WO2016106808A1 - 触控显示装置及电子设备 - Google Patents

触控显示装置及电子设备 Download PDF

Info

Publication number
WO2016106808A1
WO2016106808A1 PCT/CN2015/070384 CN2015070384W WO2016106808A1 WO 2016106808 A1 WO2016106808 A1 WO 2016106808A1 CN 2015070384 W CN2015070384 W CN 2015070384W WO 2016106808 A1 WO2016106808 A1 WO 2016106808A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
sensing
driving
electrode
electrodes
Prior art date
Application number
PCT/CN2015/070384
Other languages
English (en)
French (fr)
Inventor
谢剑星
黄耀立
黄俊宏
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/418,628 priority Critical patent/US9952695B2/en
Publication of WO2016106808A1 publication Critical patent/WO2016106808A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13452Conductors connecting driver circuitry and terminals of panels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a touch display device, and to an electronic device having the touch display device.
  • capacitive touch screens are widely used in various electronic products, such as smart phones, tablets, and the like.
  • the existing capacitive touch screen is divided into an external capacitive screen represented by G+G (Glass+Glass), GF (Glass-Film), GFF (Glass-Film-Film), OGS (One glass solution), etc.
  • On cell and In cell represent the embedded capacitive screen.
  • people are pursuing a more and more user-friendly experience, which has led to the situation of OGS, On cell, and In cell. Because of the unique advantages of In cell in the manufacturing process, it can be compared with OGS and On cell. It is lighter, lighter, and more responsive to customer needs. Therefore, the In cell touch display device is bound to become the mainstream of touch display devices.
  • FIG. 1 is a schematic plan view of a common electrode layer 100 of a prior art In cell type touch display device.
  • the common electrode layer 100 is divided into a plurality of driving regions 101 and a plurality of sensing regions 102.
  • Each driving region 101 is provided with a corresponding driving region electrode
  • each sensing region 102 is provided with a corresponding sensing region electrode.
  • the driving regions 101 are arranged in a matrix, and the sensing regions 102 are disposed between the adjacent two columns of driving regions 101.
  • the drive region electrodes of the adjacent two drive regions 101 (referred to simply as drive region pairs) disposed in the same row are electrically connected by the drive leads 103. Due to the presence of the sensing region 102, it is necessary to route the driving leads 103 in a bridging manner.
  • FIG. 2 shows the manner in which the drive leads 103 shown in FIG. 1 are arranged.
  • a planarization layer 200 and a gate insulating layer 300 are sequentially disposed under the common electrode layer 100, wherein the planarization layer 200 is provided with data lines (because of the existence of the data lines, the planarization layer cannot be present) 200 is provided with a metal connection line 302 to avoid mutual interference between the metal connection line 302 and the data line) and a plurality of first via holes 201.
  • the gate insulating layer 300 is provided with a plurality of second via holes 301 and a plurality of metal connection lines. 302. For each drive zone pair, there are two first vias 201 and two second vias 301.
  • a metal connecting line 302 corresponding thereto, wherein the driving area electrode of one driving area 101 is sequentially electrically connected to one end of the metal connecting line 302 through the first via hole 201 and the second via hole 301 directly under the driving area 101, and the other driving The driving region electrodes of the region 101 are sequentially electrically connected to the other ends of the metal connecting wires 302 through the first via holes 201 and the second via holes 301 located directly below them.
  • the driving region electrodes and the metal connecting wires 302 filled in the first via 201 and the second via 301 together constitute a driving lead 103 for connecting the above-mentioned driving region pair.
  • planarizing layer 200 is generally thick (for example, 2 is 20 times the thickness of the gate insulating layer 300), further increasing the process difficulty of boring. Therefore, the manufacturing process of the In cell type touch display device in the prior art is complicated, and the yield is low.
  • the technical problem to be solved by the present invention is that in the process of manufacturing the In cell type touch display device in the prior art, in order to lay the driving leads, it is necessary to successively dig through the two layers of the planarization layer and the gate insulating layer, and planarize.
  • the layer is generally thicker, which further increases the process difficulty of boring. Therefore, the manufacturing process of the In cell type touch display device in the prior art is complicated and the yield is low.
  • the present invention provides a touch display device and an electronic device having the touch display device.
  • a touch display device comprising a sensing layer, an insulating layer and a common electrode layer disposed in order from top to bottom, the common electrode layer comprising:
  • the sensing layer includes a plurality of suspension connecting lines corresponding to the floating area, and for each floating connecting line, one end of the floating connecting line is centered by the first via hole in the insulating layer and the floating area
  • the suspension zone electrodes in one suspension zone are electrically connected, and the other end is electrically connected to the suspension zone electrodes in the other suspension zone of the suspension zone through a second via hole in the suspension zone.
  • both the driving region electrode and the floating region electrode are common to the driving circuit when the image is displayed
  • the voltage output is electrically connected
  • the driving region electrodes are electrically connected to a common voltage output terminal in the driving circuit, and the floating region electrodes are left blank.
  • the sensing layer further includes a plurality of first sensing regions corresponding to the floating region, the first sensing region is disposed directly above the floating region corresponding thereto, the first A sensing area electrode is disposed in a sensing area.
  • the sensing region electrode in the first sensing region is one of a metal mesh, a transparent indium tin oxide electrode, and a carbon nanotube electrode.
  • the sensing layer further includes a plurality of second sensing regions that are in one-to-one correspondence with the driving region, and the second sensing region is disposed directly above the driving region corresponding thereto, the first The sensing region electrode is disposed in the second sensing region; the sensing region electrode in the second sensing region is electrically connected to the driving region electrode in the driving region corresponding thereto through the third via hole in the insulating layer.
  • the sensing region electrodes in the second sensing region are electrically connected through at least two third via holes in the insulating layer and driving region electrodes in the driving region corresponding thereto.
  • the third vias are arranged in a rectangular array.
  • the center distance of two adjacent third via holes located in the same row is 3 pixels
  • the center distance of adjacent two third via holes located in the same column is 3 pixels
  • the sensing region electrode in the second sensing region is one of a metal mesh, a transparent indium tin oxide electrode, and a carbon nanotube electrode.
  • an electronic device having the above touch display device is provided.
  • the driving region electrode and the sensing region electrode are respectively disposed in the common electrode layer and the sensing layer, and only the edge layer is isolated between the common electrode layer and the sensing layer.
  • the driving region electrodes may be electrically connected by driving leads in the common electrode layer
  • the floating region electrodes may be electrically connected between floating electrodes distributed in the sensing layer and the insulating layer.
  • the process of forming each of the floating leads only the layer of the insulating layer needs to be perforated, and the thickness of the insulating layer is much smaller than the thickness of the planarizing layer, thereby effectively reducing the process difficulty of boring and overcoming the cause.
  • the defect of the yield reduction caused by the multi-layer opening simplifies the product structure and improves the yield.
  • the manufacturing process of the touch display device can be completed by using a conventional TFT process without modifying the existing machine configuration.
  • the In cell technology is used to integrate touch and display on the display panel, which improves production efficiency.
  • FIG. 1 is a schematic plan view showing a common electrode layer of a prior art In cell type touch display device
  • FIG 2 shows the arrangement of the drive leads shown in Figure 1;
  • FIG. 3 is a schematic structural diagram of a touch display device according to an embodiment of the present invention.
  • Figure 4 is a plan view showing the common electrode layer shown in Figure 3;
  • Figure 5 shows a schematic plan view of the sensing layer shown in Figure 3;
  • FIG. 6 is a schematic plan view showing the sensing layer shown in FIG. 5 and the common electrode layer shown in FIG. 4 overlapping;
  • Figure 7 is a schematic view showing the suspension zone electrode of the suspension zone shown in Figure 4 connected by a floating lead;
  • FIG. 8 shows another schematic plan view of the sensing layer shown in FIG.
  • the technical problem to be solved by the present invention is that in the process of manufacturing the In cell type touch display device in the prior art, in order to lay the driving leads, it is necessary to successively dig through the two layers of the planarization layer and the gate insulating layer, and planarize.
  • the layer is generally thicker, which further increases the process difficulty of boring. Therefore, the manufacturing process of the In cell type touch display device in the prior art is complicated and the yield is low.
  • an embodiment of the present invention provides a touch display device.
  • FIG. 3 it is a schematic structural diagram of a touch display device according to an embodiment of the present invention.
  • the touch display device includes a common electrode layer 3, a first insulating layer 4 formed on the common electrode layer 3, and a first insulating layer. Sensing layer above layer 4 5.
  • the touch display device further includes a thin film transistor array substrate 1 , a thin film transistor array 2 formed on the thin film transistor array substrate 1 , a second insulating layer 6 formed on the sensing layer 5 , and formed in the second a pixel electrode layer 7 over the insulating layer 6, a liquid crystal layer 8 formed over the pixel electrode layer 7, and a color filter substrate 9 formed over the liquid crystal layer 8, and a common electrode layer 3 is formed on the thin film transistor array 2 on.
  • FIG. 4 shows a plan view of the common electrode layer 3 shown in FIG.
  • the common electrode layer 3 includes a plurality of driving regions 31, a plurality of floating regions 32, and a plurality of driving leads 33.
  • the driving regions 31 are arranged in a rectangular array, and each driving region 31 is internally provided with driving region electrodes, and the respective driving region electrodes are respectively controlled by a common voltage output terminal of a driving circuit (not shown in the drawing).
  • a plurality of floating zones 32 are disposed between adjacent columns of drive zones 31. Referring to Figure 2, similar to drive zone 31, suspension zones 32 are also arranged in a rectangular array. The adjacent floating zones 32 are spaced apart by a predetermined gap, and each floating zone 32 is provided with a floating zone electrode.
  • Each of the floating zone electrodes is also controlled by the common voltage output of the drive circuit when displaying the image.
  • the touch and display of the touch display device are controlled in a time-division manner, which will be described in detail below.
  • each adjacent two suspension zones 32 constitute a pair of suspension zones.
  • there is a drive lead 33 extending through the internal gap of the pair of suspension zones (i.e., the gap between the two suspension zones 32 constituting the pair of suspension zones) to electrically connect adjacent ones in the same row Drive zone electrodes within the two drive zones 31.
  • the drive zone electrodes located in adjacent two drive zones 31 of the same column are disconnected from each other.
  • the driving region electrodes are electrically connected by the driving leads 33 of the common electrode layer 3, and the floating region electrodes are electrically connected by floating leads. See Figure 5, Figure 6, and Figure 7 for details.
  • FIG. 5 shows a schematic plan view of the sensing layer 5 shown in FIG. 3, and FIG. 6 shows a schematic plan view of the sensing layer 5 shown in FIG. 5 and the common electrode layer 3 shown in FIG.
  • Figure 7 shows a schematic diagram of the suspension zone electrodes of the suspension zone 32 shown in Figure 4 connected by floating leads.
  • the sensing layer 5 includes a plurality of suspension connecting lines 52, and the number of the floating connecting lines 52 is equal to the number of floating area pairs. Each suspension connection line 52 uniquely corresponds to a pair of suspension zones.
  • a plurality of first via holes (not shown in the drawing) and a plurality of second via holes (not shown in the drawing) are disposed in the first insulating layer 4, wherein the number of the first via holes is opposite to the floating region
  • the number of the second vias is equal to the number of pairs of the floating regions.
  • Each of the first vias uniquely corresponds to a pair of floating zones (or uniquely corresponding to a suspension connecting line 52), each second via uniquely corresponding to a pair of floating zones (or uniquely corresponding to a floating connecting wire 52) ).
  • One end of the suspension connecting line 52 corresponding thereto is disposed directly above each of the first through holes, and a floating area 32 of the pair of floating areas corresponding thereto is disposed directly below.
  • the other end of the suspension connection line 52 corresponding thereto is disposed directly above each of the second via holes, and another suspension region 32 of the pair of suspension regions corresponding thereto is disposed directly below. Therefore, for each suspension connection line 52, one end of the suspension connection line 52 passes through the first via hole in the first insulation layer 4 and is suspended.
  • the suspension region electrodes in one of the suspension regions 32 are electrically connected, and the other end of the suspension connection line 52 passes through the second via in the first insulating layer 4 and the other of the suspension regions 32 in the suspension region
  • the electrodes in the suspension zone are electrically connected.
  • the suspension connection lines 52 filled in the first via holes and the second via holes and the suspension connection lines 52 in the sensing layer 5 together constitute a floating lead for connecting the pair of floating regions. With the above structure, the electrical connection of the electrodes of the floating zone in the adjacent two floating zones 32 can be realized.
  • the driving region electrode and the sensing region electrode are respectively disposed in the common electrode layer 3 and the sensing layer 5, and only the first insulating layer 4 is separated between the common electrode layer 3 and the sensing layer 5.
  • the drive region electrodes may be electrically connected between the drive leads 33 in the common electrode layer 3, and the suspension region electrodes may be electrically connected between the suspension layers distributed in the sensing layer 5 and the first insulating layer 4.
  • the thickness of the first insulating layer 4 is much smaller than the thickness of the planarizing layer, thereby effectively reducing the process of digging holes.
  • the manufacturing process of the touch display device can be completed by using a conventional TFT process without modifying the existing machine configuration.
  • the In cell technology is used to integrate touch and display on the display panel, which improves production efficiency.
  • the display and touch time-sharing control modes are used to achieve a perfect cooperation between the display function and the touch function of the touch display device.
  • the driving region electrodes in each driving region 31 and the floating region electrodes in each floating region 32 are electrically connected to a common voltage output terminal in the driving circuit.
  • the driving region electrodes in each driving region 31 remain electrically connected to the common voltage output terminal in the driving circuit, and at this time, the floating region electrodes in the floating region 32 are left blank.
  • the floating zone electrode can be vacant in the following manner: an electronic switch is connected in series between the floating zone electrode and the common voltage output of the drive circuit, the electronic switch being controlled by a controller.
  • the controller determines that the touch display device is currently in the display image state and the touch scan state: when in the display image state, the controller controls the electronic switch to be closed to electrically connect the floating region electrode to the common voltage output terminal of the driving circuit; When in the touch scanning state, the controller controls the electronic switch to open to disconnect the floating region electrode from the common voltage output terminal of the driving circuit, and the floating region electrode is blanked.
  • the above electronic switch is preferably a switching transistor.
  • the sensing layer 5 further includes a plurality of first sensing regions 51 corresponding to the floating region 32, and the first sensing region 51 is disposed at Directly above the corresponding floating region 32, a sensing region electrode is disposed in the first sensing region 51.
  • the driving region electrodes in each driving region 31 remain electrically connected to the common voltage output terminal in the driving circuit, and at this time, the floating region electrodes in the floating region 32 are evacuated, and the floating region electrodes correspond to the same.
  • the sensing region electrodes are electrically coupled, thereby increasing signal inductance and increasing signal to noise ratio.
  • the sensing region electrode in the first sensing region 51 is preferably one of a metal mesh, a transparent indium tin oxide electrode, and a carbon nanotube electrode.
  • the sensing region electrode in the first sensing region 51 is a metal mesh, the conductive resistance is lower, the sensing layer is thinner, and the strength and cost performance of the touch display device are improved.
  • FIG. 8 shows another schematic plan view of the sensing layer 5 shown in FIG.
  • the sensing layer 5 as shown in FIG. 8 further includes a second sensing region 53 on the basis of the above embodiment.
  • the number of the second sensing regions 53 is equal to the number of the driving regions 31, and each of the second sensing regions 53 uniquely corresponds to one driving region 31, and the second sensing region 53 is disposed at the driving region 31 corresponding thereto.
  • a sensing region electrode is disposed in the second sensing region 53.
  • a third via hole (not shown in the drawing) for connecting the sensing region electrode and the corresponding driving region electrode is further provided in the first insulating layer 4.
  • the sensing region electrode in the second sensing region 53 is electrically connected through a third via in the first insulating layer 4 and a driving region electrode in the driving region 31 corresponding thereto.
  • the sensing region electrodes in the second sensing region 53 are preferably one of a metal mesh, a transparent indium tin oxide electrode, and a carbon nanotube electrode. kind.
  • the sensing region electrode in the second sensing region 53 is a metal mesh, the conductive resistance is lower, the sensing layer is thinner, and the strength and cost performance of the touch display device are improved.
  • the setting of the sensing region electrodes in the second sensing region 53 can improve the balance of the display pixels.
  • the driving region electrode is generally a transparent indium tin oxide electrode, and its resistance is large.
  • the difference in resistance of the driving region electrodes in the respective driving regions 31 is large, thereby causing imbalance of display pixels.
  • a resistor is connected in parallel at both ends of each driving region electrode, so that the driving region electrode and the sensing region electrode are connected in parallel.
  • the resistance is reduced, which in turn causes a difference in resistance (total resistance after parallel connection) of the driving region electrodes in the driving region 31, thereby contributing to improvement in balance of display pixels.
  • the sensing region electrodes in the second sensing region 53 are preferably metal meshes, since the resistance of the metal mesh is small, the problem of a decrease in yield due to excessive reduction in total resistance can be avoided.
  • the third via for connecting the sensing region electrode and the driving region electrode in the second sensing region 53 may be one hole or a collection of a plurality of holes.
  • the sensing region electrode in the second sensing region 53 passes through at least two third vias in the first insulating layer 4 and the driving region electrodes in the driving region 31 corresponding thereto Electrical connection.
  • the third via holes are arranged in a rectangular array, and the center distances of two adjacent third via holes in the same row are 3 pixels, and the center distances of two adjacent third via holes in the same column It is 3 pixels.
  • an embodiment of the present invention further provides an electronic device having the above touch display device.
  • the electronic device may be a product or component having any display function such as a liquid crystal display panel, an electronic paper, a liquid crystal television, a liquid crystal display, a digital photo frame, a mobile phone, a tablet computer, or the like.

Abstract

一种触控显示装置及电子设备,触控显示装置包括顺次设置的感测层(5)、绝缘层(4)和公共电极层(3),公共电极层(3)包括驱动区(31)、悬浮区(32)和驱动引线(33),感测层(5)包括悬浮连接线(52)。本触控显示装置能够有效地减少挖孔的工艺难度,简化产品结构,提高良品率。

Description

触控显示装置及电子设备
本申请要求享有2014年12月31日提交的名称为“触控显示装置及电子设备”的中国专利申请CN201410856122.0的优先权,其全部内容通过引用并入本文中。
技术领域
本发明涉及显示技术领域,尤其涉及一种触控显示装置,还涉及一种具有该触控显示装置的电子设备。
背景技术
随着智能电子产品的普及,电容式触摸屏被广泛应用于各种电子产品,例如如智能手机、平板电脑等。现有的电容式触摸屏分为以G+G(Glass+Glass)、GF(Glass-Film)、GFF(Glass-Film-Film)、OGS(One glass solution)等为代表的外挂式电容屏和以On cell、In cell为代表的嵌入式电容屏。近年来,人们追求越来越轻薄化的用户式体验,促使OGS、On cell、In cell三种技术并争的局面,而由于In cell在制造过程上的独特优势可以做到比OGS和On cell更轻薄、透光性更好和更能满足客户需求,因此In cell式触控显示装置势必成为触控显示装置的主流。
如图1所示,是现有技术中In cell式触控显示装置的公共电极层100的平面示意图。公共电极层100被划分为多个驱动区101和多个感测区102,各个驱动区101内布设有相应的驱动区电极,各个感测区102内布设有相应的感测区电极。具体地,驱动区101呈矩阵排布,并且相邻两列驱动区101之间设置感测区102。设置在同一行的相邻两个驱动区101(简称为驱动区对)的驱动区电极通过驱动引线103电连接。由于感测区102的存在,因此需要采用桥接的方式布设驱动引线103。
图2示出了图1中所示的驱动引线103的布设方式。如图2所示,在公共电极层100的下方顺次设置有平坦化层200和栅极绝缘层300,其中平坦化层200内布设有数据线(由于数据线的存在,不能在平坦化层200布设金属连接线302,以避免金属连接线302与数据线的彼此干扰)和多个第一过孔201,栅极绝缘层300内布设有多个第二过孔301和多条金属连接线302。对于每个驱动区对而言,都有两个第一过孔201、两个第二过孔301 和一条金属连接线302与其对应,其中一个驱动区101的驱动区电极顺次贯穿位于其正下方的第一过孔201和第二过孔301与金属连接线302的一端电连接,另一个驱动区101的驱动区电极顺次贯穿位于其正下方的第一过孔201和第二过孔301与金属连接线302的另一端电连接。这里需要指出的是,填充在第一过孔201和第二过孔301中的驱动区电极以及金属连接线302共同构成了用于连接上述驱动区对的驱动引线103。可以看出,为了布设驱动引线103,需要先后挖通两层结构,而平坦化层200一般较厚(例如2,是栅极绝缘层300厚度的20倍),进一步增加了挖孔的工艺难度,因此现有技术中In cell式触控显示装置的制造过程复杂,良品率低。
发明内容
本发明所要解决的技术问题是:在制造现有技术中In cell式触控显示装置的过程中,为了布设驱动引线,需要先后挖通平坦化层和栅极绝缘层两层结构,而平坦化层一般较厚,进一步增加了挖孔的工艺难度,因此现有技术中In cell式触控显示装置的制造过程复杂,良品率低。
为了解决上述技术问题,本发明提供了一种触控显示装置以及具有该触控显示装置的电子设备。
根据本发明的一个方面,提供了一种触控显示装置,其包括从上至下依次设置的感测层、绝缘层和公共电极层,所述公共电极层包括:
呈矩形阵列排布的多个内设有驱动区电极的驱动区;
布设在相邻两列驱动区之间的多个内设有悬浮区电极的悬浮区,相邻两个悬浮区间隔设置并构成悬浮区对;以及
贯穿相邻两个悬浮区之间的间隙的驱动引线,位于同一行的相邻两个驱动区内的驱动区电极通过所述驱动引线电连接;
所述感测层包括多条与悬浮区对一一对应的悬浮连接线,且对于每条悬浮连接线,所述悬浮连接线的一端通过绝缘层中的第一过孔与悬浮区对中的一个悬浮区内的悬浮区电极电连接,另一端通过绝缘层中的第二过孔与所述悬浮区对中的另一个悬浮区内的悬浮区电极电连接。
优选的是,在显示图像时,所述驱动区电极和所述悬浮区电极均与驱动电路中的公共 电压输出端电连接;
在触控扫描时,所述驱动区电极与驱动电路中的公共电压输出端电连接,所述悬浮区电极置空。
优选的是,所述感测层还包括多个与所述悬浮区一一对应的第一感测区,所述第一感测区设置在与其相对应的悬浮区的正上方,所述第一感测区内设置有感测区电极。
优选的是,所述第一感测区内的感测区电极为金属网格、透明氧化铟锡电极和碳纳米管电极中的一种。
优选的是,所述感测层还包括多个与所述驱动区一一对应的第二感测区,所述第二感测区设置在与其相对应的驱动区的正上方,所述第二感测区内设置有感测区电极;所述第二感测区内的感测区电极通过绝缘层中的第三过孔和与其相对应的驱动区内的驱动区电极电连接。
优选的是,所述第二感测区内的感测区电极通过绝缘层中的至少两个第三过孔和与其相对应的驱动区内的驱动区电极电连接。
优选的是,所述第三过孔呈矩形阵列排布。
优选的是,位于同一行的相邻两个第三过孔的中心距为3像素,位于同一列的相邻两个第三过孔的中心距为3像素。
优选的是,所述第二感测区内的感测区电极为金属网格、透明氧化铟锡电极和碳纳米管电极中的一种。
根据本发明的另一个方面,提供了一种具有上述触控显示装置的电子设备。
与现有技术相比,上述方案中的一个或多个实施例可以具有如下优点或有益效果:
应用本发明所述的触控显示装置,分别将驱动区电极和感测区电极布设在公共电极层和感测层中,而公共电极层和感测层之间仅隔绝缘层。驱动区电极之间可通过公共电极层中的驱动引线电连接,而悬浮区电极之间可通过分布在感测层和绝缘层中的悬浮引线电连接。在形成每条悬浮引线的过程中,仅需要在绝缘层这一层中打孔,并且绝缘层的厚度远小于平坦化层的厚度,从而有效地减少了挖孔的工艺难度,同时克服了因多层开孔导致的良品率下降的缺陷,简化了产品结构,提高了良品率。其次,采用传统的TFT工艺即可完成触控显示装置的制造过程,无需改造现有的机台配置。另外,采用In cell技术,将触控与显示集成于显示面板,提高了生产效率。
本发明的其它特征和优点将在随后的说明书中阐述,并且部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例共同用于解释本发明,并不构成对本发明的限制。在附图中:
图1示出了现有技术中In cell式触控显示装置的公共电极层的平面示意图;
图2示出了图1中所示的驱动引线的布设方式;
图3示出了本发明实施例触控显示装置的结构示意图;
图4示出了图3中所示的公共电极层的平面示意图;
图5示出了图3中所示的感测层的一种平面示意图;
图6示出了图5所示的感测层和图4所示的公共电极层重合后的平面示意图;
图7示出了图4中所示的悬浮区的悬浮区电极利用悬浮引线连接的示意图;以及
图8示出了图3中所示的感测层的另一种平面示意图。
具体实施方式
以下将结合附图及实施例来详细说明本发明的实施方式,借此对本发明如何应用技术手段来解决技术问题,并达成技术效果的实现过程能充分理解并据以实施。需要说明的是,只要不构成冲突,本发明中的各个实施例以及各实施例中的各个特征可以相互结合,所形成的技术方案均在本发明的保护范围之内。
本发明所要解决的技术问题是:在制造现有技术中In cell式触控显示装置的过程中,为了布设驱动引线,需要先后挖通平坦化层和栅极绝缘层两层结构,而平坦化层一般较厚,进一步增加了挖孔的工艺难度,因此现有技术中In cell式触控显示装置的制造过程复杂,良品率低。为了解决上述技术问题,本发明实施例提供了一种触控显示装置。
如图3所示,是本发明实施例触控显示装置的结构示意图,该触控显示装置包括公共电极层3、形成于公共电极层3之上的第一绝缘层4和形成于第一绝缘层4之上的感测层 5。除此之外,触控显示装置还包括薄膜晶体管阵列基板1、形成于薄膜晶体管阵列基板1上的薄膜晶体管阵列2、形成于感测层5之上的第二绝缘层6、形成于第二绝缘层6之上的像素电极层7、形成于像素电极层7之上的液晶层8和形成于液晶层8之上的彩色滤光基板9,并且公共电极层3形成于薄膜晶体管阵列2之上。
具体地,图4示出了图3中所示的公共电极层3的平面示意图。如图4所示,公共电极层3包括多个驱动区31、多个悬浮区32和多条驱动引线33。驱动区31呈矩形阵列排布,并且每个驱动区31内部设置有驱动区电极,各个驱动区电极分别受控于驱动电路(附图中未示出)的公共电压输出端。在相邻两列驱动区31之间设置多个悬浮区32。参照图2,与驱动区31类似,悬浮区32也呈矩形阵列排布。相邻的悬浮区32之间间隔预设的间隙,并且每个悬浮区32内设置有悬浮区电极。各个悬浮区电极在显示图像时也受控于驱动电路的公共电压输出端。触控显示装置的触控和显示采用分时驱动的方式进行控制,这将在下文中进行详细阐述。在本文中,每个相邻的两个悬浮区32构成一个悬浮区对。对于每个悬浮区对,都存在一条驱动引线33从该悬浮区对的内部间隙(即构成悬浮区对的两个悬浮区32之间的间隙)中贯穿,以电连接位于同一行的相邻的两个驱动区31内的驱动区电极。位于同一列的相邻的两个驱动区31内的驱动区电极之间彼此断开。驱动区电极之间通过公共电极层3的驱动引线33电连接,而悬浮区电极之间则通过悬浮引线电连接。具体参见图5、图6和图7。
图5示出了图3中所示的感测层5的一种平面示意图,图6示出了图5所示的感测层5和图4所示的公共电极层3重合后的平面示意图,图7示出了图4中所示的悬浮区32的悬浮区电极利用悬浮引线连接的示意图。如图5至图7所示,感测层5包括多条悬浮连接线52,悬浮连接线52的条数与悬浮区对的个数相等。每条悬浮连接线52唯一地对应一个悬浮区对。在第一绝缘层4设置多个第一过孔(附图中未示出)和多个第二过孔(附图中未示出),其中第一过孔的个数与悬浮区对的个数相等,第二过孔的个数也与悬浮区对的个数相等。每个第一过孔唯一地对应一个悬浮区对(或者说唯一地对应一个悬浮连接线52),每个第二过孔唯一地对应一个悬浮区对(或者说唯一地对应一个悬浮连接线52)。每个第一过孔的正上方设置有与其相对应的悬浮连接线52的一端,正下方设置有与其相对应的悬浮区对中的一个悬浮区32。每个第二过孔的正上方设置有与其相对应的悬浮连接线52的另一端,正下方设置有与其相对应的悬浮区对中的另一个悬浮区32。因此,对于每条悬浮连接线52而言,悬浮连接线52的一端通过第一绝缘层4中的第一过孔与悬浮 区对中的一个悬浮区32内的悬浮区电极电连接,悬浮连接线52的另一端通过第一绝缘层4中的第二过孔与所述悬浮区对中的另一个悬浮区32内的悬浮区电极电连接。这里需要指出的是,填充在第一过孔和第二过孔中的悬浮连接线52以及感测层5中的悬浮连接线52共同构成了用于连接悬浮区对的悬浮引线。采用上述结构,即可实现相邻两个悬浮区32内的悬浮区电极的电连接。
在本实施例中,分别将驱动区电极和感测区电极布设在公共电极层3和感测层5中,而公共电极层3和感测层5之间仅隔第一绝缘层4。驱动区电极之间可通过公共电极层3中的驱动引线33电连接,而悬浮区电极之间可通过分布在感测层5和第一绝缘层4中的悬浮引线电连接。在形成每条悬浮引线的过程中,仅需要在第一绝缘层4这一层中打孔,并且第一绝缘层4的厚度远小于平坦化层的厚度,从而有效地减少了挖孔的工艺难度,同时克服了因多层开孔导致的良品率下降的缺陷,简化了产品结构,提高了良品率。其次,采用传统的TFT工艺即可完成触控显示装置的制造过程,无需改造现有的机台配置。另外,采用In cell技术,将触控与显示集成于显示面板,提高了生产效率。
在本发明的一优选的实施例中,采用显示和触控分时控制的方式,实现触控显示装置显示功能和触控功能的完美配合。具体地,在显示图像时,各驱动区31内的驱动区电极和各悬浮区32内的悬浮区电极均与驱动电路中的公共电压输出端电连接。在触控扫描时,各驱动区31内的驱动区电极仍然保持与驱动电路中的公共电压输出端电连接,而此时悬浮区32内的悬浮区电极置空。在本发明一优选的实施例中,可采用以下方式将悬浮区电极置空:在悬浮区电极与驱动电路的公共电压输出端之间串联一电子开关,该电子开关受控于一控制器。由控制器判断触控显示装置当前处于显示图像状态和触控扫描状态:当处于显示图像状态时,控制器控制电子开关闭合,以使悬浮区电极与驱动电路的公共电压输出端电连接;当处于触控扫描状态时,控制器控制电子开关断开,以断开悬浮区电极与驱动电路的公共电压输出端之间的连接,悬浮区电极置空。特别地,上述电子开关优选为开关晶体管。
在本发明一优选的实施例中,仍参照图5至图7,感测层5还包括多个与悬浮区32一一对应的第一感测区51,第一感测区51设置在与其相对应的悬浮区32的正上方,第一感测区51内设置有感测区电极。在触控扫描时,各驱动区31内的驱动区电极仍然保持与驱动电路中的公共电压输出端电连接,而此时悬浮区32内的悬浮区电极置空,悬浮区电极和与其相对应的感测区电极电耦合,因此可增大信号感应量,增加信噪比。特别地, 第一感测区51内的感测区电极优选为金属网格、透明氧化铟锡电极和碳纳米管电极中的一种。当第一感测区51内的感测区电极为金属网格时,可以使得导电电阻更低、感测层更薄、有利于提高触控显示装置的强度和性价比。
进一步地,图8示出了图3中所示的感测层5的另一种平面示意图。如图8所示的感测层5在上述实施例的基础上还包括第二感测区53。第二感测区53的个数与驱动区31的个数相等,并且每个第二感测区53唯一地对应一个驱动区31,第二感测区53设置在与其相对应的驱动区31的正上方。另外,第二感测区53内设置有感测区电极。相应地,在第一绝缘层4中还要设置用于连接感测区电极和相应的驱动区电极的第三过孔(附图中未示出)。第二感测区53内的感测区电极通过第一绝缘层4中的第三过孔和与其相对应的驱动区31内的驱动区电极电连接。特别地,与第一感测区51的感测区电极的选材类似,第二感测区53内的感测区电极优选为金属网格、透明氧化铟锡电极和碳纳米管电极中的一种。当第二感测区53内的感测区电极为金属网格时,可以使得导电电阻更低、感测层更薄、有利于提高触控显示装置的强度和性价比。
在本实施例中,第二感测区53内的感测区电极的设置,可以改善显示像素的平衡。原因如下:在现有技术中,驱动区电极一般为透明氧化铟锡电极,其电阻较大。在形成驱动区电极的过程中,各个驱动区31内的驱动区电极的电阻的差异较大,从而造成显示像素的不平衡。应用本实施例,由于第二感测区53内的感测区电极的设置,相当于在每个驱动区电极的两端并联了一个电阻,从而驱动区电极与感测区电极并联后的总电阻减小,进而使得驱动区31内的驱动区电极的电阻(并联后的总电阻)的差异减小,因此有助于改善显示像素的平衡。并且,当第二感测区53内的感测区电极优选为金属网格时,由于金属网格的电阻较小,因此可以避免由于总电阻过度减小而导致的良品率下降的问题。
进一步地,用于连接第二感测区53内的感测区电极与驱动区电极的第三过孔可以是一个孔,也可以是多个孔的集合。在本发明一优选的实施例中,第二感测区53内的感测区电极通过第一绝缘层4中的至少两个第三过孔和与其相对应的驱动区31内的驱动区电极电连接。更进一步地,第三过孔呈矩形阵列排布,并且,位于同一行的相邻两个第三过孔的中心距为3像素,位于同一列的相邻两个第三过孔的中心距为3像素。
相应地,本发明实施例还提供一种具有上述触控显示装置的电子设备。特别地,电子设备可以为:液晶显示面板、电子纸、液晶电视、液晶显示器、数码相框、手机、平板电脑等具有任何显示功能的产品或部件。
虽然本发明所公开的实施方式如上,但所述的内容只是为了便于理解本发明而采用的实施方式,并非用以限定本发明。任何本发明所属技术领域内的技术人员,在不脱离本发明所公开的精神和范围的前提下,可以在实施的形式上及细节上作任何的修改与变化,但本发明的保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (20)

  1. 一种触控显示装置,包括从上至下依次设置的感测层、绝缘层和公共电极层,所述公共电极层包括:
    呈矩形阵列排布的多个内设有驱动区电极的驱动区;
    布设在相邻两列驱动区之间的多个内设有悬浮区电极的悬浮区,相邻两个悬浮区间隔设置并构成悬浮区对;以及
    贯穿相邻两个悬浮区之间的间隙的驱动引线,位于同一行的相邻两个驱动区内的驱动区电极通过所述驱动引线电连接;
    所述感测层包括多条与悬浮区对一一对应的悬浮连接线,且对于每条悬浮连接线,所述悬浮连接线的一端通过绝缘层中的第一过孔与悬浮区对中的一个悬浮区内的悬浮区电极电连接,另一端通过绝缘层中的第二过孔与所述悬浮区对中的另一个悬浮区内的悬浮区电极电连接。
  2. 根据权利要求1所述的触控显示装置,其中,所述感测层还包括多个与所述驱动区一一对应的第二感测区,所述第二感测区设置在与其相对应的驱动区的正上方,所述第二感测区内设置有感测区电极;所述第二感测区内的感测区电极通过绝缘层中的第三过孔和与其相对应的驱动区内的驱动区电极电连接。
  3. 根据权利要求2所述的触控显示装置,其中,所述第二感测区内的感测区电极通过绝缘层中的至少两个第三过孔和与其相对应的驱动区内的驱动区电极电连接。
  4. 根据权利要求3所述的触控显示装置,其中,所述第三过孔呈矩形阵列排布。
  5. 根据权利要求4所述的触控显示装置,其中,位于同一行的相邻两个第三过孔的中心距为3像素,位于同一列的相邻两个第三过孔的中心距为3像素。
  6. 根据权利要求2所述的触控显示装置,其中,所述第二感测区内的感测区电极为金属网格、透明氧化铟锡电极和碳纳米管电极中的一种。
  7. 根据权利要求1所述的触控显示装置,其中,
    在显示图像时,所述驱动区电极和所述悬浮区电极均与驱动电路中的公共电压输出端电连接;
    在触控扫描时,所述驱动区电极与驱动电路中的公共电压输出端电连接,所述悬浮区 电极置空。
  8. 根据权利要求7所述的触控显示装置,其中,所述感测层还包括多个与所述驱动区一一对应的第二感测区,所述第二感测区设置在与其相对应的驱动区的正上方,所述第二感测区内设置有感测区电极;所述第二感测区内的感测区电极通过绝缘层中的第三过孔和与其相对应的驱动区内的驱动区电极电连接。
  9. 根据权利要求8所述的触控显示装置,其中,所述第二感测区内的感测区电极通过绝缘层中的至少两个第三过孔和与其相对应的驱动区内的驱动区电极电连接。
  10. 根据权利要求9所述的触控显示装置,其中,所述第三过孔呈矩形阵列排布。
  11. 根据权利要求8所述的触控显示装置,其中,所述第二感测区内的感测区电极为金属网格、透明氧化铟锡电极和碳纳米管电极中的一种。
  12. 根据权利要求7所述的触控显示装置,其中,所述感测层还包括多个与所述悬浮区一一对应的第一感测区,所述第一感测区设置在与其相对应的悬浮区的正上方,所述第一感测区内设置有感测区电极。
  13. 根据权利要求12所述的触控显示装置,其中,所述感测层还包括多个与所述驱动区一一对应的第二感测区,所述第二感测区设置在与其相对应的驱动区的正上方,所述第二感测区内设置有感测区电极;所述第二感测区内的感测区电极通过绝缘层中的第三过孔和与其相对应的驱动区内的驱动区电极电连接。
  14. 根据权利要求13所述的触控显示装置,其中,所述第二感测区内的感测区电极通过绝缘层中的至少两个第三过孔和与其相对应的驱动区内的驱动区电极电连接。
  15. 根据权利要求13所述的触控显示装置,其中,所述第二感测区内的感测区电极为金属网格、透明氧化铟锡电极和碳纳米管电极中的一种。
  16. 根据权利要求12所述的触控显示装置,其中,所述第一感测区内的感测区电极为金属网格、透明氧化铟锡电极和碳纳米管电极中的一种。
  17. 根据权利要求16所述的触控显示装置,其中,所述感测层还包括多个与所述驱动区一一对应的第二感测区,所述第二感测区设置在与其相对应的驱动区的正上方,所述第二感测区内设置有感测区电极;所述第二感测区内的感测区电极通过绝缘层中的第三过孔和与其相对应的驱动区内的驱动区电极电连接。
  18. 根据权利要求17所述的触控显示装置,其中,所述第二感测区内的感测区电极 通过绝缘层中的至少两个第三过孔和与其相对应的驱动区内的驱动区电极电连接。
  19. 根据权利要求17所述的触控显示装置,其中,所述第二感测区内的感测区电极为金属网格、透明氧化铟锡电极和碳纳米管电极中的一种。
  20. 一种电子设备,包括触控显示装置,所述触控显示装置包括从上至下依次设置的感测层、绝缘层和公共电极层,所述公共电极层包括:
    呈矩形阵列排布的多个内设有驱动区电极的驱动区;
    布设在相邻两列驱动区之间的多个内设有悬浮区电极的悬浮区,相邻两个悬浮区间隔设置并构成悬浮区对;以及
    贯穿相邻两个悬浮区之间的间隙的驱动引线,位于同一行的相邻两个驱动区内的驱动区电极通过所述驱动引线电连接;
    所述感测层包括多条与悬浮区对一一对应的悬浮连接线,且对于每条悬浮连接线,所述悬浮连接线的一端通过绝缘层中的第一过孔与悬浮区对中的一个悬浮区内的悬浮区电极电连接,另一端通过绝缘层中的第二过孔与所述悬浮区对中的另一个悬浮区内的悬浮区电极电连接。
PCT/CN2015/070384 2014-12-31 2015-01-08 触控显示装置及电子设备 WO2016106808A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/418,628 US9952695B2 (en) 2014-12-31 2015-01-08 Touch display device and electronic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410856122.0 2014-12-31
CN201410856122.0A CN104460139B (zh) 2014-12-31 2014-12-31 触控显示装置及电子设备

Publications (1)

Publication Number Publication Date
WO2016106808A1 true WO2016106808A1 (zh) 2016-07-07

Family

ID=52906434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/070384 WO2016106808A1 (zh) 2014-12-31 2015-01-08 触控显示装置及电子设备

Country Status (3)

Country Link
US (1) US9952695B2 (zh)
CN (1) CN104460139B (zh)
WO (1) WO2016106808A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104199586B (zh) * 2014-09-16 2018-04-13 重庆京东方光电科技有限公司 一种阵列基板、内嵌式触摸屏和触控显示装置
TWI611328B (zh) * 2015-06-22 2018-01-11 友達光電股份有限公司 觸控顯示面板
US9841833B2 (en) * 2015-06-30 2017-12-12 Lg Display Co., Ltd. Touch sensor integrated display device
CN105117085B (zh) * 2015-09-07 2018-03-27 武汉华星光电技术有限公司 内嵌式触控面板及其制造方法
CN105242808B (zh) * 2015-10-20 2018-11-20 深圳市华星光电技术有限公司 一种触控显示装置
CN105467644B (zh) * 2015-12-07 2019-01-22 武汉华星光电技术有限公司 In Cell触控显示面板
CN105677086B (zh) * 2015-12-31 2018-11-23 武汉华星光电技术有限公司 互电容式的内嵌型触摸屏
CN107219956B (zh) * 2017-06-09 2021-01-29 京东方科技集团股份有限公司 显示基板及其驱动方法和显示面板
CN110096175B (zh) * 2019-04-23 2023-06-27 武汉华星光电半导体显示技术有限公司 显示面板
CN112181212A (zh) * 2019-07-01 2021-01-05 鸿富锦精密工业(深圳)有限公司 内嵌式触控显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102541334A (zh) * 2010-12-30 2012-07-04 上海天马微电子有限公司 触摸显示装置及其制造方法
US20120313877A1 (en) * 2011-06-13 2012-12-13 Lg Innotek Co., Ltd. Integrated touch screen
CN203133794U (zh) * 2013-03-29 2013-08-14 京东方科技集团股份有限公司 一种触摸屏
CN103278955A (zh) * 2012-12-14 2013-09-04 上海天马微电子有限公司 触控式液晶显示装置
CN203502710U (zh) * 2013-10-12 2014-03-26 北京京东方光电科技有限公司 一种阵列基板及液晶显示装置
CN103777825A (zh) * 2012-10-19 2014-05-07 联胜(中国)科技有限公司 触控面板与触控显示面板
CN104238787A (zh) * 2013-06-08 2014-12-24 深圳市联思精密机器有限公司 一种触控式平板显示器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032938A (ja) * 2008-07-31 2010-02-12 Hitachi Displays Ltd 液晶表示装置
US9285909B2 (en) * 2010-04-09 2016-03-15 Apple Inc. Equalizing parasitic capacitance effects in touch screens
KR101810503B1 (ko) * 2010-12-09 2017-12-20 엘지디스플레이 주식회사 터치 스크린이 내장된 액정 표시장치
CN103257769B (zh) * 2013-03-25 2016-01-27 合肥京东方光电科技有限公司 一种电容内嵌式触摸屏和显示装置
CN103365518B (zh) * 2013-06-25 2016-04-13 京东方科技集团股份有限公司 一种电容式触摸屏以及制备方法
US20150049044A1 (en) * 2013-08-16 2015-02-19 Apple Inc. Touch panel electrode structure
CN103760708B (zh) * 2014-01-09 2017-08-11 北京京东方光电科技有限公司 一种阵列基板、电容式触摸屏和触控显示装置
CN103777815B (zh) * 2014-01-20 2018-01-02 北京京东方光电科技有限公司 一种触控显示装置及其制作方法
CN103995616B (zh) * 2014-05-30 2017-05-17 京东方科技集团股份有限公司 内嵌式触控面板及显示装置
US9958973B2 (en) * 2014-10-24 2018-05-01 Lg Display Co., Ltd. Touch panel and touch panel-integrated organic light emitting display device
CN104536629B (zh) * 2015-01-16 2019-03-26 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
CN104699321B (zh) * 2015-04-01 2018-03-23 上海天马微电子有限公司 触控显示基板和触控显示装置
CN105138184B (zh) * 2015-09-25 2018-06-22 深圳市华星光电技术有限公司 一种内嵌触摸液晶面板及其阵列基板

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102541334A (zh) * 2010-12-30 2012-07-04 上海天马微电子有限公司 触摸显示装置及其制造方法
US20120313877A1 (en) * 2011-06-13 2012-12-13 Lg Innotek Co., Ltd. Integrated touch screen
CN103777825A (zh) * 2012-10-19 2014-05-07 联胜(中国)科技有限公司 触控面板与触控显示面板
CN103278955A (zh) * 2012-12-14 2013-09-04 上海天马微电子有限公司 触控式液晶显示装置
CN203133794U (zh) * 2013-03-29 2013-08-14 京东方科技集团股份有限公司 一种触摸屏
CN104238787A (zh) * 2013-06-08 2014-12-24 深圳市联思精密机器有限公司 一种触控式平板显示器
CN203502710U (zh) * 2013-10-12 2014-03-26 北京京东方光电科技有限公司 一种阵列基板及液晶显示装置

Also Published As

Publication number Publication date
CN104460139B (zh) 2017-06-23
US9952695B2 (en) 2018-04-24
US20160246416A1 (en) 2016-08-25
CN104460139A (zh) 2015-03-25

Similar Documents

Publication Publication Date Title
WO2016106808A1 (zh) 触控显示装置及电子设备
US9448656B2 (en) Capacitive in-cell touch panel and display device
KR101470607B1 (ko) 컬러 필터 기판 및 용량성 터치 스크린
CN104991690B (zh) 一种触控显示面板、其制作方法、驱动方法及显示装置
CN106908980B (zh) 阵列基板、触控显示面板及显示装置
WO2015180359A1 (zh) 阵列基板及其制作方法、以及显示装置
WO2019205484A1 (zh) 触控显示面板
CN104022128A (zh) 一种阵列基板及其制作方法、以及显示装置
CN105511146B (zh) 一种集成触控显示面板
CN103995616B (zh) 内嵌式触控面板及显示装置
CN107678590B (zh) 一种触控显示面板及其驱动方法
WO2015010376A1 (zh) 阵列基板及其制造方法、触摸屏和显示装置
US9811215B2 (en) Touch liquid crystal display panel and method for manufacturing the same
CN104965367A (zh) 一种阵列基板、显示装置及制作方法
WO2014153855A1 (zh) 彩膜基板及其制作方法、触摸屏、显示装置
CN104298409B (zh) 触摸屏和显示装置
CN104076551B (zh) 一种彩膜基板及其制备方法、显示面板、显示装置
CN205375436U (zh) 阵列基板、触控显示面板及触控显示装置
CN105759483A (zh) 一种液晶显示面板、液晶显示器及其驱动方法
CN106449652B (zh) 阵列基板及其制造方法、显示面板和显示设备
CN102135824A (zh) 内嵌式触控显示器及其制程方法
WO2016119375A1 (zh) 触控显示基板、触控显示装置
CN111708237B (zh) 一种阵列基板、显示面板及显示装置
WO2017067041A1 (zh) 一种触控显示装置
CN106201144A (zh) 触控显示基板及其制作方法、触控显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14418628

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15874501

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15874501

Country of ref document: EP

Kind code of ref document: A1