WO2016107034A1 - 触控感应单元、触控基板及其制作方法、触控显示面板和触控显示装置 - Google Patents

触控感应单元、触控基板及其制作方法、触控显示面板和触控显示装置 Download PDF

Info

Publication number
WO2016107034A1
WO2016107034A1 PCT/CN2015/077966 CN2015077966W WO2016107034A1 WO 2016107034 A1 WO2016107034 A1 WO 2016107034A1 CN 2015077966 W CN2015077966 W CN 2015077966W WO 2016107034 A1 WO2016107034 A1 WO 2016107034A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
electrode
substrate
electrodes
elastic
Prior art date
Application number
PCT/CN2015/077966
Other languages
English (en)
French (fr)
Inventor
王新星
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/912,658 priority Critical patent/US9965128B2/en
Publication of WO2016107034A1 publication Critical patent/WO2016107034A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/046Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by electromagnetic means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03545Pens or stylus
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • H05K3/061Etching masks
    • H05K3/064Photoresists

Definitions

  • Embodiments of the present invention relate to the field of touch display technologies, and more particularly to a touch sensing unit, a touch substrate, a method for fabricating the same, a touch display panel, and a touch display device.
  • OLEDs organic electroluminescent displays
  • touch technologies applied to display devices include capacitive, resistive, voltage sensing, electromagnetic, infrared, and the like.
  • Embodiments of the present invention provide a touch sensing unit, a touch substrate, a manufacturing method thereof, a touch display panel, and a touch display device, which utilize a conductive characteristic of a pressure sensitive conductive material to sense a finger touch or a pen touch action.
  • Embodiments of the present invention provide a touch sensing unit, a touch substrate, a manufacturing method thereof, a touch display panel, and a touch display device, which utilize a conductive characteristic of a pressure sensitive conductive material to sense a finger touch or a pen touch action.
  • the magnetic material is used to sense the input action of the electromagnetic pen to realize the dual touch mode of the finger and the electromagnetic pen.
  • a touch sensing unit comprising:
  • At least one pair of first electrodes and second electrodes disposed apart from each other;
  • At least one elastic matrix the at least one elastic matrix containing a pressure-sensitive conductive material, the at least one elastic substrate, when deformed by force, causing a corresponding first electrode of the at least one pair of the first electrode and the second electrode Electrically connected to the second electrode;
  • a touch panel disposed on a side of the force of the at least one elastic substrate.
  • the at least one pair of first electrodes and second electrodes are disposed corresponding to the at least one elastic substrate, and the touch panel is spaced apart from the at least one elastic substrate.
  • the touch sensing unit further includes a magnetic trigger layer between the touch panel and the at least one elastic substrate and disposed on a side of the force of the at least one elastic substrate .
  • the pressure sensitive conductive material comprises at least one of graphite thin, carbon nanotubes, conductive carbon black, metal powder, and metal fibers, or any combination thereof.
  • the at least one elastic substrate is made of at least one of acrylic resin, ethylene propylene rubber, nitrile rubber, neoprene rubber, and silicone rubber, or any combination thereof.
  • the touchpad is made of a material that is deformable by force to compress the at least one elastic substrate after deformation.
  • the at least one pair of the first electrode and the second electrode are each disposed as a plurality of pairs of the first electrode and the second electrode, and the first electrode and the second electrode of the corresponding pair of the first electrode and the second electrode Set apart from each other.
  • the elastomeric substrate is in contact with both of the pair of first and second electrodes.
  • the touch sensing unit is disposed in the display panel, the at least one elastic substrate is disposed on an inner surface of the upper substrate of the display panel, and the at least one pair of the first electrode and the second electrode The first electrode and the second electrode are disposed on an inner surface of the lower substrate of the display panel.
  • a touch substrate comprising at least one touch sensing unit as described above.
  • the touch substrate further includes: at least one touch emission line and at least one touch receiving line, each of the first electrodes being electrically connected to the corresponding touch emission line, each of the The second electrode is electrically connected to the corresponding touch receiving line.
  • the touch substrate is applied to a liquid crystal display panel, and the touch substrate is further provided with a color filter unit.
  • the touch substrate further includes a common electrode
  • the common electrode, the at least one pair of first electrodes and the second electrode are formed in the same layer by the same transparent conductive material; or the common electrode is covered with a transparent insulating layer and is formed by the same transparent conductive material in one patterning process The at least one pair of the first electrode and the second electrode are formed on the insulating layer.
  • a touch display panel includes the above described touch substrate, an array substrate, and a liquid crystal layer between the touch substrate and the array substrate;
  • the array substrate includes:
  • a plurality of thin film transistors each disposed in the corresponding display unit and electrically connected to the corresponding gate line.
  • the array substrate includes a common electrode, and the at least one pair of first and second electrodes and the common electrode are formed by the same layer of transparent conductive material through the same patterning process.
  • the array substrate includes a common electrode, the at least one pair of first electrodes and second electrodes are located on a side of a light emitting direction of the common electrode, and the common electrode and the at least one pair of first electrodes and A transparent insulating layer is interposed between the first electrodes of the second electrodes, the common electrodes, and the second electrodes of the at least one pair of first electrodes and the second electrodes.
  • the gate line is used as the touch emission line.
  • the gate line is electrically connected to one of the corresponding pair of first and second electrodes through a via.
  • a touch display device including:
  • An electromagnetic pen having one end of the electromagnetic pen provided with a contact head comprising a magnetic material, the magnetic material of the contact head being magnetically identical to the magnetic material of the magnetic trigger layer.
  • a method of fabricating a touch substrate comprising the steps of:
  • first electrodes and second electrodes Forming at least one pair of first electrodes and second electrodes on the first substrate, the first ones of the at least one pair of the first electrodes and the second electrodes being electrically connected to corresponding ones disposed in the first substrate a second touch electrode of the at least one pair of the first electrode and the second electrode is electrically connected to a corresponding touch receiving line disposed in the first substrate;
  • the second substrate is paired with the first substrate on which the elastic substrate is formed.
  • the step of patterning the elastic layer to form at least one elastic substrate by a patterning process includes:
  • the magnetic material layer is polarized with a magnet such that a magnetic material layer formed on each of the elastic substrates forms a magnetic trigger layer.
  • the step of patterning the elastic layer and the magnetic material layer by a patterning process includes:
  • Patterning the elastic layer, the magnetic material layer, and the photoresist by performing an exposure, development, and etching process using a mask;
  • the surface of the array substrate is ashed with oxygen to react the residual carbon material to form carbon dioxide.
  • the first substrate is an array substrate
  • the step of forming at least one pair of first electrodes and second electrodes on the first substrate comprises: forming a common substrate of the array substrate by the same transparent conductive material in one patterning process An electrode, at least a pair of first electrodes and a second electrode, and a gate line formed on the array substrate is electrically connected to a corresponding one of the at least one pair of the first electrode and the second electrode such that the gate line is used The touch transmission line.
  • the first substrate is an array substrate
  • the step of forming at least one pair of the first electrode and the second electrode on the first substrate comprises:
  • a gate line formed on the array substrate is electrically connected to a corresponding one of the at least one pair of the first electrode and the second electrode through a via formed in the insulating layer such that the gate line serves as the touch Control the launch line.
  • the touch sensing unit, the touch substrate, the manufacturing method thereof, the touch display panel, and the touch display device utilize the conductive characteristics of the pressure sensitive conductive material to sense the finger touch action and improve the finger touch. Convenience, multi-touch performance. Further, the magnetic material is used to sense the input action of the electromagnetic pen, and the double touch mode of the finger and the electromagnetic pen can be realized.
  • FIG. 1 is a partial cross-sectional view of a touch substrate in accordance with a first exemplary embodiment of the present invention
  • FIG. 2 is a partial plan view showing an array substrate provided with a touch sensing unit according to a first exemplary embodiment of the present invention
  • FIG. 3 is a schematic cross-sectional view of a touch sensing unit in which a touch panel is not stressed, according to an exemplary embodiment of the invention
  • FIG. 4 is a schematic cross-sectional view showing the touch sensing unit shown in FIG. 3 turned on in a finger touch state;
  • FIG. 5 is a schematic cross-sectional view showing the touch sensing unit shown in FIG. 3 turned on in a state in which the electromagnetic pen is written;
  • FIG. 6 is a timing diagram of a touch operation of a touch substrate in an untouched state according to an exemplary embodiment of the present invention
  • FIG. 7 is a timing diagram of a touch operation of a touch substrate in a touch state according to an exemplary embodiment of the present invention.
  • FIG. 8 is a partial cross-sectional view of a touch substrate according to a second exemplary embodiment of the present invention.
  • FIG. 9 is a partial plan view showing an array substrate provided with a touch sensing unit according to a second exemplary embodiment of the present invention.
  • a touch substrate includes: at least a pair of first electrodes and second electrodes; at least one elastic substrate, wherein the at least one elastic substrate contains a pressure-sensitive conductive material, the at least one elastic substrate electrically connecting the first electrode and the second electrode of the corresponding at least one of the first electrode and the second electrode when deformed by force; at least one touch emission a line and at least one touch receiving line, the first one of the at least one pair of the first electrode and the second electrode being electrically connected to the corresponding one of the touch emitting lines, at least one of the pair of first electrodes and the second electrodes
  • the second electrode is electrically connected to the corresponding touch receiving line; and the touch panel is disposed on a side of the force of the at least one elastic substrate.
  • FIG. 3 is a schematic cross-sectional view of a touch sensing unit according to an exemplary embodiment of the invention.
  • the touch sensing unit 20 includes: a first electrode 21 and a second electrode 22 disposed at intervals or apart from each other; and an elastic base 23 disposed on the first electrode 21 and the second electrode 22, the elasticity
  • the base 23 contains a pressure-sensitive conductive material 25 such as graphite or carbon nanotubes, such that the elastic substrate 23 electrically connects the first electrode 21 and the second electrode 22 when subjected to force deformation; and is disposed on the elastic substrate 23.
  • the touchpad 30' on one side of the force.
  • the touch panel 30' is disposed on the elastic base 23 to press the elastic base 23 under the action of an external force.
  • the preset distance between the touch panel 30' and the elastic base 23 is D1.
  • the distance D1 can be set according to the material deformation characteristics of the touch panel 30' and/or the strength of the magnetron induction. It can be understood that D1 can be set to zero as long as the elastic base 23 is in a natural uncontracted state in a state where it is not pressed. In the case where D1 is zero, an insulating film or an insulating layer may be interposed between the touch panel 30' and the elastic substrate 23 to isolate the two.
  • the pressure sensitive conductive material 25 may be graphene. As a kind of nano-material, graphene has good light transmittance and is almost completely transparent; the moving speed of electrons in graphite is much faster than that of electrons in general conductors, and its electron mobility is very high at normal temperature; especially The graphite resistivity is very small.
  • the pressure-sensitive conductive material 25 is not limited to graphite thin, and in an alternative embodiment, the pressure-sensitive conductive material 25 may be at least one of carbon nanotubes, conductive carbon black, metal powder, and metal fiber or their random combination.
  • the pressure-sensitive conductive material 25 doped in the elastic base 23 such as graphite thin carbon or carbon nanotube monomer is disorderly arranged.
  • the charge conduction cannot be achieved, and the first electrode 21 and the second electrode 22 are maintained in an electrically insulated state at this time.
  • the elastic base 23 is in a pressed state, and the graphite or the carbon nanotubes contained in the elastic matrix 23 are ordered.
  • the elastic matrix 23 doped with graphite or carbon nanotubes 25 becomes a charge conducting function, and the first electrode 21 and the second electrode 22 are converted into Electrical connection status.
  • the first electrode 21 is used as the touch emitter electrode and a voltage signal is applied, an induced voltage signal can be obtained at the second electrode 22.
  • the operational state of the touch panel 30' can be quickly and accurately determined, that is, whether the touch panel 30' is pressed by the finger 40.
  • the touch sensing unit 20 further includes a magnetic trigger layer 24 disposed on the elastic substrate 23 between the touch panel 30 ′ and the elastic base 23 .
  • the side for example, is attached to the surface of the elastic base 23.
  • the magnetic field generated by the contact head 51 of the electromagnetic pen 50 will drive the elastic substrate 23 through the touch panel 30' to contract, so that The distance between the touch panel 30' and the elastic base 23 is expanded to D2 as shown in FIG.
  • the graphite doped or carbon nanotube monomer doped in the elastic matrix 23 is in an ordered arrangement state, and the graphite is thin or the carbon nanotubes 25 have good conductivity, and are doped with graphite or carbon nanotubes 25
  • the base 23 becomes a charge conducting function, and the first electrode 21 and the second electrode 22 are switched into an electrical connection state.
  • the first electrode 21 is used as the touch emitter electrode and a voltage signal is applied, an induced voltage signal can be obtained at the second electrode 22.
  • the second electrode 22 has an electric signal, the handwriting of the electromagnetic pen 50 on the touch panel 30' can be quickly and accurately determined.
  • the elastic substrate 23 is made of at least one of acrylic resin, ethylene propylene rubber, nitrile rubber, neoprene rubber, and silicone rubber, or any combination thereof, so that the elastic matrix 23 has good elasticity. And produces a recoverable deformation under stress.
  • the touch panel 30' is made of a material that can be deformed by force, and is used to compress the elastic base body 23 after being deformed by force, thereby implementing a touch sensing function. It should be noted that the elastic base 23 in the present application has the property of being deformed by force and changing the conductive property. The embodiment of the present application is not limited to being deformed by pressing or magnetic repulsion, and any other type. The case where the elastic base body 23 is deformed by contact or non-contact means is also covered by the scope of protection of the present application.
  • FIG. 3 only shows a pair of first electrode 21 and second electrode 22
  • a plurality of pairs of first electrode 21 and second electrode 22 may be provided to cooperate with an elastic substrate.
  • an elastic substrate to improve the touch response speed.
  • first electrode 21 and the second electrode 22 are generally made of an opaque metal, by setting the first electrode and the second electrode as very thin wires, the display effect can be prevented.
  • the first electrode 21 and the second electrode 22 may also be made of a transparent conductive material.
  • the elastomeric substrate 23 is in contact with both the corresponding first electrode 21 and second electrode 22.
  • the pressure-sensitive conductive material 25 doped in the elastic matrix 23 such as graphite thinning or carbon nanotube monomer is in an disorderly arrangement state, and charge conduction cannot be achieved.
  • the first electrode 21 and the second electrode 22 are maintained in an electrically insulated state.
  • the elastic substrate 23 is in a pressed state, and the graphite or the carbon nanotubes contained in the elastic matrix 23 are in an ordered arrangement due to the graphite thinning.
  • the carbon nanotubes have good electrical conductivity, and the elastic matrix 23 doped with graphite or carbon nanotubes 25 becomes a charge conducting function, and the first electrode 21 and the second electrode 22 are switched into an electrically connected state.
  • the touch sensing unit is disposed on the display panel, wherein the elastic base 30 ′ is disposed on the inner surface of the upper substrate of the display panel, and the first electrode 21 and the second electrode 22 are disposed on the lower substrate of the display panel.
  • the inner surface of the display panel has a touch sensing function.
  • a touch substrate includes: at least one touch sensing unit and at least one touch transmission line and at least one touch receiving device as described above. line.
  • the touch substrate includes a plurality of touch sensing units and a plurality of touch transmitting lines and a plurality of touch receiving lines 26 as described above.
  • each touch sensing unit includes a first electrode 21 and a second electrode 22 as an example for description.
  • the first electrode 21 in each touch sensing unit is electrically connected to the corresponding touch emission line 26, and the second electrode 22 is electrically connected to the corresponding touch. Receive line 26.
  • the touch substrate may include a plurality of pairs of sensing electrodes arranged in an array having a plurality of rows and columns, each pair of sensing electrodes including a first electrode 21 and an interval disposed on the array substrate 10 Corresponding second electrode 22.
  • Each of the elastic substrates 23 is disposed on a corresponding pair of first electrodes 21 and second electrodes 22 doped with a pressure-sensitive conductive material 25 such as graphite thin carbon or carbon nanotubes such that the elastic base 23 Electrically connecting two of the corresponding pair of first electrode 21 and second electrode 22 in a pressed state; for example, a plurality of touch emission lines and a plurality of touch receiving lines 26 arranged to cross each other, each The first electrode 21 of the sensing electrode is electrically connected to the corresponding touch emitting line 26 and the second electrode 22 thereof is electrically connected to the corresponding touch receiving line 26.
  • the touch panel 30 is disposed on the elastic base 23 to apply pressure to the elastic base 23 under the action of an external force.
  • the touch substrate of the embodiment of the present invention can be applied to various types of display panels such as a liquid crystal display panel, an OLED display panel, and an electronic paper display panel, for example, when applied to a liquid crystal display panel, the touch panel.
  • a color filter unit is also provided.
  • the touch panel 30 and the color filter unit form a color filter substrate.
  • embodiments of the present invention provide a touch panel in in-cell touch.
  • each touch sensing unit has a first electrode and a second electrode.
  • the touch substrate further includes a common electrode, and the common electrode, the first electrode 21, and the second electrode 22 are formed of the same transparent conductive material in the same layer, so that the first electrode 21 and the first electrode 21 can be reduced.
  • the fabrication process of the second electrode 22 is not limited to the same electrode, and the common electrode, the first electrode 21, and the second electrode 22.
  • voltage sensing can be implemented by using finger touch compression, or the magnetic trigger layer disposed on the elastic substrate can be compressed by the magnetic repulsion force of the electromagnetic pen to compress the elastic substrate to realize voltage transmission.
  • Sense with dual touch function with finger touch and electromagnetic pen touch.
  • the touch substrate of the embodiment of the present invention has the convenience of finger touch, multi-touch characteristics, and electromagnetic pen touch, because the elastic matrix is doped with a pressure sensitive conductive material such as graphite or carbon nanotubes. The precise operation of high-precision, fast recording or original handwriting optimizes the structure of the touch substrate, and a thinner and lighter touch substrate can be obtained.
  • a touch display panel includes the touch substrate, the array substrate, and a liquid crystal layer between the touch substrate and the array substrate (not shown).
  • the array substrate includes: a plurality of gate lines and a plurality of data lines, the gate lines and the data lines are arranged to cross each other to form a plurality of display units; and a plurality of thin film transistors each disposed on the thin film transistor Correspondingly, the display unit is electrically connected to the corresponding gate line.
  • the touch display panel can be applied to a Thin Film Transistor Liquid Crystal Display (TFT-LCD) display.
  • TFT-LCD Thin Film Transistor Liquid Crystal Display
  • voltage sensing can be implemented by using finger touch compression, or the magnetic matrix can be compressed by the magnetic repulsive force of the electromagnetic pen to compress the elastic matrix. Sensing, and thus dual touch function with finger touch and electromagnetic pen touch.
  • the array substrate includes a transparent conductive layer or a common electrode, and the first electrode and the second electrode and the transparent conductive layer are formed by the same layer of transparent conductive material through the same patterning process, which can reduce the first The fabrication process of the electrode 21 and the second electrode 22.
  • the array substrate includes a transparent conductive layer or a common electrode, the first electrode and the second electrode are located on a side of the light-emitting direction of the transparent conductive layer, and the transparent conductive layer and the first A transparent insulating layer is interposed between the electrodes, and between the transparent conductive layer and the second electrode.
  • the gate line is used as a touch emission line in the touch substrate, and is electrically connected to one of the corresponding first electrode and the second electrode through the via hole.
  • the array substrate according to an exemplary embodiment of the present invention may also be applied to an organic light emitting diode (OLED) display or an active matrix organic light emitting diode (AMOLED) display.
  • OLED organic light emitting diode
  • AMOLED active matrix organic light emitting diode
  • the array substrate 10 includes a plurality of transparent common electrodes 18, a plurality of gate lines 13 and a plurality of data lines 14, and a plurality of thin films driven by the gate lines 13.
  • the gate line 13 and the data line 14 are arranged to cross each other to form a plurality of pixel units 12, which are respectively disposed in the respective display units 12.
  • the display unit 12 includes a red sub display unit R, a green red sub display unit G, and a blue sub display unit B which are sequentially arranged.
  • Each of the thin film transistors 15 is disposed in the corresponding display unit 12 and electrically connected to the corresponding gate line 13 through the gate 151, and the drain 152 of each thin film transistor 15 is electrically connected to the corresponding pixel electrode 11.
  • the corresponding thin film transistor 15 is turned on, thereby feeding the electrical signal on the data line to the pixel electrode 11.
  • an organic emission layer (EML) 17 is disposed between the common electrode 18 and the pixel electrode 11, and an insulating layer is disposed on the periphery of the organic light-emitting layer 17.
  • the common electrode 18, the first electrode 21, and the second electrode 22 may be formed from the same transparent conductive material in one patterning process using the same mask.
  • the transparent conductive material includes any one of indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (ITZO), and tin oxide (TO).
  • the common electrode 18, the first electrode 21, and the second electrode 22 are disposed in the same layer and isolated from each other, which can reduce the fabrication process of at least one pair of the first electrode 21 and the second electrode 22.
  • a flat layer 28 made of a transparent insulating material is provided on the common electrode 18 to eliminate the height difference due to the provision of the elastic base 23 and the magnetic trigger layer 24.
  • the gate line 13 is used as a touch emission line for electrically connecting to the first electrode 11. That is, the gate line 13 is used both to provide a switching signal to the gate 151 of the thin film transistor 15, and also to provide a touch emission signal to the first electrode 21 used as the touch transmitting electrode. In this way, the number of wires on the array substrate can be reduced, and the efficiency of touch signal processing can also be improved.
  • the driving signal of the gate line 13 can be transmitted to the touch receiving line 26. By detecting the voltage of the touch receiving line 26, a hand touch or a handwriting written by an electromagnetic pen can be determined.
  • a touch emission line 13' independent of the gate line 13 may be disposed, and the touch emission line 13' is electrically connected to the first electrode 21.
  • FIG. 6 is a timing diagram of a touch operation of a touch circuit unit in an untouched state according to an exemplary embodiment of the present invention
  • FIG. 7 is a touch circuit unit according to an exemplary embodiment of the invention. Schematic diagram of the timing operation of touch addressing in the touch state. As shown in FIGS. 6 and 7, G1, G2, G3, ..., Gn respectively represent n-line gate line scanning signals of the touch substrate, and S1, S2, S3, ..., Sm respectively represent m touches.
  • the column addressing signal on line 26 is received.
  • the gate line 13 is periodically scanned according to the refresh frequency, and is connected to an external signal processing unit (not shown).
  • the touch receiving line 26 of the output cannot detect a signal change.
  • the pulse driving signal of the gate line 13 can be transmitted to the touch Controlling the receive line 26 and generating a pulsed column addressing signal
  • the signal The processing unit can detect the column addressing signal to determine the finger touch and the writing action of the electromagnetic pen that occurred at that time.
  • the source of the column addressing signals can be separately located by the operation of the signal processing unit to determine the position of the finger touch and the writing action of the electromagnetic pen. To achieve multi-touch functionality.
  • FIG. 8 is a partial cross-sectional view of a touch substrate in accordance with a second exemplary embodiment of the present invention.
  • the common electrode 18 is covered with a transparent insulating layer 29, and the first electrode 21 and the second electrode 22 are disposed on the insulating layer 29 and are made of the same transparent conductive material. Formed in a patterning process. That is, the common electrode 18 is disposed on the lower side of the insulating layer 29, and the first electrode 21 and the second electrode 22 are disposed on the upper side of the insulating layer 29. This can reduce the crosstalk of the touch sensing unit 20 and the first electrode 21 and the second electrode 22 to the common electrode 18. Further, as shown in FIG.
  • the gate line 13 is used as the touch emission line, and is electrically connected to the corresponding first electrode 21 through a via hole (not shown) formed in the insulating layer 29, and second The electrode 22 is electrically connected to the touch receiving line 26.
  • a touch emission line 13' independent of the gate line 13 may be disposed, and the touch emission line 13' is electrically connected to the first electrode 21.
  • a method for fabricating a touch substrate includes the following steps:
  • first electrodes 21 and second electrodes 22 are formed on a first substrate 10 such as an array substrate, wherein two of the pair of first electrodes 21 and second electrodes 22 The electrodes are spaced apart, and the two electrodes of the pair of first electrodes 21 and the second electrodes 22 are electrically connected to respective touch emission lines and touch receiving lines disposed in the first substrate;
  • An elastic layer doped with a pressure-sensitive conductive material 25 such as graphite or carbon nanotubes, such as an acrylic resin layer, is deposited on the first substrate of the first electrode 21 and the second electrode 22; the elastic force is applied by a patterning process The layer is patterned to form at least one elastic substrate 23; and the second substrate is paired with the first substrate on which the elastic substrate 23 is formed.
  • the second substrate may be the touch panel 30 described in the above embodiment.
  • the touch substrate manufactured by the method according to the above embodiment of the present invention when pressed against the second substrate (for example, the touch panel 30) by the finger 40, the elastic substrate 23 is in a pressed state of being pressed, and is doped in the elastic substrate 23.
  • the graphite-thin or carbon nanotube monomer is in an ordered arrangement. Due to the good conductivity of the graphite or the carbon nanotube, the elastic matrix 23 doped with graphite or carbon nanotubes becomes a charge-conducting function.
  • the first electrode 21 and the second electrode 22 are switched into an electrical connection state.
  • the elastic base 23 is made of highly elastic acrylate, which can quickly and accurately determine whether the touch substrate is pressed by a finger, and improves the convenience of finger touch and multi-touch performance.
  • the step of patterning the elastic layer by a patterning process to form a plurality of elastic substrates 23 includes: depositing a magnetic material layer 24 on the elastic layer; and an elastic layer and a magnetic material layer by a patterning process 24 is patterned; and the magnetic material layer 24 is polarized with a magnet such that the magnetic material layer formed on each of the elastic substrates 23 forms a magnetic trigger layer.
  • the touch substrate manufactured by the method according to the above embodiment of the present invention can realize voltage sensing by using finger touch compression, or can be compressed by subjecting the magnetic trigger layer disposed on the elastic substrate to the magnetic repulsive force of the electromagnetic pen.
  • the elastic substrate realizes voltage sensing, thereby having dual touch functions of finger touch and electromagnetic pen touch. Since the elastic substrate is doped with a pressure sensitive conductive material such as graphite or carbon nanotube patent, the touch substrate of the embodiment of the invention has the convenience of finger touch, multi-touch characteristics, and electromagnetic pen touch. The precise operation of high-precision, fast recording or original handwriting optimizes the structure of the touch substrate, and a thinner and lighter touch substrate can be obtained.
  • the step of patterning the elastic layer and the magnetic material layer by a patterning process to form a plurality of elastic substrates includes: depositing a photoresist (not shown) on the magnetic material layer 24; A mask (not shown) patterns the elastic layer, the magnetic material layer 24, and the photoresist by performing exposure, development, and etching processes; and stripping the photoresist.
  • the touch panel 30 is paired with the array substrate 20 on which the elastic layer and the magnetic material layer are formed, thereby forming the touch substrate of the embodiment of the present invention.
  • the surface of the array substrate is ashed with oxygen to react the residual carbon material to form carbon dioxide to improve the performance of the touch substrate.
  • the first substrate 10 is an array substrate
  • the step of forming at least one pair of the first electrode and the second electrode on the first substrate 10 includes: first patterning by the same transparent conductive material using the same mask
  • the common electrode 18, the first electrode 21, and the second electrode 22 are formed in the process, and the gate lines formed on the array substrate are electrically connected to the corresponding first electrodes such that the gate lines are used as the touch emission lines.
  • the number of masks can be reduced, the fabrication process can be simplified, and the number of wires on the array substrate can be reduced, and the efficiency of touch signal processing can be improved.
  • the first substrate 10 is an array substrate
  • the step of forming at least one pair of the first electrode and the second electrode on the first substrate includes: the common electrode 18 on the array substrate 10.
  • the transparent insulating layer 29 Overlying the transparent insulating layer 29; and forming the first electrode 21 and the second electrode 22 on the insulating layer 29 in the first patterning process by the same transparent conductive material; and passing through the via formed in the insulating layer 29. (not shown)
  • the gate lines 13 formed on the array substrate 10 are electrically connected to one of the corresponding pair of first electrodes 21 and second electrodes 22 such that the gate lines are used as the touch emission lines.
  • the common electrode 18 is disposed on the lower side of the insulating layer 29, and the first electrode 21 and the second electrode 22 are disposed on the upper side of the insulating layer 29. This can reduce the crosstalk of the touch sensing unit 20 and the first electrode 21 and the second electrode 22 to the common electrode 18.
  • the number of masks can be reduced, the fabrication process can be simplified, and the number of wires on the array substrate can be reduced, and the efficiency of touch signal processing can be improved.
  • a touch display device includes the touch substrate of any one of the above embodiments, and an electromagnetic pen, wherein one end of the electromagnetic pen is provided with a contact head including a magnetic material.
  • the magnetic properties of the magnetic material of the contact head are the same as those of the magnetic material of the magnetic trigger layer.
  • the touch display device can be any product or component having a display function such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and an electronic paper.
  • the touch sensing unit the touch substrate, the manufacturing method thereof, the touch display panel, and the touch display device
  • the touch sensing can be implemented by using finger touch compression, or can be set by
  • the magnetic trigger layer on the elastic substrate is subjected to the magnetic repulsive force of the electromagnetic pen to compress the elastic substrate to realize voltage sensing, thereby having a dual touch function of finger touch and electromagnetic pen touch.
  • the elastic substrate is doped with graphite or carbon nanotubes
  • the touch substrate of the embodiment of the invention has the convenience of finger touch, the multi-touch feature, and the high precision, fast recording or the original of the electromagnetic pen touch.
  • the precise operation of the handwriting and the like optimizes the structure of the touch substrate, and the touch substrate can be obtained which is thinner and lighter.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Position Input By Displaying (AREA)

Abstract

本发明公开了一种触控感应单元、触控基板及其制作方法、触控显示面板、以及触控显示装置。所述触控感应单元包括:相离设置的至少一对第一电极和第二电极;至少一个弹性基体,所述至少一个弹性基体中含有压敏导电材料,所述至少一个弹性基体在受力变形时使所述至少一对第一电极和第二电极中的相对应的第一电极和第二电极电连接;以及触控板,所述触控板设置于所述至少一个弹性基体的受力的一侧。利用压敏导电材料的导电特性感应手指触摸动作,提高了手指触控的便捷性、多点触控性能。

Description

触控感应单元、触控基板及其制作方法、触控显示面板和触控显示装置
本申请要求于2014年12月30日递交的、申请号为201410841677.8、发明名称为“触控感应单元、触控基板及其制作方法以及触控显示面板”的中国专利申请的优先权,其全部内容通过引用并入本申请中。
技术领域
本发明的实施例涉及一种触控显示技术领域,尤其涉及一种触控感应单元、触控基板及其制作方法、触控显示面板、以及触控显示装置。
背景技术
在平面显示器的领域中,有机电致发光显示器(OLED)由于其制造设备的投资较小、制程较简单、以及面板可自行发光,因而可以省去背光源元件,并可以减少显示器面板的厚度,因此已广泛应用于平面显示器中。随着显示技术的发展,应用于显示装置的触控技术也随之发展,例如,已研发的应用于显示装置的触控技术包括电容、电阻、电压传感、电磁、红外等触控模式。
随着用户使用体验要求的日益提高,触控功能器件在反应速度、精确度、复合功能等方面的性能越来越受到重视。
发明内容
本发明的实施例提供一种触控感应单元、触控基板及其制作方法、触控显示面板、以及触控显示装置,利用压敏导电材料的导电特性感应手指触摸或书写笔碰触动作。
本发明的实施例提供一种触控感应单元、触控基板及其制作方法、触控显示面板、以及触控显示装置,利用压敏导电材料的导电特性感应手指触摸或书写笔碰触动作,并利用磁性材料感应电磁笔的输入动作,以实现手指与电磁笔双触控模式。
根据本发明的一个方面,提供了一种触控感应单元,包括:
相离设置的至少一对第一电极和第二电极;
至少一个弹性基体,所述至少一个弹性基体中含有压敏导电材料,所述至少一个弹性基体在受力变形时使所述至少一对第一电极和第二电极中的相对应的第一电极和第二电极电连接;以及
触控板,所述触控板设置于所述至少一个弹性基体的受力的一侧。
在一个示例中,所述至少一对第一电极和第二电极与所述至少一个弹性基体对应设置,且所述触控板与所述至少一个弹性基体间隔设置。
在一个示例中,触控感应单元还包括磁性触发层,所述磁性触发层在所述触控板与所述至少一个弹性基体之间且设置在所述至少一个弹性基体的受力的一侧。
在一个示例中,所述压敏导电材料包括石墨稀、碳纳米管、导电炭黑、金属粉和金属纤维中的至少一种或它们的任意组合。
在一个示例中,所述至少一个弹性基体由丙烯酸树脂、乙丙橡胶、丁腈橡胶、氯丁橡胶和硅橡胶中的至少一种或它们的任意组合制成。
在一个示例中,所述触控板由可受力变形的材料制成,用于在受力变形后压迫所述至少一个弹性基体变形。
在一个示例中,所述至少一对第一电极和第二电极均设置为多对第一电极和第二电极,相应的一对第一电极和第二电极中的第一电极和第二电极相互间隔设置。
在一个示例中,所述弹性基体与所述一对第一电极和第二电极中的两个电极均接触。
在一个示例中,所述触控感应单元设置于显示面板中,所述至少一个弹性基体设置在所述显示面板的上基板的内表面,所述至少一个对第一电极和第二电极中的第一电极和第二电极设置在所述显示面板的下基板的内表面。
根据本发明的另一方面,提供了一种触控基板,包括至少一个如上所述的触控感应单元。
在一个示例中,所述触控基板还包括:至少一条触控发射线和至少一条触控接收线,每个所述第一电极电连接至相应的所述触控发射线,每个所述第二电极电连接至相应的所述触控接收线。
在一个示例中,所述触控基板应用于液晶显示面板中,所述触控基板上还设置有彩色滤光单元。
在一个示例中,所述触控基板还包括公共电极,
所述公共电极、所述至少一对第一电极和第二电极由同一透明导电材料形成在同一层中;或者所述公共电极上覆盖透明的绝缘层,并由同一透明导电材料在一次构图工艺中在所述绝缘层上形成所述至少一对第一电极和第二电极。
根据本发明的另一方面,提供了一种触控显示面板,包括如上所述的触控基板、阵列基板、以及所述触控基板和所述阵列基板之间的液晶层;其中,所述阵列基板包括:
多条栅线和多条数据线,所述栅线和数据线相互交叉布置以形成多个显示单元;以及
多个薄膜晶体管,每个薄膜晶体管设置在相应的所述显示单元中并与相应的所述栅线电连接。
在一个示例中,所述阵列基板包括公共电极,所述至少一对第一电极和第二电极和所述公共电极由同一层透明导电材料通过同一次构图工艺形成。
在一个示例中,所述阵列基板包括公共电极,所述至少一对第一电极和第二电极位于所述公共电极的出光方向一侧,所述公共电极与所述至少一对第一电极和第二电极中的第一电极之间、所述公共电极与所述至少一对第一电极和第二电极中的第二电极之间均间隔有透明绝缘层。
在一个示例中,所述栅线用做所述触控发射线。
在一个示例中,通过过孔将栅线与相应的一对第一电极和第二电极中的一个电极电连接。
根据本发明的另一方面,提供了一种触控显示装置,包括:
如上所述的触控显示面板;以及
电磁笔,所述电磁笔的一端设有包括磁性材料的接触头,所述接触头的磁性材料的磁性与磁性触发层的磁性材料的磁性相同。
根据本发明的另一方面,提供了一种制作触控基板的方法,包括如下步骤:
在第一基板上形成至少一对第一电极和第二电极,所述至少一对第一电极和第二电极中的第一电极分别电连接至设置在所述第一基板中的相对应的触控发射线,所述至少一对第一电极和第二电极中的第二电极分别电连接至设置在所述第一基板中的相对应的触控接收线;
在形成有至少一对第一电极和第二电极的第一基板上形成包含有压敏导电材料的弹性层;
通过构图工艺对所述弹性层进行构图以形成至少一个弹性基体;以及
将第二基板与形成有弹性基体的第一基板进行对盒。
在一个示例中,通过构图工艺对所述弹性层进行构图以形成至少一个弹性基体的步骤包括:
在弹性层上沉积磁性材料层;
通过构图工艺对所述弹性层和磁性材料层进行构图;以及
利用磁体对磁性材料层进行极化,以使形成在每个弹性基体上的磁性材料层形成磁性触发层。
在一个示例中,通过构图工艺对所述弹性层和磁性材料层进行构图的步骤包括:
在磁性材料层上沉积光刻胶;
利用掩模板通过执行曝光、显影和蚀刻工艺对所述弹性层、磁性材料层和光刻胶进行构图;以及
剥离光刻胶。
在一个示例中,在剥离光刻胶之后,采用氧气灰化阵列基板的表面,以使残余的碳材料反应生成二氧化碳。
在一个示例中,所述第一基板为阵列基板,在第一基板上形成至少一对第一电极和第二电极的步骤包括:由同一透明导电材料在一次构图工艺中形成阵列基板的公共 电极、至少一对第一电极和第二电极,并且形成在阵列基板上的栅线与至少一对第一电极和第二电极中的相应的第一电极电连接,使得所述栅线用做所述触控发射线。
在一个示例中,所述第一基板为阵列基板,在第一基板上形成至少一对第一电极和第二电极的步骤包括:
在所述阵列基板的公共电极上覆盖透明的绝缘层;
由同一透明导电材料在一次构图工艺中在所述绝缘层上形成所述至少一对第一电极和第二电极;以及
通过形成在所述绝缘层中的过孔将形成在阵列基板上的栅线与至少一对第一电极和第二电极中相应的第一电极电连接,使得所述栅线用做所述触控发射线。
根据本发明上述实施例的触控感应单元、触控基板及其制作方法、触控显示面板、以及触控显示装置,利用压敏导电材料的导电特性感应手指触摸动作,提高了手指触控的便捷性、多点触控性能。进一步地,利用磁性材料感应电磁笔的输入动作,可以实现手指与电磁笔双触控模式。
附图说明
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明,其中:
图1是根据本发明的第一示例性实施例的触控基板的局部剖视图;
图2是根据本发明第一示例性实施例的设有触控感应单元的阵列基板的局部平面示意图;
图3是根据本发明一示例性实施例的触控感应单元的原理剖视图,其中触控板未受力;
图4是图3所示的触控感应单元在手指触摸状态下导通的原理剖视图;
图5是图3所示的触控感应单元在电磁笔写入状态下导通的原理剖视图;
图6是根据本发明的一示例性实施例的触控基板的在未触控状态下触控寻址的时序操作示意图;
图7是根据本发明的一示例性实施例的触控基板的在触控状态下触控寻址的时序操作示意图;
图8是根据本发明的第二示例性实施例的触控基板的局部剖视图;以及
图9是根据本发明第二示例性实施例的设有触控感应单元的阵列基板的局部平面示意图。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。在说 明书中,相同或相似的附图标号指示相同或相似的部件。下述参照附图对本发明实施方式的说明旨在对本发明的总体发明构思进行解释,而不应当理解为对本发明的一种限制。
根据本发明的各种示例性实施例的总体上的发明构思,提供一种触控基板,包括:至少一对第一电极和第二电极;至少一个弹性基体,所述至少一个弹性基体中含有压敏导电材料,所述至少一个弹性基体在受力变形时使相应的至少一对所述第一电极和第二电极中的所述第一电极和第二电极电连接;至少一条触控发射线和至少一条触控接收线,至少一对第一电极和第二电极中的所述第一电极电连接至相应的所述触控发射线,至少一对第一电极和第二电极中的所述第二电极电连接至相应的所述触控接收线;以及触控板,所述触控板设置于所述至少一个弹性基体的受力的一侧。
在下面的详细描述中,为便于解释,阐述了许多具体的细节以提供对本披露实施例的全面理解。然而明显地,一个或多个实施例在没有这些具体细节的情况下也可以被实施。在其他情况下,公知的结构和装置以图示的方式体现以简化附图。
图3是根据本发明一示例性实施例的触控感应单元的原理剖视图。参见图3,触控感应单元20包括:间隔或者相离设置的一个第一电极21和一个第二电极22;设置在第一电极21和第二电极22上的一个弹性基体23,所述弹性基体23内含有例如石墨稀或者碳纳米管之类的压敏导电材料25,使得弹性基体23在受力变形时使第一电极21和第二电极22电连接;以及设置于弹性基体23的受力的一侧的触控板30’。触控板30’设置在弹性基体23上,以在外力的作用下按压弹性基体23。
在一种实施例中,如图3所示,在未被按压的状态下,触控板30’和弹性基体23之间的预设距离为D1。例如,可以根据触控板30’的材料形变特性和/或磁控感应的强弱来设定距离D1。可以理解,D1可以设置为零,只要在未被按压的状态下弹性基体23处于自然的未收缩状态即可。在D1为零的情况下,可以在触控板30’和弹性基体23之间有绝缘膜或绝缘层,以对二者进行隔离。
在一种实施例中,压敏导电材料25可以为石墨烯(Graphene)。作为一种纳米材料,石墨烯具有良好的透光率,几乎是完全透明的;石墨稀中电子的运动速度远超电子在一般导体中的运动速度,常温下其电子迁移率非常高;特别是,石墨稀的电阻率非常小。但压敏导电材料25不仅限于是石墨稀,在一种可替换的实施例中,压敏导电材料25可以是碳纳米管、导电炭黑、金属粉和金属纤维中的至少一种或它们的任意组合。
如图3所示,在弹性基体23处于未被按压的自然状态下,掺杂在弹性基体23中的例如石墨稀或者碳纳米管单体之类的压敏导电材料25呈无序的排列状态,不能实现电荷传导,此时第一电极21和第二电极22之间保持电绝缘状态。
如图4所示,当用手指40按压在触控板30’上时,弹性基体23处于被按压的收缩状态,包含在弹性基体23中的石墨稀或者碳纳米管的单体呈有序的排列状态,由于石墨稀或者碳纳米管具有良好的导电性,掺杂有石墨稀或者碳纳米管25的弹性基体23变成具有电荷传导功能,第一电极21和第二电极22之间转换成电连接状态。此时,如果将第一电极21作为触控发射电极并施加电压信号,则可以在第二电极22得到感应电压信号。这样,通过检测第二电极22是否存在电信号,可以快速准确地确定触控板30’的操作状态,即触控板30’是否被手指40按压。
根据本发明进一步示例性实施例的触控感应单元20,还包括磁性触发层24,所述磁性触发层24在触控板30’与弹性基体23之间设置在弹性基体23的受力的一侧,例如贴附在弹性基体23的表面上。这样,如图5所示,当用电磁笔50在触控板30’上进行书写时,设置在电磁笔50一端的由磁性材料制成的接触头51将与磁性触发层24相互作用。由于预先将磁性触发层24的磁性材料的磁性设置成与触头51在磁性材料的磁性相同,电磁笔50的接触头51产生的磁场将穿透触控板30’驱动弹性基体23收缩,使得触控板30’与弹性基体23之间的距离扩大为D2,如图5所示。掺杂在弹性基体23中的例如石墨稀或者碳纳米管单体呈有序的排列状态,由于石墨稀或者碳纳米管25具有良好的导电性,掺杂有石墨稀或者碳纳米管25的弹性基体23变成具有电荷传导功能,第一电极21和第二电极22之间转换成电连接状态。通过设置磁性触发层24并与电磁笔50结合,可以实现仿真人笔迹或用笔划的输入,便于小图标或小笔划的输入。
此时,如果将第一电极21作为触控发射电极并施加电压信号,则可以在第二电极22得到感应电压信号。这样,通过检测第二电极22是否存在电信号,可以快速准确地确定在触控板30’上的电磁笔50的笔迹。
在一种实施例中,弹性基体23由丙烯酸树脂、乙丙橡胶、丁腈橡胶、氯丁橡胶和硅橡胶中的至少一种或它们的任意组合制成,以使得弹性基体23具有良好的弹性,并在受力的情况下产生可恢复的变形。进一步地,触控板30’由可受力变形的材料制成,用于在受力变形后压迫弹性基体23变形,从而实现触控感应功能。需注明的是,本申请中的弹性基体23具有受力变形而导电特性改变的性质,本申请的实施方案不限于是通过按压的方式或磁场斥力的方式使其受力变形,其他任何类型的通过接触或非接触方式而使弹性基体23受力变形的情况,也涵盖在本申请的保护范围内。
在一种可替代的实施例中,虽然图3仅示出了设置一对第一电极21和第二电极22,但是可以设置多对第一电极21和第二电极22以与一个弹性基体配合,以提高触控反应速度。可以理解,在此以一对第一电极和第二电极与一个弹性基体的结构布置为例,来全面地阐述本发明的发明构思,本领域技术人员可以基于本发明的公开内容设置多个上述的重复结构单元。
由于第一电极21和第二电极22一般由不透明的金属制成,通过把第一电极和第二电极设置成很细的导线,可以不影响显示效果。第一电极21和第二电极22也可以由透明的导电材料制成。
在一种实施例中,弹性基体23与对应的第一电极21和第二电极22均接触。在弹性基体23处于未被按压的自然状态下,掺杂在弹性基体23中的例如石墨稀或者碳纳米管单体之类的压敏导电材料25呈无序的排列状态,不能实现电荷传导,此时第一电极21和第二电极22之间保持电绝缘状态。当用手指40按压在触控板30’上时,弹性基体23处于被按压的收缩状态,包含在弹性基体23中的石墨稀或者碳纳米管的单体呈有序的排列状态,由于石墨稀或者碳纳米管具有良好的导电性,掺杂有石墨稀或者碳纳米管25的弹性基体23变成具有电荷传导功能,第一电极21和第二电极22之间转换成电连接状态。
在一种实施例中,触控感应单元设置于显示面板上,其中,弹性基体30’设置在显示面板的上基板的内表面,第一电极21和第二电极22设置在显示面板的下基板的内表面,从而使得显示面板具有触控感应功能。
参见图1-3,根据本发明的一示例性实施例的触控基板,具体所述触控基板包括至少一个如上所述的触控感应单元和至少一条触控发射线和至少一条触控接收线。在图示的实施例中,所述触控基板包括多个如上述的触控感应单元和多条触控发射线和多条触控接收线26。以下以每个触控感应单元包括一个第一电极21和一个第二电极22为例进行说明。具体地,每个触控感应单元中的所述第一电极21电连接至相对应的所述触控发射线26,且其中的所述第二电极22电连接至相对应的所述触控接收线26。在此,鉴于在上文已经详细介绍触控感应单元的具体结构,故在此不再详细说明。
在一种可替代实施例中,触控基板可以包括多对感应电极,布置成具有多行和多列的阵列,每对感应电极包括间隔地设置在阵列基板10上的第一电极21和与之对应的第二电极22。每个弹性基体23设置在相应一对第一电极21和第二电极22上,所述弹性基体23内掺杂有例如石墨稀或者碳纳米管之类的压敏导电材料25,使得弹性基体23在被按压的状态下电连接相对应的一对第一电极21和第二电极22中的两个电极;例如相互交叉布置的多个触控发射线和多个触控接收线26,每个感应电极的第一电极21电连接至相应的触控发射线26且其的第二电极22电连接至相应的触控接收线26。触控板30设置在弹性基体23上,以在外力的作用下朝弹性基体23施加压力。
在本发明实施例的触控基板可以应用于液晶显示面板、OLED显示面板、电子纸显示面板等各种类型的显示面板中,例如,当应用于液晶显示面板中时,所述触控板上还设置有彩色滤光单元。在此情况下,触控板30和彩色滤光单元形成彩膜基板,这样,本发明的实施例提供了一种盒内触控(in cell touch)的触控基板。
在一个可替代的实施例中,每个触控感应单元中的第一电极21和第二电极22均为多对,且第一电极21和第二电极22相互间隔设置,以提高触控反应速度。由于第一电极21和第二电极22一般由不透明的金属制成,通过把第一电极和第二电极设置成很细的导线,可以不影响显示效果。在图示的实施例中,每个触控感应单元中具有一个第一电极和一个第二电极。
在一种实施例中,所述触控基板还包括公共电极,所述公共电极、第一电极21和第二电极22由同一透明导电材料形成在同一层中,这样可以减少第一电极21和第二电极22的制作工艺。
根据本发明上述实施例的触控基板,可以使用手指触控压缩实现电压传感,也可以通过使设置在弹性基体上的磁性触发层受到电磁笔的磁性排斥力来压缩弹性基体从而实现电压传感,以具有手指触控和电磁笔触控的双触控功能。由于弹性基体中掺杂有石墨稀或者碳纳米管之类的压敏导电材料,本发明实施例的触控基板兼具了手指触控的便捷性、多点触控特点、以及电磁笔触控的高精度、快速记录或者原笔迹等精确操作的特点,优化了触控基板的结构,可以得到更加轻薄化的触控基板。
根据本发明的另一实施例,提供一种触控显示面板,包括上述实施例所述的触控基板、阵列基板、以及所述触控基板和所述阵列基板之间的液晶层(未示出);其中,所述阵列基板包括:多条栅线和多条数据线,所述栅线和数据线相互交叉布置以形成多个显示单元;以及多个薄膜晶体管,每个薄膜晶体管设置在相应的所述显示单元中并与相应的所述栅线电连接。在此实施例中,触控显示面板可以应用在薄膜晶体管液晶(Thin Film Transistor Liquid Crystal Display(TFT-LCD))显示器中。
根据本发明上述实施例的触控显示面板,可以使用手指触控压缩实现电压传感,也可以通过使设置在弹性基体上的磁性触发层受到电磁笔的磁性排斥力来压缩弹性基体从而实现电压传感,进而具有手指触控和电磁笔触控的双触控功能。
在一种实施例中,阵列基板包括透明导电层或公共电极,所述第一电极和第二电极和所述透明导电层由同一层透明导电材料通过同一次构图工艺形成,这样可以减少第一电极21和第二电极22的制作工艺。
在一种实施例中,所述阵列基板包括透明导电层或公共电极,所述第一电极和第二电极位于所述透明导电层的出光方向一侧,所述透明导电层与所述第一电极之间、所述透明导电层与所述第二电极之间均间隔有透明绝缘层。所述栅线用做所述触控基板中的触控发射线,并通过过孔与相应的第一电极和第二电极中的一个电连接。
根据本发明实例性的阵列基板还可以是应用在有机发光二极管(organic Light Emitting Diode(OLED))显示器、或者主动矩阵有机发光二极管(Active Matrix Organic Light Emitting Diode(AMOLED))显示器中。下面以应用于OLED显示器的阵列基板10为例进行说明。
在一种示例性实施例中,参见图1和2,阵列基板10包括:多个透明的公共电极18、多个栅线13和多个数据线14、以及由栅线13驱动的多个薄膜晶体管15。所述栅线13和数据线14相互交叉布置以形成多个像素单元12,所述公共电极18分别设置在各自的显示单元12中。例如,显示单元12包括依次排列的红色子显示单元R、绿色红色子显示单元G和蓝色子显示单元B。每个薄膜晶体管15设置在相应的显示单元12中并通过栅极151与相应的栅线13电连接,每个薄膜晶体管15的漏极152与对应的像素电极11电连接。这样,在栅线13上的高电平信号的驱动下,相应的薄膜晶体管15导通,从而将数据线上的电信号输送到像素电极11。
进一步地,如图1所示,在每个显示单元中,公共电极18和像素电极11之间设有有机发光层(organic emission layer(EML))17,在有机发光层17外围设有绝缘层16。在一种示例性实施例中,公共电极18、第一电极21和第二电极22可以利用同一掩模板由同一透明导电材料在一次构图工艺中形成。该透明导电材料包括氧化铟锡(ITO)、氧化铟锌(IZO)、氧化铟锌锡(ITZO)、氧化锡(TO)中的任何一种。也就是说,公共电极18、第一电极21和第二电极22设置在同一层并彼此隔离,这样可以减少至少一对第一电极21和第二电极22的制作工艺。另外,在公共电极18上设置由透明绝缘材料制成的平坦层28,以消除由于设置弹性基体23和磁性触发层24而造成的高度差。
在一种示例性实施例中,栅线13用做用于与第一电极11电连接的触控发射线。也就是说,栅线13既用于向薄膜晶体管15的栅极151提供开关信号,也用于向用做触控发射电极的第一电极21提供触控发射信号。这样,可以减少阵列基板上的布线数量,还可以提高触控信号处理的效率。当第一电极21和第二电极22电连接时,栅线13的驱动信号可以传输到触控接收线26。通过检测触控接收线26的电压可以确定手指触摸或者电磁笔书写的笔迹。
在一种可替换的实施例中,如图9所示,可以设置独立于栅线13的触控发射线13’,并且触控发射线13’电连接至第一电极21。
图6是根据本发明的一示例性实施例的触控电路单元的在未触控状态下触控寻址的时序操作示意图;图7是根据本发明的一示例性实施例的触控电路单元的在触控状态下触控寻址的时序操作示意图。如图6和7中,G1、G2、G3......Gn分别表示触控基板的n行栅线扫描信号,S1、S2、S3......Sm分别表示m条触控接收线26上的列寻址信号。
具体而言,在触控基板正常显示时,即没有手指触摸和电磁笔的书写动作时,如图6所示,栅线13按照刷新频率进行周期性扫描,连接至外部信号处理单元(未示出)的触控接收线26不能检测到信号变化。存在手指触摸和电磁笔的书写动作时,如图7所示,由于对应的一对第一电极和第二电极通过石墨稀或者碳纳米管电连接,栅线13的脉冲驱动信号可以传输到触控接收线26并产生脉冲式的列寻址信号,信号 处理单元可以检测到该列寻址信号,从而确定在该时刻发生的手指触摸和电磁笔的书写动作。但在不同的触控接收线26上分别检测到列寻址信号时,经过信号处理单元的运算,可以分别定位这些列寻址信号的来源,确定发生的手指触摸和电磁笔的书写动作的位置,从而实现多点触控功能。
图8是根据本发明的第二示例性实施例的触控基板的局部剖视图。如图8所示,在第二实施例的触控基板中,公共电极18上覆盖透明的绝缘层29,第一电极21和第二电极22设置在绝缘层29上并由同一透明导电材料在一次构图工艺中形成。也就是说,公共电极18设置在绝缘层29的下侧,第一电极21和第二电极22设置在绝缘层29的上侧。这样可以减少触控感应单元20与第一电极21和第二电极22对公共电极18的串扰。进一步地,仍然如图2所示,栅线13用做所述触控发射线,并通过形成在绝缘层29中的过孔(未示出)与相应的第一电极21电连接,第二电极22与触控接收线26电连接。在一种可替换的实施例中,如图9所示,可以设置独立于栅线13的触控发射线13’,并且触控发射线13’电连接至第一电极21。
根据本发明的另一方面的实施例,提供一种制作触控基板的方法包括如下步骤:
参见图1-4,在例如阵列基板之类的第一基板10上形成至少一对第一电极21和第二电极22,其中所述一对第一电极21和第二电极22中的两个电极间隔设置,所述一对第一电极21和第二电极22中的两个电极分别电连接至设置在第一基板中的相应的触控发射线和触控接收线;在形成有至少一对第一电极21和第二电极22的第一基板上沉积掺杂有例如石墨稀或者碳纳米管之类的压敏导电材料25的弹性层,例如丙烯酸树脂层;通过构图工艺对所述弹性层进行构图以形成至少一个弹性基体23;以及将第二基板与形成有弹性基体23的第一基板进行对盒。该第二基板可以是上述实施例所述的触控板30。
根据本发明上述实施例的方法制作的触控基板,当用手指40按压在第二基板(例如触控板30)上时,弹性基体23处于被按压的收缩状态,掺杂在弹性基体23中的石墨稀或者碳纳米管的单体呈有序的排列状态,由于石墨稀或者碳纳米管具有良好的导电性,掺杂有石墨稀或者碳纳米管的弹性基体23变成具有电荷传导功能,第一电极21和第二电极22之间转换成电连接状态。弹性基体23由高弹性的丙烯酸酯制成,可以快速准确地确定触控基板是否被手指按压的操作状态,提高了手指触控的便捷性、多点触控性能。
在一种示例性实施例中,通过构图工艺对所述弹性层进行构图以形成多个弹性基体23的步骤包括:在弹性层上沉积磁性材料层24;通过构图工艺对弹性层和磁性材料层24进行构图;以及利用磁体对磁性材料层24进行极化,以使形成在每个弹性基体23上的磁性材料层形成磁性触发层。
根据本发明上述实施例的方法制作的触控基板,可以使用手指触控压缩实现电压传感,也可以通过使设置在弹性基体上的磁性触发层受到电磁笔的磁性排斥力来压缩 弹性基体从而实现电压传感,从而具有手指触控和电磁笔触控的双触控功能。由于弹性基体中掺杂有例如石墨稀或者碳纳米管专利的压敏导电材料,本发明实施例的触控基板兼具了手指触控的便捷性、多点触控特点、以及电磁笔触控的高精度、快速记录或者原笔迹等精确操作的特点,优化了触控基板的结构,可以得到更加轻薄化的触控基板。
在一种示例性实施例中,通过构图工艺对所述弹性层和磁性材料层进行构图以形成多个弹性基体的步骤包括:在磁性材料层24上沉积光刻胶(未示出);利用掩模板(未示出)通过执行曝光、显影和蚀刻工艺对弹性层、磁性材料层24和光刻胶进行构图;以及剥离光刻胶。将触控板30与形成有弹性层和磁性材料层的阵列基板20进行对盒,从而形成本发明实施例的触控基板。
在剥离光刻胶之后,采用氧气灰化阵列基板的表面,以使残余的碳材料反应生成二氧化碳,以提高触控基板的性能。
在一种示例性实施例中,第一基板10为阵列基板,在第一基板10上形成至少一对第一电极和第二电极的步骤包括:由同一透明导电材料利用同一掩模板在一次构图工艺中形成公共电极18、第一电极21和第二电极22,并且形成在阵列基板上的栅线与相应的第一电极电连接,使得所述栅线用做所述触控发射线。这样,能够减少使用掩模板的数量,简化制作工艺;而且可以减少阵列基板上的布线数量,提高触控信号处理的效率。
在一种示例性实施例中,参见图8,第一基板10为阵列基板,并且在第一基板上形成至少一对第一电极和第二电极的步骤包括:在阵列基板10的公共电极18上覆盖透明的绝缘层29;并由同一透明导电材料在一次构图工艺中在所述绝缘层29上形成所述第一电极21和第二电极22;以及通过形成在绝缘层29中的过孔(未示出)将形成在阵列基板10上的栅线13与相应的一对第一电极21和第二电极22中的一个电连接,使得所述栅线用做所述触控发射线。也就是说,公共电极18设置在绝缘层29的下侧,第一电极21和第二电极22设置在绝缘层29的上侧。这样可以减少触控感应单元20与第一电极21和第二电极22对公共电极18的串扰。另外,能够减少使用掩模板的数量,简化制作工艺;而且可以减少阵列基板上的布线数量,提高触控信号处理的效率。
根据本发明进一步发明的实施例,提供一种触控显示装置,包括上述任一实施例所述的触控基板、以及电磁笔,所述电磁笔的一端设有包括磁性材料的接触头,所述接触头的磁性材料的磁性与磁性触发层的磁性材料的磁性相同。触控显示装置可以为手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪、电子纸等任何具有显示功能的产品或部件。
根据本发明上述实施例的触控感应单元、触控基板及其制作方法、触控显示面板、以及触控显示装置,可以使用手指触控压缩实现电压传感,也可以通过使设置在 弹性基体上的磁性触发层受到电磁笔的磁性排斥力来压缩弹性基体从而实现电压传感,从而具有手指触控和电磁笔触控的双触控功能。由于弹性基体中掺杂有石墨稀或者碳纳米管,本发明实施例的触控基板兼具了手指触控的便捷性、多点触控特点、以及电磁笔触控的高精度、快速记录或者原笔迹等精确操作的特点,优化了触控基板的结构,可以得到更加轻薄化的触控基板。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (25)

  1. 一种触控感应单元,包括:
    相离设置的至少一对第一电极和第二电极;
    至少一个弹性基体,所述至少一个弹性基体中含有压敏导电材料,所述至少一个弹性基体在受力变形时使所述至少一对第一电极和第二电极中的相对应的第一电极和第二电极电连接;以及
    触控板,所述触控板设置于所述至少一个弹性基体的受力的一侧。
  2. 如权利要求1所述的触控感应单元,其中,所述至少一对第一电极和第二电极与所述至少一个弹性基体对应设置,且所述触控板与所述至少一个弹性基体间隔设置。
  3. 如权利要求1所述的触控感应单元,还包括磁性触发层,所述磁性触发层在所述触控板与所述至少一个弹性基体之间且设置在所述至少一个弹性基体的受力的一侧。
  4. 如权利要求1所述的触控感应单元,其中,所述压敏导电材料包括石墨稀、碳纳米管、导电炭黑、金属粉和金属纤维中的至少一种或它们的任意组合。
  5. 如权利要求1所述的触控感应单元,其中,所述至少一个弹性基体由丙烯酸树脂、乙丙橡胶、丁腈橡胶、氯丁橡胶和硅橡胶中的至少一种或它们的任意组合制成。
  6. 如权利要求1所述的触控感应单元,其中,所述触控板由可受力变形的材料制成,用于在受力变形后压迫所述至少一个弹性基体变形。
  7. 如权利要求1所述的触控感应单元,其中,所述至少一对第一电极和第二电极均设置为多对第一电极和第二电极,相应的一对第一电极和第二电极中的第一电极和第二电极相互间隔设置。
  8. 如权利要求1所述的触控感应单元,其中,所述弹性基体与所述一对第一电极和第二电极中的两个电极均接触。
  9. 如权利要求1-6中任一项所述的触控感应单元,其中,所述触控感应单元设置于显示面板中,所述至少一个弹性基体设置在所述显示面板的上基板的内表面,所述至少一个对第一电极和第二电极中的第一电极和第二电极设置在所述显示面板的下基板的内表面。
  10. 一种触控基板,包括至少一个如权利要求1-9中任一项所述的触控感应单元。
  11. 如权利要求10所述的触控基板,其中,所述触控基板还包括:至少一条触控发射线和至少一条触控接收线,每个所述第一电极电连接至相应的所述触控发射线,每个所述第二电极电连接至相应的所述触控接收线。
  12. 如权利要求10或11所述的触控基板,其中,所述触控基板应用于液晶显示面板中,所述触控基板上还设置有彩色滤光单元。
  13. 如权利要求12所述的触控基板,其中,所述触控基板还包括公共电极,
    所述公共电极、所述至少一对第一电极和第二电极由同一透明导电材料形成在同一层中;或者所述公共电极上覆盖透明的绝缘层,并由同一透明导电材料在一次构图工艺中在所述绝缘层上形成所述至少一对第一电极和第二电极。
  14. 一种触控显示面板,包括如权利要求10-13中的任一项所述的触控基板、阵列基板、以及所述触控基板和所述阵列基板之间的液晶层;其中,所述阵列基板包括:
    多条栅线和多条数据线,所述栅线和数据线相互交叉布置以形成多个显示单元;以及
    多个薄膜晶体管,每个薄膜晶体管设置在相应的所述显示单元中并与相应的所述栅线电连接。
  15. 如权利要求14所述的触控显示面板,其中,所述阵列基板包括公共电极,所述至少一对第一电极和第二电极和所述公共电极由同一层透明导电材料通过同一次构图工艺形成。
  16. 如权利要求14所述的触控显示面板,其中,所述阵列基板包括公共电极,所述至少一对第一电极和第二电极位于所述公共电极的出光方向一侧,所述公共电极与所述至少一对第一电极和第二电极中的第一电极之间、所述公共电极与所述至少一对第一电极和第二电极中的第二电极之间均间隔有透明绝缘层。
  17. 如权利要求14-16中任一项所述的触控显示面板,其中,所述栅线用做所述触控发射线。
  18. 如权利要求17所述的触控显示面板,其中,通过过孔将栅线与相应的第一电极和第二电极中的一个电极电连接。
  19. 一种触控显示装置,包括:
    如权利要求14-18中的任一项所述的触控显示面板;以及
    电磁笔,所述电磁笔的一端设有包括磁性材料的接触头,所述接触头的磁性材料的磁性与磁性触发层的磁性材料的磁性相同。
  20. 一种制作触控基板的方法,包括如下步骤:
    在第一基板上形成至少一对第一电极和第二电极,所述至少一对第一电极和第二电极中的第一电极分别电连接至设置在所述第一基板中的相对应的触控发射线,所述 至少一对第一电极和第二电极中的第二电极分别电连接至设置在所述第一基板中的相对应的触控接收线;
    在形成有至少一对第一电极和第二电极的第一基板上形成包含有压敏导电材料的弹性层;
    通过构图工艺对所述弹性层进行构图以形成至少一个弹性基体;以及
    将第二基板与形成有弹性基体的第一基板进行对盒。
  21. 如权利要求20所述的方法,其中,通过构图工艺对所述弹性层进行构图以形成至少一个弹性基体的步骤包括:
    在弹性层上沉积磁性材料层;
    通过构图工艺对所述弹性层和磁性材料层进行构图;以及
    利用磁体对磁性材料层进行极化,以使形成在每个弹性基体上的磁性材料层形成磁性触发层。
  22. 如权利要求21所述的方法,其中,通过构图工艺对所述弹性层和磁性材料层进行构图的步骤包括:
    在磁性材料层上沉积光刻胶;
    利用掩模板通过执行曝光、显影和蚀刻工艺对所述弹性层、磁性材料层和光刻胶进行构图;以及
    剥离光刻胶。
  23. 如权利要求22所述的方法,其中,在剥离光刻胶之后,采用氧气灰化阵列基板的表面,以使残余的碳材料反应生成二氧化碳。
  24. 如权利要求20-23中的任一项所述的方法,其中,所述第一基板为阵列基板,在第一基板上形成至少一对第一电极和第二电极的步骤包括:由同一透明导电材料在一次构图工艺中形成阵列基板的公共电极、至少一对第一电极和第二电极,并且形成在阵列基板上的栅线与相应的第一电极电连接,使得所述栅线用做所述触控发射线。
  25. 如权利要求20-23中的任一项所述的方法,其中,所述第一基板为阵列基板,在第一基板上形成至少一对第一电极和第二电极的步骤包括:
    在所述阵列基板的公共电极上覆盖透明的绝缘层;
    由同一透明导电材料在一次构图工艺中在所述绝缘层上形成所述至少一对第一电极和第二电极;以及
    通过形成在所述绝缘层中的过孔将形成在阵列基板上的栅线与所述至少一对第一电极和第二电极中的相应的第一电极电连接,使得所述栅线用做所述触控发射线。
PCT/CN2015/077966 2014-12-30 2015-04-30 触控感应单元、触控基板及其制作方法、触控显示面板和触控显示装置 WO2016107034A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/912,658 US9965128B2 (en) 2014-12-30 2015-04-30 Touch sensing unit, touch substrate and method for producing the same, touch display panel and touch display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410841677.8A CN104503654B (zh) 2014-12-30 2014-12-30 触控感应单元、触控基板及其制作方法以及触控显示面板
CN201410841677.8 2014-12-30

Publications (1)

Publication Number Publication Date
WO2016107034A1 true WO2016107034A1 (zh) 2016-07-07

Family

ID=52945055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/077966 WO2016107034A1 (zh) 2014-12-30 2015-04-30 触控感应单元、触控基板及其制作方法、触控显示面板和触控显示装置

Country Status (3)

Country Link
US (1) US9965128B2 (zh)
CN (1) CN104503654B (zh)
WO (1) WO2016107034A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3316088A1 (en) * 2016-10-31 2018-05-02 LG Display Co., Ltd. Electronic device having force touch function
CN113093944A (zh) * 2021-04-19 2021-07-09 江西展耀微电子有限公司 线路及其制备方法、触摸屏
CN113138696A (zh) * 2021-04-30 2021-07-20 北京钛方科技有限责任公司 一种触摸物触头规格的识别方法、装置和存储介质

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104298404B (zh) * 2014-10-28 2017-05-31 上海天马微电子有限公司 阵列基板及其制作方法、显示装置及其驱动方法
CN104503654B (zh) 2014-12-30 2017-08-04 京东方科技集团股份有限公司 触控感应单元、触控基板及其制作方法以及触控显示面板
CN105224126B (zh) * 2015-09-17 2017-02-01 京东方科技集团股份有限公司 触摸屏及其压力触控检测方法
TW201712504A (zh) * 2015-09-30 2017-04-01 南昌歐菲光科技有限公司 觸摸顯示裝置
CN106711166B (zh) * 2015-10-30 2024-01-19 京东方科技集团股份有限公司 显示基板及其制作方法和显示装置
CN106855764B (zh) * 2015-12-09 2023-05-02 安徽精卓光显技术有限责任公司 触摸显示装置
KR20180042512A (ko) * 2016-10-17 2018-04-26 삼성디스플레이 주식회사 터치 센서 및 이를 포함하는 표시 장치
CN107357476A (zh) * 2017-07-10 2017-11-17 京东方科技集团股份有限公司 触控结构及触控屏
WO2020181902A1 (zh) * 2019-03-11 2020-09-17 郑庆生 一种高精度传感器及在测力鞋垫的应用
CN111240523B (zh) * 2020-02-11 2021-10-08 武汉华星光电半导体显示技术有限公司 一种显示装置
CN111600592B (zh) * 2020-05-15 2023-06-23 业成科技(成都)有限公司 电容式触控按键
KR20220030383A (ko) * 2020-08-28 2022-03-11 삼성디스플레이 주식회사 표시 장치 및 그것의 동작 방법
CN112860118B (zh) * 2021-03-08 2024-04-02 深圳市和圣达光电有限公司 一种用于投影触控的触摸屏及其加工工艺
CN114879396B (zh) * 2022-05-23 2023-03-31 惠科股份有限公司 像素驱动结构、制备方法及显示面板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050285846A1 (en) * 2004-06-23 2005-12-29 Pioneer Corporation Tactile display device and touch panel apparatus with tactile display function
CN102214027A (zh) * 2010-04-06 2011-10-12 元太科技工业股份有限公司 显示面板
CN102906680A (zh) * 2010-05-24 2013-01-30 日本写真印刷株式会社 保护面板及电子设备
CN104503654A (zh) * 2014-12-30 2015-04-08 京东方科技集团股份有限公司 触控感应单元、触控基板及其制作方法以及触控显示面板

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5409369B2 (ja) * 2006-10-12 2014-02-05 カンブリオス テクノロジーズ コーポレイション ナノワイヤベースの透明導電体およびその適用
US9430078B2 (en) * 2009-08-12 2016-08-30 Google Technology Holdings LLC Printed force sensor within a touch screen
US8669952B2 (en) * 2011-06-09 2014-03-11 Sharp Laboratories Of America, Inc. Metallic nanoparticle pressure sensor
JP5907550B2 (ja) * 2011-08-31 2016-04-26 Necプラットフォームズ株式会社 Usb機器およびusb機器の制御方法
CN102955311B (zh) * 2012-10-30 2015-12-09 南京中电熊猫液晶显示科技有限公司 一种内置触控的液晶显示装置
WO2014141584A1 (ja) * 2013-03-13 2014-09-18 ソニー株式会社 センサ装置、入力装置および電子機器
CN204347811U (zh) * 2014-12-30 2015-05-20 京东方科技集团股份有限公司 触控感应单元、触控基板、触控显示面板及触控显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050285846A1 (en) * 2004-06-23 2005-12-29 Pioneer Corporation Tactile display device and touch panel apparatus with tactile display function
CN102214027A (zh) * 2010-04-06 2011-10-12 元太科技工业股份有限公司 显示面板
CN102906680A (zh) * 2010-05-24 2013-01-30 日本写真印刷株式会社 保护面板及电子设备
CN104503654A (zh) * 2014-12-30 2015-04-08 京东方科技集团股份有限公司 触控感应单元、触控基板及其制作方法以及触控显示面板

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3316088A1 (en) * 2016-10-31 2018-05-02 LG Display Co., Ltd. Electronic device having force touch function
US10402001B2 (en) 2016-10-31 2019-09-03 Lg Display Co., Ltd. Electronic device having force touch function
CN113093944A (zh) * 2021-04-19 2021-07-09 江西展耀微电子有限公司 线路及其制备方法、触摸屏
CN113138696A (zh) * 2021-04-30 2021-07-20 北京钛方科技有限责任公司 一种触摸物触头规格的识别方法、装置和存储介质
CN113138696B (zh) * 2021-04-30 2023-09-12 北京钛方科技有限责任公司 一种触摸物触头规格的识别方法、装置和存储介质

Also Published As

Publication number Publication date
CN104503654A (zh) 2015-04-08
US9965128B2 (en) 2018-05-08
CN104503654B (zh) 2017-08-04
US20160349887A1 (en) 2016-12-01

Similar Documents

Publication Publication Date Title
WO2016107034A1 (zh) 触控感应单元、触控基板及其制作方法、触控显示面板和触控显示装置
US20200183530A1 (en) Smartphone
TWI612451B (zh) 觸控顯示裝置
KR102411328B1 (ko) 표시 장치
CN106020553B (zh) 一种显示面板、其制作方法及显示装置
US10379648B2 (en) Touch sensor and preparation method thereof
WO2018040717A1 (zh) 触控显示面板及其驱动方法以及触控显示装置
US11561636B2 (en) Touch input device for detecting pressure with display noise compensation
KR102082425B1 (ko) 평판표시장치
US11809651B2 (en) Display device and method for providing haptic feedback by display device
CN104409473B (zh) 压电触控式有机发光显示面板及制造方法、有机发光显示器
US20180232092A1 (en) Touch input device
TWI649685B (zh) 窄邊框高感測靈敏度之內嵌式有機發光二極體觸控顯示面板結構
CN107768382B (zh) 发光二极管触控显示装置
US11256348B2 (en) Display panel and display device
US11762469B2 (en) Display device and haptic feedback method of the same
WO2017166404A1 (zh) 触控基板及其驱动方法、显示装置
CN106406591A (zh) Oled触控基板、其制造方法及控制方法
CN105702701A (zh) 压电触控式有机发光显示面板及制造方法、有机发光显示器
US20190243485A1 (en) Touch input device
TWI637299B (zh) 觸控顯示裝置
US20120048828A1 (en) Method of manufacturing conductive transparent substrate
KR20110017674A (ko) 터치 스크린 일체형 표시 장치
CN105892762A (zh) 一种红外触控显示屏及其触控方法
KR101852413B1 (ko) 복수의 압력을 감지할 수 있는 압력 감지부 및 이를 포함하는 터치 입력 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14912658

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15874727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 051217)

122 Ep: pct application non-entry in european phase

Ref document number: 15874727

Country of ref document: EP

Kind code of ref document: A1