第三频率资源,在所述后一个子帧的另一个时隙不进行物理上行控制信道的映射;或者
所述处理单元在所述两个子帧中的前一个子帧将物理上行控制信道映射到所述第三频率资源,在所述两个子帧中的后一个子帧不进行物理上行控制信道的映射;或者
所述处理单元在所述两个子帧中的后一个子帧将物理上行控制信道映射到所述第三频率资源,在所述两个子帧中的前一个子帧不进行物理上行控制信道的映射。
可以理解的,本实施例中的频率资源可以为一个物理资源块PRB在频带上占据的资源,也可以是其他具有带宽的频率资源;或者所述频率资源为LTE系统中的子载波或者类似的概念。
本发明实施例的接入网设备,将物理上行控制信道映射到一个子帧的一个子带内,从而在一个子帧映射的频率宽度不超过低复杂度或者低成本的终端所能 支持的发送信号的带宽,保证了所述终端能够发送上行控制信息。通过本实施例第三频率资源信息的确定或变化方式,可以保证物理上行控制信道跳频前后映射的频率资源关于系统带宽中心对称,减少了上行控制信息传输对于上行数据传输频率资源的割裂,保证了上行数据的峰值速率或保证了上行数据的接收性能。
第十六实施例
本实例提供一种通信方法。虽然本实施例是以上行控制信息说明技术方案,但是本领域技术人员可以理解,基于相同的原理和概念,本实施例的方案同样可以应用于其他上行信息的发送。具体实现的过程请可以参见第十五实施例中装置实施例所实现的方法。
如图33所示,所述方法包括:
步骤1601,确定至少两个子带,所述子带包含至少一个频率资源,所述每个子带的带宽小于等于终端所支持的带宽;
步骤1602,根据子带区域物理上行控制信道资源索引确定第三频率资源信息,所述第三频率资源信息指示所述至少两个子带所包含的频率资源中的第三频率资源,所述子带区域物理上行控制信道资源索引指示所述至少两个子带中的物理上行控制信道资源;
步骤1603,将物理上行控制信道映射到所述第三频率资源;
步骤1604,通过所述物理上行控制信道接收所述上行控制信息。
通过确定至少两个子带,进而确定对应的频率资源映射,并接收上行控制信息,可以将所接收的上行控制信息限制在子带之内,即限制在发送装置所支持的带宽之内,从而保证了受限终端传输上行控制信息,有利于避免所述上行控制信息对上行系统带宽内的频率资源分割成几个部分,从而可以保证上行数据的峰值速率和上行数据的接收性能。
可选的,可以确定至少两个子带可以确定偶数个子带,比如:2个子带,4个子带,6个子带。为了标识不同的子带,可以使用子带索引。子带也可以具有所述子带包含的频率资源的最小宽带频率资源索引,所述子带包含的频率资源的最大宽带频率资源索引、所述子带包含的频率资源的中心频率资源索引。所以,确定所述至少两个子带的第一信息,所述子带的第一信息至少包括下述之一:子带索引,所述子带包含的频率资源的最小宽带频率资源索引,所述子带包含的频率资源的最大宽带频率资源索引,所述子带包含的频率资源的中心频率资源索引。
可选的,当有两个或者更多个终端时,所述终端划分成多个终端对,所述终端对有第一终端和第二终端组成。第一终端的第三频率资源信息指示的第三频率资源与第二终端的第三频率资源信息指示的第三频率资源相对于系统带宽的中心频率对称。这样有利于避免发送带宽受限的终端发送上行控制信息时,所述上行控制信息对上行系统带宽内的频率资源分割成几个部分,从而可以保证上行数据占用连续的频率资源,达到上行数据的峰值速率。
可以理解的,当偶数个子带包含的频率资源相对于系统带宽的中心频率对称时,当偶数个终端分属于对称的子带当中,更容易使得这些偶数个终端所占用的频率资源相对于系统带宽的中心频率对称。换言之,所述至少两个子带包含第一子带和第二子带,所述第一子带包含的频率资源与第二子带包含的频率资源相对于系统带宽的中心频率对称,其中,所述第一终端的第三频率资源信息指示所述第一子带所包含的频率资源中的第三频率资源,第二终端的第三频率资源信息指示所述第二子带所包含的频率资源中的第三频率资源。
本实施例还包含子带不对称的情况,只要偶数个终端所占用的频率资源相对于系统带宽的中心频率对称,同样可以完成相同的效果。
下面解释如何确定子带。确定至少两个子带,可以确定第一子带的第一信息;进而根据所述第一子带的第一信息确定所述第二子带。或者在已知第一子带 的情况下,可以根据第一子带与第二子带相对于系统带宽的中心频率对称的特性,知晓第二子带的特性。即确定所述第一子带的第一信息;根据所述第一子带的第一信息确定所述第二子带。
所述方法还包括发送系统信息块SIB,所述系统信息块SIB包含所述第一子带的第一信息的配置信息。从而使得终端可以根据所述第一子带的第一信息确定所述第二子带。
例如当所述第一子带的第一信息是第一子带的子带索引,所述第二子带的第一信息是第二子带的子带索引时,第一子带的子带索引和第二子带的子带索引是连续的自然数,则确定了第一子带的子带索引,便可根据第一子带的子带索引确定第二子带的子带索引为第一子带的子带索引加1或减1。比如第一子带的子带索引是偶数,第二子带的子带索引是大于第一子带的子带索引的最小的奇数,则确定了第一子带的子带索引,便可根据第一子带的子带索引确定第二子带的子带索引为第一子带的子带索引加1。根据所述第二子带的子带索引就可以确定第二子带。
又例如当所述第一子带的第一信息是第一子带包含的频率资源的最小宽带频率资源索引,所述第二子带的第一信息是第二子带包含的频率资源的最小宽带频率资源索引时,确定了第一子带包含的频率资源的最小宽带频率资源索引为fNB1_min,便可根据第一子带包含的频率资源的最小宽带频率资源索引确定第二子带包含的频率资源的最小宽带频率资源索引为
Figure PCTCN2015087079-appb-000200
其中,
Figure PCTCN2015087079-appb-000201
是系统带宽中包含的频率资源的数量,NNB为所述第一数量。根据所述第二子带包含的频率资源的最小宽带频率资源索引,以及第二子带包含的频率资源的数量就可以确定第二子带。
通过上述方式,发送系统信息块SIB,所述系统信息块SIB包含所述第一子 带的第一信息的配置信息,从而使得终端可以根据所述第一子带的第一信息确定所述第二子带。就节省了基站用于配置所述第一子带的第一信息和所述第二子带的信令开销。
子带区域物理上行控制信道资源索引指示所述至少两个子带中的物理上行控制信道资源。对所述至少两个子带中的物理上行控制信道资源进行编号,即子带区域物理上行控制信道资源索引。在一个子帧的一个频率资源上,可以有多个物理上行控制信道资源,所述多个物理上行控制信道资源是码分复用的。所述编号是对所述至少两个子带中的物理上行控制信道资源进行的联合编号。
下面介绍如何确定子带区域物理上行控制信道资源索引,可以根据下述参量中的至少一种确定子带区域物理上行控制信道资源索引:无线资源控制RRC信令包含的参量、物理层信令包含的参量、承载下行控制信息的物理下行控制信道PDCCH的第一个控制信道元素CCE的序号、承载下行控制信息的增强的物理下行控制信道EPDCCH的第一个增强的控制信道元素ECCE的序号、承载下行控制信息的机器类型通信的物理下行控制信道的第一个控制信道元素的序号。
本实施例中所述至少两个子带包含的频率资源构成了一个整合的频率资源集合。为了指示这些频率资源,可以使用第三频率资源索引nPRB_NB_MUL_s1。所述第三频率资源索引可以是对所述至少两个子带包含的频率资源的编号。取值范围是0~所述至少两个子带所包含的频率资源的数量-1。
可以根据子带区域物理上行控制信道资源索引确定第三频率资源信息,包括:
根据子带区域物理上行控制信道资源索引确定第三参量m',所述m'小于等于所述至少两个子带所包含的频率资源的数量;根据m'确定所述第三频率资源索引nPRB_NB_MUL_s1
其中,根据m'确定所述第三频率资源索引nPRB_NB_MUL_s1,可以包括:
所述第三频率资源索引nPRB_NB_MUL_s1与m'的关系满足如下公式:
Figure PCTCN2015087079-appb-000202
或者,
Figure PCTCN2015087079-appb-000203
其中
Figure PCTCN2015087079-appb-000204
是所述至少两个子带所包含的频率资源的数量,
Figure PCTCN2015087079-appb-000205
表示向下取整,
X包括以下参数的一个或者多个或者多个的组合:
时隙序号ns、子帧序号nsf、无线帧序号、发送上行控制信息的起始子帧到当前子帧之间包含的上行子帧数;
Y包括以下参数的一个或者多个或者多个的组合:
预先定义的参数、物理上行控制信道的跳频粒度,物理上行控制信道跳频周期。
例如X是nsf。又例如X是10×SFN+nsf,SFN是无线帧序号。又例如X是发送上行控制信息的起始子帧到当前子帧之间包含的子帧数或者上行子帧数。物理上行控制信道映射的频率资源可以发生变化,称作物理上行控制信道跳频。物理上行控制信道映射的频率资源每G个子帧变化一次,称作物理上行控制信道跳频粒度。物理上行控制信道映射的频率资源的变化规律每H个子帧重复一次,则H个子帧称作物理上行控制信道跳频周期。例如Y是物理上行控制信道跳频粒度。 物理上行控制信道跳频可以发生在物理上行控制信道进行映射或者接收上行控制信息的多个子帧中。即在物理上行控制信道映射的频率资源发生变化前后的多个子帧,接收相同的上行控制信息。X和Y确定了物理上行控制信道跳频的时刻。
图26示出了包含第一子带和第二子带的第三频率资源索引nPRB_NB_MUL_s1与m'的关系。
可选的另一方面,如图27所示,同一终端所占用的第三频率资源可以发生变化,如m'=0从第一子带跳频到第二子带上。假设所述第三频率资源信息发生变化前,已经确定的第三频率资源信息为第三频率资源索引nPRB_NB_MUL_s1_pre
当所述第三频率资源信息发生变化时,根据所述第三频率资源信息变化规则确定所述第三频率资源信息变化后的第三频率资源索引nPRB_NB_MUL_s1_after;其中所述所述第三频率资源信息变化规则为:
Figure PCTCN2015087079-appb-000206
Figure PCTCN2015087079-appb-000207
其中
Figure PCTCN2015087079-appb-000208
为所述至少两个子带所包含的频率资源的数量。
可以理解的是,以上第三频率资源索引是所述至少两个子带包含的频率资源的编号,是一种相对索引。
为了标识所述至少两个子带包含的频率资源,还可以使用宽带频率资源索引,所述宽带频率资源索引为系统带宽中包含的频率资源的索引,所述系统带宽为与所述终端通信的接入网设备所支持的带宽。换言之,将接入网设备所支持的整个带宽划分为不同的频率资源,将这些所有的频率资源用宽带频率资源索引进行标引。这是一种绝对索引。宽带频率资源索引的取值范围可以是0~系统带宽包含的频率资源的个数-1。
假设所述第三频率资源信息发生变化前,已经确定的第三频率资源信息为 宽带频率资源索引nPRB_pre,当所述第三频率资源信息发生变化时,根据所述第三频率资源信息变化规则确定所述第三频率资源信息变化后的宽带频率资源索引nPRB_after;其中所述所述第三频率资源信息变化规则为:
Figure PCTCN2015087079-appb-000209
其中
Figure PCTCN2015087079-appb-000210
是系统带宽中包含的频率资源的数量。
以下介绍将物理上行控制信道映射到所述第三频率资源。因为终端在频率跳变时需要准备时间,所以需要足够的保护时间来完成跳频准备。可以理解的,保护时间可以是一个时隙或者多个时隙,也可以是一个子帧或者多个子帧。图27示出了两个时隙的方案。除此之外,还可以包括如下方案:
如果在两个相邻的子帧,所述确定的第三频率资源信息指示的第三频率资源不同,则,在所述两个子帧中的前一个子帧的第一个时隙将物理上行控制信道映射到所述第三频率资源,在所述前一个子帧的另一个时隙不进行物理上行控制信道的映射;或者
在所述两个子帧中的后一个子帧的第二个时隙将物理上行控制信道映射到所述第三频率资源,在所述后一个子帧的另一个时隙不进行物理上行控制信道的映射;或者
在所述两个子帧中的前一个子帧将物理上行控制信道映射到所述第三频率资源,在所述两个子帧中的后一个子帧不进行物理上行控制信道的映射;或者
在所述两个子帧中的后一个子帧将物理上行控制信道映射到所述第三频率资源,在所述两个子帧中的前一个子帧不进行物理上行控制信道的映射。
可以理解的,本实施例中的频率资源可以为一个物理资源块PRB在频带上占据的资源,也可以是其他具有带宽的频率资源;或者所述频率资源为LTE系统中的子载波或者类似的概念。
本发明实施例的方法,将物理上行控制信道映射到一个子帧的一个子带内, 从而在一个子帧映射的频率宽度不超过低复杂度或者低成本的终端所能支持的发送信号的带宽,保证了所述终端能够发送上行控制信息。通过本实施例第三频率资源信息的确定或变化方式,可以保证物理上行控制信道跳频前后映射的频率资源关于系统带宽中心对称,减少了上行控制信息传输对于上行数据传输频率资源的割裂,保证了上行数据的峰值速率或保证了上行数据的接收性能。
第十七实施例
一种通信系统1700,如图34所示,包括上述第十一实施例的通信装置1701和/或第十一实施例的另一个通信装置1702。该系统具备第十一实施例的优点,不再赘述。
一种通信系统的通信方法,包括上述第十一实施例的通信方法。该方法具备第十一实施例的优点,不再赘述。
第十八实施例
一种通信系统1800,如图35所示,包括上述第十三实施例的终端1300和/或第十五实施例的接入网设备1500。该系统具备第十三实施例和/或第十五实施例的优点,不再赘述。
一种通信系统的通信方法,包括上述第十四实施例的发送方法和/或第十六实施例的接收方法。该方法具备第十四实施例和/或第十六实施例的优点,不再赘述。
本文中所有实施例中所述的处理单元,都可以为处理器。所述处理器包括并不限于中央处理单元(CPU),基带处理器等可以执行运算功能的部件。所述发送单元,收发单元,接收单元,可以为对应的发射机、收发机、接收机,以完成这些单元所对应的功能。本领域普通技术人员可以意识到,结合本文中所公开的实施例中描述的各方法步骤和单元,能够以电子硬件、计算机软件或者二者的 结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各实施例的步骤及组成。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域普通技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本发明所使用的,盘(Disk)和碟(disc)包括压缩光碟(CD)、激光碟、光碟、数字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
尽管通过参考附图并结合优选实施例的方式对本发明进行了详细描述,但本发明并不限于此。在不脱离本发明的精神和实质的前提下,本领域普通技术人员可以对本发明的实施例进行各种等效的修改或替换,而这些修改或替换都应在本发明的涵盖范围内。

Claims (92)

  1. 一种通信装置,其中终端所支持的带宽小于系统带宽,所述系统带宽中包含多个频率资源,所述通信装置包括:
    处理单元,用于确定第一参量p1;所述第一参量小于等于第一数量;所述第一数量为所述终端所支持的带宽所能容纳的频率资源的数量;
    所述处理单元,用于根据所述第一参量确定频率资源信息;
    所述处理单元,用于将物理上行控制信道映射到所述频率资源信息指示的频率资源上;
    收发单元,用于通过所述物理上行控制信道发送或者接收上行控制信息。
  2. 如权利要求1所述的通信装置,其中,所述处理单元,用于确定第一参量p1包括:
    所述处理单元,用于根据物理上行控制信道资源索引确定第一参量p1;或者
    所述处理单元,用于根据物理上行控制信道资源索引确定第二参量m*,所述第二参量小于等于所述第一数量;所述处理单元,还用于根据第二参量m*确定第一参量p1。
  3. 如权利要求2所述的通信装置,其中,所述处理单元,用于在确定第一参量p1之前,还包括:
    所述处理单元,用于根据下述参量中的至少一种确定物理上行控制信道资源索引:无线资源控制RRC信令包含的参量、物理层信令包含的参量、承载下行控制信息的物理下行控制信道PDCCH的第一个控制信道元素CCE的序号、承载下行控制信息的增强的物理下行控制信道EPDCCH的第一个增强的控制信道元素ECCE的序号、承载下行控制信息的机器类型通信的物理下行控制信道的第一 个控制信道元素的序号。
  4. 如权利要求2所述的通信装置,其中,所述处理单元,用于根据第二参量确定第一参量包括:
    p1=m*,
    或者
    Figure PCTCN2015087079-appb-100001
    或者
    Figure PCTCN2015087079-appb-100002
    或者
    Figure PCTCN2015087079-appb-100003
    NNB为所述第一数量,m*为所述第二参量,p1为所述第一参量,
    Figure PCTCN2015087079-appb-100004
    表示向下取整,X包括以下参数的一个或者多个或者多个的组合:
    时隙序号、子帧序号nsf、无线帧序号、发送上行控制信息的起始子帧到当前子帧之间包含的上行子帧数;
    Y包括以下参数的一个或者多个或者多个的组合:
    预先定义的参数、物理上行控制信道的跳频粒度,物理上行控制信道跳频周期。
  5. 如权利要求1所述的通信装置,其中,所述系统带宽中包含一个或多个子带,所述子带的带宽小于等于所述终端所支持的带宽,所述子带包含至少一个频率资源,
    所述处理单元,用于根据所述第一参量确定频率资源信息包括:
    所述处理单元,用于确定子带的第一信息;
    所述处理单元,用于根据所述子带的第一信息和所述第一参量p1,确定所述频率资源信息。
  6. 如权利要求5所述的通信装置,其中,所述处理单元,用于确定子带的第一信息包括:
    所述子带为系统带宽边缘的一个子带,所述处理单元,用于根据所述子带得到所述子带的第一信息;或者,
    所述子带为所述通信装置最近一次发送或接收上行信息所使用的子带,所述处理单元,用于根据所述子带得到所述子带的第一信息;或者,
    所述处理单元,用于根据所述通信装置最近一次发送或接收下行信息所使用的子带和双工距离确定所述子带,所述处理单元,用于根据所述子带得到所述子带的第一信息;或者,
    所述处理单元,用于根据子帧序号确定所述子带的第一信息;或者,
    所述处理单元,用于通过接收无线资源控制信令、媒体接入控制信令、物理层信令中的至少一种确定子带的第一信息;或者
    所述处理单元,用于确定无线资源控制信令、媒体接入控制信令、物理层信令中的至少一种包含子带的第一信息的配置信息,所述子带的第一信息的配置信息用于配置所述子带的第一信息,所述收发单元,用于发送上述无线资源控制信令、媒体接入控制信令、物理层信令中的至少一种。
  7. 如权利要求5所述的通信装置,所述处理单元,用于所述确定子带的第一信息包括:所述处理单元,用于根据子带的第一信息变化规则确定子带的第一信息;其中子带的第一信息变化规则为:NB_Idx_after=(NB_Idx_pre+SBoffset)mod Q,
    其中NB_Idx_pre为变化前的子带的第一信息,NB_Idx_after为变化后的子带的第一信息,SBoffset是子带的第一信息偏移量,Q为系统带宽中包含的 子带个数或者频率资源个数。
  8. 如权利要求6所述的通信装置,其中,所述系统带宽中包含第一子带和第二子带,所述第一子带包含的频率资源和第二子带包含的频率资源相对系统带宽的中心频率对称,
    所述处理单元,用于所述确定子带的第一信息包括:
    所述处理单元,用于根据子带的第一信息变化规则确定子带的第一信息;
    所述子带的第一信息变化规则为:若变化前的子带的第一信息是第一子带的第一信息,则变化后的子带的第一信息是第二子带的第一信息;若变化前的子带的第一信息是第二子带的第一信息,则变化后的子带的第一信息是第一子带的第一信息。
  9. 如权利要求7或8所述的通信装置,还包括:
    所述处理单元,用于根据预先规定确定初始子带的第一信息、子带变化的初始子帧、子带变化周期T、子带的第一信息偏移量SBoffset、系统带宽中包含的子带个数、系统带宽中包含的频率资源个数中的至少一种;或者,
    所述处理单元,用于通过接收无线资源控制信令、媒体接入控制信令、物理层信令中的至少一种确定初始子带的第一信息、子带变化的初始子帧、子带变化周期T、子带的第一信息偏移量SBoffset、系统带宽中包含的子带个数、系统带宽中包含的频率资源个数中的至少一种;或者
    所述处理单元,用于确定无线资源控制信令、媒体接入控制信令、物理层信令中的至少一种包含子带的第一信息的配置信息,所述收发装置还用于发送上述无线资源控制信令、媒体接入控制信令、物理层信令中的至少一种,子带的第一信息的配置信息用于配置初始子带的第一信息、子带变化的初始子帧、子带变化周期T、子带的第一信息偏移量SBoffset、系统带宽中包含的子带个数、系统带宽中包含的频率资源个数中的至少一种。
  10. 如权利要求8所述的通信装置,其中所述处理单元,用于所述确定子带的第一信息包括:
    所述收发单元,用于接收系统信息块SIB;
    所述处理单元,用于通过所述系统信息块SIB确定所述第一子带的第一信息;根据所述第一子带的第一信息确定所述第二子带的第一信息;或者
    所述处理单元,用于确定所述第一子带的第一信息;根据所述第一子带的第一信息确定所述第二子带的第一信息;
    所述收发单元,用于发送系统信息块SIB,所述系统信息块包含所述第一子带的第一信息的配置信息。
  11. 如权利要求7或8所述的通信装置,其中,在子带的第一信息变化前,已经确定的第一参量p1为p1_pre,
    所述处理单元,用于确定第一参量p1包括:
    所述处理单元,用于当子带的第一信息变化时,根据第一参量p1的变化规则确定子带的第一信息变化之后的第一参量p1_after;其中所述第一参量p1的变化规则为:p1_after=NNB-1-p1_pre,其中,NNB为所述第一数量。
  12. 如权利要求6-11之一所述的通信装置,其中,所述子带的第一信息包括下述之一:子带索引,所述子带包含的频率资源的最小宽带频率资源索引,所述子带包含的频率资源的最大宽带频率资源索引、所述子带包含的频率资源的中心频率资源索引。。
  13. 如权利要求6所述的通信装置,其中,所述频率资源信息为子带频率资源索引,所述子带的带宽等于所述终端所支持的带宽,所述处理单元,用于根据所述子带的第一信息和所述第一参量p1,确定所述频率资源信息,包括:
    子带频率资源索引等于所述第一参量p1,其中所述子带频率资源索引指示的频率资源为所述子带中的频率资源。
  14. 如权利要求12所述的通信装置,其中,所述频率资源信息为第一宽带频率资源索引,所述子带的带宽等于所述终端所支持的带宽,所述处理单元,用于根据所述子带的第一信息和所述第一参量p1,确定所述频率资源信息包括:
    所述子带的第一信息为子带索引NB_Idx,所述第一宽带频率资源索引nPRB_NB=p1+NB_Idx×NNB
    或者,所述子带的第一信息为子带包含的频率资源的最小宽带频率资源索引fNB_min,所述第一宽带频率资源索引nPRB_NB=p1+fNB_min;;
    或者,所述子带的第一信息为子带包含的频率资源的最大宽带频率资源索引fNB_max,所述第一宽带频率资源索引nPRB_NB=fNB_max-NNB+1+p1。
    或者,当NNB为奇数时,所述子带的第一信息为子带包含的频率资源的中心频率资源索引fNB_c,所述第一宽带频率资源索引
    Figure PCTCN2015087079-appb-100005
    或者,当NNB为偶数时,所述子带的第一信息为子带包含的频率资源的中心频率资源索引,所述中心频率资源索引有两个,将两个中心频率资源索引中较小的一个记为中心频率资源索引fNB_c1,所述第一宽带频率资源索引nPRB_NB=fNB_c1-NNB/2+1+p1。
    或者,当NNB为偶数时,所述子带的第一信息为子带包含的频率资源的中心频率资源索引,所述中心频率资源索引有两个,将两个中心频率资源索引中较大的一个记为中心频率资源索引fNB_c2,所述第一宽带频率资源索引nPRB_NB=fNB_c2-NNB/2+p1。其中NNB为所述第一数量。
  15. 如权利要求14所述的通信装置,其中,在子带的第一信息变化前,已经 确定的第一宽带频率资源索引为nPRB_NB_pre
    所述处理单元,用于确定所述第一宽带频率资源索引包括:
    所述处理单元,用于根据所述第一宽带频率资源索引和第一宽带频率资源变化规则,确定子带的第一信息变化后的第一宽带频率资源索引nPRB_NB_after;其中所述第一宽带频率资源规则为:
    Figure PCTCN2015087079-appb-100006
    其中
    Figure PCTCN2015087079-appb-100007
    是系统带宽中包含的频率资源的数量。
  16. 如权利要求1所述的通信装置,所述处理单元,用于将物理上行控制信道映射到所述频率资源信息指示的频率资源上,包括:
    所述处理单元,用于在至少一个子帧将物理上行控制信道映射到所述频率资源信息指示的频率资源上。
  17. 如权利要求16所述的通信装置,其中,所述至少一个子帧包含两个相邻的子帧,并且所述两个子帧的子带的第一信息不同,
    所述处理单元,用于将物理上行控制信道映射到所述频率资源信息指示的频率资源上,包括:
    所述处理单元,用于在所述两个子帧中的前一个子帧的第一个时隙将物理上行控制信道映射到所述频率资源信息指示的频率资源上,在所述前一个子帧的另一个时隙不进行物理上行控制信道的映射;或者
    所述处理单元,用于在所述两个子帧中的后一个子帧的第二个时隙将物理上行控制信道映射到所述频率资源信息指示的频率资源上,在所述后一个子帧的另一个时隙不进行物理上行控制信道的映射;或者
    所述处理单元,用于在所述两个子帧中的前一个子帧将物理上行控制信道映射到所述频率资源信息指示的频率资源上,在所述两个子帧中的后一个子帧不进行物理上行控制信道的映射;或者
    所述处理单元,用于在所述两个子帧中的后一个子帧将物理上行控制信道映射到所述频率资源信息指示的频率资源上,在所述两个子帧中的前一个子帧不进行物理上行控制信道的映射。
  18. 如权利要求1-17之一所述的通信装置,其中,所述频率资源为一个物理资源块PRB在频率上占据的资源;或者所述频率资源为子载波。
  19. 如权利要求1-18之一所述的通信装置为终端。
  20. 如权利要求1-18之一所述的通信装置为基站设备。
  21. 一种通信方法,其中终端所支持的带宽小于系统带宽,所述系统带宽中包含多个频率资源,所述方法包括如下步骤:
    确定第一参量p1;所述第一参量小于等于第一数量;所述第一数量为所述终端所支持的带宽所能容纳的频率资源的数量;
    根据所述第一参量确定频率资源信息;
    将物理上行控制信道映射到所述频率资源信息指示的频率资源上;
    通过所述物理上行控制信道发送或者接收上行控制信息。
  22. 如权利要求21述的方法,其中,所述确定第一参量p1包括:
    根据物理上行控制信道资源索引确定第一参量p1;或者
    根据物理上行控制信道资源索引确定第二参量m*,所述第二参量小于等于所述第一数量;根据第二参量确定第一参量。
  23. 如权利要求22所述的方法,其中,在确定第一参量p1之前,还包括:
    根据下述参量中的至少一种确定物理上行控制信道资源索引:无线资源控制RRC信令包含的参量、物理层信令包含的参量、承载下行控制信息的物理下行控制信道PDCCH的第一个控制信道元素CCE的序号、承载下行控制信息的增强的物理下行控制信道EPDCCH的第一个增强的控制信道元素ECCE的序号、承载下行控制信息的机器类型通信的物理下行控制信道的第一个控制信道元素的序 号。
  24. 如权利要求22所述的方法,其中,根据第二参量确定第一参量包括:
    p1=m*,
    或者
    Figure PCTCN2015087079-appb-100008
    或者
    Figure PCTCN2015087079-appb-100009
    或者
    Figure PCTCN2015087079-appb-100010
    NNB为所述第一数量,m*为所述第二参量,p1为所述第一参量,
    Figure PCTCN2015087079-appb-100011
    表示向下取整,X包括以下参数的一个或者多个或者多个的组合:
    时隙序号、子帧序号nsf、无线帧序号、发送上行控制信息的起始子帧到当前子帧之间包含的上行子帧数;
    Y包括以下参数的一个或者多个或者多个的组合:
    预先定义的参数、物理上行控制信道的跳频粒度,物理上行控制信道跳频周期。
  25. 如权利要求21所述的方法,其中,所述系统带宽中包含一个或多个子带,所述子带的带宽小于等于所述终端所支持的带宽,所述子带包含至少一个频率资源,
    所述根据所述第一参量确定频率资源信息包括:
    确定子带的第一信息;
    根据所述子带的第一信息和所述第一参量p1,确定所述频率资源信息。
  26. 如权利要求25所述的方法,其中,所述确定子带的第一信息包括:
    所述子带为系统带宽边缘的一个子带,根据所述子带得到所述子带的第一信息;或者,
    所述子带为最近一次发送或接收上行信息所使用的子带,根据所述子带得到所述子带的第一信息;或者,
    根据最近一次发送或者接收下行信息所使用的子带和双工距离确定所述子带,根据所述子带得到所述子带的第一信息;或者,
    根据子帧序号确定所述子带的第一信息;或者,
    通过接收无线资源控制信令、媒体接入控制信令、物理层信令中的至少一种确定子带的第一信息;或者
    确定无线资源控制信令、媒体接入控制信令、物理层信令中的至少一种包含子带的第一信息的配置信息,所述子带的第一信息的配置信息用于配置所述子带的第一信息,发送上述无线资源控制信令、媒体接入控制信令、物理层信令中的至少一种。
  27. 如权利要求25所述的方法,所述确定子带的第一信息包括:根据子带的第一信息变化规则确定子带的第一信息;其中子带的第一信息变化规则为:NB_Idx_after=(NB_Idx_pre+SBoffset)mod Q,
    其中NB_Idx_pre为变化前的子带的第一信息,NB_Idx_after为变化后的子带的第一信息,SBoffset是子带的第一信息偏移量,Q为系统带宽中包含的子带个数或者频率资源个数。
  28. 如权利要求25述的方法,其中,所述系统带宽中包含第一子带和第二子带,所述第一子带包含的频率资源和第二子带包含的频率资源相对系统带宽的中心频率对称,
    所述确定子带的第一信息包括:
    根据子带的第一信息变化规则确定子带的第一信息;
    所述子带的第一信息变化规则为:若变化前的子带的第一信息是第一子带的第一信息,则变化后的子带的第一信息是第二子带的第一信息;若变化前的子带的第一信息是第二子带的第一信息,则变化后的子带的第一信息是第一子带的第一信息。
  29. 如权利要求27或28所述的方法,还包括
    根据预先规定确定初始子带的第一信息、子带变化的初始子帧、子带变化周期T、子带的第一信息偏移量SBoffset、系统带宽中包含的子带个数、系统带宽中包含的频率资源个数中的至少一种;
    或者,通过接收无线资源控制信令、媒体接入控制信令、物理层信令中的至少一种确定初始子带的第一信息、子带变化的初始子帧、子带变化周期T、子带的第一信息偏移量SBoffset、系统带宽中包含的子带个数、系统带宽中包含的频率资源个数中的至少一种;或者,
    确定无线资源控制信令、媒体接入控制信令、物理层信令中的至少一种包含子带的第一信息的配置信息,发送上述无线资源控制信令、媒体接入控制信令、物理层信令中的至少一种,子带的第一信息的配置信息用于配置初始子带的第一信息、子带变化的初始子帧、子带变化周期T、子带的第一信息偏移量SBoffset、系统带宽中包含的子带个数、系统带宽中包含的频率资源个数中的至少一种。
  30. 如权利要求28所述的方法,其中所述确定子带的第一信息包括:
    接收系统信息块SIB;
    通过所述系统信息块SIB确定所述第一子带的第一信息;根据所述第一子带的第一信息确定所述第二子带的第一信息;或者
    确定所述第一子带的第一信息;根据所述第一子带的第一信息确定所述第二子带的第一信息;
    发送系统信息块SIB,所述系统信息块包含所述第一子带的第一信息的配置信息。
  31. 如权利要求27或28所述的方法,其中,在子带的第一信息变化前,已经确定的第一参量p1为p1_pre,
    所述确定第一参量p1包括:
    当子带的第一信息变化时,根据第一参量p1的变化规则确定子带的第一信息变化之后的第一参量p1_after;其中所述第一参量p1的变化规则为:p1_after=NNB-1-p1_pre,其中,NNB为所述第一数量。
  32. 如权利要求25-31之一所述的方法,其中,所述子带的第一信息包括下述之一:子带索引,所述子带包含的频率资源的最小宽带频率资源索引,所述子带包含的频率资源的最大宽带频率资源索引、所述子带包含的频率资源的中心频率资源索引。
  33. 如权利要求25所述的方法,其中,所述频率资源信息为子带频率资源索引,所述子带的带宽等于所述终端所支持的带宽,根据所述子带的第一信息和所述第一参量p1,确定所述频率资源信息,包括:
    子带频率资源索引等于所述第一参量p1,其中所述子带频率资源索引指示的频率资源为所述子带中的频率资源。
  34. 如权利要求32所述的方法,所述频率资源信息为第一宽带频率资源索引,所述子带的带宽等于所述终端所支持的带宽,所述根据所述子带的第一信息和所述第一参量p1,确定所述频率资源信息包括:
    所述子带的第一信息为子带索引NB_Idx,所述第一宽带频率资源索引nPRB_NB=p1+NB_Idx×NNB
    或者,所述子带的第一信息为子带包含的频率资源的最小宽带频率资源索引fNB_min,所述第一宽带频率资源索引nPRB_NB=p1+fNB_min;;
    或者,所述子带的第一信息为子带包含的频率资源的最大宽带频率资源索引fNB_max,所述第一宽带频率资源索引nPRB_NB=fNB_max-NNB+1+p1。
    或者,当NNB为奇数时,所述子带的第一信息为子带包含的频率资源的中心频率资源索引fNB_c,所述第一宽带频率资源索引
    Figure PCTCN2015087079-appb-100012
    或者,当NNB为偶数时,所述子带的第一信息为子带包含的频率资源的中心频率资源索引,所述中心频率资源索引有两个,将两个中心频率资源索引中较小的一个记为中心频率资源索引fNB_c1,所述第一宽带频率资源索引nPRB_NB=fNB_c1-NNB/2+1+p1。
    或者,当NNB为偶数时,所述子带的第一信息为子带包含的频率资源的中心频率资源索引,所述中心频率资源索引有两个,将两个中心频率资源索引中较大的一个记为中心频率资源索引fNB_c2,所述第一宽带频率资源索引nPRB_NB=fNB_c2-NNB/2+p1。其中NNB为所述第一数量。
  35. 如权利要求34所述的方法,其中,在子带的第一信息变化前,已经确定的第一宽带频率资源索引为nPRB_NB_pre
    所述确定所述第一宽带频率资源索引包括:
    根据所述第一宽带频率资源索引和第一宽带频率资源变化规则,确定子带的第一信息变化后的第一宽带频率资源索引nPRB_NB_after;其中所述第一宽带频率资源规则为:
    Figure PCTCN2015087079-appb-100013
    其中
    Figure PCTCN2015087079-appb-100014
    是系统带宽中包含的频率 资源的数量。
  36. 如权利要求21所述的方法,将物理上行控制信道映射到所述频率资源信息指示的频率资源上,包括:
    在至少一个子帧将物理上行控制信道映射到所述频率资源信息指示的频率资源上。
  37. 如权利要求36所述的方法,其中,所述至少一个子帧包含两个相邻的子帧,并且所述两个子帧的子带的第一信息不同,
    将物理上行控制信道映射到所述频率资源信息指示的频率资源上,包括:
    在所述两个子帧中的前一个子帧的第一个时隙将物理上行控制信道映射到所述频率资源信息指示的频率资源上,在所述前一个子帧的另一个时隙不进行物理上行控制信道的映射;或者
    在所述两个子帧中的后一个子帧的第二个时隙将物理上行控制信道映射到所述频率资源信息指示的频率资源上,在所述后一个子帧的另一个时隙不进行物理上行控制信道的映射;或者
    在所述两个子帧中的前一个子帧将物理上行控制信道映射到所述频率资源信息指示的频率资源上,在所述两个子帧中的后一个子帧不进行物理上行控制信道的映射;或者
    在所述两个子帧中的后一个子帧将物理上行控制信道映射到所述频率资源信息指示的频率资源上,在所述两个子帧中的前一个子帧不进行物理上行控制信道的映射。
  38. 如权利要求21-37之一所述的方法,其中,所述频率资源为一个物理资源块PRB在频率上占据的资源;或者所述频率资源为子载波。
  39. 如权利要求21-38之一所述的方法由终端执行。
  40. 如权利要求21-38之一所述的方法由基站设备执行。
  41. 一种终端,包括:
    处理单元,用于确定至少两个子带,所述子带包含至少一个频率资源,所述每个子带的带宽小于等于所述终端所支持的带宽;
    所述处理单元,还用于根据子带区域物理上行控制信道资源索引确定第三频率资源信息,所述第三频率资源信息指示所述至少两个子带所包含的频率资源中的第三频率资源,所述子带区域物理上行控制信道资源索引指示所述至少两个子带中的物理上行控制信道资源;
    所述处理单元,还用于将物理上行控制信道映射到所述第三频率资源;
    收发单元,用于通过所述物理上行控制信道发送所述上行控制信息。
  42. 如权利要求41所述的终端,其中,所述处理单元确定至少两个子带,包括:所述处理单元确定所述至少两个子带的第一信息,所述子带的第一信息至少包括下述之一:子带索引,所述子带包含的频率资源的最小宽带频率资源索引,所述子带包含的频率资源的最大宽带频率资源索引、所述子带包含的频率资源的中心频率资源索引。
  43. 如权利要求41所述的终端,其中,第一终端确定的第三频率资源信息指示的第三频率资源与第二终端确定的第三频率资源信息指示的第三频率资源相对于系统带宽的中心频率对称。
  44. 如权利要求43所述的终端,其中,所述至少两个子带包含第一子带和第二子带,其特征在于,
    所述第一子带包含的频率资源与第二子带包含的频率资源相对于系统带宽的中心频率对称,其中,所述第一终端确定的第三频率资源信息指示所述第一子带所包含的频率资源中的第三频率资源,第二终端确定的第三频率资源信息指示所述第二子带所包含的频率资源中的第三频率资源。
  45. 如权利要求44所述的所述收发单元,还用于接收系统信息块SIB;
    所述处理单元确定至少两个子带,包括:
    所述处理单元,用于通过所述系统信息块SIB确定所述第一子带的第一信息;根据所述第一子带的第一信息确定所述第二子带;
    所述第一子带的第一信息至少包括下述之一:子带索引,所述子带包含的频率资源的最小宽带频率资源索引,所述子带包含的频率资源的最大宽带频率资源索引、所述子带包含的频率资源的中心频率资源索引。
  46. 如权利要求41所述的终端,其中,
    所述处理单元,用于根据下述参量中的至少一种确定子带区域物理上行控制信道资源索引:无线资源控制RRC信令包含的参量、物理层信令包含的参量、承载下行控制信息的物理下行控制信道PDCCH的第一个控制信道元素CCE的序号、承载下行控制信息的增强的物理下行控制信道EPDCCH的第一个增强的控制信道元素ECCE的序号、承载下行控制信息的机器类型通信的物理下行控制信道的第一个控制信道元素的序号。
  47. 如权利要求41所述的终端,其中,
    所述第三频率资源信息是第三频率资源索引nPRB_NB_MUL_s1,所述第三频率资源索引为所述至少两个子带包含的频率资源的索引;
    所述处理单元,用于根据子带区域物理上行控制信道资源索引确定第三频率资源信息,包括:
    所述处理单元,用于根据子带区域物理上行控制信道资源索引确定第三参量m',所述m'小于等于所述至少两个子带所包含的频率资源的数量;
    根据m'确定所述第三频率资源索引nPRB_NB_MUL_s1
  48. 如权利要求47所述的终端,其中,所述处理单元,根据m'确定所述第三频率资源索引nPRB_NB_MUL_s1,包括:
    所述第三频率资源索引nPRB_NB_MUL_s1与m'的关系满足如下公式:
    Figure PCTCN2015087079-appb-100015
    或者,
    Figure PCTCN2015087079-appb-100016
    其中
    Figure PCTCN2015087079-appb-100017
    是所述至少两个子带所包含的频率资源的数量,
    Figure PCTCN2015087079-appb-100018
    表示向下取整,
    X包括以下参数的一个或者多个或者多个的组合:
    时隙序号ns、子帧序号nsf、无线帧序号、发送上行控制信息的起始子帧到当前子帧之间包含的上行子帧数;
    Y包括以下参数的一个或者多个或者多个的组合:
    预先定义的参数、物理上行控制信道的跳频粒度,物理上行控制信道跳频周期。
  49. 如权利要求47或48所述的终端,其中,所述第三频率资源信息发生变化前,已经确定的第三频率资源信息为第三频率资源索引nPRB_NB_MUL_s1_pre
    所述处理单元,用于根据子带区域物理上行控制信道资源索引确定第三频率资源信息,包括:
    所述处理单元,用于当所述第三频率资源信息发生变化时,根据所述第三频率资源信息变化规则确定所述第三频率资源信息变化后的第三频率资源索引nPRB_NB_MUL_s1_after;其中所述所述第三频率资源信息变化规则为:
    Figure PCTCN2015087079-appb-100019
    Figure PCTCN2015087079-appb-100020
    其中
    Figure PCTCN2015087079-appb-100021
    为所述至少两个子带所包含的频率资源的数量。
  50. 如权利要求41所述的终端,其中,
    所述第三频率资源信息是宽带频率资源索引,所述宽带频率资源索引为系统带宽中包含的频率资源的索引,所述系统带宽为与所述终端通信的接入网设备所支持的带宽。
  51. 如权利要求50所述的终端,其中,所述第三频率资源信息发生变化前,已经确定的第三频率资源信息为宽带频率资源索引nPRB_pre
    所述处理单元,用于根据子带区域物理上行控制信道资源索引确定第三频率资源信息,包括:
    所述处理单元,用于当所述第三频率资源信息发生变化时,根据所述第三频率资源信息变化规则确定所述第三频率资源信息变化后的宽带频率资源索引nPRB_after;其中所述所述第三频率资源信息变化规则为:
    Figure PCTCN2015087079-appb-100022
    其中是系统带宽中包含的频率资源的数量。
  52. 如权利要求41所述的终端,所述处理单元,用于将物理上行控制信道映射到所述第三频率资源,包括:
    如果在两个相邻的子帧,所述处理单元确定的第三频率资源信息指示的第三频率资源不同,则,所述处理单元在所述两个子帧中的前一个子帧的第一个时隙将物理上行控制信道映射到所述第三频率资源,在所述前一个子帧的另一个时隙不进行物理上行控制信道的映射;或者
    所述处理单元在所述两个子帧中的后一个子帧的第二个时隙将物理上行控制信道映射到所述第三频率资源,在所述后一个子帧的另一个时隙不进行物理上行控制信道的映射;或者
    所述处理单元在所述两个子帧中的前一个子帧将物理上行控制信道映射到所述第三频率资源,在所述两个子帧中的后一个子帧不进行物理上行控制信道的映射;或者
    所述处理单元在所述两个子帧中的后一个子帧将物理上行控制信道映射到所述第三频率资源,在所述两个子帧中的前一个子帧不进行物理上行控制信道的映射。
  53. 如权利要求41-52之一所述的终端,其中,所述频率资源为一个物理资源块PRB在频带上占据的资源;或者所述频率资源为子载波。
  54. 一种通信方法,包括:
    确定至少两个子带,所述子带包含至少一个频率资源,所述每个子带的带宽小于等于终端所支持的带宽;
    根据子带区域物理上行控制信道资源索引确定第三频率资源信息,所述第三频率资源信息指示所述至少两个子带所包含的频率资源中的第三频率资源,所述子带区域物理上行控制信道资源索引指示所述至少两个子带中的物理上行控制信道资源;
    将物理上行控制信道映射到所述第三频率资源;
    通过所述物理上行控制信道发送所述上行控制信息。
  55. 如权利要求54所述的方法,其中,所述确定至少两个子带,包括:确定所述至少两个子带的第一信息,所述子带的第一信息至少包括下述之一:子带索引,所述子带包含的频率资源的最小宽带频率资源索引,所述子带包含的频率资源的最大宽带频率资源索引,所述子带包含的频率资源的中心频率资源索引。
  56. 如权利要求54所述的方法,其中,第一终端的第三频率资源信息指示的第三频率资源与第二终端的第三频率资源信息指示的第三频率资源相对于系统带宽的中心频率对称。
  57. 如权利要求56所述的方法,其中,所述至少两个子带包含第一子带和第二子带,其特征在于,
    所述第一子带包含的频率资源与第二子带包含的频率资源相对于系统带宽的中心频率对称,其中,所述第一终端的第三频率资源信息指示所述第一子带所包含的频率资源中的第三频率资源,第二终端的第三频率资源信息指示所述第二子带所包含的频率资源中的第三频率资源。
  58. 如权利要求57所述的方法,其中,所述确定至少两个子带,包括:
    接收系统信息块SIB;
    通过所述系统信息块SIB确定所述第一子带的第一信息;根据所述第一子带的第一信息确定所述第二子带
    所述第一子带的第一信息至少包括下述之一:子带索引,所述子带包含的频率资源的最小宽带频率资源索引,所述子带包含的频率资源的最大宽带频率资源索引,所述子带包含的频率资源的中心频率资源索引。
  59. 如权利要求54所述的方法,其中,
    所述子带区域物理上行控制信道资源索引根据下述参量中的至少一种确定:无线资源控制RRC信令包含的参量、物理层信令包含的参量、承载下行控制信息的物理下行控制信道PDCCH的第一个控制信道元素CCE的序号、承载下行控制信息的增强的物理下行控制信道EPDCCH的第一个增强的控制信道元素ECCE的序号,承载下行控制信息的机器类型通信的物理下行控制信道的第一个控制信道元素的序号。
  60. 如权利要求54所述的方法,其中,
    所述第三频率资源信息是第三频率资源索引nPRB_NB_MUL_s1,所述第三频率资源索引为所述至少两个子带包含的频率资源的索引;
    所述根据子带区域物理上行控制信道资源索引确定第三频率资源信息,包 括:
    根据子带区域物理上行控制信道资源索引确定第三参量m',所述m'小于等于所述至少两个子带所包含的频率资源的数量;
    根据m'确定所述第三频率资源索引nPRB_NB_MUL_s1
  61. 如权利要求60所述的方法,其中,所述根据m'确定所述第三频率资源索引nPRB_NB_MUL_s1,包括:
    所述第三频率资源索引nPRB_NB_MUL_s1与m'的关系满足如下公式:
    Figure PCTCN2015087079-appb-100024
    或者,
    Figure PCTCN2015087079-appb-100025
    其中
    Figure PCTCN2015087079-appb-100026
    是所述至少两个子带所包含的频率资源的数量,
    Figure PCTCN2015087079-appb-100027
    表示向下取整,
    X包括以下参数的一个或者多个或者多个的组合:
    时隙序号ns、子帧序号nsf、无线帧序号、发送上行控制信息的起始子帧到当前子帧之间包含的上行子帧数;
    Y包括以下参数的一个或者多个或者多个的组合:
    预先定义的参数、物理上行控制信道的跳频粒度,物理上行控制信道跳频周期。
  62. 如权利要求60或61所述的方法,其中,所述第三频率资源信息发生变化 前,已经确定的第三频率资源信息为第三频率资源索引nPRB_NB_MUL_s1_pre
    所述根据子带区域物理上行控制信道资源索引确定第三频率资源信息,包括:
    当所述第三频率资源信息发生变化时,根据所述第三频率资源信息变化规则确定所述第三频率资源信息变化后的第三频率资源索引nPRB_NB_MUL_s1_after;其中所述所述第三频率资源信息变化规则为:
    Figure PCTCN2015087079-appb-100028
    Figure PCTCN2015087079-appb-100029
    其中
    Figure PCTCN2015087079-appb-100030
    为所述至少两个子带所包含的频率资源的数量。
  63. 如权利要求54所述的方法,其中,
    所述第三频率资源信息是宽带频率资源索引,所述宽带频率资源索引为系统带宽中包含的频率资源的索引,所述系统带宽为与所述终端通信的接入网设备所支持的带宽。
  64. 如权利要求63所述的方法,其中,所述第三频率资源信息发生变化前,已经确定的第三频率资源信息为宽带频率资源索引nPRB_pre
    所述根据子带区域物理上行控制信道资源索引确定第三频率资源信息,包括:
    当所述第三频率资源信息发生变化时,根据所述第三频率资源信息变化规则确定所述第三频率资源信息变化后的宽带频率资源索引nPRB_after;其中所述所述第三频率资源信息变化规则为:
    Figure PCTCN2015087079-appb-100031
    其中
    Figure PCTCN2015087079-appb-100032
    是系统带宽中包含的频率资源的数量。
  65. 如权利要求54所述的发送方法,所述将物理上行控制信道映射到所述第三频率资源,包括:
    如果在两个相邻的子帧,确定的所述第三频率资源信息指示的第三频率资源不同,则,在所述两个子帧中的前一个子帧的第一个时隙将物理上行控制信道映射到所述第三频率资源,在所述前一个子帧的另一个时隙不进行物理上行控制信道的映射;或者
    在所述两个子帧中的后一个子帧的第二个时隙将物理上行控制信道映射到所述第三频率资源,在所述后一个子帧的另一个时隙不进行物理上行控制信道的映射;或者
    在所述两个子帧中的前一个子帧将物理上行控制信道映射到所述第三频率资源,在所述两个子帧中的后一个子帧不进行物理上行控制信道的映射;或者
    在所述两个子帧中的后一个子帧将物理上行控制信道映射到所述第三频率资源,在所述两个子帧中的前一个子帧不进行物理上行控制信道的映射。
  66. 如权利要求54-65之一所述的方法,其中,所述频率资源为一个物理资源块PRB在频带上占据的资源;或者所述频率资源为子载波。
  67. 一种接入网设备,所述接入网设备与终端通信,所述接入网设备包括:
    处理单元,用于确定至少两个子带,所述子带包含至少一个频率资源,所述每个子带的带宽小于等于终端所支持的带宽;
    所述处理单元,还用于根据子带区域物理上行控制信道资源索引确定第三频率资源信息,所述第三频率资源信息指示所述至少两个子带所包含的频率资源中的第三频率资源,所述子带区域物理上行控制信道资源索引指示所述至少两个子带中的物理上行控制信道资源;
    所述处理单元,还用于将物理上行控制信道映射到所述第三频率资源;
    收发单元,用于通过所述物理上行控制信道接收所述上行控制信息。
  68. 如权利要求67所述的接入网设备,其中,所述处理单元确定至少两个子带,包括:所述处理单元确定所述至少两个子带的第一信息,所述子带的第一信 息至少包括下述之一:子带索引,所述子带包含的频率资源的最小宽带频率资源索引,所述子带包含的频率资源的最大宽带频率资源索引、所述子带包含的频率资源的中心频率资源索引。
  69. 如权利要求67所述的接入网设备,其中,所述处理单元确定的第一终端的第三频率资源信息指示的第三频率资源与所述处理单元确定的第二终端的第三频率资源信息指示的第三频率资源相对于系统带宽的中心频率对称。
  70. 如权利要求69所述的接入网设备,其中,所述至少两个子带包含第一子带和第二子带,其特征在于,
    所述第一子带包含的频率资源与第二子带包含的频率资源相对于系统带宽的中心频率对称,其中,所述第一终端的第三频率资源信息指示所述第一子带所包含的频率资源中的第三频率资源,第二终端的第三频率资源信息指示所述第二子带所包含的频率资源中的第三频率资源。
  71. 如权利要求70所述的接入网设备,其中,所述处理单元确定至少两个子带,包括:
    所述处理单元,用于确定所述第一子带的第一信息;根据所述第一子带的第一信息确定所述第二子带;
    所述收发单元,还用于发送系统信息块SIB,所述系统信息块SIB包含所述第一子带的第一信息的配置信息;
    所述第一子带的第一信息至少包括下述之一:子带索引,所述子带包含的频率资源的最小宽带频率资源索引,所述子带包含的频率资源的最大宽带频率资源索引、所述子带包含的频率资源的中心频率资源索引。
  72. 如权利要求67所述的接入网设备,其中,
    所述处理单元,用于根据下述参量中的至少一种确定子带区域物理上行控制信道资源索引:无线资源控制RRC信令包含的参量、物理层信令包含的参量、 承载下行控制信息的物理下行控制信道PDCCH的第一个控制信道元素CCE的序号、承载下行控制信息的增强的物理下行控制信道EPDCCH的第一个增强的控制信道元素ECCE的序号、承载下行控制信息的机器类型通信的物理下行控制信道的第一个控制信道元素的序号。
  73. 如权利要求67所述的接入网设备,其中,
    所述第三频率资源信息是第三频率资源索引nPRB_NB_MUL_s1,所述第三频率资源索引为所述至少两个子带包含的频率资源的索引;
    所述处理单元,用于根据子带区域物理上行控制信道资源索引确定第三频率资源信息,包括:
    所述处理单元,用于根据子带区域物理上行控制信道资源索引确定第三参量m',所述m'小于等于所述至少两个子带所包含的频率资源的数量;
    根据m'确定所述第三频率资源索引nPRB_NB_MUL_s1
  74. 如权利要求73所述的接入网设备,其中,所述处理单元,根据m'确定所述第三频率资源索引nPRB_NB_MUL_s1,包括:
    所述第三频率资源索引nPRB_NB_MUL_s1与m'的关系满足如下公式:
    Figure PCTCN2015087079-appb-100033
    或者,
    Figure PCTCN2015087079-appb-100034
    其中
    Figure PCTCN2015087079-appb-100035
    是所述至少两个子带所包含的频率资源的数量,
    Figure PCTCN2015087079-appb-100036
    表示向下 取整,
    X包括以下参数的一个或者多个或者多个的组合:
    时隙序号ns、子帧序号nsf、无线帧序号、发送上行控制信息的起始子帧到当前子帧之间包含的上行子帧数;
    Y包括以下参数的一个或者多个或者多个的组合:
    预先定义的参数、物理上行控制信道的跳频粒度,物理上行控制信道跳频周期。
  75. 如权利要求73或74所述的接入网设备,其中,所述第三频率资源信息发生变化前,已经确定的第三频率资源信息为第三频率资源索引nPRB_NB_MUL_s1_pre
    所述处理单元,用于根据子带区域物理上行控制信道资源索引确定第三频率资源信息,包括:
    所述处理单元,用于当所述第三频率资源信息发生变化时,根据所述第三频率资源信息变化规则确定所述第三频率资源信息变化后的第三频率资源索引nPRB_NB_MUL_s1_after;其中所述所述第三频率资源信息变化规则为:
    Figure PCTCN2015087079-appb-100037
    Figure PCTCN2015087079-appb-100038
    其中
    Figure PCTCN2015087079-appb-100039
    为所述至少两个子带所包含的频率资源的数量。
  76. 如权利要求67所述的接入网设备,其中,
    所述第三频率资源信息是宽带频率资源索引,所述宽带频率资源索引为系统带宽中包含的频率资源的索引,所述系统带宽为所述接入网设备所支持的带宽。
  77. 如权利要求76所述的接入网设备,其中,所述第三频率资源信息发生变化前,已经确定的第三频率资源信息为宽带频率资源索引nPRB_pre
    所述处理单元,用于根据子带区域物理上行控制信道资源索引确定第三频率资源信息,包括:
    所述处理单元,用于当所述第三频率资源信息发生变化时,根据所述第三频率资源信息变化规则确定所述第三频率资源信息变化后的宽带频率资源索引nPRB_after;其中所述所述第三频率资源信息变化规则为:
    Figure PCTCN2015087079-appb-100040
    其中
    Figure PCTCN2015087079-appb-100041
    是系统带宽中包含的频率资源的数量。
  78. 如权利要求67所述的接入网设备,所述处理单元,用于将物理上行控制信道映射到所述第三频率资源,包括:
    如果在两个相邻的子帧,所述处理单元确定的第三频率资源信息指示的第三频率资源不同,则,所述处理单元在所述两个子帧中的前一个子帧的第一个时隙将物理上行控制信道映射到所述第三频率资源,在所述前一个子帧的另一个时隙不进行物理上行控制信道的映射;或者
    所述处理单元在所述两个子帧中的后一个子帧的第二个时隙将物理上行控制信道映射到所述第三频率资源,在所述后一个子帧的另一个时隙不进行物理上行控制信道的映射;或者
    所述处理单元在所述两个子帧中的前一个子帧将物理上行控制信道映射到所述第三频率资源,在所述两个子帧中的后一个子帧不进行物理上行控制信道的映射;或者
    所述处理单元在所述两个子帧中的后一个子帧将物理上行控制信道映射到所述第三频率资源,在所述两个子帧中的前一个子帧不进行物理上行控制信道的映射。
  79. 如权利要求67-78之一所述的接入网设备,其中,所述频率资源为一个物理资源块PRB在频带上占据的资源;或者所述频率资源为子载波。
  80. 一种通信方法,包括:
    确定至少两个子带,所述子带包含至少一个频率资源,所述每个子带的带宽小于等于终端所支持的带宽;
    根据子带区域物理上行控制信道资源索引确定第三频率资源信息,所述第三频率资源信息指示所述至少两个子带所包含的频率资源中的第三频率资源,所述子带区域物理上行控制信道资源索引指示所述至少两个子带中的物理上行控制信道资源;
    将物理上行控制信道映射到所述第三频率资源;
    通过所述物理上行控制信道接收所述上行控制信息。
  81. 如权利要求80所述的方法,其中,所述确定至少两个子带,包括:确定所述至少两个子带的第一信息,所述子带的第一信息至少包括下述之一:子带索引,所述子带包含的频率资源的最小宽带频率资源索引,所述子带包含的频率资源的最大宽带频率资源索引,所述子带包含的频率资源的中心频率资源索引。
  82. 如权利要求80所述的方法,其中,第一终端的第三频率资源信息指示的第三频率资源与第二终端的第三频率资源信息指示的第三频率资源相对于系统带宽的中心频率对称。
  83. 如权利要求82所述的方法,其中,所述至少两个子带包含第一子带和第二子带,其特征在于,
    所述第一子带包含的频率资源与第二子带包含的频率资源相对于系统带宽的中心频率对称,其中,所述第一终端的第三频率资源信息指示所述第一子带所包含的频率资源中的第三频率资源,第二终端的第三频率资源信息指示所述第二子带所包含的频率资源中的第三频率资源。
  84. 如权利要求83所述的方法,其中,所述确定至少两个子带,包括:
    确定所述第一子带的第一信息并发送系统信息块SIB,所述系统信息块SIB包含所述第一子带的第一信息的配置信息;
    根据所述第一子带的第一信息确定所述第二子带;
    所述第一子带的第一信息至少包括下述之一:子带索引,所述子带包含的 频率资源的最小宽带频率资源索引,所述子带包含的频率资源的最大宽带频率资源索引,所述子带包含的频率资源的中心频率资源索引。
  85. 如权利要求80所述的方法,其中,
    所述子带区域物理上行控制信道资源索引根据下述参量中的至少一种确定:无线资源控制RRC信令包含的参量、物理层信令包含的参量、承载下行控制信息的物理下行控制信道PDCCH的第一个控制信道元素CCE的序号、承载下行控制信息的增强的物理下行控制信道EPDCCH的第一个增强的控制信道元素ECCE的序号,承载下行控制信息的机器类型通信的物理下行控制信道的第一个控制信道元素的序号。
  86. 如权利要求80所述的方法,其中,
    所述第三频率资源信息是第三频率资源索引nPRB_NB_MUL_s1,所述第三频率资源索引为所述至少两个子带包含的频率资源的索引;
    所述根据子带区域物理上行控制信道资源索引确定第三频率资源信息,包括:
    根据子带区域物理上行控制信道资源索引确定第三参量m',所述m'小于等于所述至少两个子带所包含的频率资源的数量;
    根据m'确定所述第三频率资源索引nPRB_NB_MUL_s1
  87. 如权利要求86所述的方法,其中,所述根据m'确定所述第三频率资源索引nPRB_NB_MUL_s1,包括:
    所述第三频率资源索引nPRB_NB_MUL_s1与m'的关系满足如下公式:
    Figure PCTCN2015087079-appb-100042
    或者,
    Figure PCTCN2015087079-appb-100043
    其中
    Figure PCTCN2015087079-appb-100044
    是所述至少两个子带所包含的频率资源的数量,
    Figure PCTCN2015087079-appb-100045
    表示向下取整,
    X包括以下参数的一个或者多个或者多个的组合:
    时隙序号ns、子帧序号nsf、无线帧序号、发送上行控制信息的起始子帧到当前子帧之间包含的上行子帧数;
    Y包括以下参数的一个或者多个或者多个的组合:
    预先定义的参数、物理上行控制信道的跳频粒度,物理上行控制信道跳频周期。
  88. 如权利要求86或87所述的方法,其中,所述第三频率资源信息发生变化前,已经确定的第三频率资源信息为第三频率资源索引nPRB_NB_MUL_s1_pre
    所述根据子带区域物理上行控制信道资源索引确定第三频率资源信息,包括:
    当所述第三频率资源信息发生变化时,根据所述第三频率资源信息变化规则确定所述第三频率资源信息变化后的第三频率资源索引nPRB_NB_MUL_s1_after;其中所述所述第三频率资源信息变化规则为:
    Figure PCTCN2015087079-appb-100046
    Figure PCTCN2015087079-appb-100047
    其中
    Figure PCTCN2015087079-appb-100048
    为所述至少两个子带所包含的频率资源的数量。
  89. 如权利要求80所述的方法,其中,
    所述第三频率资源信息是宽带频率资源索引,所述宽带频率资源索引为系 统带宽中包含的频率资源的索引,所述系统带宽为接入网设备所支持的带宽。
  90. 如权利要求89所述的方法,其中,所述第三频率资源信息发生变化前,已经确定的第三频率资源信息为宽带频率资源索引nPRB_pre
    所述根据子带区域物理上行控制信道资源索引确定第三频率资源信息,包括:
    当所述第三频率资源信息发生变化时,根据所述第三频率资源信息变化规则确定所述第三频率资源信息变化后的宽带频率资源索引nPRB_after;其中所述所述第三频率资源信息变化规则为:
    Figure PCTCN2015087079-appb-100049
    其中
    Figure PCTCN2015087079-appb-100050
    是系统带宽中包含的频率资源的数量。
  91. 如权利要求80所述的发送方法,所述将物理上行控制信道映射到所述第三频率资源,包括:
    如果在两个相邻的子帧,所述确定的第三频率资源信息指示的第三频率资源不同,则,在所述两个子帧中的前一个子帧的第一个时隙将物理上行控制信道映射到所述第三频率资源,在所述前一个子帧的另一个时隙不进行物理上行控制信道的映射;或者
    在所述两个子帧中的后一个子帧的第二个时隙将物理上行控制信道映射到所述第三频率资源,在所述后一个子帧的另一个时隙不进行物理上行控制信道的映射;或者
    在所述两个子帧中的前一个子帧将物理上行控制信道映射到所述第三频率资源,在所述两个子帧中的后一个子帧不进行物理上行控制信道的映射;或者
    在所述两个子帧中的后一个子帧将物理上行控制信道映射到所述第三频率资源,在所述两个子帧中的前一个子帧不进行物理上行控制信道的映射。
  92. 如权利要求80-91之一所述的方法,其中,所述频率资源为一个物理资 源块PRB在频带上占据的资源;或者所述频率资源为子载波。
PCT/CN2015/087079 2014-12-31 2015-08-14 一种通信装置及其方法 WO2016107189A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580071380.0A CN107113852B (zh) 2014-12-31 2015-08-14 一种通信装置及其方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2014096042 2014-12-31
CNPCT/CN2014/096042 2014-12-31

Publications (1)

Publication Number Publication Date
WO2016107189A1 true WO2016107189A1 (zh) 2016-07-07

Family

ID=56284127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/087079 WO2016107189A1 (zh) 2014-12-31 2015-08-14 一种通信装置及其方法

Country Status (2)

Country Link
CN (1) CN107113852B (zh)
WO (1) WO2016107189A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109511170B (zh) * 2017-09-15 2021-11-23 维沃移动通信有限公司 一种PRB bundling size的指示方法和用户终端
CN111787635B (zh) * 2019-04-04 2022-10-14 中国信息通信研究院 一种中继上行接入信道配置方法和设备
CN114071745A (zh) * 2020-08-07 2022-02-18 华为技术有限公司 一种无线接入的方法以及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102307082A (zh) * 2011-09-28 2012-01-04 电信科学技术研究院 一种上行控制信令的传输方法及装置
WO2013115260A1 (ja) * 2012-01-30 2013-08-08 株式会社エヌ・ティ・ティ・ドコモ 無線基地局装置、ユーザ端末、無線通信システム及び無線通信方法
CN103298092A (zh) * 2012-02-24 2013-09-11 华为技术有限公司 功率分配方法和装置及系统
US20140307698A1 (en) * 2011-12-19 2014-10-16 Sca Ipla Holdings Inc. Telecommunications systems and methods for machine type communication

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101654444B1 (ko) * 2012-01-10 2016-09-05 후지쯔 가부시끼가이샤 통신 장치, 이동 통신 장치, 통신 시스템 및 통신 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102307082A (zh) * 2011-09-28 2012-01-04 电信科学技术研究院 一种上行控制信令的传输方法及装置
US20140307698A1 (en) * 2011-12-19 2014-10-16 Sca Ipla Holdings Inc. Telecommunications systems and methods for machine type communication
WO2013115260A1 (ja) * 2012-01-30 2013-08-08 株式会社エヌ・ティ・ティ・ドコモ 無線基地局装置、ユーザ端末、無線通信システム及び無線通信方法
CN103298092A (zh) * 2012-02-24 2013-09-11 华为技术有限公司 功率分配方法和装置及系统

Also Published As

Publication number Publication date
CN107113852A (zh) 2017-08-29
CN107113852B (zh) 2020-05-29

Similar Documents

Publication Publication Date Title
US20230180256A1 (en) Method for transmitting and receiving control information of a mobile communication system
CN112106316B (zh) 在无线通信系统中多路复用上行链路控制信息的方法和使用该方法的装置
CA3051021C (en) Separate configuration of numerology-associated resources
RU2758075C1 (ru) Конфигурация ресурса запроса планирования
US10736136B2 (en) Interlace determination for a device
RU2502230C2 (ru) Устройство терминала беспроводной связи, устройство базовой станции беспроводной связи и способ задания ресурсной области
WO2018121495A1 (en) Transmission with multiple numerologies in new radio system
US20190313401A1 (en) Pucch resource allocation before rrc setup
CN107294897B9 (zh) 下行信息发送、接收方法及装置
CN115225233A (zh) 使用时分双工方案的无线通信系统的用户设备及操作方法
WO2017118229A1 (zh) 一种资源调度方法、装置及系统
US20170237592A1 (en) Peak to average power ratio reduction in elaa
US20120106495A1 (en) Method for transmitting control information and apparatus for same
CN114762263A (zh) 用于网络协作通信的默认波束配置方法及装置
WO2012148141A2 (ko) 캐리어 병합을 위한 자원 구성 방법 및 이를 위한 장치
JP7135088B2 (ja) データ伝送方法、装置及びコンピュータ記憶媒体
US20180309533A1 (en) Base station apparatus, terminal apparatus, and communication method
US10638461B2 (en) Terminal apparatus with offset determined depending on subframe set
US10587378B2 (en) Downlink information processing method, user equipment, base station, and communications system
JP7312788B2 (ja) 無線アクセスネットワークでの送信のスケジューリング
CN107852715A (zh) 终端装置、通信方法以及集成电路
JP2023521676A (ja) 空間パラメータの決定方法及び装置
WO2016107189A1 (zh) 一种通信装置及其方法
WO2019096067A1 (zh) 确定序列组的方法及装置,确定循环移位的方法及装置
CN105075374A (zh) 终端装置、基站装置、集成电路以及无线通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15874875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15874875

Country of ref document: EP

Kind code of ref document: A1