WO2016105025A1 - Method for fabricating light extraction substrate for organic light-emitting diode, light extraction substrate for organic light-emitting diode, and organic light-emitting diode comprising same - Google Patents

Method for fabricating light extraction substrate for organic light-emitting diode, light extraction substrate for organic light-emitting diode, and organic light-emitting diode comprising same Download PDF

Info

Publication number
WO2016105025A1
WO2016105025A1 PCT/KR2015/013900 KR2015013900W WO2016105025A1 WO 2016105025 A1 WO2016105025 A1 WO 2016105025A1 KR 2015013900 W KR2015013900 W KR 2015013900W WO 2016105025 A1 WO2016105025 A1 WO 2016105025A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
organic light
emitting device
light extraction
substrate
Prior art date
Application number
PCT/KR2015/013900
Other languages
French (fr)
Korean (ko)
Inventor
윤근상
김동현
Original Assignee
코닝정밀소재 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코닝정밀소재 주식회사 filed Critical 코닝정밀소재 주식회사
Publication of WO2016105025A1 publication Critical patent/WO2016105025A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour

Definitions

  • the present invention relates to a method for manufacturing a light extraction substrate for an organic light emitting device, a light extraction substrate for an organic light emitting device and an organic light emitting device including the same, and more particularly, for an organic light emitting device that can improve the light extraction efficiency of the organic light emitting device.
  • the present invention relates to a light extraction substrate manufacturing method, a light extraction substrate for an organic light emitting device, and an organic light emitting device including the same.
  • the light emitting device may be classified into an organic light emitting device that forms a light emitting layer using organic materials and an inorganic light emitting device that forms a light emitting layer using inorganic materials.
  • organic light emitting device of the organic light emitting device electrons injected from an electron injection electrode and holes injected from a hole injection electrode are combined in an organic emission layer to form excitons, and the excitons are energy.
  • It is a self-luminous device that emits light while emitting light, and has advantages such as low power driving, self-luminous, wide viewing angle, high resolution and natural colors, and fast response speed.
  • the light extraction efficiency depends on the refractive index of each layer constituting the organic light emitting device.
  • the refractive index of each layer constituting the organic light emitting device when light emitted from the light emitting layer is emitted above the critical angle, total reflection occurs at an interface between a layer having a high refractive index such as a transparent electrode layer as an anode and a layer having a low refractive index such as substrate glass. The efficiency is lowered, and thus, the overall luminous efficiency of the organic light emitting device is reduced.
  • the organic light emitting device emits only 20% of the emitted light to the outside, and the light of about 80% includes the substrate glass, the anode and the hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer, the electron injection layer, etc.
  • the wave guiding effect due to the refractive index difference of the organic light emitting layer and the total reflection effect due to the refractive index difference between the substrate glass and the air are lost. That is, the refractive index of the internal organic light emitting layer is 1.7 to 1.8, and the refractive index of ITO generally used as the anode is about 1.9.
  • the refractive index of the substrate glass is 1.5
  • the planar waveguide is naturally formed in the organic light emitting device. According to the calculation, the ratio of light lost in the internal waveguide mode by the cause reaches about 45%. Since the refractive index of the substrate glass is about 1.5 and the refractive index of the outside air is 1.0, when light exits from the substrate glass to the outside, light incident above the critical angle causes total reflection and is isolated inside the substrate glass. Since the ratio of about 35%, only 20% of the light emission amount is emitted to the outside.
  • the light extraction layer is largely divided into an inner light extraction layer and an outer light extraction layer.
  • the external light extraction layer by providing a film including various types of micro lenses on the outside of the substrate, it is possible to obtain a light extraction effect, there is a characteristic not largely affected by the shape of the micro lens.
  • the internal light extraction layer directly extracts the light lost in the optical waveguide mode, there is an advantage that the possibility of efficiency increase is much higher than the external light extraction layer.
  • a method of forming a structure having a different refractive index in the layer through patterning or coating a material having a different refractive index such as metal oxide particles is mainly used.
  • an object of the present invention is a method for manufacturing a light extraction substrate for an organic light emitting device that can improve the light extraction efficiency of the organic light emitting device, for an organic light emitting device It is to provide a light extraction substrate and an organic light emitting device comprising the same.
  • Mo molybdenum
  • the metal oxide nanosol is made of a matrix layer for a plurality of the pores, the surface of the matrix layer for the organic light emitting device, characterized in that the buckle (buckling) structure is formed by the shape of the plurality of pores It provides a light extraction substrate manufacturing method.
  • any one or two or more of a metal oxide candidate group including SiO 2 , TiO 2 , ZrO x , ZnO, and SnO 2 may be used as the metal oxide.
  • rutile (rutile) crystal phase TiO 2 may be used as the metal oxide.
  • a plurality of amorphous nanopores may be formed in the matrix layer after the firing step.
  • the pores formed in each of the sites occupied by the plurality of molybdenum particles due to the sublimation of the plurality of molybdenum particles increases in size due to the difference in the coefficient of thermal expansion (CTE) between the base substrate and the metal oxide.
  • CTE coefficient of thermal expansion
  • the metal oxide nanosol may be fired at a temperature of 500 ° C. or higher.
  • a plurality of scattering particles may be mixed with the metal oxide nanosol.
  • scattering particles formed of a shell surrounding the core and having a refractive index difference from the core and the core may be used.
  • the core may be used as scattering particles made of hollow.
  • a flexible substrate may be used as the base substrate.
  • thin glass with a thickness of 1.5 mm or less can be used as the base substrate.
  • the present invention the base substrate; A matrix layer formed on the base substrate and made of a metal oxide; And a plurality of pores formed on the side of the matrix layer at an interface between the base substrate and the matrix layer, and formed by subliming a plurality of molybdenum (Mo) particles, wherein the shape of the plurality of pores is formed on a surface of the matrix layer.
  • Mo molybdenum
  • the pores may be larger than the molybdenum particles.
  • a plurality of scattering particles may be dispersed in the matrix layer.
  • the scattering particles may have a core and a shell having a difference in refractive index from the core and surrounding the core.
  • the core may be made hollow.
  • the matrix layer may be made of TiO 2 of a rutile crystalline phase.
  • a plurality of amorphous nanopores may be formed in the matrix layer.
  • the present invention provides an organic light emitting device characterized in that the light extraction substrate for the organic light emitting device is provided on the path through which light is emitted.
  • the present invention in the firing process of forming the metal oxide nanosol into a matrix layer, by subliming molybdenum formed at the boundary between the base substrate and the metal oxide nanosol, pores capable of light scattering can be formed in place. It is possible to form a buckling structure capable of disturbing the optical waveguide mode on the surface of the matrix layer to be made, thereby improving the light extraction efficiency of the organic light emitting device.
  • FIG. 1 is a process flow diagram illustrating a method of manufacturing a light extraction substrate for an organic light emitting device according to an embodiment of the present invention.
  • 2 to 5 is a process schematic diagram showing a method of manufacturing a light extraction substrate for an organic light emitting device according to an embodiment of the present invention.
  • Figure 6 is a schematic cross-sectional view of the light extraction substrate prepared by the light extraction substrate manufacturing method according to an embodiment of the present invention applied to the organic light emitting device.
  • the light emitted from the organic light emitting diode (10 of FIG. 6) is disposed on a path through which the light is emitted to the outside, and the light emitted from the organic light emitting diode 10 is emitted.
  • a light extracting substrate which serves to emit light to the outside improves the light extraction efficiency of the organic light emitting device 10, and protects the organic light emitting device 10 from the external environment (see FIG. 6). 100).
  • the method of manufacturing a light extracting substrate for an organic light emitting device includes a dispersion step S1, a coating step S2, and a firing step S3.
  • the dispersing step S1 is a step of dispersing a plurality of molybdenum (Mo) particles 120 on the surface of the base substrate 110.
  • the molybdenum particles 120 may be dispersed on the surface of the base substrate 110 using a sputter.
  • a plurality of molybdenum particles 120 may be dispersed on the surface of the base substrate 110 through printing or spraying.
  • the plurality of molybdenum particles 120 is sublimed in the sintering step (S3) to be carried out in a subsequent process, each of the molybdenum particles 120 is a pore (140 of FIG. 5) serving as a light scattering body in each of the sublimed sites It is formed, which will be described in more detail below.
  • the base substrate 110 in which a plurality of molybdenum particles 120 is dispersed on the surface is applied to the organic light emitting device (10 in FIG. 6) is a light extraction substrate (100 in FIG. 5) manufactured according to an embodiment of the present invention
  • the front of the organic light emitting element 10, that is, the light emitted from the organic light emitting element 10 is disposed in contact with the outside air, and transmits the emitted light to the outside, the organic light emitting element 10 Serves as an encapsulation substrate to protect it from the external environment.
  • the base substrate 110 is a transparent substrate and is not limited as long as it has excellent light transmittance and excellent mechanical properties.
  • a polymer-based material which is an organic film capable of thermosetting or UV curing may be used as the base substrate 110.
  • the base substrate 110 is a chemically tempered glass of soda lime glass (SiO 2 -CaO-Na 2 O ) or alumino-silicate glass (SiO 2 -Al 2 O 3 -Na 2 O) may be used.
  • soda lime glass may be used as the base substrate 110.
  • a substrate made of metal oxide or metal nitride may be used as the base substrate 110.
  • a flexible substrate may be used as the base substrate 110.
  • a thin glass having a thickness of 1.5 mm or less may be used.
  • the thin glass may be manufactured through a fusion method or a floating method.
  • the coating step (S3) is to coat the metal oxide nano sol (nano sol) (131) on the surface of the base substrate 110, a plurality of molybdenum particles 120 are dispersed Step.
  • a metal oxide forming a nano-sol (131) to form a matrix layer (130 of FIG. 5) for a plurality of pores (140 of FIG. 5) formed by a plurality of molybdenum particles 120 sublimation A high refractive index (HRI) metal oxide, for example, a metal oxide having a refractive index n of 1.5 to 2.7 may be used.
  • HRI high refractive index
  • any one or two or more of the metal oxide candidate group including SiO 2 , TiO 2 , ZrO x , ZnO and SnO 2 may be used in combination. Can be.
  • it may be used as a metal oxide constituting the nano-sol 131 TiO 2 of the rutile crystalline phase.
  • TiO 2 using a rutile crystalline phase is used as the metal oxide forming the nanosol 131, pores formed by the sublimation of the molybdenum particles 120 inside the TiO 2 during the sintering process in a subsequent process (FIG. A large number of nanopores (not shown) of irregular shape separate from 5) are formed, which will be described in more detail below.
  • the coating step (S2) it is possible to mix a plurality of scattering particles in the metal oxide nanosol (131).
  • scattering particles having a difference in refractive index of 0.3 or more from the metal oxide nanosol 131 may be mixed with the metal oxide nanosol 131.
  • the scattering particles may be used scattering particles consisting of a shell surrounding the core and having a refractive index difference between the core and the core, in particular, the core may be a scattering particle consisting of a hollow.
  • the conventional scattering particles made of a single material having a single refractive index, the core-shell structured scattering particles having a difference in refractive index between the core and the shell, and the scattering of the core-shell structure made of the hollow core Scattering particles of any one of the particles can be used as a plurality of scattering particles to be mixed in the metal oxide nanosol (131).
  • two or more of these may be mixed in a predetermined ratio, and used as a plurality of scattering particles mixed in the metal oxide nanosol 131.
  • the plurality of scattering particles which may be formed in various combinations, together with the plurality of pores (140 in FIG.
  • the organic light emitting diode 10 may serve to improve light extraction efficiency.
  • the scattering particles are made of a core-shell structure having a difference in refractive index from each other, the efficiency of extracting light emitted from the organic light emitting device 10 to the outside may be further improved through the difference in refractive index between the core and the shell. .
  • the firing step S3 includes a plurality of molybdenum particles dispersed on the surface of the base substrate 110 and the base substrate 110 through the coating step S2.
  • the metal oxide nanosol 131 is fired to make the matrix layer 130.
  • the plurality of molybdenum particles 120 dispersed on the surface of the base substrate 110 is sublimed, and each of the molybdenum particles 120 is sublimed in each of the sites. Pores 140 are formed.
  • a temperature higher than the sublimation point of the molybdenum particles 120 for example, 500 ° C. or higher.
  • the metal oxide nanosol 131 is fired at the temperature.
  • the pores 140 formed at the sites where the molybdenum particles 120 are sublimed are formed between the base oxide 110 and the metal oxide forming the nanosol 131.
  • the size can be increased by the difference in the coefficient of thermal expansion (CTE). That is, when the coefficient of thermal expansion (CTE) of the base substrate 110 is greater than the coefficient of thermal expansion (CTE) of the metal oxide forming the nanosol 131, the nanosol 131 shrinks during the firing process.
  • the size of the pores 140 formed due to the sublimation of the molybdenum particles 120 is increased.
  • a buckling structure is formed on the surface of the matrix layer 130 formed by firing due to the shape of the plurality of pores 140 having increased size.
  • the buckling structure prevents the light emitted from the organic light emitting diode 10 from being lost due to the optical waveguide mode according to the difference in refractive index with the base substrate 110. That is, the buckling structure formed on the surface of the matrix layer 130 serves to disturb the light coating mode, thereby increasing the light extraction efficiency of the organic light emitting device 10.
  • the coating step (S2) as the metal oxide nanosol 131 to form the matrix layer 130 after firing, in the case of using a rutile (rutile) crystalline TiO 2 of a plurality of nanostructures of amorphous inside TiO 2 Pores (not shown) are formed.
  • the nanopores (not shown) unlike the pores 140 formed by the sublimation of the molybdenum particles 120, is naturally generated in the process of firing TiO2.
  • These nano pores (not shown) forms a complex scattering structure together with the pores 140 formed by the sublimation of the molybdenum particles 120, thereby improving the light extraction efficiency of the organic light emitting device (10).
  • the amorphous nano pores may implement an equivalent or more light scattering effect when compared to the pores 140 formed in a standardized form due to the sublimation of the ribbed particles 120. That is, the more amorphous nanopores (not shown) are formed in the matrix layer 130 made of TiO 2 of the rutile crystal phase, that is, the area occupied by a plurality of nanopores (not shown) in the matrix layer 130. The wider this is, the better the light extraction efficiency can be achieved.
  • an organic light emitting device light extraction substrate 100 is manufactured. That is, the light extraction substrate 100 for an organic light emitting device according to the embodiment of the present invention is formed to include a base substrate 110, a matrix layer 130 and a plurality of pores 140.
  • the plurality of pores 140 is formed at the place where the plurality of molybdenum particles 120 are sublimed, and is formed toward the matrix layer 130 at the interface between the base substrate 110 and the matrix layer 130.
  • a buckling structure is formed on the surface of the matrix layer 130 according to the embodiment of the present invention by the shape of the plurality of pores 140.
  • the pores 140 due to the sublimation of the molybdenum particles 120 during the firing step (S3) according to an embodiment of the present invention, after being formed in place, the nano-sol made of a matrix layer 130 ( Due to the difference in the coefficient of thermal expansion (CTE) between the metal oxide 131 and the base substrate 110, the size of the nanosol 131 shrinks, thereby increasing the size of the molybdenum particles 120. Form a form.
  • CTE coefficient of thermal expansion
  • scattering particles of a core-shell structure having a single refractive index or multiple refractive indices may be dispersed in the matrix layer 130.
  • Such scattering particles may have a complex scattering structure with a plurality of pores 140. Is achieved.
  • the light extraction substrate 100 manufactured according to an embodiment of the present invention is disposed on the path of the light emitted from the organic light emitting device 10, the organic light emitting device 10 It serves as a light functional substrate that serves to improve the light extraction efficiency.
  • the matrix layer 130 and the plurality of pores 140 formed therein form an inner light extraction layer of the organic light emitting device 10.
  • the plurality of pores 140 formed inside the matrix layer 130 achieve a difference in refractive index with the matrix layer 130, and also complicate or diversify the path of light emitted from the organic light emitting element 10. It serves to improve the extraction efficiency of the light to the front.
  • the buckling structure formed on the surface of the matrix layer 130 disturbs the light coating mode for the light emitted from the organic light emitting device 10, the pores 140 and Similarly, it serves to improve the extraction efficiency of the light to the front.
  • a plurality of scattering particles (not shown) dispersed in the matrix layer 130 also form a complex light scattering structure together with the plurality of pores 140, thereby improving the extraction efficiency of light to the front. .
  • the substrate ( It is made of a laminated structure of the anode electrode, the organic light emitting layer and the cathode electrode disposed between.
  • the anode electrode may be formed of a metal having a large work function, for example, a metal or a metal oxide such as Au, In, Sn, or ITO, so that hole injection occurs well.
  • the cathode electrode may be formed of a metal thin film of Al, Al: Li, or Mg: Ag having a low work function to facilitate electron injection.
  • the cathode electrode is a semi-transparent electrode (semitransparent electrode) and indium tin oxide (Al, Al: Li or Mg: Ag) of the metal thin film so that the light emitted from the organic light emitting layer can be transmitted through It may be formed of a multilayer structure of a thin film of an oxide transparent electrode such as indium tin oxide (ITO).
  • the organic emission layer may include a hole injection layer, a hole transport layer, an emission layer, an electron transport layer, and an electron injection layer that are sequentially stacked on the anode.
  • the organic light emitting layer may be formed of a laminated structure of a polymer light emitting layer for emitting light in the blue region and a low molecular light emitting layer for emitting light in the orange-red region, In addition, it may be formed in various structures to implement white light emission.
  • the organic light emitting device may have a tandem structure. Accordingly, a plurality of organic light emitting layers may be provided, and each organic light emitting layer may be alternately disposed through an interconnecting layer formed of a charge generation layer (CGL).
  • CGL charge generation layer
  • the cathode electrode when a forward voltage is applied between the anode electrode and the cathode electrode, electrons move from the cathode electrode to the light emitting layer through the electron injection layer and the electron transport layer, and holes from the anode electrode through the hole injection layer and the hole transport layer It moves to the light emitting layer.
  • the electrons and holes injected into the light emitting layer recombine in the light emitting layer to generate excitons, and the excitons emit light while transitioning from the excited state to the ground state.
  • the brightness of the light is proportional to the amount of current flowing between the anode electrode and the cathode electrode.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The present invention relates to a method for fabricating a light extraction substrate for an organic light-emitting diode (OLED), a light extraction substrate for an OLED, and an OLED comprising same. More specifically, the present invention relates to a method for fabricating a light extraction substrate for an OLED, which can improve the light extraction efficiency of an OLED, a light extraction substrate for an OLED, and an OLED comprising same. To this end, the present invention provides a method for fabricating a light extraction substrate for an OLED, a light extraction substrate for an OLED, and an OLED comprising same, the method comprising: a dispersing step for dispersing a plurality of molybdenum (Mo) particles onto the surface of a base substrate; a coating step for coating, with a metal oxide nanosol, the surface of the base substrate on which the plurality of Mo particles have been dispersed; and a sintering step for sintering the metal oxide nanosol, wherein, in the sintering step, the plurality of Mo particles are sublimated and pores are formed in the respective places where the plurality of Mo particle have been sublimated, and if the sintering step has been completed, the metal oxide nanosol is formed into a matrix layer for the plurality of pores and a buckling structure is formed on the surface of the matrix layer by the form of the plurality of pores.

Description

유기발광소자용 광추출 기판 제조방법, 유기발광소자용 광추출 기판 및 이를 포함하는 유기발광소자Method for manufacturing light extracting substrate for organic light emitting device, light extracting substrate for organic light emitting device and organic light emitting device comprising same
본 발명은 유기발광소자용 광추출 기판 제조방법, 유기발광소자용 광추출 기판 및 이를 포함하는 유기발광소자에 관한 것으로서 더욱 상세하게는 유기발광소자의 광추출 효율을 향상시킬 수 있는 유기발광소자용 광추출 기판 제조방법, 유기발광소자용 광추출 기판 및 이를 포함하는 유기발광소자에 관한 것이다.The present invention relates to a method for manufacturing a light extraction substrate for an organic light emitting device, a light extraction substrate for an organic light emitting device and an organic light emitting device including the same, and more particularly, for an organic light emitting device that can improve the light extraction efficiency of the organic light emitting device. The present invention relates to a light extraction substrate manufacturing method, a light extraction substrate for an organic light emitting device, and an organic light emitting device including the same.
일반적으로, 발광장치는 크게 유기물을 이용하여 발광층을 형성하는 유기 발광장치와 무기물을 이용하여 발광층을 형성하는 무기 발광장치로 구분할 수 있다. 이중, 유기 발광장치를 이루는 유기발광소자는 전자주입전극(cathode)으로부터 주입된 전자와 정공주입전극(anode)으로부터 주입된 정공이 유기 발광층에서 결합하여 엑시톤(exciton)을 형성하고, 이 엑시톤이 에너지를 방출하면서 발광하는 자체 발광형 소자로서, 저전력 구동, 자체발광, 넓은 시야각, 높은 해상도와 천연색 실현, 빠른 응답 속도 등의 장점을 가지고 있다.In general, the light emitting device may be classified into an organic light emitting device that forms a light emitting layer using organic materials and an inorganic light emitting device that forms a light emitting layer using inorganic materials. In the organic light emitting device of the organic light emitting device, electrons injected from an electron injection electrode and holes injected from a hole injection electrode are combined in an organic emission layer to form excitons, and the excitons are energy. It is a self-luminous device that emits light while emitting light, and has advantages such as low power driving, self-luminous, wide viewing angle, high resolution and natural colors, and fast response speed.
최근에는 이러한 유기발광소자를 휴대용 정보기기, 카메라, 시계, 사무용기기, 자동차 등의 정보 표시 창, 텔레비전, 디스플레이 또는 조명용 등에 적용하기 위한 연구가 활발히 진행되고 있다.Recently, researches for applying such organic light emitting devices to portable information devices, cameras, watches, office equipment, information display windows of automobiles, televisions, displays, or lightings have been actively conducted.
상술한 바와 같은 유기발광소자의 발광 효율을 향상시키기 위해서는 발광층을 구성하는 재료의 발광 효율을 높이거나 발광층에서 발광된 광의 광추출 효율을 향상시키는 방법이 있다.In order to improve the light emitting efficiency of the organic light emitting device as described above, there is a method of increasing the light emitting efficiency of the material constituting the light emitting layer or improving the light extraction efficiency of the light emitted from the light emitting layer.
이때, 광추출 효율은 유기발광소자를 구성하는 각 층들의 굴절률에 의해 좌우된다. 일반적인 유기발광소자의 경우, 발광층으로부터 방출되는 광이 임계각 이상으로 출사될 때, 애노드인 투명전극층과 같이 굴절률이 높은 층과 기판유리와 같이 굴절률이 낮은 층 사이의 계면에서 전반사를 일으키게 되어, 광추출 효율이 낮아지게 되고, 이로 인해, 유기발광소자의 전체적인 발광 효율이 감소되는 문제점이 있었다.In this case, the light extraction efficiency depends on the refractive index of each layer constituting the organic light emitting device. In the general organic light emitting device, when light emitted from the light emitting layer is emitted above the critical angle, total reflection occurs at an interface between a layer having a high refractive index such as a transparent electrode layer as an anode and a layer having a low refractive index such as substrate glass. The efficiency is lowered, and thus, the overall luminous efficiency of the organic light emitting device is reduced.
이를 구체적으로 설명하면, 유기발광소자는 발광량의 20%만 외부로 방출되고, 80% 정도의 빛은 기판유리와 애노드 및 정공 주입층, 전공 수송층, 발광층, 전자 수송층, 전자 주입층 등을 포함하는 유기 발광층의 굴절률 차이에 의한 도파관(wave guiding) 효과와 기판유리와 공기의 굴절률 차이에 의한 전반사 효과로 손실된다. 즉, 내부 유기 발광층의 굴절률은 1.7~1.8이고, 애노드로 일반적으로 사용되는 ITO의 굴절률은 약 1.9이다. 이때, 두 층의 두께는 대략 200~400㎚로 매우 얇고, 기판유리의 굴절률은 1.5이므로, 유기발광소자 내에는 평면 도파로가 자연스럽게 형성된다. 계산에 의하면, 상기 원인에 의한 내부 도파모드로 손실되는 빛의 비율이 약 45%에 이른다. 그리고 기판유리의 굴절률은 약 1.5이고, 외부 공기의 굴절률은 1.0이므로, 기판유리에서 외부로 빛이 빠져 나갈 때, 임계각 이상으로 입사되는 빛은 전반사를 일으켜 기판유리 내부에 고립되는데, 이렇게 고립된 빛의 비율은 약 35%에 이르기 때문에, 불과 발광량의 20% 정도만 외부로 방출된다.Specifically, the organic light emitting device emits only 20% of the emitted light to the outside, and the light of about 80% includes the substrate glass, the anode and the hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer, the electron injection layer, etc. The wave guiding effect due to the refractive index difference of the organic light emitting layer and the total reflection effect due to the refractive index difference between the substrate glass and the air are lost. That is, the refractive index of the internal organic light emitting layer is 1.7 to 1.8, and the refractive index of ITO generally used as the anode is about 1.9. At this time, since the thickness of the two layers is very thin, approximately 200 ~ 400nm, the refractive index of the substrate glass is 1.5, the planar waveguide is naturally formed in the organic light emitting device. According to the calculation, the ratio of light lost in the internal waveguide mode by the cause reaches about 45%. Since the refractive index of the substrate glass is about 1.5 and the refractive index of the outside air is 1.0, when light exits from the substrate glass to the outside, light incident above the critical angle causes total reflection and is isolated inside the substrate glass. Since the ratio of about 35%, only 20% of the light emission amount is emitted to the outside.
이러한 문제를 해결하기 위해, 광도파모드에 의해 소실되는 80%의 빛을 외부로 끌어내는 광추출층에 대한 연구가 활발히 진행되고 있다. 여기서, 광추출층은 크게 내부 광추출층과 외부 광추출층으로 나뉜다. 이때, 외부 광추출층의 경우에는 다양한 형태의 마이크로 렌즈를 포함하는 필름을 기판 외부에 설치함으로써, 광추출 효과를 얻을 수 있는데, 마이크로 렌즈의 형태에 크게 구애 받지 않은 특성이 있다. 또한, 내부 광추출층은 광도파모드로 소실되는 빛을 직접적으로 추출함으로써, 외부 광추출층에 비해 효율증대 가능성이 훨씬 높은 장점이 있다.In order to solve this problem, research on the light extraction layer that draws 80% of the light lost by the optical waveguide mode to the outside is being actively conducted. Here, the light extraction layer is largely divided into an inner light extraction layer and an outer light extraction layer. In this case, in the case of the external light extraction layer, by providing a film including various types of micro lenses on the outside of the substrate, it is possible to obtain a light extraction effect, there is a characteristic not largely affected by the shape of the micro lens. In addition, since the internal light extraction layer directly extracts the light lost in the optical waveguide mode, there is an advantage that the possibility of efficiency increase is much higher than the external light extraction layer.
여기서, 종래에는 이러한 내부 광추출층을 제조하기 위해, 패터닝을 통해 층 내에 굴절률이 다른 구조를 형성하는 방법이나 금속산화물입자와 같은 굴절률이 다른 물질을 코팅하는 방법을 주로 사용하였다.Herein, in order to manufacture such an internal light extraction layer, a method of forming a structure having a different refractive index in the layer through patterning or coating a material having a different refractive index such as metal oxide particles is mainly used.
하지만, 내부 광추출층을 통해 광추출 효율이 증대되더라도 외부로 방출되는 발광량을 기준으로 보면, 그 효과가 여전히 미진하고, 공정적으로도 복잡하므로, 보다 간단한 방법으로 광추출 효율을 향상시킬 수 있는 방법 혹은 기술에 대한 연구가 절실히 요구되고 있는 실정이다.However, even if the light extraction efficiency is increased through the internal light extraction layer, based on the amount of light emitted to the outside, the effect is still insignificant and complex in process, so that the light extraction efficiency can be improved by a simpler method. Research on methods or techniques is urgently needed.
[선행기술문헌][Preceding technical literature]
대한민국 등록특허공보 제1093259호(2011.12.06.)Republic of Korea Patent Publication No. 1093259 (2011.12.06.)
본 발명은 상술한 바와 같은 종래기술의 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 유기발광소자의 광추출 효율을 향상시킬 수 있는 유기발광소자용 광추출 기판 제조방법, 유기발광소자용 광추출 기판 및 이를 포함하는 유기발광소자를 제공하는 것이다.The present invention has been made to solve the problems of the prior art as described above, an object of the present invention is a method for manufacturing a light extraction substrate for an organic light emitting device that can improve the light extraction efficiency of the organic light emitting device, for an organic light emitting device It is to provide a light extraction substrate and an organic light emitting device comprising the same.
이를 위해, 본 발명은, 베이스 기판의 표면에 다수의 몰리브덴(Mo) 입자를 분산시키는 분산단계; 상기 다수의 몰리브덴 입자가 분산되어 있는 상기 베이스 기판의 표면에 금속산화물 나노졸을 코팅하는 코팅단계; 및 상기 금속산화물 나노졸을 소성하는 소성단계를 포함하되, 상기 소성단계 시 상기 다수의 몰리브덴 입자는 승화되고, 상기 다수의 몰리브덴 입자가 승화된 자리 각각에는 기공이 형성되며, 상기 소성단계가 완료되면, 상기 금속산화물 나노졸은 다수의 상기 기공에 대한 매트릭스 층으로 만들어지고, 상기 매트릭스 층의 표면에는 다수의 상기 기공의 형상에 의해 버클링(buckling) 구조가 형성되는 것을 특징으로 하는 유기발광소자용 광추출 기판 제조방법을 제공한다.To this end, the present invention, a dispersion step of dispersing a plurality of molybdenum (Mo) particles on the surface of the base substrate; Coating a metal oxide nanosol on a surface of the base substrate on which the plurality of molybdenum particles are dispersed; And a firing step of firing the metal oxide nanosol, wherein the plurality of molybdenum particles are sublimed during the firing step, and pores are formed in each of the plurality of molybdenum particles sublimated, and the firing step is completed. , The metal oxide nanosol is made of a matrix layer for a plurality of the pores, the surface of the matrix layer for the organic light emitting device, characterized in that the buckle (buckling) structure is formed by the shape of the plurality of pores It provides a light extraction substrate manufacturing method.
여기서, 상기 코팅단계에서는 상기 금속산화물로 SiO2, TiO2, ZrOx, ZnO 및 SnO2를 포함하는 금속산화물 후보군 중 어느 하나 또는 둘 이상을 조합하여 사용할 수 있다.Here, in the coating step, any one or two or more of a metal oxide candidate group including SiO 2 , TiO 2 , ZrO x , ZnO, and SnO 2 may be used as the metal oxide.
이때, 상기 코팅단계에서는 상기 금속산화물로, 루타일(rutile) 결정상의 TiO2를 사용할 수 있다.At this time, in the coating step, as the metal oxide, rutile (rutile) crystal phase TiO 2 may be used.
또한, 상기 소성단계 후 상기 매트릭스 층 내부에는 부정형의 다수의 나노기공이 형성될 수 있다.In addition, a plurality of amorphous nanopores may be formed in the matrix layer after the firing step.
게다가, 상기 소성단계에서, 상기 다수의 몰리브덴 입자의 승화로 인해 상기 다수의 몰리브덴 입자가 차지했던 자리 각각 에 형성된 상기 기공은 상기 베이스 기판과 상기 금속산화물 간의 열팽창계수(CTE) 차이에 의해 크기가 증가될 수 있다.In addition, in the firing step, the pores formed in each of the sites occupied by the plurality of molybdenum particles due to the sublimation of the plurality of molybdenum particles increases in size due to the difference in the coefficient of thermal expansion (CTE) between the base substrate and the metal oxide. Can be.
그리고 상기 소성단계에서는 500℃ 이상의 온도로 상기 금속산화물 나노졸을 소성할 수 있다.In the firing step, the metal oxide nanosol may be fired at a temperature of 500 ° C. or higher.
게다가, 상기 코팅단계에서는 상기 금속산화물 나노졸에 다수의 산란입자를 혼합할 수 있다.In addition, in the coating step, a plurality of scattering particles may be mixed with the metal oxide nanosol.
이때, 상기 산란입자로는 코어 및 상기 코어와 굴절률 차이를 가지며 상기 코어를 감싸는 쉘로 이루어진 산란입자를 사용할 수 있다.In this case, as the scattering particles, scattering particles formed of a shell surrounding the core and having a refractive index difference from the core and the core may be used.
또한, 상기 산란입자로는 상기 코어가 중공으로 이루어진 산란입자를 사용할 수 있다.In addition, as the scattering particles, the core may be used as scattering particles made of hollow.
그리고 상기 베이스 기판으로는 플렉서블 기판을 사용할 수 있다.A flexible substrate may be used as the base substrate.
이때, 상기 베이스 기판으로는 두께 1.5㎜ 이하의 박판 유리를 사용할 수 있다.At this time, thin glass with a thickness of 1.5 mm or less can be used as the base substrate.
한편, 본 발명은, 베이스 기판; 상기 베이스 기판 상에 형성되고, 금속산화물로 이루어진 매트릭스 층; 및 상기 베이스 기판과 상기 매트릭스 층 간의 경계면에서 상기 매트릭스 층 측으로 형성되어 있고, 다수의 몰리브덴(Mo) 입자가 승화되어 형성된 다수의 기공을 포함하되, 상기 매트릭스 층의 표면에는 상기 다수의 기공의 형상이 전사된 형태의 버클링(buckling) 구조가 형성되어 있는 것을 특징으로 하는 유기발광소자용 광추출 기판을 제공한다.On the other hand, the present invention, the base substrate; A matrix layer formed on the base substrate and made of a metal oxide; And a plurality of pores formed on the side of the matrix layer at an interface between the base substrate and the matrix layer, and formed by subliming a plurality of molybdenum (Mo) particles, wherein the shape of the plurality of pores is formed on a surface of the matrix layer. It provides a light extraction substrate for an organic light emitting device, characterized in that the transfer of the buckle (buckling) structure of the form.
여기서, 상기 기공은 상기 몰리브덴 입자보다 크기가 클 수 있다.Here, the pores may be larger than the molybdenum particles.
또한, 상기 매트릭스 층 내부에는 다수의 산란입자가 분산되어 있을 수 있다.In addition, a plurality of scattering particles may be dispersed in the matrix layer.
이때, 상기 산란입자는 코어 및 상기 코어와 굴절률 차이를 가지며 상기 코어를 감싸는 쉘로 이루어질 수 있다.In this case, the scattering particles may have a core and a shell having a difference in refractive index from the core and surrounding the core.
또한, 상기 코어는 중공으로 이루어질 수 있다.In addition, the core may be made hollow.
그리고 상기 매트릭스 층은 루타일(rutile) 결정상의 TiO2로 이루어질 수 있다.The matrix layer may be made of TiO 2 of a rutile crystalline phase.
이때, 상기 매트릭스 층의 내부에는 부정형의 나노기공이 다수 개 형성되어 있을 수 있다.In this case, a plurality of amorphous nanopores may be formed in the matrix layer.
한편, 본 발명은 상기의 유기발광소자용 광추출 기판이 빛이 방출되는 경로 상에 구비되는 것을 특징으로 하는 유기발광소자를 제공한다.On the other hand, the present invention provides an organic light emitting device characterized in that the light extraction substrate for the organic light emitting device is provided on the path through which light is emitted.
본 발명에 따르면, 금속산화물 나노졸을 매트릭스 층으로 만드는 소성 과정에서, 베이스 기판과 금속산화물 나노졸 간의 경계에 형성되어 있던 몰리브덴을 승화시킴으로써, 그 자리에 광 산란이 가능한 기공을 형성할 수 있고, 만들어지는 매트릭스 층의 표면에 광 도파모드의 교란이 가능한 버클링(buckling) 구조를 형성할 수 있으며, 이를 통해, 유기발광소자의 광추출 효율을 향상시킬 수 있게 된다.According to the present invention, in the firing process of forming the metal oxide nanosol into a matrix layer, by subliming molybdenum formed at the boundary between the base substrate and the metal oxide nanosol, pores capable of light scattering can be formed in place. It is possible to form a buckling structure capable of disturbing the optical waveguide mode on the surface of the matrix layer to be made, thereby improving the light extraction efficiency of the organic light emitting device.
도 1은 본 발명의 실시 예에 따른 유기발광소자용 광추출 기판 제조방법을 나타낸 공정 흐름도.1 is a process flow diagram illustrating a method of manufacturing a light extraction substrate for an organic light emitting device according to an embodiment of the present invention.
도 2 내지 5는 본 발명의 실시 예에 따른 유기발광소자용 광추출 기판 제조방법을 공정 순으로 나타낸 공정 모식도.2 to 5 is a process schematic diagram showing a method of manufacturing a light extraction substrate for an organic light emitting device according to an embodiment of the present invention.
도 6은 본 발명의 실시 예에 따른 광추출 기판 제조방법을 통해 제조된 광추출 기판을 유기발광소자에 적용한 단면 모식도.Figure 6 is a schematic cross-sectional view of the light extraction substrate prepared by the light extraction substrate manufacturing method according to an embodiment of the present invention applied to the organic light emitting device.
이하에서는 첨부된 도면들을 참조하여 본 발명의 실시 예에 따른 유기발광소자용 광추출 기판 제조방법, 유기발광소자용 광추출 기판 및 이를 포함하는 유기발광소자에 대해 상세히 설명한다.Hereinafter, a method of manufacturing a light extraction substrate for an organic light emitting device, a light extraction substrate for an organic light emitting device, and an organic light emitting device including the same according to embodiments of the present invention will be described in detail with reference to the accompanying drawings.
아울러, 본 발명을 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다.In addition, in describing the present invention, when it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.
본 발명의 실시 예에 따른 유기발광소자용 광추출 기판 제조방법은 유기발광소자(도 6의 10)로부터 발광된 빛이 외부로 방출되는 경로 상에 배치되어, 유기발광소자(10)로부터 발광된 빛을 외부로 방출시키는 통로 역할을 하는 한편, 유기발광소자(10)의 광추출 효율을 향상시킴과 아울러, 유기발광소자(10)를 외부 환경으로부터 보호하는 역할을 하는 광추출 기판(도 6의 100)을 제조하는 방법이다.In the method of manufacturing a light extracting substrate for an organic light emitting diode according to an embodiment of the present invention, the light emitted from the organic light emitting diode (10 of FIG. 6) is disposed on a path through which the light is emitted to the outside, and the light emitted from the organic light emitting diode 10 is emitted. A light extracting substrate which serves to emit light to the outside, improves the light extraction efficiency of the organic light emitting device 10, and protects the organic light emitting device 10 from the external environment (see FIG. 6). 100).
도 1에 도시한 바와 같이, 이러한 본 발명의 실시 예에 따른 유기발광소자용 광추출 기판 제조방법은 분산단계(S1), 코팅단계(S2) 및 소성단계(S3) 포함한다.As shown in FIG. 1, the method of manufacturing a light extracting substrate for an organic light emitting device according to an exemplary embodiment of the present invention includes a dispersion step S1, a coating step S2, and a firing step S3.
먼저, 도 2에 도시한 바와 같이, 분산단계(S1)는 베이스 기판(110)의 표면에 다수의 몰리브덴(Mo) 입자(120)를 분산시키는 단계이다. 분산단계(S1)에서는 스퍼터(sputter)를 이용하여 몰리브덴 입자(120)를 베이스 기판(110)의 표면에 분산시킬 수 있다. 이 외에도 분산단계(S1)에서는 프린팅(printing)이나 스프레이(spray) 등을 통해서도 다수의 몰리브덴 입자(120)를 베이스 기판(110) 표면에 분산시킬 수 있다. 이러한 다수의 몰리브덴 입자(120)는 후속공정으로 진행되는 소성단계(S3)에서 승화되고, 다수의 몰리브덴 입자(120)가 승화된 자리 각각에는 광 산란체 역할을 하는 기공(도 5의 140)이 형성되는데, 이에 대해서는 하기에서 보다 상세히 설명하기로 한다.First, as shown in FIG. 2, the dispersing step S1 is a step of dispersing a plurality of molybdenum (Mo) particles 120 on the surface of the base substrate 110. In the dispersing step S1, the molybdenum particles 120 may be dispersed on the surface of the base substrate 110 using a sputter. In addition, in the dispersing step S1, a plurality of molybdenum particles 120 may be dispersed on the surface of the base substrate 110 through printing or spraying. The plurality of molybdenum particles 120 is sublimed in the sintering step (S3) to be carried out in a subsequent process, each of the molybdenum particles 120 is a pore (140 of FIG. 5) serving as a light scattering body in each of the sublimed sites It is formed, which will be described in more detail below.
한편, 표면에 다수의 몰리브덴 입자(120)가 분산되는 베이스 기판(110)은 본 발명의 실시 예에 따라 제조되는 광추출 기판(도 5의 100)이 유기발광소자(도 6의 10)에 적용되는 경우, 유기발광소자(10)의 전방, 즉, 유기발광소자(10)로부터 발광된 빛이 외기와 접하는 부분에 배치되어, 발광된 빛을 외부로 투과시킴과 아울러, 유기발광소자(10)를 외부 환경으로부터 보호하는 봉지(encapsulation) 기판으로서의 역할을 한다. 이러한 베이스 기판(110)은 투명 기판으로, 광 투과율이 우수하고 기계적인 물성이 우수한 것이면 어느 것이든 제한되지 않는다. 예를 들어, 베이스 기판(110)으로는 열경화 또는 UV 경화가 가능한 유기필름인 고분자 계열의 물질이 사용될 수 있다. 또한, 베이스 기판(110)으로는 화학강화유리인 소다라임 유리(SiO2-CaO-Na2O) 또는 알루미노실리케이트계 유리(SiO2-Al2O3-Na2O)가 사용될 수 있다. 여기서, 본 발명의 실시 예에 따라 제조된 광추출 기판(100)을 채용하는 유기발광소자(10)가 조명용인 경우, 베이스 기판(110)으로는 소다라임 유리가 사용될 수 있다. 이외에도 베이스 기판(110)으로는 금속산화물이나 금속질화물로 이루어진 기판이 사용될 수도 있다. 그리고 본 발명의 실시 예에서는 베이스 기판(110)으로 플렉서블(flexible) 기판이 사용될 수 있는데, 특히, 두께 1.5㎜ 이하의 박판 유리가 사용될 수 있다. 이때, 이러한 박판 유리는 퓨전(fusion) 공법 또는 플로팅(floating) 공법을 통해 제조될 수 있다.On the other hand, the base substrate 110 in which a plurality of molybdenum particles 120 is dispersed on the surface is applied to the organic light emitting device (10 in FIG. 6) is a light extraction substrate (100 in FIG. 5) manufactured according to an embodiment of the present invention In this case, the front of the organic light emitting element 10, that is, the light emitted from the organic light emitting element 10 is disposed in contact with the outside air, and transmits the emitted light to the outside, the organic light emitting element 10 Serves as an encapsulation substrate to protect it from the external environment. The base substrate 110 is a transparent substrate and is not limited as long as it has excellent light transmittance and excellent mechanical properties. For example, a polymer-based material which is an organic film capable of thermosetting or UV curing may be used as the base substrate 110. In addition, the base substrate 110 is a chemically tempered glass of soda lime glass (SiO 2 -CaO-Na 2 O ) or alumino-silicate glass (SiO 2 -Al 2 O 3 -Na 2 O) may be used. Here, when the organic light emitting device 10 employing the light extraction substrate 100 manufactured according to the embodiment of the present invention is for illumination, soda lime glass may be used as the base substrate 110. In addition, a substrate made of metal oxide or metal nitride may be used as the base substrate 110. In addition, in the embodiment of the present invention, a flexible substrate may be used as the base substrate 110. In particular, a thin glass having a thickness of 1.5 mm or less may be used. In this case, the thin glass may be manufactured through a fusion method or a floating method.
다음으로, 도 3에 도시한 바와 같이, 코팅단계(S3)는 다수의 몰리브덴 입자(120)가 분산되어 있는 베이스 기판(110)의 표면에 금속산화물 나노졸(nano sol)(131)을 코팅하는 단계이다. 코팅단계(S2)에서는 다수의 몰리브덴 입자(120)가 승화됨으로써 형성되는 다수의 기공(도 5의 140)에 대한 매트릭스 층(도 5의 130)을 이루게 될 나노졸(131)을 이루는 금속산화물로, 고굴절(high refractive index; HRI) 금속산화물, 예컨대, 굴절률(n)이 1.5~2.7인 금속산화물을 사용할 수 있다. 예를 들어, 코팅단계(S2)에서는 나노졸(131)을 이루는 금속산화물로, SiO2, TiO2, ZrOx, ZnO 및 SnO2를 포함하는 금속산화물 후보군 중 어느 하나 또는 둘 이상을 조합하여 사용할 수 있다. 특히, 코팅단계(S1)에서는 나노졸(131)을 이루는 금속산화물로 루타일(rutile) 결정상의 TiO2를 사용할 수 있다. 나노졸(131)을 이루는 금속산화물로 루타일(rutile) 결정상의 TiO2를 사용하게 되면, 후속 공정으로 진행되는 소성과정에서, TiO2 내부에 몰리브덴 입자(120)가 승화됨으로써 형성되는 기공(도 5의 140)과는 별개인 부정형의 다수의 나노기공(미도시)이 형성되는데, 이에 대해서는 하기에서 보다 상세히 설명하기로 한다.Next, as shown in Figure 3, the coating step (S3) is to coat the metal oxide nano sol (nano sol) (131) on the surface of the base substrate 110, a plurality of molybdenum particles 120 are dispersed Step. In the coating step (S2) as a metal oxide forming a nano-sol (131) to form a matrix layer (130 of FIG. 5) for a plurality of pores (140 of FIG. 5) formed by a plurality of molybdenum particles 120 sublimation A high refractive index (HRI) metal oxide, for example, a metal oxide having a refractive index n of 1.5 to 2.7 may be used. For example, in the coating step (S2) as the metal oxide forming the nano-sol 131, any one or two or more of the metal oxide candidate group including SiO 2 , TiO 2 , ZrO x , ZnO and SnO 2 may be used in combination. Can be. In particular, in the coating step (S1) it may be used as a metal oxide constituting the nano-sol 131 TiO 2 of the rutile crystalline phase. When TiO 2 using a rutile crystalline phase is used as the metal oxide forming the nanosol 131, pores formed by the sublimation of the molybdenum particles 120 inside the TiO 2 during the sintering process in a subsequent process (FIG. A large number of nanopores (not shown) of irregular shape separate from 5) are formed, which will be described in more detail below.
한편, 도시하진 않았지만, 코팅단계(S2)에서는 금속산화물 나노졸(131)에 다수의 산란입자를 혼합할 수 있다. 예를 들어, 코팅단계(S2)에서는 금속산화물 나노졸(131)과 굴절률 차이가 0.3 이상인 산란입자들을 금속산화물 나노졸(131)에 혼합할 수 있다. 이때, 산란입자로는 코어 및 코어와 굴절률 차이를 가지며 코어를 감싸는 쉘로 이루어진 산란입자를 사용할 수 있고, 특히, 코어가 중공으로 이루어진 산란입자를 사용할 수 있다. 즉, 코팅단계(S2)에서는 단일 물질로 이루어져 단일 굴절률을 갖는 통상의 산란입자들, 코어와 쉘이 굴절률 차이를 갖는 코어-쉘 구조의 산란입자들 및 코어가 중공으로 이루어진 코어-쉘 구조의 산란입자들 중 어느 하나의 산란입자들을 금속산화물 나노졸(131)에 혼합하는 다수의 산란입자로 사용할 수 있다. 또한, 코팅단계(S2)에서는 이들 중 둘 이상을 소정 비율로 섞어, 금속산화물 나노졸(131)에 혼합하는 다수의 산란입자로 사용할 수 있다. 이와 같이, 다양한 조합으로 이루어질 수 있는 다수의 산란입자는 후속공정을 통해 형성되는 다수의 기공(도 5의 140)과 함께, 유기발광소자(10)로부터 방출되는 빛을 다양한 혹은 복잡한 경로로 산란시켜, 유기발광소자(10)의 광추출 효율을 향상시키는 역할을 하게 된다. 특히, 산란입자가 서로 굴절률 차이를 갖는 코어-쉘 구조로 이루어지면, 코어와 쉘 간의 굴절률 차이를 통해, 유기발광소자(10)로부터 방출되는 빛을 외부로 추출하는 효율을 더욱 향상시킬 수 있게 된다.On the other hand, although not shown, in the coating step (S2) it is possible to mix a plurality of scattering particles in the metal oxide nanosol (131). For example, in the coating step S2, scattering particles having a difference in refractive index of 0.3 or more from the metal oxide nanosol 131 may be mixed with the metal oxide nanosol 131. In this case, as the scattering particles may be used scattering particles consisting of a shell surrounding the core and having a refractive index difference between the core and the core, in particular, the core may be a scattering particle consisting of a hollow. That is, in the coating step (S2), the conventional scattering particles made of a single material having a single refractive index, the core-shell structured scattering particles having a difference in refractive index between the core and the shell, and the scattering of the core-shell structure made of the hollow core Scattering particles of any one of the particles can be used as a plurality of scattering particles to be mixed in the metal oxide nanosol (131). In addition, in the coating step (S2), two or more of these may be mixed in a predetermined ratio, and used as a plurality of scattering particles mixed in the metal oxide nanosol 131. As such, the plurality of scattering particles, which may be formed in various combinations, together with the plurality of pores (140 in FIG. 5) formed through subsequent processes, scatter the light emitted from the organic light emitting device 10 in various or complicated paths. In addition, the organic light emitting diode 10 may serve to improve light extraction efficiency. In particular, when the scattering particles are made of a core-shell structure having a difference in refractive index from each other, the efficiency of extracting light emitted from the organic light emitting device 10 to the outside may be further improved through the difference in refractive index between the core and the shell. .
다음으로, 도 4 및 도 5에 도시한 바와 같이, 소성단계(S3)는 코팅단계(S2)를 통해, 베이스 기판(110) 및 베이스 기판(110)의 표면에 분산되어 있는 다수의 몰리브덴 입자(120) 상에 코팅된 금속산화물 나노졸(131)을 소성하는 단계이다. 본 발명의 실시 예에 따른 소성단계(S3)에서는 금속산화물 나노졸(131)을 소성하여, 이를 매트릭스 층(130)으로 만든다. 이때, 금속산화물 나노졸(131)을 소성하는 과정에서, 베이스 기판(110)의 표면에 분산되어 있는 다수의 몰리브덴 입자(120)는 승화되고, 다수의 몰리브덴 입자(120)가 승화된 자리 각각에는 기공(140)이 형성된다. 이를 위해, 즉, 금속산화물 나노졸(131)에 대한 소성과 아울러, 몰리브덴 입자(120)를 승화시키기 위해, 소성단계(S3)에서는 몰리브덴 입자(120)의 승화점 이상의 온도, 예컨대, 500℃ 이상의 온도로 금속산화물 나노졸(131)을 소성한다.Next, as shown in FIGS. 4 and 5, the firing step S3 includes a plurality of molybdenum particles dispersed on the surface of the base substrate 110 and the base substrate 110 through the coating step S2. The step of firing the metal oxide nanosol 131 coated on the 120. In the sintering step (S3) according to an embodiment of the present invention, the metal oxide nanosol 131 is fired to make the matrix layer 130. In this case, in the process of firing the metal oxide nanosol 131, the plurality of molybdenum particles 120 dispersed on the surface of the base substrate 110 is sublimed, and each of the molybdenum particles 120 is sublimed in each of the sites. Pores 140 are formed. To this end, that is, in order to sublimate the molybdenum particles 120 together with the firing on the metal oxide nanosol 131, in the firing step S3, a temperature higher than the sublimation point of the molybdenum particles 120, for example, 500 ° C. or higher. The metal oxide nanosol 131 is fired at the temperature.
여기서, 몰리브덴 입자(120)가 승화된 자리, 즉, 소성 전, 몰리브덴 입자(120)가 차지했던 자리에 형성되는 기공(140)은 베이스 기판(110)과 나노졸(131)을 이루는 금속산화물 간의 열팽창계수(CTE) 차이에 의해 크기가 증가될 수 있다. 즉, 베이스 기판(110)의 열팽창계수(CTE)가 나노졸(131)을 이루는 금속산화물의 열팽창계수(CTE)보다 클 때, 소성과정에서 나노졸(131)은 수축하게 되고, 이 과정에서, 몰리브덴 입자(120)의 승화로 인해 형성된 기공(140)의 크기는 증가하게 된다. 그리고 이로 인해, 소성되어 만들어진 매트릭스 층(130)의 표면에는 크기가 증가된 다수의 기공(140)의 형상에 의해 버클링(buckling) 구조가 형성된다. 이러한 버클링 구조는 유기발광소자(10)로부터 방출된 빛이 베이스 기판(110)과의 굴절률 차이에 따른 광 도파모드로 인해 손실되는 것을 방지하는 역할을 한다. 즉, 매트릭스 층(130)의 표면에 형성되는 버클링 구조는 광 도포모드를 교란시키는 역할을 하고, 이를 통해, 유기발광소자(10)의 광추출 효율은 증가하게 된다.Here, the pores 140 formed at the sites where the molybdenum particles 120 are sublimed, that is, the sites where the molybdenum particles 120 occupy, are formed between the base oxide 110 and the metal oxide forming the nanosol 131. The size can be increased by the difference in the coefficient of thermal expansion (CTE). That is, when the coefficient of thermal expansion (CTE) of the base substrate 110 is greater than the coefficient of thermal expansion (CTE) of the metal oxide forming the nanosol 131, the nanosol 131 shrinks during the firing process. The size of the pores 140 formed due to the sublimation of the molybdenum particles 120 is increased. As a result, a buckling structure is formed on the surface of the matrix layer 130 formed by firing due to the shape of the plurality of pores 140 having increased size. The buckling structure prevents the light emitted from the organic light emitting diode 10 from being lost due to the optical waveguide mode according to the difference in refractive index with the base substrate 110. That is, the buckling structure formed on the surface of the matrix layer 130 serves to disturb the light coating mode, thereby increasing the light extraction efficiency of the organic light emitting device 10.
한편, 코팅단계(S2)에서, 소성 후 매트릭스 층(130)을 이루게 될 금속산화물 나노졸(131)로, 루타일(rutile) 결정상의 TiO2를 사용한 경우에는 TiO2 내부에 부정형의 다수의 나노기공(미도시)이 형성된다. 이때, 나노기공(미도시)은 몰리브덴 입자(120)가 승화됨으로써 형성되는 기공(140)과 달리, TiO2가 소성되는 과정에서 자연 발생된다. 이러한 나노기공(미도시)은 몰리브덴 입자(120)의 승화로 형성된 기공(140)과 함께 복잡한 산란구조를 이뤄, 유기발광소자(10)의 광추출 효율을 향상시키는 역할을 한다. 이때, 부정형의 나노기공(미도시)은 리브덴 입자(120)의 승화로 인해 정형화된 형태로 형성된 기공(140)과 비교할 때, 이와 동등하거나 그 이상의 광 산란 효과를 구현할 수 있다. 즉, 루타일 결정상의 TiO2로 이루어진 매트릭스 층(130) 내부에 부정형의 나노기공(미도시)이 많이 형성될수록, 다시 말해, 매트릭스 층(130)에서 다수의 나노기공(미도시)이 차지하는 면적이 넓을수록, 우수한 광추출 효율을 구현할 수 있다.On the other hand, in the coating step (S2), as the metal oxide nanosol 131 to form the matrix layer 130 after firing, in the case of using a rutile (rutile) crystalline TiO 2 of a plurality of nanostructures of amorphous inside TiO 2 Pores (not shown) are formed. At this time, the nanopores (not shown), unlike the pores 140 formed by the sublimation of the molybdenum particles 120, is naturally generated in the process of firing TiO2. These nano pores (not shown) forms a complex scattering structure together with the pores 140 formed by the sublimation of the molybdenum particles 120, thereby improving the light extraction efficiency of the organic light emitting device (10). In this case, the amorphous nano pores (not shown) may implement an equivalent or more light scattering effect when compared to the pores 140 formed in a standardized form due to the sublimation of the ribbed particles 120. That is, the more amorphous nanopores (not shown) are formed in the matrix layer 130 made of TiO 2 of the rutile crystal phase, that is, the area occupied by a plurality of nanopores (not shown) in the matrix layer 130. The wider this is, the better the light extraction efficiency can be achieved.
도 5에 도시한 바와 같이, 이러한 소성단계(S3)가 완료되면, 본 발명의 실시 예에 따른 유기발광소자용 광추출 기판(100)이 제조된다. 즉, 본 발명의 실시 예에 따른 유기발광소자용 광추출 기판(100)은 베이스 기판(110), 매트릭스 층(130) 및 다수의 기공(140)을 포함하여 형성된다. 이때, 다수의 기공(140)은 다수의 몰리브덴 입자(120)가 승화된 자리에 형성되는 것으로, 베이스 기판(110)과 매트릭스 층(130) 간의 경계면에서 매트릭스 층(130) 측으로 형성된다. 또한, 본 발명의 실시 예에 따른 매트릭스 층(130)의 표면에는 다수의 기공(140)의 형상에 의해 버클링 구조가 형성된다.As shown in FIG. 5, when the firing step S3 is completed, an organic light emitting device light extraction substrate 100 according to an exemplary embodiment of the present invention is manufactured. That is, the light extraction substrate 100 for an organic light emitting device according to the embodiment of the present invention is formed to include a base substrate 110, a matrix layer 130 and a plurality of pores 140. In this case, the plurality of pores 140 is formed at the place where the plurality of molybdenum particles 120 are sublimed, and is formed toward the matrix layer 130 at the interface between the base substrate 110 and the matrix layer 130. In addition, a buckling structure is formed on the surface of the matrix layer 130 according to the embodiment of the present invention by the shape of the plurality of pores 140.
여기서, 이러한 기공(140)은 상술했듯이, 본 발명의 실시 예에 따른 소성단계(S3) 시 몰리브덴 입자(120)의 승화로 인해, 그 자리에 형성된 후, 매트릭스 층(130)으로 만들어진 나노졸(131)을 이루는 금속산화물과 베이스 기판(110) 간의 열팽창계수(CTE) 차이로 인해, 나노졸(131)이 수축되는 과정에서 그 크기가 증가되고, 이에 따라, 몰리브덴 입자(120)보다 크기가 증가된 형태를 이룬다.Here, the pores 140, as described above, due to the sublimation of the molybdenum particles 120 during the firing step (S3) according to an embodiment of the present invention, after being formed in place, the nano-sol made of a matrix layer 130 ( Due to the difference in the coefficient of thermal expansion (CTE) between the metal oxide 131 and the base substrate 110, the size of the nanosol 131 shrinks, thereby increasing the size of the molybdenum particles 120. Form a form.
또한, 도시하진 않았지만, 매트릭스 층(130) 내부에는 단일 굴절률 또는 다중 굴절률을 갖는 코어-쉘 구조의 산란입자들이 분산되어 있을 수 있는데, 이러한 산란입자들은 다수의 기공(140)과 함께 복잡한 산란구조를 이루게 된다.In addition, although not shown, scattering particles of a core-shell structure having a single refractive index or multiple refractive indices may be dispersed in the matrix layer 130. Such scattering particles may have a complex scattering structure with a plurality of pores 140. Is achieved.
한편, 도 6에 도시한 바와 같이, 본 발명의 실시 예에 따라 제조된 광추출 기판(100)은 유기발광소자(10)로부터 발광된 빛이 방출되는 경로 상에 배치되어, 유기발광소자(10)의 광추출 효율을 향상시키는 역할을 하는 광 기능성 기판으로서의 역할을 하게 된다. 이때, 매트릭스 층(130) 및 이의 내부에 형성되어 있는 다수의 기공(140)은 유기발광소자(10)의 내부 광추출층을 이루게 된다.On the other hand, as shown in Figure 6, the light extraction substrate 100 manufactured according to an embodiment of the present invention is disposed on the path of the light emitted from the organic light emitting device 10, the organic light emitting device 10 It serves as a light functional substrate that serves to improve the light extraction efficiency. In this case, the matrix layer 130 and the plurality of pores 140 formed therein form an inner light extraction layer of the organic light emitting device 10.
매트릭스 층(130)의 내부에 형성되어 있는 다수의 기공(140)은 매트릭스 층(130)과의 굴절률 차이를 이룸과 아울러, 유기발광소자(10)로부터 발광된 빛의 경로를 복잡화 혹은 다변화시켜, 전방으로의 광의 추출 효율을 향상시키는 역할을 하게 된다. 또한, 다수의 기공(140)의 형상으로 인해, 매트릭스 층(130)의 표면에 형성된 버클링 구조는 유기발광소자(10)로부터 발광된 빛에 대한 광 도포모드를 교란시켜, 기공(140)과 마찬가지로, 전방으로의 광의 추출 효율을 향상시키는 역할을 하게 된다. 그리고 매트릭스 층(130) 내부에 분산되어 있는 다수의 산란입자(미도시) 또한, 다수의 기공(140)과 함께 복잡한 광 산란구조를 이룸으로써, 전방으로의 광의 추출 효율을 향상시키는 역할을 하게 된다.The plurality of pores 140 formed inside the matrix layer 130 achieve a difference in refractive index with the matrix layer 130, and also complicate or diversify the path of light emitted from the organic light emitting element 10. It serves to improve the extraction efficiency of the light to the front. In addition, due to the shape of the plurality of pores 140, the buckling structure formed on the surface of the matrix layer 130 disturbs the light coating mode for the light emitted from the organic light emitting device 10, the pores 140 and Similarly, it serves to improve the extraction efficiency of the light to the front. In addition, a plurality of scattering particles (not shown) dispersed in the matrix layer 130 also form a complex light scattering structure together with the plurality of pores 140, thereby improving the extraction efficiency of light to the front. .
한편, 구체적으로 도시하진 않았지만, 유기발광소자(10)는 본 발명의 실시 예에 따른 광추출 기판(100) 및 유기발광소자(10)에 대한 인캡슐레이션을 위해, 이와 대향되게 위치되는 기판(미도시) 사이에 배치되는 애노드 전극, 유기 발광층 및 캐소드 전극의 적층 구조로 이루어진다. 이때, 애노드 전극은 정공 주입이 잘 일어나도록 일함수(work function)가 큰 금속, 예컨대, Au, In, Sn 또는 ITO와 같은 금속 또는 금속산화물로 이루어질 수 있다. 또한, 캐소드 전극은 전자 주입이 잘 일어나도록 일함수가 작은 Al, Al:Li 또는 Mg:Ag의 금속 박막으로 이루어질 수 있다. 이때, 유기발광소자가 전면 발광형인 경우, 캐소드 전극은 유기 발광층에서 발광된 빛이 잘 투과될 수 있도록 Al, Al:Li 또는 Mg:Ag의 금속 박막의 반투명 전극(semitransparent electrode)과 인듐 주석산화물(indium tin oxide; ITO)과 같은 산화물 투명 전극(transparent electrode) 박막의 다층구조로 이루어질 수 있다. 그리고 유기 발광층은 애노드 상에 차례로 적층되는 정공 주입층, 정공 수송층, 발광층, 전자 수송층 및 전자 주입층을 포함하여 형성될 수 있다. 이때, 유기발광소자가 조명용 백색 유기발광소자로 이루어지는 경우, 예컨대, 발광층은 청색 영역의 광을 방출하는 고분자 발광층과 오렌지-적색 영역의 광을 방출하는 저분자 발광층의 적층 구조로 형성될 수 있고, 이 외에도 다양한 구조로 형성되어 백색 발광을 구현할 수 있다. 또한, 유기발광소자는 텐덤(tandem) 구조로 이루어질 수 있다. 이에 따라, 유기 발광층은 복수 개로 구비되고, 각각의 유기 발광층은 전하 생성층(charge generation layer; CGL)으로 이루어진 연결층(interconnecting layer)을 매개로 교번 배치될 수 있다.On the other hand, although not shown in detail, the organic light emitting device 10 for the encapsulation of the light extraction substrate 100 and the organic light emitting device 10 according to an embodiment of the present invention, the substrate ( It is made of a laminated structure of the anode electrode, the organic light emitting layer and the cathode electrode disposed between. In this case, the anode electrode may be formed of a metal having a large work function, for example, a metal or a metal oxide such as Au, In, Sn, or ITO, so that hole injection occurs well. In addition, the cathode electrode may be formed of a metal thin film of Al, Al: Li, or Mg: Ag having a low work function to facilitate electron injection. At this time, when the organic light emitting device is a top emission type, the cathode electrode is a semi-transparent electrode (semitransparent electrode) and indium tin oxide (Al, Al: Li or Mg: Ag) of the metal thin film so that the light emitted from the organic light emitting layer can be transmitted through It may be formed of a multilayer structure of a thin film of an oxide transparent electrode such as indium tin oxide (ITO). The organic emission layer may include a hole injection layer, a hole transport layer, an emission layer, an electron transport layer, and an electron injection layer that are sequentially stacked on the anode. At this time, when the organic light emitting device is made of a white organic light emitting device for illumination, for example, the light emitting layer may be formed of a laminated structure of a polymer light emitting layer for emitting light in the blue region and a low molecular light emitting layer for emitting light in the orange-red region, In addition, it may be formed in various structures to implement white light emission. In addition, the organic light emitting device may have a tandem structure. Accordingly, a plurality of organic light emitting layers may be provided, and each organic light emitting layer may be alternately disposed through an interconnecting layer formed of a charge generation layer (CGL).
이러한 구조에 따라, 애노드 전극과 캐소드 전극 사이에 순방향 전압이 인가되면, 캐소드 전극으로부터 전자가 전자 주입층 및 전자 수송층을 통해 발광층으로 이동하게 되고, 애노드 전극으로부터 정공이 정공 주입층 및 정공 수송층을 통해 발광층으로 이동하게 된다. 그리고 발광층 내로 주입된 전자와 정공은 발광층에서 재결합하여 엑시톤(exciton)을 생성하고, 이러한 엑시톤이 여기상태(excited state)에서 기저상태(ground state)로 전이하면서 빛을 방출하게 되는데, 이때, 방출되는 빛의 밝기는 애노드 전극과 캐소드 전극 사이에 흐르는 전류량에 비례하게 된다. According to this structure, when a forward voltage is applied between the anode electrode and the cathode electrode, electrons move from the cathode electrode to the light emitting layer through the electron injection layer and the electron transport layer, and holes from the anode electrode through the hole injection layer and the hole transport layer It moves to the light emitting layer. The electrons and holes injected into the light emitting layer recombine in the light emitting layer to generate excitons, and the excitons emit light while transitioning from the excited state to the ground state. The brightness of the light is proportional to the amount of current flowing between the anode electrode and the cathode electrode.
이상과 같이 본 발명은 비록 한정된 실시 예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시 예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.As described above, although the present invention has been described with reference to the limited embodiments and the drawings, the present invention is not limited to the above embodiments, and those skilled in the art to which the present invention pertains various modifications and variations from such descriptions. This is possible.
그러므로 본 발명의 범위는 설명된 실시 예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐만 아니라 특허청구범위와 균등한 것들에 의해 정해져야 한다.Therefore, the scope of the present invention should not be limited to the described embodiments, but should be determined not only by the claims below but also by the equivalents of the claims.

Claims (19)

  1. 베이스 기판 표면에 다수의 몰리브덴(Mo) 입자를 분산시키는 분산단계;A dispersion step of dispersing a plurality of molybdenum (Mo) particles on the surface of the base substrate;
    상기 다수의 몰리브덴 입자가 분산되어 있는 상기 베이스 기판 표면에 금속산화물 나노졸을 코팅하는 코팅단계; 및Coating a metal oxide nanosol on a surface of the base substrate on which the plurality of molybdenum particles are dispersed; And
    상기 금속산화물 나노졸을 소성하는 소성단계;Firing the metal oxide nanosol;
    를 포함하되,Including,
    상기 소성단계 시 상기 다수의 몰리브덴 입자는 승화되고, 상기 다수의 몰리브덴 입자가 승화된 자리 각각에는 기공이 형성되며,In the firing step, the plurality of molybdenum particles are sublimed, and pores are formed in each of the sites where the plurality of molybdenum particles are sublimed.
    상기 소성단계가 완료되면, 상기 금속산화물 나노졸은 다수의 상기 기공에 대한 매트릭스 층으로 만들어지고,When the firing step is completed, the metal oxide nanosol is made of a matrix layer for a plurality of the pores,
    상기 매트릭스 층의 표면에는 다수의 상기 기공의 형상에 의해 버클링(buckling) 구조가 형성되는 것을 특징으로 하는 유기발광소자용 광추출 기판 제조방법.Method of manufacturing a light extraction substrate for an organic light emitting device, characterized in that the buckling structure is formed on the surface of the matrix layer by the shape of the plurality of pores.
  2. 제1항에 있어서,The method of claim 1,
    상기 코팅단계에서는 상기 금속산화물로 SiO2, TiO2, ZrOx, ZnO 및 SnO2를 포함하는 금속산화물 후보군 중 어느 하나 또는 둘 이상을 조합하여 사용하는 것을 특징으로 하는 유기발광소자용 광추출 기판 제조방법.In the coating step, a light extraction substrate for an organic light emitting device, characterized in that any one or two or more combinations of metal oxide candidate groups including SiO 2 , TiO 2 , ZrO x , ZnO and SnO 2 are used as the metal oxides. Way.
  3. 제2항에 있어서,The method of claim 2,
    상기 코팅단계에서는 상기 금속산화물로, 루타일(rutile) 결정상의 TiO2를 사용하는 것을 특징으로 하는 유기발광소자용 광추출 기판 제조방법.In the coating step, a light extraction substrate manufacturing method for an organic light emitting device, characterized in that as the metal oxide, using a rutile (rutile) crystal phase TiO 2 .
  4. 제3항에 있어서,The method of claim 3,
    상기 소성단계 후 상기 매트릭스 층 내부에는 부정형의 다수의 나노기공이 형성되는 것을 특징으로 하는 유기발광소자용 광추출 기판 제조방법.The method of manufacturing a light extraction substrate for an organic light emitting device, characterized in that a plurality of amorphous nanopores are formed in the matrix layer after the firing step.
  5. 제1항에 있어서,The method of claim 1,
    상기 소성단계에서, 상기 다수의 몰리브덴 입자의 승화로 인해 상기 다수의 몰리브덴 입자가 차지했던 자리 각각에 형성된 다수의 상기 기공은 상기 베이스 기판과 상기 금속산화물 간의 열팽창계수(CTE) 차이에 의해 크기가 증가되는 것을 특징으로 하는 유기발광소자용 광추출 기판 제조방법.In the firing step, the plurality of pores formed in each of the sites occupied by the plurality of molybdenum particles due to the sublimation of the plurality of molybdenum particles increases in size due to a difference in coefficient of thermal expansion (CTE) between the base substrate and the metal oxide. Method for manufacturing a light extraction substrate for an organic light emitting device, characterized in that.
  6. 제1항에 있어서,The method of claim 1,
    상기 소성단계에서는 500℃ 이상의 온도로 상기 금속산화물 나노졸을 소성하는 것을 특징으로 하는 유기발광소자용 광추출 기판 제조방법.In the firing step, the light extraction substrate manufacturing method for an organic light emitting device, characterized in that for firing the metal oxide nanosol at a temperature of 500 ℃ or more.
  7. 제1항에 있어서,The method of claim 1,
    상기 코팅단계에서는 상기 금속산화물 나노졸에 다수의 산란입자를 혼합하는 것을 특징으로 하는 유기발광소자용 광추출 기판 제조방법.In the coating step, a light extraction substrate manufacturing method for an organic light emitting device, characterized in that a plurality of scattering particles are mixed with the metal oxide nanosol.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 산란입자로는 코어 및 상기 코어와 굴절률 차이를 가지며 상기 코어를 감싸는 쉘로 이루어진 산란입자를 사용하는 것을 특징으로 하는 유기발광소자용 광추출 기판 제조방법.The scattering particles have a difference in refractive index with the core and the core and scattering particles consisting of a shell surrounding the core using a light extraction substrate manufacturing method for an organic light emitting device.
  9. 제8항에 있어서,The method of claim 8,
    상기 산란입자로는 상기 코어가 중공으로 이루어진 산란입자를 사용하는 것을 특징으로 하는 유기발광소자용 광추출 기판 제조방법.The scattering particles manufacturing method of light extraction substrate for an organic light emitting device, characterized in that using the scattering particles made of the core hollow.
  10. 제1항에 있어서,The method of claim 1,
    상기 베이스 기판으로는 플렉서블 기판을 사용하는 것을 특징으로 하는 유기발광소자용 광추출 기판 제조방법.A method of manufacturing a light extraction substrate for an organic light emitting device, characterized in that a flexible substrate is used as the base substrate.
  11. 제10항에 있어서,The method of claim 10,
    상기 베이스 기판으로는 두께 1.5㎜ 이하의 박판 유리를 사용하는 것을 특징으로 하는 유기발광소자용 광추출 기판 제조방법.The base substrate is a light extraction substrate manufacturing method for an organic light emitting device, characterized in that using a thin glass of 1.5mm or less thickness.
  12. 베이스 기판;A base substrate;
    상기 베이스 기판 상에 형성되고, 금속산화물로 이루어진 매트릭스 층; 및A matrix layer formed on the base substrate and made of a metal oxide; And
    상기 베이스 기판과 상기 매트릭스 층 간의 경계면에서 상기 매트릭스 층 측으로 형성되어 있고, 다수의 몰리브덴(Mo) 입자가 승화되어 형성된 다수의 기공;A plurality of pores formed on the side of the matrix layer at an interface between the base substrate and the matrix layer and formed by sublimation of a plurality of molybdenum (Mo) particles;
    을 포함하되,Including,
    상기 매트릭스 층의 표면에는 상기 다수의 기공의 형상에 의해 버클링(buckling) 구조가 형성되어 있는 것을 특징으로 하는 유기발광소자용 광추출 기판.Light extraction substrate for an organic light emitting device, characterized in that the buckle structure is formed on the surface of the matrix layer by the shape of the plurality of pores.
  13. 제12항에 있어서,The method of claim 12,
    상기 기공은 상기 몰리브덴 입자보다 크기가 큰 것을 특징으로 하는 유기발광소자용 광추출 기판.The pores are light extraction substrate for an organic light emitting device, characterized in that the size larger than the molybdenum particles.
  14. 제12항에 있어서,The method of claim 12,
    상기 매트릭스 층 내부에는 다수의 산란입자가 분산되어 있는 것을 특징으로 하는 유기발광소자용 광추출 기판.The light extraction substrate for an organic light emitting device, characterized in that a plurality of scattering particles are dispersed in the matrix layer.
  15. 제14항에 있어서,The method of claim 14,
    상기 산란입자는 코어 및 상기 코어와 굴절률 차이를 가지며 상기 코어를 감싸는 쉘로 이루어진 것을 특징으로 하는 유기발광소자용 광추출 기판.The scattering particles are a light extraction substrate for an organic light emitting device, characterized in that the core and the shell has a difference in refractive index and the shell surrounding the core.
  16. 제15항에 있어서,The method of claim 15,
    상기 코어는 중공으로 이루어진 것을 특징으로 하는 유기발광소자용 광추출 기판.The core is a light extraction substrate for an organic light emitting device, characterized in that made of hollow.
  17. 제12항에 있어서,The method of claim 12,
    상기 매트릭스 층은 루타일(rutile) 결정상의 TiO2로 이루어진 것을 특징으로 하는 유기발광소자용 광추출 기판.The matrix layer is a light extraction substrate for an organic light emitting device, characterized in that consisting of a rutile (Titile 2 ) of the crystalline phase.
  18. 제17항에 있어서,The method of claim 17,
    상기 매트릭스 층의 내부에는 부정형의 나노기공이 다수 개 형성되어 있는 것을 특징으로 하는 유기발광소자용 광추출 기판.The light extraction substrate for an organic light emitting device, characterized in that a plurality of amorphous nanopores are formed inside the matrix layer.
  19. 제12항 내지 제18항 중 어느 한 항에 따른 유기발광소자용 광추출 기판이 빛이 방출되는 경로 상에 구비되는 것을 특징으로 하는 유기발광소자.An organic light emitting device according to any one of claims 12 to 18, wherein the light extraction substrate for an organic light emitting device is provided on a path through which light is emitted.
PCT/KR2015/013900 2014-12-23 2015-12-18 Method for fabricating light extraction substrate for organic light-emitting diode, light extraction substrate for organic light-emitting diode, and organic light-emitting diode comprising same WO2016105025A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140187290A KR101580596B1 (en) 2014-12-23 2014-12-23 Method of fabricating light extraction substrate, light extraction substrate for oled and oled including the same
KR10-2014-0187290 2014-12-23

Publications (1)

Publication Number Publication Date
WO2016105025A1 true WO2016105025A1 (en) 2016-06-30

Family

ID=55085105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/013900 WO2016105025A1 (en) 2014-12-23 2015-12-18 Method for fabricating light extraction substrate for organic light-emitting diode, light extraction substrate for organic light-emitting diode, and organic light-emitting diode comprising same

Country Status (2)

Country Link
KR (1) KR101580596B1 (en)
WO (1) WO2016105025A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100029757A (en) * 2007-05-10 2010-03-17 이스트맨 코닥 캄파니 Electroluminescent device having improved light output
WO2010131827A1 (en) * 2009-05-13 2010-11-18 포인트엔지니어링 Organic light emitting diodes using porous substrates and manufacturing method thereof
KR20140132589A (en) * 2013-05-08 2014-11-18 코닝정밀소재 주식회사 Light extraction substrate for oled, method of fabricating thereof and oled including the same
KR20140144084A (en) * 2013-06-10 2014-12-18 삼성디스플레이 주식회사 Organic light emitting diode device
KR20140145000A (en) * 2013-06-12 2014-12-22 삼성디스플레이 주식회사 Organic light emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100029757A (en) * 2007-05-10 2010-03-17 이스트맨 코닥 캄파니 Electroluminescent device having improved light output
WO2010131827A1 (en) * 2009-05-13 2010-11-18 포인트엔지니어링 Organic light emitting diodes using porous substrates and manufacturing method thereof
KR20140132589A (en) * 2013-05-08 2014-11-18 코닝정밀소재 주식회사 Light extraction substrate for oled, method of fabricating thereof and oled including the same
KR20140144084A (en) * 2013-06-10 2014-12-18 삼성디스플레이 주식회사 Organic light emitting diode device
KR20140145000A (en) * 2013-06-12 2014-12-22 삼성디스플레이 주식회사 Organic light emitting device

Also Published As

Publication number Publication date
KR101580596B1 (en) 2015-12-28

Similar Documents

Publication Publication Date Title
WO2016105026A1 (en) Method for manufacturing light extraction substrate for organic light emitting diode, light extraction substrate for organic light emitting diode, and organic light emitting diode comprising same
US8431943B2 (en) Light transmitting substrate, method for manufacturing light transmitting substrate, organic LED element and method for manufacturing organic LED element
WO2016105029A1 (en) Organic light emitting diode
CN104350629A (en) Layered structure for oled device, method for manufacturing the same, and oled device having the same
WO2016105027A1 (en) Method for manufacturing light extraction substrate for organic light emitting diode, light extraction substrate for organic light emitting diode, and organic light emitting diode comprising same
WO2016105018A1 (en) Method for manufacturing light extraction substrate for organic light-emitting element, light extraction substrate for organic light-emitting element, and organic light-emitting element comprising same
WO2016036150A1 (en) Method for manufacturing light extraction substrate for organic light-emitting diode, light extraction substrate for organic light-emitting diode, and organic light-emitting diode including same
WO2016047936A1 (en) Flexible substrate and method of manufacturing same
WO2016047970A2 (en) Light extraction substrate for organic light emitting element and organic light emitting element comprising same
WO2016108594A2 (en) Method for manufacturing light extraction substrate for organic light emitting element, light extraction substrate for organic light emitting element, and organic light emitting element including same
KR101484089B1 (en) Method of fabricating extremely slim oled
WO2016036151A1 (en) Method for manufacturing light extraction substrate for organic light-emitting diode, light extraction substrate for organic light-emitting diode, and organic light-emitting diode including same
EP3200254B1 (en) Light extraction substrate for organic light emitting element and organic light emitting element comprising same
WO2016105025A1 (en) Method for fabricating light extraction substrate for organic light-emitting diode, light extraction substrate for organic light-emitting diode, and organic light-emitting diode comprising same
WO2016105016A1 (en) Light extracting substrate for organic light emitting device, method of manufacturing same, and organic light emitting device including same
WO2016039551A2 (en) Light extraction substrate for organic light-emitting diode, manufacturing method therefor, and organic light-emitting diode including same
US9688571B2 (en) Method of fabricating light extraction substrate for organic light emitting device
WO2017164592A1 (en) Light extraction substrate for organic light emitting device, manufacturing method therefor, and organic light emitting device comprising same
WO2015009057A1 (en) Light extraction substrate for organic light-emitting device, manufacturing method therefor, and organic light-emitting device comprising same
WO2015084012A1 (en) Organic light-emitting element
WO2016117924A1 (en) Light extraction substrate for organic light emitting device, and organic light emitting device comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15873552

Country of ref document: EP

Kind code of ref document: A1