WO2016039551A2 - Light extraction substrate for organic light-emitting diode, manufacturing method therefor, and organic light-emitting diode including same - Google Patents

Light extraction substrate for organic light-emitting diode, manufacturing method therefor, and organic light-emitting diode including same Download PDF

Info

Publication number
WO2016039551A2
WO2016039551A2 PCT/KR2015/009399 KR2015009399W WO2016039551A2 WO 2016039551 A2 WO2016039551 A2 WO 2016039551A2 KR 2015009399 W KR2015009399 W KR 2015009399W WO 2016039551 A2 WO2016039551 A2 WO 2016039551A2
Authority
WO
WIPO (PCT)
Prior art keywords
light
organic light
emitting device
light emitting
light extraction
Prior art date
Application number
PCT/KR2015/009399
Other languages
French (fr)
Korean (ko)
Other versions
WO2016039551A3 (en
Inventor
우광제
Original Assignee
코닝정밀소재 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140192273A external-priority patent/KR101699275B1/en
Application filed by 코닝정밀소재 주식회사 filed Critical 코닝정밀소재 주식회사
Priority to US15/510,493 priority Critical patent/US20170256746A1/en
Publication of WO2016039551A2 publication Critical patent/WO2016039551A2/en
Publication of WO2016039551A3 publication Critical patent/WO2016039551A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a light extraction substrate for an organic light emitting device, a method for manufacturing the same, and an organic light emitting device including the same, and more particularly, by reducing the distance between the organic light emitting layer and the light extraction layer of the organic light emitting device, compared to the conventional organic light emitting device.
  • the present invention relates to a light extraction substrate for an organic light emitting device capable of improving light extraction efficiency, a method of manufacturing the same, and an organic light emitting device including the same.
  • an organic light emitting diode is formed including an anode, a light emitting layer, and a cathode.
  • OLED organic light emitting diode
  • a voltage is applied between the anode and the cathode, holes are injected from the anode into the hole injection layer and moved through the hole transport layer to the light emitting layer, and electrons are injected from the cathode into the electron injection layer and through the electron transport layer to the light emitting layer.
  • holes and electrons injected into the light emitting layer recombine in the light emitting layer to generate excitons, and the excitons emit light while transitioning from the excited state to the ground state.
  • the organic light emitting diode display including the organic light emitting diode is divided into a passive matrix method and an active matrix method according to a method of driving the N ⁇ M pixels arranged in a matrix form.
  • a pixel electrode defining a light emitting area and a unit pixel driving circuit for applying current or voltage to the pixel electrode are positioned in the unit pixel area.
  • the unit pixel driving circuit includes at least two thin film transistors (TFTs) and one capacitor, and thus, a constant current can be supplied regardless of the number of pixels, thereby providing stable luminance. have.
  • TFTs thin film transistors
  • Such an active matrix type organic light emitting display device has low power consumption, which is advantageous for high resolution and large display applications.
  • the problem-solving strategy through the light extraction technology is to remove the factors that prevent the light lost from the inside or the interface of the organic light emitting device from going to the front or to hinder the movement of the light.
  • an inner light extraction layer is formed on a glass substrate, and an electrode serving as an anode of the organic light emitting device is further formed on the inner light extraction layer.
  • the thickness of the electrode formed in the layered structure thus increases the distance between the organic light emitting layer and the internal light extraction layer of the organic light emitting device, which in turn acts as a factor to lower the light extraction efficiency of the organic light emitting device.
  • the present invention has been made to solve the problems of the prior art as described above, an object of the present invention by reducing the distance between the organic light emitting layer and the light extraction layer of the organic light emitting device than conventional, the light extraction efficiency of the organic light emitting device It is to provide a light extraction substrate for an organic light emitting device that can improve the method, a manufacturing method and an organic light emitting device comprising the same.
  • the present invention provides a light extraction substrate for an organic light emitting device comprising a plurality of light scattering body dispersed in the matrix layer.
  • the upper surface of the mesh type metal material may form a flat surface with the upper surface of the matrix layer.
  • the matrix layer may be formed of a material having a relatively higher refractive index than the light scatterer.
  • the matrix layer may be made of any one or a combination of two or more metal oxide candidate groups including SiO 2 , TiO 2 , ZrO x , ZnO, and SnO 2 .
  • the matrix layer may be made of TiO 2 of a rutile crystalline phase.
  • a plurality of amorphous pores may be formed in the matrix layer.
  • the pore size may be 50 ⁇ 900nm.
  • the plurality of light scatterers may be formed of any one of particle light scatterers, pore-shaped light scatterers, and particle-shaped light scatterers and the pore-shaped light scatterers. have.
  • the light scatterer in the form of particles may have a single refractive index or multiple refractive indices.
  • the plurality of light scatterers includes the light scatterers in the form of particles, and the light scatterers in the form of particles may be formed by a combination of light scatterers having a single refractive index and light scatterers having multiple refractive indices.
  • the light scattering body having the multiple refractive index may be composed of a core and a shell having a difference in refractive index with the core and surrounding the core.
  • the core may be made hollow.
  • the mesh network type metal material may be used as an electrode of an organic light emitting device.
  • the base substrate may be made of a flexible substrate.
  • the base substrate may be made of thin glass having a thickness of 1.5 mm or less.
  • the present invention provides an organic light emitting device, characterized in that the light extraction substrate for an organic light emitting device is provided on one surface of the light emitted to the outside.
  • the metal material forming step of forming a metal mesh type mesh material on the base substrate A light extraction layer forming step of forming a light extraction layer comprising a matrix layer and a plurality of light scattering bodies dispersed in the matrix layer on the base substrate on which the mesh network type metal material is formed; And a light extraction layer polishing step of polishing the light extraction layer so that the upper surface of the mesh type metal material is exposed.
  • the mesh network type metal material may be formed through any one of deposition, printing, and photolithography.
  • a mixture made by mixing the plurality of light scatterers in the form of particles with the material of the matrix layer may be coated on the base substrate.
  • the light extraction layer forming step may be mixed with the thermoplastic polymer particles in the mixture.
  • the matrix layer is formed in such a manner as to cover the deposited light scatterers and the metal material of the mesh network type. It is possible to deposit the material to be made.
  • thermoplastic polymer particles may be mixed with the material forming the matrix layer.
  • a material having a relatively larger refractive index than the light scattering body may be used as the material forming the matrix layer.
  • a mesh network type metal material capable of acting as an electrode of the organic light emitting device is formed in the light extraction layer, so that the organic light emitting device has a structure in which the electrode of the conventional light extraction layer and the organic light emitting device have a separate layer.
  • the distance between the organic light emitting layer and the light extraction layer can be reduced, thereby reducing the amount of light emitted to the organic light emitting layer until reaching the light extraction layer, thereby improving the light extraction efficiency of the organic light emitting device. have.
  • a regular barrier is formed in the light extraction layer, thereby preventing light to be wave-guiding (wave guiding) inside the light extraction layer to be extracted to the outside It is possible to further improve the light extraction efficiency.
  • FIG. 1 is a cross-sectional view showing a light extraction substrate for an organic light emitting device according to an embodiment of the present invention and an organic light emitting device having a light emitting surface thereof.
  • 2 to 5 is a process chart showing a method of manufacturing a light extraction substrate for an organic light emitting device according to an embodiment of the present invention.
  • FIG. 6 is a photograph taken by a scanning electron microscope of a matrix layer composed of TiO 2 of rutile crystal phase.
  • the light extraction substrate 100 for an organic light emitting diode is disposed on one surface from which light emitted from the organic light emitting diode 10 is emitted to the outside. ) Is a substrate that improves the light extraction efficiency.
  • the organic light emitting device 10 is composed of a laminated structure of an anode, an organic light emitting layer and a cathode disposed between the light extraction substrate 100 and the substrate opposite thereto according to an embodiment of the present invention.
  • the mesh network type metal material 120 to be described later which is internalized in the light extraction layer, serves as an anode, and thus, an anode having a general laminated structure may be omitted. Let's do it.
  • such an anode may be made of a metal having a large work function, for example, a metal or a metal oxide such as Au, In, Sn, or ITO, so that hole injection occurs well.
  • the cathode may be formed of a metal thin film of Al, Al: Li, or Mg: Ag having a low work function to facilitate electron injection.
  • the cathode is a semitransparent electrode and indium tin of a metal thin film of Al, Al: Li, or Mg: Ag so that light emitted from the organic light emitting layer can be easily transmitted.
  • It may be formed of a multilayer structure of a thin film of an oxide transparent electrode such as indium tin oxide (ITO).
  • the organic emission layer may include a hole injection layer, a hole transport layer, an emission layer, an electron transport layer, and an electron injection layer that are sequentially stacked on the anode.
  • the organic light emitting device 10 when the organic light emitting device 10 according to the embodiment of the present invention is made of a white organic light emitting device for illumination, for example, the light emitting layer is a polymer light emitting layer for emitting light in the blue region and a low molecular light emitting layer for emitting light in the orange-red region It may be formed of a laminated structure, in addition to the various structures can be implemented to implement white light emission.
  • the organic light emitting diode 10 may have a tandem structure. Accordingly, the organic light emitting layer may be provided in plural, and may be alternately disposed through an interconnecting layer.
  • the cathode when a forward voltage is applied between the anode and the cathode, electrons move from the cathode to the light emitting layer through the electron injection layer and the electron transport layer, and holes from the anode move to the light emitting layer through the hole injection layer and the hole transport layer. do.
  • the electrons and holes injected into the light emitting layer recombine in the light emitting layer to generate excitons, and the excitons emit light while transitioning from the excited state to the ground state.
  • the brightness of the light is proportional to the amount of current flowing between the anode and the cathode.
  • the light extraction substrate 100 employed to improve the light extraction efficiency of the organic light emitting device 10 includes a base substrate 110, a mesh network type metal material 120, a matrix layer 130, and a plurality of light scattering. It is formed including the sieve 140.
  • the base substrate 110 is a substrate supporting the metal material 120 and the matrix layer 130 formed on one surface thereof.
  • the base substrate 110 is disposed in front of the organic light emitting device 10, that is, on one surface of the light emitted from the organic light emitting device 10 to the outside to transmit the emitted light to the outside, It serves as an encapsulation substrate that protects the organic light emitting element 10 from the external environment.
  • the base substrate 110 is a transparent substrate and is not limited as long as it has excellent light transmittance and excellent mechanical properties.
  • a polymer-based material which is an organic film capable of thermosetting or UV curing may be used as the base substrate 110.
  • the base substrate 110 is a chemically tempered glass of soda lime glass (SiO 2 -CaO-Na 2 O ) or alumino-silicate glass (SiO 2 -Al 2 O 3 -Na 2 O) may be used.
  • soda lime glass may be used as the base substrate 110.
  • a substrate made of metal oxide or metal nitride may be used as the base substrate 110.
  • a flexible substrate may be used as the base substrate 110.
  • a thin glass having a thickness of 1.5 mm or less may be used. In this case, the thin glass may be manufactured through a fusion method or a floating method.
  • the metal mesh type 120 is formed on the base substrate 110.
  • the metal material 120 is formed on the base substrate 110 as a mesh network type, a wall surface is partitioned by the mesh material metal material 120, and a plurality of surfaces having the exposed surface of the base substrate 110 as a bottom surface. Spaces are formed. The plurality of spaces are filled with the matrix layer 130 and the light scatterers 140.
  • the upper surface (based on the drawing) of the mesh network type metal material 120 forms a flat surface with the upper surface of the matrix layer 130 filled or formed in a plurality of spaces.
  • the mesh network type metal material 120 may be used as an electrode, for example, an anode of the organic light emitting device 10. That is, the organic light emitting layer of the organic light emitting device 10 is formed on the flat surface formed by the upper surface of the mesh network type metal material 120 and the matrix layer 130, and thus, the mesh network type metal material 120 is organic It is electrically connected to the light emitting layer, and serves as an electrode serving as an anode of the organic light emitting device 10.
  • the light extraction layer including the electrode of the organic light emitting device 10 made of the metal mesh 120 of the mesh network type and the matrix layer 130 including the plurality of light scatterers 140. It is formed into a horizontal structure. This means that the distance from the organic light emitting layer from which the light is emitted from the organic light emitting element 10 to the light extraction layer is closer than that of the layered or vertical structure formed by stacking the anode and the light extraction layer. If the distance emitted from the light to the light extraction layer is shortened, the amount of light lost is reduced by that, ultimately, the light extraction efficiency of the organic light emitting device 10 can be improved.
  • the mesh network type metal material 120 and the matrix layer 130 partitioned into a plurality by this as a single light extraction layer due to the mesh network type metal material 120, regular inside the light extraction layer By forming a barrier, it is possible to prevent light extracted from the wave guiding inside the light extraction layer and extract the light to the outside, thereby further improving the light extraction efficiency.
  • the matrix layer 130 is partitioned by a metal material 120, and is formed in a plurality of spaces having the exposed surface of the base substrate 110 as a bottom surface.
  • a plurality of light scatterers 140 are dispersed in the matrix layer 130.
  • the matrix layer 130 is partitioned, and a mesh network type metal material 120 forming a top surface and a flat surface thereof acts as an electrode serving as an anode of the organic light emitting device 10,
  • the layer 130 is in contact with the organic light emitting layer of the organic light emitting device 10 vertically.
  • the matrix layer 130 may be formed of a high refractive index (HRI) material having a larger refractive index than the light scatterer 140 to form a light extraction layer.
  • HRI high refractive index
  • the matrix layer 130 may be formed of any one or a combination of two or more metal oxide candidate groups including SiO 2 , TiO 2 , ZrO x , ZnO, and SnO 2 .
  • the matrix layer 130 may be made of ZnO having a larger refractive index.
  • the firing process the TiO 2, for the matrix layer 130 is formed when the matrix layer 130 are made of TiO 2 on the rutile (rutile), determined as shown in the scanning electron micrograph of FIG. 6, TiO 2 , a large number of amorphous pores are formed in a size of approximately 50 ⁇ 900nm.
  • pores form a complex scattering structure together with the light scattering body 140, thereby improving the light extraction efficiency of the organic light emitting device (10).
  • a plurality of pores may realize an equivalent or more light scattering effect. That is, the more amorphous pores are formed in the matrix layer 130 made of the rutile crystalline TiO 2 , that is, the larger the area occupied by the plurality of pores in the matrix layer 130, the better the light extraction efficiency. Can be.
  • the number of expensive light scatterers 140 may be reduced, and thus, manufacturing cost may be reduced.
  • the light scatterer 140 is dispersed inside the matrix layer 130.
  • the plurality of light scatterers 140 according to the embodiment of the present invention may be formed in the form of particles or in the form of pores, and the light scatterers in the form of particles and the light scatterers in the form of pores are combined at a predetermined ratio. It may also be in the form.
  • the light scatterer 140 having a particle shape may be formed of a material having a refractive index smaller than that of the matrix layer 130.
  • the light scatterer 140 forms a light extraction layer together with the matrix layer 130. That is, the light scatterer 140 achieves a difference in refractive index with the matrix layer 130 and improves the light extraction efficiency of the organic light emitting device 10 by diversifying the path of light emitted from the organic light emitting device 10. Do it.
  • the light scatterer 140 in the form of particles may be formed in a form having a multiple refractive index.
  • the light scatterer 140 having a particle shape may have a core-shell structure having different refractive indices.
  • the core may be made hollow.
  • the efficiency of extracting light emitted from the organic light emitting device 10 to the outside may be further improved through refractive index differences between the core and the shell. .
  • the plurality of light scatterers 140 dispersed in the matrix layer 130 may form particles having a core-shell structure. Or whole particles of single refractive index.
  • the plurality of light scatterers 140 may be formed by mixing particles having a single refractive index with particles having multiple refractive indices such as a core-shell structure.
  • the light extracting substrate 100 for the organic light emitting device is the organic light emitting device 10 in the light extraction layer consisting of a matrix layer 130 and a plurality of light scattering body 140 It is provided with a metal mesh 120 of the mesh network type to serve as an electrode serving as an anode.
  • a metal mesh 120 of the mesh network type to serve as an electrode serving as an anode.
  • the light extraction substrate manufacturing method for an organic light emitting device includes a metal material forming step, a light extraction layer forming step and a light extraction layer polishing step.
  • a mesh network type metal material 120 is formed on the base substrate 110.
  • the mesh network type metal material 120 may be formed on the base substrate 110 through various methods.
  • the mesh network type metal material 120 may be formed through any one of deposition, printing, and photolithography.
  • the light extraction layer is formed on the base substrate 110 on which the mesh network type metal material 120 is formed.
  • the surface of the base substrate 110 is exposed in the form of a lattice.
  • a plurality of spaces in which a wall surface is partitioned by the type metal material 120 is formed.
  • the matrix layer 130 in which the plurality of light scattering bodies 140 are dispersed in each of the plurality of spaces is formed, and the entire surface of the upper surface of the mesh-type metal material 120 is covered. Form the matrix layer 130 in the form.
  • the light extracting layer that is, the matrix layer 130 and the light scattering body 140 may be formed in various ways.
  • a plurality of light scattering bodies 140 in a particle form are mixed with a material forming the matrix layer 130 to form a mixture, and then the mixture is a metal mesh of a mesh network type ( 120 may be coated on the base substrate 110 to cover the whole. After coating the mixture, it is then dried and calcined.
  • the pore-shaped light scattering body 140 in the light extraction layer forming step may be further mixed with the thermoplastic polymer particles in the mixture.
  • the mixed thermoplastic polymer particles are vaporized in the firing process for making the mixture into the matrix layer 130, and the light scattering body 140 having a pore shape is formed at the positions occupied by the vaporized thermoplastic polymer particles.
  • the light extracting layer forming step first, a plurality of light scatterers 140 in the form of particles are deposited on the base substrate 110, and then a plurality of light scatterers 140 and a mesh network type metal material.
  • the material forming the matrix layer 130 may be deposited. After deposition it is dried and calcined.
  • the thermoplastic polymer particles may be mixed with the material forming the matrix layer 130.
  • the light scatterer 140 having a particle shape, or the light scatterer 140 having a single refractive index or having a multiple refractive index for example, a core-shell structure having a hollow core
  • the light scatterers 140 may be used, and further, the light scatterers 140 having a single refractive index and multiple refractive indices may be mixed and used at a predetermined ratio.
  • a material having a relatively larger refractive index than the light scatterer 140 may be used as the material forming the matrix layer 130.
  • the material forming the matrix layer 130 may be used in combination with any one or two or more of metal oxide candidate groups including SiO 2 , TiO 2 , ZrO x , ZnO, and SnO 2 . have.
  • SiO 2 having a smaller refractive index may be used as the light scatterer 140.
  • a large number of amorphous pores in the matrix layer 130 are 50 to 900 nm in size. It can be formed as.
  • the light extraction layer that is, the matrix layer 130 is polished so that the top surface of the mesh network type metal material 120 is exposed.
  • the manufacturing of the light extraction substrate 100 having the surface of the organic light emitting element (10 of FIG. 5) having a high flat surface is completed.
  • the mesh network type metal material 120 and the organic light emitting device 10 may be electrically connected. It becomes possible. Accordingly, the mesh type metal material 120 serves as an electrode that serves as an anode of the organic light emitting device 10.

Abstract

The present invention relates to a light extraction substrate for an organic light-emitting diode, a manufacturing method therefor, and an organic light-emitting diode including the same and, more specifically, to: a light extraction substrate for an organic light-emitting diode, which can improve light extraction efficiency of an organic light-emitting diode by reducing a distance between an organic light-emitting layer and a light extraction layer of the organic light-emitting diode more than a conventional distance therebetween; a manufacturing method therefor; and an organic light-emitting diode including the same. To this end, the present invention provides a light extraction substrate for an organic light-emitting diode, a manufacturing method therefor, and an organic light-emitting diode including the same, the light extraction substrate comprising: a base substrate; a mesh net-type metal material formed on the base substrate; matrix layers formed on the base substrate, wherein the matrix layers are respectively formed in a plurality of spaces partitioned by the mesh net-type metal material; and a plurality of light scatterers dispersed inside the matrix layers.

Description

유기발광소자용 광추출 기판, 그 제조방법 및 이를 포함하는 유기발광소자Light extraction substrate for organic light emitting device, manufacturing method thereof and organic light emitting device comprising same
본 발명은 유기발광소자용 광추출 기판, 그 제조방법 및 이를 포함하는 유기발광소자에 관한 것으로서 더욱 상세하게는 유기발광소자의 유기 발광층과 광추출층 사이의 거리를 종래보다 줄여줌으로써, 유기발광소자의 광추출 효율을 향상시킬 수 있는 유기발광소자용 광추출 기판, 그 제조방법 및 이를 포함하는 유기발광소자에 관한 것이다.The present invention relates to a light extraction substrate for an organic light emitting device, a method for manufacturing the same, and an organic light emitting device including the same, and more particularly, by reducing the distance between the organic light emitting layer and the light extraction layer of the organic light emitting device, compared to the conventional organic light emitting device. The present invention relates to a light extraction substrate for an organic light emitting device capable of improving light extraction efficiency, a method of manufacturing the same, and an organic light emitting device including the same.
일반적으로, 유기 발광소자(organic light emitting diode; OLED)는 애노드(anode), 발광층 및 캐소드(cathode)를 포함하여 형성된다. 여기서, 애노드와 캐소드 간에 전압을 인가하면, 정공은 애노드로부터 전공 주입층 내로 주입되고 전공 수송층을 거쳐 발광층으로 이동되며, 전자는 캐소드로부터 전자 주입층 내로 주입되고 전자 수송층을 거쳐 발광층으로 이동된다. 이때, 발광층 내로 주입된 정공과 전자는 발광층에서 재결합하여 엑시톤(excition)을 생성하고, 이러한 엑시톤이 여기상태(excited state)에서 기저상태(ground state)로 전이하면서 빛을 방출하게 된다.In general, an organic light emitting diode (OLED) is formed including an anode, a light emitting layer, and a cathode. Here, when a voltage is applied between the anode and the cathode, holes are injected from the anode into the hole injection layer and moved through the hole transport layer to the light emitting layer, and electrons are injected from the cathode into the electron injection layer and through the electron transport layer to the light emitting layer. In this case, holes and electrons injected into the light emitting layer recombine in the light emitting layer to generate excitons, and the excitons emit light while transitioning from the excited state to the ground state.
한편, 이러한 유기 발광소자로 이루어진 유기 발광 표시장치는 매트릭스 형태로 배치된 N×M개의 화소들을 구동하는 방식에 따라, 수동 매트릭스(passive matrix) 방식과 능동 매트릭스(active matrix) 방식으로 나뉘어진다.On the other hand, the organic light emitting diode display including the organic light emitting diode is divided into a passive matrix method and an active matrix method according to a method of driving the N × M pixels arranged in a matrix form.
여기서, 능동 매트릭스 방식의 경우 단위화소 영역에는 발광영역을 정의하는 화소전극과 이 화소전극에 전류 또는 전압을 인가하기 위한 단위화소 구동회로가 위치하게 된다. 이때, 단위화소 구동회로는 적어도 두 개의 박막트랜지스터(thin film transistor; TFT)와 하나의 캐패시터(capacitor)를 구비하며, 이를 통해, 화소수와 상관없이 일정한 전류의 공급이 가능해져 안정적인 휘도를 나타낼 수 있다. 이러한 능동 매트릭스 방식의 유기 발광 표시장치는 전력 소모가 적어, 고해상도 및 대형 디스플레이의 적용에 유리하다는 장점을 갖고 있다.In the active matrix method, a pixel electrode defining a light emitting area and a unit pixel driving circuit for applying current or voltage to the pixel electrode are positioned in the unit pixel area. In this case, the unit pixel driving circuit includes at least two thin film transistors (TFTs) and one capacitor, and thus, a constant current can be supplied regardless of the number of pixels, thereby providing stable luminance. have. Such an active matrix type organic light emitting display device has low power consumption, which is advantageous for high resolution and large display applications.
하지만, 유기발광소자를 이용한 면광원 조명소자의 경우, 박막 층상 구조로 인하여, 발광층에서 생성된 빛의 절반 이상이 소자의 내부 또는 계면에서 반사 또는 흡수되어 전면으로 나오지 못하고 소실된다. 따라서, 원하는 휘도를 얻기 위해서는 추가적인 전류를 인가해야 하는데, 이 경우, 전력 소모가 증가하게 되고, 결국, 소자의 수명이 감소하게 된다.However, in the case of the surface light source lighting device using the organic light emitting device, due to the thin film layered structure, at least half of the light generated in the light emitting layer is lost or reflected from the inside or the interface of the device and disappears from the front surface. Therefore, in order to obtain the desired luminance, an additional current must be applied, in which case the power consumption is increased, and eventually the life of the device is reduced.
이러한 문제를 해결하기 위해서는 유기발광소자의 내부 또는 계면에서 소실되는 빛을 전면으로 추출하는 기술이 필요한데, 이를 광추출 기술이라 한다. 광 추출 기술을 통한 문제 해결 전략은 유기발광소자의 내부 또는 계면에서 소실되는 빛이 전면으로 진행하지 못하는 요인을 제거하거나 빛의 이동을 방해하는 것이다. 이를 위해, 일반적으로 사용되는 방법들 중에는 기판의 최외각부에 표면요철을 형성하거나 기판과 굴절률이 다른 층을 코팅하여 기판과 공기 계면에서 발생하는 내부 전반사를 줄이는 외부 광추출 기술과, 기판과 투명전극 사이에 표면 요철을 형성하거나 기판과 굴절률이 다른 층을 코팅하여, 빛이 굴절률과 두께가 다른 층간 계면에서 전면으로 이동하지 않고 계면을 따라 진행하게 되는 도파관(wave guiding) 효과를 줄이는 내부 광추출 기술이 있다.In order to solve this problem, a technique for extracting the light lost in the inside or the interface of the organic light emitting device to the front, which is called light extraction technology. The problem-solving strategy through the light extraction technology is to remove the factors that prevent the light lost from the inside or the interface of the organic light emitting device from going to the front or to hinder the movement of the light. To this end, among the commonly used methods, external light extraction techniques to reduce internal total reflection occurring at the interface between the substrate and the air by forming surface irregularities on the outermost part of the substrate or coating a layer having a different refractive index from the substrate, and the substrate and the transparent Internal light extraction reduces surface wave guiding effects by forming surface irregularities between the electrodes or by coating a layer having a different refractive index from the substrate so that light travels along the interface without moving to the front at an interlayer interface having different refractive indices and thicknesses. There is technology.
한편, 종래의 유기발광소자용 광추출 기판을 보면, 내부 광추출층이 유리기판 위에 형성되어 있고, 이러한 내부 광추출층 위에 유기발광소자의 애노드로 작용하는 전극이 추가로 형성된다. 하지만, 이와 같이 층상 구조로 형성된 전극의 두께는 유기발광소자의 유기 발광층과 내부 광추출층 사이의 거리를 멀어지게 하여, 결국, 유기발광소자의 광추출 효율을 저하시키는 요인으로 작용하게 된다.On the other hand, in the conventional light extraction substrate for an organic light emitting device, an inner light extraction layer is formed on a glass substrate, and an electrode serving as an anode of the organic light emitting device is further formed on the inner light extraction layer. However, the thickness of the electrode formed in the layered structure thus increases the distance between the organic light emitting layer and the internal light extraction layer of the organic light emitting device, which in turn acts as a factor to lower the light extraction efficiency of the organic light emitting device.
[선행기술문헌][Preceding technical literature]
대한민국 등록특허공보 제10-0338332호(2002.05.15.)Republic of Korea Patent Publication No. 10-0338332 (2002.05.15.)
본 발명은 상술한 바와 같은 종래기술의 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 유기발광소자의 유기 발광층과 광추출층 사이의 거리를 종래보다 줄여줌으로써, 유기발광소자의 광추출 효율을 향상시킬 수 있는 유기발광소자용 광추출 기판, 그 제조방법 및 이를 포함하는 유기발광소자를 제공하는 것이다.The present invention has been made to solve the problems of the prior art as described above, an object of the present invention by reducing the distance between the organic light emitting layer and the light extraction layer of the organic light emitting device than conventional, the light extraction efficiency of the organic light emitting device It is to provide a light extraction substrate for an organic light emitting device that can improve the method, a manufacturing method and an organic light emitting device comprising the same.
이를 위해, 본 발명은, 베이스 기판; 상기 베이스 기판 상에 형성되는 메쉬망 타입의 금속재; 상기 베이스 기판 상에 형성되되, 상기 메쉬망 타입의 금속재에 의해 구획되는 복수 개의 공간에 각각 형성되는 매트릭스 층; 및 상기 매트릭스 층 내부에 분산되어 있는 다수의 광 산란체를 포함하는 것을 특징으로 하는 유기발광소자용 광추출 기판을 제공한다.To this end, the present invention, the base substrate; A mesh network type metal material formed on the base substrate; A matrix layer formed on the base substrate, each matrix layer being formed in a plurality of spaces partitioned by the mesh type metal material; And it provides a light extraction substrate for an organic light emitting device comprising a plurality of light scattering body dispersed in the matrix layer.
여기서, 상기 메쉬망 타입의 금속재의 상면은 상기 매트릭스 층의 상면과 평탄면을 이룰 수 있다.Here, the upper surface of the mesh type metal material may form a flat surface with the upper surface of the matrix layer.
또한, 상기 매트릭스 층은 상기 광 산란체보다 굴절률이 상대적으로 큰 물질로 이루어질 수 있다.In addition, the matrix layer may be formed of a material having a relatively higher refractive index than the light scatterer.
이때, 상기 매트릭스 층은 SiO2, TiO2, ZrOx, ZnO 및 SnO2를 포함하는 금속산화물 후보군 중 어느 하나 또는 둘 이상의 조합으로 이루어질 수 있다.In this case, the matrix layer may be made of any one or a combination of two or more metal oxide candidate groups including SiO 2 , TiO 2 , ZrO x , ZnO, and SnO 2 .
또한, 상기 매트릭스 층은 루타일(rutile) 결정상의 TiO2로 이루어질 수 있다.In addition, the matrix layer may be made of TiO 2 of a rutile crystalline phase.
그리고 상기 매트릭스 층의 내부에는 부정형의 다수의 기공이 형성되어 있을 수 있다.In addition, a plurality of amorphous pores may be formed in the matrix layer.
이때, 상기 기공의 크기는 50~900㎚일 수 있다.At this time, the pore size may be 50 ~ 900nm.
또한, 상기 다수의 광 산란체는 입자 형태의 광 산란체, 기공 형태의 광 산란체 및 상기 입자 형태의 광 산란체들과 상기 기공 형태의 광 산란체들이 조합된 형태 중 어느 한 형태로 이루어질 수 있다.In addition, the plurality of light scatterers may be formed of any one of particle light scatterers, pore-shaped light scatterers, and particle-shaped light scatterers and the pore-shaped light scatterers. have.
이 경우, 상기 입자 형태의 광 산란체는 단일 굴절률 또는 다중 굴절률을 가질 수 있다.In this case, the light scatterer in the form of particles may have a single refractive index or multiple refractive indices.
이때, 상기 다수의 광 산란체는 상기 입자 형태의 광 산란체를 포함하되, 상기 입자 형태의 광 산란체는 단일 굴절률을 갖는 광 산란체와 다중 굴절률을 갖는 광 산란체의 조합으로 이루어질 수 있다.In this case, the plurality of light scatterers includes the light scatterers in the form of particles, and the light scatterers in the form of particles may be formed by a combination of light scatterers having a single refractive index and light scatterers having multiple refractive indices.
또한, 상기 다중 굴절률을 갖는 광 산란체는 코어 및 상기 코어와 굴절률 차이를 가지며 상기 코어를 감싸는 쉘로 이루어질 수 있다.In addition, the light scattering body having the multiple refractive index may be composed of a core and a shell having a difference in refractive index with the core and surrounding the core.
그리고 상기 코어는 중공으로 이루어질 수 있다.And the core may be made hollow.
게다가, 상기 메쉬망 타입의 금속재는 유기발광소자의 전극으로 사용될 수 있다.In addition, the mesh network type metal material may be used as an electrode of an organic light emitting device.
또한, 상기 베이스 기판은 플렉서블 기판으로 이루어질 수 있다.In addition, the base substrate may be made of a flexible substrate.
이때, 상기 베이스 기판은 두께 1.5㎜ 이하의 박판 유리로 이루어질 수 있다.In this case, the base substrate may be made of thin glass having a thickness of 1.5 mm or less.
아울러, 본 발명은, 상기의 유기발광소자용 광추출 기판을, 발광된 빛이 외부로 방출되는 일면에 구비하는 것을 특징으로 하는 유기발광소자를 제공한다.In addition, the present invention provides an organic light emitting device, characterized in that the light extraction substrate for an organic light emitting device is provided on one surface of the light emitted to the outside.
한편, 본 발명은, 베이스 기판 상에 메쉬망 타입의 금속재를 형성하는 금속재 형성단계; 상기 메쉬망 타입의 금속재가 형성되어 있는 상기 베이스 기판 상에, 매트릭스 층 및 상기 매트릭스 층 내부에 분산되어 있는 다수의 광 산란체로 이루어진 광추출층을 형성하는 광추출층 형성단계; 및 상기 메쉬망 타입의 금속재의 상면이 노출되도록 상기 광추출층을 연마하는 광추출층 연마단계를 포함하는 것을 특징으로 하는 유기발광소자용 광추출 기판 제조방법을 제공한다.On the other hand, the present invention, the metal material forming step of forming a metal mesh type mesh material on the base substrate; A light extraction layer forming step of forming a light extraction layer comprising a matrix layer and a plurality of light scattering bodies dispersed in the matrix layer on the base substrate on which the mesh network type metal material is formed; And a light extraction layer polishing step of polishing the light extraction layer so that the upper surface of the mesh type metal material is exposed.
여기서, 상기 금속재 형성단계에서는 증착, 인쇄 및 포토리소그래피 중 어느 하나의 공정을 통해 상기 메쉬망 타입의 금속재를 형성할 수 있다.Here, in the metal material forming step, the mesh network type metal material may be formed through any one of deposition, printing, and photolithography.
또한, 상기 광추출층 형성단계에서는 상기 매트릭스 층을 이루는 물질에 입자 형태의 상기 다수의 광 산란체를 혼합하여 만든 혼합물을 상기 베이스 기판 상에 코팅할 수 있다.In addition, in the light extraction layer forming step, a mixture made by mixing the plurality of light scatterers in the form of particles with the material of the matrix layer may be coated on the base substrate.
이때, 상기 광추출층 형성단계에서는 상기 혼합물에 열가소성 고분자 입자를 혼합할 수 있다.At this time, the light extraction layer forming step may be mixed with the thermoplastic polymer particles in the mixture.
그리고 상기 광추출층 형성단계에서는 상기 베이스 기판 상에 입자 형태의 상기 다수의 광 산란체를 증착한 후, 증착한 상기 다수의 광 산란체 및 상기 메쉬망 타입의 금속재를 덮는 형태로 상기 매트릭스 층을 이루는 물질을 증착할 수 있다.In the light extracting layer forming step, after depositing the plurality of light scatterers in the form of particles on the base substrate, the matrix layer is formed in such a manner as to cover the deposited light scatterers and the metal material of the mesh network type. It is possible to deposit the material to be made.
이때, 상기 광추출층 형성단계에서는 상기 매트릭스 층을 이루는 물질에 열가소성 고분자 입자를 혼합할 수 있다.At this time, in the light extraction layer forming step, the thermoplastic polymer particles may be mixed with the material forming the matrix layer.
또한, 상기 광추출층 형성단계에서는 상기 광 산란체보다 굴절률이 상대적으로 큰 물질을 상기 매트릭스 층을 이루는 물질로 사용할 수 있다.In the light extracting layer forming step, a material having a relatively larger refractive index than the light scattering body may be used as the material forming the matrix layer.
본 발명에 따르면, 광추출층 내에 유기발광소자의 전극 역할이 가능한 메쉬망 타입의 금속재가 형성됨으로써, 종래 내부 광추출층과 유기발광소자의 전극이 별도의 층으로 이루어진 층상 구조보다 유기발광소자의 유기 발광층과 광추출층과의 거리를 줄일 수 있고, 이를 통해, 광추출층에 도달할 때까지 유기 발광층으로 방출된 광의 소실되는 양이 줄어, 결국, 유기발광소자의 광추출 효율을 향상시킬 수 있다.According to the present invention, a mesh network type metal material capable of acting as an electrode of the organic light emitting device is formed in the light extraction layer, so that the organic light emitting device has a structure in which the electrode of the conventional light extraction layer and the organic light emitting device have a separate layer. The distance between the organic light emitting layer and the light extraction layer can be reduced, thereby reducing the amount of light emitted to the organic light emitting layer until reaching the light extraction layer, thereby improving the light extraction efficiency of the organic light emitting device. have.
또한, 본 발명에 따르면, 메쉬망 타입의 금속재로 인해, 광추출층 내부에 규칙적인 베리어(barrier)가 형성됨으로써, 광추출층 내부에서 웨이브 가이딩(wave guiding)되는 빛을 막고 외부로 추출할 수 있게 되어, 광추출 효율을 더욱 향상시킬 수 있다.In addition, according to the present invention, due to the metal mesh of the mesh network type, a regular barrier (barrier) is formed in the light extraction layer, thereby preventing light to be wave-guiding (wave guiding) inside the light extraction layer to be extracted to the outside It is possible to further improve the light extraction efficiency.
도 1은 본 발명의 실시 예에 따른 유기발광소자용 광추출 기판 및 이를 광이 방출되는 일면에 구비하는 유기발광소자를 나타낸 단면도.1 is a cross-sectional view showing a light extraction substrate for an organic light emitting device according to an embodiment of the present invention and an organic light emitting device having a light emitting surface thereof.
도 2 내지 도 5는 본 발명의 실시 예에 따른 유기발광소자용 광추출 기판 제조방법을 공정 순으로 나타낸 공정도.2 to 5 is a process chart showing a method of manufacturing a light extraction substrate for an organic light emitting device according to an embodiment of the present invention.
도 6은 루타일 결정상의 TiO2로 이루어진 매트릭스 층을 주사전자현미경으로 촬영한 사진.FIG. 6 is a photograph taken by a scanning electron microscope of a matrix layer composed of TiO 2 of rutile crystal phase. FIG.
이하에서는 첨부된 도면들을 참조하여 본 발명의 실시 예에 따른 유기발광소자용 광추출 기판, 그 제조방법 및 이를 포함하는 유기발광소자에 대해 상세히 설명한다.Hereinafter, a light extraction substrate for an organic light emitting diode, a method of manufacturing the same, and an organic light emitting diode including the same will be described in detail with reference to the accompanying drawings.
아울러, 본 발명을 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다.In addition, in describing the present invention, when it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.
도 1에 도시한 바와 같이, 본 발명의 실시 예에 따른 유기발광소자용 광추출 기판(100)은 유기발광소자(10)로부터 발광된 빛이 외부로 방출되는 일면에 배치되어 유기발광소자(10)의 광추출 효율을 향상시키는 기판이다.As shown in FIG. 1, the light extraction substrate 100 for an organic light emitting diode according to an exemplary embodiment of the present invention is disposed on one surface from which light emitted from the organic light emitting diode 10 is emitted to the outside. ) Is a substrate that improves the light extraction efficiency.
여기서, 구체적으로 도시하진 않았지만, 유기발광소자(10)는 본 발명의 실시 예에 따른 광추출 기판(100)과 이와 대향되는 기판 사이에 배치되는 애노드, 유기 발광층 및 캐소드의 적층 구조로 이루어진다. 이때, 본 발명의 실시 예에서는 광추출층 내부에 내재화되어 있는 후술될 메쉬망 타입의 금속재(120)가 애노드 역할을 하여, 일반적인 적층 구조의 애노드를 생략할 수 있는데, 이에 대해서는 하기에서 보다 상세히 설명하기로 한다. 한편, 이러한 애노드는 정공 주입이 잘 일어나도록 일함수(work function)가 큰 금속, 예컨대, Au, In, Sn 또는 ITO와 같은 금속 또는 금속산화물로 이루어질 수 있다. 또한, 캐소드는 전자 주입이 잘 일어나도록 일함수가 작은 Al, Al:Li 또는 Mg:Ag의 금속 박막으로 이루어질 수 있다. 이때, 유기발광소자(10)가 전면 발광형인 경우, 캐소드는 유기 발광층에서 발광된 빛이 잘 투과될 수 있도록 Al, Al:Li 또는 Mg:Ag의 금속 박막의 반투명 전극(semitransparent electrode)과 인듐 주석산화물(indium tin oxide; ITO)과 같은 산화물 투명 전극(transparent electrode) 박막의 다층구조로 이루어질 수 있다. 그리고 유기 발광층은 애노드 상에 차례로 적층되는 정공 주입층, 정공 수송층, 발광층, 전자 수송층 및 전자 주입층을 포함하여 형성될 수 있다. 이때, 본 발명의 실시 예에 따른 유기발광소자(10)가 조명용 백색 유기발광소자로 이루어지는 경우, 예컨대, 발광층은 청색 영역의 광을 방출하는 고분자 발광층과 오렌지-적색 영역의 광을 방출하는 저분자 발광층의 적층 구조로 형성될 수 있고, 이 외에도 다양한 구조로 형성되어 백색 발광을 구현할 수 있다. 또한, 유기발광소자(10)는 텐덤(tandem) 구조로 이루어질 수 있다. 이에 따라, 유기 발광층은 복수 개로 구비되고, 연결층(interconnecting layer)을 매개로 교번 배치될 수 있다.Here, although not shown in detail, the organic light emitting device 10 is composed of a laminated structure of an anode, an organic light emitting layer and a cathode disposed between the light extraction substrate 100 and the substrate opposite thereto according to an embodiment of the present invention. In this case, in the embodiment of the present invention, the mesh network type metal material 120 to be described later, which is internalized in the light extraction layer, serves as an anode, and thus, an anode having a general laminated structure may be omitted. Let's do it. On the other hand, such an anode may be made of a metal having a large work function, for example, a metal or a metal oxide such as Au, In, Sn, or ITO, so that hole injection occurs well. In addition, the cathode may be formed of a metal thin film of Al, Al: Li, or Mg: Ag having a low work function to facilitate electron injection. At this time, when the organic light emitting device 10 is a top emission type, the cathode is a semitransparent electrode and indium tin of a metal thin film of Al, Al: Li, or Mg: Ag so that light emitted from the organic light emitting layer can be easily transmitted. It may be formed of a multilayer structure of a thin film of an oxide transparent electrode such as indium tin oxide (ITO). The organic emission layer may include a hole injection layer, a hole transport layer, an emission layer, an electron transport layer, and an electron injection layer that are sequentially stacked on the anode. At this time, when the organic light emitting device 10 according to the embodiment of the present invention is made of a white organic light emitting device for illumination, for example, the light emitting layer is a polymer light emitting layer for emitting light in the blue region and a low molecular light emitting layer for emitting light in the orange-red region It may be formed of a laminated structure, in addition to the various structures can be implemented to implement white light emission. In addition, the organic light emitting diode 10 may have a tandem structure. Accordingly, the organic light emitting layer may be provided in plural, and may be alternately disposed through an interconnecting layer.
이러한 구조에 따라, 애노드와 캐소드 사이에 순방향 전압이 인가되면, 캐소드로부터 전자가 전자 주입층 및 전자 수송층을 통해 발광층으로 이동하게 되고, 애노드로부터 정공이 정공 주입층 및 정공 수송층을 통해 발광층으로 이동하게 된다. 그리고 발광층 내로 주입된 전자와 정공은 발광층에서 재결합하여 엑시톤(exciton)을 생성하고, 이러한 엑시톤이 여기상태(excited state)에서 기저상태(ground state)로 전이하면서 빛을 방출하게 되는데, 이때, 방출되는 빛의 밝기는 애노드와 캐소드 사이에 흐르는 전류량에 비례하게 된다. According to this structure, when a forward voltage is applied between the anode and the cathode, electrons move from the cathode to the light emitting layer through the electron injection layer and the electron transport layer, and holes from the anode move to the light emitting layer through the hole injection layer and the hole transport layer. do. The electrons and holes injected into the light emitting layer recombine in the light emitting layer to generate excitons, and the excitons emit light while transitioning from the excited state to the ground state. The brightness of the light is proportional to the amount of current flowing between the anode and the cathode.
이와 같이, 유기발광소자(10)의 광추출 효율 향상을 위해 채용되는 광추출 기판(100)은 베이스 기판(110), 메쉬망 타입의 금속재(120), 매트릭스 층(130) 및 다수의 광 산란체(140)를 포함하여 형성된다.As such, the light extraction substrate 100 employed to improve the light extraction efficiency of the organic light emitting device 10 includes a base substrate 110, a mesh network type metal material 120, a matrix layer 130, and a plurality of light scattering. It is formed including the sieve 140.
베이스 기판(110)은 이의 일면에 형성되는 금속재(120) 및 매트릭스 층(130)을 지지하는 기판이다. 또한, 베이스 기판(110)은 유기발광소자(10)의 전방, 즉, 유기발광소자(10)로부터 발광된 빛이 외부로 방출되는 일면에 배치되어, 발광된 빛을 외부로 투과시킴과 아울러, 유기발광소자(10)를 외부 환경으로부터 보호하는 봉지(encapsulation) 기판으로서의 역할을 한다.The base substrate 110 is a substrate supporting the metal material 120 and the matrix layer 130 formed on one surface thereof. In addition, the base substrate 110 is disposed in front of the organic light emitting device 10, that is, on one surface of the light emitted from the organic light emitting device 10 to the outside to transmit the emitted light to the outside, It serves as an encapsulation substrate that protects the organic light emitting element 10 from the external environment.
이러한 베이스 기판(110)은 투명 기판으로, 광 투과율이 우수하고 기계적인 물성이 우수한 것이면 어느 것이든 제한되지 않는다. 예를 들어, 베이스 기판(110)으로는 열경화 또는 UV 경화가 가능한 유기필름인 고분자 계열의 물질이 사용될 수 있다. 또한, 베이스 기판(110)으로는 화학강화유리인 소다라임 유리(SiO2-CaO-Na2O) 또는 알루미노실리케이트계 유리(SiO2-Al2O3-Na2O)가 사용될 수 있다. 여기서, 본 발명의 실시 예에 따른 광추출 기판(100)을 채용한 유기발광소자(10)가 조명용인 경우, 베이스 기판(110)으로는 소다라임 유리가 사용될 수 있다. 이외에도 베이스 기판(110)으로는 금속산화물이나 금속질화물로 이루어진 기판이 사용될 수도 있다. 그리고 본 발명의 일 실시 예에서는 베이스 기판(110)으로 플렉서블(flexible) 기판이 사용될 수 있는데, 특히, 두께 1.5㎜ 이하의 박판 유리가 사용될 수 있다. 이때, 이러한 박판 유리는 퓨전(fusion) 공법 또는 플로팅(floating) 공법을 통해 제조될 수 있다.The base substrate 110 is a transparent substrate and is not limited as long as it has excellent light transmittance and excellent mechanical properties. For example, a polymer-based material which is an organic film capable of thermosetting or UV curing may be used as the base substrate 110. In addition, the base substrate 110 is a chemically tempered glass of soda lime glass (SiO 2 -CaO-Na 2 O ) or alumino-silicate glass (SiO 2 -Al 2 O 3 -Na 2 O) may be used. Here, when the organic light emitting device 10 employing the light extraction substrate 100 according to an embodiment of the present invention is for illumination, soda lime glass may be used as the base substrate 110. In addition, a substrate made of metal oxide or metal nitride may be used as the base substrate 110. In addition, in one embodiment of the present invention, a flexible substrate may be used as the base substrate 110. In particular, a thin glass having a thickness of 1.5 mm or less may be used. In this case, the thin glass may be manufactured through a fusion method or a floating method.
메쉬망 타입의 금속재(120)는 베이스 기판(110) 상에 형성된다. 금속재(120)가 메쉬망 타입으로 베이스 기판(110) 상에 형성됨에 따라, 메쉬망 타입의 금속재(120)에 의해 벽면이 구획되고, 베이스 기판(110)의 노출된 표면을 바닥면으로 하는 복수 개의 공간이 형성된다. 이러한 복수 개의 공간에는 매트릭스 층(130) 및 광 산란체(140)들이 채워지게 된다.The metal mesh type 120 is formed on the base substrate 110. As the metal material 120 is formed on the base substrate 110 as a mesh network type, a wall surface is partitioned by the mesh material metal material 120, and a plurality of surfaces having the exposed surface of the base substrate 110 as a bottom surface. Spaces are formed. The plurality of spaces are filled with the matrix layer 130 and the light scatterers 140.
본 발명의 실시 예에서, 메쉬망 타입 금속재(120)의 상면(도면 기준)은 복수 개의 공간에 채워지는 혹은 형성되는 매트릭스 층(130)의 상면과 평탄면을 이룬다. 이러한 메쉬망 타입의 금속재(120)는 유기발광소자(10)의 전극, 예컨대, 애노드로 사용될 수 있다. 즉, 메쉬망 타입 금속재(120)의 상면과 매트릭스 층(130)의 상면이 이루는 평탄면 상에는 유기발광소자(10)의 유기 발광층이 형성되고, 이에 따라, 메쉬망 타입의 금속재(120)는 유기 발광층과 전기적으로 연결되어, 유기발광소자(10)의 애노드 역할을 하는 전극으로 작용하게 된다.In an embodiment of the present invention, the upper surface (based on the drawing) of the mesh network type metal material 120 forms a flat surface with the upper surface of the matrix layer 130 filled or formed in a plurality of spaces. The mesh network type metal material 120 may be used as an electrode, for example, an anode of the organic light emitting device 10. That is, the organic light emitting layer of the organic light emitting device 10 is formed on the flat surface formed by the upper surface of the mesh network type metal material 120 and the matrix layer 130, and thus, the mesh network type metal material 120 is organic It is electrically connected to the light emitting layer, and serves as an electrode serving as an anode of the organic light emitting device 10.
이와 같이, 본 발명의 실시 예에서는 메쉬망 타입의 금속재(120)로 이루어진 유기발광소자(10)의 전극과, 다수의 광 산란체(140)를 포함하는 매트릭스 층(130)으로 이루어진 광추출층이 수평적인 구조로 형성된다. 이는, 종래 애노드와 광추출층이 적층되어 형성되는 층상 혹은 수직적인 구조보다 유기발광소자(10)에서 광이 방출되는 유기 발광층으로부터 광추출층까지의 거리가 가까워짐을 의미하고, 이와 같이, 유기 발광층으로부터 방출되는 광이 광추출층까지 도달하는 거리가 짧아지면, 소실되는 광의 양이 그만큼 줄어들어, 궁극적으로, 유기발광소자(10)의 광추출 효율은 향상될 수 있다.As described above, according to the exemplary embodiment of the present invention, the light extraction layer including the electrode of the organic light emitting device 10 made of the metal mesh 120 of the mesh network type and the matrix layer 130 including the plurality of light scatterers 140. It is formed into a horizontal structure. This means that the distance from the organic light emitting layer from which the light is emitted from the organic light emitting element 10 to the light extraction layer is closer than that of the layered or vertical structure formed by stacking the anode and the light extraction layer. If the distance emitted from the light to the light extraction layer is shortened, the amount of light lost is reduced by that, ultimately, the light extraction efficiency of the organic light emitting device 10 can be improved.
또한, 메쉬망 타입의 금속재(120)와 이에 의해 복수 개로 구획되는 매트릭스 층(130)을 하나의 광추출층으로 볼 때, 메쉬망 타입의 금속재(120)로 인해, 광추출층 내부에 규칙적인 베리어(barrier)가 형성됨으로써, 광추출층 내부에서 웨이브 가이딩(wave guiding)되는 빛을 막고 외부로 추출할 수 있게 되어, 광추출 효율을 더욱 향상시킬 수 있다.In addition, when the mesh network type metal material 120 and the matrix layer 130 partitioned into a plurality by this as a single light extraction layer, due to the mesh network type metal material 120, regular inside the light extraction layer By forming a barrier, it is possible to prevent light extracted from the wave guiding inside the light extraction layer and extract the light to the outside, thereby further improving the light extraction efficiency.
매트릭스 층(130)은 금속재(120)에 의해 벽면이 구획되고, 베이스 기판(110)의 노출된 표면을 바닥면으로 하는 복수 개의 공간에 형성된다. 또한, 매트릭스 층(130) 내부에는 다수의 광 산란체(140)가 분산되어 있다.The matrix layer 130 is partitioned by a metal material 120, and is formed in a plurality of spaces having the exposed surface of the base substrate 110 as a bottom surface. In addition, a plurality of light scatterers 140 are dispersed in the matrix layer 130.
이러한 매트릭스 층(130)은 본 발명의 실시 예에 따른 광추출 기판(100)이 유기발광소자(10)의 내부 광추출 기판으로 적용 시 광 산란체(140)와 함께 유기발광소자(10)의 내부 광추출층으로서의 역할을 한다. 이때, 본 발명의 실시 예에서는 매트릭스 층(130)을 구획하고, 이의 상면과 평탄면을 이루는 메쉬망 타입의 금속재(120)가 유기발광소자(10)의 애노드 역할을 하는 전극으로 작용하므로, 매트릭스 층(130)은 유기발광소자(10)의 유기 발광층과 수직적으로 접하게 된다. 또한, 매트릭스 층(130)은 광추출층을 이루기 위해, 광 산란체(140)보다 굴절률이 큰 고굴절(high refractive index; HRI) 물질로 이루어질 수 있다. 예를 들어, 매트릭스 층(130)은 SiO2, TiO2, ZrOx, ZnO 및 SnO2를 포함하는 금속산화물 후보군 중 어느 하나 또는 둘 이상의 조합으로 이루어질 수 있다. 이때, 광 산란체(140)가 SiO2로 이루어지는 경우, 매트릭스 층(130)은 이보다 굴절률이 큰 ZnO로 이루어질 수 있다. 또한, 도 6의 주사전자현미경 사진에서 보여지는 바와 같이, 매트릭스 층(130)이 루타일(rutile) 결정상의 TiO2로 이루어진 경우, 매트릭스 층(130) 형성을 위해 TiO2를 소성 과정에서, TiO2 내부에는 부정형의 다수의 기공이 대략 50~900㎚ 크기로 형성된다. 이러한 기공은 광 산란체(140)와 함께 복잡한 산란구조를 이뤄, 유기발광소자(10)의 광추출 효율을 향상시키는 역할을 한다. 이때, 다수의 기공은 광 산란체(140)와 비교할 때, 이와 동등하거나 그 이상의 광 산란 효과를 구현할 수 있다. 즉, 루타일 결정상의 TiO2로 이루어진 매트릭스 층(130) 내부에 부정형의 기공이 많이 형성될수록, 다시 말해, 매트릭스 층(130)에서 다수의 기공이 차지하는 면적이 넓을수록, 우수한 광추출 효율을 구현할 수 있다. 이와 같이, 매트릭스 층(130) 내부에 기공이 많이 형성되면, 값비싼 광 산란체(140)의 사용 개수를 줄일 수 있게 되고, 이를 통해, 제조비용을 절감할 수 있게 된다.The matrix layer 130 of the organic light emitting device 10 together with the light scatterer 140 when the light extraction substrate 100 according to the embodiment of the present invention is applied as an internal light extraction substrate of the organic light emitting device 10. It serves as an internal light extraction layer. At this time, in the embodiment of the present invention, the matrix layer 130 is partitioned, and a mesh network type metal material 120 forming a top surface and a flat surface thereof acts as an electrode serving as an anode of the organic light emitting device 10, The layer 130 is in contact with the organic light emitting layer of the organic light emitting device 10 vertically. In addition, the matrix layer 130 may be formed of a high refractive index (HRI) material having a larger refractive index than the light scatterer 140 to form a light extraction layer. For example, the matrix layer 130 may be formed of any one or a combination of two or more metal oxide candidate groups including SiO 2 , TiO 2 , ZrO x , ZnO, and SnO 2 . In this case, when the light scatterer 140 is made of SiO 2 , the matrix layer 130 may be made of ZnO having a larger refractive index. Also, in, the firing process the TiO 2, for the matrix layer 130 is formed when the matrix layer 130 are made of TiO 2 on the rutile (rutile), determined as shown in the scanning electron micrograph of FIG. 6, TiO 2 , a large number of amorphous pores are formed in a size of approximately 50 ~ 900nm. These pores form a complex scattering structure together with the light scattering body 140, thereby improving the light extraction efficiency of the organic light emitting device (10). In this case, when compared to the light scatterer 140, a plurality of pores may realize an equivalent or more light scattering effect. That is, the more amorphous pores are formed in the matrix layer 130 made of the rutile crystalline TiO 2 , that is, the larger the area occupied by the plurality of pores in the matrix layer 130, the better the light extraction efficiency. Can be. As such, when a large number of pores are formed in the matrix layer 130, the number of expensive light scatterers 140 may be reduced, and thus, manufacturing cost may be reduced.
광 산란체(140)는 매트릭스 층(130) 내부에 분산되어 있다. 이때, 본 발명의 실시 예에 따른 다수의 광 산란체(140)는 입자 형태로 이루어지거나 기공 형태로 이루어질 수 있고, 입자 형태의 광 산란체들과 기공 형태의 광 산란체들이 소정 비율로 조합된 형태로도 이루어질 수 있다.The light scatterer 140 is dispersed inside the matrix layer 130. In this case, the plurality of light scatterers 140 according to the embodiment of the present invention may be formed in the form of particles or in the form of pores, and the light scatterers in the form of particles and the light scatterers in the form of pores are combined at a predetermined ratio. It may also be in the form.
여기서, 입자 형태로 이루어진 광 산란체(140)는 매트릭스 층(130)보다 굴절률이 작은 물질로 이루어질 수 있다.Here, the light scatterer 140 having a particle shape may be formed of a material having a refractive index smaller than that of the matrix layer 130.
본 발명의 실시 예에서, 이러한 광 산란체(140)는 매트릭스 층(130)과 함께 광추출층을 이룬다. 즉, 광 산란체(140)는 매트릭스 층(130)과 굴절률 차이를 이룸과 아울러, 유기발광소자(10)로부터 발광된 광의 경로를 다변화시켜 유기발광소자(10)의 광추출 효율을 향상시키는 역할을 한다.In an embodiment of the present invention, the light scatterer 140 forms a light extraction layer together with the matrix layer 130. That is, the light scatterer 140 achieves a difference in refractive index with the matrix layer 130 and improves the light extraction efficiency of the organic light emitting device 10 by diversifying the path of light emitted from the organic light emitting device 10. Do it.
한편, 입자 형태로 이루어진 광 산란체(140)는 다중 굴절률을 갖는 형태로 이루어질 수 있다. 예를 들어, 입자 형태로 이루어진 광 산란체(140)는 서로 굴절률이 다른 코어-쉘 구조로 이루어질 수 있다. 이때, 코어는 중공으로 이루어질 수 있다. 이와 같이, 광 산란체(140)가 코어-쉘 구조로 이루어지면, 코어와 쉘 간의 굴절률 차이를 통해, 유기발광소자(10)로부터 방출된 광을 외부로 추출하는 효율을 보다 향상시킬 수 있게 된다.On the other hand, the light scatterer 140 in the form of particles may be formed in a form having a multiple refractive index. For example, the light scatterer 140 having a particle shape may have a core-shell structure having different refractive indices. At this time, the core may be made hollow. As such, when the light scatterer 140 is formed of a core-shell structure, the efficiency of extracting light emitted from the organic light emitting device 10 to the outside may be further improved through refractive index differences between the core and the shell. .
다수의 광 산란체(140)가 입자 형태의 광 산란체들만으로 이루어진 것으로 가정할 때, 매트릭스 층(130) 내부에 분산되어 있는 다수의 광 산란체(140)는 전체가 코어-쉘 구조를 이루는 입자들로 이루어지거나, 전체가 단일 굴절률을 갖는 입자들로 이루어질 수 있다. 또한, 다수의 광 산란체(140)는 코어-쉘 구조와 같은 다중 굴절률을 갖는 입자들과 단일 굴절률을 갖는 입자들이 혼합된 형태로도 이루어질 수 있다.Assuming that the plurality of light scatterers 140 is composed of only light scatterers in the form of particles, the plurality of light scatterers 140 dispersed in the matrix layer 130 may form particles having a core-shell structure. Or whole particles of single refractive index. In addition, the plurality of light scatterers 140 may be formed by mixing particles having a single refractive index with particles having multiple refractive indices such as a core-shell structure.
상술한 바와 같이, 본 발명의 실시 예에 따른 유기발광소자용 광추출 기판(100)은 매트릭스 층(130) 및 다수의 광 산란체(140)로 이루어진 광추출층 내에 유기발광소자(10)의 애노드 역할을 하는 전극으로 작용하는 메쉬망 타입의 금속재(120)를 구비한다. 이를 통해, 종래 광추출층과 층상 구조를 이루던 애노드가 차지했던 두께를 줄일 수 있어, 종래보다 유기 발광층으로부터 방출된 광이 광추출층까지 도달하는 거리를 애노드가 차지했던 두께만큼 줄일 수 있고, 이는, 유기발광소자(10)의 광추출 효율 향상으로 이어지게 된다.As described above, the light extracting substrate 100 for the organic light emitting device according to the embodiment of the present invention is the organic light emitting device 10 in the light extraction layer consisting of a matrix layer 130 and a plurality of light scattering body 140 It is provided with a metal mesh 120 of the mesh network type to serve as an electrode serving as an anode. Through this, the thickness occupied by the anode, which has a layered structure with the conventional light extraction layer, can be reduced, and thus, the distance from which the light emitted from the organic light emitting layer reaches the light extraction layer can be reduced by the thickness occupied by the anode. This leads to an improvement in light extraction efficiency of the organic light emitting device 10.
이하, 본 발명의 실시 예에 따른 유기발광소자용 광추출 기판 제조방법에 대하여 도 2 내지 도 5를 참조하여 설명한다.Hereinafter, a method of manufacturing a light extraction substrate for an organic light emitting diode according to an embodiment of the present invention will be described with reference to FIGS. 2 to 5.
본 발명의 실시 예에 따른 유기발광소자용 광추출 기판 제조방법은 금속재 형성단계, 광추출층 형성단계 및 광추출층 연마단계를 포함한다.The light extraction substrate manufacturing method for an organic light emitting device according to an embodiment of the present invention includes a metal material forming step, a light extraction layer forming step and a light extraction layer polishing step.
먼저, 도 2에 도시한 바와 같이, 금속재 형성단계에서는 베이스 기판(110) 상에 메쉬망 타입의 금속재(120)를 형성한다. 이때, 금속재 형성단계에서는 다양한 방법을 통해 베이스 기판(110) 상에 메쉬망 타입의 금속재(120)를 형성할 수 있다. 예를 들어, 금속재 형성단계에서는 증착, 인쇄 및 포토리소그래피 중 어느 하나의 공정을 통해 메쉬망 타입의 금속재(120)를 형성할 수 있다.First, as shown in FIG. 2, in the metal material forming step, a mesh network type metal material 120 is formed on the base substrate 110. In this case, in the metal material forming step, the mesh network type metal material 120 may be formed on the base substrate 110 through various methods. For example, in the metal material forming step, the mesh network type metal material 120 may be formed through any one of deposition, printing, and photolithography.
다음으로, 도 3에 도시한 바와 같이, 광추출층 형성단계에서는 메쉬망 타입의 금속재(120)가 형성되어 있는 베이스 기판(110) 상에 광추출층을 형성한다. 금속재 형성단계를 통해 베이스 기판(110) 상에 메쉬망 타입의 금속재(120)를 형성하면, 베이스 기판(110)의 표면이 격자 형태로 노출되는데, 이 노출된 표면을 바닥면으로 하고, 메쉬망 타입의 금속재(120)에 의해 벽면이 구획되는 복수 개의 공간이 형성된다. 광추출층 형성단계에서는 이러한 복수 개의 공간 각각에 다수의 광 산란체(140)가 내부에 분산되어 있는 매트릭스 층(130)을 형성함과 아울러, 메쉬망 타입의 금속재(120)의 상면 전체를 덮는 형태로 매트릭스 층(130)을 형성한다. 이때, 광추출층 형성단계에서는 다양한 방식으로 광추출층, 즉, 매트릭스 층(130)과 광 산란체(140)를 형성할 수 있다. 일례로, 광추출층 형성단계에서는 먼저, 매트릭스 층(130)을 이루는 물질에 입자 형태의 다수의 광 산란체(140)를 혼합하여 혼합물을 만들고, 그 다음, 이 혼합물을 메쉬망 타입의 금속재(120) 전체를 덮는 형태로 베이스 기판(110) 상에 코팅할 수 있다. 그 다음, 혼합물을 코팅한 후에는 이를 건조하고, 소성한다. 이때, 기공 형태의 광 산란체(140)를 만들기 위해, 광추출층 형성단계에서는 상기의 혼합물에 열가소성 고분자 입자를 추가로 혼합할 수 있다. 이와 같이 혼합된 열가소성 고분자 입자는 혼합물을 매트릭스 층(130)으로 만들기 위한 소성 과정에서, 기화되고, 이와 같이 기화된 열가소성 고분자 입자가 차지했던 자리에는 기공 형태의 광 산란체(140)가 형성된다.Next, as shown in FIG. 3, in the light extraction layer forming step, the light extraction layer is formed on the base substrate 110 on which the mesh network type metal material 120 is formed. When the metal mesh 120 of the mesh network type is formed on the base substrate 110 through the metal material forming step, the surface of the base substrate 110 is exposed in the form of a lattice. A plurality of spaces in which a wall surface is partitioned by the type metal material 120 is formed. In the light extracting layer forming step, the matrix layer 130 in which the plurality of light scattering bodies 140 are dispersed in each of the plurality of spaces is formed, and the entire surface of the upper surface of the mesh-type metal material 120 is covered. Form the matrix layer 130 in the form. At this time, in the light extracting layer forming step, the light extracting layer, that is, the matrix layer 130 and the light scattering body 140 may be formed in various ways. For example, in the light extracting layer forming step, first, a plurality of light scattering bodies 140 in a particle form are mixed with a material forming the matrix layer 130 to form a mixture, and then the mixture is a metal mesh of a mesh network type ( 120 may be coated on the base substrate 110 to cover the whole. After coating the mixture, it is then dried and calcined. At this time, in order to make the pore-shaped light scattering body 140, in the light extraction layer forming step may be further mixed with the thermoplastic polymer particles in the mixture. The mixed thermoplastic polymer particles are vaporized in the firing process for making the mixture into the matrix layer 130, and the light scattering body 140 having a pore shape is formed at the positions occupied by the vaporized thermoplastic polymer particles.
다른 예로, 광추출층 형성단계에서는 먼저, 베이스 기판(110) 상에 입자 형태의 다수의 광 산란체(140)를 증착하고, 그 다음, 다수의 광 산란체(140) 및 메쉬망 타입의 금속재(120)를 덮는 형태로, 매트릭스 층(130)을 이루는 물질을 증착할 수 있다. 증착 후에는 이를 건조하고, 소성한다. 이 경우에는 기공 형태의 광 산란체(140)를 만들기 위해, 매트릭스 층(130)을 이루는 물질에 열가소성 고분자 입자를 혼합할 수 있다.As another example, in the light extracting layer forming step, first, a plurality of light scatterers 140 in the form of particles are deposited on the base substrate 110, and then a plurality of light scatterers 140 and a mesh network type metal material. In a form covering the 120, the material forming the matrix layer 130 may be deposited. After deposition it is dried and calcined. In this case, in order to make the pore-shaped light scattering body 140, the thermoplastic polymer particles may be mixed with the material forming the matrix layer 130.
여기서, 광추출층 형성단계에서는 입자 형태로 이루어진 광 산란체(140)로, 단일 굴절률을 갖는 광 산란체(140)들을 사용하거나 다중 굴절률을 갖는, 예컨대, 코어가 중공으로 이루어진 코어-쉘 구조의 광 산란체(140)들을 사용할 수 있고, 나아가, 단일 굴절률 및 다중 굴절률을 갖는 광 산란체(140)들을 소정 비율로 혼합하여 사용할 수도 있다.Here, in the light extracting layer forming step, the light scatterer 140 having a particle shape, or the light scatterer 140 having a single refractive index or having a multiple refractive index, for example, a core-shell structure having a hollow core The light scatterers 140 may be used, and further, the light scatterers 140 having a single refractive index and multiple refractive indices may be mixed and used at a predetermined ratio.
한편, 광추출층 형성단계에서는 광 산란체(140)보다 굴절률이 상대적으로 큰 물질을 매트릭스 층(130)을 이루는 물질로 사용할 수 있다. 예를 들어, 광추출층 형성단계에서는 매트릭스 층(130)을 이루는 물질로, SiO2, TiO2, ZrOx, ZnO 및 SnO2를 포함하는 금속산화물 후보군 중 어느 하나 또는 둘 이상을 조합하여 사용할 수 있다. 이때, 매트릭스 층(130)을 이루는 물질로, ZnO를 사용한 경우, 광 산란체(140)로는 이보다 굴절률이 작은 SiO2를 사용할 수 있다. 또한, 매트릭스 층(130)을 이루는 물질로, 루타일(rutile) 결정상의 TiO2를 사용하게 되면, 이를 소성하는 과정에서, 매트릭스 층(130) 내부에 부정형의 다수의 기공이 50~900㎚ 크기로 형성될 수 있다.Meanwhile, in the light extraction layer forming step, a material having a relatively larger refractive index than the light scatterer 140 may be used as the material forming the matrix layer 130. For example, in the light extraction layer forming step, the material forming the matrix layer 130 may be used in combination with any one or two or more of metal oxide candidate groups including SiO 2 , TiO 2 , ZrO x , ZnO, and SnO 2 . have. In this case, when ZnO is used as the material forming the matrix layer 130, SiO 2 having a smaller refractive index may be used as the light scatterer 140. In addition, when TiO 2 using a rutile crystalline phase is used as a material for forming the matrix layer 130, in the process of firing the same, a large number of amorphous pores in the matrix layer 130 are 50 to 900 nm in size. It can be formed as.
다음으로, 도 4에 도시한 바와 같이, 광추출층 연마단계에서는 메쉬망 타입의 금속재(120)의 상면이 노출되도록, 광추출층, 즉, 매트릭스 층(130)을 연마한다. 이와 같이, 매트릭스 층(130)을 연마하면, 유기발광소자(도 5의 10)와 접하는 면이 고평탄면으로 이루어진 광추출 기판(100)의 제조가 완료된다.Next, as shown in FIG. 4, in the light extraction layer polishing step, the light extraction layer, that is, the matrix layer 130 is polished so that the top surface of the mesh network type metal material 120 is exposed. As such, when the matrix layer 130 is polished, the manufacturing of the light extraction substrate 100 having the surface of the organic light emitting element (10 of FIG. 5) having a high flat surface is completed.
또한, 광추출층 연마단계를 통해 메쉬망 타입의 금속재(120)의 상면이 노출되면, 도 5에 도시한 바와 같이, 메쉬망 타입의 금속재(120)와 유기발광소자(10)는 전기적 연결이 가능해진다. 이에 따라, 메쉬망 타입의 금속재(120)는 유기발광소자(10)의 애노드 역할을 하는 전극으로 작용하게 된다.In addition, when the upper surface of the mesh network type metal material 120 is exposed through the light extraction layer polishing step, as shown in FIG. 5, the mesh network type metal material 120 and the organic light emitting device 10 may be electrically connected. It becomes possible. Accordingly, the mesh type metal material 120 serves as an electrode that serves as an anode of the organic light emitting device 10.
이상과 같이 본 발명은 비록 한정된 실시 예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시 예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.As described above, although the present invention has been described with reference to the limited embodiments and the drawings, the present invention is not limited to the above embodiments, and those skilled in the art to which the present invention pertains various modifications and variations from such descriptions. This is possible.
그러므로 본 발명의 범위는 설명된 실시 예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐만 아니라 특허청구범위와 균등한 것들에 의해 정해져야 한다.Therefore, the scope of the present invention should not be limited to the described embodiments, but should be determined not only by the claims below but also by the equivalents of the claims.

Claims (23)

  1. 베이스 기판;A base substrate;
    상기 베이스 기판 상에 형성되는 메쉬망 타입의 금속재;A mesh network type metal material formed on the base substrate;
    상기 베이스 기판 상에 형성되되, 상기 메쉬망 타입의 금속재에 의해 구획되는 복수 개의 공간에 각각 형성되는 매트릭스 층; 및A matrix layer formed on the base substrate, each matrix layer being formed in a plurality of spaces partitioned by the mesh type metal material; And
    상기 매트릭스 층 내부에 분산되어 있는 다수의 광 산란체;A plurality of light scatterers dispersed within the matrix layer;
    를 포함하는 것을 특징으로 하는 유기발광소자용 광추출 기판.Light extraction substrate for an organic light emitting device comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 메쉬망 타입의 금속재의 상면은 상기 매트릭스 층의 상면과 평탄면을 이루는 것을 특징으로 하는 유기발광소자용 광추출 기판.The upper surface of the metal mesh of the mesh network type is a light extraction substrate for an organic light emitting device, characterized in that forming a flat surface with the upper surface of the matrix layer.
  3. 제1항에 있어서,The method of claim 1,
    상기 매트릭스 층은 상기 광 산란체보다 굴절률이 상대적으로 큰 물질로 이루어지는 것을 특징으로 하는 유기발광소자용 광추출 기판.The matrix layer is a light extraction substrate for an organic light emitting device, characterized in that made of a material having a relatively larger refractive index than the light scattering body.
  4. 제3항에 있어서,The method of claim 3,
    상기 매트릭스 층은 SiO2, TiO2, ZrOx, ZnO 및 SnO2를 포함하는 금속산화물 후보군 중 어느 하나 또는 둘 이상의 조합으로 이루어진 것을 특징으로 하는 유기발광소자용 광추출 기판.The matrix layer is a light extraction substrate for an organic light emitting device, characterized in that made of any one or a combination of two or more of the metal oxide candidate group including SiO 2 , TiO 2 , ZrO x , ZnO and SnO 2 .
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 매트릭스 층은 루타일(rutile) 결정상의 TiO2로 이루어진 것을 특징으로 하는 유기발광소자용 광추출 기판.The matrix layer is a light extraction substrate for an organic light emitting device, characterized in that consisting of a rutile (Titile 2 ) of the crystalline phase.
  6. 제5항에 있어서,The method of claim 5,
    상기 매트릭스 층의 내부에는 부정형의 다수의 기공이 형성되어 있는 것을 특징으로 하는 유기발광소자용 광추출 기판.The light extraction substrate for an organic light emitting device, characterized in that a plurality of amorphous pores are formed inside the matrix layer.
  7. 제6항에 있어서,The method of claim 6,
    상기 기공의 크기는 50~900㎚인 것을 특징으로 하는 유기발광소자용 광추출 기판.The pore size is light extraction substrate for an organic light emitting device, characterized in that 50 ~ 900nm.
  8. 제1항에 있어서,The method of claim 1,
    상기 다수의 광 산란체는 입자 형태의 광 산란체, 기공 형태의 광 산란체 및 상기 입자 형태의 광 산란체들과 상기 기공 형태의 광 산란체들이 조합된 형태 중 어느 한 형태로 이루어진 것을 특징으로 하는 유기발광소자용 광추출 기판.The plurality of light scatterers may be formed of any one of particle type light scatterers, pore type light scatterers, and particle type light scatterers and the pore type light scatterers. A light extraction substrate for an organic light emitting device.
  9. 제8항에 있어서,The method of claim 8,
    상기 입자 형태의 광 산란체는 단일 굴절률 또는 다중 굴절률을 갖는 것을 특징으로 하는 유기발광소자용 광추출 기판.The light scattering body in the form of particles is a light extraction substrate for an organic light emitting device, characterized in that it has a single refractive index or multiple refractive index.
  10. 제9항에 있어서,The method of claim 9,
    상기 다수의 광 산란체는 상기 입자 형태의 광 산란체를 포함하되,The plurality of light scatterers include light scatterers in the form of particles,
    상기 입자 형태의 광 산란체는 단일 굴절률을 갖는 광 산란체와 다중 굴절률을 갖는 광 산란체의 조합으로 이루어진 것을 특징으로 하는 유기발광소자용 광추출 기판.The light scattering body in the form of particles comprises a light scattering substrate having a single refractive index and a light scattering substrate having a multiple refractive index, characterized in that the light extraction substrate for an organic light emitting device.
  11. 제10항에 있어서,The method of claim 10,
    상기 다중 굴절률을 갖는 광 산란체는 코어 및 상기 코어와 굴절률 차이를 가지며 상기 코어를 감싸는 쉘로 이루어진 것을 특징으로 하는 유기발광소자용 광추출 기판.The light scattering body having the multi-refractive index is a light extraction substrate for an organic light emitting device, characterized in that consisting of a core and a shell having a difference in refractive index with the core surrounding the core.
  12. 제11항에 있어서,The method of claim 11,
    상기 코어는 중공으로 이루어진 것을 특징으로 하는 유기발광소자용 광추출 기판.The core is a light extraction substrate for an organic light emitting device, characterized in that made of hollow.
  13. 제1항에 있어서,The method of claim 1,
    상기 메쉬망 타입의 금속재는 유기발광소자의 전극으로 사용되는 것을 특징으로 하는 유기발광소자용 광추출 기판.The mesh network type metal material is a light extraction substrate for an organic light emitting device, characterized in that used as an electrode of the organic light emitting device.
  14. 제1항에 있어서,The method of claim 1,
    상기 베이스 기판은 플렉서블 기판으로 이루어진 것을 특징으로 하는 유기발광소자용 광추출 기판.The base substrate is a light extraction substrate for an organic light emitting device, characterized in that consisting of a flexible substrate.
  15. 제14항에 있어서,The method of claim 14,
    상기 베이스 기판은 두께 1.5㎜ 이하의 박판 유리로 이루어진 것을 특징으로 하는 유기발광소자용 광추출 기판.The base substrate is a light extraction substrate for an organic light emitting device, characterized in that the thin glass of 1.5mm or less.
  16. 제1항 내지 제15항 중 어느 한 항에 따른 유기발광소자용 광추출 기판을, 발광된 빛이 외부로 방출되는 일면에 구비하는 것을 특징으로 하는 유기발광소자.The organic light emitting device according to any one of claims 1 to 15, comprising a light extraction substrate for an organic light emitting device on one surface of the emitted light is emitted to the outside.
  17. 베이스 기판 상에 메쉬망 타입의 금속재를 형성하는 금속재 형성단계;A metal material forming step of forming a mesh network type metal material on the base substrate;
    상기 메쉬망 타입의 금속재가 형성되어 있는 상기 베이스 기판 상에, 매트릭스 층 및 상기 매트릭스 층 내부에 분산되어 있는 다수의 광 산란체로 이루어진 광추출층을 형성하는 광추출층 형성단계; 및A light extraction layer forming step of forming a light extraction layer comprising a matrix layer and a plurality of light scattering bodies dispersed in the matrix layer on the base substrate on which the mesh network type metal material is formed; And
    상기 메쉬망 타입의 금속재의 상면이 노출되도록 상기 광추출층을 연마하는 광추출층 연마단계;A light extraction layer polishing step of polishing the light extraction layer so that the upper surface of the mesh type metal material is exposed;
    를 포함하는 것을 특징으로 하는 유기발광소자용 광추출 기판 제조방법.Light extraction substrate manufacturing method for an organic light emitting device comprising a.
  18. 제17항에 있어서,The method of claim 17,
    상기 금속재 형성단계에서는 증착, 인쇄 및 포토리소그래피 중 어느 하나의 공정을 통해 상기 메쉬망 타입의 금속재를 형성하는 것을 특징으로 하는 유기발광소자용 광추출 기판 제조방법.In the metal material forming step, the method of manufacturing a light extraction substrate for an organic light emitting device, characterized in that to form the metal material of the mesh network type through any one of deposition, printing and photolithography.
  19. 제17항에 있어서,The method of claim 17,
    상기 광추출층 형성단계에서는 상기 매트릭스 층을 이루는 물질에 입자 형태의 상기 다수의 광 산란체를 혼합하여 만든 혼합물을 상기 베이스 기판 상에 코팅하는 것을 특징으로 하는 유기발광소자용 광추출 기판 제조방법.The light extraction layer forming step of manufacturing a light extraction substrate for an organic light emitting device, characterized in that for coating on the base substrate a mixture made by mixing the plurality of light scattering material in the form of a matrix layer material.
  20. 제19항에 있어서,The method of claim 19,
    상기 광추출층 형성단계에서는 상기 혼합물에 열가소성 고분자 입자를 혼합하는 것을 특징으로 하는 유기발광소자용 광추출 기판 제조방법.In the light extraction layer forming step, a method of manufacturing a light extraction substrate for an organic light emitting device, characterized in that for mixing the thermoplastic polymer particles in the mixture.
  21. 제15항에 있어서,The method of claim 15,
    상기 광추출층 형성단계에서는 상기 베이스 기판 상에 입자 형태의 상기 다수의 광 산란체를 증착한 후, 증착한 상기 다수의 광 산란체 및 상기 메쉬망 타입의 금속재를 덮는 형태로 상기 매트릭스 층을 이루는 물질을 증착하는 것을 특징으로 하는 유기발광소자용 광추출 기판 제조방법.In the forming of the light extracting layer, after depositing the plurality of light scatterers in the form of particles on the base substrate, the matrix layer is formed to cover the deposited light scatterers and the metal material of the mesh network type. Method for manufacturing a light extraction substrate for an organic light emitting device, characterized in that for depositing the material.
  22. 제21항에 있어서,The method of claim 21,
    상기 광추출층 형성단계에서는 상기 매트릭스 층을 이루는 물질에 열가소성 고분자 입자를 혼합하는 것을 특징으로 하는 유기발광소자용 광추출 기판 제조방법.In the light extraction layer forming step, a method of manufacturing a light extraction substrate for an organic light emitting device, characterized in that the thermoplastic polymer particles are mixed with a material forming the matrix layer.
  23. 제17항에 있어서,The method of claim 17,
    상기 광추출층 형성단계에서는 상기 광 산란체보다 굴절률이 상대적으로 큰 물질을 상기 매트릭스 층을 이루는 물질로 사용하는 것을 특징으로 하는 유기발광소자용 광추출 기판 제조방법.In the light extraction layer forming step, a method of manufacturing a light extraction substrate for an organic light emitting device, characterized in that for the material forming the matrix layer using a material having a refractive index larger than the light scattering body.
PCT/KR2015/009399 2014-09-11 2015-09-07 Light extraction substrate for organic light-emitting diode, manufacturing method therefor, and organic light-emitting diode including same WO2016039551A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/510,493 US20170256746A1 (en) 2014-09-11 2015-09-07 Light extraction substrate for organic light-emitting diode, manufacturing method therefor, and organic light-emitting diode including same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140119844 2014-09-11
KR10-2014-0119844 2014-09-11
KR10-2014-0192273 2014-12-29
KR1020140192273A KR101699275B1 (en) 2014-09-11 2014-12-29 Light extraction substrate for oled, method of fabricating thereof and oled including the same

Publications (2)

Publication Number Publication Date
WO2016039551A2 true WO2016039551A2 (en) 2016-03-17
WO2016039551A3 WO2016039551A3 (en) 2016-05-06

Family

ID=55459683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/009399 WO2016039551A2 (en) 2014-09-11 2015-09-07 Light extraction substrate for organic light-emitting diode, manufacturing method therefor, and organic light-emitting diode including same

Country Status (1)

Country Link
WO (1) WO2016039551A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106299151A (en) * 2016-08-23 2017-01-04 深圳市华星光电技术有限公司 OLED display panel and the manufacture method of OLED display panel
WO2017164592A1 (en) * 2016-03-23 2017-09-28 코닝 인코포레이티드 Light extraction substrate for organic light emitting device, manufacturing method therefor, and organic light emitting device comprising same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100683447B1 (en) * 2005-08-11 2007-02-20 서울옵토디바이스주식회사 Light emitting diodde having mesh-type insulating layer and method for fabricating the same
US8573804B2 (en) * 2010-10-08 2013-11-05 Guardian Industries Corp. Light source, device including light source, and/or methods of making the same
WO2013024915A1 (en) * 2011-08-17 2013-02-21 삼성전자주식회사 Sputtering apparatus and method for forming a transmissive conductive layer of a light emitting device
KR101476907B1 (en) * 2012-04-10 2014-12-26 포항공과대학교 산학협력단 Integral and conductive substrate and electric device including the same
EP2908358B1 (en) * 2012-11-30 2018-07-11 LG Chem, Ltd. Substrate for organic electronic element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164592A1 (en) * 2016-03-23 2017-09-28 코닝 인코포레이티드 Light extraction substrate for organic light emitting device, manufacturing method therefor, and organic light emitting device comprising same
CN109155372A (en) * 2016-03-23 2019-01-04 康宁公司 For the light extraction substrate of organic light emitting apparatus, the manufacturing method of light extraction substrate and including the organic light emitting apparatus of light extraction substrate
CN106299151A (en) * 2016-08-23 2017-01-04 深圳市华星光电技术有限公司 OLED display panel and the manufacture method of OLED display panel

Also Published As

Publication number Publication date
WO2016039551A3 (en) 2016-05-06

Similar Documents

Publication Publication Date Title
CN100517792C (en) Organic light emitting device with high efficiency and method of fabricating the same
US9419248B2 (en) Organic LED element, translucent substrate, and method for manufacturing organic LED element
WO2009142462A2 (en) Organic led and manufacturing method thereof
WO2016105026A1 (en) Method for manufacturing light extraction substrate for organic light emitting diode, light extraction substrate for organic light emitting diode, and organic light emitting diode comprising same
WO2012047054A2 (en) Substrate for an organic electronic element and a production method therefor
US20010026124A1 (en) Light extraction from color changing medium layers in organic light emitting diode devices
WO2016036150A1 (en) Method for manufacturing light extraction substrate for organic light-emitting diode, light extraction substrate for organic light-emitting diode, and organic light-emitting diode including same
WO2010131853A2 (en) Organic light-emitting diode and method for manufacturing same
WO2016105029A1 (en) Organic light emitting diode
CN1622727A (en) Electroluminescent display device and thermal transfer donor film for the electroluminescent display device
WO2016105018A1 (en) Method for manufacturing light extraction substrate for organic light-emitting element, light extraction substrate for organic light-emitting element, and organic light-emitting element comprising same
WO2016105027A1 (en) Method for manufacturing light extraction substrate for organic light emitting diode, light extraction substrate for organic light emitting diode, and organic light emitting diode comprising same
KR20140000426A (en) Substrate for oled and method for fabricating thereof
WO2016047936A4 (en) Flexible substrate and method of manufacturing same
WO2016039551A2 (en) Light extraction substrate for organic light-emitting diode, manufacturing method therefor, and organic light-emitting diode including same
JP2010186613A (en) Organic light-emitting device and method of manufacturing the same, and display device
WO2016047970A2 (en) Light extraction substrate for organic light emitting element and organic light emitting element comprising same
CN105789263A (en) Organic light-emitting displayer and preparation method thereof
US9118034B2 (en) Metal oxide thin film substrate for OLED and method of fabricating the same
US20160172629A1 (en) Method for manufacturing ultrathin organic light-emitting device
WO2016108594A2 (en) Method for manufacturing light extraction substrate for organic light emitting element, light extraction substrate for organic light emitting element, and organic light emitting element including same
WO2016105016A1 (en) Light extracting substrate for organic light emitting device, method of manufacturing same, and organic light emitting device including same
US9711762B2 (en) Substrate for organic light-emitting diode, method for manufacturing same, and organic light-emitting diode comprising same
KR101699275B1 (en) Light extraction substrate for oled, method of fabricating thereof and oled including the same
WO2017164592A1 (en) Light extraction substrate for organic light emitting device, manufacturing method therefor, and organic light emitting device comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15839623

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 15510493

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15839623

Country of ref document: EP

Kind code of ref document: A2