WO2016107160A1 - Ofdma系统中数据包处理方法及装置、存储介质 - Google Patents
Ofdma系统中数据包处理方法及装置、存储介质 Download PDFInfo
- Publication number
- WO2016107160A1 WO2016107160A1 PCT/CN2015/085554 CN2015085554W WO2016107160A1 WO 2016107160 A1 WO2016107160 A1 WO 2016107160A1 CN 2015085554 W CN2015085554 W CN 2015085554W WO 2016107160 A1 WO2016107160 A1 WO 2016107160A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- modulation
- error correction
- ofdm
- ofdm symbol
- data
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0041—Arrangements at the transmitter end
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/0061—Error detection codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/04—Error control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
- H04L27/26035—Maintenance of orthogonality, e.g. for signals exchanged between cells or users, or by using covering codes or sequences
Definitions
- the present invention relates to a data packet transmission technology in an Orthogonal Frequency Division Multiple Access (OFDMA) system, and more particularly to a data packet processing method and apparatus, and a storage medium in an OFDMA system.
- OFDMA Orthogonal Frequency Division Multiple Access
- OFDMA multiple access technology is one of the key technologies in the fourth generation of Long Term Evolution (LTE) systems. It can combine space-time coding technology, inter-symbol interference and inter-channel interference suppression, and smart antenna technology to maximize the maximum. The performance of the communication system improves communication throughput.
- LTE Long Term Evolution
- the downlink communication uses the multi-carrier OFDMA technology
- the uplink uses the single-carrier frequency division multiple access (SC-FDMA) technology.
- SC-FDMA single-carrier frequency division multiple access
- Each subcarrier in OFDMA is mutually orthogonal, each subcarrier has an integer number of carrier periods in one symbol time, and the spectrum zero of each carrier overlaps with the zero of the adjacent carrier, so that there is no subcarrier between interference. Moreover, since there is partial overlap between carriers, the spectrum utilization is greatly improved.
- the cyclic prefix is padded within the OFDMA symbol guard interval to ensure that the number of waveform periods included in the delay copy of the OFDMA symbol during the Fast Fourier Transform (FFT) period is also an integer. Such a signal with a delay less than the guard interval will not produce ISI and ICI during the demodulation process.
- FFT/IFFT Fast Fourier Transform
- the binary Turbo coding in the LTE system is a parallel concatenated code with an internal interleaver, which is generally formed by two recursive system convolutional (RSC) component code encoders of the same structure being cascaded in parallel.
- the Turbo intra-code interleaver randomly replaces the bit positions in the input binary information sequence before the second component code encoder.
- the turbo code has the characteristics of an approximately random long code.
- Low density parity check code is a linear block code based on sparse check matrix. By using the sparsity of check matrix, low complexity code can be realized. Since LDPC codes are simple to decode and have high throughput, they are used in microwave communication or LAN communication.
- Convolutional codes are also a kind of forward error correction codes.
- the characteristic of convolutional codes is that when encoding input information at a certain moment, it is not only related to the input of this moment, but also to multiple moments before this moment.
- the input is related to the fact that the generation of the codeword is subject to a plurality of input time information.
- the RS code is a special non-binary broadcast channel (BCH) code with strong error correction capability. It is the shortest distance maximization coding method.
- BCH broadcast channel
- the RS coding and BCH coding decoding methods generally use hard decision decoding.
- the CRC sequence is generally used for error detection, and the CRC is a Cyclic Redundancy Check, which is generally redundant information added to the information block before the error correction coding is performed.
- the working method of the cyclic redundancy code check is to generate a redundant information at the transmitting end, and add it to the information bit and send it to the receiving end together. The information received by the receiving end is verified correctly by the same algorithm.
- general source information blocks are relatively large, and it is necessary to divide the code blocks into smaller information blocks, and then perform channel coding on these smaller information blocks.
- the purpose of this is that if the code length is long, the error correction code decoder will be very complicated and the delay will be relatively large, and the length of the general source information block is variable, which requires designing a code length and a large range of changes.
- the error correction code is also quite difficult. For error correction coding, the longer the code length, the better the performance, but the complexity The higher the degree.
- some error correction coding lengths are relatively large, for example, the length of 6144 bits can be reached in the LTE system, and the problem is that the decoding delay of the error correction code is relatively large, and the complexity is also Higher.
- the OFDMA system is very sensitive to phase noise and carrier frequency offset. This is a disadvantage of OFDMA technology.
- the orthogonality between each subcarrier is extremely strict in the whole OFDMA system. Any small carrier frequency offset will destroy the subcarrier.
- the orthogonality between the carriers causes ICI; the phase noise also causes the rotation and diffusion of the symbol constellation points to form ICI. These effects will reduce the reliability of system communication.
- the OFDMA communication system under the fading channel, makes the channels of different error correction code blocks within one OFDM symbol different, and also causes the packet loss performance of the final data packet to be degraded. Therefore, there is a need for a processing method to improve the data transmission reliability, system communication robustness and reduced decoding delay of the OFDMA system under the fading channel.
- an embodiment of the present invention provides a data packet processing method and apparatus, and a storage medium in an OFDMA system.
- a data packet processing method in an OFDMA system is applied to a transmitting end, and the method includes:
- the first modulation symbol sequence corresponds to a information data packet
- the second modulation symbol sequence corresponds to b parity data packets
- the first modulation symbol sequence is chronologically mapped to consecutive M ofdm 1 OFDM symbols
- the second modulation symbol is used The sequence is mapped to consecutive M ofdm 2 OFDM symbols in chronological order;
- the first OFDM symbol of the M ofdm1 OFDM symbols is sent before the first OFDM symbol of the M ofdm2 OFDM symbols;
- a is an integer greater than or equal to 2
- d is an integer greater than or equal to 2
- b is an integer greater than or equal to 1
- k1 and k2 are integers greater than or equal to 1
- M ofdm1 and M ofdm2 are integers greater than or equal to 1.
- a data packet processing method in an OFDMA system is applied to a receiving end, and the method includes:
- Receiving a first modulation symbol sequence M ofdm1 consecutive OFDM symbols, and M ofdm2 consecutive OFDM symbols comprises a second modulation symbol sequence; said first modulation symbol sequence comprising a number of information packets, the first The two modulation symbol sequences include b parity data packets; the a information data packets include d error correction code data blocks; and the information is decoded using the data of the d error correction coding data blocks and the b parity data packets.
- a is an integer greater than or equal to 2
- d is an integer greater than or equal to 2
- b is an integer greater than or equal to 1
- M ofdm1 and M ofdm2 are integers greater than or equal to 1.
- An apparatus for processing an OFDMA system packet is applied to a transmitting end, and the apparatus includes:
- a code block segmentation module configured to perform code block segmentation on the source data packet to be transmitted to obtain d data blocks
- Adding a CRC sequence module configured to add a cyclic redundancy check code CRC sequence to each of the d data blocks respectively;
- the error correction coding module is configured to perform error correction coding on each of the d data blocks after adding the CRC sequence;
- a grouping module configured to group the error-corrected d data blocks to obtain an equal length a Information packets
- a packet encoding module configured to perform packet encoding on the a information data packets to obtain b verification data packets
- a constellation mapping modulation module configured to perform constellation mapping modulation on the a information data packet and the b parity data packets to obtain a first modulation symbol sequence of length k1 and a second modulation symbol of length k2 a sequence, the first modulation symbol sequence corresponds to a information data packet, and the second modulation symbol sequence corresponds to b parity data packets;
- An OFDM modulation module configured to map the first modulation symbol sequence to consecutive M ofdm1 OFDM symbols in chronological order, and to map the second modulation symbol sequence to consecutive M ofdm2 OFDM symbols in chronological order;
- a sending module configured for the M ofdm1 M ofdm2 OFDM symbols and OFDM symbols, wherein the OFDM symbols M ofdm1 first OFDM symbol before transmitting the first OFDM symbol OFDM symbols M ofdm2 ;
- a is an integer greater than or equal to 2
- d is an integer greater than or equal to 2
- b is an integer greater than or equal to 1
- k1 and k2 are integers greater than or equal to 1
- Mofdm1 and Mofdm2 are integers greater than or equal to 1.
- a data packet processing apparatus in an OFDMA system is applied to a receiving end, and the apparatus includes:
- Receiving an OFDM symbol module configured to receive a first modulation symbol sequence comprising consecutive M ofdm1 OFDM symbols, and the second modulation symbol sequence comprising consecutive OFDM symbols M ofdm2; said first modulation symbol sequence comprising a number Information packet, the second modulation symbol sequence includes b parity data packets; the a information data packets include d error correction encoded data blocks;
- An error correction decoding module configured to decode the source data packet by using the information of the d error correction encoded data blocks and the b parity data packets;
- a is an integer greater than or equal to 2
- d is an integer greater than or equal to 2
- b is an integer greater than or equal to 1
- M ofdm1 and M ofdm2 are integers greater than or equal to 1.
- a storage medium storing a computer program configured to perform the aforementioned data packet processing method in an OFDMA system.
- the technical solution of the embodiment of the present invention combines OFDMA and data packet coding technology for data transmission, so that the decoding of the receiving end can be demodulated and decoded by a pipeline-like method, the decoding speed is faster, and the reception robustness is stronger.
- Each time an OFDM symbol is received all error correction coding blocks of the previous OFDM symbol are decoded first in the gap of receiving the next OFDM symbol, thereby shortening the decoding delay, the speed is faster, and the throughput is high.
- all error correction code blocks will have more check data blocks through the packet coding method. At the transmitting end, these check data blocks are sent after the original error correction code data block, and then decoded at the receiving end.
- the error correction code block decoding error can re-code all error correction coding blocks by packet coding and decoding, which can improve the performance of each error correction code block, thereby improving reception robustness.
- FIG. 1 is a schematic diagram of accessing an OFDMA system according to an embodiment of the present invention
- FIG. 2 is a schematic diagram of frequency dimensions and time dimensions in an OFDMA system according to an embodiment of the present invention
- FIG. 3 is a flowchart of a method for processing a data packet in an OFDMA system according to Embodiment 1 of the present invention
- FIG. 4 is a schematic structural diagram of a packet processing apparatus in an OFDMA system according to Embodiment 2 of the present invention.
- FIG. 5 is a schematic diagram of resource allocation of an OFDMA system according to Embodiment 1 of Embodiment 1/Embodiment 2;
- FIG. 6 is a schematic diagram of resource allocation of an OFDMA system according to Example 5 in Embodiment 1/Embodiment 2;
- FIG. 7 is a schematic diagram of resource allocation of an OFDMA system according to Example 5 in Embodiment 1/Embodiment 2;
- FIG. 8 is a schematic diagram of data for performing constellation mapping modulation according to Example 6 in Embodiment 1/Embodiment 2;
- FIG. 9 is a schematic diagram of two-dimensional time-frequency resource allocation of an OFDMA system according to Example 6 in Embodiment 1/Embodiment 2;
- FIG. 10 is a schematic diagram of two-dimensional time-frequency resource allocation of an OFDMA system according to Example 8 in Embodiment 1/Embodiment 2;
- Example 11 is a flowchart of receiving and decoding of an OFDMA system in Example 9 according to Embodiment 1 of the present invention.
- FIG. 12 is a flowchart of a data packet processing method in an OFDMA system according to Embodiment 3 of the present invention.
- FIG. 13 is a schematic structural diagram of a receiving and decoding module of an OFDMA system of Example 9 in Embodiment 2 of the apparatus of the present invention.
- FIG. 3 is a flowchart of a method for processing a data packet in an OFDMA system according to Embodiment 1 of the present invention. As shown in FIG. 3, a method for processing a data packet of an OFDMA system according to an embodiment of the present invention includes the following steps:
- the first modulation symbol sequence is chronologically mapped onto consecutive M ofdm1 OFDM symbols, and the second modulation symbol sequence is chronologically mapped to consecutive M ofdm2 OFDM symbols; sending sequence number
- the first OFDM symbol of the M ofdm1 OFDM symbols precedes the first OFDM symbol of the M ofdm 2 OFDM symbols; as shown in FIG. 2, the resource occupancy of the embodiment of the present invention is shown.
- a is an integer greater than or equal to 2
- d is an integer greater than or equal to 2
- b is an integer greater than or equal to 1
- k1 and k2 are integers greater than or equal to 1
- M ofdm1 and M ofdm2 are integers greater than or equal to 1.
- the equal length is obtained.
- a second padding is performed, where the m2 bit is added to the header or the tail of the entire error correction coded data block, wherein the entire error correction coded data block includes d.
- d is an integer greater than or equal to 2
- m2 is an integer greater than or equal to zero.
- the packet obtains a equal-length information data packet, and the number of bits of each information data packet is k ⁇ c, where a is an integer greater than or equal to 2, and k is a bit of the error correction coding block.
- the number k is an integer greater than or equal to 1
- c is an integer greater than or equal to 1.
- the CRC sequence is added to each data block separately, and each CRC sequence has a length of h bits, where h is an integer greater than or equal to 1.
- performing constellation mapping modulation on the a information data packets to obtain a first modulation symbol sequence of length k1 does not include the first filling and the second filling Bit data, where a is an integer greater than or equal to 2, and k1 is an integer greater than or equal to 1.
- the source data packet to be transmitted is subjected to code block segmentation to obtain d data blocks, and the length of each data block depends on the following parameters: a length of the source data packet, and a system allocation for the first
- the number of subcarriers on each OFDM symbol that the transmission node transmits data to the second transmission node, the modulation order, the error correction coding rate, the number of OFDM symbols, the number of error correction coding blocks in the information packet, and the bearer on each OFDM symbol The number of error correction coding blocks, the number of CRC sequence bits, and the number of parity data packets obtained by packet coding, wherein the modulation order is the number of bits carried by the constellation mapping modulation symbol, and d is an integer greater than or equal to 2.
- the modulation order of the first modulation symbol sequence is Mod1′
- the modulation order of the second modulation symbol sequence is Mod2′
- Mod1′ and Mod2′ are integers of 1 to 16
- the first modulation symbol sequence includes a q1 group modulation symbol subsequence, the modulation order in the subsequence is the same
- Modi is a modulation order adopted by the i-th modulation symbol subsequence in the first modulation symbol sequence
- the second modulation symbol sequence comprises a q2 set of modulation symbol subsequences, the modulation order in the subsequence is the same
- the modulation order is a constellation mapping The number of bits carried by
- the packet encoding a packet of information data to obtain b parity data packets includes: forming an ith bit of all a information data packets into a sequence Si of length a, and performing Si on the Si data packet Single parity coding, b-bit parity parity coding, Hamming coding or RS coding, to obtain a check sequence Ti of length b bits; combining the j-th bit of all check sequences Ti to obtain a length n Bit check packet Pj;
- the above single parity coding means that all the input a bits are the sequence Si, and the Si is performed twice. The XOR is added to each other to obtain 1 parity bit.
- the above b-bit parity check coding means that all input a bits are the sequence Si, and a subset X of the set Si is XORed to obtain the first check bit; the set S and the first one A subset of the new set of check bits is set to perform binary exclusive OR addition to obtain a second check bit; one of the new set consisting of the set S and the first check bit and the second check bit Subset Set3 performs binary exclusive OR addition to obtain a third parity bit; and so on, binary exclusive OR addition of a subset of the new set of the set S and the first b-1 check bits is obtained.
- n 0, 1, ..., n-1
- n is the length of the error correction coding block set
- n is an integer greater than 1
- j 0, 1, ..., b-1
- b is an integer greater than or equal to
- a is an integer greater than or equal to 2.
- the first modulation symbol sequence is mapped to consecutive M ofdm1 OFDM symbols in time sequence, including: mapping the first modulation symbol sequence to the second frequency time frequency of Nsc1 ⁇ M ofdm1 according to the previous frequency.
- the frequency dimension is used for the subcarrier index number identifier in the OFDM symbol
- the time dimension is used for the OFDM symbol index number identifier
- the Nsc1 ⁇ M ofdm1 two-dimensional time-frequency resource is allocated by the system and used for the first transmission node.
- Nsc1 is an integer greater than or equal to 1
- M ofdm1 is greater than An integer equal to 1.
- the first modulation symbol sequence is time-mapped into a two-dimensional time-frequency resource of Nsc1 ⁇ M ofdm1 according to a previous frequency, where the Nsc1 non-reference signal subcarriers are mapped to the ith OFDM symbol.
- Method including one of the following:
- Manner 1 The Nsc1 constellation mapping modulation symbols mapped to the ith OFDM symbol are first interleaved, and then sequentially mapped to the Nsc1 non-reference signal subcarriers of the ith OFDM symbol, or the ith OFDM symbol is aligned.
- the mapped Nsc1 constellation mapping modulation symbols are mapped to the Nsc1 non-reference signal subcarriers of the i-th OFDM symbol according to a random mapping relationship table, or the opposite direction
- the Nsc1 constellation mapping modulation symbols of the i OFDM symbol mapping are firstly mapped into the logical buffer, and then the data in the logical buffer is mapped to the Nsc1 non-reference signal subcarriers of the i th OFDM symbol according to the random mapping relationship table;
- Nsc1 constellation mapping modulation symbols mapped to the i-th OFDM symbol are sequentially mapped onto Nsc1 non-reference signal subcarriers of the i-th OFDM symbol;
- M ofdm1 -1, Nsc1 is an integer greater than or equal to 1
- M ofdm1 is an integer greater than or equal to 1.
- d is greater than Mofdm1
- operation is performed according to mode 1: otherwise, operation is performed according to mode 2; wherein d is the number of error correction coding blocks, d is an integer greater than or equal to 2, and Mofdm-1 is greater than or equal to 1 The integer.
- the second modulation symbol sequence is mapped to consecutive M ofdm2 OFDM symbols in time sequence, including: time-shifting the second modulation symbol sequence according to a prior frequency to a two-dimensional time frequency of Nsc2 ⁇ M ofdm2 In the resource, where the frequency dimension is used for the subcarrier index number identifier in the OFDM symbol, and the time dimension is used for the OFDM symbol index number identifier, the Nsc2 ⁇ M ofdm2 two-dimensional time-frequency resource is allocated by the system and used for the first transit node.
- Nsc2 is an integer greater than or equal to 1
- M ofdm2 is greater than An integer equal to 1.
- the second modulation symbol sequence is time-mapped into a two-dimensional time-frequency resource of Nsc2 ⁇ M ofdm2 according to a prior frequency, where the Nsc2 non-reference signal subcarriers of the ith OFDM symbol are mapped.
- Manner 1 The Nsc2 constellation mapping modulation symbols mapped to the ith OFDM symbol are first interleaved, and then sequentially mapped to the Nsc2 non-reference signal subcarriers of the ith OFDM symbol, or the ith OFDM symbol is aligned.
- the mapped Nsc2 constellation mapping modulation symbols are mapped to the Nsc2 non-reference signal subcarriers of the i-th OFDM symbol according to a random mapping relationship table, or the opposite direction
- the Nsc2 constellation mapping modulation symbols of the OFDM symbol mapping are firstly mapped into the logical buffer, and then the data in the logical buffer is mapped to the Nsc2 non-reference signal subcarriers of the ith OFDM symbol according to the random mapping relationship table;
- Nsc2 constellation mapping modulation symbols mapped to the i-th OFDM symbol are sequentially mapped onto Nsc2 non-reference signal subcarriers of the i-th OFDM symbol;
- i 0, 1, ..., M ofdm2 -1, Nsc2 is an integer greater than or equal to 1, and M ofdm2 is an integer greater than or equal to 1.
- the first modulation symbol sequence and the second modulation symbol sequence are in an OFDM symbol mapping process, wherein the mapping process to consecutive Nsc non-reference signal subcarriers of the ith OFDM symbol includes one of the following manners. :
- Manner 1 The Nsc constellation mapping modulation symbols mapped to the ith OFDM symbol are first interleaved, and then sequentially mapped to the Nsc non-reference signal subcarriers of the i th OFDM symbol, or the ith OFDM symbol is aligned.
- the mapped Nsc constellation mapping modulation symbols are mapped to the Nsc non-reference signal subcarriers of the i th OFDM symbol according to a random mapping relationship table, or the Nsc constellation mapping modulation symbols mapped to the i th OFDM symbol are sequentially mapped to In the logical cache, the data in the logical buffer is then mapped to the Nsc non-reference signal subcarriers of the i-th OFDM symbol according to a random mapping relationship table;
- the interleaving method is a row row, a col column packet interleave or a random interleave
- the random mapping relationship table is an input/output relationship table obtained by the row row and the col column packet interleaving. Or a random input-output relationship table, where row and col are integers greater than zero.
- M ofdm1 -1, Nsc1 is an integer greater than or equal to 1, the specific value of g is 1, 2, 3, 4, 6, or 7, M ofdm1 is the number of OFDM symbols to which the first modulation conforms to the sequence, and M ofdm1 is an integer greater than 0. .
- data packet reception is performed according to the following manner:
- M ofdm is the number of all OFDM symbols
- M ofdm is an integer greater than 1
- Nsc is an integer greater than or equal to 1.
- the error correction decoding manner includes at least:
- the b ⁇ c data blocks in the check data packet also belong to the error correction coding word space, and may also be decoded, so the number of error correction coding decoding blocks is d+b ⁇ c; after decoding all error correction coding blocks Determining the codeword error according to the CRC sequence and the error correction coding word space, if the error is to save the soft bit information of the error correction coding block, and if correct, calculating the cumulative XOR result of all the correctly decoded error correction coding blocks; According to the judgment condition: the first d error correction coding blocks are decoded correctly or all d+b ⁇ c error correction coding blocks are decoded correctly, and if they are established, they are exited; if not, the packet coding decoding method is adopted: using error correction coding The soft bit information of the block, the cumulative exclusive OR result of the correct error correction code word, and the exclusive OR relationship between all code blocks in the block code, the soft bit information of each error correction coded word is solved, and the error correction code is coded
- the block is decoded, and then according to the judgment condition: whether the decoding of the first d error correction coding blocks is correct or whether all the decodings of the d+b ⁇ c error correction coding blocks are correct, and if yes, exit; if not, exit or continue to iterate Transcoding Code, the maximum number of iterations is MAX times;
- d is the number of error correction coding blocks
- d is an integer greater than or equal to 2
- b is the number of parity packets
- b is an integer greater than or equal to 1
- c is the error correction coding block included in each information packet
- the number of blocks, c is an integer greater than or equal to 1
- MAX is an integer greater than one
- LLR' err(i,j) LLR err(i,j) +k0 ⁇ sign err(i,j) ⁇ MS err(i,j) ⁇ C crt(j)
- the parameter LLR err(i,j) is the soft bit information of the jth bit of the saved i-th error correction coding block
- the parameter k0 is a real number greater than 0
- the sign err(i,j) is in addition to the i th
- MS err(i, j) is the j-th bit soft bit information of all other error correction coding blocks
- the amplitude result here the minimum value algorithm is used
- C crt(j) is the sign bit accumulation result of the j-th bit soft bit information of all correct error correction coding blocks
- the specific expression is as follows:
- MS err(i,j) min(abs(LLR err(0,j) ),,abs(LLR err(i-1,j) ),abs(LLR err(i+1,j) ),,abs (LLR err(enum,j) )))
- C crt(j) sign(LLR crt(0,j) ) ⁇ sign(LLR crt(1,j) ) ⁇ sign(LLR crt(cnum,j) )
- the error correction coding method of the error correction coding block uses Turbo coding, convolutional coding, LDPC coding, RS coding, Hamming coding, product coding, or BCH coding.
- a single OFDM symbol has 1024 subcarriers, and the number of valid data subcarriers is 800.
- This example is used by the first transmitting node to transmit data for the mobile subscriber 100 to the second transmitting node for the base station 101, as shown in FIG.
- the data packet processing method in the OFDMA system of the embodiment of the present invention includes at least the following steps, as shown in FIG. 3:
- each information data packet has 1 ⁇ 672 bits, and each information data packet has one Turbo error correction coding block. Since exactly six information data packets are grouped, Each information packet has 1 Turbo error correction coded data block, so no second padding is required;
- the constellation mapping modulation mode is QPSK, and the modulation order is 2.
- the mapping of the transmission sequence number and the two-dimensional time-frequency resource of all the OFDM symbols is as shown in FIG. 5.
- the system is configured such that the number of subcarriers that the mobile user 100 transmits data to the base station 101 is 336, and the data of the mobile user 502 is carried in seven.
- the 0th to 5th OFDM symbols carry the first modulation symbol sequence 500
- the 6th OFDM symbol carries the second modulation symbol sequence 501.
- each information packet obtained by grouping in step 305 has 2 ⁇ 672 bits and the modulation mode adopted by the second modulation symbol sequence in step 307 is 16QAM, as follows:
- the length of the 0 group modulation symbol subsequence is 1344, the modulation mode is BPSK, the modulation order is 1, the first group of modulation symbol subsequences is 672, the modulation mode is 16QAM, and the modulation order is 4.
- the modulation method is 64QAM, and the modulation order is 6.
- the packet coding method in step 306 adopts the 2-ary parity coding method and the modulation mode adopted in the second modulation symbol sequence in step 307 is 16QAM, as follows:
- Example 4 differs from Example 1 in step 308 as follows:
- the interleaving method is a row row, a col column packet interleaving or a random interleaving
- Example 5 differs from Example 1 in steps 308 and 309 as follows:
- step 309 the sending process is: as shown in FIG. 6, after transmitting the OFDM symbol including the first modulation conforming sequence 600, directly transmitting the OFDM symbol including the second modulation symbol sequence 601; or, as shown in FIG. 7, sending After the OFDM symbol including the first modulation conforming sequence 700 is completed, the OFDM symbol including the second modulation symbol sequence 701 is transmitted after waiting for 7 OFDM symbols.
- a single OFDM symbol has 1024 subcarriers, and the number of valid data subcarriers is 800.
- This example is used by the first transmitting node to transmit data for the mobile station 100 to the second transmitting node for the base station 101, as shown in FIG.
- the method of the present invention includes at least the following steps, as shown in FIG. 3:
- each data block length becomes 489 bits
- each data block is padded for the first time.
- the first modulation symbol sequence and the second modulation symbol sequence are chronologically mapped to a 360 ⁇ 7 two-dimensional time-frequency resource on consecutive 7 OFDM symbols, as shown in FIG.
- the base station 101 transmits the 7 OFDM symbols to the mobile user 100 according to the transmission sequence number.
- step 308 The difference between the example 7 and the example 6 is in step 308, as follows:
- 360 non-reference signal subcarriers of the ith OFDM symbol Up to 360 non-reference signal subcarriers of the ith OFDM symbol; or 360 constellation mapping modulation symbols mapped to the ith OFDM symbol are mapped to 360 non-references of the ith OFDM symbol in a random mapping relationship table On the signal subcarrier; or 360 constellation mapping modulation symbols mapped to the i-th OFDM symbol are sequentially mapped into the logical buffer, and then the data in the logical buffer is mapped to 360 of the i-th OFDM symbol according to the random mapping relationship table.
- Non-reference signal subcarrier; i 0, 1, ..., 6;
- the interleaving method is a row row, a col column packet interleaving or a random interleaving
- step 308 The difference between the example 8 and the example 6 is in step 308, as follows:
- Nsc2 55 corresponding to the i-th OFDM symbol mapping
- i is the transmission sequence number, and the number is small to be sent first.
- the interleaving method is to travel the listed row row, col column packet interleave or random interleave, and the random mapping relationship table is the row row and col listed by the march.
- Example 9 is a second transmission node (mobile user 100) suitable for example 6. As shown in FIG. 11, at least the following steps are included, as follows:
- the solution constellation mapping, the modulation mode is 64QAM, the modulation order is 6, and the 360 constellation mapping modulation symbols are demodulated into 360 ⁇ 6 soft bit information;
- every ith OFDM symbol is received, all error correction coding blocks (Turbo code blocks) belonging to the ith OFDM symbol are decoded, and then the i+1th OFDM is sequentially decoded.
- the three data blocks in the check data packet also belong to the Turbo codeword space, and can also be decoded, so the number of Turbo code blocks is 23.
- After all Turbo code blocks are decoded, according to the CRC sequence and the or Turbo code word space. Determine the codeword error, if it is wrong, save the soft bit information of the error Turbo code block, and if it is correct, calculate the cumulative XOR result of all correctly decoded Turbo code blocks C, C C ⁇ C j ; according to the judgment condition: the first 20 The Turbo code block is decoded correctly or all 23 Turbo code blocks are decoded correctly. If it is established, it exits.
- the packet coding and decoding method is used: the soft bit information of the wrong Turbo code block and the cumulative difference of the correct Turbo code word are used. Or the XOR relationship between the result and all the code blocks in the packet coding, the soft bit information of each erroneous Turbo codeword is solved, and the erroneous Turbo code block is decoded, and then according to the judgment condition: the first 20 Turbo code block translations The code is correct or all 23 Turbo code blocks are decoded correctly. If they are set, they exit. If they are wrong, they exit or continue to iterate for packet coding and decoding. The maximum number of iterations is 5 times.
- a single OFDM symbol has 1024 subcarriers, and the number of valid data subcarriers is 800.
- the present example is used by the first transmitting node to transmit data for the mobile station 100 to the second transmitting node to the second transmitting node. As shown in FIG.
- the method of the present invention includes at least the following steps, as shown in FIG. 3:
- each data block is padded for the first time.
- the constellation mapping modulation mode is 16QAM
- the modulation order is 4
- the first modulation symbol sequence and the second modulation symbol sequence are chronologically mapped to 512 ⁇ 6 two-dimensional time-frequency resources on consecutive six OFDM symbols, where the ith OFDM symbol is opposite.
- the base station 101 transmits the 7 OFDM symbols to the mobile user 100 according to the transmission sequence number.
- the error correction coding method used is convolutional coding, LDPC coding, RS coding, Hamming coding, product coding or BCH coding.
- the embodiment of the invention describes a packet processing device for an OFDMA system, which is applicable to a transmitting end and includes at least the following modules:
- a code block segmentation module configured to perform code block segmentation on the source data packet to be transmitted to obtain d data blocks
- Adding a CRC sequence module configured to add a CRC sequence to each data block separately;
- the error correction coding module is configured to perform error correction coding on each of the d data blocks after adding the CRC sequence;
- a grouping module configured to group the error-correction encoded data to obtain a data packet of equal length
- a packet coding module configured to perform packet coding on a information data packet to obtain b verification data packets
- the constellation mapping modulation module is configured to perform constellation mapping modulation on the a information packets to obtain a first modulation symbol sequence of length k1, and perform constellation mapping modulation on the b verification data packets to obtain a length of k2.
- Two modulation symbol sequences; or, a information packet and b parity packets are constellated to be mapped, wherein the first information packet is a first modulation symbol sequence, the length is k1, and the rest is a second sequence of modulation symbols having a length of k2;
- An OFDM modulation module configured to map the first modulation symbol sequence to consecutive M ofdm1 OFDM symbols in chronological order, and to map the second modulation symbol sequence to consecutive M ofdm2 OFDM symbols in chronological order ; transmission sequence numbers, M ofdm1 OFDM symbols in the first OFDM symbol prior to the first OFDM symbol M ofdm2 OFDM symbols;
- the sending module is configured to send the M ofdm1 OFDM symbol and the M ofdm2 OFDM symbols to the second transmission node according to the sending sequence number;
- a is an integer greater than or equal to 2
- d is an integer greater than or equal to 2
- b is an integer greater than or equal to 1
- k1 and k2 are integers greater than or equal to 1
- M ofdm1 and M ofdm2 are integers greater than or equal to 1.
- the first padding module is included, where the first padding module fills the i1 block data block with m1i bits, where m1i is greater than or equal to 0.
- An integer, i 0, 1, ..., d-1, d is an integer greater than or equal to 2.
- a second padding module is included, where the second padding module adds m2 bits in the header or the tail of the entire error correction coded data block, where
- the entire error correction coded data block includes d error correction coding blocks, d is an integer greater than or equal to 2, and m2 is an integer greater than or equal to zero.
- the grouping module group obtains a equal length information packet, each information
- the number of bits of the data packet is k ⁇ c, where a is an integer greater than or equal to 2, k is the number of bits of the error correction coding block, k is an integer greater than or equal to 1, and c is an integer greater than or equal to 1.
- the adding CRC sequence module adds a CRC sequence to each data block, and each CRC sequence has a length of h bits, where h is an integer greater than or equal to 1.
- the constellation mapping modulation module performs constellation mapping modulation on the a information data packets to obtain a first modulation symbol sequence of length k1, and all bits for constellation mapping modulation do not include the first filling module and the second The bit data filled by the sub-fill module, where a is an integer greater than or equal to 2, and k1 is an integer greater than or equal to 1.
- the code block segmentation module performs code block segmentation on the source data packet to be transmitted to obtain d data blocks, and the length of each data block depends on the following parameters: a length of the source data packet, and a system allocation for the first
- the number of subcarriers, the modulation order, the error correction coding rate, the number of OFDM symbols, the number of error correction coding blocks in the information packet, and the number of error correction coding blocks in the information packet of each OFDM symbol transmitted by the transmission node to the second transmission node The number of error correction coding blocks, the number of CRC sequence bits, and the number of parity data packets obtained by the packet coding, wherein the modulation order is the number of bits carried by the constellation mapping modulation symbol, and d is an integer greater than or equal to 2.
- the modulation order of the first modulation symbol sequence in the constellation mapping modulation module is Mod1′
- the modulation order of the second modulation symbol sequence is Mod2′, where Mod1′ and Mod2′ are 1 to 16 An integer
- the first modulation symbol sequence includes a q1 group modulation symbol subsequence, the modulation order in the subsequence is the same
- Modi is a modulation order used by the i-th modulation symbol subsequence in the first modulation symbol sequence
- the second modulation symbol sequence includes a q2 group modulation symbol subsequence, the modulation order in the subsequence is the same
- Modj is the second modulation
- the packet coding module performs packet coding on a information data packet to obtain b verification data packets, including: forming an ith bit of all a information data packets into a sequence Si having a length of a bit, and performing Si on the Si data packet Single parity coding, b-bit parity parity coding, Hamming coding or RS coding, to obtain a check sequence Ti of length b bits; combining the j-th bit of all check sequences Ti to obtain a length n Bit check packet Pj;
- n 0, 1, ..., n-1
- n is the length of the error correction coding block set
- n is an integer greater than 1
- j 0, 1, ..., b-1
- b is an integer greater than or equal to
- a is an integer greater than or equal to 2.
- the first modulation symbol sequence is mapped to consecutive M ofdm1 OFDM symbols in time sequence, including: mapping the first modulation symbol sequence to the first frequency and then Nsc1 ⁇ M ofdm1 On the dimension time-frequency resource, wherein the frequency dimension is used for the subcarrier index number identifier in the OFDM symbol, and the time dimension is used for the OFDM symbol index number identifier, and the Nsc1 ⁇ M ofdm1 two-dimensional time-frequency resource is allocated by the system and used for the first
- a transmission node transmits M ofdm1 OFDM symbols in time dimension of data to the second transmission node, and consecutive Nsc1 non-reference signal subcarriers in frequency dimension of each OFDM symbol, Nsc1 is an integer greater than or equal to 1, M Ofdm1 is an integer greater than or equal to 1.
- the first modulation symbol sequence is time-mapped into a two-dimensional time-frequency resource of Nsc1 ⁇ M ofdm1 according to a prior frequency, wherein a continuous Nsc1 non-reference signal subcarrier mapping method to the ith OFDM symbol includes One of the following ways:
- Manner 1 The Nsc1 constellation mapping modulation symbols mapped to the ith OFDM symbol are first interleaved, and then sequentially mapped to the Nsc1 non-reference signal subcarriers of the ith OFDM symbol, or the ith OFDM symbol is aligned.
- the mapped Nsc1 constellation mapping modulation symbols are mapped to the Nsc1 non-reference signal subcarriers of the i th OFDM symbol according to a random mapping relationship table, or the Nsc1 constellation mapping modulation symbols mapped to the i th OFDM symbol are sequentially mapped to In the logical cache, the data in the logical buffer is then mapped to the Nsc1 non-reference signal subcarriers of the i-th OFDM symbol according to a random mapping relationship table;
- Nsc1 constellation mapping modulation symbols mapped to the i-th OFDM symbol are sequentially mapped onto Nsc1 non-reference signal subcarriers of the i-th OFDM symbol;
- M ofdm1 -1, Nsc1 is an integer greater than or equal to 1
- M ofdm1 is an integer greater than or equal to 1.
- d is greater than Mofdm1
- operation is performed according to mode 1: otherwise, operation is performed according to mode 2; wherein d is the number of error correction coding blocks, d is an integer greater than or equal to 2, and Mofdm1 is an integer greater than or equal to 1.
- the second modulation symbol sequence in the OFDM symbol modulation module is mapped to consecutive M ofdm2 OFDM symbols in time sequence, including: mapping the second modulation symbol sequence to the second frequency of Nsc2 ⁇ M ofdm2 according to the previous frequency.
- the time-frequency resource wherein the frequency dimension is used for the subcarrier index number identifier in the OFDM symbol, and the time dimension is used for the OFDM symbol index number identifier, and the Nsc2 ⁇ M ofdm2 two-dimensional time-frequency resource is allocated by the system and used for the first
- the transmission node transmits M ofdm2 OFDM symbols in time dimension of data to the second transmission node, and consecutive Nsc2 non-reference signal subcarriers in frequency dimension of each OFDM symbol, Nsc2 is an integer greater than or equal to 1, M ofdm2 Is an integer greater than or equal to 1.
- the second modulation symbol sequence is time-mapped into a two-dimensional time-frequency resource of Nsc2 ⁇ M ofdm2 according to a prior frequency, wherein the continuous Nsc2 non-reference signal subcarrier mapping method to the ith OFDM symbol includes One of the following ways,
- Manner 1 The Nsc2 constellation mapping modulation symbols mapped to the ith OFDM symbol are first interleaved, and then sequentially mapped to the Nsc2 non-reference signal subcarriers of the ith OFDM symbol, or the ith OFDM symbol is aligned.
- the mapped Nsc2 constellation mapping modulation symbols are mapped to the Nsc2 non-reference signal subcarriers of the i th OFDM symbol according to a random mapping relationship table, or the Nsc2 constellation mapping modulation symbols mapped to the i th OFDM symbol are sequentially mapped to In the logical buffer, the data in the logical buffer is then mapped to the Nsc2 non-reference signal subcarriers of the i-th OFDM symbol according to a random mapping relationship table;
- Nsc2 constellation mapping modulation symbols mapped to the i-th OFDM symbol are sequentially mapped onto Nsc2 non-reference signal subcarriers of the i-th OFDM symbol;
- i 0, 1, ..., M ofdm2 -1, Nsc2 is an integer greater than or equal to 1, and M ofdm2 is an integer greater than or equal to 1.
- the first modulation symbol sequence and the second modulation symbol sequence are mapped to the OFDM symbol, wherein the ith symbol is continuous to the ith OFDM symbol
- the Nsc non-reference signal subcarrier mapping process includes one of the following methods:
- Manner 1 The Nsc constellation mapping modulation symbols mapped to the ith OFDM symbol are first interleaved, and then sequentially mapped to the Nsc non-reference signal subcarriers of the i th OFDM symbol, or the ith OFDM symbol is aligned.
- the mapped Nsc constellation mapping modulation symbols are mapped to the Nsc non-reference signal subcarriers of the i th OFDM symbol according to a random mapping relationship table, or the Nsc constellation mapping modulation symbols mapped to the i th OFDM symbol are sequentially mapped to In the logical cache, the data in the logical buffer is then mapped to the Nsc non-reference signal subcarriers of the i-th OFDM symbol according to a random mapping relationship table;
- the interleaving method is to travel the listed row row, col column packet interleaving or random interleaving
- the random mapping relationship table is an input/output relationship table obtained by marching the listed row row, col column packet interleaving or random. Input-output relationship table, where row and col are integers greater than zero.
- each block of the error correction coding block has a bit length of e, and then e is equal to m ⁇ Nsc1 ⁇ g, where m is the number of bits carried by each constellation mapping modulation symbol, and m is greater than or equal to 1
- M ofdm1 -1 Nsc1 is an integer greater than or equal to 1, and the specific value of g is 1, 2, 3, 4, 6, or 7, M ofdm1 is the number of OFDM symbols to which the first modulation conforming sequence is mapped, and M ofdm1 is an integer greater than 0.
- the embodiment of the present invention further describes a data packet processing apparatus in another OFDMA system, which is applicable to a receiving end, and includes at least:
- Receiving an OFDM symbol module configured to receive an OFDM symbol
- Demodulating the OFDM symbol module configured to obtain Nsc constellation mapping modulation symbols carried in the ith OFDM symbol according to a configuration of a subcarrier resource configured by the system for transmitting from the first transmission node to the second transmission node;
- a constellation mapping module configured to demodulate Nsc constellation mapping modulation symbols into soft bit information
- An error correction decoding module configured to perform error correction decoding on the demodulated soft bit information
- Removing the CRC sequence module configured to remove the CRC sequence in all error correction coding blocks
- a data merging module configured to combine all the data after removing the CRC sequence to obtain a source data packet sent by the first transmitting node
- M ofdm is the number of all OFDM symbols
- M ofdm is an integer greater than 1
- Nsc is an integer greater than or equal to 1.
- the error correction decoding module includes at least:
- the b ⁇ c data blocks in the check data packet also belong to the error correction coding word space, and may also be decoded, so the number of error correction coding decoding blocks is d+b ⁇ c; after decoding all error correction coding blocks Determining the codeword error according to the CRC sequence and the error correction coding word space, if the error is to save the soft bit information of the error correction coding block, and if correct, calculating the cumulative XOR result of all the correctly decoded error correction coding blocks; According to the judgment condition: the first d error correction coding blocks are decoded correctly or all d+b ⁇ c error correction coding The code block is decoded correctly, and if it is established, it exits; if not, the packet coding and decoding method is adopted: the soft bit information of the error correction coding block, the cumulative exclusive OR result of the correct error correction code word, and all code blocks in the packet coding are used.
- d is the number of error correction coding blocks
- d is an integer greater than or equal to 2
- b is the number of parity packets
- b is an integer greater than or equal to 1
- c is the error correction coding block included in each information packet
- the number of blocks, c is an integer greater than or equal to 1
- MAX is an integer greater than one
- LLR' err(i,j) LLR err(i,j) +k0 ⁇ sign err(i,j) ⁇ MS err(i,j) ⁇ C crt(j)
- the parameter LLR err(i,j) is the soft bit information of the jth bit of the saved i-th error correction coding block
- the parameter k0 is a real number greater than 0
- the sign err(i,j) is in addition to the i th
- MS err(i, j) is the j-th bit soft bit information of all other error correction coding blocks
- the amplitude result here the minimum value algorithm is used
- C crt(j) is the sign bit accumulation result of the j-th bit soft bit information of all correct error correction coding blocks
- the specific expression is as follows:
- MS err(i,j) min(abs(LLR err(0,j) ),,abs(LLR err(i-1,j) ),abs(LLR err(i+1,j) ),,abs (LLR err(enum,j) )))
- C crt(j) sign(LLR crt(0,j) ) ⁇ sign(LLR crt(1,j) ) ⁇ sign(LLR crt(cnum,j) )
- the error correction coding method of the error correction coding module uses Turbo coding, convolutional coding, LDPC coding, RS coding, Hamming coding, product coding or BCH coding.
- FIG. 4 is a schematic structural diagram of a packet processing apparatus in an OFDMA system according to Embodiment 2 of the present invention.
- a packet processing apparatus in an OFDMA system according to an embodiment of the present invention includes:
- the mapping of the transmission sequence number and the two-dimensional time-frequency resource of all the OFDM symbols is as shown in FIG. 5.
- the system is configured such that the number of subcarriers that the mobile user 100 transmits data to the base station 101 is 336, and the data of the mobile user 502 is carried in seven.
- the 0th to 5th OFDM symbols carry the first modulation symbol sequence 500
- the 6th OFDM symbol carries the second modulation symbol sequence 501.
- each information packet obtained by grouping in the grouping module 405 has 2 ⁇ 672 bits and the tone of the second modulation symbol sequence in the constellation mapping modulation module 407.
- the system is 16QAM, as follows:
- the difference between the example 3 and the example 1 is that the packet coding method in the packet coding module 406 adopts the 2-fold parity coding method and the modulation mode adopted by the second modulation symbol sequence in the constellation mapping modulation module 407 is 16QAM, as follows:
- Example 4 differs from Example 1 in the OFDM modulation module 408 as follows:
- 336 non-reference signal subcarriers; i 0, 1, ..., 5;
- the interleaving method is a row row, a col column packet interleaving or a random interleaving
- Example 5 differs from Example 1 in the OFDM modulation module 408 and the transmission module 409 as follows:
- mapping the second modulation symbol sequence chronologically to consecutive M ofdm2 7 OFDM symbols, including, following the first frequency of the second modulation symbol sequence
- the sending process is: as shown in FIG. 6, after the OFDM symbol including the first modulation conforming sequence 600 is transmitted, the OFDM symbol including the second modulation symbol sequence 601 is directly transmitted; or, as shown in FIG. After transmitting the OFDM symbol including the first modulation conforming sequence 700, the OFDM symbol including the second modulation symbol sequence 701 is transmitted after waiting for 7 OFDM symbols.
- the data packet processing apparatus in the OFDMA system includes at least the following modules:
- the first filling module 402 performs a first filling of each data block after adding the CRC sequence.
- the code length of the Turbo error correction coding is 672 and the code rate is 3/. 4;
- a second sequence of modulation symbols filled with 3 bits
- the OFDM modulation module 408 maps the first modulation symbol sequence and the second modulation symbol sequence in time sequence to 360 ⁇ 7 two-dimensional time-frequency resources on consecutive 7 OFDM symbols, as shown in FIG.
- the sending module the base station 101 sends the 7 OFDM symbols to the mobile user 100 according to the sending sequence number.
- Example 7 differs from Example 6 in the OFDM modulation module 408 as follows:
- non-reference signal subcarrier On the non-reference signal subcarrier; or 360 constellation mapping modulation symbols mapped to the i-th OFDM symbol are first sequentially mapped into the logical buffer, and then the data in the logical buffer is mapped to the i-th OFDM symbol according to the random mapping relationship table.
- 360 non-reference signal subcarriers; i 0, 1, ..., 6;
- the interleaving method is a row row, a col column packet interleaving or a random interleaving
- Example 8 The difference between Example 8 and Example 6 is in the OFDM modulation module 408 as follows:
- Nsc2 55 corresponding to the i-th OFDM symbol mapping
- i is the transmission sequence number, and the number is small to be sent first.
- the interleaving method is to travel the listed row row, col column packet interleave or random interleave, and the random mapping relationship table is the row row and col listed by the march.
- Example 9 is a receiving end (mobile user 100) applicable to the example 6, as shown in FIG. 11, including at least the following modules, as follows:
- Receiving an OFDM symbol module 1300 receiving an ith OFDM symbol
- the modulation mode is 64QAM
- the modulation order is 6, and 360 constellation mapping modulation symbols are demodulated into 360 ⁇ 6 soft bit information;
- the error correction decoding module 1303 decodes all Turbo codes belonging to the ith OFDM symbol
- the data combining module 1305 combines all the pure data after removing the CRC sequence to obtain the source data packet sent by the first transmitting node (base station 101);
- the three data blocks in the check data packet also belong to the Turbo codeword space, and can also be decoded, so the number of Turbo code blocks is 23.
- After all Turbo code blocks are decoded, according to the CRC sequence and the or Turbo code word space. Determine the codeword error, if it is wrong, save the soft bit information of the error Turbo code block, and if it is correct, calculate the cumulative XOR result of all correctly decoded Turbo code blocks C, C C ⁇ C j ; according to the judgment condition: the first 20 The Turbo code block is decoded correctly or all 23 Turbo code blocks are decoded correctly. If it is established, it exits.
- the packet coding and decoding method is used: the soft bit information of the wrong Turbo code block and the cumulative difference of the correct Turbo code word are used. Or the XOR relationship between the result and all the code blocks in the packet coding, the soft bit information of each erroneous Turbo codeword is solved, and the erroneous Turbo code block is decoded, and then according to the judgment condition: the first 20 Turbo code block translations The code is correct or all 23 Turbo code blocks are decoded correctly. If they are set, they exit. If they are wrong, they exit or continue to iterate for packet coding and decoding. The maximum number of iterations is 5 times.
- a single OFDM symbol has 1024 subcarriers, and the number of valid data subcarriers is 800.
- the present example is used by the first transmitting node to transmit data for the mobile station 100 to the second transmitting node to the second transmitting node. As shown in FIG.
- the device of the present invention includes at least the following modules, as shown in FIG. 4:
- Adding a CRC sequence module 401, adding a CRC sequence of h 8 bits to each data block respectively, and adding a CRC sequence to a length of 1024 bits per data block;
- the first filling module 402 performs a first filling of each data block after adding the CRC sequence.
- the transmitting module 409 the base station 101 transmits the 7 OFDM symbols to the mobile user 100 according to the transmission order number.
- the error correction encoding method used in the error correction encoding module 403 is convolutional coding, LDPC coding, RS coding, Hamming coding, product coding or BCH coding.
- the embodiment of the present invention further describes a storage medium in which a computer program is stored, and the computer program is configured as a data packet processing method in an OFDMA system of the foregoing embodiments.
- the method and apparatus for supporting the improvement of the physical layer data packet transmission performance of the communication system may also be stored in a computer readable storage medium if implemented in the form of a software function module and sold or used as a stand-alone product. .
- a computer readable storage medium if implemented in the form of a software function module and sold or used as a stand-alone product.
- embodiments of the present application can be provided as a method, system, or computer program product.
- the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
- the application can take the form of a computer program product embodied on one or more computer-usable storage media containing computer usable program code, including but not limited to a USB flash drive, a mobile hard drive, a read only memory (ROM, Read-Only Memory), disk storage, CD-ROM, optical storage, etc.
- a USB flash drive a mobile hard drive
- a read only memory ROM, Read-Only Memory
- disk storage CD-ROM, optical storage, etc.
- the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
- the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
- These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
- the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
- the invention re-codes all error correction coding blocks by packet coding and decoding, improves the performance of each error correction code block, and improves reception robustness.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Detection And Prevention Of Errors In Transmission (AREA)
- Error Detection And Correction (AREA)
Abstract
本发明实施例公开了一种OFDMA系统中数据包处理方法及装置、存储介质,所述方法包括:对源数据包进行码块分割获得d个数据块;分别对d个数据块添加循环冗余校验码CRC序列,分别进行纠错编码;对纠错编码后的d个数据块进行分组,得到a个信息数据包;对a个信息数据包进行包编码,得到b个校验数据包;进行星座映射调制得到与a个信息数据包对应的长度为k1的第一个调制符号序列和与b个校验数据包对应的长度为k2的第二个调制符号序列;将第一个调制符号序列按照时间顺序映射到连续的Mofdm1个OFDM符号,将第二个调制符号序列按照时间顺序映射到连续的Mofdm2个OFDM符号;发送Mofdm1个OFDM符号和Mofdm2个OFDM符号。
Description
本发明涉及正交频分多址(OFDMA,Orthogonal Frequency Division Multiple Access)系统中数据包传输技术,尤其涉及一种OFDMA系统中数据包处理方法及装置、存储介质。
OFDMA多址技术是第四代移动通信长期演进(LTE,Long Term Evolution)系统中的关键技术之一,可以结合时空编码技术、符号间干扰和信道间干扰抑制以及智能天线技术,最大限度地提高了通信系统的性能,提高通信吞吐量。在第四代移动通信LTE系统中,下行通信采用多载波的OFDMA技术,上行采用单载波频分多址(SC-FDMA,Single-carrier FrequencyDivision Multiple Access)技术。
OFDMA中的各个子载波之间是相互正交的,每个子载波在一个符号时间内有整数个载波周期,每个载波的频谱零点和相邻载波的零点重叠,这样便没有了子载波间的干扰。并且,由于载波间有部分重叠,所以大大提高了频谱利用率。在OFDMA符号保护间隔内填入循环前缀,以保证在快速傅里叶变换(FFT)周期内OFDMA符号的时延副本内包含的波形周期个数也是整数。这样时延小于保护间隔的信号就不会在解调过程中产生ISI和ICI。而且,OFDMA系统的一个主要优点是正交的子载波可以利用快速傅利叶变换(FFT/IFFT)实现调制和解调,可显著降低运算复杂度硬件实现简单。
在数字通信系统中,一般都需要对信息数据进行信道纠错编码,提高数据在信道传输过程中的可靠性。当前使用比较多的信道纠错编码有Turbo
编码、LDPC编码、卷积编码、RS编码和BCH编码等。其中,LTE系统中的二进制Turbo编码是一种带有内部交织器的并行级联码,一般由两个结构相同的递归系统卷积(RSC)分量码编码器并行级联而成。Turbo码内交织器在第二个分量码编码器之前将输入的二进制信息序列中的比特位置进行随机置换,当交织器充分大时,Turbo码就具有近似随机长码的特性。
低密度校验码(LDPC,low density parity check code)是一种基于稀疏校验矩阵的线性分组码,利用它的校验矩阵的稀疏性,可以实现低复杂度的编译码。由于LDPC码解码简单而且吞吐量都比较高,所以在微波通信或者局域网通信中都有使用。
卷积码也是较为常用的一种前向纠错码,卷积码的特点是当对某一时刻的输入信息进行编码时,不仅与本时刻的输入有关,而且还与本时刻之前多个时刻的输入有关,即码字的产生一共受到多个输入时刻信息的制约。RS码是一种纠错能力很强的特殊的非二进制广播信道(BCH)码,是最短距离最大化的编码方法,RS编码和BCH编码的译码方法一般采用硬判译码。
在信道纠错编码块中一般采用CRC序列进行检错,CRC是循环冗余码校验(Cyclic Redundancy Check),一般是在进行纠错编码之前对信息块添加的冗余信息。循环冗余码校验工作方法是在发送端产生一个冗余信息,添加到信息位后面一起发送到接收端,接收端收到的信息按相同算法对信息块进行校验正确与否。
在数字通信系统中,一般源信息块都是比较大,需要进行码块分割成较小的信息块,然后对这些较小信息块进行信道编码。这样做的目的在于,如果码长较长的话纠错编码的译码器会非常复杂和延时都会比较大,而且一般源信息块长度都是变化不定的,这样要求设计一个码长大范围变化的纠错码也是相当困难的。对于纠错编码来说,码长越长性能越好,但复杂
度越高。而且在现有的OFDMA系统中,有些纠错编码长度比较大,例如LTE系统中可以达到6144比特的长度,那么带来的问题是纠错码的译码时延就比较大,而且复杂度也比较高。
而且,OFDMA系统对相位噪声和载波频偏是十分敏感的,这是OFDMA技术的缺点,整个OFDMA系统对各个子载波之间的正交性要求格外严格,任何一点小的载波频偏都会破坏子载波之间的正交性,引起ICI;相位噪声也会导致码元星座点的旋转、扩散,形成ICI。这些影响都会降低系统通信的可靠性。而且,OFDMA通信系统在衰落信道下,使得在一个OFDM符号内的不同纠错码块的信道不一样,也会使得最终数据包的误包性能降低。所以亟需一种处理方法提高OFDMA系统在衰落信道下的数据传输可靠性、系统通信鲁棒性和降低译码时延。
遗憾的是,目前尚无相关技术可供参考。
发明内容
为解决上述技术问题,本发明实施例提供一种OFDMA系统中数据包处理方法及装置、存储介质。
本发明的技术方案是这样实现的:
一种OFDMA系统中数据包处理方法,应用于发送端,所述方法包括:
对待传输的源数据包进行码块分割获得d个数据块;
分别对所述d个数据块中每个数据块添加循环冗余校验码CRC序列;
对添加CRC序列后的d个数据块分别进行纠错编码;
对纠错编码后的d个数据块进行分组,得到等长的a个信息数据包;
对所述a个信息数据包进行包编码,得到b个校验数据包;
对所述a个信息数据包和所述b个校验数据包进行星座映射调制,得到长度为k1的第一个调制符号序列和长度为k2的第二个调制符号序列,所述第一调制符号序列对应a个信息数据包,第二调制符号序列对应b个
校验数据包;将所述第一个调制符号序列按照时间顺序映射到连续的Mofdm1个OFDM符号,将第二个调制符号序列按照时间顺序映射到连续的Mofdm2个OFDM符号;
发送所述Mofdm1个OFDM符号和Mofdm2个OFDM符号时,所述Mofdm1个OFDM符号中第一个OFDM符号先于所述Mofdm2个OFDM符号中第一个OFDM符号发送;
其中,a是大于等于2的整数,d是大于等于2的整数,b是大于等于1的整数,k1和k2均是大于等于1的整数,Mofdm1和Mofdm2均是大于等于1的整数。
一种OFDMA系统中数据包处理方法,应用于接收端,所述方法包括:
接收包含第一个调制符号序列的连续Mofdm1个OFDM符号,以及包含第二个调制符号序列的连续Mofdm2个OFDM符号;所述第一个调制符号序列包含a个信息数据包,所述第二个调制符号序列包含b个校验数据包;所述a个信息数据包包含d个纠错编码数据块;使用所述d个纠错编码数据块和b个校验数据包的信息,解码出源数据包;
其中,a是大于等于2的整数,d是大于等于2的整数,b是大于等于1的整数,Mofdm1和Mofdm2均是大于等于1的整数。
一种OFDMA系统数据包处理装置,应用于发送端,所述装置包括:
码块分割模块,配置为对待传输的源数据包进行码块分割获得d个数据块;
添加CRC序列模块,配置为分别对所述d个数据块中每个数据块添加循环冗余校验码CRC序列;
纠错编码模块,配置为对添加CRC序列后的d个数据块分别进行纠错编码;
分组模块,配置为对纠错编码后的d个数据块进行分组,得到等长的a
个信息数据包;
包编码模块,配置为对所述a个信息数据包进行包编码,得到b个校验数据包;
星座映射调制模块,配置为对所述a个信息数据包和所述b个校验数据包进行星座映射调制,得到长度为k1的第一个调制符号序列和长度为k2的第二个调制符号序列,所述第一调制符号序列对应a个信息数据包,第二调制符号序列对应b个校验数据包;
OFDM调制模块,配置为将所述第一个调制符号序列按照时间顺序映射到连续的Mofdm1个OFDM符号,将第二个调制符号序列按照时间顺序映射到连续的Mofdm2个OFDM符号;
发送模块,配置为所述Mofdm1个OFDM符号和Mofdm2个OFDM符号,其中,所述Mofdm1个OFDM符号中第一个OFDM符号先于所述Mofdm2个OFDM符号中第一个OFDM符号发送;
其中,a是大于等于2的整数,d是大于等于2的整数,b是大于等于1的整数,k1和k2均是大于等于1的整数,Mofdm1和Mofdm2均是大于等于1的整数。
一种OFDMA系统中数据包处理装置,应用于接收端,所述装置包括:
接收OFDM符号模块,配置为接收包含第一个调制符号序列的连续Mofdm1个OFDM符号,以及包含第二个调制符号序列的连续Mofdm2个OFDM符号;所述第一个调制符号序列包含a个信息数据包,所述第二个调制符号序列包含b个校验数据包;所述a个信息数据包包含d个纠错编码数据块;
纠错解码模块,配置为使用所述d个纠错编码数据块和b个校验数据包的信息,解码出源数据包;
其中,a是大于等于2的整数,d是大于等于2的整数,b是大于等于
1的整数,Mofdm1和Mofdm2均是大于等于1的整数。
一种存储介质,所述存储介质中存储有计算机程序,所述计算机程序配置为执行前述的OFDMA系统中数据包处理方法。
本发明实施例的技术方案将OFDMA与数据包编码技术结合起来进行数据传输,使得接收端译码可以采用类流水线方式进行解调译码,译码速度更快,而且接收鲁棒性更强。每接收到一个OFDM符号,在接收下一个OFDM符号的间隙将上一个OFDM符号的所有纠错编码块先进行译码,缩短译码时延,速度比较快,吞吐量高。同时结合数据包编码,所有纠错码块通过包编码方法会多出一些校验数据块,在发送端,这些校验数据块在原始纠错码数据块之后发送,那么在接收端进行译码时,可以先译码原始纠错码块并判断是否正确,如果全都正确就不用再对校验数据块进行译码,从而减少译码操作,降低能量消耗,提高译码速度;而且,如果原始纠错码块译码错误,可以通过包编码译码来重新对所有纠错编码块进行译码,可以提高各个纠错码块的性能,从而提高接收鲁棒性。
图1为本发明实施例的OFDMA系统接入示意图;
图2为本发明实施例的OFDMA系统中的频率维度和时间维度的示意图;
图3为本发明实施例一的OFDMA系统中数据包处理方法的流程图;
图4为本发明实施例二的OFDMA系统中数据包处理装置的组成结构示意图;
图5为本发明实施例一/实施例二中实例1的OFDMA系统资源分配示意图;
图6为本发明实施例一/实施例二中实例5的OFDMA系统资源分配示意图;
图7为本发明实施例一/实施例二中实例5的OFDMA系统资源分配示意图;
图8为本发明实施例一/实施例二中实例6的进行星座映射调制的数据示意图;
图9为本发明实施例一/实施例二中实例6的OFDMA系统的二维时频资源分配示意图;
图10为本发明实施例一/实施例二中实例8的OFDMA系统的二维时频资源分配示意图;
图11为本发明实施例一中实例9的OFDMA系统接收译码流程图;
图12为本发明实施例三的OFDMA系统中数据包处理方法的流程图;
图13为本发明装置实施例二中实例9的OFDMA系统接收译码模块的组成结构示意图。
为使本发明的目的、技术方案和优点更加清楚明白,以下举实施例并参照附图,对本发明进一步详细说明。
需要说明的是,如果不冲突,本发明实施例以及实施例中的各个特征可以相互结合,均在本发明的保护范围之内。另外,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
实施例一
图3为本发明实施例一的OFDMA系统中数据包处理方法的流程图,如图3所示,本发明实施例的OFDMA系统数据包处理方法包括以下步骤:
300、对待传输的源数据包进行码块分割获得d个数据块;
301、分别对每个数据块添加CRC序列;
303、对添加CRC序列后的d个数据块分别进行纠错编码,
305、进行分组得到等长的a个信息数据包;
306、对a个信息数据包进行包编码得到b个校验数据包;
307、对所述a个信息数据包进行星座映射调制得到长度为k1的第一个调制符号序列,对所述b个校验数据包进行星座映射调制得到长度为k2的第二个调制符号序列;或者,将a个信息数据包和b个校验数据包进行星座映射调制,其中,包含a个信息数据包的是第一个调制符号序列,长度为k1,其余的是第二个调制符号序列,长度为k2;
308、将所述第一个调制符号序列按照时间顺序映射到连续的Mofdm1个OFDM符号上,且将第二个调制符号序列按照时间顺序映射到连续的Mofdm2个OFDM符号上;发送顺序编号中,Mofdm1个OFDM符号中第一个OFDM符号先于Mofdm2个OFDM符号中第一个OFDM符号;如图2所示,示出了本发明实施例的资源占用情况。
309、按照发送顺序编号,将所述Mofdm1个OFDM符号和Mofdm2个OFDM符号发送至第二传输节点;
其中,a是大于等于2的整数,d是大于等于2的整数,b是大于等于1的整数,k1和k2是大于等于1的整数,Mofdm1和Mofdm2是大于等于1的整数。
作为一种实现方式,发送顺序编号中,Mofdm2个OFDM符号中第一个OFDM符号是Mofdm1个OFDM符号中最后一个OFDM符号或者Mofdm1个OFDM符号中最后一个OFDM符号之后第x个OFDM符号,其中,x大于等于1。
作为一种实现方式,所述在添加CRC序列之后且在纠错编码之前,先进行第一次填充,所述第一次填充是对第i块数据块填充m1i比特,其中,m1i是大于等于0的整数,i=0、1、…、d-1,d是大于等于2的整数。
作为一种实现方式,所述的进行纠错编码之后且在进行分组得到等长
的a个信息数据包之前,进行第二次填充,所述第二次填充是在整个纠错编码数据块的首部或者尾部添加m2比特,其中,所述的整个纠错编码数据块包含d个纠错编码块,d是大于等于2的整数,m2是大于等于0的整数。
作为一种实现方式,所述的分组得到a个等长信息数据包,每个信息数据包的比特数目为k×c,其中,a是大于等于2的整数,k是纠错编码块的比特数,k是大于等于1的整数,c是大于等于1的整数。
作为一种实现方式,所述分别对每个数据块添加CRC序列,每个CRC序列的长度都为h比特,其中,h是大于等于1的整数。
作为一种实现方式,所述对所述a个信息数据包进行星座映射调制得到长度为k1的第一个调制符号序列,进行星座映射调制的所有比特不包括第一次填充和第二次填充比特数据,其中,a是大于等于2的整数,k1是大于等于1的整数。
作为一种实现方式,所述对待传输的源数据包进行码块分割获得d个数据块,每个数据块的长度依赖于以下参数:源数据包的长度、系统分配的用于所述第一传输节点向第二传输节点传输数据的每个OFDM符号上的子载波数目、调制阶数、纠错编码码率、OFDM符号数目、信息数据包中纠错编码块数、每个OFDM符号上承载的纠错编码块数、CRC序列比特数和包编码得到的校验数据包个数,其中,调制阶数是星座映射调制符号携带的比特数,d是大于等于2的整数。
作为一种实现方式,所述的第一调制符号序列的调制阶数为Mod1’,第二调制符号序列的调制阶数为Mod2’,其中,Mod1’和Mod2’是1到16的整数;或者,所述第一调制符号序列包含q1组调制符号子序列,子序列内的调制阶数相同,Modi是第一调制符号序列中第i组调制符号子序列采用的调制阶数,Modi是1到16的整数,i=0、1、…、(q1-1),所述第二调制符号序列包含q2组调制符号子序列,子序列内的调制阶数相同,Modj
是第二调制符号序列中第j组调制符号子序列采用的调制阶数,Modj是1到16的整数,j=0、1、…、(q2-1),其中,调制阶数是星座映射调制符号携带的比特数,q1和q2是大于等于1的整数。
星座映射调制符号携带的比特数、调制阶数和调制方式的关系表如下表1所示:
表1
作为一种实现方式,所述对a个信息数据包进行包编码得到b个校验数据包,包括:将所有a个信息数据包中第i比特构成长度为a比特的序列Si,对Si进行单奇偶校验编码、b重比特奇偶校验编码、汉明编码或RS编码,得到长度为b比特的校验序列Ti;将所有校验序列Ti的第j个比特顺序组合,得到长度为n比特的校验数据包Pj;
上述单奇偶校验编码是指:所有输入的a比特为序列Si,对Si进行二
进制异或相加,获得1个校验比特。
上述b重比特奇偶校验编码是指:所有输入的a比特为序列Si,对集合Si的一个子集Set1进行二进制异或相加,获得第1个校验比特;对集合S和第1个校验比特组成的新集合的一个子集Set2进行二进制异或相加,获得第2个校验比特;对集合S和第1个校验比特、第2个校验比特组成的新集合的一个子集Set3进行二进制异或相加,获得第3个校验比特;依次类推,对集合S和前b-1个校验比特组成的新集合的一个子集Setb进行二进制异或相加,获得第b个校验比特;
其中,i=0、1、…、n-1,n是纠错编码块集合的长度,n是大于1的整数,j=0、1、…、b-1,b是大于等于1的整数,a是大于等于2的整数。
作为一种实现方式,所述第一调制符号序列按照时间顺序映射到连续的Mofdm1个OFDM符号,包括,将第一调制符号序列按照先频率后时间映射到Nsc1×Mofdm1的二维时频资源上,其中,频率维度用于OFDM符号内子载波索引编号标识,时间维度用于OFDM符号索引编号标识,所述Nsc1×Mofdm1二维时频资源是由系统分配地且用于第一传输节点向第二传输节点传输数据的时间维度上连续的Mofdm1个OFDM符号,和每个OFDM符号在频率维度上的连续Nsc1个非参考信号子载波,Nsc1是大于等于1的整数,Mofdm1是大于等于1的整数。
作为一种实现方式,所述将第一调制符号序列按照先频率后时间映射到Nsc1×Mofdm1的二维时频资源中,其中向第i个OFDM符号的连续Nsc1个非参考信号子载波映射方法,包括以下方式之一:
方式1:对向第i个OFDM符号映射的Nsc1个星座映射调制符号先进行交织,然后再顺序映射到第i个OFDM符号的Nsc1个非参考信号子载波上,或者对向第i个OFDM符号映射的Nsc1个星座映射调制符号按随机映射关系表映射到第i个OFDM符号的Nsc1个非参考信号子载波上,或者对向第
i个OFDM符号映射的Nsc1个星座映射调制符号先顺序映射到逻辑缓存中,然后逻辑缓存中数据按随机映射关系表映射到第i个OFDM符号的Nsc1个非参考信号子载波上;
方式2:对向第i个OFDM符号映射的Nsc1个星座映射调制符号顺序映射到第i个OFDM符号的Nsc1个非参考信号子载波上;
其中,i=0、1、…、Mofdm1-1,Nsc1是大于等于1的整数,Mofdm1是大于等于1的整数。
作为一种实现方式,若d大于Mofdm1,则按方式1进行操作;否则按方式2进行操作;其中,d是纠错编码块数,d是大于等于2的整数,Mofdm-1是大于等于1的整数。
作为一种实现方式,所述第二调制符号序列按照时间顺序映射到连续的Mofdm2个OFDM符号,包括,将第二调制符号序列按照先频率后时间映射到Nsc2×Mofdm2的二维时频资源上,其中,频率维度用于OFDM符号内子载波索引编号标识,时间维度用于OFDM符号索引编号标识,所述Nsc2×Mofdm2二维时频资源是由系统分配地且用于第一传输节点向第二传输节点传输数据的时间维度上连续的Mofdm2个OFDM符号,和每个OFDM符号在频率维度上的连续Nsc2个非参考信号子载波,Nsc2是大于等于1的整数,Mofdm2是大于等于1的整数。
作为一种实现方式,所述将第二调制符号序列按照先频率后时间映射到Nsc2×Mofdm2的二维时频资源中,其中向第i个OFDM符号的连续Nsc2个非参考信号子载波映射方法,包括以下方式之一,
方式1:对向第i个OFDM符号映射的Nsc2个星座映射调制符号先进行交织,然后再顺序映射到第i个OFDM符号的Nsc2个非参考信号子载波上,或者对向第i个OFDM符号映射的Nsc2个星座映射调制符号按随机映射关系表映射到第i个OFDM符号的Nsc2个非参考信号子载波上,或者对向第
i个OFDM符号映射的Nsc2个星座映射调制符号先顺序映射到逻辑缓存中,然后逻辑缓存中数据按随机映射关系表映射到第i个OFDM符号的Nsc2个非参考信号子载波上;
方式2:对向第i个OFDM符号映射的Nsc2个星座映射调制符号顺序映射到第i个OFDM符号的Nsc2个非参考信号子载波上;
其中,i=0、1、…、Mofdm2-1,Nsc2是大于等于1的整数,Mofdm2是大于等于1的整数。
作为一种实现方式,若(b×c)大于Mofdm2,则按方式1进行操作;否则按方式2进行操作;其中,b是校验数据包的个数,b是大于等于1的整数,c是每个信息数据包所包含的纠错编码块块数,c是大于等于1的整数,Mofdm2是大于等于1的整数。
作为一种实现方式,所述的第一调制符号序列和第二调制符号序列向OFDM符号映射过程中,其中向第i个OFDM符号的连续Nsc个非参考信号子载波映射过程包括以下方式之一:
方式1:对向第i个OFDM符号映射的Nsc个星座映射调制符号先进行交织,然后再顺序映射到第i个OFDM符号的Nsc个非参考信号子载波上,或者对向第i个OFDM符号映射的Nsc个星座映射调制符号按随机映射关系表映射到第i个OFDM符号的Nsc个非参考信号子载波上,或者对向第i个OFDM符号映射的Nsc个星座映射调制符号先顺序映射到逻辑缓存中,然后逻辑缓存中数据按随机映射关系表映射到第i个OFDM符号的Nsc个非参考信号子载波上;
方式2:对向第i个OFDM符号映射的Nsc个星座映射调制符号顺序映射到第i个OFDM符号的Nsc个非参考信号子载波上;
其中,Nsc是由系统分配地且用于第一传输节点向第二传输节点传输数据的第i个OFDM符号中的非参考信号子载波数目,Nsc是大于等于1
的整数,i=0、1、…、Mofdm-1,Mofdm是第一调制符号序列和第二调制符号序列映射的所有OFDM符号数目,Mofdm是大于0的整数。
作为一种实现方式,若(d+b×c)大于Mofdm,则按方式1进行操作;否则按方式2进行操作;其中,d是纠错编码块数,d是大于等于2的整数,b是校验数据包的个数,b是大于等于1的整数,c是每个信息数据包所包含的纠错编码块块数,c是大于等于1的整数,Mofdm是第一调制符号序列和第二调制符号序列映射的所有OFDM符号数目,Mofdm是大于0的整数。
作为一种实现方式,所述的交织方法是行进列出的row行、col列分组交织或者随机交织,随机映射关系表是由行进列出的row行、col列分组交织获得的输入输出关系表或随机的输入输出关系表,其中row和col都是大于0的整数。
作为一种实现方式,所述信息数据包中每块纠错编码块比特长度为e,则e等于m×Nsc1×g,其中,m是每个星座映射调制符号携带的比特数,m是大于等于1的整数,Nsc1是系统配置地用于所述第一传输节点向第二传输节点传输数据的第i个OFDM符号中的非参考信号子载波数目,i=0、1、…、Mofdm1-1,Nsc1是大于等于1的整数,g的具体数值是1、2、3、4、6或者7,Mofdm1是第一调制符合序列映射到的OFDM符号数目,Mofdm1是大于0的整数。
本发明实施例中,在接收端,依照下述方式进行数据包接收:
接收OFDM符号;
解调OFDM符号,依据系统配置的用于从第一传输节点传输到第二传输节点的子载波资源配置情况,获得承载在第i个OFDM符号的Nsc个星座映射调制符号;
解星座映射,将Nsc个星座映射调制符号解调成为软比特信息;
纠错解码,对解调出的软比特信息进行纠错解码;
去除CRC序列,将所有纠错编码块中CRC序列去除;
数据合并,将去除CRC序列后的所有数据合并得到第一传输节点发送的源数据包;
其中,i=0、1、…、Mofdm-1,Mofdm是所有OFDM符号数,Mofdm是大于1的整数,Nsc是大于等于1的整数。
作为一种实现方式,所述的纠错解码方式至少包括:
校验数据包中的b×c个数据块也属于纠错编码字空间,也可以进行译码,所以纠错编码译码块数为d+b×c个;在所有纠错编码块解码后,根据CRC序列和\或纠错编码字空间判断该码字错误,若错误则保存错误纠错编码块的软比特信息,若正确则计算所有正确译码纠错编码块的累计异或结果;依据判断条件:前d个纠错编码块译码正确或者全部d+b×c个纠错编码块译码正确,如果成立则退出;如果不成立,通过包编码译码方法:利用错误纠错编码块的软比特信息、正确纠错编码字的累计异或结果和包编码中所有码块之间的异或关系,解出每个错误纠错编码字的软比特信息,并对错误纠错编码块进行解码,再依据判断条件:前d个纠错编码块译码是否正确或者全部d+b×c个纠错编码块译码是否正确,如果成立则退出;如果不成立,则退出或者继续迭代进行包编码译码,最大迭代次数为MAX次;
其中,d是纠错编码块数,d是大于等于2的整数,b是校验数据包的个数,b是大于等于1的整数,c是每个信息数据包所包含的纠错编码块块数,c是大于等于1的整数,MAX是大于1的整数;
所述的利用错误纠错编码块的软比特信息、正确纠错编码字的累计异或结果和包编码中所有码块之间的异或关系,解出每个错误纠错编码字的软比特信息,具体计算第i个错误纠错编码块的第j比特的软比特信息
LLR'err(i,j)表达式如下:
LLR'err(i,j)=LLRerr(i,j)+k0×signerr(i,j)×MSerr(i,j)×Ccrt(j)
其中,参量LLRerr(i,j)是保存的第i个错误纠错编码块的第j比特的软比特信息,参量k0是一个大于0的实数,signerr(i,j)是除了第i个错误纠错编码块以外其他所有错误纠错编码块的第j比特软比特信息的符号位累积结果,MSerr(i,j)是其他所有错误纠错编码块的第j比特软比特信息提供的幅值结果(这里采用最小值算法),Ccrt(j)是所有正确纠错编码块的第j比特软比特信息的符号位累积结果,具体表达式如下:
signerr(i,j)=sign(LLRerr(0,j))××sign(LLRerr(i-1,j))×sign(LLRerr(i+1,j))××sign(LLRerr(enum,j))
MSerr(i,j)=min(abs(LLRerr(0,j)),,abs(LLRerr(i-1,j)),abs(LLRerr(i+1,j)),,abs(LLRerr(enum,j)))
Ccrt(j)=sign(LLRcrt(0,j))×sign(LLRcrt(1,j))××sign(LLRcrt(cnum,j))
作为一种实现方式,所述纠错编码块的纠错编码方法采用Turbo编码、卷积编码、LDPC编码、RS编码、汉明编码、乘积编码或者BCH编码。
以下通过具体示例,进一步阐明本发明技术方案的实质。
实例1
在OFDMA通信系统中,单个OFDM符号有1024个子载波,有效数据子载波数为800。本实例用于第一传输节点为移动用户100向第二传输节点为基站101传输数据,如图1所示。本发明实施例的OFDMA系统中数据包处理方法至少包括以下步骤,如图3所示:
300、对待传输的1968比特的源数据包进行码块分割获得d=6个数据块,每个数据块长度为328比特;
301、分别对每个数据块添加h=8比特的CRC序列,添加CRC序列后每个数据块长度变为336比特,由于每个数据块的长度相等而且等于母码输入比特为336比特,所以不需要第一次填充;
303、对添加CRC序列后的d=6个数据块分别进行Turbo纠错编码,Turbo纠错编码的码长为672和码率为1/2;
305、进行分组得到等长的a=6个信息数据包,每个信息数据包有1×672比特,每个信息数据包有1个Turbo纠错编码块,由于正好分组6个信息数据包,每个信息数据包有1个Turbo纠错编码数据块,所以不需要第二次填充;
306、对a=6个信息数据包进行包编码得到b=1个校验数据包,校验数据包的长度为672比特,其中所述的包编码采用单奇偶校验编码方法;
307、星座映射调制方式为QPSK,调制阶数为2,对所述a=6个信息数据包进行星座映射调制得到长度为k1=2016的第一个调制符号序列,对所述b=1个校验数据包进行星座映射调制得到长度为k2=336的第二个调制符号序列;或者,将a=6个信息数据包和b=1个校验数据包进行星座映射调制,其中,包含a=6个信息数据包的调制符号为长度为k1=2016的第一个调制符号序列,其余的是长度为k2=336的第二个调制符号序列;
308、将所述第一个调制符号序列按照时间顺序映射到连续的Mofdm1=6个OFDM符号上,包括,将第一调制符号序列按照先频率后时间映射到(Nsc1=336)×(Mofdm1=6)的二维时频资源上,其中,对向第i个OFDM符号映射的Nsc1=336个星座映射调制符号顺序映射到第i个OFDM符号的Nsc1=336个非参考信号子载波上,i=0、1、…、5;将第二个调制符号序列按照时间顺序映射到连续的Mofdm2=1个OFDM符号上,包括,将第二调制符号序列按照先频率后时间映射到(Nsc2=336)×(Mofdm2=1)的二维时频资源上,其中,对向第i个OFDM符号映射的Nsc1=336个星座映射调制符号顺序映射到第i个OFDM符号的Nsc1=336个非参考信号子载波上,i=6;其中i是发送顺序编号,编号小的先发送出去;
309、移动用户100按照发送顺序编号,将所述Mofdm1=6个OFDM符
号和Mofdm2=1个OFDM符号发送至基站101。
具体所有OFDM符号的发送顺序编号和二维时频资源的映射情况如图5所示,系统配置为移动用户100向基站101传输数据的子载波数为336,移动用户502的数据承载在7个OFDM符号上,第0至第5个OFDM符号承载的是第一调制符号序列500,第6个OFDM符号承载的是第二调制符号序列501。
实例2
实例2与实例1的区别在于步骤305中分组得到的每个信息数据包有2×672比特以及步骤307中第二调制符号序列采用的调制方式为16QAM,如下:
步骤305中,对Turbo纠错编码后的数据进行分组得到等长的a=3个信息数据包,每个信息数据包有2×672比特,每个信息数据包有2个Turbo纠错编码块;则在步骤306中,包编码得到的1个校验数据包长度也为2×672比特;
在步骤307中,第一调制符号序列的长度为k1=2016个星座映射调制符号,调制阶数为Mod1’=2,星座映射调制方式为QPSK,第一调制符号序列的长度为k2=336个星座映射调制符号,调制阶数为Mod2’=4,星座映射调制方式为16QAM;或者,所述第一调制符号序列包含q1=2组调制符号子序列,子序列内的调制阶数相同,第0组调制符号子序列长度为1344,采用的调制方式为BPSK,调制阶数为1,第1组调制符号子序列长度为672,采用的调制方式为16QAM,调制阶数为4,所述第二调制符号序列包含q2=2组调制符号子序列,第0组调制符号子序列长度为168,采用的调制方式为QPSK,调制阶数为2,第1组调制符号子序列长度为168,采用的调制方式为64QAM,调制阶数为6。
实例3
实例3与实例1的区别在于步骤306中包编码方法采用2重奇偶校验编码方法以及步骤307中第二调制符号序列采用的调制方式为16QAM,如下:
步骤306中,对a=6个信息数据包进行包编码得到b=2个校验数据包,每个校验数据包的长度为672比特,其中所述的包编码采用2重奇偶校验编码方法如下:第0个校验数据包P0选择所有6块Turbo纠错编码进行单奇偶校验编码,即P0=C0+C1+…+C5;第1个校验数据包P1选择所有偶数块Turbo纠错编码和P0进行单奇偶校验编码,即P1=C0+C2+C4+P0,其中,C0~C5是6块Turbo纠错编码块,从而获得2个校验数据块P0和P1,长度分别为672比特;
在步骤307中,对所述a=6个信息数据包进行星座映射调制得到长度为k1=2016的第一个调制符号序列,星座映射调制方式为QPSK,调制阶数为2;对所述b=2个校验数据包进行星座映射调制得到长度为k2=336的第二个调制符号序列,星座映射调制方式为16QAM,调制阶数为4。
实例4
实例4与实例1的区别在于步骤308中,如下:
步骤308中,将所述第一个调制符号序列按照时间顺序映射到连续的Mofdm1=6个OFDM符号上,包括,将第一调制符号序列按照先频率后时间映射到(Nsc1=336)×(Mofdm1=6)的二维时频资源上,其中,对向第i个OFDM符号映射的Nsc1=336个星座映射调制符号先进行交织,然后再顺序映射到第i个OFDM符号的Nsc1=336个非参考信号子载波上;或者,对向第i个OFDM符号映射的Nsc1=336个星座映射调制符号按随机映射关系表映射到第i个OFDM符号的Nsc1=336个非参考信号子载波上;或者,对向第i个OFDM符号映射的Nsc1=336个星座映射调制符号先顺序映射到逻辑缓存中,然后逻辑缓存中数据按随机映射关系表映射到第i个OFDM符号的
Nsc1=336个非参考信号子载波上;i=0、1、…、5;
而且,将第二个调制符号序列按照时间顺序映射到连续的Mofdm2=1个OFDM符号上,包括,将第二调制符号序列按照先频率后时间映射到(Nsc2=336)×(Mofdm2=1)的二维时频资源上,其中,对向第i个OFDM符号映射的Nsc2=336个星座映射调制符号先进行交织,然后再顺序映射到第i个OFDM符号的Nsc2=336个非参考信号子载波上,或者对向第i个OFDM符号映射的Nsc2=336个星座映射调制符号按随机映射关系表映射到第i个OFDM符号的Nsc2=336个非参考信号子载波上,或者对向第i个OFDM符号映射的Nsc2=336个星座映射调制符号先顺序映射到逻辑缓存中,然后逻辑缓存中数据按随机映射关系表映射到第i个OFDM符号的Nsc2=336个非参考信号子载波上;i=6;
其中,i是发送顺序编号,编号小的先发送出去。所述的交织方法是行进列出的row行、col列分组交织或者随机交织,随机映射关系表是由行进列出的row行、col列分组交织获得的输入输出关系表或随机的输入输出关系表,其中row和col都是大于0的整数,row=21,col=16。
实例5
实例5与实例1的区别在于步骤308和步骤309中,如下:
步骤308中,将所述第一个调制符号序列按照时间顺序映射到连续的Mofdm1=7个OFDM符号上,包括,将第一调制符号序列按照先频率后时间映射到(Nsc1=288)×(Mofdm1=7)的二维时频资源上,其中,对向第i个OFDM符号映射的Nsc1=288个星座映射调制符号顺序映射到第i个OFDM符号的Nsc1=288个非参考信号子载波上,i=0、1、…、6;将第二个调制符号序列按照时间顺序映射到连续的Mofdm2=7个OFDM符号上,包括,将第二调制符号序列按照先频率后时间映射到(Nsc2=48)×(Mofdm2=7)的二维时频资源上,其中,对向第i个OFDM符号映射的Nsc2=48个星座映射调制符号顺
序映射到第i个OFDM符号的Nsc2=48个非参考信号子载波上,i=7、8、…、13;其中i是发送顺序编号,编号小的先发送出去;
在步骤309中,发送过程为:如图6所示,发送完包含第一调制符合序列600的OFDM符号后直接发送包含第二调制符号序列601的OFDM符号;或者,如图7所示,发送完包含第一调制符合序列700的OFDM符号后,等待7个OFDM符号后再发送包含第二调制符号序列701的OFDM符号。
实例6
在OFDMA通信系统中,单个OFDM符号有1024个子载波,有效数据子载波数为800。本实例用于第一传输节点为基站101向第二传输节点为移动用户100传输数据,如图1所示。本发明方法至少包括以下步骤,如图3所示:
300、对待传输的9620比特的源数据包进行码块分割获得d=20个数据块,每个数据块长度为481比特;
301、分别对每个数据块添加h=8比特的CRC序列,添加CRC序列后每个数据块长度变为489比特;
302,在添加CRC序列之后每个数据块进行第一次填充,所述第一次填充是对第i块数据块填充m1i=15比特,填充比特为‘0’,i=0、1、…、19,使得每个数据块长度达到504比特;
303、对添加CRC序列后的d=20个数据块分别进行Turbo纠错编码,得到总比特数为13440的数据块,Turbo纠错编码的码长为672和码率为3/4;
304、进行Turbo纠错编码之后的总数据块进行第二次填充,所述第二次填充是在整个纠错编码数据块的首部或者尾部添加m2=672比特,填充比特为‘0’;
305、进行分组得到等长的a=7个信息数据包,每个信息数据包有3×672比特;
306、对a=7个信息数据包进行包编码得到b=1个校验数据包,校验数据包的长度为3×672比特,其中所述的包编码采用单奇偶校验编码方法;
307、星座映射调制方式为64QAM,调制阶数为6,所述a=7个信息数据包有效比特数20×657比特(如图8所示,不包含第一次填充的比特800和第二次填充的比特803),进行星座映射调制得到长度为k1=2190的第一个调制符号序列,所述b=1个校验数据包有效比特数3×657比特(如图8所示,不包含包编码方法中进行奇偶校验编码的7比特都属于第一次填充比特和第二次填充比特的结果802),进行星座映射调制得到长度为k2=329的第二个调制符号序列(需填充3比特);
308、将所述第一个调制符号序列和第二个调制符号序列按照时间顺序映射到连续的7个OFDM符号上360×7的二维时频资源上,如图9所示,其中,对向第i个OFDM符号映射的360个星座映射调制符号顺序映射到第i个OFDM符号的360个非参考信号子载波上,i=0、1、…、6;其中,第一个调制符号序列映射到第0至6个OFDM符号900,第二个调制符号序列映射到第6个OFDM符号901(所述二维时频资源中的第6个OFDM符号的最后一个子载波为填充符号902),即在发送顺序编号中,第二个调制符号序列映射的Mofdm2=1个OFDM符号中第一个OFDM符号是第一个调制符号序列映射的Mofdm1=7个OFDM符号中最后一个OFDM符号;
309、基站101按照发送顺序编号,将所述7个OFDM符号发送至移动用户100。
实例7
实例7与实例6的区别在于步骤308中,如下:
步骤308中,将所述第一个调制符号序列和第二调制符号序列按照时
间顺序映射到连续的Mofdm1=7个OFDM符号上的二维时频资源上,其中,d是Turbo码块数(d=20),c是每个信息数据包包含纠Turbo码块数(c=3),b是校验数据包数(b=1),Mofdm是总共需要的OFDM符号数(Mofdm=7),依据判断条件:(d+b×c)是否大于Mofdm,此时判断成立,则:对向第i个OFDM符号映射的360个星座映射调制符号先进行交织,然后再顺序映射到第i个OFDM符号的360个非参考信号子载波上;或者,对向第i个OFDM符号映射的360个星座映射调制符号按随机映射关系表映射到第i个OFDM符号的360个非参考信号子载波上;或者,对向第i个OFDM符号映射的360个星座映射调制符号先顺序映射到逻辑缓存中,然后逻辑缓存中数据按随机映射关系表映射到第i个OFDM符号的360个非参考信号子载波上;i=0、1、…、6;
其中,i是发送顺序编号,编号小的先发送出去。所述的交织方法是行进列出的row行、col列分组交织或者随机交织,随机映射关系表是由行进列出的row行、col列分组交织获得的输入输出关系表或随机的输入输出关系表,其中row和col都是大于0的整数,row=20,col=18。
实例8
实例8与实例6的区别在于步骤308中,如下:
步骤308中,将所述第一个调制符号序列按照时间顺序映射到连续的Mofdm1=6个OFDM符号上,包括,如图10所示,将第一调制符号序列按照先频率后时间映射到(Nsc1=365)×(Mofdm1=6)的二维时频资源上1000,其中,d是Turbo码块数(d=20),依据判断条件:d是否大于Mofdm1,此时判断成立,则:对向第i个OFDM符号映射的Nsc1=365个星座映射调制符号先进行交织,然后再顺序映射到第i个OFDM符号的Nsc1=365个非参考信号子载波上;或者,对向第i个OFDM符号映射的Nsc1=365个星座映射调制符号按随机映射关系表映射到第i个OFDM符号的Nsc1=365个非参考信号子
载波上;或者,对向第i个OFDM符号映射的Nsc1=365个星座映射调制符号先顺序映射到逻辑缓存中,然后逻辑缓存中数据按随机映射关系表映射到第i个OFDM符号的Nsc1=365个非参考信号子载波上;i=0、1、…、5;
而且,将所述第二个调制符号序列按照时间顺序映射到连续的Mofdm2=6个OFDM符号上,包括,如图10所示,将第二调制符号序列按照先频率后时间映射到(Nsc2=55)×(Mofdm2=6)的二维时频资源上1001(最后一个子载波为填充符号),其中,b是校验数据包数(b=1),c是每个信息数据包包含纠Turbo码块数(c=3),依据判断条件:b×c是否大于Mofdm2,此时判断不成立,则:如图10所示,对向第i个OFDM符号映射的Nsc2=55个星座映射调制符号顺序映射到第i个OFDM符号的Nsc2=55个非参考信号子载波上;i=6、7、…、11;
其中,i是发送顺序编号,编号小的先发送出去,所述的交织方法是行进列出的row行、col列分组交织或者随机交织,随机映射关系表是由行进列出的row行、col列分组交织获得的输入输出关系表或随机的输入输出关系表,其中row和col都是大于0的整数,row=73,col=5。
实例9
实例9是适用于实例6的第二传输节点(移动用户100),如图11所示,至少包括以下步骤,如下:
1100,接收第i个OFDM符号;
1101,解调第i个OFDM符号,依据系统配置的用于传输到本移动用户100子载波资源配置,获得承载在第i个OFDM符号的360个星座映射调制符号;
1102,解星座映射,调制方式为64QAM,调制阶数为6,将360个星座映射调制符号解调成为360×6个软比特信息;
1103,纠错解码,将属于第i个OFDM符号的所有Turbo码解码;
1104,去除CRC序列,将所有Turbo编码块中CRC序列去除;
1105,数据合并,将去除CRC序列后的所有纯数据合并得到第一传输节点(基站101)发送的源数据包;
如图12所示,每接收完第i个OFDM符号,就可以将属于该第i个OFDM符号内的所有纠错编码块(Turbo码块)进行解码,然后依次译码第i+1个OFDM符号内的纠错码块,采用类似于流水线方式工作,可以提高译码速度;i=0、1、2、…、6。
校验数据包中的3个数据块也属于Turbo码字空间,也可以进行译码,所以Turbo码块数为23个;在所有Turbo码块解码后,根据CRC序列和\或Turbo码字空间判断该码字错误,若错误则保存错误Turbo码块的软比特信息,若正确则计算所有正确译码Turbo码块的累计异或结果C,C=C⊕Cj;依据判断条件:前20个Turbo码块译码正确或者全部23个Turbo码块译码正确,如果成立则退出;如果不成立,通过包编码译码方法:利用错误Turbo码块的软比特信息、正确Turbo码字的累计异或结果和包编码中所有码块之间的异或关系,解出每个错误Turbo码字的软比特信息,并对错误Turbo码块进行解码,再依据判断条件:前20个Turbo码块译码正确或者全部23个Turbo码块译码正确,如果成立则退出;如果错误,则退出或者继续迭代进行包编码译码,最大迭代次数为5次。
实例10
在OFDMA通信系统中,单个OFDM符号有1024个子载波,有效数据子载波数为800。本实例用于第一传输节点为基站101向第二传输节点为移动用户100传输数据,如图1所示,OFDM符号数目为Mofdm=6,系统分配的用于所述第一传输节点向第二传输节点传输数据的每个OFDM符号上的子载波数目为Nsc=512,调制阶数为Mu=4,纠错编码码率为R=1/2,信息数据包中纠错编码块数为c=1,每个OFDM符号上承载的纠错编码块数
k0=1,CRC序列比特数h=8和包编码得到的校验数据包个数为b=1个。本发明方法至少包括以下步骤,如图3所示:
300、依据以下参数:源数据包的长度L=5080、系统分配的用于所述第一传输节点向第二传输节点传输数据的每个OFDM符号上的子载波数目Nsc=512、调制阶数Mu=4、纠错编码码率R=1/2、OFDM符号数目Mofdm=6、信息数据包中纠错编码块数c=1、每个OFDM符号上承载的纠错编码块数k0=1、CRC序列比特数h=8和包编码得到的校验数据包数b=1,计算得到数据块数为d=Mofdm×k0-b×c=5,数据块大小为L/d=1016,对待传输的L=5080比特的源数据包进行码块分割,获得d=5个数据块,每个数据块长度为1016比特;
301、分别对每个数据块添加h=8比特的CRC序列,添加CRC序列后每个数据块长度变为1024比特;
302,在添加CRC序列之后每个数据块进行第一次填充,所述第一次填充是对第i块数据块填充m1i=0比特,填充比特为‘0’,i=0、1、…、4,使得每个数据块长度达到1024比特;
303、对添加CRC序列后的d=5个数据块分别进行Turbo纠错编码,得到总比特数10240比特;
304、进行Turbo纠错编码之后进行第二次填充,所述第二次填充是在整个纠错编码数据块的首部或者尾部添加m2=0比特,填充比特为‘0’;
305、进行分组得到等长的a=5个信息数据包,每个信息数据包有2048比特;
306、对a=5个信息数据包进行包编码得到b=1个校验数据包,校验数据包的长度为2048比特,其中所述的包编码采用单奇偶校验编码方法;
307、星座映射调制方式为16QAM,调制阶数为4,所述a=5个信息数据包有效比特数10240比特,进行星座映射调制得到长度为k1=2560的第
一个调制符号序列,所述b=1个校验数据包有效比特数2048比特,进行星座映射调制得到长度为k2=512的第二个调制符号序列;
308、将所述第一个调制符号序列和第二个调制符号序列按照时间顺序映射到连续的6个OFDM符号上512×6的二维时频资源上,其中,对向第i个OFDM符号映射的512个星座映射调制符号顺序映射到第i个OFDM符号的512个非参考信号子载波上,i=0、1、…、5;其中,第一个调制符号序列映射到第0至4个OFDM符号,第二个调制符号序列映射到第5个OFDM符号,即i是OFDM符号的发送顺序编号,编号低的先发送;
309、基站101按照发送顺序编号,将所述7个OFDM符号发送至移动用户100。
实例11
实例11与实例1到实例10的区别在于步骤303中,所用纠错编码方法是卷积编码、LDPC编码、RS编码、汉明编码、乘积编码或者BCH编码。
实施例二
本发明实施例记载了一种OFDMA系统数据包处理装置,适用于发送端,至少包括以下模块:
码块分割模块,配置为对待传输的源数据包进行码块分割获得d个数据块;
添加CRC序列模块,配置为分别对每个数据块添加CRC序列;
纠错编码模块,配置为对添加CRC序列后的d个数据块分别进行纠错编码;
分组模块,配置为对纠错编码后数据进行分组得到等长的a个信息数据包;
包编码模块,配置为对a个信息数据包进行包编码得到b个校验数据包;
星座映射调制模块,配置为对所述a个信息数据包进行星座映射调制得到长度为k1的第一个调制符号序列,对所述b个校验数据包进行星座映射调制得到长度为k2的第二个调制符号序列;或者,将a个信息数据包和b个校验数据包进行星座映射调制,其中,包含a个信息数据包的是第一个调制符号序列,长度为k1,其余的是第二个调制符号序列,长度为k2;
OFDM调制模块,配置为将所述第一个调制符号序列按照时间顺序映射到连续的Mofdm1个OFDM符号上,且将第二个调制符号序列按照时间顺序映射到连续的Mofdm2个OFDM符号上;发送顺序编号中,Mofdm1个OFDM符号中第一个OFDM符号先于Mofdm2个OFDM符号中第一个OFDM符号;
发送模块,配置为按照发送顺序编号,将所述Mofdm1个OFDM符号和Mofdm2个OFDM符号发送至第二传输节点;
其中,a是大于等于2的整数,d是大于等于2的整数,b是大于等于1的整数,k1和k2是大于等于1的整数,Mofdm1和Mofdm2是大于等于1的整数。
进一步地,发送顺序编号中,Mofdm2个OFDM符号中第一个OFDM符号是Mofdm1个OFDM符号中最后一个OFDM符号或者Mofdm1个OFDM符号中最后一个OFDM符号之后第x个OFDM符号,其中,x大于等于1。
进一步地,所述添加CRC序列模块之后在纠错编码模块之前,包括第一次填充模块,所述第一次填充模块是对第i块数据块填充m1i比特,其中,m1i是大于等于0的整数,i=0、1、…、d-1,d是大于等于2的整数。
进一步地,所述的纠错编码模块之后且在分组模块之前,包括第二次填充模块,所述第二次填充模块是在整个纠错编码数据块的首部或者尾部添加m2比特,其中,所述的整个纠错编码数据块包含d个纠错编码块,d是大于等于2的整数,m2是大于等于0的整数。
进一步地,所述的分组模块分组得到a个等长信息数据包,每个信息
数据包的比特数目为k×c,其中,a是大于等于2的整数,k是纠错编码块的比特数,k是大于等于1的整数,c是大于等于1的整数。
进一步地,所述添加CRC序列模块分别对每个数据块添加CRC序列,每个CRC序列的长度都为h比特,其中,h是大于等于1的整数。
进一步地,所述星座映射调制模块对所述a个信息数据包进行星座映射调制得到长度为k1的第一个调制符号序列,进行星座映射调制的所有比特不包括第一次填充模块和第二次填充模块填充的比特数据,其中,a是大于等于2的整数,k1是大于等于1的整数。
进一步地,所述码块分割模块对待传输的源数据包进行码块分割获得d个数据块,每个数据块的长度依赖于以下参数:源数据包的长度、系统分配的用于所述第一传输节点向第二传输节点传输数据的每个OFDM符号上的子载波数目、调制阶数、纠错编码码率、OFDM符号数目、信息数据包中纠错编码块数、每个OFDM符号上承载的纠错编码块数、CRC序列比特数和包编码得到的校验数据包个数,其中,调制阶数是星座映射调制符号携带的比特数,d是大于等于2的整数。
进一步地,所述的星座映射调制模块中的第一调制符号序列的调制阶数为Mod1’,第二调制符号序列的调制阶数为Mod2’,其中,Mod1’和Mod2’是1到16的整数;或者,所述第一调制符号序列包含q1组调制符号子序列,子序列内的调制阶数相同,Modi是第一调制符号序列中第i组调制符号子序列采用的调制阶数,Modi是1到16的整数,i=0、1、…、(q1-1),所述第二调制符号序列包含q2组调制符号子序列,子序列内的调制阶数相同,Modj是第二调制符号序列中第j组调制符号子序列采用的调制阶数,Modj是1到16的整数,j=0、1、…、(q2-1),其中,调制阶数是星座映射调制符号携带的比特数,q1和q2是大于等于1的整数。
星座映射调制符号携带的比特数、调制阶数和调制方式的关系如下表2所
示:
表2
进一步地,所述包编码模块对a个信息数据包进行包编码得到b个校验数据包,包括:将所有a个信息数据包中第i比特构成长度为a比特的序列Si,对Si进行单奇偶校验编码、b重比特奇偶校验编码、汉明编码或RS编码,得到长度为b比特的校验序列Ti;将所有校验序列Ti的第j个比特顺序组合,得到长度为n比特的校验数据包Pj;
其中,i=0、1、…、n-1,n是纠错编码块集合的长度,n是大于1的整数,j=0、1、…、b-1,b是大于等于1的整数,a是大于等于2的整数。
进一步地,所述OFDM符号调制模块中,第一调制符号序列按照时间顺序映射到连续的Mofdm1个OFDM符号,包括,将第一调制符号序列按照先频率后时间映射到Nsc1×Mofdm1的二维时频资源上,其中,频率维度用于
OFDM符号内子载波索引编号标识,时间维度用于OFDM符号索引编号标识,所述Nsc1×Mofdm1二维时频资源是由系统分配地且用于第一传输节点向第二传输节点传输数据的时间维度上连续的Mofdm1个OFDM符号,和每个OFDM符号在频率维度上的连续Nsc1个非参考信号子载波,Nsc1是大于等于1的整数,Mofdm1是大于等于1的整数。
进一步地,所述将第一调制符号序列按照先频率后时间映射到Nsc1×Mofdm1的二维时频资源中,其中向第i个OFDM符号的连续Nsc1个非参考信号子载波映射方法,包括以下方式之一:
方式1:对向第i个OFDM符号映射的Nsc1个星座映射调制符号先进行交织,然后再顺序映射到第i个OFDM符号的Nsc1个非参考信号子载波上,或者对向第i个OFDM符号映射的Nsc1个星座映射调制符号按随机映射关系表映射到第i个OFDM符号的Nsc1个非参考信号子载波上,或者对向第i个OFDM符号映射的Nsc1个星座映射调制符号先顺序映射到逻辑缓存中,然后逻辑缓存中数据按随机映射关系表映射到第i个OFDM符号的Nsc1个非参考信号子载波上;
方式2:对向第i个OFDM符号映射的Nsc1个星座映射调制符号顺序映射到第i个OFDM符号的Nsc1个非参考信号子载波上;
其中,i=0、1、…、Mofdm1-1,Nsc1是大于等于1的整数,Mofdm1是大于等于1的整数。
进一步地,若d大于Mofdm1,则按方式1进行操作;否则按方式2进行操作;其中,d是纠错编码块数,d是大于等于2的整数,Mofdm1是大于等于1的整数。
进一步地,所述OFDM符号调制模块中第二调制符号序列按照时间顺序映射到连续的Mofdm2个OFDM符号,包括,将第二调制符号序列按照先频率后时间映射到Nsc2×Mofdm2的二维时频资源上,其中,频率维度用于
OFDM符号内子载波索引编号标识,时间维度用于OFDM符号索引编号标识,所述Nsc2×Mofdm2二维时频资源是由系统分配地且用于第一传输节点向第二传输节点传输数据的时间维度上连续的Mofdm2个OFDM符号,和每个OFDM符号在频率维度上的连续Nsc2个非参考信号子载波,Nsc2是大于等于1的整数,Mofdm2是大于等于1的整数。
进一步地,所述将第二调制符号序列按照先频率后时间映射到Nsc2×Mofdm2的二维时频资源中,其中向第i个OFDM符号的连续Nsc2个非参考信号子载波映射方法,包括以下方式之一,
方式1:对向第i个OFDM符号映射的Nsc2个星座映射调制符号先进行交织,然后再顺序映射到第i个OFDM符号的Nsc2个非参考信号子载波上,或者对向第i个OFDM符号映射的Nsc2个星座映射调制符号按随机映射关系表映射到第i个OFDM符号的Nsc2个非参考信号子载波上,或者对向第i个OFDM符号映射的Nsc2个星座映射调制符号先顺序映射到逻辑缓存中,然后逻辑缓存中数据按随机映射关系表映射到第i个OFDM符号的Nsc2个非参考信号子载波上;
方式2:对向第i个OFDM符号映射的Nsc2个星座映射调制符号顺序映射到第i个OFDM符号的Nsc2个非参考信号子载波上;
其中,i=0、1、…、Mofdm2-1,Nsc2是大于等于1的整数,Mofdm2是大于等于1的整数。
进一步地,若(b×c)大于Mofdm2,则按方式1进行操作;否则按方式2进行操作;其中,b是校验数据包的个数,b是大于等于1的整数,c是每个信息数据包所包含的纠错编码块块数,c是大于等于1的整数,Mofdm2是大于等于1的整数。
进一步地,所述的OFDM符号调制模块中第一调制符号序列和第二调制符号序列向OFDM符号映射过程中,其中向第i个OFDM符号的连续
Nsc个非参考信号子载波映射过程包括以下方式之一:
方式1:对向第i个OFDM符号映射的Nsc个星座映射调制符号先进行交织,然后再顺序映射到第i个OFDM符号的Nsc个非参考信号子载波上,或者对向第i个OFDM符号映射的Nsc个星座映射调制符号按随机映射关系表映射到第i个OFDM符号的Nsc个非参考信号子载波上,或者对向第i个OFDM符号映射的Nsc个星座映射调制符号先顺序映射到逻辑缓存中,然后逻辑缓存中数据按随机映射关系表映射到第i个OFDM符号的Nsc个非参考信号子载波上;
方式2:对向第i个OFDM符号映射的Nsc个星座映射调制符号顺序映射到第i个OFDM符号的Nsc个非参考信号子载波上;
其中,Nsc是由系统分配地且用于第一传输节点向第二传输节点传输数据的第i个OFDM符号中的非参考信号子载波数目,Nsc是大于等于1的整数,i=0、1、…、Mofdm-1,Mofdm是第一调制符号序列和第二调制符号序列映射的所有OFDM符号数目,Mofdm是大于0的整数。
进一步地,若(d+b×c)大于Mofdm,则按方式1进行操作;否则按方式2进行操作;其中,d是纠错编码块数,d是大于等于2的整数,b是校验数据包的个数,b是大于等于1的整数,c是每个信息数据包所包含的纠错编码块块数,c是大于等于1的整数,Mofdm是第一调制符号序列和第二调制符号序列映射的所有OFDM符号数目,Mofdm是大于0的整数。
进一步地,所述的交织方法是行进列出的row行、col列分组交织或者随机交织,随机映射关系表是由行进列出的row行、col列分组交织获得的输入输出关系表或随机的输入输出关系表,其中row和col都是大于0的整数。
进一步地,所述纠错编码模块中每块纠错编码块比特长度为e,则e等于m×Nsc1×g,其中,m是每个星座映射调制符号携带的比特数,m是大
于等于1的整数,Nsc1是系统配置地用于所述第一传输节点向第二传输节点传输数据的第i个OFDM符号中的非参考信号子载波数目,i=0、1、…、Mofdm1-1,Nsc1是大于等于1的整数,g的具体数值是1、2、3、4、6或者7,Mofdm1是第一调制符合序列映射到的OFDM符号数目,Mofdm1是大于0的整数。
本发明实施例还记载了另一种OFDMA系统中数据包处理装置,适用于接收端,至少包括:
接收OFDM符号模块,配置为接收OFDM符号;
解调OFDM符号模块,配置为依据系统配置的用于从第一传输节点传输到第二传输节点的子载波资源配置情况,获得承载在第i个OFDM符号的Nsc个星座映射调制符号;
解星座映射模块,配置为将Nsc个星座映射调制符号解调成为软比特信息;
纠错解码模块,配置为对解调出的软比特信息进行纠错解码;
去除CRC序列模块,配置为将所有纠错编码块中CRC序列去除;
数据合并模块,配置为将去除CRC序列后的所有数据合并得到第一传输节点发送的源数据包;
其中,i=0、1、…、Mofdm-1,Mofdm是所有OFDM符号数,Mofdm是大于1的整数,Nsc是大于等于1的整数。
进一步地,所述的纠错解码模块至少包括:
校验数据包中的b×c个数据块也属于纠错编码字空间,也可以进行译码,所以纠错编码译码块数为d+b×c个;在所有纠错编码块解码后,根据CRC序列和\或纠错编码字空间判断该码字错误,若错误则保存错误纠错编码块的软比特信息,若正确则计算所有正确译码纠错编码块的累计异或结果;依据判断条件:前d个纠错编码块译码正确或者全部d+b×c个纠错编
码块译码正确,如果成立则退出;如果不成立,通过包编码译码方法:利用错误纠错编码块的软比特信息、正确纠错编码字的累计异或结果和包编码中所有码块之间的异或关系,解出每个错误纠错编码字的软比特信息,并对错误纠错编码块进行解码,再依据判断条件:前d个纠错编码块译码是否正确或者全部d+b×c个纠错编码块译码是否正确,如果成立则退出;如果不成立,则退出或者继续迭代进行包编码译码,最大迭代次数为MAX次;
其中,d是纠错编码块数,d是大于等于2的整数,b是校验数据包的个数,b是大于等于1的整数,c是每个信息数据包所包含的纠错编码块块数,c是大于等于1的整数,MAX是大于1的整数;
所述的利用错误纠错编码块的软比特信息、正确纠错编码字的累计异或结果和包编码中所有码块之间的异或关系,解出每个错误纠错编码字的软比特信息,具体计算第i个错误纠错编码块的第j比特的软比特信息LLR'err(i,j)表达式如下:
LLR'err(i,j)=LLRerr(i,j)+k0×signerr(i,j)×MSerr(i,j)×Ccrt(j)
其中,参量LLRerr(i,j)是保存的第i个错误纠错编码块的第j比特的软比特信息,参量k0是一个大于0的实数,signerr(i,j)是除了第i个错误纠错编码块以外其他所有错误纠错编码块的第j比特软比特信息的符号位累积结果,MSerr(i,j)是其他所有错误纠错编码块的第j比特软比特信息提供的幅值结果(这里采用最小值算法),Ccrt(j)是所有正确纠错编码块的第j比特软比特信息的符号位累积结果,具体表达式如下:
signerr(i,j)=sign(LLRerr(0,j))××sign(LLRerr(i-1,j))×sign(LLRerr(i+1,j))××sign(LLRerr(enum,j))
MSerr(i,j)=min(abs(LLRerr(0,j)),,abs(LLRerr(i-1,j)),abs(LLRerr(i+1,j)),,abs(LLRerr(enum,j)))
Ccrt(j)=sign(LLRcrt(0,j))×sign(LLRcrt(1,j))××sign(LLRcrt(cnum,j))
进一步地,所述纠错编码模块的纠错编码方法采用Turbo编码、卷积编码、LDPC编码、RS编码、汉明编码、乘积编码或者BCH编码。
以下通过具体示例,进一步阐明本发明实施例的技术方案。
实例1
在OFDMA通信系统中,单个OFDM符号有1024个子载波,有效数据子载波数为800。本实例用于第一传输节点为移动用户100向第二传输节点为基站101传输数据,如图1所示。图4为本发明实施例二的OFDMA系统中数据包处理装置的组成结构示意图,如图4所示,本发明实施例的OFDMA系统中数据包处理装置包括:
码块分割模块400,对待传输的1968比特的源数据包进行码块分割获得d=6个数据块,每个数据块长度为328比特;
添加CRC序列模块401,分别对每个数据块添加h=8比特的CRC序列,添加CRC序列后每个数据块长度变为336比特,由于每个数据块的长度相等而且等于母码输入比特为336比特,所以不需要第一次填充;
纠错编码模块403,对添加CRC序列后的d=6个数据块分别进行Turbo纠错编码,Turbo纠错编码的码长为672和码率为1/2,由于正好分组6个信息数据包,每个信息数据包有1个Turbo纠错编码数据块,所以不需要第二次填充;
分组模块405,进行分组得到等长的a=6个信息数据包,每个信息数据包有1×672比特,每个信息数据包有1个Turbo纠错编码块;
包编码模块406,对a=6个信息数据包进行包编码得到b=1个校验数据包,校验数据包的长度为672比特,其中所述的包编码采用单奇偶校验编码方法;
星座映射调制模块407,星座映射调制方式为QPSK,调制阶数为2,对所述a=6个信息数据包进行星座映射调制得到长度为k1=2016的第一个
调制符号序列,对所述b=1个校验数据包进行星座映射调制得到长度为k2=336的第二个调制符号序列;或者,将a=6个信息数据包和b=1个校验数据包进行星座映射调制,其中,包含a=6个信息数据包的调制符号为长度为k1=2016的第一个调制符号序列,其余的是长度为k2=336的第二个调制符号序列;
OFDM调制模块408,将所述第一个调制符号序列按照时间顺序映射到连续的Mofdm1=6个OFDM符号上,包括,将第一调制符号序列按照先频率后时间映射到(Nsc1=336)×(Mofdm1=6)的二维时频资源上,其中,对向第i个OFDM符号映射的Nsc1=336个星座映射调制符号顺序映射到第i个OFDM符号的Nsc1=336个非参考信号子载波上,i=0、1、…、5;将第二个调制符号序列按照时间顺序映射到连续的Mofdm2=1个OFDM符号上,包括,将第二调制符号序列按照先频率后时间映射到(Nsc2=336)×(Mofdm2=1)的二维时频资源上,其中,对向第i个OFDM符号映射的Nsc1=336个星座映射调制符号顺序映射到第i个OFDM符号的Nsc1=336个非参考信号子载波上,i=6;其中i是发送顺序编号,编号小的先发送出去;
发送模块409,移动用户100按照发送顺序编号,将所述Mofdm1=6个OFDM符号和Mofdm2=1个OFDM符号发送至基站101。
具体所有OFDM符号的发送顺序编号和二维时频资源的映射情况如图5所示,系统配置为移动用户100向基站101传输数据的子载波数为336,移动用户502的数据承载在7个OFDM符号上,第0至第5个OFDM符号承载的是第一调制符号序列500,第6个OFDM符号承载的是第二调制符号序列501。
实例2
实例2与实例1的区别在于分组模块405中分组得到的每个信息数据包有2×672比特以及星座映射调制模块407中第二调制符号序列采用的调
制方式为16QAM,如下:
分组模块405中,对Turbo纠错编码后的数据进行分组得到等长的a=3个信息数据包,每个信息数据包有2×672比特,每个信息数据包有2个Turbo纠错编码块;则在包编码模块406中,包编码得到的1个校验数据包长度也为2×672比特;
在星座映射调制模块407中,第一调制符号序列的长度为k1=2016个星座映射调制符号,调制阶数为Mod1’=2,星座映射调制方式为QPSK,第一调制符号序列的长度为k2=336个星座映射调制符号,调制阶数为Mod2’=4,星座映射调制方式为16QAM;或者,所述第一调制符号序列包含q1=2组调制符号子序列,子序列内的调制阶数相同,第0组调制符号子序列长度为1344,采用的调制方式为BPSK,调制阶数为1,第1组调制符号子序列长度为672,采用的调制方式为16QAM,调制阶数为4,所述第二调制符号序列包含q2=2组调制符号子序列,第0组调制符号子序列长度为168,采用的调制方式为QPSK,调制阶数为2,第1组调制符号子序列长度为168,采用的调制方式为64QAM,调制阶数为6。
实例3
实例3与实例1的区别在于包编码模块406中包编码方法采用2重奇偶校验编码方法以及星座映射调制模块407中第二调制符号序列采用的调制方式为16QAM,如下:
包编码模块406中,对a=6个信息数据包进行包编码得到b=2个校验数据包,每个校验数据包的长度为672比特,其中所述的包编码采用2重奇偶校验编码方法如下:第0个校验数据包P0选择所有6块Turbo纠错编码进行单奇偶校验编码,即P0=C0+C1+…+C5;第1个校验数据包P1选择所有偶数块Turbo纠错编码和P0进行单奇偶校验编码,即P1=C0+C2+C4+P0,其中,C0~C5是6块Turbo纠错编码块,从而获得2
个校验数据块P0和P1,长度分别为672比特;
在星座映射调制模块407中,对所述a=6个信息数据包进行星座映射调制得到长度为k1=2016的第一个调制符号序列,星座映射调制方式为QPSK,调制阶数为2;对所述b=2个校验数据包进行星座映射调制得到长度为k2=336的第二个调制符号序列,星座映射调制方式为16QAM,调制阶数为4。
实例4
实例4与实例1的区别在于OFDM调制模块408中,如下:
OFDM调制模块408中,将所述第一个调制符号序列按照时间顺序映射到连续的Mofdm1=6个OFDM符号上,包括,将第一调制符号序列按照先频率后时间映射到(Nsc1=336)×(Mofdm1=6)的二维时频资源上,其中,对向第i个OFDM符号映射的Nsc1=336个星座映射调制符号先进行交织,然后再顺序映射到第i个OFDM符号的Nsc1=336个非参考信号子载波上;或者,对向第i个OFDM符号映射的Nsc1=336个星座映射调制符号按随机映射关系表映射到第i个OFDM符号的Nsc1=336个非参考信号子载波上;或者,对向第i个OFDM符号映射的Nsc1=336个星座映射调制符号先顺序映射到逻辑缓存中,然后逻辑缓存中数据按随机映射关系表映射到第i个OFDM符号的Nsc1=336个非参考信号子载波上;i=0、1、…、5;
而且,将第二个调制符号序列按照时间顺序映射到连续的Mofdm2=1个OFDM符号上,包括,将第二调制符号序列按照先频率后时间映射到(Nsc2=336)×(Mofdm2=1)的二维时频资源上,其中,对向第i个OFDM符号映射的Nsc2=336个星座映射调制符号先进行交织,然后再顺序映射到第i个OFDM符号的Nsc2=336个非参考信号子载波上,或者对向第i个OFDM符号映射的Nsc2=336个星座映射调制符号按随机映射关系表映射到第i个OFDM符号的Nsc2=336个非参考信号子载波上,或者对向第i个OFDM符
号映射的Nsc2=336个星座映射调制符号先顺序映射到逻辑缓存中,然后逻辑缓存中数据按随机映射关系表映射到第i个OFDM符号的Nsc2=336个非参考信号子载波上;i=6;
其中,i是发送顺序编号,编号小的先发送出去。所述的交织方法是行进列出的row行、col列分组交织或者随机交织,随机映射关系表是由行进列出的row行、col列分组交织获得的输入输出关系表或随机的输入输出关系表,其中row和col都是大于0的整数,row=21,col=16。
实例5
实例5与实例1的区别在于OFDM调制模块408和发送模块409中,如下:
OFDM调制模块408中,将所述第一个调制符号序列按照时间顺序映射到连续的Mofdm1=7个OFDM符号上,包括,将第一调制符号序列按照先频率后时间映射到(Nsc1=288)×(Mofdm1=7)的二维时频资源上,其中,对向第i个OFDM符号映射的Nsc1=288个星座映射调制符号顺序映射到第i个OFDM符号的Nsc1=288个非参考信号子载波上,i=0、1、…、6;将第二个调制符号序列按照时间顺序映射到连续的Mofdm2=7个OFDM符号上,包括,将第二调制符号序列按照先频率后时间映射到(Nsc2=48)×(Mofdm2=7)的二维时频资源上,其中,对向第i个OFDM符号映射的Nsc2=48个星座映射调制符号顺序映射到第i个OFDM符号的Nsc2=48个非参考信号子载波上,i=7、8、…、13;其中i是发送顺序编号,编号小的先发送出去;
在发送模块409中,发送过程为:如图6所示,发送完包含第一调制符合序列600的OFDM符号后直接发送包含第二调制符号序列601的OFDM符号;或者,如图7所示,发送完包含第一调制符合序列700的OFDM符号后,等待7个OFDM符号后再发送包含第二调制符号序列701的OFDM符号。
实例6
在OFDMA通信系统中,单个OFDM符号有1024个子载波,有效数据子载波数为800。本实例用于第一传输节点为基站101向第二传输节点为移动用户100传输数据,如图1所示。如图4所示,本发明实施例的OFDMA系统中数据包处理装置至少包括以下模块:
码块分割模块400,对待传输的9620比特的源数据包进行码块分割获得d=20个数据块,每个数据块长度为481比特;
添加CRC序列模块401,分别对每个数据块添加h=8比特的CRC序列,添加CRC序列后每个数据块长度变为489比特;
第一次填充模块402,在添加CRC序列之后每个数据块进行第一次填充,所述第一次填充是对第i块数据块填充m1i=15比特,填充比特为‘0’,i=0、1、…、19,使得每个数据块长度达到504比特;
纠错编码模块403,对添加CRC序列后的d=20个数据块分别进行Turbo纠错编码,得到总比特数为13440的数据块,Turbo纠错编码的码长为672和码率为3/4;
第二次填充模块404,进行Turbo纠错编码之后的总数据块进行第二次填充,所述第二次填充是在整个纠错编码数据块的首部或者尾部添加m2=672比特,填充比特为‘0’;
分组模块405,进行分组得到等长的a=7个信息数据包,每个信息数据包有3×672比特;
包编码模块406,对a=7个信息数据包进行包编码得到b=1个校验数据包,校验数据包的长度为3×672比特,其中所述的包编码采用单奇偶校验编码方法;
星座映射调制模块407,星座映射调制方式为64QAM,调制阶数为6,所述a=7个信息数据包有效比特数20×657比特(如图8所示,不包含第一
次填充的比特800和第二次填充的比特803),进行星座映射调制得到长度为k1=2190的第一个调制符号序列,所述b=1个校验数据包有效比特数3×657比特(如图8所示,不包含包编码方法中进行奇偶校验编码的7比特都属于第一次填充比特和第二次填充比特的结果802),进行星座映射调制得到长度为k2=329的第二个调制符号序列(需填充3比特);
OFDM调制模块408,将所述第一个调制符号序列和第二个调制符号序列按照时间顺序映射到连续的7个OFDM符号上360×7的二维时频资源上,如图9所示,其中,对向第i个OFDM符号映射的360个星座映射调制符号顺序映射到第i个OFDM符号的360个非参考信号子载波上,i=0、1、…、6;其中,第一个调制符号序列映射到第0至6个OFDM符号900,第二个调制符号序列映射到第6个OFDM符号901(所述二维时频资源中的第6个OFDM符号的最后一个子载波为填充符号902),即在发送顺序编号中,第二个调制符号序列映射的Mofdm2=1个OFDM符号中第一个OFDM符号是第一个调制符号序列映射的Mofdm1=7个OFDM符号中最后一个OFDM符号;
409、发送模块,基站101按照发送顺序编号,将所述7个OFDM符号发送至移动用户100。
实例7
实例7与实例6的区别在于OFDM调制模块408中,如下:
OFDM调制模块408中,将所述第一个调制符号序列和第二调制符号序列按照时间顺序映射到连续的Mofdm1=7个OFDM符号上的二维时频资源上,其中,d是Turbo码块数(d=20),c是每个信息数据包包含纠Turbo码块数(c=3),b是校验数据包数(b=1),Mofdm是总共需要的OFDM符号数(Mofdm=7),依据判断条件:(d+b×c)是否大于Mofdm,此时判断成立,则:对向第i个OFDM符号映射的360个星座映射调制符号先进行交织,然后
再顺序映射到第i个OFDM符号的360个非参考信号子载波上;或者,对向第i个OFDM符号映射的360个星座映射调制符号按随机映射关系表映射到第i个OFDM符号的360个非参考信号子载波上;或者,对向第i个OFDM符号映射的360个星座映射调制符号先顺序映射到逻辑缓存中,然后逻辑缓存中数据按随机映射关系表映射到第i个OFDM符号的360个非参考信号子载波上;i=0、1、…、6;
其中,i是发送顺序编号,编号小的先发送出去。所述的交织方法是行进列出的row行、col列分组交织或者随机交织,随机映射关系表是由行进列出的row行、col列分组交织获得的输入输出关系表或随机的输入输出关系表,其中row和col都是大于0的整数,row=20,col=18。
实例8
实例8与实例6的区别在于OFDM调制模块408中,如下:
OFDM调制模块408中,将所述第一个调制符号序列按照时间顺序映射到连续的Mofdm1=6个OFDM符号上,包括,如图10所示,将第一调制符号序列按照先频率后时间映射到(Nsc1=365)×(Mofdm1=6)的二维时频资源上1000,其中,d是Turbo码块数(d=20),依据判断条件:d是否大于Mofdm1,此时判断成立,则:对向第i个OFDM符号映射的Nsc1=365个星座映射调制符号先进行交织,然后再顺序映射到第i个OFDM符号的Nsc1=365个非参考信号子载波上;或者,对向第i个OFDM符号映射的Nsc1=365个星座映射调制符号按随机映射关系表映射到第i个OFDM符号的Nsc1=365个非参考信号子载波上;或者,对向第i个OFDM符号映射的Nsc1=365个星座映射调制符号先顺序映射到逻辑缓存中,然后逻辑缓存中数据按随机映射关系表映射到第i个OFDM符号的Nsc1=365个非参考信号子载波上;i=0、1、…、5;
而且,将所述第二个调制符号序列按照时间顺序映射到连续的Mofdm2=6
个OFDM符号上,包括,如图10所示,将第二调制符号序列按照先频率后时间映射到(Nsc2=55)×(Mofdm2=6)的二维时频资源上1001(最后一个子载波为填充符号),其中,b是校验数据包数(b=1),c是每个信息数据包包含纠Turbo码块数(c=3),依据判断条件:b×c是否大于Mofdm2,此时判断不成立,则:如图10所示,对向第i个OFDM符号映射的Nsc2=55个星座映射调制符号顺序映射到第i个OFDM符号的Nsc2=55个非参考信号子载波上;i=6、7、…、11;
其中,i是发送顺序编号,编号小的先发送出去,所述的交织方法是行进列出的row行、col列分组交织或者随机交织,随机映射关系表是由行进列出的row行、col列分组交织获得的输入输出关系表或随机的输入输出关系表,其中row和col都是大于0的整数,row=73,col=5。
实例9
实例9是适用于实例6的接收端(移动用户100),如图11所示,至少包括以下模块,如下:
接收OFDM符号模块1300,接收第i个OFDM符号;
解调OFDM符号模块1301,解调第i个OFDM符号,依据系统配置的用于传输到本移动用户100子载波资源配置,获得承载在第i个OFDM符号的360个星座映射调制符号;
解调星座映射模块1302,调制方式为64QAM,调制阶数为6,将360个星座映射调制符号解调成为360×6个软比特信息;
纠错解码模块1303,将属于第i个OFDM符号的所有Turbo码解码;
去除CRC序列模块1304,将所有Turbo编码块中CRC序列去除;
数据合并模块1305,将去除CRC序列后的所有纯数据合并得到第一传输节点(基站101)发送的源数据包;
如图12所示,每接收完第i个OFDM符号,就可以将属于该第i个
OFDM符号内的所有纠错编码块(Turbo码块)进行解码,然后依次译码第i+1个OFDM符号内的纠错码块,采用类似于流水线方式工作,可以提高译码速度;i=0、1、2、…、6。
校验数据包中的3个数据块也属于Turbo码字空间,也可以进行译码,所以Turbo码块数为23个;在所有Turbo码块解码后,根据CRC序列和\或Turbo码字空间判断该码字错误,若错误则保存错误Turbo码块的软比特信息,若正确则计算所有正确译码Turbo码块的累计异或结果C,C=C⊕Cj;依据判断条件:前20个Turbo码块译码正确或者全部23个Turbo码块译码正确,如果成立则退出;如果不成立,通过包编码译码方法:利用错误Turbo码块的软比特信息、正确Turbo码字的累计异或结果和包编码中所有码块之间的异或关系,解出每个错误Turbo码字的软比特信息,并对错误Turbo码块进行解码,再依据判断条件:前20个Turbo码块译码正确或者全部23个Turbo码块译码正确,如果成立则退出;如果错误,则退出或者继续迭代进行包编码译码,最大迭代次数为5次。
实例10
在OFDMA通信系统中,单个OFDM符号有1024个子载波,有效数据子载波数为800。本实例用于第一传输节点为基站101向第二传输节点为移动用户100传输数据,如图1所示,OFDM符号数目为Mofdm=6,系统分配的用于所述第一传输节点向第二传输节点传输数据的每个OFDM符号上的子载波数目为Nsc=512,调制阶数为Mu=4,纠错编码码率为R=1/2,信息数据包中纠错编码块数为c=1,每个OFDM符号上承载的纠错编码块数k0=1,CRC序列比特数h=8和包编码得到的校验数据包个数为b=1个。本发明装置至少包括以下模块,如图4所示:
码块分割模块400,依据以下参数:源数据包的长度L=5080、系统分配的用于所述第一传输节点向第二传输节点传输数据的每个OFDM符号上
的子载波数目Nsc=512、调制阶数Mu=4、纠错编码码率R=1/2、OFDM符号数目Mofdm=6、信息数据包中纠错编码块数c=1、每个OFDM符号上承载的纠错编码块数k0=1、CRC序列比特数h=8和包编码得到的校验数据包数b=1,计算得到数据块数为d=Mofdm×k0-b×c=5,数据块大小为L/d=1016,对待传输的L=5080比特的源数据包进行码块分割,获得d=5个数据块,每个数据块长度为1016比特;
添加CRC序列模块401,分别对每个数据块添加h=8比特的CRC序列,添加CRC序列后每个数据块长度变为1024比特;
第一次填充模块402,在添加CRC序列之后每个数据块进行第一次填充,所述第一次填充是对第i块数据块填充m1i=0比特,填充比特为‘0’,i=0、1、…、4,使得每个数据块长度达到1024比特;
纠错编码模块403,对添加CRC序列后的d=5个数据块分别进行Turbo纠错编码,得到总比特数10240比特;
第二次填充模块404,进行Turbo纠错编码之后进行第二次填充,所述第二次填充是在整个纠错编码数据块的首部或者尾部添加m2=0比特,填充比特为‘0’;
分组模块405,进行分组得到等长的a=5个信息数据包,每个信息数据包有2048比特;
包编码模块406,对a=5个信息数据包进行包编码得到b=1个校验数据包,校验数据包的长度为2048比特,其中所述的包编码采用单奇偶校验编码方法;
星座映射调制模块407,星座映射调制方式为16QAM,调制阶数为4,所述a=5个信息数据包有效比特数10240比特,进行星座映射调制得到长度为k1=2560的第一个调制符号序列,所述b=1个校验数据包有效比特数2048比特,进行星座映射调制得到长度为k2=512的第二个调制符号序列;
OFDM调制模块408,将所述第一个调制符号序列和第二个调制符号序列按照时间顺序映射到连续的6个OFDM符号上512×6的二维时频资源上,其中,对向第i个OFDM符号映射的512个星座映射调制符号顺序映射到第i个OFDM符号的512个非参考信号子载波上,i=0、1、…、5;其中,第一个调制符号序列映射到第0至4个OFDM符号,第二个调制符号序列映射到第5个OFDM符号,即i是OFDM符号的发送顺序编号,编号低的先发送;
发送模块409,基站101按照发送顺序编号,将所述7个OFDM符号发送至移动用户100。
实例11
实例11与实例1到实例10的区别在于纠错编码模块403中,所用纠错编码方法是卷积编码、LDPC编码、RS编码、汉明编码、乘积编码或者BCH编码。
本发明实施例还记载了一种存储介质,所述存储介质中存储有计算机程序,所述计算机程序配置为前述各实施例的OFDMA系统中数据包处理方法。
本发明实施例所述支持提高通信系统物理层数据包传输性能的方法和装置如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质上实施的计算机程序产品的形式,所述存储介质包括但不限于U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、磁盘存储器、CD-ROM、光学存储器等。
本申请是根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
本发明通过包编码译码来重新对所有纠错编码块进行译码,提高了各个纠错码块的性能,从而提高接收鲁棒性。
Claims (37)
- 一种OFDMA系统中数据包处理方法,应用于发送端,所述方法包括:对待传输的源数据包进行码块分割获得d个数据块;分别对所述d个数据块中每个数据块添加循环冗余校验码CRC序列;对添加CRC序列后的d个数据块分别进行纠错编码;对纠错编码后的d个数据块进行分组,得到等长的a个信息数据包;对所述a个信息数据包进行包编码,得到b个校验数据包;对所述a个信息数据包和所述b个校验数据包进行星座映射调制,得到长度为k1的第一个调制符号序列和长度为k2的第二个调制符号序列,所述第一调制符号序列对应a个信息数据包,第二调制符号序列对应b个校验数据包;将所述第一个调制符号序列按照时间顺序映射到连续的Mofdm1个OFDM符号,将第二个调制符号序列按照时间顺序映射到连续的Mofdm2个OFDM符号;发送所述Mofdm1个OFDM符号和Mofdm2个OFDM符号时,所述Mofdm1个OFDM符号中第一个OFDM符号先于所述Mofdm2个OFDM符号中第一个OFDM符号发送;其中,a是大于等于2的整数,d是大于等于2的整数,b是大于等于1的整数,k1和k2均是大于等于1的整数,Mofdm1和Mofdm2均是大于等于1的整数。
- 根据权利要求1所述的方法,其中,发送所述Mofdm1个OFDM符号和Mofdm2个OFDM符号时,所述Mofdm2个OFDM符号中第一个OFDM符号晚于或者等于所述Mofdm1个OFDM符号中最后一个OFDM符号。
- 根据权利要求2所述的方法,其中,所述在对所述d个数据块添加CRC序列之后且在纠错编码之前,所述方法还包括:对添加CRC序列后的d个数据块进行第一次填充,所述第一次填充是对第i块数据块填充m1i比特,其中,m1i是大于等于0的整数,i=0、1、…、d-1。
- 根据权利要求3所述的方法,其中,所述对添加CRC序列后的d个数据块分别进行纠错编码之后且在对纠错编码后的d个数据块进行分组之前,所述方法还包括:对纠错编码后的d个数据块进行第二次填充,所述第二次填充是在整个纠错编码数据块的首部或者尾部添加m2比特,其中,所述的整个纠错编码数据块包含d个纠错编码块;m2是大于等于0的整数。
- 根据权利要求4所述的方法,其中,所述等长的a个信息数据包中每个信息数据包的比特数目为k×c,其中,k是纠错编码块的比特数,k是大于等于1的整数,c是大于等于1的整数。
- 根据权利要求5所述的方法,其中,所述对所述a个信息数据包和所述b个校验数据包进行星座映射调制,包括:对于进行包编码之后的a个信息数据包,先去除第一次填充和第二次填充的比特数据,再进行星座映射调制;对于所述b个校验数据包,先去除全是由第一次填充和第二次填充的比特数据进行包编码得到的比特数据,再进行星座映射调制。
- 根据权利要求1所述的方法,其中,码块分割获得的d个数据块中的每个数据块的长度依赖于以下参数的至少之一:源数据包的长度、系统分配的用于所述第一传输节点向第二传输节点传输数据的每个OFDM符号上的子载波数目、调制阶数、纠错编码码率、OFDM符号数目、信息数据包中纠错编码块数、每个OFDM符号上承载的纠错编码块数、CRC序列比特数和包编码得到的校验数据包个数。
- 根据权利要求1所述的方法,其中,所述的第一调制符号序列的调 制阶数为Mod1’,第二调制符号序列的调制阶数为Mod2’,其中,Mod1’和Mod2’是1到16的整数;或者,所述第一调制符号序列包含q1组调制符号子序列,子序列内的调制阶数相同,Modi是第一调制符号序列中第i组调制符号子序列采用的调制阶数,Modi是1到16的整数,i=0、1、…、(q1-1),所述第二调制符号序列包含q2组调制符号子序列,子序列内的调制阶数相同,Modj是第二调制符号序列中第j组调制符号子序列采用的调制阶数,Modj是1到16的整数,j=0、1、…、(q2-1),其中,调制阶数是星座映射调制符号携带的比特数,q1和q2均是大于等于1的整数。
- 根据权利要求1所述的方法,其中,所述对a个信息数据包进行包编码得到b个校验数据包,包括:将所有a个信息数据包中第i比特构成长度为a比特的序列Si,对Si进行单奇偶校验编码、b重比特奇偶校验编码、汉明编码或RS编码,得到长度为b比特的校验序列Ti;将所有校验序列Ti的第j个比特顺序组合,得到长度为n比特的校验数据包Pj;其中,i=0、1、…、n-1,n是纠错编码块集合的长度,n是大于1的整数,j=0、1、…、b-1,b是大于等于1的整数。
- 根据权利要求2所述的方法,其中,所述将所述第一个调制符号序列按照时间顺序映射到连续的Mofdm1个OFDM符号上,包括:将第一调制符号序列按照先频率后时间顺序映射到Nsc1×Mofdm1的二维时频资源,其中,频率维度用于标识OFDM符号内Nsc1个连续子载波索引编号,时间维度用于标识Mofdm1个连续OFDM符号索引编号;Nsc1是大于等于1的整数。
- 根据权利要求10所述的方法,其中,所述将第一调制符号序列按照先频率后时间的顺序映射到Nsc1×Mofdm1的二维时频资源,包括:d大于Mofdm1时,对向第i个OFDM符号映射的Nsc1个子载波的星座 映射调制符号先进行交织,再顺序映射到第i个OFDM符号的Nsc1个非参考信号子载波,或者对向第i个OFDM符号映射的Nsc1个子载波的星座映射调制符号按随机映射关系表映射到第i个OFDM符号的Nsc1个非参考信号子载波,或者对向第i个OFDM符号映射的Nsc1个子载波的星座映射调制符号顺序映射到逻辑缓存中,再按随机映射关系表将所述逻辑缓存中的数据映射到第i个OFDM符号的Nsc1个非参考信号子载波;d小于等于Mofdm1时,对向第i个OFDM符号映射的Nsc1个子载波的星座映射调制符号顺序映射到第i个OFDM符号的Nsc1个非参考信号子载波;其中,i=0、1、…、Mofdm1-1。
- 根据权利要求2所述的方法,其中,所述将第二个调制符号序列按照时间顺序映射到连续的Mofdm2个OFDM符号,包括:将第二调制符号序列按照先频率后时间的顺序映射到Nsc2×Mofdm2的二维时频资源,其中,频率维度用于标识OFDM符号内Nsc2个连续子载波索引编号,时间维度用于标识Mofdm2个连续OFDM符号索引编号;Nsc2是大于等于1的整数。
- 根据权利要求12所述的方法,其中,所述将第二调制符号序列按照先频率后时间的顺序映射到Nsc2×Mofdm2的二维时频资源,包括:(b×c)大于Mofdm2时,对向第i个OFDM符号映射的Nsc2个子载波的星座映射调制符号先进行交织,再顺序映射到第i个OFDM符号的Nsc2个非参考信号子载波,或者对向第i个OFDM符号映射的Nsc2个子载波的星座映射调制符号按随机映射关系表映射到第i个OFDM符号的Nsc2个非参考信号子载波,或者对向第i个OFDM符号映射的Nsc2个子载波的星座映射调制符号顺序映射到逻辑缓存中,再按随机映射关系表将所述逻辑缓存中的数据映射到第i个OFDM符号的Nsc2个非参考信号子载波;(b×c)小于等于Mofdm1时,对向第i个OFDM符号映射的Nsc2个子载波的星座映射调制符号顺序映射到第i个OFDM符号的Nsc2个非参考信号子载波;其中,c是每个信息数据包所包含的纠错编码块块数,c是大于等于1的整数,i=0、1、…、Mofdm2-1。
- 根据权利要求2所述的方法,其中,所述对所述a个信息数据包和所述b个校验数据包进行星座映射调制,包括:向第i个OFDM符号的连续Nsc个非参考信号子载波映射,包括以下方式之一:(d+b×c)大于Mofdm时,对向第i个OFDM符号映射的Nsc个子载波的星座映射调制符号先进行交织,再顺序映射到第i个OFDM符号的Nsc个非参考信号子载波,或者对向第i个OFDM符号映射的Nsc个子载波的星座映射调制符号按随机映射关系表映射到第i个OFDM符号的Nsc个非参考信号子载波,或者对向第i个OFDM符号映射的Nsc个星座映射调制符号先顺序映射到逻辑缓存中,再按数据按随机映射关系将所述逻辑缓存中的Nsc个星座映射调制符号表映射到第i个OFDM符号的Nsc个非参考信号子载波;(d+b×c)小于等于Mofdm时,对向第i个OFDM符号映射的Nsc个子载波的星座映射调制符号顺序映射到第i个OFDM符号的Nsc个非参考信号子载波上;其中,Nsc是由系统分配的用于传输数据的第i个OFDM符号中的非参考信号子载波数目,Nsc是大于等于1的整数,i=0、1、…、Mofdm-1,Mofdm是第一调制符号序列和第二调制符号序列映射的所有OFDM符号数目,Mofdm是大于0的整数;c是每个信息数据包所包含的纠错编码块块数,c是大于等于1的整数。
- 根据权利要求1所述的方法,其中,所述信息数据包中每块纠错 编码块比特长度为e,e=m×Nsc1×g,其中,m是每个星座映射调制符号携带的比特数,m是大于等于1的整数,Nsc1是系统配置地用于传输数据的第i个OFDM符号中的非参考信号子载波数目,i=0、1、…、Mofdm1-1,Nsc1是大于等于1的整数,g的具体数值是1、2、3、4、6或者7,Mofdm1是第一调制符合序列映射到的OFDM符号数目,Mofdm1是大于0的整数。
- 一种OFDMA系统中数据包处理方法,应用于接收端,所述方法包括:接收包含第一个调制符号序列的连续Mofdm1个OFDM符号,以及包含第二个调制符号序列的连续Mofdm2个OFDM符号;所述第一个调制符号序列包含a个信息数据包,所述第二个调制符号序列包含b个校验数据包;所述a个信息数据包包含d个纠错编码数据块;使用所述d个纠错编码数据块和b个校验数据包的信息,解码出源数据包;其中,a是大于等于2的整数,d是大于等于2的整数,b是大于等于1的整数,Mofdm1和Mofdm2均是大于等于1的整数。
- 根据权利要求16所述的方法,其中,包括:优先解码出d个纠错编码数据块;如果所述d个纠错编码数据块都正确,则合并所述d个纠错编码数据块的有效信息数据,得到源数据包;如果所述d个纠错编码块有错误块,则解码出b×c个校验数据包,利用d个纠错编码数据块的解码结果和b×c个校验数据包的解码结果,再次解码d个纠错编码数据块中的错误块,合并所述d个纠错编码块的有效信息数据,得到原始数据;或者,优先解码出d个纠错编码数据块,然后解码出b×c个校验数据包;如果所述d个纠错编码数据块都正确,则合并所述d个纠错编码数据块的有效信息数据,得到源数据包;如果所述d个纠错编码数据块有错误块,则利用d个纠错编码数据块的解码结果和b×c个校验数据包的解码结 果,再次解码d个纠错编码数据块中的错误块和b×c个校验数据包中的错误块,并判断所述d个纠错编码数据块是否都正确,依次循环,直至所述d个纠错编码数据块译码正确或者达到最大迭代次数max,则合并所述d个纠错编码块的有效信息数据,得到源数据包,否则继续进行迭代;其中,d是纠错编码数据块数,d是大于等于2的整数,b是校验数据包的个数,b是大于等于1的整数,c是每个信息数据包所包含的纠错编码数据块块数,c是大于等于1的整数,max是大于1的整数。
- 根据权利要求17所述的方法,其中,所述对纠错编码块正确性的判断条件为:纠错编码块译码结果的CRC校验是否正确和\或纠错编码数据块译码结果是否属于纠错编码字空间,如果纠错编码块译码结果的CRC校验正确和\或纠错编码数据块译码结果属于纠错编码字空间,则所述纠错编码数据块译码正确,否则所述纠错编码数据块译码错误。
- 一种OFDMA系统数据包处理装置,应用于发送端,所述装置包括:码块分割模块,配置为对待传输的源数据包进行码块分割获得d个数据块;添加CRC序列模块,配置为分别对所述d个数据块中每个数据块添加循环冗余校验码CRC序列;纠错编码模块,配置为对添加CRC序列后的d个数据块分别进行纠错编码;分组模块,配置为对纠错编码后的d个数据块进行分组,得到等长的a个信息数据包;包编码模块,配置为对所述a个信息数据包进行包编码,得到b个校验数据包;星座映射调制模块,配置为对所述a个信息数据包和所述b个校验数 据包进行星座映射调制,得到长度为k1的第一个调制符号序列和长度为k2的第二个调制符号序列,所述第一调制符号序列对应a个信息数据包,第二调制符号序列对应b个校验数据包;OFDM调制模块,配置为将所述第一个调制符号序列按照时间顺序映射到连续的Mofdm1个OFDM符号,将第二个调制符号序列按照时间顺序映射到连续的Mofdm2个OFDM符号;发送模块,配置为所述Mofdm1个OFDM符号和Mofdm2个OFDM符号,其中,所述Mofdm1个OFDM符号中第一个OFDM符号先于所述Mofdm2个OFDM符号中第一个OFDM符号发送;其中,a是大于等于2的整数,d是大于等于2的整数,b是大于等于1的整数,k1和k2均是大于等于1的整数,Mofdm1和Mofdm2均是大于等于1的整数。
- 根据权利要求19所述的装置,其中,所述发送模块发送所述Mofdm1个OFDM符号和Mofdm2个OFDM符号时,所述Mofdm2个OFDM符号中第一个OFDM符号晚于或者等于所述Mofdm1个OFDM符号中最后一个OFDM符号。
- 根据权利要求20所述的装置,其中,所述装置还包括:第一填充模块,配置为在所述添加CRC序列模块对所述d个数据块添加CRC序列之后且在所述纠错编码模块进行纠错编码之前,对添加CRC序列后的d个数据块进行第一次填充,所述第一次填充是对第i块数据块填充m1i比特,其中,m1i是大于等于0的整数,i=0、1、…、d-1。
- 根据权利要求21所述的装置,其中,所述装置还包括:第二填充模块,配置为在所述纠错编码模块对添加CRC序列后的d个数据块分别进行纠错编码之后且在所述分组模块对纠错编码后的d个数据块进行分组之前,对纠错编码后的d个数据块进行第二次填充,所述第二 次填充是在整个纠错编码数据块的首部或者尾部添加m2比特,其中,所述的整个纠错编码数据块包含d个纠错编码块;m2是大于等于0的整数。
- 根据权利要求22所述的装置,其中,所述等长的a个信息数据包中每个信息数据包的比特数目为k×c,其中,k是纠错编码块的比特数,k是大于等于1的整数,c是大于等于1的整数。
- 根据权利要求23所述的装置,其中,所述星座映射调制模块还配置为,对于进行包编码之后的a个信息数据包,先去除第一次填充和第二次填充的比特数据,再进行星座映射调制;对于所述b个校验数据包,先去除全是由第一次填充和第二次填充的比特数据进行包编码得到的比特数据,再进行星座映射调制。
- 根据权利要求19所述的装置,其中,所述码块分割模块对码块分割获得的d个数据块中的每个数据块的长度依赖于以下参数的至少之一:源数据包的长度、系统分配的用于所述第一传输节点向第二传输节点传输数据的每个OFDM符号上的子载波数目、调制阶数、纠错编码码率、OFDM符号数目、信息数据包中纠错编码块数、每个OFDM符号上承载的纠错编码块数、CRC序列比特数和包编码得到的校验数据包个数,其中,调制阶数是星座映射调制符号携带的比特数。
- 根据权利要求19所述的装置,其中,所述的第一调制符号序列的调制阶数为Mod1’,第二调制符号序列的调制阶数为Mod2’,其中,Mod1’和Mod2’是1到16的整数;或者,所述第一调制符号序列包含q1组调制符号子序列,子序列内的调制阶数相同,Modi是第一调制符号序列中第i组调制符号子序列采用的调制阶数,Modi是1到16的整数,i=0、1、…、(q1-1),所述第二调制符号序列包含q2组调制符号子序列,子序列内的调制阶数相同,Modj是第二调制符号序列中第j组调制符号子序列采用的调制阶数,Modj是1到16的整数,j=0、1、…、(q2-1),其中,调制阶数是 星座映射调制符号携带的比特数,q1和q2均是大于等于1的整数。
- 根据权利要求19所述的装置,其中,所述包编码模块还配置为,将所有a个信息数据包中第i比特构成长度为a比特的序列Si,对Si进行单奇偶校验编码、b重比特奇偶校验编码、汉明编码或RS编码,得到长度为b比特的校验序列Ti;将所有校验序列Ti的第j个比特顺序组合,得到长度为n比特的校验数据包Pj;其中,i=0、1、…、n-1,n是纠错编码块集合的长度,n是大于1的整数,j=0、1、…、b-1,b是大于等于1的整数。
- 根据权利要求20所述的装置,其中,所述OFDM符号调制模块,还配置为将第一调制符号序列按照先频率后时间的顺序映射到Nsc1×Mofdm1的二维时频资源,其中,频率维度用于标识OFDM符号内Nsc1个连续子载波索引编号,时间维度用于标识Mofdm1个连续OFDM符号索引编号;Nsc1是大于等于1的整数。
- 根据权利要求28所述的装置,其中,所述OFDM符号调制模块,还配置为:d大于Mofdm1时,对向第i个OFDM符号映射的Nsc1个子载波的星座映射调制符号先进行交织,再顺序映射到第i个OFDM符号的Nsc1个非参考信号子载波,或者对向第i个OFDM符号映射的Nsc1个子载波的星座映射调制符号按随机映射关系表映射到第i个OFDM符号的Nsc1个非参考信号子载波,或者对向第i个OFDM符号映射的Nsc1个子载波的星座映射调制符号顺序映射到逻辑缓存中,再按随机映射关系表将所述逻辑缓存中的数据映射到第i个OFDM符号的Nsc1个非参考信号子载波;d小于等于Mofdm1时,对向第i个OFDM符号映射的Nsc1个子载波的星座映射调制符号顺序映射到第i个OFDM符号的Nsc1个非参考信号子载波;其中,i=0、1、…、Mofdm1-1。
- 根据权利要求20所述的装置,其中,所述OFDM符号调制模块,还配置为将第二调制符号序列按照先频率后时间的顺序映射到Nsc2×Mofdm2的二维时频资源,其中,频率维度用于标识OFDM符号内Nsc2个连续子载波索引编号,时间维度用于标识Mofdm2个连续OFDM符号索引编号;Nsc2是大于等于1的整数。
- 根据权利要求30所述的装置,其中,所述OFDM符号调制模块,还配置为:(b×c)大于Mofdm2时,对向第i个OFDM符号映射的Nsc2个子载波的星座映射调制符号先进行交织,再顺序映射到第i个OFDM符号的Nsc2个非参考信号子载波,或者对向第i个OFDM符号映射的Nsc2个子载波的星座映射调制符号按随机映射关系表映射到第i个OFDM符号的Nsc2个非参考信号子载波,或者对向第i个OFDM符号映射的Nsc2个子载波的星座映射调制符号顺序映射到逻辑缓存中,再按随机映射关系表将所述逻辑缓存中的数据映射到第i个OFDM符号的Nsc2个非参考信号子载波;(b×c)小于等于Mofdm1时,对向第i个OFDM符号映射的Nsc2个子载波的星座映射调制符号顺序映射到第i个OFDM符号的Nsc2个非参考信号子载波;其中,c是每个信息数据包所包含的纠错编码块块数,c是大于等于1的整数,i=0、1、…、Mofdm2-1。
- 根据权利要求20所述的装置,其中,所述OFDM符号调制模块对所述a个信息数据包和所述b个校验数据包进行星座映射调制,包括:向第i个OFDM符号的连续Nsc个非参考信号子载波映射,包括以下方式之一:(d+b×c)大于Mofdm时,对向第i个OFDM符号映射的Nsc个子载波的 星座映射调制符号先进行交织,再顺序映射到第i个OFDM符号的Nsc个非参考信号子载波,或者对向第i个OFDM符号映射的Nsc个子载波的星座映射调制符号按随机映射关系表映射到第i个OFDM符号的Nsc个非参考信号子载波,或者对向第i个OFDM符号映射的Nsc个星座映射调制符号先顺序映射到逻辑缓存中,再按数据按随机映射关系将所述逻辑缓存中的Nsc个星座映射调制符号表映射到第i个OFDM符号的Nsc个非参考信号子载波;(d+b×c)小于等于Mofdm时,对向第i个OFDM符号映射的Nsc个子载波的星座映射调制符号顺序映射到第i个OFDM符号的Nsc个非参考信号子载波上;其中,Nsc是由系统分配的用于传输数据的第i个OFDM符号中的非参考信号子载波数目,Nsc是大于等于1的整数,i=0、1、…、Mofdm-1,Mofdm是第一调制符号序列和第二调制符号序列映射的所有OFDM符号数目,Mofdm是大于0的整数;c是每个信息数据包所包含的纠错编码块块数,c是大于等于1的整数。
- 根据权利要求19所述的装置,其中,所述信息数据包中每块纠错编码块比特长度为e,e=m×Nsc1×g,其中,m是每个星座映射调制符号携带的比特数,m是大于等于1的整数,Nsc1是系统配置地用于传输数据的第i个OFDM符号中的非参考信号子载波数目,i=0、1、…、Mofdm1-1,Nsc1是大于等于1的整数,g的具体数值是1、2、3、4、6或者7,Mofdm1是第一调制符合序列映射到的OFDM符号数目,Mofdm1是大于0的整数。
- 一种OFDMA系统中数据包处理装置,应用于接收端,所述装置包括:接收OFDM符号模块,配置为接收包含第一个调制符号序列的连续Mofdm1个OFDM符号,以及包含第二个调制符号序列的连续Mofdm2个OFDM 符号;所述第一个调制符号序列包含a个信息数据包,所述第二个调制符号序列包含b个校验数据包;所述a个信息数据包包含d个纠错编码数据块;纠错解码模块,配置为使用所述d个纠错编码数据块和b个校验数据包的信息,解码出源数据包;其中,a是大于等于2的整数,d是大于等于2的整数,b是大于等于1的整数,Mofdm1和Mofdm2均是大于等于1的整数。
- 根据权利要求34所述的装置,所述纠错解码模块,还配置为:优先解码出d个纠错编码数据块;如果所述d个纠错编码数据块都正确,则合并所述d个纠错编码数据块的有效信息数据,得到源数据包;如果所述d个纠错编码块有错误块,则解码出b×c个校验数据包,利用d个纠错编码数据块的解码结果和b×c个校验数据包的解码结果,再次解码d个纠错编码数据块中的错误块,合并所述d个纠错编码块的有效信息数据,得到原始数据;或者,优先解码出d个纠错编码数据块,然后解码出b×c个校验数据包;如果所述d个纠错编码数据块都正确,则合并所述d个纠错编码数据块的有效信息数据,得到源数据包;如果所述d个纠错编码数据块有错误块,则利用d个纠错编码数据块的解码结果和b×c个校验数据包的解码结果,再次解码d个纠错编码数据块中的错误块和b×c个校验数据包中的错误块,并判断所述d个纠错编码数据块是否都正确,依次循环,直至所述d个纠错编码数据块译码正确或者达到最大迭代次数max,则合并所述d个纠错编码块的有效信息数据,得到源数据包,否则继续进行迭代;其中,d是纠错编码数据块数,d是大于等于2的整数,b是校验数据包的个数,b是大于等于1的整数,c是每个信息数据包所包含的纠错编码数据块块数,c是大于等于1的整数,max是大于1的整数。
- 根据权利要求35所述的装置,其中,所述对纠错编码块正确性的判断条件为:纠错编码块译码结果的CRC校验是否正确和\或纠错编码数据块译码结果是否属于纠错编码字空间;如果纠错编码块译码结果的CRC校验正确和\或纠错编码数据块译码结果属于纠错编码字空间,则设置纠错编码数据块译码正确,否则设置纠错编码数据块译码错误。
- 一种存储介质,所述存储介质中存储有计算机程序,所述计算机程序配置为执行权利要求1至18任一项所述的OFDMA系统中数据包处理方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15874849.1A EP3226458B1 (en) | 2014-12-31 | 2015-07-30 | Data packet processing method and apparatus in an ofdma system, and storage medium |
US15/541,031 US20170366299A1 (en) | 2014-12-31 | 2015-07-30 | Data Packet Processing Method and Apparatus in OFDMA System, and Storage Medium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410854764.7 | 2014-12-31 | ||
CN201410854764.7A CN105812107B (zh) | 2014-12-31 | 2014-12-31 | Ofdma系统中数据包处理方法及装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016107160A1 true WO2016107160A1 (zh) | 2016-07-07 |
Family
ID=56284113
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/085554 WO2016107160A1 (zh) | 2014-12-31 | 2015-07-30 | Ofdma系统中数据包处理方法及装置、存储介质 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20170366299A1 (zh) |
EP (1) | EP3226458B1 (zh) |
CN (1) | CN105812107B (zh) |
WO (1) | WO2016107160A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018128873A1 (en) * | 2017-01-09 | 2018-07-12 | Intel IP Corporation | Systems, methods and devices for meeting cellular data turnaround time |
WO2018227606A1 (en) * | 2017-06-16 | 2018-12-20 | Zte Corporation | Resource element mapping for broadcast channel |
CN115622661A (zh) * | 2021-07-14 | 2023-01-17 | 大唐移动通信设备有限公司 | 一种信号传输方法及装置 |
CN116567097A (zh) * | 2023-07-04 | 2023-08-08 | 广东慧航天唯科技有限公司 | 基于数据监控的废机油调度数据安全管理系统 |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102327739B1 (ko) * | 2015-01-29 | 2021-11-17 | 파나소닉 인텔렉츄얼 프로퍼티 코포레이션 오브 아메리카 | 통신 방법 및 통신 장치 |
US10348466B2 (en) | 2015-11-03 | 2019-07-09 | Qualcomm Incorporated | Transport block segmentation and signaling |
CN107786300B (zh) * | 2016-08-26 | 2022-06-14 | 中兴通讯股份有限公司 | 一种数据发送方法及装置 |
WO2018127768A1 (en) * | 2017-01-09 | 2018-07-12 | Telefonaktiebolaget Lm Ericsson (Publ | Cyclic redundancy check length selection |
CN109964437B (zh) * | 2017-02-08 | 2021-07-27 | 上海朗帛通信技术有限公司 | 一种用于动态调度的终端、基站中的方法和装置 |
JP2020515133A (ja) | 2017-03-09 | 2020-05-21 | ホアウェイ・テクノロジーズ・カンパニー・リミテッド | 長ldpc符号用のmcs |
CN108667553B (zh) * | 2017-03-29 | 2021-07-09 | 华为技术有限公司 | 编码方法、解码方法、装置和系统 |
CN108809592B (zh) * | 2017-05-05 | 2021-06-15 | 华为技术有限公司 | 数据传输方法和设备 |
EP3629536B1 (en) * | 2017-05-23 | 2024-07-31 | Huawei Technologies Co., Ltd. | Data transmission method, device and system |
CN107820685B (zh) * | 2017-09-08 | 2021-11-16 | 北京小米移动软件有限公司 | 分布式物理层资源映射方法、装置、发送端及接收端 |
CN109525359B (zh) * | 2017-09-18 | 2022-03-11 | 华为技术有限公司 | 数据传输的方法和设备 |
WO2019095190A1 (en) | 2017-11-16 | 2019-05-23 | Qualcomm Incorporated | Reduced overhead error detection code design for decoding a codeword |
KR102506507B1 (ko) * | 2018-01-19 | 2023-03-07 | 삼성전자주식회사 | 통신 시스템에서 신호를 송/수신하는 장치 및 방법 |
US11509413B2 (en) | 2018-06-28 | 2022-11-22 | Intel Corporation | Apparatus, system and method of an orthogonal frequency-division multiplexing (OFDM) transmission over a wide bandwidth |
CN112019298B (zh) * | 2019-05-31 | 2021-11-19 | 华为技术有限公司 | 编码调制方法、解调译码方法、装置及设备 |
CN110391891B (zh) * | 2019-07-09 | 2020-10-30 | 中国地质大学(武汉) | 基于两阶段索引调制的ofdm实现方法和系统 |
CN112825558B (zh) * | 2019-11-20 | 2022-11-18 | 华为技术有限公司 | 一种编码方法、解码方法及设备 |
US11374686B2 (en) * | 2020-02-04 | 2022-06-28 | Qualcomm Incorporated | Parity check bits for non-coherent communication |
JP7534417B2 (ja) * | 2020-07-15 | 2024-08-14 | 中興通訊股▲ふん▼有限公司 | チャネルコーディングおよび変調 |
EP4203402A4 (en) * | 2020-10-21 | 2023-11-08 | Mitsubishi Electric Corporation | TRANSMISSION CODE PROCESSING DEVICE AND METHOD AND OPTICAL TRANSMITTER |
CN114598580B (zh) * | 2020-12-03 | 2023-05-23 | 中国科学院上海高等研究院 | 无线分级广域覆盖发送/接收方法、系统、发送端和接收端 |
EP4254404A4 (en) * | 2020-12-14 | 2024-04-17 | Huawei Technologies Co., Ltd. | DATA TRANSMISSION METHOD AND DATA TRANSMISSION DEVICE |
CN117811695A (zh) * | 2022-09-30 | 2024-04-02 | 华为技术有限公司 | 一种通信方法及装置 |
CN116346565B (zh) * | 2023-05-31 | 2023-08-04 | 极芯通讯技术(南京)有限公司 | 填充比特的删除方法、终端设备及存储介质 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101636938A (zh) * | 2007-03-16 | 2010-01-27 | 三星电子株式会社 | 提高多个码块传输的性能和实现其快速解码的方法和装置 |
US20140064256A1 (en) * | 2012-09-05 | 2014-03-06 | Qualcomm Incorporated | Methods and devices for employing a modulation and coding scheme for a data block |
CN104168097A (zh) * | 2014-05-07 | 2014-11-26 | 清华大学 | 宽带无线接入系统及其信号传输和个人媒体服务业务方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5360218B2 (ja) * | 2009-08-25 | 2013-12-04 | 富士通株式会社 | 送信機、符号化装置、受信機、及び、復号化装置 |
US8839078B2 (en) * | 2010-03-05 | 2014-09-16 | Samsung Electronics Co., Ltd. | Application layer FEC framework for WiGig |
CN102497346B (zh) * | 2011-12-13 | 2014-10-29 | 安徽华东光电技术研究所 | 基于cofdm的高清视频无线传输系统的基带发射机 |
-
2014
- 2014-12-31 CN CN201410854764.7A patent/CN105812107B/zh active Active
-
2015
- 2015-07-30 US US15/541,031 patent/US20170366299A1/en not_active Abandoned
- 2015-07-30 WO PCT/CN2015/085554 patent/WO2016107160A1/zh active Application Filing
- 2015-07-30 EP EP15874849.1A patent/EP3226458B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101636938A (zh) * | 2007-03-16 | 2010-01-27 | 三星电子株式会社 | 提高多个码块传输的性能和实现其快速解码的方法和装置 |
US20140064256A1 (en) * | 2012-09-05 | 2014-03-06 | Qualcomm Incorporated | Methods and devices for employing a modulation and coding scheme for a data block |
CN104168097A (zh) * | 2014-05-07 | 2014-11-26 | 清华大学 | 宽带无线接入系统及其信号传输和个人媒体服务业务方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018128873A1 (en) * | 2017-01-09 | 2018-07-12 | Intel IP Corporation | Systems, methods and devices for meeting cellular data turnaround time |
US11128399B2 (en) | 2017-01-09 | 2021-09-21 | Apple Inc. | Systems, methods and devices for meeting cellular data turnaround time |
WO2018227606A1 (en) * | 2017-06-16 | 2018-12-20 | Zte Corporation | Resource element mapping for broadcast channel |
CN115622661A (zh) * | 2021-07-14 | 2023-01-17 | 大唐移动通信设备有限公司 | 一种信号传输方法及装置 |
CN116567097A (zh) * | 2023-07-04 | 2023-08-08 | 广东慧航天唯科技有限公司 | 基于数据监控的废机油调度数据安全管理系统 |
CN116567097B (zh) * | 2023-07-04 | 2023-09-01 | 广东慧航天唯科技有限公司 | 基于数据监控的废机油调度数据安全管理系统 |
Also Published As
Publication number | Publication date |
---|---|
EP3226458A1 (en) | 2017-10-04 |
CN105812107A (zh) | 2016-07-27 |
US20170366299A1 (en) | 2017-12-21 |
EP3226458A4 (en) | 2017-12-20 |
EP3226458B1 (en) | 2020-09-02 |
CN105812107B (zh) | 2019-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016107160A1 (zh) | Ofdma系统中数据包处理方法及装置、存储介质 | |
US11838122B2 (en) | Code block segmentation and configuration for concatenated turbo and RS coding | |
US10917112B2 (en) | Apparatus and methods for error detection coding | |
US10469212B2 (en) | Data transmission method and device | |
TWI436615B (zh) | 用於以交錯形式將對數概度比儲存在記憶體中以減少記憶體需求的方法、接收器、裝置與電腦可讀取媒體 | |
US8032800B2 (en) | Subframe interleaving | |
JP5247355B2 (ja) | 送信装置 | |
KR101457780B1 (ko) | 네트워크 코딩을 사용하는 ofdm 시스템에서 피크 전력 대 평균 전력비, 큐빅 메트릭 및 블록 에러율을 줄이는 방법 | |
US11381257B2 (en) | Capacity achieving multicarrier modulation and coding systems and methods | |
JP6357547B2 (ja) | インターリービング前に反復を、インターリービング後にパンクチャリングを実行する送信機デバイス及び受信機デバイス、並びにその方法 | |
JPWO2007029734A1 (ja) | データ伝送システム及びデータ伝送方法 | |
JPWO2013001706A1 (ja) | 無線送受信装置、通信システム及びそれらに用いるチャネルコーディング処理方法 | |
US11411673B2 (en) | Method and apparatus for transmitting information, and method and apparatus for receiving information | |
US8677226B2 (en) | Systems and methods for retransmission return channel error detection | |
CN1341294A (zh) | 通信装置以及通信方法 | |
Shao et al. | An opportunistic error correction layer for OFDM systems | |
Kumar | Improving the Bit Error Rate of OFDM using Convolutional codes | |
Zhang et al. | The Simulation of RS Codes and QC-LDPC Codes Concatenated in COFDM System | |
Sonander et al. | Project IEEE 802.16 Broadband Wireless Access Working Group< http://ieee802. org/16> Title Enhanced Error Coding Scheme |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15874849 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2015874849 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15541031 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |