WO2016105153A1 - Selective catalytic reduction system - Google Patents

Selective catalytic reduction system Download PDF

Info

Publication number
WO2016105153A1
WO2016105153A1 PCT/KR2015/014247 KR2015014247W WO2016105153A1 WO 2016105153 A1 WO2016105153 A1 WO 2016105153A1 KR 2015014247 W KR2015014247 W KR 2015014247W WO 2016105153 A1 WO2016105153 A1 WO 2016105153A1
Authority
WO
WIPO (PCT)
Prior art keywords
reducing agent
heat flow
decomposition chamber
exhaust gas
flow path
Prior art date
Application number
PCT/KR2015/014247
Other languages
French (fr)
Korean (ko)
Inventor
이재문
황진우
김기모
이균
이창희
Original Assignee
두산엔진주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두산엔진주식회사 filed Critical 두산엔진주식회사
Publication of WO2016105153A1 publication Critical patent/WO2016105153A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/26Construction of thermal reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/36Arrangements for supply of additional fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a selective catalytic reduction system for reducing the nitrogen oxide contained in the exhaust gas discharged from the exhaust gas source.
  • SCR selective catalytic reduction
  • the nitrogen oxide contained in the exhaust gas and the reducing agent react with each other while passing the exhaust gas and the reducing agent together in a reactor in which the catalyst is installed therein, and the reduction process is performed with nitrogen and water vapor.
  • the selective catalytic reduction system is mainly used to hydrolyze urea as a reducing agent to reduce nitrogen oxides. That is, ammonia (NH 3 ) generated by hydrolysis of urea is used as a reducing agent for reducing nitrogen oxides.
  • urea is directly injected into the exhaust gas when the temperature of the exhaust gas is lower than 250 degrees Celsius or less, the urea may not be completely decomposed in the exhaust gas.
  • the heated fluid is supplied to the hydrolysis chamber through a separate electric heater or burner to raise the internal temperature of the hydrolysis chamber to the hydrolysis reaction temperature, and the urea is A method of supplying ammonia (NH 3) and isocyanic acid (HNCO) produced by stable decomposition to a reactor is used.
  • Embodiments of the present invention provide a selective catalytic reduction system capable of effectively controlling the heat flow rate supplied to the decomposition chamber for producing a reducing agent.
  • the selective catalytic reduction system for reducing the nitrogen oxide contained in the exhaust gas discharged from the exhaust gas source is on the main exhaust flow path to which the exhaust gas of the exhaust gas source is moved, and the main exhaust flow path
  • a reactor including a catalyst installed to reduce nitrogen oxides contained in the exhaust gas, a reducing agent injector for injecting a reducing agent into the exhaust gas provided on the main exhaust flow path and moving to the reactor, and receiving a reducing agent precursor
  • the selective catalytic reduction system may further include a reducing agent precursor supply unit for supplying a reducing agent precursor to the decomposition chamber.
  • the selective catalytic reduction system includes a first flow rate control valve provided on the heat flow rate supply flow path between the heat flow bypass flow path and the heat flow supply flow path and the decomposition flow chamber, and a first flow control valve installed on the heat flow bypass flow path. It may further comprise one or more of the two flow control valve.
  • the selective catalytic reduction system may further include a flow meter installed on the heat flow bypass channel.
  • the heat flow bypass channel may be joined to the main exhaust channel in front of the reducing agent injection unit.
  • the heat flow bypass channel may be joined to the main exhaust channel between the reducing agent injection unit and the reactor.
  • heat flow bypass channel may be directly connected to the reactor.
  • the selective catalytic reduction system may further include a reducing agent supply passage connecting the decomposition chamber and the reducing agent injection unit, and the heat flow bypass channel may bypass the decomposition chamber and join the reducing agent supply passage.
  • the selective catalytic reduction system can effectively control the heat flow rate supplied to the decomposition chamber for producing the reducing agent.
  • FIG. 1 is a block diagram of a selective catalytic reduction system according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram of a selective catalytic reduction system according to a second embodiment of the present invention.
  • FIG. 3 is a block diagram of a selective catalytic reduction system according to a third embodiment of the present invention.
  • FIG. 4 is a block diagram of a selective catalytic reduction system according to a fourth embodiment of the present invention.
  • Embodiments of the invention specifically illustrate ideal embodiments of the invention. As a result, various modifications of the drawings are expected. Thus, the embodiment is not limited to the specific form of the illustrated region, but includes, for example, modification of the form by manufacture.
  • the selective catalytic reduction system 101 reduces the nitrogen oxide contained in the exhaust gas discharged from the exhaust gas discharge source 100.
  • the exhaust gas discharge source 100 is various, such as a marine diesel engine or an onshore power plant.
  • the selective catalytic reduction system 101 includes a main exhaust passage 610, a reactor 300, a reducing agent injection unit 710, a decomposition chamber 400,
  • the heat flow rate supply source 500, the heat flow rate supply flow path 650, and the heat flow rate bypass flow path 680 may be included.
  • the selective catalytic reduction system 101 includes a reducing agent precursor supply unit 450, a first flow control valve 810, a second flow control valve 820, a flow meter 850, and
  • the reducing agent supply passage 640 may further include.
  • the main exhaust passage 610 moves the exhaust gas discharged from the exhaust gas discharge source 100.
  • the exhaust gas moving along the main exhaust flow path 610 has a temperature of 150 degrees Celsius or more and 250 degrees centigrade while passing through an additional configuration of a marine diesel engine such as a supercharger. Can be lowered below degrees.
  • the supercharger serves to improve the efficiency of the diesel engine by supplying fresh air to the diesel engine by turning the turbine to the pressure of the exhaust gas of the diesel engine.
  • the reactor 300 is installed on the main exhaust passage 610.
  • the reactor 300 includes a catalyst for reducing nitrogen oxides (NOx) contained in the exhaust gas discharged from the exhaust gas discharge source 100.
  • the catalyst catalyzes the reaction between the nitrogen oxide (NOx) contained in the exhaust gas and the reducing agent to reduce the nitrogen oxide (NOx) to nitrogen and water vapor.
  • the catalyst may be made of various materials known to those skilled in the art, such as zeolite, vanadium, platinum and the like.
  • the catalyst may have an active temperature in the range of 250 degrees Celsius to 350 degrees Celsius.
  • the active temperature refers to a temperature at which the catalyst can be stably reduced without poisoning the catalyst. If the catalyst reacts outside the active temperature range, the efficiency decreases with poisoning.
  • the housing of the reactor 300 may be made of stainless steel (stainless steel) material.
  • the reducing agent injector 710 injects the reducing agent to the exhaust gas moving along the main exhaust passage 610 to the reactor 300.
  • the reducing agent injector 710 may be installed on the main exhaust passage 610 in front of the reactor 300.
  • the reducing agent injected from the reducing agent injector 710 is mixed with the exhaust gas moving through the main exhaust passage 610, and then reduces nitrogen oxide in the catalyst of the reactor 300.
  • the reducing agent comprises ammonia (NH 3 ).
  • the decomposition chamber 400 generates a reducing agent to be supplied to the reducing agent injection unit 710.
  • Decomposition chamber 400 is supplied with a reducing agent precursor urea (urea, CO (NH 2 ) 2 ) is hydrolyzed or pyrolyzed to produce ammonia (NH 3 ).
  • urea urea, CO (NH 2 ) 2
  • NH 3 ammonia
  • urea is easily hydrolyzed or pyrolyzed to produce ammonia (NH 3 ) and isocyanic acid (HNCO).
  • Ansan (HNCO) is broken down into ammonia (NH 3 ) and carbon dioxide (CO 2 ).
  • the reducing agent precursor supply unit 450 supplies urea, which is a reducing agent precursor, to the decomposition chamber 400.
  • the reducing agent supply passage 640 connects the decomposition chamber 400 and the reducing agent injector 710 to transfer the reducing agent generated in the decomposition chamber 400 to the reducing agent injector.
  • the heat flow source 500 decomposes urea, a reducing agent precursor, to supply the heat flow necessary to generate a reducing agent to the decomposition chamber 400.
  • the heat flow source 500 various means known to those skilled in the art capable of supplying heat flow to the decomposition chamber 400 may be used.
  • a blower may be used to draw in fresh air from the outside or to recycle the exhaust gas passed through the reactor 300, and heat it with a heating member such as a burner or a heater to supply the decomposition chamber 400.
  • the exhaust gas discharge source 100 is a marine diesel engine
  • a part of the exhaust gas discharged from the diesel engine and before passing through the supercharger may be branched, and may be heated by a heating member such as a burner or a heater and supplied to the decomposition chamber 400. have.
  • the heat flow rate supplied by the heat flow source 500 to the decomposition chamber 400 may have a temperature in the range of 400 degrees Celsius to 600 degrees Celsius.
  • the heat flow rate supply passage 650 connects the heat flow rate source 500 and the decomposition chamber 400.
  • the heat flow bypass channel 680 is branched from the heat flow supply flow path 650 to adjust the heat flow rate supplied to the decomposition chamber 400 through the heat flow supply flow path 650.
  • the heat flow bypass channel 680 may join the main exhaust channel 610 in front of the reducing agent injection unit 710.
  • the first flow control valve 810 is provided on the heat flow supply flow path 650 between the branch point of the heat flow bypass channel 680 and the heat flow supply flow path 650 and the decomposition chamber 400, and the second flow control The valve 820 may be installed on the heat flow bypass channel 680.
  • the first flow control valve 810 adjusts the heat flow rate supplied to the decomposition chamber 400, and the second heat flow control valve 820 adjusts the heat flow rate moving through the heat flow bypass channel 680.
  • one of the first flow control valve 810 or the second flow control valve 820 may be omitted.
  • the flow meter 850 is installed on the heat flow bypass channel 680 and may be used for precise control of the heat flow bypassed through the heat flow bypass channel 680.
  • the decomposition chamber 400 is used to set the appropriate temperature required to generate the reducing agent. It is possible to control the heat flow rate supplied to the decomposition chamber 400 to maintain.
  • the heat flow rate bypass flow path 680 joins the main exhaust flow path 610 in front of the reducing agent injection portion 710, the heat flow rate that bypasses the decomposition chamber 400 and moves. It may be used incidentally to increase the temperature of the exhaust gas moving through the main exhaust passage 610.
  • the heated exhaust gas may be usefully used as a heat source required to generate ammonia by re-decomposing isocyanic acid in addition to ammonia generated by decomposition of urea in the decomposition chamber 400.
  • the selective catalytic reduction system 101 can effectively control the heat flow rate supplied to the decomposition chamber 400 for producing a reducing agent.
  • the temperature of the decomposition chamber 400 for decomposing urea as a reducing agent precursor to generate ammonia as a reducing agent may be effectively maintained within the urea hydrolysis or pyrolysis reaction temperature range.
  • the pressure may be excessively increased to impede the whole system or exceed the appropriate reaction temperature, thereby preventing the hydrolysis or pyrolysis reaction from occurring. have.
  • the heat flow rate moved through the heat flow bypass channel 680 may be used to increase the temperature of the exhaust gas moving through the main exhaust flow path 610.
  • the heat flow rate bypass flow path 680 branches from the heat flow supply flow path 650 to open the decomposition chamber 400. Bypass and joins the main exhaust passage 610 between the reducing agent injection portion 710 and the reactor 300.
  • the heat flow bypass channel 680 joins the main exhaust channel 610 between the reducing agent injection unit 710 and the reactor 300, thereby bypassing the decomposition chamber 400.
  • the moved heat flow helps to effectively mix the reducing agent injected from the reducing agent injector 710 with the exhaust gas flowing along the main exhaust passage 610.
  • the selective catalytic reduction system 102 according to the second embodiment of the present invention is the same as the first embodiment except for the confluence of the branched heat flow bypass channel 680.
  • the selective catalytic reduction system 102 can also effectively control the heat flow rate supplied to the decomposition chamber 400 for generating the reducing agent.
  • heat flow moved through the heat flow bypass channel 680 may be utilized to mix the reducing agent and the exhaust gas.
  • the heat flow rate bypass flow path 680 branches from the heat flow supply flow path 650 to open the decomposition chamber 400. Bypasses and is connected directly to the reactor 300.
  • the heat flow rate bypass flow path 680 is directly connected to the reactor 300, the heat flow rate bypassed the decomposition chamber 400 moves to a temperature inside the reactor 300. It can be used incidentally to boost.
  • the heat flow rate directly supplied to the reactor 300 through the heat flow bypass channel 680 may be utilized to regenerate a catalyst installed in the reactor 300.
  • the catalyst poisoning substance may include one or more of ammonium sulfate (NH 4 ) 2 SO 4 ) and ammonium bisulfate (NH 4 HSO 4 ). These catalyst poisoning substances are adsorbed on the catalyst to lower the activity of the catalyst. Since the catalyst poisoning substance decomposes at a relatively high temperature, that is, a temperature in the range of 350 degrees Celsius to 450 degrees Celsius, the catalyst of the reactor 300 may be heated to regenerate the poisoned catalyst.
  • the selective catalytic reduction system 103 according to the third embodiment of the present invention is the same as the first embodiment except for the confluence of the branched heat flow bypass channel 680.
  • the selective catalytic reduction system 103 can also effectively control the heat flow rate supplied to the decomposition chamber 400 for generating the reducing agent.
  • the heat flow rate moved through the heat flow bypass channel 680 may be used for regeneration of the catalyst in the reactor 300.
  • the heat flow rate bypass flow path 680 branches from the heat flow supply flow path 650 to open the decomposition chamber 400. Bypassing and joining with the reducing agent supply flow path 640 again.
  • the heat flow rate bypass flow path 680 joins the reducing agent supply flow path 640, the heat flow rate bypassed the decomposition chamber 400 moves to the urea in the decomposition chamber 400.
  • isocyanic acid may be usefully used as a heat source required to generate ammonia by re-decomposing it again.
  • the overall piping design of the selective catalytic reduction system 104 can be relatively simplified.
  • the selective catalytic reduction system 104 is the same as the first embodiment except for the confluence of the branched heat flow bypass channel 680.
  • the selective catalytic reduction system 104 can also effectively control the heat flow rate supplied to the decomposition chamber 400 for generating the reducing agent.
  • the selective catalytic reduction system according to the embodiment of the present invention can be used to effectively control the heat flow rate supplied to the decomposition chamber for producing the reducing agent.

Abstract

A selective catalytic reduction system according to an embodiment of the present invention comprises: a main exhaust passage through which exhaust gas of an exhaust gas discharging source is transferred; a reactor which is installed on the main exhaust passage, the reactor comprising a catalyst for reducing nitrogen oxide contained in the exhaust gas; a reducing agent injection unit which is installed on the main exhaust passage to inject a reducing agent to the exhaust gas that is transferred to the reactor; a decomposition chamber which receives and decomposes a reducing agent precursor to thereby prepare a reducing agent to be supplied to the reducing agent injection unit; a heat flux supply source which supplies, to the decomposition chamber, heat energy necessary for decomposing the reducing agent precursor; a heat flux supply flow passage which connects the heat flux supply source and the decomposition chamber; and a heat flux bypass flow passage which is branched from the heat flux supply flow passage and controls a heat flux supplied to the decomposition chamber.

Description

선택적 촉매 환원 시스템Selective catalytic reduction system
본 발명은 배기가스 배출원이 배출한 배기가스에 함유된 질소산화물을 저감시키는 선택적 촉매 환원 시스템에 관한 것이다.The present invention relates to a selective catalytic reduction system for reducing the nitrogen oxide contained in the exhaust gas discharged from the exhaust gas source.
일반적으로 선박 등에 사용되는 동력 장치는 저속 디젤 엔진과 과급기(turbocharger) 등을 포함한다. 선택적 촉매 환원(selective catalytic reduction, SCR) 시스템은 디젤 엔진에서 발생된 배기가스를 정화하여 질소산화물을 저감시키기 위한 시스템이다.BACKGROUND In general, power devices used in ships and the like include a low speed diesel engine, a turbocharger, and the like. Selective catalytic reduction (SCR) is a system for reducing nitrogen oxides by purifying exhaust gases generated from diesel engines.
선택적 촉매 환원 시스템은 촉매가 내부에 설치된 반응기에 배기가스와 환원제를 함께 통과시키면서 배기가스에 함유된 질소산화물과 환원제를 반응시켜 질소와 수증기로 환원 처리한다.In the selective catalytic reduction system, the nitrogen oxide contained in the exhaust gas and the reducing agent react with each other while passing the exhaust gas and the reducing agent together in a reactor in which the catalyst is installed therein, and the reduction process is performed with nitrogen and water vapor.
선택적 촉매 환원 시스템은 질소산화물을 저감시키기 위한 환원제로 우레아(urea)를 가수분해시켜 주로 사용하고 있다. 즉, 우레아가 가수분해되어 생성된 암모니아(NH3)가 질소산화물을 저감시키기 위한 환원제로 사용된다. The selective catalytic reduction system is mainly used to hydrolyze urea as a reducing agent to reduce nitrogen oxides. That is, ammonia (NH 3 ) generated by hydrolysis of urea is used as a reducing agent for reducing nitrogen oxides.
하지만, 배기가스의 온도가 섭씨 250도 이하로 낮은 경우에 우레아를 배기가스에 직접 분사하면, 우레아가 배기가스에서 완전히 분해되지 못한다.However, if urea is directly injected into the exhaust gas when the temperature of the exhaust gas is lower than 250 degrees Celsius or less, the urea may not be completely decomposed in the exhaust gas.
이에, 우레아의 가수분해 효율을 향상시키기 위해 가수분해 챔버에 별도의 전기 히터 또는 버너를 통해 가열된 유체를 공급하여 가수분해 챔버의 내부 온도를 가수분해 반응 온도까지 상승시키고, 우레아를 가수분해 챔버에서 안정적으로 분해하여 생성된 암모니아(NH3)과 이소시안산(HNCO)을 반응기에 공급하는 방법을 사용하고 있다.Therefore, in order to improve the hydrolysis efficiency of urea, the heated fluid is supplied to the hydrolysis chamber through a separate electric heater or burner to raise the internal temperature of the hydrolysis chamber to the hydrolysis reaction temperature, and the urea is A method of supplying ammonia (NH 3) and isocyanic acid (HNCO) produced by stable decomposition to a reactor is used.
하지만, 가수분해 챔버의 내부 온도가 우레아의 가수분해 반응 온도 미만 경우에도 문제가 될 뿐만 아니라 가수분해 챔버의 내부 온도가 우레아의 가수분해 반응 온도보다 지나치게 높을 경우에도 문제가 되고 있다.However, there is a problem not only when the internal temperature of the hydrolysis chamber is lower than the hydrolysis reaction temperature of urea, but also when the internal temperature of the hydrolysis chamber is too high than the hydrolysis reaction temperature of urea.
예를 들어, 가수분해 챔버의 내부 온도가 지나치게 높아지면 이에 따른 압력의 증가로 전체적인 시스템에 무리를 주거나 오히려 가수분해 반응이 일어나지 않는 문제점이 있을 수 있다.For example, if the internal temperature of the hydrolysis chamber is too high, there may be a problem that the hydrolysis reaction does not occur or rather the whole system due to the increase in pressure.
본 발명의 실시예는 환원제를 생성하기 위한 분해 챔버에 공급되는 열유량을 효과적으로 조절할 수 있는 선택적 촉매 환원 시스템을 제공한다.Embodiments of the present invention provide a selective catalytic reduction system capable of effectively controlling the heat flow rate supplied to the decomposition chamber for producing a reducing agent.
본 발명의 실시예에 따르면, 배기가스 배출원이 배출한 배기가스에 함유된 질소산화물을 저감시키는 선택적 촉매 환원 시스템은 상기 배기가스 배출원의 배기가스가 이동하는 메인 배기 유로와, 상기 메인 배기 유로 상에 설치되어 배기가스가 함유한 질소산화물을 저감시키기 위한 촉매를 포함하는 반응기와, 상기 메인 배기 유로 상에 설치되어 상기 반응기로 이동하는 배기가스에 환원제를 분사하는 환원제 분사부와, 환원제 전구체를 공급받아 분해하여 상기 환원제 분사부에 공급할 환원제를 생성하는 분해 챔버와, 상기 분해 챔버에 환원제 전구체를 분해하는데 필요한 열에너지를 공급하는 열유량 공급원과, 상기 열유량 공급원과 상기 분해 챔버를 연결하는 열유량 공급 유로, 그리고 상기 열유량 공급 유로에서 분기되어 상기 분해 챔버에 공급되는 열유량을 조절하는 열유량 우회 유로를 포함한다.According to an embodiment of the present invention, the selective catalytic reduction system for reducing the nitrogen oxide contained in the exhaust gas discharged from the exhaust gas source is on the main exhaust flow path to which the exhaust gas of the exhaust gas source is moved, and the main exhaust flow path A reactor including a catalyst installed to reduce nitrogen oxides contained in the exhaust gas, a reducing agent injector for injecting a reducing agent into the exhaust gas provided on the main exhaust flow path and moving to the reactor, and receiving a reducing agent precursor A decomposition chamber for decomposing and generating a reducing agent to be supplied to the reducing agent injection unit, a heat flow supply source for supplying heat energy necessary for decomposing a reducing agent precursor to the decomposition chamber, and a heat flow supply passage connecting the heat flow source and the decomposition chamber. And branched from the heat flow supply flow path to the decomposition chamber. And a heat flow bypass flow path for adjusting the heat flow rate.
상기한 선택적 촉매 환원 시스템은 상기 분해 챔버에 환원제 전구체를 공급하는 환원제 전구체 공급부를 더 포함할 수 있다.The selective catalytic reduction system may further include a reducing agent precursor supply unit for supplying a reducing agent precursor to the decomposition chamber.
상기한 선택적 촉매 환원 시스템은 상기 열유량 우회 유로와 상기 열유량 공급 유로의 분기점과 상기 분해 챔버 사이의 상기 열유량 공급 유로 상에 설치된 제1 유량 제어 밸브와, 상기 열유량 우회 유로 상에 설치된 제2 유량 제어 밸브 중 하나 이상을 더 포함할 수 있다.The selective catalytic reduction system includes a first flow rate control valve provided on the heat flow rate supply flow path between the heat flow bypass flow path and the heat flow supply flow path and the decomposition flow chamber, and a first flow control valve installed on the heat flow bypass flow path. It may further comprise one or more of the two flow control valve.
상기한 선택적 촉매 환원 시스템은 상기 열유량 우회 유로 상에 설치된 유량계를 더 포함할 수 있다.The selective catalytic reduction system may further include a flow meter installed on the heat flow bypass channel.
또한, 상기 열유량 우회 유로는 상기 환원제 분사부 전방의 상기 메인 배기 유로에 합류할 수 있다.The heat flow bypass channel may be joined to the main exhaust channel in front of the reducing agent injection unit.
또한, 상기 열유량 우회 유로는 상기 환원제 분사부와 상기 반응기 사이의 상기 메인 배기 유로에 합류할 수 있다.In addition, the heat flow bypass channel may be joined to the main exhaust channel between the reducing agent injection unit and the reactor.
또한, 상기 열유량 우회 유로는 상기 반응기에 직접 연결될 수 있다.In addition, the heat flow bypass channel may be directly connected to the reactor.
상기한 선택적 촉매 환원 시스템은 상기 분해 챔버와 상기 환원제 분사부를 연결하는 환원제 공급 유로를 더 포함할 수 있으며, 상기 열유량 우회 유로는 상기 분해 챔버를 우회하여 상기 환원제 공급 유로와 합류할 수 있다.The selective catalytic reduction system may further include a reducing agent supply passage connecting the decomposition chamber and the reducing agent injection unit, and the heat flow bypass channel may bypass the decomposition chamber and join the reducing agent supply passage.
본 발명의 실시예에 따르면, 선택적 촉매 환원 시스템은 환원제를 생성하기 위한 분해 챔버에 공급되는 열유량을 효과적으로 조절할 수 있다.According to an embodiment of the present invention, the selective catalytic reduction system can effectively control the heat flow rate supplied to the decomposition chamber for producing the reducing agent.
도 1은 본 발명의 제1 실시예에 따른 선택적 촉매 환원 시스템의 구성도이다.1 is a block diagram of a selective catalytic reduction system according to a first embodiment of the present invention.
도 2는 본 발명의 제2 실시예에 따른 선택적 촉매 환원 시스템의 구성도이다.2 is a block diagram of a selective catalytic reduction system according to a second embodiment of the present invention.
도 3은 본 발명의 제3 실시예에 따른 선택적 촉매 환원 시스템의 구성도이다.3 is a block diagram of a selective catalytic reduction system according to a third embodiment of the present invention.
도 4는 본 발명의 제4 실시예에 따른 선택적 촉매 환원 시스템의 구성도이다.4 is a block diagram of a selective catalytic reduction system according to a fourth embodiment of the present invention.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예들에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예들에 한정되지 않는다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
또한, 여러 실시예들에 있어서, 동일한 구성을 가지는 구성요소에 대해서는 동일한 부호를 사용하여 대표적으로 제1 실시예에서 설명하고, 그 외의 실시예들에서는 제1 실시예와 다른 구성에 대해서만 설명하기로 한다.In addition, in various embodiments, components having the same configuration will be representatively described in the first embodiment using the same reference numerals, and in other embodiments, only the configuration different from the first embodiment will be described. do.
도면들은 개략적이고 축적에 맞게 도시되지 않았다는 것을 일러둔다. 도면에 있는 부분들의 상대적인 치수 및 비율은 도면에서의 명확성 및 편의를 위해 그 크기에 있어 과장되거나 축소되어 도시되었으며 임의의 치수는 단지 예시적인 것이지 한정적인 것은 아니다. 그리고 둘 이상의 도면에 나타나는 동일한 구조물, 요소 또는 부품에는 동일한 참조 부호가 유사한 특징을 나타내기 위해 사용된다.It is noted that the figures are schematic and not drawn to scale. The relative dimensions and ratios of the parts in the figures are shown exaggerated or reduced in size for clarity and convenience in the figures and any dimensions are merely exemplary and not limiting. And the same reference numerals are used to refer to similar features in the same structure, element or part shown in more than one figure.
본 발명의 실시예는 본 발명의 이상적인 실시예를 구체적으로 나타낸다. 그 결과, 도해의 다양한 변형이 예상된다. 따라서 실시예는 도시한 영역의 특정 형태에 국한되지 않으며, 예를 들면 제조에 의한 형태의 변형도 포함한다.Embodiments of the invention specifically illustrate ideal embodiments of the invention. As a result, various modifications of the drawings are expected. Thus, the embodiment is not limited to the specific form of the illustrated region, but includes, for example, modification of the form by manufacture.
이하, 도 1을 참조하여 본 발명의 제1 실시예에 따른 선택적 촉매 환원 시스템(101)을 설명한다.Hereinafter, the selective catalytic reduction system 101 according to the first embodiment of the present invention will be described with reference to FIG. 1.
본 발명의 제1 실시예에 따른 선택적 촉매 환원 시스템(101)은 배기가스 배출원(100)이 배출한 배기가스에 함유된 질소산화물을 저감시킨다. 여기서, 배기가스 배출원(100)은 선박용 디젤 엔진 또는 육상 발전소 등 다양하다.The selective catalytic reduction system 101 according to the first embodiment of the present invention reduces the nitrogen oxide contained in the exhaust gas discharged from the exhaust gas discharge source 100. Here, the exhaust gas discharge source 100 is various, such as a marine diesel engine or an onshore power plant.
도 1에 도시한 바와 같이, 본 발명의 제1 실시예에 따른 선택적 촉매 환원 시스템(101)은 메인 배기 유로(610), 반응기(300), 환원제 분사부(710), 분해 챔버(400), 열유량 공급원(500), 열유량 공급 유로(650), 및 열유량 우회 유로(680)를 포함할 수 있다.As shown in FIG. 1, the selective catalytic reduction system 101 according to the first embodiment of the present invention includes a main exhaust passage 610, a reactor 300, a reducing agent injection unit 710, a decomposition chamber 400, The heat flow rate supply source 500, the heat flow rate supply flow path 650, and the heat flow rate bypass flow path 680 may be included.
또한, 본 발명의 제1 실시예에 따른 선택적 촉매 환원 시스템(101)은 환원제 전구체 공급부(450), 제1 유량 제어 밸브(810), 제2 유량 제어 밸브(820), 유량계(850), 및 환원제 공급 유로(640)를 더 포함할 수 있다.In addition, the selective catalytic reduction system 101 according to the first embodiment of the present invention includes a reducing agent precursor supply unit 450, a first flow control valve 810, a second flow control valve 820, a flow meter 850, and The reducing agent supply passage 640 may further include.
메인 배기 유로(610)는 배기가스 배출원(100)에서 배출된 배기가스를 이동시킨다.The main exhaust passage 610 moves the exhaust gas discharged from the exhaust gas discharge source 100.
예를 들어, 배기가스 배출원(100)이 선박용 디젤 엔진일 경우, 메인 배기 유로(610)를 따라 이동하는 배기가스는 과급기와 같은 선박용 디젤 엔진의 부가 구성을 거치면서 온도가 섭씨 150도 이상 섭씨 250도 미만으로 낮아질 수 있다. 일반적으로, 과급기는 디젤 엔진의 배기가스가 갖는 압력으로 터빈을 돌려 디젤 엔진에 새로운 외기를 공급함으로써, 디젤 엔진의 효율을 향상시키는 역할을 한다. For example, when the exhaust gas source 100 is a marine diesel engine, the exhaust gas moving along the main exhaust flow path 610 has a temperature of 150 degrees Celsius or more and 250 degrees centigrade while passing through an additional configuration of a marine diesel engine such as a supercharger. Can be lowered below degrees. In general, the supercharger serves to improve the efficiency of the diesel engine by supplying fresh air to the diesel engine by turning the turbine to the pressure of the exhaust gas of the diesel engine.
반응기(300)는 메인 배기 유로(610) 상에 설치된다. 반응기(300)는 배기가스 배출원(100)에서 배출된 배기가스가 함유한 질소산화물(NOx)을 저감시키는 촉매를 포함한다. 촉매는 배기가스에 함유된 질소산화물(NOx)과 환원제의 반응을 촉진시켜 질소산화물(NOx)을 질소와 수증기로 환원 처리한다.The reactor 300 is installed on the main exhaust passage 610. The reactor 300 includes a catalyst for reducing nitrogen oxides (NOx) contained in the exhaust gas discharged from the exhaust gas discharge source 100. The catalyst catalyzes the reaction between the nitrogen oxide (NOx) contained in the exhaust gas and the reducing agent to reduce the nitrogen oxide (NOx) to nitrogen and water vapor.
촉매는 제올라이트(Zeolite), 바나듐(Vanadium), 및 백금(Platinum) 등과 같이 해당 기술 분야의 종사자에게 공지된 다양한 소재로 만들어질 수 있다. 일례로, 촉매는 섭씨 250도 내지 섭씨 350도 범위 내의 활성 온도를 가질 수 있다. 여기서, 활성 온도는 촉매가 피독되지 않고 안정적으로 질소산화물을 환원시킬 수 있는 온도를 말한다. 촉매가 활성 온도 범위 밖에서 반응할 경우, 피독되면서 효율이 저하된다.The catalyst may be made of various materials known to those skilled in the art, such as zeolite, vanadium, platinum and the like. In one example, the catalyst may have an active temperature in the range of 250 degrees Celsius to 350 degrees Celsius. Here, the active temperature refers to a temperature at which the catalyst can be stably reduced without poisoning the catalyst. If the catalyst reacts outside the active temperature range, the efficiency decreases with poisoning.
또한, 반응기(300)의 하우징은, 일례로, 스테인레스 스틸(stainless steel)을 소재로 만들어질 수 있다.In addition, the housing of the reactor 300, for example, may be made of stainless steel (stainless steel) material.
환원제 분사부(710)는 메인 배기 유로(610)를 따라 반응기(300)로 이동하는 배기가스에 환원제를 분사한다. 구체적으로, 환원제 분사부(710)는 반응기(300) 전방의 메인 배기 유로(610) 상에 설치될 수 있다. 환원제 분사부(710)에서 분사된 환원제는 메인 배기 유로(610)를 이동하는 배기가스와 혼합된 후, 반응기(300)의 촉매에서 질소산화물을 환원시킨다. 여기서, 환원제는 암모니아(NH3)를 포함한다.The reducing agent injector 710 injects the reducing agent to the exhaust gas moving along the main exhaust passage 610 to the reactor 300. In detail, the reducing agent injector 710 may be installed on the main exhaust passage 610 in front of the reactor 300. The reducing agent injected from the reducing agent injector 710 is mixed with the exhaust gas moving through the main exhaust passage 610, and then reduces nitrogen oxide in the catalyst of the reactor 300. Here, the reducing agent comprises ammonia (NH 3 ).
분해 챔버(400)는 환원제 분사부(710)에 공급될 환원제를 생성한다. 분해 챔버(400)는 환원제 전구체인 우레아(urea, CO(NH2)2)를 공급받아 이를 가수분해 또는 열분해하여 암모니아(NH3)를 생성한다. 분해 챔버(400) 내의 온도가 섭씨 300도 내지 섭씨 500도 범위 내로 유지되면, 우레아가 용이하게 가수분해 또는 열분해되면서 암모니아(NH3)와 이소시안산(Isocyanic acid, HNCO)이 생성되고, 이소시안산(HNCO)은 다시 암모니아(NH3)와 이산화탄소(CO2)로 분해된다.The decomposition chamber 400 generates a reducing agent to be supplied to the reducing agent injection unit 710. Decomposition chamber 400 is supplied with a reducing agent precursor urea (urea, CO (NH 2 ) 2 ) is hydrolyzed or pyrolyzed to produce ammonia (NH 3 ). When the temperature in the decomposition chamber 400 is maintained within the range of 300 degrees Celsius to 500 degrees Celsius, urea is easily hydrolyzed or pyrolyzed to produce ammonia (NH 3 ) and isocyanic acid (HNCO). Ansan (HNCO) is broken down into ammonia (NH 3 ) and carbon dioxide (CO 2 ).
환원제 전구체 공급부(450)는 분해 챔버(400)에 환원제 전구체인 우레아를 공급한다.The reducing agent precursor supply unit 450 supplies urea, which is a reducing agent precursor, to the decomposition chamber 400.
환원제 공급 유로(640)는 분해 챔버(400)와 환원제 분사부(710)를 연결하여 분해 챔버(400)에서 생성된 환원제를 환원제 분사부에 전달한다.The reducing agent supply passage 640 connects the decomposition chamber 400 and the reducing agent injector 710 to transfer the reducing agent generated in the decomposition chamber 400 to the reducing agent injector.
열유량 공급원(500)은 환원제 전구체인 우레아를 분해시켜 환원제를 생성하기 위해 필요한 열유량을 분해 챔버(400)에 공급한다.The heat flow source 500 decomposes urea, a reducing agent precursor, to supply the heat flow necessary to generate a reducing agent to the decomposition chamber 400.
본 발명의 제1 실시예에서, 열유량 공급원(500)으로는 분해 챔버(400)에 열유량을 공급할 수 있는 해당 기술분야의 종사자에게 공지된 다양한 수단이 모두 사용될 수 있다.In the first embodiment of the present invention, as the heat flow source 500, various means known to those skilled in the art capable of supplying heat flow to the decomposition chamber 400 may be used.
예를 들어, 블로워를 사용하여 외부에서 신기를 끌어 들이거나 반응기(300)를 거친 배기가스를 재순환시키고, 이를 버너 또는 히터와 같은 가열 부재로 가열하여 분해 챔버(400)에 공급할 수 있다.For example, a blower may be used to draw in fresh air from the outside or to recycle the exhaust gas passed through the reactor 300, and heat it with a heating member such as a burner or a heater to supply the decomposition chamber 400.
또한, 배기가스 배출원(100)이 선박용 디젤 엔진일 경우, 디젤 엔진에서 배출되고 과급기를 거치기 전의 배기가스를 일부 분기시키고, 이를 버너 또는 히터와 같은 가열 부재로 가열하여 분해 챔버(400)에 공급할 수도 있다.In addition, when the exhaust gas discharge source 100 is a marine diesel engine, a part of the exhaust gas discharged from the diesel engine and before passing through the supercharger may be branched, and may be heated by a heating member such as a burner or a heater and supplied to the decomposition chamber 400. have.
본 발명의 제1 실시예에서, 열유량 공급원(500)이 분해 챔버(400)에 공급하는 열유량은 섭씨 400도 내지 섭씨 600도 범위 내의 온도를 가질 수 있다.In the first embodiment of the present invention, the heat flow rate supplied by the heat flow source 500 to the decomposition chamber 400 may have a temperature in the range of 400 degrees Celsius to 600 degrees Celsius.
열유량 공급 유로(650)는 열유량 공급원(500)과 분해 챔버(400)를 연결한다. 그리고 열유량 우회 유로(680)는 열유량 공급 유로(650)에서 분기되어 열유량 공급 유로(650)를 통해 분해 챔버(400)에 공급되는 열유량을 조절한다.The heat flow rate supply passage 650 connects the heat flow rate source 500 and the decomposition chamber 400. The heat flow bypass channel 680 is branched from the heat flow supply flow path 650 to adjust the heat flow rate supplied to the decomposition chamber 400 through the heat flow supply flow path 650.
본 발명의 제1 실시예에서, 열유량 우회 유로(680)는 환원제 분사부(710) 전방의 메인 배기 유로(610)에 합류할 수 있다.In the first embodiment of the present invention, the heat flow bypass channel 680 may join the main exhaust channel 610 in front of the reducing agent injection unit 710.
제1 유량 제어 밸브(810)는 열유량 우회 유로(680)와 열유량 공급 유로(650)의 분기점과 분해 챔버(400) 사이의 열유량 공급 유로(650) 상에 설치되고, 제2 유량 제어 밸브(820)는 열유량 우회 유로(680) 상에 설치될 수 있다.The first flow control valve 810 is provided on the heat flow supply flow path 650 between the branch point of the heat flow bypass channel 680 and the heat flow supply flow path 650 and the decomposition chamber 400, and the second flow control The valve 820 may be installed on the heat flow bypass channel 680.
제1 유량 제어 밸브(810)는 분해 챔버(400)에 공급되는 열유량을 조절하고, 제2 열유량 제어 밸브(820)는 열유량 우회 유로(680)를 통해 이동하는 열유량을 조절한다.The first flow control valve 810 adjusts the heat flow rate supplied to the decomposition chamber 400, and the second heat flow control valve 820 adjusts the heat flow rate moving through the heat flow bypass channel 680.
본 발명의 제1 실시예에서, 제1 유량 제어 밸브(810) 또는 제2 유량 제어 밸브(820) 중 하나는 생략될 수도 있다.In the first embodiment of the present invention, one of the first flow control valve 810 or the second flow control valve 820 may be omitted.
유량계(850)는 열유량 우회 유로(680) 상에 설치되며, 열유량 우회 유로(680)를 통해 우회되는 열유량의 정밀한 제어를 위해 사용될 수 있다.The flow meter 850 is installed on the heat flow bypass channel 680 and may be used for precise control of the heat flow bypassed through the heat flow bypass channel 680.
즉, 본 발명의 제1 실시예에서는, 제1 유량 제어 밸브(810), 제2 유량 제어 밸브(820), 및 유량계(850)를 사용하여 분해 챔버(400)가 환원제 생성에 필요한 적절한 온도를 유지할 수 있도록 분해 챔버(400)에 공급되는 열유량을 제어할 수 있다.That is, in the first embodiment of the present invention, using the first flow control valve 810, the second flow control valve 820, and the flow meter 850, the decomposition chamber 400 is used to set the appropriate temperature required to generate the reducing agent. It is possible to control the heat flow rate supplied to the decomposition chamber 400 to maintain.
또한, 본 발명의 제1 실시예에서는, 열유량 우회 유로(680)가 환원제 분사부(710) 전방의 메인 배기 유로(610)에 합류하므로, 분해 챔버(400)를 우회하여 이동한 열유량은 메인 배기 유로(610)를 이동하는 배기가스를 승온 시키는데 부수적으로 활용될 수 있다.In addition, in the first embodiment of the present invention, since the heat flow rate bypass flow path 680 joins the main exhaust flow path 610 in front of the reducing agent injection portion 710, the heat flow rate that bypasses the decomposition chamber 400 and moves. It may be used incidentally to increase the temperature of the exhaust gas moving through the main exhaust passage 610.
이와 같이, 승온된 배기가스는 분해 챔버(400)에서 우레아가 분해되어 생성된 암모니아 이외에 이소시안산을 재차 분해하여 암모니아를 생성하는데 필요한 열원으로 유용하게 사용될 수 있다.As such, the heated exhaust gas may be usefully used as a heat source required to generate ammonia by re-decomposing isocyanic acid in addition to ammonia generated by decomposition of urea in the decomposition chamber 400.
이와 같은 구성에 의하여, 본 발명의 제1 실시예에 따른 선택적 촉매 환원 시스템(101)은 환원제를 생성하기 위한 분해 챔버(400)에 공급되는 열유량을 효과적으로 조절할 수 있다.By such a configuration, the selective catalytic reduction system 101 according to the first embodiment of the present invention can effectively control the heat flow rate supplied to the decomposition chamber 400 for producing a reducing agent.
구체적으로, 환원제 전구체인 우레아를 분해하여 환원제인 암모니아를 생성하는 분해 챔버(400)의 온도를 우레아 가수분해 또는 열분해 반응 온도 범위 내로 효과적으로 유지시킬 수 있다.Specifically, the temperature of the decomposition chamber 400 for decomposing urea as a reducing agent precursor to generate ammonia as a reducing agent may be effectively maintained within the urea hydrolysis or pyrolysis reaction temperature range.
특히, 분해 챔버(400)에 과도한 열유량이 공급되므로 인하여, 압력이 지나치게 증가하여 전체적인 시스템에 무리를 주거나 적정한 반응 온도를 초과하여 오히려 가수분해 또는 열분해 반응이 일어나지 않는 현상을 미연에 효과적으로 방지할 수 있다.In particular, since the excessive heat flow rate is supplied to the decomposition chamber 400, the pressure may be excessively increased to impede the whole system or exceed the appropriate reaction temperature, thereby preventing the hydrolysis or pyrolysis reaction from occurring. have.
또한, 열유량 우회 유로(680)를 통해 이동한 열유량을 메인 배기 유로(610)를 이동하는 배기가스를 승온 시키는데 부수적으로 활용할 수 있다.In addition, the heat flow rate moved through the heat flow bypass channel 680 may be used to increase the temperature of the exhaust gas moving through the main exhaust flow path 610.
이하, 도 2를 참조하여 본 발명의 제2 실시예에 따른 선택적 촉매 환원 시스템(102)을 설명한다.Hereinafter, the selective catalytic reduction system 102 according to the second embodiment of the present invention will be described with reference to FIG. 2.
도 2에 도시한 바와 같이, 본 발명의 제2 실시예에 따른 선택적 촉매 환원 시스템(102)에서는, 열유량 우회 유로(680)가 열유량 공급 유로(650)에서 분기되어 분해 챔버(400)를 우회하고 환원제 분사부(710)와 반응기(300) 사이의 메인 배기 유로(610)에 합류한다.As shown in FIG. 2, in the selective catalytic reduction system 102 according to the second embodiment of the present invention, the heat flow rate bypass flow path 680 branches from the heat flow supply flow path 650 to open the decomposition chamber 400. Bypass and joins the main exhaust passage 610 between the reducing agent injection portion 710 and the reactor 300.
이와 같이, 본 발명의 제2 실시예에서는, 열유량 우회 유로(680)가 환원제 분사부(710)와 반응기(300) 사이의 메인 배기 유로(610)에 합류하므로, 분해 챔버(400)를 우회하여 이동한 열유량은 환원제 분사부(710)에서 분사된 환원제가 메인 배기 유로(610)를 따라 흐르는 배기가스와 효과적으로 혼합될 수 있도록 돕는다.As such, in the second embodiment of the present invention, the heat flow bypass channel 680 joins the main exhaust channel 610 between the reducing agent injection unit 710 and the reactor 300, thereby bypassing the decomposition chamber 400. The moved heat flow helps to effectively mix the reducing agent injected from the reducing agent injector 710 with the exhaust gas flowing along the main exhaust passage 610.
본 발명의 제2 실시예에 따른 선택적 촉매 환원 시스템(102)은 분기된 열유량 우회 유로(680)의 합류점을 제외하면 제1 실시예와 동일하다.The selective catalytic reduction system 102 according to the second embodiment of the present invention is the same as the first embodiment except for the confluence of the branched heat flow bypass channel 680.
이와 같은 구성에 의하여, 본 발명의 제2 실시예에 따른 선택적 촉매 환원 시스템(102)도 환원제를 생성하기 위한 분해 챔버(400)에 공급되는 열유량을 효과적으로 조절할 수 있다.By such a configuration, the selective catalytic reduction system 102 according to the second embodiment of the present invention can also effectively control the heat flow rate supplied to the decomposition chamber 400 for generating the reducing agent.
또한, 열유량 우회 유로(680)를 통해 이동한 열유량을 환원제와 배기가스를 혼합시키는데 활용할 수 있다.In addition, the heat flow moved through the heat flow bypass channel 680 may be utilized to mix the reducing agent and the exhaust gas.
이하, 도 3을 참조하여 본 발명의 제3 실시예에 따른 선택적 촉매 환원 시스템(103)을 설명한다.Hereinafter, the selective catalytic reduction system 103 according to the third embodiment of the present invention will be described with reference to FIG. 3.
도 3에 도시한 바와 같이, 본 발명의 제3 실시예에 따른 선택적 촉매 환원 시스템(103)에서는, 열유량 우회 유로(680)가 열유량 공급 유로(650)에서 분기되어 분해 챔버(400)를 우회하고 반응기(300)에 직접 연결된다.As shown in FIG. 3, in the selective catalytic reduction system 103 according to the third embodiment of the present invention, the heat flow rate bypass flow path 680 branches from the heat flow supply flow path 650 to open the decomposition chamber 400. Bypasses and is connected directly to the reactor 300.
이와 같이, 본 발명의 제3 실시예에서는, 열유량 우회 유로(680)가 반응기(300)에 직접 연결되므로, 분해 챔버(400)를 우회하여 이동한 열유량은 반응기(300) 내부의 온도를 상승시키는데 부수적으로 활용될 수 있다.As described above, in the third embodiment of the present invention, since the heat flow rate bypass flow path 680 is directly connected to the reactor 300, the heat flow rate bypassed the decomposition chamber 400 moves to a temperature inside the reactor 300. It can be used incidentally to boost.
예를 들어, 열유량 우회 유로(680)를 통해 반응기(300)에 직접 공급된 열유량은 반응기(300) 내에 설치된 촉매를 재생하는데 활용될 수 있다.For example, the heat flow rate directly supplied to the reactor 300 through the heat flow bypass channel 680 may be utilized to regenerate a catalyst installed in the reactor 300.
촉매에서 섭씨 150도 이상 섭씨 250도 미만의 상대적으로 낮은 온도에서 배기가스가 함유한 질소산화물을 저감시키기 위한 환원 반응이 일어나면, 배기가스의 황산화물(SOx)과 암모니아(NH3)가 반응하여 촉매 피독 물질이 생성된다. 촉매 피독 물질은 황산암모늄(Ammonium sulfate, (NH4)2SO4)과 아황산수소암모늄(Ammonium bisulfate, NH4HSO4) 중 하나 이상을 포함할 수 있다. 이러한 촉매 피독 물질은 촉매에 흡착되어 촉매의 활성을 저하시킨다. 촉매 피독 물질은 상대적으로 높은 온도, 즉 섭씨 350도 내지 섭씨 450도 범위 내의 온도에서 분해되므로, 반응기(300)의 촉매를 승온시켜 피독된 촉매를 재생할 수 있다.When a reduction reaction occurs to reduce the nitrogen oxides contained in the exhaust gas at a relatively low temperature of more than 150 degrees Celsius and less than 250 degrees Celsius, the sulfur oxides (SOx) and ammonia (NH 3 ) of the exhaust gases react to form a catalyst. Toxic substances are produced. The catalyst poisoning substance may include one or more of ammonium sulfate (NH 4 ) 2 SO 4 ) and ammonium bisulfate (NH 4 HSO 4 ). These catalyst poisoning substances are adsorbed on the catalyst to lower the activity of the catalyst. Since the catalyst poisoning substance decomposes at a relatively high temperature, that is, a temperature in the range of 350 degrees Celsius to 450 degrees Celsius, the catalyst of the reactor 300 may be heated to regenerate the poisoned catalyst.
본 발명의 제3 실시예에 따른 선택적 촉매 환원 시스템(103)은 분기된 열유량 우회 유로(680)의 합류점을 제외하면 제1 실시예와 동일하다.The selective catalytic reduction system 103 according to the third embodiment of the present invention is the same as the first embodiment except for the confluence of the branched heat flow bypass channel 680.
이와 같은 구성에 의하여, 본 발명의 제3 실시예에 따른 선택적 촉매 환원 시스템(103)도 환원제를 생성하기 위한 분해 챔버(400)에 공급되는 열유량을 효과적으로 조절할 수 있다.By such a configuration, the selective catalytic reduction system 103 according to the third embodiment of the present invention can also effectively control the heat flow rate supplied to the decomposition chamber 400 for generating the reducing agent.
또한, 열유량 우회 유로(680)를 통해 이동한 열유량을 반응기(300) 내 촉매의 재생에 활용할 수 있다.In addition, the heat flow rate moved through the heat flow bypass channel 680 may be used for regeneration of the catalyst in the reactor 300.
이하, 도 4를 참조하여 본 발명의 제4 실시예에 따른 선택적 촉매 환원 시스템(104)을 설명한다.Hereinafter, the selective catalytic reduction system 104 according to the fourth embodiment of the present invention will be described with reference to FIG. 4.
도 4에 도시한 바와 같이, 본 발명의 제4 실시예에 따른 선택적 촉매 환원 시스템(104)에서는, 열유량 우회 유로(680)가 열유량 공급 유로(650)에서 분기되어 분해 챔버(400)를 우회하고 다시 환원제 공급 유로(640)와 합류한다.As shown in FIG. 4, in the selective catalytic reduction system 104 according to the fourth embodiment of the present invention, the heat flow rate bypass flow path 680 branches from the heat flow supply flow path 650 to open the decomposition chamber 400. Bypassing and joining with the reducing agent supply flow path 640 again.
이와 같이, 본 발명의 제4 실시예에서는, 열유량 우회 유로(680)가 환원제 공급 유로(640)와 합류하므로, 분해 챔버(400)를 우회하여 이동한 열유량은 분해 챔버(400)에서 우레아가 분해되어 생성된 암모니아 이외에 이소시안산을 재차 분해하여 암모니아를 생성하는데 필요한 열원으로 유용하게 사용될 수 있다.As described above, in the fourth embodiment of the present invention, since the heat flow rate bypass flow path 680 joins the reducing agent supply flow path 640, the heat flow rate bypassed the decomposition chamber 400 moves to the urea in the decomposition chamber 400. In addition to the ammonia produced by the decomposition, isocyanic acid may be usefully used as a heat source required to generate ammonia by re-decomposing it again.
또한, 본 발명의 제4 실시예에서는, 선택적 촉매 환원 시스템(104)의 전체적인 배관 설계를 상대적으로 간소화할 수 있다.In addition, in the fourth embodiment of the present invention, the overall piping design of the selective catalytic reduction system 104 can be relatively simplified.
본 발명의 제4 실시예에 따른 선택적 촉매 환원 시스템(104)은 분기된 열유량 우회 유로(680)의 합류점을 제외하면 제1 실시예와 동일하다.The selective catalytic reduction system 104 according to the fourth embodiment of the present invention is the same as the first embodiment except for the confluence of the branched heat flow bypass channel 680.
이와 같은 구성에 의하여, 본 발명의 제4 실시예에 따른 선택적 촉매 환원 시스템(104)도 환원제를 생성하기 위한 분해 챔버(400)에 공급되는 열유량을 효과적으로 조절할 수 있다.By such a configuration, the selective catalytic reduction system 104 according to the fourth embodiment of the present invention can also effectively control the heat flow rate supplied to the decomposition chamber 400 for generating the reducing agent.
또한, 선택적 촉매 환원 시스템(104)의 전체적인 배관 설계를 상대적으로 간소화할 수 있다.In addition, the overall piping design of the selective catalytic reduction system 104 can be relatively simplified.
이상 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.Although the embodiments of the present invention have been described above with reference to the accompanying drawings, those skilled in the art to which the present invention pertains can understand that the present invention can be implemented in other specific forms without changing the technical spirit or essential features. will be.
그러므로 이상에서 기술한 실시예는 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해되어야 하고, 본 발명의 범위는 상기 상세한 설명은 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.Therefore, the embodiments described above are to be understood as illustrative and not restrictive in all respects, and the scope of the present invention is represented by the following detailed description, and the meaning and scope of the claims and All changes or modifications derived from the equivalent concept should be interpreted as being included in the scope of the present invention.
본 발명의 실시예에 따른 선택적 촉매 환원 시스템은 환원제를 생성하기 위한 분해 챔버에 공급되는 열유량을 효과적으로 조절하는 데 사용할 수 있다.The selective catalytic reduction system according to the embodiment of the present invention can be used to effectively control the heat flow rate supplied to the decomposition chamber for producing the reducing agent.

Claims (8)

  1. 배기가스 배출원이 배출한 배기가스에 함유된 질소산화물을 저감시키는 선택적 촉매 환원 시스템에 있어서,In the selective catalytic reduction system for reducing the nitrogen oxide contained in the exhaust gas discharged from the exhaust gas source,
    상기 배기가스 배출원의 배기가스가 이동하는 메인 배기 유로;A main exhaust flow path through which the exhaust gas of the exhaust gas discharge source moves;
    상기 메인 배기 유로 상에 설치되어 배기가스가 함유한 질소산화물을 저감시키기 위한 촉매를 포함하는 반응기;A reactor installed on the main exhaust passage and including a catalyst for reducing nitrogen oxides contained in exhaust gas;
    상기 메인 배기 유로 상에 설치되어 상기 반응기로 이동하는 배기가스에 환원제를 분사하는 환원제 분사부;A reducing agent injector installed on the main exhaust passage to inject a reducing agent into the exhaust gas moving to the reactor;
    환원제 전구체를 공급받아 분해하여 상기 환원제 분사부에 공급할 환원제를 생성하는 분해 챔버;A decomposition chamber receiving and reducing a reducing precursor to generate a reducing agent to be supplied to the reducing agent injection unit;
    상기 분해 챔버에 환원제 전구체를 분해하는데 필요한 열에너지를 공급하는 열유량 공급원;A heat flow source for supplying heat energy necessary for decomposing a reducing agent precursor to the decomposition chamber;
    상기 열유량 공급원과 상기 분해 챔버를 연결하는 열유량 공급 유로; 및A heat flow supply flow path connecting the heat flow supply source and the decomposition chamber; And
    상기 열유량 공급 유로에서 분기되어 상기 분해 챔버에 공급되는 열유량을 조절하는 열유량 우회 유로Heat flow bypass flow path for controlling the heat flow rate is supplied to the decomposition chamber branched from the heat flow supply flow path
    을 포함하는 선택적 촉매 환원 시스템.Selective catalytic reduction system comprising a.
  2. 제1항에서,In claim 1,
    상기 분해 챔버에 환원제 전구체를 공급하는 환원제 전구체 공급부를 더 포함하는 선택적 촉매 환원 시스템.Selective catalytic reduction system further comprises a reducing agent precursor supply for supplying a reducing agent precursor to the decomposition chamber.
  3. 제1항에서,In claim 1,
    상기 열유량 우회 유로와 상기 열유량 공급 유로의 분기점과 상기 분해 챔버 사이의 상기 열유량 공급 유로 상에 설치된 제1 유량 제어 밸브; 및A first flow control valve provided on the heat flow rate supply flow path between a branch point of the heat flow bypass channel and the heat flow supply flow path and the decomposition chamber; And
    상기 열유량 우회 유로 상에 설치된 제2 유량 제어 밸브A second flow control valve installed on the heat flow bypass flow path
    중 하나 이상을 더 포함하는 선택적 촉매 환원 시스템.Selective catalytic reduction system further comprising one or more of.
  4. 제3항에서,In claim 3,
    상기 열유량 우회 유로 상에 설치된 유량계를 더 포함하는 선택적 촉매 환원 시스템.Selective catalytic reduction system further comprises a flowmeter installed on the heat flow bypass flow path.
  5. 제1항 내지 제4항 중 어느 한 항에서,The method according to any one of claims 1 to 4,
    상기 열유량 우회 유로는 상기 환원제 분사부 전방의 상기 메인 배기 유로에 합류하는 선택적 촉매 환원 시스템.And the heat flow bypass channel joins the main exhaust flow path in front of the reducing agent injection unit.
  6. 제1항 내지 제4항 중 어느 한 항에서,The method according to any one of claims 1 to 4,
    상기 열유량 우회 유로는 상기 환원제 분사부와 상기 반응기 사이의 상기 메인 배기 유로에 합류하는 선택적 촉매 환원 시스템.And the heat flow bypass channel joins the main exhaust channel between the reducing agent injection unit and the reactor.
  7. 제1항 내지 제4항 중 어느 한 항에서,The method according to any one of claims 1 to 4,
    상기 열유량 우회 유로는 상기 반응기에 직접 연결된 선택적 촉매 환원 시스템.And the heat flow bypass channel is directly connected to the reactor.
  8. 제1항 내지 제4항 중 어느 한 항에서,The method according to any one of claims 1 to 4,
    상기 분해 챔버와 상기 환원제 분사부를 연결하는 환원제 공급 유로를 더 포함하며,Further comprising a reducing agent supply flow path connecting the decomposition chamber and the reducing agent injection,
    상기 열유량 우회 유로는 상기 분해 챔버를 우회하여 상기 환원제 공급 유로와 합류하는 선택적 촉매 환원 시스템.And the heat flow bypass flow passage bypasses the decomposition chamber and joins the reducing agent supply flow passage.
PCT/KR2015/014247 2014-12-24 2015-12-24 Selective catalytic reduction system WO2016105153A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140188238A KR101627052B1 (en) 2014-12-24 2014-12-24 Selective catalytic reduction system
KR10-2014-0188238 2014-12-24

Publications (1)

Publication Number Publication Date
WO2016105153A1 true WO2016105153A1 (en) 2016-06-30

Family

ID=56135896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/014247 WO2016105153A1 (en) 2014-12-24 2015-12-24 Selective catalytic reduction system

Country Status (2)

Country Link
KR (1) KR101627052B1 (en)
WO (1) WO2016105153A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275027A (en) * 2005-03-30 2006-10-12 Nippon Oil Corp Gas filter structure for test, test device and evaluation method
KR100642701B1 (en) * 1998-11-13 2006-11-10 엥겔하드 코포레이션 Staged reductant injection for improved ??? reduction
JP2011144766A (en) * 2010-01-15 2011-07-28 Mitsubishi Heavy Ind Ltd Exhaust gas denitration system and ship equipped therewith, and control method for the exhaust gas denitration system
KR20130110909A (en) * 2012-03-30 2013-10-10 만 디젤 앤 터보 에스이 Internal combustion engine
KR20140000556A (en) * 2012-06-25 2014-01-03 두산엔진주식회사 Power plant for ship with selective catalytic reuction system for internal combustion engine
JP2014118882A (en) * 2012-12-17 2014-06-30 Toyota Industries Corp Exhaust emission control system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100642701B1 (en) * 1998-11-13 2006-11-10 엥겔하드 코포레이션 Staged reductant injection for improved ??? reduction
JP2006275027A (en) * 2005-03-30 2006-10-12 Nippon Oil Corp Gas filter structure for test, test device and evaluation method
JP2011144766A (en) * 2010-01-15 2011-07-28 Mitsubishi Heavy Ind Ltd Exhaust gas denitration system and ship equipped therewith, and control method for the exhaust gas denitration system
KR20130110909A (en) * 2012-03-30 2013-10-10 만 디젤 앤 터보 에스이 Internal combustion engine
KR20140000556A (en) * 2012-06-25 2014-01-03 두산엔진주식회사 Power plant for ship with selective catalytic reuction system for internal combustion engine
JP2014118882A (en) * 2012-12-17 2014-06-30 Toyota Industries Corp Exhaust emission control system

Also Published As

Publication number Publication date
KR101627052B1 (en) 2016-06-02

Similar Documents

Publication Publication Date Title
WO2014208839A1 (en) Selective catalytic reduction and catalytic regeneration system
KR101417296B1 (en) Power plant for ship with selective catalytic reuction system for internal combustion engine
WO2014208841A1 (en) Reducing agent pyrolysis system for selective catalytic reduction apparatus
WO2015046666A1 (en) Selective catalytic reduction system and selective catalytic reduction method
WO2015182812A1 (en) Motive power apparatus including selective catalyst reducing system
WO2013094938A1 (en) Denitrification apparatus for smoke
WO2017078505A1 (en) Cooling device for reductant spray module, and selective engine cooling sytem having same
WO2016108616A1 (en) Selective catalytic reduction system and power apparatus comprising same
KR101662394B1 (en) System for preheating of catalyst
WO2018080179A1 (en) Exhaust gas post-processing system
KR101254915B1 (en) Power plant for ship with selective catalytic reuction system and auxiliary power generation system
CN212757985U (en) Active burnt SOx/NOx control system
WO2016105153A1 (en) Selective catalytic reduction system
WO2018016897A1 (en) Scr mixer and scr device comprising same
KR102107906B1 (en) Selective catalytic reduction system and power plant with the same
KR20170059159A (en) Power plant with selective catalytic reuction system
KR101636208B1 (en) Power plant with selective catalytic reuction system
KR102264968B1 (en) Selective catalytic reduction system
KR102063677B1 (en) Power plant with selective catalytic reduction system
KR20160104367A (en) Power plant with selective catalytic reuction system
KR101708125B1 (en) Power plant with selective catalytic reuction system
KR102075879B1 (en) Power plant with selective catalytic reduction system
WO2017209454A1 (en) System for decomposing reducing agent
KR102137323B1 (en) Selective catalytic reduction system
KR101636176B1 (en) Power plant with selective catalytic reduction system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873680

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15873680

Country of ref document: EP

Kind code of ref document: A1