WO2016104787A1 - Photocurable composition - Google Patents

Photocurable composition Download PDF

Info

Publication number
WO2016104787A1
WO2016104787A1 PCT/JP2015/086413 JP2015086413W WO2016104787A1 WO 2016104787 A1 WO2016104787 A1 WO 2016104787A1 JP 2015086413 W JP2015086413 W JP 2015086413W WO 2016104787 A1 WO2016104787 A1 WO 2016104787A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
meth
polymer
crosslinkable silicon
Prior art date
Application number
PCT/JP2015/086413
Other languages
French (fr)
Japanese (ja)
Inventor
翔馬 河野
尚孝 河村
智洋 緑川
岡村 直実
宏士 山家
Original Assignee
セメダイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セメダイン株式会社 filed Critical セメダイン株式会社
Priority to JP2016566568A priority Critical patent/JP6683133B2/en
Priority to CN201580057525.1A priority patent/CN107074999B/en
Priority to KR1020177010755A priority patent/KR102494910B1/en
Publication of WO2016104787A1 publication Critical patent/WO2016104787A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/04Acids, Metal salts or ammonium salts thereof
    • C08F20/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/10Block or graft copolymers containing polysiloxane sequences
    • C09J183/12Block or graft copolymers containing polysiloxane sequences containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • C09J201/02Adhesives based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C09J201/10Adhesives based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing hydrolysable silane groups

Definitions

  • the present invention relates to a dual cure photocurable composition using moisture curing and active energy ray (light) curing.
  • the present invention relates to a dual cure photocurable composition that is excellent in temporary fixability of an adherend immediately after light irradiation and can be cured in a short time.
  • crosslinkable silicon group An organic polymer having a hydroxyl group or a hydrolyzable group bonded to a silicon atom and having a silicon-containing group that can be crosslinked by forming a siloxane bond (hereinafter also referred to as “crosslinkable silicon group”) It can be made into a liquid that can be easily filled, and even at room temperature, it has the property that it can be cross-linked by the formation of siloxane bonds accompanied by hydrolysis reaction of cross-linkable silicon groups by the action of moisture in the air, etc. . For this reason, this polymer is widely used for sealing materials, adhesives, paints and the like.
  • the polymer having a crosslinkable silicon group include a polyoxyalkylene polymer and a (meth) acrylic acid ester polymer.
  • Patent Document 1 discloses an adhesive composition containing a polymer having a hydrolyzable silyl group (corresponding to a crosslinkable silicon group) and a compound having a photopolymerizable polymerizable group.
  • the polymer having a hydrolyzable silyl group is a polymer that is cross-linked and cured by moisture in the air
  • the compound having a photopolymerizable polymerizable group is a compound that becomes a high molecular weight by light irradiation.
  • This adhesive composition is a liquid that can be applied before light irradiation, and when irradiated with light, a compound having a photopolymerizable polymerizable group becomes a polymer, and the adherend can be temporarily fixed and fixed. The adherend can be fixed without using a jig. If left as it is, the polymer having a hydrolyzable silyl group contained in the adhesive composition is cured, and finally an adhesive having a high strength can be obtained.
  • the curable composition using the compounds having different curing mechanisms is called a dual cure type of moisture curing and photocuring in the case of Patent Document 1, and even if there is no temporary fixing jig. Used for bonding that can be fixed.
  • a polymer having a crosslinkable silicon group is cured by moisture by the action of a curing catalyst.
  • a catalyst having a large catalytic action is used. Moisture permeates into the inside instantly, and when it is applied, curing proceeds and the bonding work cannot be performed.
  • a catalyst having a small catalytic action is used, curing does not easily proceed and it takes time for complete curing.
  • the adhesive is thinly applied, it is difficult to select an appropriate curing catalyst for the polymer having a crosslinkable silicon group.
  • Patent Document 2 discloses an adhesive composition using a photoacid generator as a curing catalyst for a polymer having a dual cure type and having a crosslinkable silicon group.
  • the generated acid acts as a curing catalyst.
  • curing of the polymer having a crosslinkable silicon group starts from the time of application to the adherend.
  • an acid which is a curing catalyst for a polymer having a crosslinkable silicon group is generated by light irradiation, curing of the polymer having a crosslinkable silicon group proceeds until light irradiation. do not do. For this reason, according to the adhesive composition described in Patent Document 2, it is possible to quickly make a B-stage after ultraviolet irradiation, and problems such as slumping can be avoided.
  • the photoacid generator is used in the adhesive composition described in Patent Document 2, for example, when an amine or an alkaline substance is mixed, an active acid catalyst generated from the photoacid generator reacts. , Photocationic polymerization is significantly inhibited. This is likely to occur when a basic substance is contained in the adherend as well as when a basic adhesion-imparting agent, a filler, or the like is blended in the composition. Therefore, the adhesive composition described in Patent Document 2, as described in the Examples of Patent Document 2, does not exhibit sufficient adhesive force immediately after UV irradiation and has poor adhesion, and the adherend is also not suitable. Limited. Moreover, there exists a problem of producing a rust and cannot apply to adhesion
  • an object of the present invention is a dual-cure photocurable composition using moisture curing and photocuring, and the curing does not proceed before light irradiation, so that sufficient work time can be taken.
  • a dual-cure type that produces a cured product with excellent temporary fixability immediately after irradiation, and after curing with light, ensures adequate bonding time and completes relatively quickly and does not generate corrosive acids.
  • the object is to provide a photocurable composition.
  • the present invention provides (A) a crosslinkable silicon group-containing organic polymer, (B) a photobase generator, (C1) a silicon compound having a Si—F bond, and (C2) three One or more fluorine compounds selected from the group consisting of boron fluoride, boron trifluoride complexes, fluorinating agents, and alkali metal salts of polyvalent fluoro compounds, and (D) one per molecule.
  • a photocurable composition containing a polyfunctional compound having more than (meth) acryloyl groups.
  • the photocurable composition comprises (E) a crosslinkable silicon group-containing compound that generates one or more amino groups selected from the group consisting of primary amino groups and secondary amino groups by light. Furthermore, it is preferable to include.
  • the photocurable composition preferably further includes (F) a monofunctional compound having a photopolymerizable unsaturated group.
  • the photocurable composition further includes (G) a tackifier resin.
  • the (A) crosslinkable silicon group-containing organic polymer comprises a crosslinkable silicon group-containing polyoxyalkylene polymer and a crosslinkable silicon group-containing (meth) acrylic polymer. It is suitable that it is 1 or more types selected from a group.
  • the photobase generator (B) is preferably a photolatent tertiary amine.
  • a substance that generates an amine compound by the action of active energy rays is referred to as a photolatent amine compound.
  • a substance that generates an amine compound having a primary amino group is a photolatent primary amine
  • a substance that generates an amine compound having a secondary amino group is a photolatent group.
  • Substances that generate secondary amines and amine compounds having tertiary amino groups are referred to as photolatent tertiary amines, respectively.
  • the organic polymer having a crosslinkable silicon group is (a-1) a polymer having a crosslinkable silicon group and a photoradically polymerizable vinyl group in the molecule ( However, it is preferably selected from the group consisting of organic polymers having a crosslinkable silicon group other than (a-2) and (a-1) except for those having a Si—F bond.
  • the present invention provides a cured product formed by irradiating the photocurable composition with light.
  • the present invention provides a product manufactured using the above photocurable composition. Furthermore, in order to achieve the above object, the present invention provides a product using the photocurable composition as an adhesive. Moreover, in order to achieve the said objective, this invention provides the electronic device product which uses the said photocurable composition.
  • the present invention provides a method for reworking an electronic device, wherein (A) an on-site liquid mold gasket for an electronic device is (A) a crosslinkable silicon group-containing organic polymer; In-situ molded liquid gasket containing a photobase generator, (C1) a silicon compound having a Si—F bond, and (D) a polyfunctional compound having more than one (meth) acryloyl group in one molecule.
  • a dual-cure photocurable composition using moisture curing and photocuring the curing does not proceed before light irradiation, and sufficient work time can be taken.
  • a cured product having excellent temporary fixability is produced, and after curing with light, a dual cure type that does not generate corrosive acid and complete curing relatively quickly while ensuring an appropriate bonding time.
  • a photocurable composition can be provided.
  • the photocurable composition according to the present embodiment includes (A) a crosslinkable silicon group-containing organic polymer, (B) a photobase generator, (C1) a silicon compound having a Si—F bond, and / or (C2) at least one fluorine-based compound selected from the group consisting of boron trifluoride, a complex of boron trifluoride, a fluorinating agent and an alkali metal salt of a polyvalent fluoro compound, and (D) in one molecule And a polyfunctional compound having more than one (meth) acryloyl group.
  • the photocurable composition according to the present embodiment may be referred to as “the composition according to the present embodiment”.
  • the crosslinkable silicon group-containing organic polymer is not particularly limited as long as it is an organic polymer having a crosslinkable silicon group.
  • the main chain is an organic polymer that is not polysiloxane, and organic polymers having various main chain skeletons excluding polysiloxane are easily available, and cause of contact failure in the field of electrical applications. This is preferable in that it does not contain or generate low molecular cyclic siloxane.
  • the crosslinkable silicon group-containing organic polymer may have a photoradically polymerizable vinyl group together with the crosslinkable silicon group.
  • the crosslinkable silicon group-containing organic polymer further has a photoradically polymerizable vinyl group in the molecule, the initial tackiness and / or flexibility of the photocurable composition according to the present embodiment can be improved. It can be made easier to hold, and heat resistance and the like due to post-curing can be further improved.
  • a polymer having a crosslinkable silicon group and a photoradically polymerizable vinyl group in the molecule except for those having a Si—F bond
  • component (a-2) The organic polymer having a crosslinkable silicon group other than (a-1) is referred to as component (a-2).
  • the crosslinkable silicon group-containing organic polymer (A) the component (a-1) and / or the component (a-2) can also be used.
  • (A) Specific examples of the main chain skeleton of the crosslinkable silicon group-containing organic polymer include polyoxyalkylene polymers such as polyoxypropylene, polyoxytetramethylene, and polyoxyethylene-polyoxypropylene copolymers.
  • a hydrocarbon polymer such as an ethylene-propylene copolymer, polyisobutylene, polyisoprene, polybutadiene, hydrogenated polyolefin polymer obtained by hydrogenating these polyolefin polymers; two bases such as adipic acid; Polyester polymer obtained by condensation of acid and glycol or ring-opening polymerization of lactones; (meth) acrylic acid ester obtained by radical polymerization of monomers such as ethyl (meth) acrylate and butyl (meth) acrylate Polymer: (meth) acrylic acid ester monomer, vinyl acetate, acrylic Vinyl polymer obtained by radical polymerization of monomers such as nitrile and styrene; Graft polymer obtained by polymerizing vinyl monomer in organic polymer; Polysulfide polymer; Polyamide polymer; Polycarbonate polymer A diallyl phthalate polymer and the like. These skeletons may be contained alone in (A) the crosslinkable silicon group-containing organic
  • saturated hydrocarbon polymers such as polyisobutylene, hydrogenated polyisoprene, and hydrogenated polybutadiene, polyoxyalkylene polymers, and (meth) acrylic acid ester polymers can be obtained with a relatively low glass transition temperature.
  • the cured product is preferable because it is excellent in cold resistance.
  • Polyoxyalkylene polymers and (meth) acrylic acid ester polymers are particularly preferred because they have high moisture permeability and are excellent in deep part curability when made into a one-component composition.
  • the crosslinkable silicon group of the crosslinkable silicon group-containing organic polymer is a group having a hydroxyl group or a hydrolyzable group bonded to a silicon atom and capable of crosslinking by forming a siloxane bond.
  • a group represented by the general formula (1) is suitable.
  • R 1 is a hydrocarbon group having 1 to 20 carbon atoms, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or an aryl having 6 to 20 carbon atoms Group, an aralkyl group having 7 to 20 carbon atoms, a triorganosiloxy group represented by R 1 3 SiO— (R 1 is the same as above), or a —CH 2 OR 1 group (R 1 is the same as above) It is.
  • R 1 is a group in which at least one hydrogen atom on the 1st to 3rd carbon atoms is halogen, —OR 41 , —NR 42 R 43 , —N ⁇ R 44 , —SR 45 (R 41 , R 42 , R 43 and R 45 are each a hydrogen atom, or a hydrocarbon group having 1 to 20 carbon atoms or having no substituent, and R 44 is a divalent substitution having 1 to 20 carbon atoms.
  • R 1 is preferably a methyl group.
  • the plurality of R 1 may be the same or different.
  • X represents a hydroxyl group or a hydrolyzable group, and when two or more X exist, the plurality of X may be the same or different.
  • a is an integer of 0, 1, 2, or 3.
  • a is preferably 2 or more, more preferably 3.
  • Hydrolyzable groups and hydroxyl groups can be bonded to one silicon atom in the range of 1 to 3. When two or more hydrolyzable groups or hydroxyl groups are bonded to the crosslinkable silicon group, they may be the same or different.
  • the number of silicon atoms forming the crosslinkable silicon group may be one or two or more. In the case of silicon atoms linked by a siloxane bond or the like, there may be about 20 silicon atoms.
  • the hydrolyzable group represented by X is not particularly limited as long as it is other than F atom.
  • Examples thereof include an alkoxy group, an acyloxy group, an amino group, an amide group, an aminooxy group, and an alkenyloxy group.
  • an alkoxy group is preferable from a viewpoint that hydrolysis property is moderate and it is easy to handle.
  • the alkoxy groups those having a smaller number of carbon atoms have higher reactivity, and the reactivity increases as the number of carbon atoms increases in the order of methoxy group> ethoxy group> propoxy group.
  • a methoxy group or an ethoxy group is usually used.
  • crosslinkable silicon group examples include trialkoxysilyl groups [—Si (OR) 3 ] such as trimethoxysilyl group and triethoxysilyl group, dialkoxy such as methyldimethoxysilyl group and methyldiethoxysilyl group.
  • examples thereof include a silyl group [—SiR 1 (OR) 2 ], a trialkoxysilyl group [—Si (OR) 3 ] is preferable in terms of high reactivity, and a trimethoxysilyl group is more preferable.
  • R is an alkyl group such as a methyl group or an ethyl group.
  • the crosslinkable silicon group may be used alone or in combination of two or more.
  • the crosslinkable silicon group can be present in the main chain, the side chain, or both.
  • the crosslinkable silicon group shown by several general formula (1) may mutually be connected.
  • the number of silicon atoms forming the crosslinkable silicon group is one or more, but in the case of silicon atoms linked by a siloxane bond or the like, the number of silicon atoms is preferably 20 or less.
  • the photo-radically polymerizable vinyl group include a group containing a (meth) acryloyl group such as a (meth) acryloyloxy group.
  • Each of the organic polymer having a crosslinkable silicon group and the organic polymer having a crosslinkable silicon group and a photoradically polymerizable vinyl group may have a straight chain or a branch, and the number average molecular weight is In terms of polystyrene in GPC, it is about 500 to 100,000, more preferably 1,000 to 50,000, and particularly preferably 3,000 to 30,000. If the number average molecular weight is less than 500, the cured product tends to be inconvenient in terms of elongation characteristics, and if it exceeds 100,000, the viscosity tends to be inconvenient because of high viscosity.
  • a crosslinkable silicon group, a crosslinkable silicon group and a photo-radical polymerizable polymer contained in the organic polymer having a crosslinkable silicon group are used.
  • the crosslinkable silicon group and photoradically polymerizable vinyl group contained in the organic polymer having a vinyl group average 0.8 or more, preferably 1.0 or more, more in one polymer molecule. Preferably 1.1 to 5 are present. If the number of crosslinkable silicon groups and radically polymerizable vinyl groups contained in the molecule is less than 0.8 on average, the curability will be insufficient and good rubber elastic behavior will not be exhibited. Become.
  • the crosslinkable silicon group and the photoradically polymerizable vinyl group may be at the end of the main chain of the organic polymer molecular chain, at the end of the side chain, or at both.
  • the crosslinkable silicon group is only at the end of the main chain of the molecular chain, the effective network length of the organic polymer component contained in the finally formed cured product is increased, so that the high strength, high elongation, A rubber-like cured product having a low elastic modulus is easily obtained.
  • the polyoxyalkylene polymer is essentially a polymer having a repeating unit represented by the general formula (2).
  • -R 2 -O- (2) In the general formula (2), R 2 is a linear or branched alkylene group having 1 to 14 carbon atoms, preferably a linear or branched alkylene group having 1 to 14 carbon atoms, and having 2 to 4 carbon atoms.
  • the linear or branched alkylene group is more preferable.
  • repeating unit represented by the general formula (2) examples include -CH 2 O -, - CH 2 CH 2 O -, - CH 2 CH (CH 3) O -, - CH 2 CH (C 2 H 5) O -, - CH 2 C (CH 3) 2 O-, —CH 2 CH 2 CH 2 CH 2 O— and the like can be mentioned.
  • the main chain skeleton of the polyoxyalkylene polymer may be composed of only one type of repeating unit, or may be composed of two or more types of repeating units.
  • Examples of the method for synthesizing the polyoxyalkylene polymer include, but are not limited to, a polymerization method using an alkali catalyst such as KOH, a polymerization method using a double metal cyanide complex catalyst, and the like. According to the polymerization method using a double metal cyanide complex catalyst, a polyoxyalkylene polymer having a number average molecular weight of 6,000 or more and a high molecular weight of Mw / Mn of 1.6 or less and a narrow molecular weight distribution can be obtained.
  • the main chain skeleton of the polyoxyalkylene polymer may contain other components such as a urethane bond component.
  • a urethane bond component is obtained from a reaction between an aromatic polyisocyanate such as toluene (tolylene) diisocyanate and diphenylmethane diisocyanate; an aliphatic polyisocyanate such as isophorone diisocyanate and a polyoxyalkylene polymer having a hydroxyl group. Ingredients can be mentioned.
  • hydrosilylation or mercaptoization is carried out by reacting an unsaturated group-containing polyoxyalkylene polymer with a hydrosilane having a crosslinkable silicon group or a mercapto compound having a crosslinkable silicon group.
  • examples thereof include a method for obtaining a polyoxyalkylene polymer having a group.
  • An unsaturated group-containing polyoxyalkylene-based polymer is obtained by reacting an organic polymer having a functional group such as a hydroxyl group with an organic compound having an active group and an unsaturated group that are reactive with the functional group.
  • a polyoxyalkylene polymer containing can be obtained.
  • a polyoxyalkylene polymer having a hydroxyl group at the terminal is reacted with an isocyanate group and a compound having a crosslinkable silicon group and / or a radically polymerizable vinyl group.
  • a method of reacting a polyoxyalkylene polymer having an isocyanate group at a terminal with a compound having an active hydrogen group such as a hydroxyl group or an amino group, and a crosslinkable silicon group and / or a photoradically polymerizable vinyl group can be mentioned.
  • an isocyanate compound is used, a polyoxyalkylene polymer having a crosslinkable silicon group and / or a photoradically polymerizable vinyl group can be easily obtained.
  • the polyoxyalkylene polymer having a crosslinkable silicon group and / or a radical photopolymerizable vinyl group may be used alone or in combination of two or more.
  • the saturated hydrocarbon polymer is a polymer that does not substantially contain other carbon-carbon unsaturated bonds other than aromatic rings.
  • the polymer forming the skeleton is either (1) polymerizing an olefinic compound having 2 to 6 carbon atoms such as ethylene, propylene, 1-butene or isobutylene as a main monomer, or (2) a diene such as butadiene or isoprene. It can be obtained by homopolymerizing the system compound or by hydrogenating the diene compound and the olefin compound after copolymerization.
  • the isobutylene polymer and the hydrogenated polybutadiene polymer are preferable because it is easy to introduce a functional group at the terminal, easily control the molecular weight, and can increase the number of terminal functional groups, and the isobutylene polymer is particularly preferable. preferable.
  • the main chain skeleton is a saturated hydrocarbon polymer
  • the main chain skeleton has characteristics of excellent heat resistance, weather resistance, durability, and moisture barrier properties.
  • all of the monomer units may be formed from isobutylene units, or may be a copolymer with other monomers. From the viewpoint of rubber properties, a polymer containing 50% by mass or more of repeating units derived from isobutylene is preferred, a polymer containing 80% by mass or more is more preferred, and a polymer containing 90 to 99% by mass is particularly preferred.
  • a polymerization method As a method for synthesizing a saturated hydrocarbon polymer, various polymerization methods may be mentioned. In particular, various living polymerizations have been developed. In the case of saturated hydrocarbon polymers, particularly isobutylene polymers, the inifer polymerization found by Kennedy et al. (J. P. Kennedy et al., J. Polymer Sci., Polymer Chem. Page). According to this polymerization method, a polymer having a molecular weight of about 500 to 100,000 can be polymerized with a molecular weight distribution of 1.5 or less, and various functional groups can be introduced at the molecular ends.
  • saturated hydrocarbon polymers particularly isobutylene polymers
  • the inifer polymerization found by Kennedy et al. J. P. Kennedy et al., J. Polymer Sci., Polymer Chem. Page.
  • a polymer having a molecular weight of about 500 to 100,000 can be polymerized with a molecular weight distribution of 1.5 or less,
  • Examples of a method for producing a saturated hydrocarbon polymer having a crosslinkable silicon group and / or a photoradically polymerizable vinyl group include, for example, a combination of an organic halogen compound that generates a stable carbon cation and a Friedelcraft acid catalyst. And cationic polymerization method using as a copolymerization initiator.
  • An example is the inifer method disclosed in Japanese Patent Publication No. 4-69659.
  • the saturated hydrocarbon polymer having a crosslinkable silicon group and / or a radical photopolymerizable vinyl group may be used alone or in combination of two or more.
  • (meth) acrylic acid ester monomer constituting the main chain of the (meth) acrylic acid ester polymer.
  • (meth) acrylic acid monomers such as acrylic acid; methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, (meth) acrylic (Meth) acrylic acid alkyl ester monomers such as stearyl acid; alicyclic (meth) acrylic acid ester monomers; aromatic (meth) acrylic acid ester monomers; (meth) acrylic acid 2-methoxyethyl (meth) ) Acrylic acid ester monomers; silyl group-containing (meth) acrylic acid ester monomers such as ⁇ - (methacryloyloxypropyl) trimethoxysilane, ⁇ - (methacryloyloxypropyl) dimethoxymethylsilane; (meth) acrylic acid alkyl ester mono
  • the following vinyl monomers can be copolymerized with the (meth) acrylate monomer.
  • vinyl monomers include styrene, maleic anhydride, vinyl acetate and the like.
  • acrylic acid and glycidyl acrylate may be contained as monomer units (hereinafter also referred to as other monomer units).
  • a polymer composed of a (meth) acrylic acid monomer is preferred.
  • the (meth) acrylic acid ester type polymer which used the 1 type (s) or 2 or more types (meth) acrylic-acid alkylester monomer and used together with the other (meth) acrylic acid monomer as needed is more preferable.
  • the number of silicon groups in the (meth) acrylic acid ester polymer (A) can be controlled by using a silyl group-containing (meth) acrylic acid ester monomer in combination.
  • a methacrylic acid ester polymer comprising a methacrylic acid ester monomer is particularly preferred because of its good adhesion.
  • (meth) acrylic acid represents acrylic acid and / or methacrylic acid.
  • the method for producing the (meth) acrylate polymer is not particularly limited, and for example, a radical polymerization method using a radical polymerization reaction can be used.
  • a radical polymerization method a radical polymerization method (free radical polymerization method) in which a predetermined monomer unit is copolymerized using a polymerization initiator, a reactive silyl group and / or a photo radical at a controlled position such as a terminal, etc.
  • examples thereof include a controlled radical polymerization method capable of introducing a polymerizable vinyl group.
  • a polymer obtained by a free radical polymerization method using an azo compound, a peroxide or the like as a polymerization initiator generally has a large molecular weight distribution value of 2 or more and a high viscosity. Therefore, in order to obtain a (meth) acrylate polymer having a narrow molecular weight distribution and low viscosity and having a crosslinkable functional group at the molecular chain terminal at a high rate It is preferable to use a controlled radical polymerization method.
  • Examples of the controlled radical polymerization method include free radical polymerization method and living radical polymerization method using a chain transfer agent having a specific functional group, such as an addition-cleavage transfer reaction (RAFT) polymerization method, Living radical polymerization methods such as a radical polymerization method using a transition metal complex (Transition-Metal-Mediated Living Radical Polymerization) are more preferable. Further, a reaction using a thiol compound having a reactive silyl group and a reaction using a thiol compound having a reactive silyl group and a metallocene compound are also suitable.
  • RAFT addition-cleavage transfer reaction
  • Living radical polymerization methods such as a radical polymerization method using a transition metal complex (Transition-Metal-Mediated Living Radical Polymerization) are more preferable.
  • the (meth) acrylic acid ester polymer having a crosslinkable silicon group and / or a radically polymerizable vinyl group may be used alone or in combination of two or more.
  • organic polymers having a crosslinkable silicon group and / or a radical photopolymerizable vinyl group may be used alone or in combination of two or more.
  • a polyoxyalkylene polymer having a crosslinkable silicon group and / or a photoradically polymerizable vinyl group, and a saturated hydrocarbon polymer having a crosslinkable silicon group and / or a photoradically polymerizable vinyl group and an organic polymer obtained by blending two or more selected from the group consisting of a (meth) acrylic acid ester-based polymer having a crosslinkable silicon group and / or a radically polymerizable vinyl group can also be used.
  • an organic polymer obtained by blending a polyoxyalkylene polymer having a crosslinkable silicon group and a (meth) acrylic acid ester polymer having a crosslinkable silicon group For example, it has a crosslinkable silicon group and the molecular chain is substantially the general formula (3): —CH 2 —C (R 3 ) (COOR 4 ) — (3) (Wherein R 3 represents a hydrogen atom or a methyl group, and R 4 represents an alkyl group having 1 to 5 carbon atoms) and a general formula (4): —CH 2 —C (R 3 ) (COOR 5 ) — (4) (Wherein R 3 is the same as described above, and R 5 represents an alkyl group having 6 or more carbon atoms) A copolymer composed of a (meth) acrylic acid ester monomer unit is represented by a crosslinkable silicon group And a method of blending and producing a polyoxyalkylene-based polymer having.
  • R 4 in the general formula (3) for example, a methyl group, an ethyl group, a propyl group, an n-butyl group, a t-butyl group and the like have 1 to 5 carbon atoms, preferably 1 to 4 carbon atoms, An alkyl group having 1 to 2 carbon atoms is preferable.
  • the alkyl group of R 4 may alone, or may be a mixture of two or more.
  • R 5 in the general formula (4) is, for example, a long group having 6 or more carbon atoms such as 2-ethylhexyl group, lauryl group or stearyl group, usually 7 to 30 carbon atoms, preferably 8 to 20 carbon atoms. Chain alkyl groups.
  • the alkyl group of R 5 is as in the case of R 4, may be alone or in admixture.
  • the molecular chain of the (meth) acrylic acid ester copolymer is substantially composed of monomer units of the formulas (3) and (4).
  • “substantially” means that the total of the monomer units of the formula (3) and the formula (4) present in the copolymer exceeds 50% by mass.
  • the total of the monomer units of the formula (3) and the formula (4) is preferably 70% by mass or more.
  • the abundance ratio of the monomer unit of the formula (3) and the monomer unit of the formula (4) is preferably 95: 5 to 40:60, and more preferably 90:10 to 60:40 by mass ratio.
  • (Meth) having a crosslinkable silicon group used in a method for producing an organic polymer obtained by blending a polyoxyalkylene polymer having a crosslinkable silicon group with a (meth) acrylic acid ester polymer having a crosslinkable silicon group
  • the acrylate polymer include, for example, a (meth) acrylic acid alkyl ester monomer unit having a crosslinkable silicon group and a molecular chain substantially having (1) an alkyl group having 1 to 8 carbon atoms.
  • (meth) acrylic acid ester-based copolymers such as (meth) acrylic acid ester-based copolymers containing (meth) acrylic acid alkyl ester monomer units having an alkyl group having 10 or more carbon atoms Coalescence can also be used.
  • the number average molecular weight of the (meth) acrylic acid ester polymer is preferably 600 to 10,000, more preferably 600 to 5,000, and still more preferably 1,000 to 4,500. By setting the number average molecular weight within this range, compatibility with the polyoxyalkylene polymer having a crosslinkable silicon group is improved.
  • the (meth) acrylic acid ester polymer may be used alone or in combination of two or more.
  • the compounding ratio of the polyoxyalkylene polymer having a crosslinkable silicon group and the (meth) acrylic acid ester polymer having a crosslinkable silicon group is not particularly limited, but the (meth) acrylic acid ester polymer and The (meth) acrylic acid ester polymer is preferably in the range of 10 to 60 parts by mass, more preferably in the range of 20 to 50 parts by mass with respect to 100 parts by mass in total with the polyoxyalkylene polymer. More preferably, it is in the range of 25 to 45 parts by mass.
  • the amount of the (meth) acrylic acid ester polymer is more than 60 parts by mass, the viscosity becomes high and workability deteriorates, which is not preferable.
  • a method for producing an organic polymer obtained by blending a (meth) acrylic acid ester-based copolymer having a crosslinkable silicon group, in addition, in the presence of an organic polymer having a crosslinkable silicon group A method of polymerizing a (meth) acrylic acid ester monomer can be used.
  • the photobase generator (B) When irradiated with light, the photobase generator (B) acts as a curing catalyst for the (A) crosslinkable silicon group-containing organic polymer.
  • the photobase generator (B) generates bases and / or radicals by the action of active energy rays such as ultraviolet rays, electron beams, X-rays, infrared rays, and visible rays.
  • active energy rays such as ultraviolet rays, electron beams, X-rays, infrared rays, and visible rays.
  • a known photobase generator (B) such as a compound to be released or (3) a compound that causes a predetermined chemical reaction to emit a base upon irradiation with energy rays such as ultraviolet rays, visible light, and infrared rays can be used.
  • the base generated from the photobase generator (B) has a function of curing the component (A).
  • an organic base such as an amine compound is preferable.
  • examples thereof include primary alkylamines, primary aromatic amines described in WO2015-088021, Secondary alkyl amines, amines having secondary amino groups and tertiary amino groups, tertiary alkyl amines, tertiary heterocyclic amines, tertiary aromatic amines, amidines, phosphazene derivatives Can be mentioned. Of these, amine compounds having a tertiary amino group are preferred, and amidines and phosphazene derivatives which are strong bases are more preferred.
  • amidines both acyclic amidines and cyclic amidines can be used, and cyclic amidines are more preferable. These bases may be used alone or in combination of two or more.
  • non-cyclic amidines examples include guanidine compounds and biguanide compounds described in WO2015-088021.
  • a photobase generator for generating an aryl-substituted guanidine compound or an aryl-substituted biguanide compound described in WO2015-088021 is used as a catalyst for the polymer (A). It is preferable because it shows a tendency to improve the curability of the surface, and a tendency to improve the adhesion of the resulting cured product.
  • cyclic amidines include cyclic guanidine compounds, imidazoline compounds, imidazole compounds, tetrahydropyrimidine compounds, triazabicycloalkene compounds, and diazabicycloalkene compounds described in WO2015-088021. It is done.
  • 1,8-diazabicyclo [5.4.0] undecene is known because it is easily available industrially, and has a pKa value of 12 or more for the conjugate acid and exhibits high catalytic activity.
  • -7 (DBU) and 1,5-diazabicyclo [4.3.0] nonene-5 (DBN) are particularly preferred.
  • photobase generator (B) various photobase generators can be used. Photolatent amine compounds that generate amine compounds by the action of active energy rays are preferred.
  • the photolatent amine compound includes a photolatent primary amine that generates an amine compound having a primary amino group by the action of active energy rays, and an amine compound having a secondary amino group by the action of active energy rays. Any of the photolatent secondary amine that is generated and the photolatent tertiary amine that generates an amine compound having a tertiary amino group by the action of active energy rays can be used. In view of the high catalytic activity of the generated base, a photolatent tertiary amine is more preferable.
  • photolatent primary amines and photolatent secondary amines include orthonitrobenzylurethane compounds described in WO2015 / 088021, dimethoxybenzylurethane compounds, benzoins carbamates, o-acyloximes O-carbamoyl oximes; N-hydroxyimide carbamates; formanilide derivatives; aromatic sulfonamides; cobalt amine complexes and the like.
  • photolatent tertiary amines examples include ⁇ -aminoketone derivatives, ⁇ -ammonium ketone derivatives, benzylamine derivatives, benzylammonium salt derivatives, ⁇ -aminoalkene derivatives, ⁇ -ammonium alkene derivatives described in WO2015-088021.
  • Examples of the ⁇ -aminoketone compound include 5-naphthoylmethyl-1,5-diazabicyclo [4.3.0] nonane, 5- (4′-nitro) phenacyl-1,5-diazabicyclo [4.3.0].
  • ⁇ -aminoketone compounds that generate amidines such as nonane, 4- (methylthiobenzoyl) -1-methyl-1-morpholinoethane (Irgacure 907), 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) ) -Butanone (Irgacure 369), 2- (4-methylbenzyl) -2-dimethylamino-1- (4-morpholinophenyl) -butanone (Irgacure 379), etc., a tertiary amine composed of one nitrogen atom And ⁇ -aminoketone compounds that generate tertiary amines having a group.
  • amidines such as nonane, 4- (methylthiobenzoyl) -1-methyl-1-morpholinoethane (Irgacure 907), 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) ) -Butanone (Irga
  • Examples of ⁇ -ammonium ketone derivatives include 1-naphthoylmethyl- (1-azonia-4-azabicyclo [2,2,2] -octane) tetraphenylborate, 5- (4′-nitro) phenacyl- (5 -Azonia-1-azabicyclo [4.3.0] -5-nonene) tetraphenylborate and the like.
  • benzylamine derivatives examples include 5-benzyl-1,5-diazabicyclo [4.3.0] nonane, 5- (anthracen-9-yl-methyl) -1,5-diazabicyclo [4.3.0].
  • Nonane, benzylamine derivatives such as 5- (naphth-2-yl-methyl) -1,5-diazabicyclo [4.3.0] nonane, and the like.
  • benzylammonium salt derivative examples include (9-anthryl) methyl 1-azabicyclo [2.2.2] octanium tetraphenylborate, 5- (9-anthrylmethyl) -1,5-diazabicyclo [4.3. .0] -5-nonenium tetraphenylborate and the like.
  • Examples of the ⁇ -aminoalkene derivative include 5- (2 ′-(2 ′′ -naphthyl) allyl) -1,5-diazabicyclo [4.3.0] nonane.
  • Examples of the ⁇ -ammonium alkene derivative include 1- (2′-phenylallyl)-(1-azonia-4-azabicyclo [2,2,2] -octane) tetraphenylborate.
  • Examples of the salt of carboxylic acid and tertiary amine include ammonium ⁇ -ketocarboxylic acid and ammonium carboxylate described in WO2015-088021.
  • a photolatent tertiary amine is preferable from the viewpoint that the generated base exhibits a high catalytic activity, and the base generation efficiency is high and the storage stability as a composition is good.
  • Benzylammonium salt derivatives, benzyl-substituted amine derivatives, ⁇ -aminoketone derivatives, ⁇ -ammonium ketone derivatives are preferred.
  • ⁇ -aminoketone derivatives and ⁇ -ammonium ketone derivatives are more preferable due to better base generation efficiency, and ⁇ -aminoketone derivatives are more preferable than the solubility in the blend.
  • ⁇ -aminoketone derivatives ⁇ -aminoketone compounds that generate amidines based on the basic strength of the generated base are preferred, and tertiary amines having a tertiary amine group composed of one nitrogen atom are more readily available. And ⁇ -aminoketone compounds that generate aldehydes.
  • photobase generators (B) may be used alone or in combination of two or more.
  • the blending ratio of the photobase generator (B) is not particularly limited, but is preferably 0.01 to 50 parts by weight, and preferably 0.1 to 40 parts by weight with respect to 100 parts by weight of the (A) crosslinkable silicon group-containing organic polymer. Part by mass is more preferable, and 0.5 to 30 parts by mass is even more preferable.
  • the silicon compound having a Si—F bond acts as a curing catalyst for the (A) crosslinkable silicon group-containing organic polymer.
  • various compounds containing a silicon group having a Si—F bond (hereinafter sometimes referred to as a fluorosilyl group) can be used, and there is no particular limitation. Either a low molecular compound or a high molecular compound can be used. An organosilicon compound having a fluorosilyl group is preferable, and an organic polymer having a fluorosilyl group is more preferable because of high safety. Moreover, the low molecular organosilicon compound which has a fluoro silyl group from the point from which a compound becomes low viscosity is preferable.
  • (C1) silicon compounds having a Si—F bond include fluorosilanes described in WO2015-088021 represented by formula (5), and WO2015-088021 represented by formula (6).
  • Preferred examples include compounds having a fluorosilyl group described below (hereinafter also referred to as fluorinated compounds) and organic polymers having a fluorosilyl group described below in WO2015-088021 (hereinafter also referred to as fluorinated polymers). As mentioned.
  • each R 6 is independently a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms, or R 7 SiO— (R 7 is each independently having 1 to 20 carbon atoms) Or a substituted or unsubstituted hydrocarbon group, or a fluorine atom), d is any one of 1 to 3, and d is preferably 3.
  • R 6 And a plurality of R 7 may be the same or different.
  • R 6 and d are the same as those in Formula (5), Z is each independently a hydroxyl group or other hydrolyzable group excluding fluorine, and e is any one of 0 to 2) F is any one of 0 to 2, and d + e + f is 3.
  • R 6 , R 7 and Z are present, they may be the same or different.
  • fluorosilanes represented by the formula (5) include fluorosilanes represented by the formula (5).
  • fluorosilanes represented by the formula (5) examples include fluorodimethylphenylsilane, vinyl trifluorosilane, ⁇ -methacryloxypropyl trifluorosilane, octadecyl trifluorosilane, and the like.
  • the hydrolyzable group represented by Z is preferably an alkoxy group from the viewpoint of mild hydrolyzability and easy handling, and R 6 is a methyl group. preferable.
  • the compound having a fluorosilyl group represented by the formula (6) is not particularly limited, and either a monomolecular compound or a polymer compound can be used.
  • inorganic silicon compounds low molecular organic silicon compounds such as vinyl difluoromethoxysilane, vinyl trifluorosilane, phenyldifluoromethoxysilane, and phenyltrifluorosilane; fluorinated poly having a fluorosilyl group represented by formula (6) at the terminal
  • examples thereof include polymer compounds such as siloxane, and preferred are fluorosilanes represented by the formula (5) and polymers having a fluorosilyl group represented by the formula (6) at the terminal of the main chain or side chain.
  • organic polymer having a fluorosilyl group (hereinafter also referred to as a fluorinated polymer)
  • various organic polymers having a Si—F bond can be used.
  • the fluorinated polymer is a single polymer in which the main chain skeleton is the same as a fluorosilyl group, that is, the number of fluorosilyl groups per molecule, the bonding position thereof, and the number of Fs that the fluorosilyl group has, and
  • the polymer may be a single polymer having the same main chain skeleton, or may be a mixture of a plurality of polymers, any or all of which are different. Any of these fluorinated polymers can be suitably used as a resin component of a curable composition exhibiting rapid curability.
  • the fluorinated polymer may be linear or branched.
  • the number average molecular weight of the fluorinated polymer is preferably 3,000 to 100,000, more preferably 3,000 to 50,000, and particularly preferably 3,000 to 30,000 in terms of polystyrene in GPC. If the number average molecular weight is less than 3,000, the cured product tends to be disadvantageous in terms of elongation characteristics, and if it exceeds 100,000, the viscosity tends to be inconvenient because of high viscosity.
  • the mixing ratio of the silicon compound (C1) having a Si—F bond is not particularly limited, but when a polymer compound having a number average molecular weight of 3,000 or more such as a fluorinated polymer is used as the component (C1), (A)
  • the amount is preferably 0.01 to 80 parts by weight, more preferably 0.01 to 30 parts by weight, and still more preferably 0.05 to 20 parts by weight with respect to 100 parts by weight of the crosslinkable silicon group-containing organic polymer.
  • a low molecular compound having a fluorosilyl group having a number average molecular weight of less than 3,000 as the component (C1) for example, a low molecular organic compound having a fluorosilane group represented by the formula (5) or a fluorosilyl group represented by the formula (6)
  • the amount is preferably 0.01 to 10 parts by weight, preferably 0.05 to 100 parts by weight with respect to 100 parts by weight of the (A) crosslinkable silicon group-containing organic polymer. 5 parts by mass is more preferable.
  • the blending ratio of the photobase generator (B) used as the curing catalyst and the silicon compound (C1) having a Si—F bond is such that (B) :( C1) is in a mass ratio of 1: 0.008 to 1: 300. Is preferable, and 1: 0.016 to 1:40 is more preferable.
  • the fluorine compound is selected from the group consisting of boron trifluoride, boron trifluoride complex, fluorinating agent, and alkali metal salt of polyvalent fluoro compound described in WO2015-088021, for example.
  • One or more fluorine-based compounds may be mentioned.
  • the fluorine-based compound functions as a compound that promotes the hydrolysis-condensation reaction of the crosslinkable silicon group and acts as a curing catalyst for the crosslinkable silicon group-containing organic polymer.
  • boron trifluoride complexes examples include boron trifluoride amine complexes, alcohol complexes, ether complexes, thiol complexes, sulfide complexes, carboxylic acid complexes, and water complexes.
  • amine complexes having both stability and catalytic activity are particularly preferred.
  • examples of the amine compound used for the boron trifluoride amine complex include monoethylamine.
  • the blending ratio of the (C2) fluorine-based compound is not particularly limited, but is preferably 0.001 to 10 parts by mass, and 0.001 to 5 parts by mass with respect to 100 parts by mass of the (A) crosslinkable silicon group-containing organic polymer. Part is more preferable, and 0.001 to 2 parts by mass is still more preferable.
  • These fluorine compounds may be used alone or in combination of two or more.
  • the photocurable composition may contain one or more selected from the group consisting of (C1) a silicon compound having a Si—F bond and (C2) a fluorine-based compound.
  • C1 a silicon compound having a Si—F bond
  • C2 a fluorine-based compound.
  • the photocurable composition according to the present embodiment in order to improve the effect as a composition to be post-cured (that is, made into an adhesive), it contains a crosslinkable silicon group-containing organic polymer and has an Si—F bond. It is preferable that the silicon compound which has this is included.
  • (D) polyfunctional compound As a polyfunctional compound having more than one (meth) acryloyl group in one molecule, a compound having more than one (meth) acryloyloxy group in one molecule or more than one in one molecule Examples include compounds having a (meth) acrylamide group. From the viewpoint of storage stability, a compound having more than one (meth) acryloyloxy group in one molecule is preferable. From the viewpoint of reactivity, a compound having more than one (meth) acrylamide group in one molecule is preferable.
  • the (D) polyfunctional compound has more than one (meth) acryloyl group in one molecule, preferably 1.5 or more (meth) acryloyl groups in one molecule.
  • the compound having more than one (meth) acryloyloxy group in one molecule either a monomer (hereinafter also referred to as a monomer) or a polymer can be used. From the viewpoint of viscosity, a monomer having a (meth) acryloyloxy group is preferred. From the viewpoint of curability, a polymer having a (meth) acryloyloxy group is preferred. In the present embodiment, the oligomer and the polymer are collectively referred to as a polymer.
  • a monomer having more than one (meth) acryloyloxy group in one molecule a monomer having two or more (meth) acryloyloxy groups in one molecule is preferable.
  • polyfunctional (meth) acrylates, etc. Is mentioned.
  • polyfunctional acrylates examples include 1,6-hexadiol di (meth) acrylate, neopentyl glycol di (meth) acrylate, dicyclopentanyl di (meth) acrylate, polypropylene glycol di (meth) acrylate, 2, 2-functional (meth) acrylate monomers such as 2-bis (4- (meth) acryloxydiethoxyphenyl) propane or 2,2-bis (4- (meth) acryloxytetraethoxyphenyl) propane, trimethylolpropane tri Trifunctional (meth) acrylate monomers such as (meth) acrylate and tris [(meth) acryloyloxyethyl] isocyanurate, dimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, or pentaerythritol Tokishitetora (meth) acrylate such as 4
  • a bifunctional (meth) acrylate monomer is preferable from the viewpoint of maintaining the flexibility of the photocurable adhesive, and a trifunctional (meth) acrylate monomer and a tetrafunctional or higher (meth) acrylate monomer from the viewpoint of good reactivity. Is preferred.
  • the polymer having more than one (meth) acryloyloxy group in one molecule is not particularly limited as long as it is a polymer having an average of more than one (meth) acryloyloxy group in one molecule.
  • a polymer having an average of 1.5 or more (meth) acryloyloxy groups in one molecule is preferable.
  • polyether urethane (meth) acrylate for example, “UV-3700B”, “UV-6100B” manufactured by Nippon Gosei Co., Ltd.
  • polyester Urethane (meth) acrylate for example, “UV-2000B”, “UV-3000B”, “UV-7000B” manufactured by Nihon Gosei Co., Ltd., “KHP-11”, “KHP-17” manufactured by Negami Kogyo Co., Ltd.
  • non-aromatic Group polycarbonate urethane (meth) acrylate for example, “Art Resin UN-9200A” manufactured by Negami Kogyo Co., Ltd.
  • acrylic (meth) acrylate for example, “RC-300”, “RC-100C”, “RC manufactured by Kaneka Corporation) -200C "), 1,2-polybutadiene-terminated urethane (meth) acrylate (for example,” T "
  • 1,2-polybutadiene-terminated urethane (meth) acrylate hydrogenated product for example,“ TEAI-1000 ”manufactured by Nippon Soda Co., Ltd.
  • 1,4-polybutadiene-terminated urethane (meth) examples thereof include acrylates (for example, “BAC-45” manufactured by Osaka Organic Chemical Co., Ltd.), polyisoprene-terminated (meth) acrylates, bisphenol A type epoxy (meth) acrylates, and the like.
  • polyether urethane (meth) acrylate From the viewpoint of compatibility with the component (A), polyether urethane (meth) acrylate, acrylic (meth) acrylate, polyester urethane (meth) acrylate, and non-aromatic polycarbonate urethane (meth) acrylate are preferred. ) Good compatibility with the component, and from the viewpoint of ensuring flexibility of the cured product, polyether urethane (meth) acrylate and acrylic (meth) acrylate are more preferable, and polyether urethane (meth) acrylate is more preferable. .
  • the compound having more than one (meth) acrylamide group in one molecule is preferably a compound having two or more (meth) acrylamide groups in one molecule.
  • methylene bisacrylamide, ethylene bisacrylamide, methylene bis Examples include methacrylamide, oxydimethylene bisacrylamide, ethylene dioxybis (N-methylene acrylamide) and the like.
  • the blending ratio of the polyfunctional compound (D) is not particularly limited, but is preferably 0.01 to 100 parts by weight, preferably 0.1 to 100 parts by weight with respect to 100 parts by weight of the (A) crosslinkable silicon group-containing organic polymer. Is more preferable, and 0.2 to 100 parts by mass is still more preferable.
  • These (D) polyfunctional compounds can be used alone or in combination of two or more.
  • the photocurable composition according to this embodiment comprises (E) a crosslinkable silicon group that generates one or more amino groups selected from the group consisting of primary amino groups and secondary amino groups by light. A compound may further be included. (E) The crosslinkable silicon group-containing compound that generates one or more amino groups selected from the group consisting of a primary amino group and a secondary amino group by light improves adhesion performance.
  • the primary amino group and the primary amino group can be obtained by light irradiation. Any compound that generates an aminosilane compound having at least one amino group selected from the group consisting of secondary amino groups and a crosslinkable silicon group can be used.
  • the crosslinkable silicon group-containing compound that generates one or more amino groups selected from the group consisting of a primary amino group and a secondary amino group by light is also referred to as a photoaminosilane generating compound.
  • the aminosilane compound generated by light irradiation a compound having a crosslinkable silicon group and a substituted or unsubstituted amino group is used.
  • substituent of the substituted amino group include an alkyl group, an aralkyl group, and an aryl group.
  • an alkyl group is preferable from the viewpoint of improving adhesiveness.
  • the crosslinkable silicon group is preferably a silicon-containing group to which a hydrolyzable group is bonded.
  • alkoxy groups such as a methoxy group and an ethoxy group are preferable because they are mildly hydrolyzable and easy to handle.
  • a hydrolyzable group or hydroxyl group can be bonded to one silicon atom in the range of 1 to 3, preferably 2 or more, particularly preferably 3.
  • the aminosilane compound generated by light irradiation is not particularly limited, and an aminosilane compound having a primary amino group (—NH 2 ) is preferable from the viewpoint of adhesion, and ⁇ -aminopropyltrimethoxysilane from the viewpoint of availability, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropylmethyldimethoxysilane, and ⁇ - (2-aminoethyl) aminopropyltrimethoxysilane are preferable, and ⁇ -aminopropyltrimethoxysilane and ⁇ -aminopropyl are preferable in terms of adhesiveness and curability. Triethoxysilane is more preferred.
  • Examples of the photoaminosilane generating compound include silicon compounds having a photofunctional group, aromatic sulfonamide derivatives, O-acyloxime derivatives, and trans- described in WO2015-088021 represented by formulas (7) to (8). Examples thereof include O-coumaric acid derivatives.
  • n is an integer of 1 to 3
  • Y represents a hydroxyl group or a hydrolyzable group, and an alkoxy group is preferable.
  • R 8 represents a hydrocarbon group having 1 to 20 carbon atoms or a hydrocarbon group having a substituent, vinyl group, allyl group, unsubstituted or substituted alkyl group having 1 to 10 carbon atoms, unsubstituted or substituted aryl group Is preferred.
  • R 8 represents a hydrocarbon group having 1 to 20 carbon atoms or a hydrocarbon group having a substituent, vinyl group, allyl group, unsubstituted or substituted alkyl group having 1 to 10 carbon atoms, unsubstituted or substituted aryl group Is preferred.
  • R 8 represents a hydrocarbon group having 1 to 20 carbon atoms or a hydrocarbon group having a substituent, vinyl group, allyl group, unsubstituted or substituted alkyl group having 1 to 10 carbon atoms, un
  • R 9 is a hydrogen atom or an organic group, preferably a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms or a hydrocarbon group having a substituent, and more preferably a hydrogen atom.
  • h is an integer of 1 to 5
  • j is an integer of 1 to 6.
  • R 10 is a substituted or unsubstituted hydrocarbon group bonded to a silicon atom and a nitrogen atom at h + j different carbon atoms, and a plurality of substituted or unsubstituted groups bonded to each other via one or more ether oxygen atoms. It is an h + j-valent group selected from the group consisting of hydrocarbon groups and has a molecular weight of 1,000 or less.
  • R 9 and R 10 may be bonded to each other to form a cyclic structure, and may include a hetero atom bond.
  • Z is an oxygen atom or a sulfur atom, preferably an oxygen atom.
  • Q represents a photofunctional group.
  • R 12 is a divalent group selected from the group consisting of a substituted or unsubstituted hydrocarbon group and a plurality of substituted or unsubstituted hydrocarbon groups bonded to each other via one or more ether oxygen atoms.
  • . t is an integer of 1 or more, and 1 or 2 is preferable. When t is 2 or more, t groups bonded to R 11 may be the same or different.
  • R 11 is a hydrogen atom or an organic group, preferably a hydrogen atom or a substituted or unsubstituted t-valent hydrocarbon group, more preferably a hydrogen atom or a substituted or unsubstituted t-valent alkyl group.
  • R 11 and R 12 may be bonded to each other to form a cyclic structure, and may include a hetero atom bond.
  • the photofunctional group Q is a known photosensitive group and is not particularly limited. Examples thereof include a group having a cyclic structure described in WO2015-088021, an oxime residue, and these substituted groups. A group having a cyclic structure is preferred.
  • Examples of the group having a cyclic structure include an aromatic group described in WO2015-088021, a group having a heterocyclic structure, and a substituted group, and an aromatic group is preferable. Further, groups in the photofunctional group may be bonded to each other to form a cyclic structure.
  • aromatic group examples include nitro such as o-nitrobenzyl group described in WO2015-088021, m-nitrobenzyl group described in WO2015-088021, and p-nitrobenzyl group described in WO2015-088021.
  • aromatic group examples include nitro such as o-nitrobenzyl group described in WO2015-088021, m-nitrobenzyl group described in WO2015-088021, and p-nitrobenzyl group described in WO2015-088021.
  • examples thereof include benzyl group, benzyl group described in WO2015-088021, and benzoyl group and substituted groups thereof, nitrobenzyl group is preferable, o-nitrobenzyl group and p-nitrobenzyl group are more preferable, o A nitrobenzyl group is particularly preferred.
  • groups in the photofunctional group may be bonded to each other to form a cyclic structure.
  • Examples of the group having a heterocyclic structure include a coumarin derivative residue described in WO2015-088021 and an imide group or a substituted group thereof.
  • Examples of the —OQ group in which the photofunctional group Q is an o-nitrobenzyl group include (2,6-dinitrobenzyl) oxy group, (2-nitrobenzyl) oxy group, (3,4-dimethoxy-2-nitro group) And nitrobenzyloxy groups such as (benzyl) oxy group.
  • Examples of the —OQ group in which the photofunctional group Q is a p-nitrobenzyl group include (2,4-dinitrobenzyl) oxy group, (4-nitrobenzyl) oxy group, and [1- (4-nitronaphthalene) methyl. Nitrobenzyloxy group such as oxy group.
  • the photofunctional group Q is a benzyl group
  • 3,5-dimethoxybenzyloxy group for example, 3,5-dimethoxybenzyloxy group, [1- (3,5-dimethoxyphenyl) -1-methylethyl] oxy group, 9-anthryl Benzyloxy groups such as methyloxy group, 9-phananthrylmethyloxy group, 1-pyrenylmethyloxy group, [1- (anthraquinone-2-yl) ethyl] oxy group, 9-phenylxanthen-9-yloxy group Can be mentioned.
  • examples of the residues excluding the ZQ group include 3- (trimethoxysilyl) propylaminocarbonyl group, 3- (triethoxysilyl) propylaminocarbonyl group, 3- (methyl Monoaminocarbonyl groups such as dimethoxysilyl) propylaminocarbonyl group, 3- (methyldiethoxysilyl) propylaminocarbonyl group; N- [3- (trimethoxysilyl) propyl] ethylenediaminocarbonyl group, N, N′-bis And diaminocarbonyl groups such as [3- (trimethoxysilyl) propyl] ethylenediaminocarbonyl group; and aminocarbonyl groups such as triaminocarbonyl group such as N- [3- (trimethoxysilyl) propyl] diethylenetriaminocarbonyl group.
  • aminocarbonyl groups an aminocarbonyl group having an amino group (—NH 2 ) is preferable from the viewpoint of adhesion, and 3- (trimethoxysilyl) propylaminocarbonyl group, 3- (triethoxysilyl) propylaminocarbonyl group , 3- (methyldimethoxysilyl) propylaminocarbonyl group and N- [3- (trimethoxysilyl) propyl] ethylenediaminocarbonyl group are more preferable, and 3- (trimethoxysilyl) propylaminocarbonyl group is preferred in view of adhesiveness and curability. 3- (triethoxysilyl) propylaminocarbonyl group is most preferred.
  • the blending ratio of the photoaminosilane generating compound is not particularly limited, but is preferably 0.01 to 50 parts by mass, and 0.1 to 30 parts by mass with respect to 100 parts by mass of the (A) crosslinkable silicon group-containing organic polymer. More preferred is 0.1 to 20 parts by mass.
  • These photoaminosilane generating compounds may be used alone or in combination of two or more.
  • the photocurable composition according to this embodiment preferably further comprises (F) a monofunctional compound having a photopolymerizable unsaturated group.
  • the viscosity of the photocurable compound can be lowered by the monofunctional compound (F).
  • various monofunctional compounds having a photopolymerizable unsaturated group can be used, and there is no particular limitation. For example, a (meth) acryloyl group And one N-vinyl compound in which a vinyl group is directly bonded to a nitrogen atom.
  • Examples of the compound having one (meth) acryloyl group in one molecule include a compound having one (meth) acryloyloxy group in one molecule and a compound having one (meth) acrylamide group in one molecule. From the viewpoint of storage stability, a compound having one (meth) acryloyloxy group in one molecule is preferable. Moreover, the compound which has one (meth) acrylamide group in 1 molecule from a reactive viewpoint is preferable.
  • any of a monomer, an oligomer and a polymer can be used. From the viewpoint of viscosity, a monomer having a (meth) acryloyloxy group is preferred. From the viewpoint of curability, an oligomer having a (meth) acryloyloxy group is preferable.
  • the monomer having one (meth) acryloyloxy group in one molecule is not particularly limited as long as it is a compound having one (meth) acryloyloxy group.
  • monofunctional (meth) acrylates, etc. Is mentioned.
  • (meth) acrylate As monofunctional (meth) acrylate, as hydroxyl-containing (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, hexaethylene glycol mono (meth) acrylate, octapropylene glycol mono And (meth) acrylate 2-hydroxy-3-octyloxypropyl acrylate.
  • the (meth) acrylate having an alkoxy group include methoxytriethylene glycol (meth) acrylate, ethoxydiethylene glycol (meth) acrylate, and dicyclopentenyloxyethyl (meth) acrylate.
  • Examples of the aromatic (meth) acrylate include phenoxyethyl (meth) acrylate, nonylphenoxyethyl (meth) acrylate, and benzyl (meth) acrylate.
  • Examples of the long-chain hydrocarbon (meth) acrylate having 8 to 20 carbon atoms include 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, lauryl (meth) acrylate, and isostearyl (meth) acrylate. From the viewpoint of availability, long-chain hydrocarbon (meth) acrylates having 8 to 18 carbon atoms are preferred.
  • Examples of the alicyclic (meth) acrylate include cyclohexyl (meth) acrylate, dicyclopentenyl (meth) acrylate, and isobornyl (meth) acrylate.
  • Examples of the (meth) acrylate having a heterocyclic group include tetrahydrofurfuryl (meth) acrylate. Further, N- (meth) acryloyloxyethyl hexahydrophthalimide and the like can be mentioned.
  • Examples of the (meth) acrylate having a crosslinkable silicon group include 3- (trimethoxysilyl) propyl (meth) acrylate. When flexibility is required, monofunctional (meth) acrylates are preferably used.
  • a polymer having one (meth) acryloyloxy group in one molecule a polymer having one (meth) acryloyloxy group can be used.
  • an acrylic polymer having an acrylic polymer having one (meth) acryloyloxy group as a skeleton, a urethane (meth) acrylate polymer, a polyester (meth) acrylate polymer, a polyether (meth) acrylate polymer examples thereof include an epoxy polymer and an epoxy (meth) acrylate polymer.
  • Examples of the compound having one (meth) acrylamide group in one molecule include N-methyl (meth) acrylamide and (meth) acryloylmorpholine.
  • N-vinyl compound examples include N-vinyl pyrrolidone and N-vinyl caprolactam.
  • the N-vinyl compound is preferred from the viewpoint of reactivity and resistance to oxygen inhibition.
  • the blending ratio of the monofunctional compound (F) is not particularly limited, but is preferably 0.01 to 100 parts by weight, preferably 0.1 to 100 parts by weight with respect to 100 parts by weight of the (A) crosslinkable silicon group-containing organic polymer. Part is more preferable, and 1 to 100 parts by weight is still more preferable.
  • These (F) monofunctional compounds may be used alone or in combination of two or more.
  • the photocurable composition according to this embodiment preferably further comprises (G) a tackifying resin.
  • G There is no restriction
  • the tackifying resin when used for an adherend having a low polarity, it is preferable to use a tackifying resin having a low polarity.
  • a tackifying resin having a high polarity is used. Is preferred.
  • the blending ratio of the (G) tackifying resin is not particularly limited, but is preferably 0.1 to 100 parts by weight, preferably 1 to 80 parts by weight with respect to 100 parts by weight of the (A) crosslinkable silicon group-containing organic polymer. More preferred. These tackifier resins may be used alone or in combination of two or more.
  • the formulation according to the present embodiment includes, as necessary, a compound having a (meth) acrylamide group, a compound having an epoxy group, a silane coupling agent, a base-growing aminosilane, a photoradical polymerization initiator, a photosensitizer, Extenders, diluents, plasticizers, moisture absorbers, silanol condensation catalysts, physical property modifiers that improve tensile properties, reinforcing agents, colorants, flame retardants, sagging inhibitors, antioxidants, anti-aging agents, UV absorption
  • Various additives such as an agent, a solvent, a fragrance, a pigment, a dye, a conductive powder, a heat conductive powder, a phosphor, a wax, and a resin filler can be further included.
  • Examples of the compound having an N-methyl (meth) acrylamide group include N-methyl (meth) acrylamide, N- (meth) acryloylmorpholine, etc., and have a good balance between curability, physical properties, and safety. Therefore, acryloylmorpholine is preferable.
  • Examples of the compound having an epoxy group include bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, aliphatic cyclic epoxy resin, brominated epoxy resin, and rubber.
  • Examples include modified epoxy resins, urethane modified epoxy resins, glycidyl ester compounds, epoxidized polybutadiene, and epoxidized SBS (SBS represents a styrene-butadiene-styrene copolymer).
  • SBS represents a styrene-butadiene-styrene copolymer.
  • the compound according to the present embodiment can improve the adhesion to general adherends such as metal, plastic, glass, etc. by compounding a silane coupling agent.
  • silane coupling agents include amino group-containing silanes; ketimine type silanes; epoxy group-containing silanes; mercapto group-containing silanes; vinyl type unsaturated group-containing silanes; chlorine atom-containing silanes; Alkyl silanes; phenyl group-containing silanes; isocyanurate group-containing silanes, and the like, but are not limited thereto.
  • modified amino group-containing silanes in which amino groups are modified by reacting amino group-containing silanes with epoxy group-containing compounds, isocyanate group-containing compounds, and (meth) acryloyl group-containing compounds containing the above silanes are used. May be.
  • a silane coupling agent may be added for the purpose of crosslinking the tackifier resin and the crosslinkable silicon group-containing organic polymer.
  • a tackifying resin containing phenol or carboxylic acid for example, by adding an epoxy silane, the crosslinkable silicon group-containing organic polymer and the tackifying resin can be cross-linked.
  • the blending ratio of the silane coupling agent is not particularly limited, but is preferably 0.2 to 20 parts by weight, and 0.3 to 15 parts by weight with respect to 100 parts by weight of the (A) crosslinkable silicon group-containing organic polymer. More preferred is 0.5 to 10 parts by mass.
  • These silane coupling agents may be used alone or in combination of two or more.
  • the compound according to this embodiment may further contain a base-growing aminosilane for the purpose of improving the adhesion performance.
  • the base-growing aminosilane include compounds that are base-growing amine compounds and have a crosslinkable silicon group in the amine residue (a compound that generates an amine compound having a crosslinkable silicon group when decomposed).
  • a compound that generates an amine compound having a crosslinkable silicon group when decomposed As such a compound, 9-fluorenylmethyl ester of carbamic acid having a crosslinkable silicon group (C 13 H 9 CH 2 OCONR 13 R 14 , wherein R 13 and R 14 are hydrogen atoms or hydrocarbon groups, etc.
  • R 13 and R 14 is an organic group such as a hydrocarbon group having a crosslinkable silicon group), 2-arylsulfonylethyl ester of carbamic acid having a crosslinkable silicon group (ArSO 2 CH 2 CH 2 OCONR 13 R 14 , wherein Ar is an aromatic group which may have a substituent, R 13 and R 14 are the same as above, and 3-nitropentane of carbamic acid having a crosslinkable silicon group 2- yl ester (CH 3 CH 2 CH (NO 2) CH (CH 3) OCONR 13 R 14, wherein, R 13, R 14 are as defined above Etc.
  • 2-arylsulfonylethyl ester of carbamic acid having a crosslinkable silicon group ArSO 2 CH 2 CH 2 OCONR 13 R 14 , wherein Ar is an aromatic group which may have a substituent, R 13 and R 14 are the same as above
  • 3-nitropentane of carbamic acid having a crosslinkable silicon group 2- yl ester CH 3 CH
  • photo radical polymerization initiator examples include arylalkyl ketones such as benzoin ether derivatives and acetophenone derivatives, oxime ketones, acylphosphine oxides, S-phenyl thiobenzoates, titanocenes, and high molecular weights thereof. Derivatives.
  • the formulation according to this embodiment can further contain a diluent.
  • a diluent By blending a diluent, physical properties such as viscosity can be adjusted.
  • various diluents can be used, and there is no particular limitation.
  • saturated hydrocarbon solvents such as normal paraffin and isoparaffin, ⁇ -olefin derivatives such as HS dimer (trade name of Toyokuni Oil Co., Ltd.), aromatic hydrocarbon solvents, alcohol solvents such as diacetone alcohol, ester solvents And various solvents such as citrate ester solvents such as acetyltriethyl citrate and ketone solvents.
  • the flash point of the diluent is preferably 60 ° C. or higher, and more preferably 70 ° C. or higher.
  • the flash point of the mixed diluent is 70 degreeC or more.
  • the flash point is preferably 250 ° C. or lower.
  • a saturated hydrocarbon solvent is preferable as the diluent, and normal paraffin and isoparaffin are more preferable.
  • Normal paraffins and isoparaffins preferably have 10 to 16 carbon atoms, and more preferably have 14 to 16 carbon atoms due to the influence on the use environment (VOC).
  • the mixing ratio of the diluent is not particularly limited, but 0 to 25% of the diluent is blended with respect to the unit weight of the blend according to the present embodiment from the viewpoint of the balance between the improvement of coating workability and the decrease in physical properties due to blending. It is preferable to add 0.1 to 15%, more preferably 1 to 7%.
  • a diluent may be used independently or may use 2 or more types together.
  • the resin filler a particulate filler made of an organic resin or the like can be used.
  • organic fine particles such as polyethyl acrylate resin, polyurethane resin, polyethylene resin, polypropylene resin, urea resin, melamine resin, benzoguanamine resin, phenol resin, acrylic resin, and styrene resin can be used.
  • the resin filler (resin fine powder) is preferably a true spherical material that can be easily obtained by suspension polymerization of a monomer (for example, methyl methacrylate). Moreover, since a resin filler is suitably contained as a filler in the solution composition, a spherical crosslinked resin filler is preferable.
  • a urethane resin filler and an acrylic resin filler are preferable, and a urethane resin filler is more preferable in terms of good compatibility with the formulation according to the present embodiment.
  • the average particle size of the resin filler is preferably 1 to 150 ⁇ m, more preferably 5 to 30 ⁇ m.
  • the average particle diameter is a 50% cumulative particle diameter measured by a laser diffraction scattering method. If the average particle size is smaller than 1 ⁇ m, it may be difficult to disperse in the conductive adhesive system. On the other hand, if it is larger than 150 ⁇ m, it tends to be clogged with an application nozzle.
  • the blending ratio of the resin filler is preferably 0.5 to 200 parts by mass, more preferably 1 to 50 parts by mass with respect to 100 parts by mass of the component (A).
  • a resin filler may be used independently and may use 2 or more types together.
  • the resin filler preferably contains a black resin filler.
  • a black resin filler having an average particle size of 1 to 150 ⁇ m good deep curability can be obtained even when a single wavelength LED lamp or the like is used, and excellent light shielding properties and deep curability are obtained. Can be achieved.
  • the method for producing the photocurable composition is not particularly limited.
  • the components (A) to (D) are mixed in a predetermined amount, and if necessary, other compounding materials are mixed and deaerated and stirred. Can be manufactured.
  • the order of blending each component and other compounding substances is not particularly limited and can be determined as appropriate.
  • the photocurable composition can be a one-component type or a two-component type as required, but can be suitably used particularly as a one-component type.
  • the photocurable composition according to this embodiment is a photocurable composition that is cured by light irradiation, can be cured at room temperature (for example, 23 ° C.), and is preferably used as a room temperature photocurable curable composition. However, if necessary, curing may be accelerated by heating.
  • cured material which concerns on this embodiment is a method of forming hardened
  • the cured product according to the present embodiment is a cured product obtained by this method.
  • the manufacturing method of the product which concerns on this embodiment is a method of manufacturing using the photocurable composition which concerns on this embodiment.
  • the product according to the present embodiment is a product obtained by using this method, and can be suitably used for various products such as an electronic circuit, an electronic component, a building material, and an automobile.
  • an active energy ray As an active energy ray, ultraviolet rays, visible rays, infrared rays, etc.
  • electromagnetic waves such as light rays, X-rays, and ⁇ rays, electron beams, proton beams, neutron beams, and the like can be used.
  • the ultraviolet ray includes g-line (wavelength 436 nm), h-line (wavelength 405 nm), i-line (wavelength 365 nm), and the like.
  • the active energy ray source is not particularly limited, and includes, for example, a high-pressure mercury lamp, a low-pressure mercury lamp, an electron beam irradiation device, a halogen lamp, a light-emitting diode, a semiconductor laser, and a metal halide depending on the properties of the photobase generator used.
  • a light emitting diode is preferred.
  • the irradiation energy is preferably 10 to 20,000 mJ / cm 2, more preferably 20 to 10,000 mJ / cm 2, and still more preferably 50 to 5,000 mJ / cm 2 . If it is less than 10 mJ / cm 2 , the curability may be insufficient, and if it is greater than 20,000 mJ / cm 2 , even if light is irradiated more than necessary, time and cost are wasted and the substrate is damaged. There is.
  • the method for applying the photocurable composition according to the present embodiment to the adherend is not particularly limited, but screen printing, stencil printing, roll printing, dispenser coating, jet dispenser coating, spray coating, spin coating, and other coating methods. Are preferably used.
  • a photocurable composition is apply
  • the photocurable composition according to the present embodiment is a fast-curing photocurable composition excellent in workability, and is particularly useful as an adhesive / adhesive composition, and is an adhesive, a sealing material, and an adhesive. , Coating materials, potting materials, paints, putty materials, primers, gaskets, and the like.
  • the photocurable composition according to the present embodiment includes, for example, a coating agent used for moisture-proofing and insulation of a mounted circuit board and the like, a coating for solar power generation panels and a peripheral portion of the panel, and the like; Sealing agents, sealing agents for vehicles, etc .; architectural and industrial sealing agents; electrical and electronic component materials such as solar cell back surface sealing agents; electrical insulating materials such as insulation coating materials for electric wires and cables; Materials for forming a molded article; pressure-sensitive adhesive; adhesive; elastic adhesive; contact adhesive; use requiring rework or repair; use for liquid gaskets and the like.
  • the liquid gasket for example, it can be used for Formed In Place Gasket (FIPG) for electronic equipment. That is, the photocurable composition according to this embodiment is liquid before curing. Therefore, the photocurable composition according to the present embodiment is a FIPG for electronic equipment, and it can be secured even when exposed to the air before irradiation with active energy rays, so that a sufficient working time can be secured, and the active energy rays After irradiation, it can be used as a liquid gasket for electronic device products that has a sufficient bonding time and is cured in a short time.
  • FIPG Formed In Place Gasket
  • the photocurable composition when the housing member is sandwiched after the active energy ray irradiation, the photocurable composition is applied to a portion where the seal of the housing member is not desired.
  • the liquid gasket formed using the object does not protrude, and the housing member can be removed with a small force.
  • the removal of the housing member is not limited to the initial stage of curing, and the housing member can be removed with a small force even after curing.
  • a housing member can be recombined using this liquid gasket as it is, and sealing performances, such as an initial waterproof performance, can be maintained even after recombination.
  • a photoaminosilane generating compound, an aminosilane compound, etc. it can be designed so that it can be removed after a certain period of time even if it can be removed within a certain period of time.
  • the liquid gasket of the photocurable composition according to the present embodiment is applied to one or both of the plurality of housing members such as the main body and the lid, and irradiated with active energy rays, and then the housing member is applied. Can be used in combination. Since the crosslinkable silicon group-containing organic polymer is cured by moisture in the air after irradiation with active energy rays, curing proceeds if the housing members are left after being combined. Heating may be performed to increase the curing rate.
  • FT-NMR measuring device JNM-ECA500 (500 MHz) manufactured by JEOL Ltd.
  • FT-IR measuring device FT-IR460Plus manufactured by JASCO Corporation
  • Synthesis Example 1 Synthesis of polyoxyalkylene polymer A1 having a trimethoxysilyl group at its terminal Polyoxypropylene was reacted with propylene oxide in the presence of zinc hexacyanocobaltate-glyme complex catalyst using ethylene glycol as an initiator. Diol was obtained. According to the method of Synthesis Example 2 of WO2015-088021, a polyoxyalkylene polymer having an allyl group at the terminal of the obtained polyoxypropylene diol was obtained.
  • trimethoxysilane which is a silicon hydride compound
  • trimethoxysilane which is a silicon hydride compound
  • platinum vinyl siloxane complex isopropanol solution to react with the polyoxyalkylene having a trimethoxysilyl group at the end.
  • a polymer A1 was obtained.
  • the peak top molecular weight was 25,000 and the molecular weight distribution was 1.3.
  • the number of terminal trimethoxysilyl groups was 1.7 per molecule.
  • Synthesis Example 2 Synthesis of polyoxyalkylene polymer A2 having a trimethoxysilyl group at its terminal Polyoxypropylene was reacted with propylene oxide in the presence of zinc hexacyanocobaltate-glyme complex catalyst using ethylene glycol as an initiator. Diol was obtained. According to the method of Synthesis Example 2 of WO2015-088021, a polyoxyalkylene polymer having an allyl group at the terminal of the obtained polyoxypropylene diol was obtained.
  • trimethoxysilane which is a silicon hydride compound
  • trimethoxysilane which is a silicon hydride compound
  • the peak top molecular weight was 12,000 and the molecular weight distribution was 1.3.
  • the number of terminal trimethoxysilyl groups was 1.7 per molecule.
  • (Synthesis Example 3) Synthesis of (meth) acrylic polymer A3 having a trimethoxysilyl group 70.00 g of methyl methacrylate, 30.00 g of 2-ethylhexyl methacrylate, 12.00 g of 3-methacryloxypropyltrimethoxysilane, as a metal catalyst
  • Synthesis Example 4 of WO2015-088021 using 0.10 g of titanocene dicylide, 8.60 g of 3-mercaptopropyltrimethoxysilane, and 20.00 g of a benzoquinone solution (95% THF solution) as a polymerization terminator.
  • the (meth) acrylic polymer A3 having a trimethoxysilyl group was obtained.
  • the (meth) acrylic polymer A3 had a peak top molecular weight of 4,000 and a molecular weight distribution of 2.4.
  • the number of trimethoxysilyl groups contained by 1 H-NMR measurement was 2.00 per molecule.
  • Synthesis Example 4 Synthesis of fluorinated polymer C1-1 Polyoxypropylene diol having a molecular weight of about 2,000 is used as an initiator, and propylene oxide is reacted in the presence of a zinc hexacyanocobaltate-glyme complex catalyst to obtain a molecular weight in terms of hydroxyl value. A polyoxypropylene diol having a molecular weight distribution of 1.3 was obtained. According to the method of Synthesis Example 2 of WO2015-088021, a polyoxyalkylene polymer having an allyl group at the terminal of the obtained polyoxypropylene diol was obtained.
  • the polyoxyalkylene polymer having an allyl group at the terminal is reacted with methyldimethoxysilane, which is a silicon hydride compound, by adding a platinum vinylsiloxane complex isopropanol solution, and the polyoxyalkylene having a methyldimethoxysilyl group at the terminal is reacted.
  • a polymer A4 was obtained.
  • the peak top molecular weight was 15,000 and the molecular weight distribution was 1.3. According to 1 H-NMR measurement, the number of terminal methyldimethoxysilyl groups was 1.7 per molecule.
  • urethane prepolymer A 0.5 equivalent of 3-mercaptopropyltrimethoxysilane is reacted with urethane prepolymer A with respect to the NCO group of this urethane prepolymer A, and on average, it has a trimethoxysilyl group at one end and an NCO group at the other end.
  • a polymer was obtained. With respect to the NCO group of the obtained polymer, an equivalent amount of 4-hydroxybutyl acrylate is reacted with this polymer, and an average polymer A4 having a trimethoxysilyl group at one end and an acryloyloxy group at the other end is obtained. Obtained.
  • Examples 1 to 12 and Comparative Examples 1 to 7 Each compounding substance was added at the blending ratio shown in Table 1, mixed and stirred to prepare a photocurable composition.
  • the compounding amount of each compounding substance is indicated by g
  • the polyoxyalkylene polymers A1 and A2 are the polyoxyalkylene polymers A1 and A2 obtained in Synthesis Examples 1 and 2, and the acrylic polymer.
  • A3 is the acrylic polymer A3 obtained in Synthesis Example 3
  • the organic polymer A4 having a crosslinkable silicon group and a photoradically polymerizable vinyl group in the molecule is the polymer A4 obtained in Synthesis Example 6.
  • the fluorinated polymer C1-1 is the fluorinated polymer C1-1 obtained in Synthesis Example 4
  • the photoaminosilane generating compound E1 is the photoaminosilane generating compound E1 obtained in Synthesis Example 5
  • details of other compounding substances are as follows. It is as follows.
  • Photobase generator B1 Irgacure (registered trademark) 379EG [trade name, manufactured by BASF, 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4- Morpholinyl) phenyl] -1-butanone] in 70% PC (propylene carbonate) solution.
  • Photobase generator B2 SA-2 [trade name of San Apro Co., Ltd.] 5% PC solution.
  • Multifunctional compound D1 1,6-hexanediol diacrylate, trade name “SR238NS” (manufactured by Sartomer), bifunctional acrylate monomer.
  • Multifunctional compound D2 trimethylolpropane, trade name “Light Acrylate TMP-A” (manufactured by Kyoeisha Chemical Co., Ltd.), trifunctional acrylate monomer.
  • Polyfunctional compound D3 dipentaerythritol hexaacrylate, trade name “Light acrylate DPE-6A” (manufactured by Kyoeisha Chemical Co., Ltd.), hexafunctional acrylate monomer.
  • Polyfunctional compound D4 urethane acrylate, trade name “NK Oligo U-15HA” (manufactured by Shin-Nakamura Chemical Co., Ltd.), polymer having 15 acryloyloxy groups.
  • Polyfunctional compound D5 acrylic acrylate, trade name “RC100C” (manufactured by Kaneka Corporation), polymer having two acryloyloxy groups.
  • Monofunctional compound F1 Methoxydipropylene glycol acrylate, trade name “Light acrylate DPM-A” (manufactured by Kyoeisha Chemical Co., Ltd.), monofunctional acrylate.
  • Monofunctional compound F2 Phenoxyethyl acrylate, trade name “Light Acrylate PO-A” (manufactured by Kyoeisha Chemical Co., Ltd.).
  • Tackifying resin G1 Trade name “Pine Crystal KE-100” (manufactured by Arakawa Chemical Industries, Ltd.). * 11) Compound having an epoxy group: bisphenol A type epoxy resin, trade name “JER828” (manufactured by Mitsubishi Plastics). * 12) Cleavage type photo radical generator: Trade name “Irgacure (registered trademark) 1173” (manufactured by BASF, 2-hydroxy-2-methyl-1-phenyl-propan-1-one) * 13) Tin catalyst: 33% PC solution of Neostan U-100 [trade name, manufactured by Nitto Kasei Co., Ltd.]
  • a creep test and a tensile shear bond strength test were performed on the obtained photocurable composition by the following methods. The results are shown in Table 1.
  • 1) Creep test The obtained photocurable composition was applied to an adherend [acrylic resin] with an area of 5 mm ⁇ 25 mm and a thickness of 100 ⁇ m, and UV irradiation [irradiation conditions: UV-LED lamp (wavelength 365 nm, illuminance 1000 mW / cm 2 ), integrated light quantity: 3000 mJ / cm 2 ].
  • the adherend [acrylic resin] was bonded together, pressed with a small eyeball clip, cured in a dark room at 23 ° C. and 50% RH for 30 seconds, and then subjected to a creep test (weight: 10 g). Evaluation was made based on evaluation criteria. ⁇ : The adherend did not fall, ⁇ : The adherend dropped.
  • the compounding amount of each compounding substance is indicated by g
  • the polyoxyalkylene polymers A1 and A2 are the polyoxyalkylene polymers A1 and A2 obtained in Synthesis Examples 1 and 2, and the acrylic polymer.
  • A3 is the acrylic polymer A3 obtained in Synthesis Example 3
  • the fluorinated polymer C1-1 is the fluorinated polymer C1-1 obtained in Synthesis Example 4.
  • the compounds annotated the same as in Table 1 indicate the same compounds as in Table 1. Details of other compounding substances are as follows.
  • Photobase generator B3 Irgacure (registered trademark) 379EG (manufactured by BASF, 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl 1-butanone), diluted to 50% by mass with a propylene carbonate solution.
  • Irgacure registered trademark
  • 379EG manufactured by BASF, 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl 1-butanone
  • Polyfunctional compound D6 Light acrylate DPM-A (Kyoeisha Chemical Co., Ltd., trade name, methoxydipropylene glycol acrylate) * 16) Polyfunctional compound D7: UV3700B (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., polymer having urethane acrylate and two acryloyloxy groups) * 17) Sagging stop material: AEROSIL (registered trademark) R972 (Nippon Aerosil Co., Ltd., hydrophobic silica)
  • a dispenser robot (hereinafter referred to as “dispenser robot A”) having a needle with an inner diameter of 0.84 mm as a discharge needle under the condition of a fluorescent lamp with a film that cuts a wavelength of 500 nm or less and having a temperature of 23 ° C. and 50% RH. was used to test the workability of the composition prepared in Example 13 when not irradiated with UV. In an environment of 23 ° C. and 50% RH, the film was continuously applied to a PET film, and the time during which dispensing can be applied by finger touch was measured.
  • Comparative Example 8 was cured to a state where it could not be bonded, and Comparative Examples 10 and 11 could not be evaluated because they were uncured.
  • Example 14 to 15 Comparative Examples 8 to 11
  • a photocurable composition and a curable composition were prepared by the same method as in Example 13 except that the compounding substances were changed. And like Example 13, the sclerosing
  • the liquid gaskets of Comparative Examples 9 to 11 had poor shape retention, spread when the glass plates were bonded together, and could not be used as gaskets.
  • the liquid gasket according to the example does not cure when not irradiated with active energy rays, has excellent shape retention, and has sufficient time for bonding after irradiation with active energy rays. It was shown that Moreover, in the housing member joined using the liquid gasket according to the embodiment, the housing member can be removed with a small force even at the initial stage of curing and after curing, without protruding to a portion where sealing is not desired. It was shown that the housing member can be recombined using the gasket as it is, and the sealing performance such as the initial waterproof performance is maintained after the recombination.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Sealing Material Composition (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

 Provided is a dual-curing photocurable composition that utilizes moisture curing and photocuring, wherein said composition: allows sufficient work time to be taken during which curing does not proceed before being irradiated with light; generates a cured product having excellent temporary fixing properties immediately after being irradiated with light; ensures sufficient time for bonding after being irradiated with light, while completely curing comparatively quickly; and does not produce a corrosive acid. The photocurable composition contains: (A) an organic polymer containing a crosslinking silicon group; (B) a photobase generator; (C1) a silicon compound having an Si-F bond; (C2) a fluorine-based compound comprising at least one compound selected from the group consisting of boron trifluoride, a boron trifluoride complex, a fluorinating agent, and an alkali metal salt of a polyvalent fluoro compound; and (D) a polyfunctional compound having more than one (meth)acryloyl group in a molecule.

Description

光硬化性組成物Photocurable composition
 本発明は、湿気硬化と活性エネルギー線(光)硬化とを利用したデュアルキュア型の光硬化性組成物に関する。特に、本発明は、光照射直後の被着体の仮固定性に優れ、短時間で硬化可能なデュアルキュア型の光硬化性組成物に関する。 The present invention relates to a dual cure photocurable composition using moisture curing and active energy ray (light) curing. In particular, the present invention relates to a dual cure photocurable composition that is excellent in temporary fixability of an adherend immediately after light irradiation and can be cured in a short time.
 ケイ素原子に結合した水酸基又は加水分解性基を有し、シロキサン結合を形成することにより架橋し得るケイ素含有基(以下、「架橋性ケイ素基」ともいう。)を有する有機重合体は、塗布や充填が容易な液状にすることができ、室温においても空気中の湿分等の作用で架橋性ケイ素基の加水分解反応等を伴うシロキサン結合の形成によって架橋し、硬化物が得られる性質を有する。このため、この重合体はシーリング材、接着剤、塗料等の用途に広く用いられている。架橋性ケイ素基を有する重合体としてはポリオキシアルキレン系重合体や(メタ)アクリル酸エステル系重合体を挙げることができる。 An organic polymer having a hydroxyl group or a hydrolyzable group bonded to a silicon atom and having a silicon-containing group that can be crosslinked by forming a siloxane bond (hereinafter also referred to as “crosslinkable silicon group”) It can be made into a liquid that can be easily filled, and even at room temperature, it has the property that it can be cross-linked by the formation of siloxane bonds accompanied by hydrolysis reaction of cross-linkable silicon groups by the action of moisture in the air, etc. . For this reason, this polymer is widely used for sealing materials, adhesives, paints and the like. Examples of the polymer having a crosslinkable silicon group include a polyoxyalkylene polymer and a (meth) acrylic acid ester polymer.
 特許文献1には加水分解性シリル基(架橋性ケイ素基に相当する)を有する重合体と光重合性の重合性基を有する化合物とを含有する接着剤組成物が開示されている。加水分解性シリル基を有する重合体は空気中の湿分等により架橋硬化する重合体であり、光重合性の重合性基を有する化合物は光照射により高分子量化する化合物である。この接着剤組成物は光照射前には塗布が可能な液状であり、光照射すると光重合性の重合性基を有する化合物が重合体になり、被着体を仮固定できるようになり、固定治具を用いなくても被着体を固定できる。このまま放置すればこの接着剤組成物に含有される加水分解性シリル基を有する重合体が硬化し最終的に強度が大きい接着物を得ることができる。 Patent Document 1 discloses an adhesive composition containing a polymer having a hydrolyzable silyl group (corresponding to a crosslinkable silicon group) and a compound having a photopolymerizable polymerizable group. The polymer having a hydrolyzable silyl group is a polymer that is cross-linked and cured by moisture in the air, and the compound having a photopolymerizable polymerizable group is a compound that becomes a high molecular weight by light irradiation. This adhesive composition is a liquid that can be applied before light irradiation, and when irradiated with light, a compound having a photopolymerizable polymerizable group becomes a polymer, and the adherend can be temporarily fixed and fixed. The adherend can be fixed without using a jig. If left as it is, the polymer having a hydrolyzable silyl group contained in the adhesive composition is cured, and finally an adhesive having a high strength can be obtained.
 このように異なる硬化機構を有する化合物を併用した硬化性組成物は、特許文献1の場合には湿気硬化と光硬化とのデュアルキュア型と呼ばれ、仮固定用の治具がなくても仮固定が可能な接着等に用いられる。 In this case, the curable composition using the compounds having different curing mechanisms is called a dual cure type of moisture curing and photocuring in the case of Patent Document 1, and even if there is no temporary fixing jig. Used for bonding that can be fixed.
 架橋性ケイ素基を有する重合体は硬化触媒の作用で湿気により硬化するが、この重合体を接着剤として用い、被着体に薄く塗布したとき(例えば500μm以下)、触媒作用が大きい触媒を用いると、湿気が瞬時に内部まで浸透し、塗布した時点で硬化が進行して接着作業ができなくなる。また、触媒作用が小さい触媒を用いると、硬化が進行しにくくなり、完全硬化に時間がかかる。このように接着剤を薄く塗布する場合には架橋性ケイ素基を有する重合体の適切な硬化触媒の選択が困難である。 A polymer having a crosslinkable silicon group is cured by moisture by the action of a curing catalyst. When this polymer is used as an adhesive and thinly applied to an adherend (for example, 500 μm or less), a catalyst having a large catalytic action is used. Moisture permeates into the inside instantly, and when it is applied, curing proceeds and the bonding work cannot be performed. In addition, when a catalyst having a small catalytic action is used, curing does not easily proceed and it takes time for complete curing. As described above, when the adhesive is thinly applied, it is difficult to select an appropriate curing catalyst for the polymer having a crosslinkable silicon group.
 特許文献2にはデュアルキュア型であって架橋性ケイ素基を有する重合体の硬化触媒として光酸発生剤を使用する接着剤組成物が開示されている。この組成物では発生した酸が硬化触媒として作用する。特許文献1に開示されている接着剤組成物では架橋性ケイ素基を有する重合体の硬化は被着体への塗布時点から始まる。一方、特許文献2の接着剤組成物では架橋性ケイ素基を有する重合体の硬化触媒である酸が光照射によって生成するので、光照射するまでは架橋性ケイ素基を有する重合体の硬化は進行しない。このため、特許文献2に記載の接着剤組成物によれば、紫外線照射後、迅速にB-ステージ化でき、スランピング等の問題を回避できる。 Patent Document 2 discloses an adhesive composition using a photoacid generator as a curing catalyst for a polymer having a dual cure type and having a crosslinkable silicon group. In this composition, the generated acid acts as a curing catalyst. In the adhesive composition disclosed in Patent Document 1, curing of the polymer having a crosslinkable silicon group starts from the time of application to the adherend. On the other hand, in the adhesive composition of Patent Document 2, since an acid which is a curing catalyst for a polymer having a crosslinkable silicon group is generated by light irradiation, curing of the polymer having a crosslinkable silicon group proceeds until light irradiation. do not do. For this reason, according to the adhesive composition described in Patent Document 2, it is possible to quickly make a B-stage after ultraviolet irradiation, and problems such as slumping can be avoided.
 しかしながら、特許文献2に記載の接着剤組成物においては、光酸発生剤を用いているので、例えば、アミン類、アルカリ性物質等が混在すると光酸発生剤から生成する活性な酸触媒が反応し、光カチオン重合が顕著に阻害される。これは当該組成物中に塩基性の接着付与剤、フィラー等を配合した場合の他、被着体中に塩基性物質を含んでいる際にも起こりやすい。よって、特許文献2に記載の接着剤組成物は、特許文献2の実施例に記載されているように、UV照射直後には十分な接着力が発揮されず接着性が悪く、被着体も限定される。また、サビを生じるという問題があり、金属の接着に適用できない。 However, since the photoacid generator is used in the adhesive composition described in Patent Document 2, for example, when an amine or an alkaline substance is mixed, an active acid catalyst generated from the photoacid generator reacts. , Photocationic polymerization is significantly inhibited. This is likely to occur when a basic substance is contained in the adherend as well as when a basic adhesion-imparting agent, a filler, or the like is blended in the composition. Therefore, the adhesive composition described in Patent Document 2, as described in the Examples of Patent Document 2, does not exhibit sufficient adhesive force immediately after UV irradiation and has poor adhesion, and the adherend is also not suitable. Limited. Moreover, there exists a problem of producing a rust and cannot apply to adhesion | attachment of a metal.
特開2001-139893号公報JP 2001-139893 A 特表2009-530441号公報JP-T 2009-530441
 したがって、本発明の目的は、湿気硬化と光硬化とを利用したデュアルキュア型光硬化性組成物であって、光照射前には硬化が進行せず十分な作業時間をとることができ、光照射直後に優れた仮固定性を有する硬化物を生成し、光照射後は適当な貼り合わせ可能時間を確保しつつ、比較的速やかに完全硬化し且つ腐食性がある酸を発生しないデュアルキュア型光硬化性組成物を提供することにある。 Accordingly, an object of the present invention is a dual-cure photocurable composition using moisture curing and photocuring, and the curing does not proceed before light irradiation, so that sufficient work time can be taken. A dual-cure type that produces a cured product with excellent temporary fixability immediately after irradiation, and after curing with light, ensures adequate bonding time and completes relatively quickly and does not generate corrosive acids. The object is to provide a photocurable composition.
 本発明は、上記目的を達成するため、(A)架橋性ケイ素基含有有機重合体と、(B)光塩基発生剤と、(C1)Si-F結合を有するケイ素化合物、並びに(C2)三フッ化ホウ素、三フッ化ホウ素の錯体、フッ素化剤、及び多価フルオロ化合物のアルカリ金属塩からなる群から選択される1種以上のフッ素系化合物と、(D)1分子中に1個を超える(メタ)アクリロイル基を有する多官能化合物とを含有する光硬化性組成物が提供される。 In order to achieve the above object, the present invention provides (A) a crosslinkable silicon group-containing organic polymer, (B) a photobase generator, (C1) a silicon compound having a Si—F bond, and (C2) three One or more fluorine compounds selected from the group consisting of boron fluoride, boron trifluoride complexes, fluorinating agents, and alkali metal salts of polyvalent fluoro compounds, and (D) one per molecule. There is provided a photocurable composition containing a polyfunctional compound having more than (meth) acryloyl groups.
 また、上記光硬化性組成物は、(E)光により、第一級アミノ基及び第二級アミノ基からなる群から選択される1種以上のアミノ基を生成する架橋性ケイ素基含有化合物を更に含むことが好ましい。 The photocurable composition comprises (E) a crosslinkable silicon group-containing compound that generates one or more amino groups selected from the group consisting of primary amino groups and secondary amino groups by light. Furthermore, it is preferable to include.
 また、上記光硬化性組成物は、(F)光重合性不飽和基を有する単官能化合物を更に含むことが好ましい。 In addition, the photocurable composition preferably further includes (F) a monofunctional compound having a photopolymerizable unsaturated group.
 また、上記光硬化性組成物は、(G)粘着付与樹脂を更に含むことが好適である。 In addition, it is preferable that the photocurable composition further includes (G) a tackifier resin.
 また、上記光硬化性組成物において、(A)架橋性ケイ素基含有有機重合体が、架橋性ケイ素基含有ポリオキシアルキレン系重合体、及び架橋性ケイ素基含有(メタ)アクリル系重合体からなる群から選択される1種以上であることが好適である。 In the photocurable composition, the (A) crosslinkable silicon group-containing organic polymer comprises a crosslinkable silicon group-containing polyoxyalkylene polymer and a crosslinkable silicon group-containing (meth) acrylic polymer. It is suitable that it is 1 or more types selected from a group.
 また、上記光硬化性組成物において、(B)光塩基発生剤が、光潜在性第3級アミンであることが好ましい。ここで、活性エネルギー線の作用によりアミン化合物を発生する物質を光潜在性アミン化合物と称する。また、活性エネルギー線の作用により、第1級アミノ基を有するアミン化合物を発生する物質を光潜在性第1級アミンと、第2級アミノ基を有するアミン化合物を発生する物質を光潜在性第2級アミンと、第3級アミノ基を有するアミン化合物を発生する物質を光潜在性第3級アミンと、それぞれ称する。 In the photocurable composition, the photobase generator (B) is preferably a photolatent tertiary amine. Here, a substance that generates an amine compound by the action of active energy rays is referred to as a photolatent amine compound. Further, by the action of active energy rays, a substance that generates an amine compound having a primary amino group is a photolatent primary amine, and a substance that generates an amine compound having a secondary amino group is a photolatent group. Substances that generate secondary amines and amine compounds having tertiary amino groups are referred to as photolatent tertiary amines, respectively.
 また、上記光硬化性組成物において、(A)架橋性ケイ素基を有する有機重合体が、(a-1)分子内に架橋性ケイ素基と光ラジカル重合性のビニル基とを有する重合体(但し、Si-F結合を有するものを除く)及び(a-2) (a-1)以外の架橋性ケイ素基を有する有機重合体からなる群から選択されることが好ましい。 In the photocurable composition, (A) the organic polymer having a crosslinkable silicon group is (a-1) a polymer having a crosslinkable silicon group and a photoradically polymerizable vinyl group in the molecule ( However, it is preferably selected from the group consisting of organic polymers having a crosslinkable silicon group other than (a-2) and (a-1) except for those having a Si—F bond.
 また、本発明は、上記目的を達成するため、上記光硬化性組成物に対し、光を照射することにより形成されてなる硬化物が提供される。 Moreover, in order to achieve the above object, the present invention provides a cured product formed by irradiating the photocurable composition with light.
 また、本発明は、上記目的を達成するため、上記光硬化性組成物を用いて製造される製品が提供される。更に、本発明は、上記目的を達成するため、上記光硬化性組成物を接着剤として用いる製品が提供される。また、本発明は、上記目的を達成するため、上記光硬化性組成物を用いてなる電子機器製品が提供される。 Moreover, in order to achieve the above object, the present invention provides a product manufactured using the above photocurable composition. Furthermore, in order to achieve the above object, the present invention provides a product using the photocurable composition as an adhesive. Moreover, in order to achieve the said objective, this invention provides the electronic device product which uses the said photocurable composition.
 また、本発明は、上記目的を達成するため、電子機器のリワーク方法であって、(イ)電子機器用現場成形型液状ガスケットとして、(A)架橋性ケイ素基含有有機重合体と、(B)光塩基発生剤と、(C1)Si-F結合を有するケイ素化合物と、(D)1分子中に1個を超える(メタ)アクリロイル基を有する多官能化合物とを含有する現場成形型液状ガスケットを用意する工程と、(ロ)液状ガスケットを未硬化の状態で電子機器の一方のハウジング部材のシールすべき箇所に塗布し、活性エネルギー線を照射し、他方のハウジング部材を挟みつける工程と、(ハ)硬化後リワークが必要な電子機器のハウジング部材を取り外し、内部の部品を交換する工程とを備える電子機器のリワーク方法が提供される。 In order to achieve the above object, the present invention provides a method for reworking an electronic device, wherein (A) an on-site liquid mold gasket for an electronic device is (A) a crosslinkable silicon group-containing organic polymer; In-situ molded liquid gasket containing a photobase generator, (C1) a silicon compound having a Si—F bond, and (D) a polyfunctional compound having more than one (meth) acryloyl group in one molecule. And (b) applying a liquid gasket in an uncured state on a portion to be sealed of one housing member of an electronic device, irradiating active energy rays, and sandwiching the other housing member; (C) A method of reworking an electronic device comprising a step of removing a housing member of an electronic device that requires rework after curing and replacing an internal component.
 本発明によれば、湿気硬化と光硬化とを利用したデュアルキュア型の光硬化性組成物であって、光照射前には硬化が進行せず十分な作業時間をとることができ、光照射直後に優れた仮固定性を有する硬化物を生成し、光照射後は適当な貼り合わせ可能時間を確保しつつ、比較的速やかに完全硬化し且つ腐食性がある酸を発生しないデュアルキュア型の光硬化性組成物を提供できる。 According to the present invention, a dual-cure photocurable composition using moisture curing and photocuring, the curing does not proceed before light irradiation, and sufficient work time can be taken. Immediately after that, a cured product having excellent temporary fixability is produced, and after curing with light, a dual cure type that does not generate corrosive acid and complete curing relatively quickly while ensuring an appropriate bonding time. A photocurable composition can be provided.
 以下に本発明の実施の形態を説明するが、これらは例示的に示されるもので、本発明の技術思想から逸脱しない限り種々の変形が可能なことはいうまでもない。 Embodiments of the present invention will be described below, but these are exemplarily shown, and it goes without saying that various modifications are possible without departing from the technical idea of the present invention.
 本実施の形態に係る光硬化性組成物は、(A)架橋性ケイ素基含有有機重合体と、(B)光塩基発生剤と、(C1)Si-F結合を有するケイ素化合物、及び/又は(C2)三フッ化ホウ素、三フッ化ホウ素の錯体、フッ素化剤及び多価フルオロ化合物のアルカリ金属塩からなる群から選択される1種以上のフッ素系化合物と、(D)1分子中に1個を超える(メタ)アクリロイル基を有する多官能化合物とを含有する。なお、本実施の形態の説明において、本実施の形態に係る光硬化性組成物を「本実施形態に係る配合物」という場合がある。 The photocurable composition according to the present embodiment includes (A) a crosslinkable silicon group-containing organic polymer, (B) a photobase generator, (C1) a silicon compound having a Si—F bond, and / or (C2) at least one fluorine-based compound selected from the group consisting of boron trifluoride, a complex of boron trifluoride, a fluorinating agent and an alkali metal salt of a polyvalent fluoro compound, and (D) in one molecule And a polyfunctional compound having more than one (meth) acryloyl group. In the description of the present embodiment, the photocurable composition according to the present embodiment may be referred to as “the composition according to the present embodiment”.
[(A)架橋性ケイ素基含有有機重合体]
 (A)架橋性ケイ素基含有有機重合体としては、架橋性ケイ素基を有する有機重合体であれば特に制限はない。本実施の形態では、主鎖がポリシロキサンでない有機重合体であり、ポリシロキサンを除く各種の主鎖骨格を有する有機重合体が、入手が容易であり、かつ、電気用途分野において接点障害の要因となる低分子環状シロキサンを含有若しくは発生させない点で好適である。また、(A)架橋性ケイ素基含有有機重合体は、架橋性ケイ素基と共に光ラジカル重合性のビニル基を有することもできる。(A)架橋性ケイ素基含有有機重合体が分子内に光ラジカル重合性のビニル基を更に有することで、本実施形態に係る光硬化性組成物の初期の粘着性、及び/又は柔軟性をより保持しやすくすることができ、後硬化による耐熱性等を更に向上させることができる。本実施形態では、分子内に架橋性ケイ素基と光ラジカル重合性のビニル基とを有する重合体(但し、Si-F結合を有するものを除く)を(a-1)成分と称し、更に、(a-1)以外の架橋性ケイ素基を有する有機重合体を(a-2)成分と称する。(A)架橋性ケイ素基含有有機重合体としては、(a-1)成分、及び/又は(a-2)成分を用いることもできる。
[(A) Crosslinkable silicon group-containing organic polymer]
(A) The crosslinkable silicon group-containing organic polymer is not particularly limited as long as it is an organic polymer having a crosslinkable silicon group. In this embodiment, the main chain is an organic polymer that is not polysiloxane, and organic polymers having various main chain skeletons excluding polysiloxane are easily available, and cause of contact failure in the field of electrical applications. This is preferable in that it does not contain or generate low molecular cyclic siloxane. Further, (A) the crosslinkable silicon group-containing organic polymer may have a photoradically polymerizable vinyl group together with the crosslinkable silicon group. (A) Since the crosslinkable silicon group-containing organic polymer further has a photoradically polymerizable vinyl group in the molecule, the initial tackiness and / or flexibility of the photocurable composition according to the present embodiment can be improved. It can be made easier to hold, and heat resistance and the like due to post-curing can be further improved. In this embodiment, a polymer having a crosslinkable silicon group and a photoradically polymerizable vinyl group in the molecule (except for those having a Si—F bond) is referred to as component (a-1), and The organic polymer having a crosslinkable silicon group other than (a-1) is referred to as component (a-2). As the crosslinkable silicon group-containing organic polymer (A), the component (a-1) and / or the component (a-2) can also be used.
 (A)架橋性ケイ素基含有有機重合体の主鎖骨格としては、具体的には、ポリオキシプロピレン、ポリオキシテトラメチレン、ポリオキシエチレン-ポリオキシプロピレン共重合体等のポリオキシアルキレン系重合体;エチレン-プロピレン系共重合体、ポリイソブチレン、ポリイソプレン、ポリブタジエン、これらのポリオレフィン系重合体に水素添加して得られる水添ポリオレフィン系重合体等の炭化水素系重合体;アジピン酸等の2塩基酸とグリコールとの縮合、又は、ラクトン類の開環重合で得られるポリエステル系重合体;エチル(メタ)アクリレート、ブチル(メタ)アクリレート等のモノマーをラジカル重合して得られる(メタ)アクリル酸エステル系重合体;(メタ)アクリル酸エステル系モノマー、酢酸ビニル、アクリロニトリル、スチレン等のモノマーをラジカル重合して得られるビニル系重合体;有機重合体中でのビニルモノマーを重合して得られるグラフト重合体;ポリサルファイド系重合体;ポリアミド系重合体;ポリカーボネート系重合体;ジアリルフタレート系重合体等が挙げられる。これらの骨格は、(A)架橋性ケイ素基含有有機重合体の中に単独で含まれていても、2種類以上がブロック若しくはランダムに含まれていてもよい。 (A) Specific examples of the main chain skeleton of the crosslinkable silicon group-containing organic polymer include polyoxyalkylene polymers such as polyoxypropylene, polyoxytetramethylene, and polyoxyethylene-polyoxypropylene copolymers. A hydrocarbon polymer such as an ethylene-propylene copolymer, polyisobutylene, polyisoprene, polybutadiene, hydrogenated polyolefin polymer obtained by hydrogenating these polyolefin polymers; two bases such as adipic acid; Polyester polymer obtained by condensation of acid and glycol or ring-opening polymerization of lactones; (meth) acrylic acid ester obtained by radical polymerization of monomers such as ethyl (meth) acrylate and butyl (meth) acrylate Polymer: (meth) acrylic acid ester monomer, vinyl acetate, acrylic Vinyl polymer obtained by radical polymerization of monomers such as nitrile and styrene; Graft polymer obtained by polymerizing vinyl monomer in organic polymer; Polysulfide polymer; Polyamide polymer; Polycarbonate polymer A diallyl phthalate polymer and the like. These skeletons may be contained alone in (A) the crosslinkable silicon group-containing organic polymer, or two or more kinds may be contained in blocks or randomly.
 更に、ポリイソブチレン、水添ポリイソプレン、水添ポリブタジエン等の飽和炭化水素系重合体や、ポリオキシアルキレン系重合体、(メタ)アクリル酸エステル系重合体は比較的ガラス転移温度が低く、得られる硬化物が耐寒性に優れることから好ましい。また、ポリオキシアルキレン系重合体、及び(メタ)アクリル酸エステル系重合体は、透湿性が高く1液型組成物にした場合に深部硬化性に優れることから特に好ましい。 Furthermore, saturated hydrocarbon polymers such as polyisobutylene, hydrogenated polyisoprene, and hydrogenated polybutadiene, polyoxyalkylene polymers, and (meth) acrylic acid ester polymers can be obtained with a relatively low glass transition temperature. The cured product is preferable because it is excellent in cold resistance. Polyoxyalkylene polymers and (meth) acrylic acid ester polymers are particularly preferred because they have high moisture permeability and are excellent in deep part curability when made into a one-component composition.
 (A)架橋性ケイ素基含有有機重合体の架橋性ケイ素基は、ケイ素原子に結合した水酸基又は加水分解性基を有し、シロキサン結合を形成することにより架橋しうる基である。架橋性ケイ素基としては、例えば、一般式(1)で示される基が好適である。 (A) The crosslinkable silicon group of the crosslinkable silicon group-containing organic polymer is a group having a hydroxyl group or a hydrolyzable group bonded to a silicon atom and capable of crosslinking by forming a siloxane bond. As the crosslinkable silicon group, for example, a group represented by the general formula (1) is suitable.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(1)中、Rは、炭素数が1~20の炭化水素基、炭素数が1~20のアルキル基、炭素数が3~20のシクロアルキル基、炭素数が6~20のアリール基、炭素数が7~20のアラルキル基、R SiO-(Rは、前記と同じ)で示されるトリオルガノシロキシ基、若しくは-CHOR基(Rは、前記と同じ)である。また、Rは、1位から3位の炭素原子上の少なくとも1個の水素原子が、ハロゲン、-OR41、-NR4243、-N=R44、-SR45(R41、R42、R43、R45はそれぞれ水素原子、又は炭素数が1~20の置換基を有するか若しくは置換基を有さない炭化水素基、R44は炭素数が1~20の2価の置換基を有するか若しくは置換基を有さない炭化水素基である。)、炭素数が1~20のペルフルオロアルキル基、若しくはシアノ基で置換された炭素数が1~20の炭化水素基を示す。これらの中でRは、メチル基が好ましい。Rが2個以上存在する場合、複数のRは同一であっても、異なっていてもよい。Xは水酸基、又は加水分解性基を示し、Xが2個以上存在する場合、複数のXは同一であっても、異なっていてもよい。aは0、1、2又は3の整数のいずれかである。硬化性を考慮し、十分な硬化速度を有する硬化性組成物を得るためには、式(1)においてaは2以上が好ましく、3がより好ましい。 In the formula (1), R 1 is a hydrocarbon group having 1 to 20 carbon atoms, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or an aryl having 6 to 20 carbon atoms Group, an aralkyl group having 7 to 20 carbon atoms, a triorganosiloxy group represented by R 1 3 SiO— (R 1 is the same as above), or a —CH 2 OR 1 group (R 1 is the same as above) It is. Also, R 1 is a group in which at least one hydrogen atom on the 1st to 3rd carbon atoms is halogen, —OR 41 , —NR 42 R 43 , —N═R 44 , —SR 45 (R 41 , R 42 , R 43 and R 45 are each a hydrogen atom, or a hydrocarbon group having 1 to 20 carbon atoms or having no substituent, and R 44 is a divalent substitution having 1 to 20 carbon atoms. A hydrocarbon group having a group or having no substituent), a perfluoroalkyl group having 1 to 20 carbon atoms, or a hydrocarbon group having 1 to 20 carbon atoms substituted by a cyano group. Among these, R 1 is preferably a methyl group. When two or more R 1 are present, the plurality of R 1 may be the same or different. X represents a hydroxyl group or a hydrolyzable group, and when two or more X exist, the plurality of X may be the same or different. a is an integer of 0, 1, 2, or 3. In view of curability, in order to obtain a curable composition having a sufficient curing rate, in formula (1), a is preferably 2 or more, more preferably 3.
 加水分解性基や水酸基は1個のケイ素原子に1~3個の範囲で結合することができる。加水分解性基や水酸基が架橋性ケイ素基中に2個以上結合する場合には、それらは同一であっても、異なっていてもよい。架橋性ケイ素基を形成するケイ素原子は1個でもよく、2個以上であってもよいが、シロキサン結合等により連結されたケイ素原子の場合には、20個程度あってもよい。 Hydrolyzable groups and hydroxyl groups can be bonded to one silicon atom in the range of 1 to 3. When two or more hydrolyzable groups or hydroxyl groups are bonded to the crosslinkable silicon group, they may be the same or different. The number of silicon atoms forming the crosslinkable silicon group may be one or two or more. In the case of silicon atoms linked by a siloxane bond or the like, there may be about 20 silicon atoms.
 Xで示される加水分解性基としては、F原子以外であれば特に限定されない。例えば、アルコキシ基、アシルオキシ基、アミノ基、アミド基、アミノオキシ基、アルケニルオキシ基等が挙げられる。これらの中では、加水分解性が穏やかで取扱やすいという観点からアルコキシ基が好ましい。アルコキシ基の中では炭素数の少ないものの方が反応性が高く、メトキシ基>エトキシ基>プロポキシ基の順のように炭素数が多くなるほどに反応性が低くなる。目的や用途に応じて選択できるが、通常、メトキシ基やエトキシ基が用いられる。 The hydrolyzable group represented by X is not particularly limited as long as it is other than F atom. Examples thereof include an alkoxy group, an acyloxy group, an amino group, an amide group, an aminooxy group, and an alkenyloxy group. In these, an alkoxy group is preferable from a viewpoint that hydrolysis property is moderate and it is easy to handle. Among the alkoxy groups, those having a smaller number of carbon atoms have higher reactivity, and the reactivity increases as the number of carbon atoms increases in the order of methoxy group> ethoxy group> propoxy group. Although it can be selected according to the purpose and application, a methoxy group or an ethoxy group is usually used.
 架橋性ケイ素基の具体的な構造としては、トリメトキシシリル基、トリエトキシシリル基等のトリアルコキシシリル基[-Si(OR)]、メチルジメトキシシリル基、メチルジエトキシシリル基等のジアルコキシシリル基[-SiR(OR)]が挙げられ、トリアルコキシシリル基[-Si(OR)]が反応性が高い点で好適であり、トリメトキシシリル基がより好適である。ここでRはメチル基やエチル基のようなアルキル基である。 Specific examples of the crosslinkable silicon group include trialkoxysilyl groups [—Si (OR) 3 ] such as trimethoxysilyl group and triethoxysilyl group, dialkoxy such as methyldimethoxysilyl group and methyldiethoxysilyl group. Examples thereof include a silyl group [—SiR 1 (OR) 2 ], a trialkoxysilyl group [—Si (OR) 3 ] is preferable in terms of high reactivity, and a trimethoxysilyl group is more preferable. Here, R is an alkyl group such as a methyl group or an ethyl group.
 また、架橋性ケイ素基は1種で使用してもよく、2種以上併用してもよい。架橋性ケイ素基は、主鎖又は側鎖あるいはいずれにも存在しうる。また、複数の一般式(1)で示される架橋性ケイ素基が互いに連結していてもよい。この場合、架橋性ケイ素基を形成するケイ素原子は1個以上であるが、シロキサン結合等により連結されたケイ素原子の場合には、ケイ素原子は20個以下であることが好ましい。また、光ラジカル重合性のビニル基としては(メタ)アクリロイルオキシ基等の(メタ)アクリロイル基を含む基を挙げることができる。 Moreover, the crosslinkable silicon group may be used alone or in combination of two or more. The crosslinkable silicon group can be present in the main chain, the side chain, or both. Moreover, the crosslinkable silicon group shown by several general formula (1) may mutually be connected. In this case, the number of silicon atoms forming the crosslinkable silicon group is one or more, but in the case of silicon atoms linked by a siloxane bond or the like, the number of silicon atoms is preferably 20 or less. Examples of the photo-radically polymerizable vinyl group include a group containing a (meth) acryloyl group such as a (meth) acryloyloxy group.
 架橋性ケイ素基を有する有機重合体、及び架橋性ケイ素基と光ラジカル重合性のビニル基とを有する有機重合体はそれぞれ、直鎖状、又は分岐を有してもよく、その数平均分子量はGPCにおけるポリスチレン換算において500~100,000程度、より好ましくは1,000~50,000であり、特に好ましくは3,000~30,000である。数平均分子量が500未満では、硬化物の伸び特性の点で不都合な傾向があり、100,000を越えると、高粘度となるために作業性の点で不都合な傾向がある。 Each of the organic polymer having a crosslinkable silicon group and the organic polymer having a crosslinkable silicon group and a photoradically polymerizable vinyl group may have a straight chain or a branch, and the number average molecular weight is In terms of polystyrene in GPC, it is about 500 to 100,000, more preferably 1,000 to 50,000, and particularly preferably 3,000 to 30,000. If the number average molecular weight is less than 500, the cured product tends to be inconvenient in terms of elongation characteristics, and if it exceeds 100,000, the viscosity tends to be inconvenient because of high viscosity.
 高強度、高伸びで、低弾性率を示すゴム状硬化物を得るためには、架橋性ケイ素基を有する有機重合体に含有される架橋性ケイ素基、架橋性ケイ素基と光ラジカル重合性のビニル基とを有する有機重合体に含有される架橋性ケイ素基及び光ラジカル重合性のビニル基は、重合体1分子中に平均して0.8個以上、好ましくは1.0個以上、より好ましくは1.1~5個存在するのがよい。分子中に含まれる架橋性ケイ素基の数、及び光ラジカル重合性のビニル基が、平均して0.8個未満になると、硬化性が不充分になり、良好なゴム弾性挙動を発現しにくくなる。架橋性ケイ素基、及び光ラジカル重合性のビニル基は、有機重合体分子鎖の主鎖の末端あるいは側鎖の末端にあっても、また、両方にあってもよい。特に、架橋性ケイ素基が分子鎖の主鎖の末端にのみある場合、最終的に形成される硬化物に含まれる有機重合体成分の有効網目長が長くなるため、高強度、高伸びで、低弾性率を示すゴム状硬化物が得られやすくなる。 In order to obtain a rubber-like cured product having high strength, high elongation, and low elastic modulus, a crosslinkable silicon group, a crosslinkable silicon group and a photo-radical polymerizable polymer contained in the organic polymer having a crosslinkable silicon group are used. The crosslinkable silicon group and photoradically polymerizable vinyl group contained in the organic polymer having a vinyl group average 0.8 or more, preferably 1.0 or more, more in one polymer molecule. Preferably 1.1 to 5 are present. If the number of crosslinkable silicon groups and radically polymerizable vinyl groups contained in the molecule is less than 0.8 on average, the curability will be insufficient and good rubber elastic behavior will not be exhibited. Become. The crosslinkable silicon group and the photoradically polymerizable vinyl group may be at the end of the main chain of the organic polymer molecular chain, at the end of the side chain, or at both. In particular, when the crosslinkable silicon group is only at the end of the main chain of the molecular chain, the effective network length of the organic polymer component contained in the finally formed cured product is increased, so that the high strength, high elongation, A rubber-like cured product having a low elastic modulus is easily obtained.
 ポリオキシアルキレン系重合体は、本質的に一般式(2)で示される繰り返し単位を有する重合体である。
 -R-O-・・・(2)
 一般式(2)中、Rは炭素数が1~14の直鎖状若しくは分岐アルキレン基であり、炭素数が1~14の直鎖状若しくは分岐アルキレン基が好ましく、炭素数が2~4の直鎖状若しくは分岐アルキレン基が更に好ましい。
The polyoxyalkylene polymer is essentially a polymer having a repeating unit represented by the general formula (2).
-R 2 -O- (2)
In the general formula (2), R 2 is a linear or branched alkylene group having 1 to 14 carbon atoms, preferably a linear or branched alkylene group having 1 to 14 carbon atoms, and having 2 to 4 carbon atoms. The linear or branched alkylene group is more preferable.
 一般式(2)で示される繰り返し単位の具体例としては、
 -CHO-、-CHCHO-、-CHCH(CH)O-、-CHCH(C)O-、-CHC(CHO-、-CHCHCHCHO-等が挙げられる。ポリオキシアルキレン系重合体の主鎖骨格は、1種類だけの繰り返し単位からなってもよいし、2種類以上の繰り返し単位からなってもよい。
Specific examples of the repeating unit represented by the general formula (2) include
-CH 2 O -, - CH 2 CH 2 O -, - CH 2 CH (CH 3) O -, - CH 2 CH (C 2 H 5) O -, - CH 2 C (CH 3) 2 O-, —CH 2 CH 2 CH 2 CH 2 O— and the like can be mentioned. The main chain skeleton of the polyoxyalkylene polymer may be composed of only one type of repeating unit, or may be composed of two or more types of repeating units.
 ポリオキシアルキレン系重合体の合成法としては、例えば、KOHのようなアルカリ触媒による重合法、例えば、複金属シアン化物錯体触媒による重合法等が挙げられるが、特に限定されない。複金属シアン化物錯体触媒による重合法によれば数平均分子量6,000以上、Mw/Mnが1.6以下の高分子量で分子量分布が狭いポリオキシアルキレン系重合体を得ることができる。 Examples of the method for synthesizing the polyoxyalkylene polymer include, but are not limited to, a polymerization method using an alkali catalyst such as KOH, a polymerization method using a double metal cyanide complex catalyst, and the like. According to the polymerization method using a double metal cyanide complex catalyst, a polyoxyalkylene polymer having a number average molecular weight of 6,000 or more and a high molecular weight of Mw / Mn of 1.6 or less and a narrow molecular weight distribution can be obtained.
 ポリオキシアルキレン系重合体の主鎖骨格中にはウレタン結合成分等の他の成分を含んでいてもよい。ウレタン結合成分としては、例えば、トルエン(トリレン)ジイソシアネート、ジフェニルメタンジイソシアネート等の芳香族系ポリイソシアネート;イソフォロンジイソシアネート等の脂肪族系ポリイソシアネートと水酸基を有するポリオキシアルキレン系重合体との反応から得られる成分を挙げることができる。 The main chain skeleton of the polyoxyalkylene polymer may contain other components such as a urethane bond component. Examples of the urethane bond component are obtained from a reaction between an aromatic polyisocyanate such as toluene (tolylene) diisocyanate and diphenylmethane diisocyanate; an aliphatic polyisocyanate such as isophorone diisocyanate and a polyoxyalkylene polymer having a hydroxyl group. Ingredients can be mentioned.
 分子中に不飽和基、水酸基、エポキシ基、又はイソシアネート基等の官能基を有するポリオキシアルキレン系重合体に、この官能基に対して反応性を有する官能基、並びに架橋性ケイ素基、及び/又は光ラジカル重合性のビニル基を有する化合物を反応させることで、ポリオキシアルキレン系重合体へ架橋性ケイ素基、及び/又は光ラジカル重合性のビニル基を導入できる(以下、高分子反応法という)。 A polyoxyalkylene polymer having a functional group such as an unsaturated group, a hydroxyl group, an epoxy group, or an isocyanate group in the molecule, a functional group having reactivity with the functional group, a crosslinkable silicon group, and / or Alternatively, a crosslinkable silicon group and / or a photoradically polymerizable vinyl group can be introduced into a polyoxyalkylene polymer by reacting a compound having a photoradically polymerizable vinyl group (hereinafter referred to as a polymer reaction method). ).
 高分子反応法の具体例として、不飽和基含有ポリオキシアルキレン系重合体に架橋性ケイ素基を有するヒドロシランや、架橋性ケイ素基を有するメルカプト化合物を作用させてヒドロシリル化やメルカプト化し、架橋性ケイ素基を有するポリオキシアルキレン系重合体を得る方法を挙げることができる。不飽和基含有ポリオキシアルキレン系重合体は水酸基等の官能基を有する有機重合体に、この官能基に対して反応性を示す活性基及び不飽和基を有する有機化合物を反応させ、不飽和基を含有するポリオキシアルキレン系重合体を得ることができる。 As a specific example of the polymer reaction method, hydrosilylation or mercaptoization is carried out by reacting an unsaturated group-containing polyoxyalkylene polymer with a hydrosilane having a crosslinkable silicon group or a mercapto compound having a crosslinkable silicon group. Examples thereof include a method for obtaining a polyoxyalkylene polymer having a group. An unsaturated group-containing polyoxyalkylene-based polymer is obtained by reacting an organic polymer having a functional group such as a hydroxyl group with an organic compound having an active group and an unsaturated group that are reactive with the functional group. A polyoxyalkylene polymer containing can be obtained.
 また、高分子反応法の他の具体例として、末端に水酸基を有するポリオキシアルキレン系重合体とイソシアネート基、並びに架橋性ケイ素基及び/又は光ラジカル重合性のビニル基を有する化合物とを反応させる方法や、末端にイソシアネート基を有するポリオキシアルキレン系重合体と水酸基やアミノ基等の活性水素基、並びに架橋性ケイ素基及び/又は光ラジカル重合性のビニル基を有する化合物とを反応させる方法を挙げることができる。イソシアネート化合物を用いると、架橋性ケイ素基、及び/又は光ラジカル重合性のビニル基を有するポリオキシアルキレン系重合体を容易に得ることができる。 As another specific example of the polymer reaction method, a polyoxyalkylene polymer having a hydroxyl group at the terminal is reacted with an isocyanate group and a compound having a crosslinkable silicon group and / or a radically polymerizable vinyl group. And a method of reacting a polyoxyalkylene polymer having an isocyanate group at a terminal with a compound having an active hydrogen group such as a hydroxyl group or an amino group, and a crosslinkable silicon group and / or a photoradically polymerizable vinyl group. Can be mentioned. When an isocyanate compound is used, a polyoxyalkylene polymer having a crosslinkable silicon group and / or a photoradically polymerizable vinyl group can be easily obtained.
 架橋性ケイ素基、及び/又は光ラジカル重合性のビニル基を有するポリオキシアルキレン系重合体は、単独で使用しても、2種以上併用してもよい。 The polyoxyalkylene polymer having a crosslinkable silicon group and / or a radical photopolymerizable vinyl group may be used alone or in combination of two or more.
 飽和炭化水素系重合体は芳香環を除く他の炭素-炭素不飽和結合を実質的に含有しない重合体である。その骨格を形成する重合体は、(1)エチレン、プロピレン、1-ブテン、イソブチレン等の炭素数が2~6のオレフィン系化合物を主モノマーとして重合させるか、(2)ブタジエン、イソプレン等のジエン系化合物を単独重合させるか、あるいは、ジエン系化合物とオレフィン系化合物とを共重合させた後、水素添加する等の方法により得ることができる。イソブチレン系重合体や水添ポリブタジエン系重合体は、末端に官能基を導入しやすく、分子量を制御しやすく、また、末端官能基の数を多くすることができるので好ましく、イソブチレン系重合体が特に好ましい。主鎖骨格が飽和炭化水素系重合体である場合、耐熱性、耐候性、耐久性、及び湿気遮断性に優れる特徴を有する。 The saturated hydrocarbon polymer is a polymer that does not substantially contain other carbon-carbon unsaturated bonds other than aromatic rings. The polymer forming the skeleton is either (1) polymerizing an olefinic compound having 2 to 6 carbon atoms such as ethylene, propylene, 1-butene or isobutylene as a main monomer, or (2) a diene such as butadiene or isoprene. It can be obtained by homopolymerizing the system compound or by hydrogenating the diene compound and the olefin compound after copolymerization. The isobutylene polymer and the hydrogenated polybutadiene polymer are preferable because it is easy to introduce a functional group at the terminal, easily control the molecular weight, and can increase the number of terminal functional groups, and the isobutylene polymer is particularly preferable. preferable. When the main chain skeleton is a saturated hydrocarbon polymer, the main chain skeleton has characteristics of excellent heat resistance, weather resistance, durability, and moisture barrier properties.
 イソブチレン系重合体は、単量体単位の全てがイソブチレン単位から形成されていてもよいし、他単量体との共重合体でもよい。ゴム特性の面からは、イソブチレンに由来する繰り返し単位を50質量%以上含有する重合体が好ましく、80質量%以上含有する重合体がより好ましく、90~99質量%含有する重合体が特に好ましい。 In the isobutylene polymer, all of the monomer units may be formed from isobutylene units, or may be a copolymer with other monomers. From the viewpoint of rubber properties, a polymer containing 50% by mass or more of repeating units derived from isobutylene is preferred, a polymer containing 80% by mass or more is more preferred, and a polymer containing 90 to 99% by mass is particularly preferred.
 飽和炭化水素系重合体の合成法としては、各種重合方法が挙げられる。特に、様々なリビング重合が開発されている。飽和炭化水素系重合体、特にイソブチレン系重合体の場合、Kennedyらによって見出されたイニファー重合(J. P. Kennedyら、J. Polymer Sci., Polymer Chem. Ed. 1997年、15巻、2843頁)により容易に製造できる。この重合法によれば、分子量500~100,000程度の重合体を、分子量分布1.5以下で重合でき、分子末端に各種官能基を導入できる。 As a method for synthesizing a saturated hydrocarbon polymer, various polymerization methods may be mentioned. In particular, various living polymerizations have been developed. In the case of saturated hydrocarbon polymers, particularly isobutylene polymers, the inifer polymerization found by Kennedy et al. (J. P. Kennedy et al., J. Polymer Sci., Polymer Chem. Page). According to this polymerization method, a polymer having a molecular weight of about 500 to 100,000 can be polymerized with a molecular weight distribution of 1.5 or less, and various functional groups can be introduced at the molecular ends.
 架橋性ケイ素基、及び/又は光ラジカル重合性のビニル基を有する飽和炭化水素系重合体の製法としては、例えば、安定な炭素陽イオンを生成する有機ハロゲン化合物とフリーデルクラフツ酸触媒との組合せを共重合開始剤として用いるカチオン重合法が挙げられる。一例として、特公平4-69659号に開示されているイニファー法が挙げられる。 Examples of a method for producing a saturated hydrocarbon polymer having a crosslinkable silicon group and / or a photoradically polymerizable vinyl group include, for example, a combination of an organic halogen compound that generates a stable carbon cation and a Friedelcraft acid catalyst. And cationic polymerization method using as a copolymerization initiator. An example is the inifer method disclosed in Japanese Patent Publication No. 4-69659.
 架橋性ケイ素基、及び/又は光ラジカル重合性のビニル基を有する飽和炭化水素系重合体は、単独で使用しても2種以上併用してもよい。 The saturated hydrocarbon polymer having a crosslinkable silicon group and / or a radical photopolymerizable vinyl group may be used alone or in combination of two or more.
 (メタ)アクリル酸エステル系重合体の主鎖を構成する(メタ)アクリル酸エステル系モノマーとしては、各種のモノマーを用いることができる。例えば、アクリル酸等の(メタ)アクリル酸系モノマー;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ステアリル等の(メタ)アクリル酸アルキルエステル系モノマー;脂環式(メタ)アクリル酸エステル系モノマー;芳香族(メタ)アクリル酸エステル系モノマー;(メタ)アクリル酸2-メトキシエチル等の(メタ)アクリル酸エステル系モノマー;γ-(メタクリロイルオキシプロピル)トリメトキシシラン、γ-(メタクリロイルオキシプロピル)ジメトキシメチルシラン等のシリル基含有(メタ)アクリル酸エステル系モノマー;(メタ)アクリル酸の誘導体;フッ素含有(メタ)アクリル酸エステル系モノマー等が挙げられる。 Various monomers can be used as the (meth) acrylic acid ester monomer constituting the main chain of the (meth) acrylic acid ester polymer. For example, (meth) acrylic acid monomers such as acrylic acid; methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, (meth) acrylic (Meth) acrylic acid alkyl ester monomers such as stearyl acid; alicyclic (meth) acrylic acid ester monomers; aromatic (meth) acrylic acid ester monomers; (meth) acrylic acid 2-methoxyethyl (meth) ) Acrylic acid ester monomers; silyl group-containing (meth) acrylic acid ester monomers such as γ- (methacryloyloxypropyl) trimethoxysilane, γ- (methacryloyloxypropyl) dimethoxymethylsilane; (meth) acrylic acid derivatives; Fluorine-containing (meth) acrylic acid ester monomers It is.
 (メタ)アクリル酸エステル系重合体では、(メタ)アクリル酸エステル系モノマーと共に、以下のビニル系モノマーを共重合することもできる。ビニル系モノマーを例示すると、スチレン、無水マレイン酸、酢酸ビニル等が挙げられる。また、単量体単位(以下、他の単量体単位とも称する)として、これら以外にアクリル酸、グリシジルアクリレートを含有してもよい。 In the (meth) acrylate polymer, the following vinyl monomers can be copolymerized with the (meth) acrylate monomer. Examples of vinyl monomers include styrene, maleic anhydride, vinyl acetate and the like. In addition to these, acrylic acid and glycidyl acrylate may be contained as monomer units (hereinafter also referred to as other monomer units).
 これらは、単独で用いても、複数を共重合させてもよい。生成物の物性等から、(メタ)アクリル酸系モノマーからなる重合体が好ましい。また、1種又は2種以上の(メタ)アクリル酸アルキルエステルモノマーを用い、必要に応じて他の(メタ)アクリル酸モノマーを併用した(メタ)アクリル酸エステル系重合体がより好ましい。更に、シリル基含有(メタ)アクリル酸エステル系モノマーを併用することで、(メタ)アクリル酸エステル系重合体(A)中のケイ素基の数を制御できる。接着性が良いことからメタクリル酸エステルモノマーからなるメタクリル酸エステル系重合体が特に好ましい。また、低粘度化、柔軟性の付与、粘着性の付与をする場合、アクリル酸エステルモノマーを適時用いることが好適である。なお、本実施形態において、(メタ)アクリル酸とは、アクリル酸及び/又はメタクリル酸を表す。 These may be used alone or may be copolymerized. From the physical properties of the product, a polymer composed of a (meth) acrylic acid monomer is preferred. Moreover, the (meth) acrylic acid ester type polymer which used the 1 type (s) or 2 or more types (meth) acrylic-acid alkylester monomer and used together with the other (meth) acrylic acid monomer as needed is more preferable. Furthermore, the number of silicon groups in the (meth) acrylic acid ester polymer (A) can be controlled by using a silyl group-containing (meth) acrylic acid ester monomer in combination. A methacrylic acid ester polymer comprising a methacrylic acid ester monomer is particularly preferred because of its good adhesion. In addition, when the viscosity is reduced, the flexibility is imparted, and the tackiness is imparted, it is preferable to use an acrylate monomer as appropriate. In the present embodiment, (meth) acrylic acid represents acrylic acid and / or methacrylic acid.
 (メタ)アクリル酸エステル系重合体の製造方法は、特に限定されず、例えば、ラジカル重合反応を用いたラジカル重合法を用いることができる。ラジカル重合法としては、重合開始剤を用いて所定の単量体単位を共重合させるラジカル重合法(フリーラジカル重合法)や、末端等の制御された位置に反応性シリル基及び/又は光ラジカル重合性のビニル基を導入できる制御ラジカル重合法が挙げられる。ただし、重合開始剤としてアゾ系化合物、過酸化物等を用いるフリーラジカル重合法で得られる重合体は、分子量分布の値が一般に2以上と大きく、粘度が高くなる。したがって、分子量分布が狭く、粘度の低い(メタ)アクリル酸エステル系重合体であって、高い割合で分子鎖末端に架橋性官能基を有する(メタ)アクリル酸エステル系重合体を得るためには、制御ラジカル重合法を用いることが好適である。 The method for producing the (meth) acrylate polymer is not particularly limited, and for example, a radical polymerization method using a radical polymerization reaction can be used. As the radical polymerization method, a radical polymerization method (free radical polymerization method) in which a predetermined monomer unit is copolymerized using a polymerization initiator, a reactive silyl group and / or a photo radical at a controlled position such as a terminal, etc. Examples thereof include a controlled radical polymerization method capable of introducing a polymerizable vinyl group. However, a polymer obtained by a free radical polymerization method using an azo compound, a peroxide or the like as a polymerization initiator generally has a large molecular weight distribution value of 2 or more and a high viscosity. Therefore, in order to obtain a (meth) acrylate polymer having a narrow molecular weight distribution and low viscosity and having a crosslinkable functional group at the molecular chain terminal at a high rate It is preferable to use a controlled radical polymerization method.
 制御ラジカル重合法としては、特定の官能基を有する連鎖移動剤を用いたフリーラジカル重合法やリビングラジカル重合法が挙げられ、付加-開裂移動反応(Reversible Addition-Fragmentation chain Transfer;RAFT)重合法、遷移金属錯体を用いたラジカル重合法(Transition-Metal-Mediated Living Radical Polymerization)等のリビングラジカル重合法がより好ましい。また、反応性シリル基を有するチオール化合物を用いた反応や、反応性シリル基を有するチオール化合物及びメタロセン化合物を用いた反応も好適である。 Examples of the controlled radical polymerization method include free radical polymerization method and living radical polymerization method using a chain transfer agent having a specific functional group, such as an addition-cleavage transfer reaction (RAFT) polymerization method, Living radical polymerization methods such as a radical polymerization method using a transition metal complex (Transition-Metal-Mediated Living Radical Polymerization) are more preferable. Further, a reaction using a thiol compound having a reactive silyl group and a reaction using a thiol compound having a reactive silyl group and a metallocene compound are also suitable.
 架橋性ケイ素基、及び/又は光ラジカル重合性のビニル基を有する(メタ)アクリル酸エステル系重合体は、単独で用いても、2種以上併用してもよい。 The (meth) acrylic acid ester polymer having a crosslinkable silicon group and / or a radically polymerizable vinyl group may be used alone or in combination of two or more.
 これらの架橋性ケイ素基、及び/又は光ラジカル重合性のビニル基を有する有機重合体は、単独で用いても、2種以上併用してもよい。具体的には、架橋性ケイ素基及び/又は光ラジカル重合性のビニル基を有するポリオキシアルキレン系重合体、架橋性ケイ素基及び/又は光ラジカル重合性のビニル基を有する飽和炭化水素系重合体、並びに架橋性ケイ素基及び/又は光ラジカル重合性のビニル基を有する(メタ)アクリル酸エステル系重合体からなる群から選択される2種以上をブレンドした有機重合体も用いることができる。 These organic polymers having a crosslinkable silicon group and / or a radical photopolymerizable vinyl group may be used alone or in combination of two or more. Specifically, a polyoxyalkylene polymer having a crosslinkable silicon group and / or a photoradically polymerizable vinyl group, and a saturated hydrocarbon polymer having a crosslinkable silicon group and / or a photoradically polymerizable vinyl group In addition, an organic polymer obtained by blending two or more selected from the group consisting of a (meth) acrylic acid ester-based polymer having a crosslinkable silicon group and / or a radically polymerizable vinyl group can also be used.
 架橋性ケイ素基を有するポリオキシアルキレン系重合体と架橋性ケイ素基を有する(メタ)アクリル酸エステル系重合体とをブレンドした有機重合体の製造方法としては、様々な方法が挙げられる。例えば、架橋性ケイ素基を有し、分子鎖が実質的に、一般式(3):
 -CH-C(R)(COOR)- ・・・(3)
(式中、Rは水素原子又はメチル基、Rは炭素数が1~5のアルキル基を示す)で表される(メタ)アクリル酸エステル単量体単位と、一般式(4):
 -CH-C(R)(COOR)- ・・・(4)
(式中、Rは前記に同じ、Rは炭素数が6以上のアルキル基を示す)で表される(メタ)アクリル酸エステル単量体単位からなる共重合体に、架橋性ケイ素基を有するポリオキシアルキレン系重合体をブレンドして製造する方法が挙げられる。
There are various methods for producing an organic polymer obtained by blending a polyoxyalkylene polymer having a crosslinkable silicon group and a (meth) acrylic acid ester polymer having a crosslinkable silicon group. For example, it has a crosslinkable silicon group and the molecular chain is substantially the general formula (3):
—CH 2 —C (R 3 ) (COOR 4 ) — (3)
(Wherein R 3 represents a hydrogen atom or a methyl group, and R 4 represents an alkyl group having 1 to 5 carbon atoms) and a general formula (4):
—CH 2 —C (R 3 ) (COOR 5 ) — (4)
(Wherein R 3 is the same as described above, and R 5 represents an alkyl group having 6 or more carbon atoms) A copolymer composed of a (meth) acrylic acid ester monomer unit is represented by a crosslinkable silicon group And a method of blending and producing a polyoxyalkylene-based polymer having.
 一般式(3)のRとしては、例えば、メチル基、エチル基、プロピル基、n-ブチル基、t-ブチル基等の炭素数が1~5、好ましくは炭素数が1~4、更に好ましくは炭素数が1~2のアルキル基が挙げられる。なお、Rのアルキル基は単独でもよく、2種以上混合していてもよい。 As R 4 in the general formula (3), for example, a methyl group, an ethyl group, a propyl group, an n-butyl group, a t-butyl group and the like have 1 to 5 carbon atoms, preferably 1 to 4 carbon atoms, An alkyl group having 1 to 2 carbon atoms is preferable. The alkyl group of R 4 may alone, or may be a mixture of two or more.
 一般式(4)のRとしては、例えば、2-エチルヘキシル基、ラウリル基、ステアリル基等の炭素数が6以上、通常は炭素数が7~30、好ましくは炭素数が8~20の長鎖のアルキル基が挙げられる。なお、Rのアルキル基はRの場合と同様、単独でも2種以上混合してもよい。 R 5 in the general formula (4) is, for example, a long group having 6 or more carbon atoms such as 2-ethylhexyl group, lauryl group or stearyl group, usually 7 to 30 carbon atoms, preferably 8 to 20 carbon atoms. Chain alkyl groups. The alkyl group of R 5 is as in the case of R 4, may be alone or in admixture.
 (メタ)アクリル酸エステル系共重合体の分子鎖は実質的に式(3)及び式(4)の単量体単位からなる。ここで、「実質的に」とは、共重合体中に存在する式(3)及び式(4)の単量体単位の合計が50質量%を越えることを意味する。式(3)及び式(4)の単量体単位の合計は好ましくは70質量%以上である。また式(3)の単量体単位と式(4)の単量体単位との存在比は、質量比で95:5~40:60が好ましく、90:10~60:40が更に好ましい。 The molecular chain of the (meth) acrylic acid ester copolymer is substantially composed of monomer units of the formulas (3) and (4). Here, “substantially” means that the total of the monomer units of the formula (3) and the formula (4) present in the copolymer exceeds 50% by mass. The total of the monomer units of the formula (3) and the formula (4) is preferably 70% by mass or more. The abundance ratio of the monomer unit of the formula (3) and the monomer unit of the formula (4) is preferably 95: 5 to 40:60, and more preferably 90:10 to 60:40 by mass ratio.
 架橋性ケイ素基を有するポリオキシアルキレン系重合体と架橋性ケイ素基を有する(メタ)アクリル酸エステル系重合体とをブレンドした有機重合体の製造方法に用いられる架橋性ケイ素基を有する(メタ)アクリル酸エステル系重合体として、例えば、架橋性ケイ素基を有し、分子鎖が実質的に(1)炭素数が1~8のアルキル基を有する(メタ)アクリル酸アルキルエステル単量体単位と、(2)炭素数が10以上のアルキル基を有する(メタ)アクリル酸アルキルエステル単量体単位とを含有する(メタ)アクリル酸エステル系共重合体等の(メタ)アクリル酸エステル系共重合体も用いることができる。 (Meth) having a crosslinkable silicon group used in a method for producing an organic polymer obtained by blending a polyoxyalkylene polymer having a crosslinkable silicon group with a (meth) acrylic acid ester polymer having a crosslinkable silicon group Examples of the acrylate polymer include, for example, a (meth) acrylic acid alkyl ester monomer unit having a crosslinkable silicon group and a molecular chain substantially having (1) an alkyl group having 1 to 8 carbon atoms. (2) (meth) acrylic acid ester-based copolymers such as (meth) acrylic acid ester-based copolymers containing (meth) acrylic acid alkyl ester monomer units having an alkyl group having 10 or more carbon atoms Coalescence can also be used.
 (メタ)アクリル酸エステル系重合体の数平均分子量は、600~10,000が好ましく、600~5,000がより好ましく、1,000~4,500が更に好ましい。数平均分子量をこの範囲とすることにより、架橋性ケイ素基を有するポリオキシアルキレン系重合体との相溶性が向上する。(メタ)アクリル酸エステル系重合体は、単独で用いても、2種以上併用してもよい。架橋性ケイ素基を有するポリオキシアルキレン系重合体と架橋性ケイ素基を有する(メタ)アクリル酸エステル系重合体との配合比には特に制限はないが、(メタ)アクリル酸エステル系重合体とポリオキシアルキレン系重合体との合計100質量部に対して、(メタ)アクリル酸エステル系重合体が10~60質量部の範囲内であることが好ましく、より好ましくは20~50質量部の範囲内であり、更に好ましくは25~45質量部の範囲内である。(メタ)アクリル酸エステル系重合体が60質量部より多いと粘度が高くなり、作業性が悪化するため好ましくない。 The number average molecular weight of the (meth) acrylic acid ester polymer is preferably 600 to 10,000, more preferably 600 to 5,000, and still more preferably 1,000 to 4,500. By setting the number average molecular weight within this range, compatibility with the polyoxyalkylene polymer having a crosslinkable silicon group is improved. The (meth) acrylic acid ester polymer may be used alone or in combination of two or more. The compounding ratio of the polyoxyalkylene polymer having a crosslinkable silicon group and the (meth) acrylic acid ester polymer having a crosslinkable silicon group is not particularly limited, but the (meth) acrylic acid ester polymer and The (meth) acrylic acid ester polymer is preferably in the range of 10 to 60 parts by mass, more preferably in the range of 20 to 50 parts by mass with respect to 100 parts by mass in total with the polyoxyalkylene polymer. More preferably, it is in the range of 25 to 45 parts by mass. When the amount of the (meth) acrylic acid ester polymer is more than 60 parts by mass, the viscosity becomes high and workability deteriorates, which is not preferable.
 更に、架橋性ケイ素基を有する(メタ)アクリル酸エステル系共重合体をブレンドして得られる有機重合体の製造方法としては、他にも、架橋性ケイ素基を有する有機重合体の存在下で(メタ)アクリル酸エステル系単量体を重合する方法を利用できる。 Furthermore, as a method for producing an organic polymer obtained by blending a (meth) acrylic acid ester-based copolymer having a crosslinkable silicon group, in addition, in the presence of an organic polymer having a crosslinkable silicon group, A method of polymerizing a (meth) acrylic acid ester monomer can be used.
[(B)光塩基発生剤]
 光塩基発生剤(B)は、光を照射すると(A)架橋性ケイ素基含有有機重合体の硬化触媒として作用する。光塩基発生剤(B)は、紫外線、電子線、X線、赤外線、及び可視光線等の活性エネルギー線の作用により塩基及び/又はラジカルを発生する。(1)紫外線・可視光・赤外線等の活性エネルギー線の照射により脱炭酸して分解する有機酸と塩基の塩、(2)分子内求核置換反応や転位反応等により分解してアミン類を放出する化合物、若しくは(3)紫外線・可視光・赤外線等のエネルギー線の照射により所定の化学反応を起こして塩基を放出する化合物等の公知の光塩基発生剤(B)を用いることができる。光塩基発生剤(B)から発生する塩基が(A)成分を硬化させる機能を有する。
[(B) Photobase generator]
When irradiated with light, the photobase generator (B) acts as a curing catalyst for the (A) crosslinkable silicon group-containing organic polymer. The photobase generator (B) generates bases and / or radicals by the action of active energy rays such as ultraviolet rays, electron beams, X-rays, infrared rays, and visible rays. (1) Salts of organic acids and bases that are decarboxylated and decomposed by irradiation with active energy rays such as ultraviolet rays, visible light, and infrared rays. (2) Decomposed amines by decomposition by intramolecular nucleophilic substitution reaction or rearrangement reaction. A known photobase generator (B) such as a compound to be released or (3) a compound that causes a predetermined chemical reaction to emit a base upon irradiation with energy rays such as ultraviolet rays, visible light, and infrared rays can be used. The base generated from the photobase generator (B) has a function of curing the component (A).
 光塩基発生剤(B)から発生する塩基としては、例えば、アミン化合物等の有機塩基が好ましく、例として、WO2015-088021号公報記載の第1級アルキルアミン類、第1級芳香族アミン類、第2級アルキルアミン類、2級アミノ基及び3級アミノ基を有するアミン類、第3級アルキルアミン類、第3級複素環式アミン、第3級芳香族アミン類、アミジン類、ホスファゼン誘導体が挙げられる。このうち、第3級アミノ基を有するアミン化合物が好ましく、強塩基であるアミジン類、ホスファゼン誘導体がより好ましい。アミジン類は非環状アミジン類及び環式アミジン類のいずれも用いることができ、環式アミジン類がより好ましい。これら塩基は単独で用いても、2種以上組み合わせてもよい。 As the base generated from the photobase generator (B), for example, an organic base such as an amine compound is preferable. Examples thereof include primary alkylamines, primary aromatic amines described in WO2015-088021, Secondary alkyl amines, amines having secondary amino groups and tertiary amino groups, tertiary alkyl amines, tertiary heterocyclic amines, tertiary aromatic amines, amidines, phosphazene derivatives Can be mentioned. Of these, amine compounds having a tertiary amino group are preferred, and amidines and phosphazene derivatives which are strong bases are more preferred. As the amidines, both acyclic amidines and cyclic amidines can be used, and cyclic amidines are more preferable. These bases may be used alone or in combination of two or more.
 非環状アミジン類としては、例えば、WO2015-088021号公報記載のグアニジン系化合物、ビグアニド系化合物等が挙げられる。また、非環状アミジン化合物の中でも、例えば、WO2015-088021号公報記載のアリール置換グアニジン系化合物、若しくはアリール置換ビグアニド系化合物を発生する光塩基発生剤は、重合体(A)の触媒として用いた場合、表面の硬化性が良好となる傾向を示すこと、得られる硬化物の接着性が良好となる傾向を示すこと等から好ましい。 Examples of non-cyclic amidines include guanidine compounds and biguanide compounds described in WO2015-088021. Among the non-cyclic amidine compounds, for example, a photobase generator for generating an aryl-substituted guanidine compound or an aryl-substituted biguanide compound described in WO2015-088021 is used as a catalyst for the polymer (A). It is preferable because it shows a tendency to improve the curability of the surface, and a tendency to improve the adhesion of the resulting cured product.
 環式アミジン類としては、例えば、WO2015-088021号公報記載の環式グアニジン系化合物、イミダゾリン系化合物、イミダゾール系化合物、テトラヒドロピリミジン系化合物、トリアザビシクロアルケン系化合物、ジアザビシクロアルケン系化合物が挙げられる。 Examples of cyclic amidines include cyclic guanidine compounds, imidazoline compounds, imidazole compounds, tetrahydropyrimidine compounds, triazabicycloalkene compounds, and diazabicycloalkene compounds described in WO2015-088021. It is done.
 環式アミジン類のうち、工業的に入手が容易である点や、共役酸のpKa値が12以上であり、高い触媒活性を示す点から、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)、1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)が特に好適である。 Among the cyclic amidines, 1,8-diazabicyclo [5.4.0] undecene is known because it is easily available industrially, and has a pKa value of 12 or more for the conjugate acid and exhibits high catalytic activity. -7 (DBU) and 1,5-diazabicyclo [4.3.0] nonene-5 (DBN) are particularly preferred.
 光塩基発生剤(B)としては、様々な光塩基発生剤を用いることができる。活性エネルギー線の作用によりアミン化合物を発生する光潜在性アミン化合物が好ましい。光潜在性アミン化合物としては、活性エネルギー線の作用により第1級アミノ基を有するアミン化合物を発生する光潜在性第1級アミン、活性エネルギー線の作用により第2級アミノ基を有するアミン化合物を発生する光潜在性第2級アミン、及び活性エネルギー線の作用により第3級アミノ基を有するアミン化合物を発生する光潜在性第3級アミンのいずれも用いることができる。発生塩基が高い触媒活性を示す点からは、光潜在性第3級アミンがより好適である。 As the photobase generator (B), various photobase generators can be used. Photolatent amine compounds that generate amine compounds by the action of active energy rays are preferred. The photolatent amine compound includes a photolatent primary amine that generates an amine compound having a primary amino group by the action of active energy rays, and an amine compound having a secondary amino group by the action of active energy rays. Any of the photolatent secondary amine that is generated and the photolatent tertiary amine that generates an amine compound having a tertiary amino group by the action of active energy rays can be used. In view of the high catalytic activity of the generated base, a photolatent tertiary amine is more preferable.
 光潜在性第1級アミン及び光潜在性第2級アミンとしては、例えば、WO2015/088021号公報記載のオルトニトロベンジルウレタン系化合物;ジメトキシベンジルウレタン系化合物;カルバミン酸ベンゾイン類;o-アシルオキシム類;o-カルバモイルオキシム類;N-ヒドロキシイミドカルバマート類;ホルムアニリド誘導体;芳香族スルホンアミド類;コバルトアミン錯体等が挙げられる。 Examples of photolatent primary amines and photolatent secondary amines include orthonitrobenzylurethane compounds described in WO2015 / 088021, dimethoxybenzylurethane compounds, benzoins carbamates, o-acyloximes O-carbamoyl oximes; N-hydroxyimide carbamates; formanilide derivatives; aromatic sulfonamides; cobalt amine complexes and the like.
 光潜在性第3級アミンとしては、例えば、WO2015-088021号公報記載のα-アミノケトン誘導体、α-アンモニウムケトン誘導体、ベンジルアミン誘導体、ベンジルアンモニウム塩誘導体、α-アミノアルケン誘導体、α-アンモニウムアルケン誘導体、アミンイミド類、光によりアミジンを発生するベンジルオキシカルボニルアミン誘導体、及びカルボン酸と3級アミンとの塩等が挙げられる。 Examples of photolatent tertiary amines include α-aminoketone derivatives, α-ammonium ketone derivatives, benzylamine derivatives, benzylammonium salt derivatives, α-aminoalkene derivatives, α-ammonium alkene derivatives described in WO2015-088021. Amine imides, benzyloxycarbonylamine derivatives that generate amidine by light, and salts of carboxylic acids and tertiary amines.
 α-アミノケトン化合物としては、例えば、5-ナフトイルメチル-1,5-ジアザビシクロ〔4.3.0〕ノナン、5-(4’-ニトロ)フェナシル-1,5-ジアザビシクロ〔4.3.0〕ノナン等のアミジン類を発生するα-アミノケトン化合物、4-(メチルチオベンゾイル)-1-メチル-1-モルホリノエタン(イルガキュア907)、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン(イルガキュア369)、2-(4-メチルベンジル)-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン(イルガキュア379)等の一個の窒素原子で構成される第3級アミン基を有する第3級アミン類を発生するα-アミノケトン化合物が挙げられる。 Examples of the α-aminoketone compound include 5-naphthoylmethyl-1,5-diazabicyclo [4.3.0] nonane, 5- (4′-nitro) phenacyl-1,5-diazabicyclo [4.3.0]. Α-aminoketone compounds that generate amidines such as nonane, 4- (methylthiobenzoyl) -1-methyl-1-morpholinoethane (Irgacure 907), 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) ) -Butanone (Irgacure 369), 2- (4-methylbenzyl) -2-dimethylamino-1- (4-morpholinophenyl) -butanone (Irgacure 379), etc., a tertiary amine composed of one nitrogen atom And α-aminoketone compounds that generate tertiary amines having a group.
 α-アンモニウムケトン誘導体としては、例えば、1-ナフトイルメチル-(1-アゾニア-4-アザビシクロ[2,2,2]-オクタン)テトラフェニルボレート、5-(4’-ニトロ)フェナシル-(5-アゾニア-1-アザビシクロ[4.3.0]-5-ノネン)テトラフェニルボレート等が挙げられる。 Examples of α-ammonium ketone derivatives include 1-naphthoylmethyl- (1-azonia-4-azabicyclo [2,2,2] -octane) tetraphenylborate, 5- (4′-nitro) phenacyl- (5 -Azonia-1-azabicyclo [4.3.0] -5-nonene) tetraphenylborate and the like.
 ベンジルアミン誘導体としては、例えば、5-ベンジル-1,5-ジアザビシクロ〔4.3.0〕ノナン、5-(アントラセン-9-イル-メチル)-1,5-ジアザビシクロ〔4.3.0〕ノナン、5-(ナフト-2-イル-メチル)-1,5-ジアザビシクロ〔4.3.0〕ノナン等のベンジルアミン誘導体等が挙げられる。 Examples of the benzylamine derivative include 5-benzyl-1,5-diazabicyclo [4.3.0] nonane, 5- (anthracen-9-yl-methyl) -1,5-diazabicyclo [4.3.0]. Nonane, benzylamine derivatives such as 5- (naphth-2-yl-methyl) -1,5-diazabicyclo [4.3.0] nonane, and the like.
 ベンジルアンモニウム塩誘導体としては、例えば、(9-アントリル)メチル1-アザビシクロ〔2.2.2〕オクタニウムテトラフェニルボレート、5-(9-アントリルメチル)-1,5-ジアザビシクロ〔4.3.0〕-5-ノネニウムテトラフェニルボレート等が挙げられる。 Examples of the benzylammonium salt derivative include (9-anthryl) methyl 1-azabicyclo [2.2.2] octanium tetraphenylborate, 5- (9-anthrylmethyl) -1,5-diazabicyclo [4.3. .0] -5-nonenium tetraphenylborate and the like.
 α-アミノアルケン誘導体としては、例えば、5-(2’-(2”-ナフチル)アリル)-1,5-ジアザビシクロ〔4.3.0〕ノナン等が挙げられる。 Examples of the α-aminoalkene derivative include 5- (2 ′-(2 ″ -naphthyl) allyl) -1,5-diazabicyclo [4.3.0] nonane.
 α-アンモニウムアルケン誘導体としては、例えば、1-(2’-フェニルアリル)-(1-アゾニア-4-アザビシクロ[2,2,2]-オクタン)テトラフェニルボレート等が挙げられる。 Examples of the α-ammonium alkene derivative include 1- (2′-phenylallyl)-(1-azonia-4-azabicyclo [2,2,2] -octane) tetraphenylborate.
 光によりアミジンを発生するベンジルオキシカルボニルアミン誘導体としては、WO2015-088021号公報記載のベンジルオキシカルボニルイミダゾール類、ベンジルオキシカルボニルグアニジン類、ジアミン誘導体等が挙げられる。 Examples of benzyloxycarbonylamine derivatives that generate amidine by light include benzyloxycarbonylimidazoles, benzyloxycarbonylguanidines, diamine derivatives, and the like described in WO2015-088021.
 カルボン酸と3級アミンとの塩としては、WO2015-088021号公報記載のα-ケトカルボン酸アンモニウム塩、及びカルボン酸アンモニウム塩等が挙げられる。 Examples of the salt of carboxylic acid and tertiary amine include ammonium α-ketocarboxylic acid and ammonium carboxylate described in WO2015-088021.
 光塩基発生剤(B)の中でも、発生塩基が高い触媒活性を示す点から光潜在性第3級アミンが好ましく、塩基の発生効率が高いこと及び組成物としての貯蔵安定性が良いこと等から、ベンジルアンモニウム塩誘導体、ベンジル置換アミン誘導体、α-アミノケトン誘導体、α-アンモニウムケトン誘導体が好ましい。特に、塩基の発生効率がより良いことから、α-アミノケトン誘導体、α-アンモニウムケトン誘導体がより好ましく、配合物に対する溶解性よりα-アミノケトン誘導体がより好ましい。α-アミノケトン誘導体の中でも発生塩基の塩基性の強さよりアミジン類を発生するα-アミノケトン化合物がよく、入手のしやすさより一個の窒素原子で構成される第3級アミン基を有する第3級アミン類を発生するα-アミノケトン化合物が挙げられる。 Among the photobase generators (B), a photolatent tertiary amine is preferable from the viewpoint that the generated base exhibits a high catalytic activity, and the base generation efficiency is high and the storage stability as a composition is good. , Benzylammonium salt derivatives, benzyl-substituted amine derivatives, α-aminoketone derivatives, α-ammonium ketone derivatives are preferred. In particular, α-aminoketone derivatives and α-ammonium ketone derivatives are more preferable due to better base generation efficiency, and α-aminoketone derivatives are more preferable than the solubility in the blend. Among α-aminoketone derivatives, α-aminoketone compounds that generate amidines based on the basic strength of the generated base are preferred, and tertiary amines having a tertiary amine group composed of one nitrogen atom are more readily available. And α-aminoketone compounds that generate aldehydes.
 これら光塩基発生剤(B)は単独で用いても、2種以上組み合わせて用いてもよい。光塩基発生剤(B)の配合割合は特に制限はないが、(A)架橋性ケイ素基含有有機重合体100質量部に対して、0.01~50質量部が好ましく、0.1~40質量部がより好ましく、0.5~30質量部が更に好ましい。 These photobase generators (B) may be used alone or in combination of two or more. The blending ratio of the photobase generator (B) is not particularly limited, but is preferably 0.01 to 50 parts by weight, and preferably 0.1 to 40 parts by weight with respect to 100 parts by weight of the (A) crosslinkable silicon group-containing organic polymer. Part by mass is more preferable, and 0.5 to 30 parts by mass is even more preferable.
[(C1)Si-F結合を有するケイ素化合物]
 (C1)Si-F結合を有するケイ素化合物は(A)架橋性ケイ素基含有有機重合体の硬化触媒として作用する。(C1)Si-F結合を有するケイ素化合物としては、Si-F結合を有するケイ素基(以下、フルオロシリル基と称することがある)を含む様々な化合物を用いることができ、特に制限はなく、低分子化合物及び高分子化合物のいずれも用いることができる。フルオロシリル基を有する有機ケイ素化合物が好ましく、フルオロシリル基を有する有機重合体が、安全性が高くより好適である。また、配合物が低粘度となる点からフルオロシリル基を有する低分子有機ケイ素化合物が好ましい。
[(C1) silicon compound having Si—F bond]
(C1) The silicon compound having a Si—F bond acts as a curing catalyst for the (A) crosslinkable silicon group-containing organic polymer. (C1) As the silicon compound having a Si—F bond, various compounds containing a silicon group having a Si—F bond (hereinafter sometimes referred to as a fluorosilyl group) can be used, and there is no particular limitation. Either a low molecular compound or a high molecular compound can be used. An organosilicon compound having a fluorosilyl group is preferable, and an organic polymer having a fluorosilyl group is more preferable because of high safety. Moreover, the low molecular organosilicon compound which has a fluoro silyl group from the point from which a compound becomes low viscosity is preferable.
 (C1)Si-F結合を有するケイ素化合物としては、具体的には、式(5)で示されるWO2015-088021号公報に記載のフルオロシラン類、式(6)で示されるWO2015-088021号公報に記載のフルオロシリル基を有する化合物(以下、フッ素化化合物とも称する)、及びWO2015-088021号公報に記載のフルオロシリル基を有する有機重合体(以下、フッ素化ポリマーとも称する)等が好適な例として挙げられる。 Specific examples of (C1) silicon compounds having a Si—F bond include fluorosilanes described in WO2015-088021 represented by formula (5), and WO2015-088021 represented by formula (6). Preferred examples include compounds having a fluorosilyl group described below (hereinafter also referred to as fluorinated compounds) and organic polymers having a fluorosilyl group described below in WO2015-088021 (hereinafter also referred to as fluorinated polymers). As mentioned.
 R 4-dSiF ・・・(5)
(式(5)において、Rはそれぞれ独立して、置換若しくは非置換の炭素数が1~20の炭化水素基、又はRSiO-(Rはそれぞれ独立に、炭素数が1~20の置換若しくは非置換の炭化水素基、又はフッ素原子である)で示されるオルガノシロキシ基のいずれかを示す。dは1~3のいずれかであり、dが3であることが好ましい。R及びRが複数存在する場合、それらは同一でも異なっていてもよい。)
R 6 4-d SiF d (5)
(In Formula (5), each R 6 is independently a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms, or R 7 SiO— (R 7 is each independently having 1 to 20 carbon atoms) Or a substituted or unsubstituted hydrocarbon group, or a fluorine atom), d is any one of 1 to 3, and d is preferably 3. R 6 And a plurality of R 7 may be the same or different.)
 -SiF  ・・・(6)
(式(6)中、R及びdはそれぞれ式(5)と同一であり、Zはそれぞれ独立して水酸基又はフッ素を除く他の加水分解性基であり、eは0~2のいずれかであり、fは0~2のいずれかであり、d+e+fは3である。R、R及びZが複数存在する場合、それらは同一でも異なっていてもよい。)
-SiF d R 6 e Z f (6)
(In Formula (6), R 6 and d are the same as those in Formula (5), Z is each independently a hydroxyl group or other hydrolyzable group excluding fluorine, and e is any one of 0 to 2) F is any one of 0 to 2, and d + e + f is 3. When a plurality of R 6 , R 7 and Z are present, they may be the same or different.
 式(5)で示されるフルオロシラン類としては、式(5)で示されるフルオロシラン類が挙げられる。例えば、フルオロジメチルフェニルシラン、ビニルトリフルオロシラン、γ-メタクリロキシプロピルトリフルオロシラン、オクタデシルトリフルオロシラン等が挙げられる。 Examples of the fluorosilanes represented by the formula (5) include fluorosilanes represented by the formula (5). Examples thereof include fluorodimethylphenylsilane, vinyl trifluorosilane, γ-methacryloxypropyl trifluorosilane, octadecyl trifluorosilane, and the like.
 式(6)で示されるフルオロシリル基を有する化合物において、Zで示される加水分解性基としては、加水分解性が穏やかで取扱いやすいという観点からアルコキシ基が好ましく、Rとしては、メチル基が好ましい。 In the compound having a fluorosilyl group represented by the formula (6), the hydrolyzable group represented by Z is preferably an alkoxy group from the viewpoint of mild hydrolyzability and easy handling, and R 6 is a methyl group. preferable.
 式(6)で表されるフルオロシリル基を例示すると、フッ素以外に加水分解性基を有さないケイ素基やRがメチル基であるフルオロシリル基が好ましく、トリフルオロシリル基がより好ましい。 When the fluorosilyl group represented by the formula (6) is exemplified, a silicon group having no hydrolyzable group other than fluorine or a fluorosilyl group in which R 6 is a methyl group are preferable, and a trifluorosilyl group is more preferable.
 式(6)で示されるフルオロシリル基を有する化合物としては、特に限定されず、単分子化合物、高分子化合物のいずれも用いることができる。例えば、無機ケイ素化合物;ビニルジフルオロメトキシシラン、ビニルトリフルオロシラン、フェニルジフルオロメトキシシラン、フェニルトリフルオロシラン等の低分子有機ケイ素化合物;末端に式(6)で示されるフルオロシリル基を有するフッ素化ポリシロキサン等の高分子化合物が挙げられ、式(5)で示されるフルオロシラン類や、主鎖又は側鎖の末端に式(6)で示されるフルオロシリル基を有する重合体が好適である。 The compound having a fluorosilyl group represented by the formula (6) is not particularly limited, and either a monomolecular compound or a polymer compound can be used. For example, inorganic silicon compounds; low molecular organic silicon compounds such as vinyl difluoromethoxysilane, vinyl trifluorosilane, phenyldifluoromethoxysilane, and phenyltrifluorosilane; fluorinated poly having a fluorosilyl group represented by formula (6) at the terminal Examples thereof include polymer compounds such as siloxane, and preferred are fluorosilanes represented by the formula (5) and polymers having a fluorosilyl group represented by the formula (6) at the terminal of the main chain or side chain.
 フルオロシリル基を有する有機重合体(以下、フッ素化ポリマーとも称する)としては、Si-F結合を有する様々な有機重合体を用いることができる。 As the organic polymer having a fluorosilyl group (hereinafter also referred to as a fluorinated polymer), various organic polymers having a Si—F bond can be used.
 フッ素化ポリマーは、フルオロシリル基、及び主鎖骨格が同種である単一の重合体、すなわち、1分子あたりのフルオロシリル基の数、その結合位置、及びフルオロシリル基が有するFの数、並びに主鎖骨格が同種である単一の重合体であってもよく、これらのいずれか、又は全てが異なる、複数の重合体の混合物であってもよい。これらのフッ素化ポリマーはいずれも、速硬化性を示す硬化性組成物の樹脂成分として好適に用いることができる。 The fluorinated polymer is a single polymer in which the main chain skeleton is the same as a fluorosilyl group, that is, the number of fluorosilyl groups per molecule, the bonding position thereof, and the number of Fs that the fluorosilyl group has, and The polymer may be a single polymer having the same main chain skeleton, or may be a mixture of a plurality of polymers, any or all of which are different. Any of these fluorinated polymers can be suitably used as a resin component of a curable composition exhibiting rapid curability.
 フッ素化ポリマーは直鎖状であってもよく、又は分岐を有してもよい。フッ素化ポリマーの数平均分子量は、GPCにおけるポリスチレン換算において3,000~100,000が好ましく、より好ましくは3,000~50,000であり、特に好ましくは3,000~30,000である。数平均分子量が3,000未満では、硬化物の伸び特性の点で不都合な傾向があり、100,000を越えると、高粘度となるために作業性の点で不都合な傾向がある。 The fluorinated polymer may be linear or branched. The number average molecular weight of the fluorinated polymer is preferably 3,000 to 100,000, more preferably 3,000 to 50,000, and particularly preferably 3,000 to 30,000 in terms of polystyrene in GPC. If the number average molecular weight is less than 3,000, the cured product tends to be disadvantageous in terms of elongation characteristics, and if it exceeds 100,000, the viscosity tends to be inconvenient because of high viscosity.
 Si-F結合を有するケイ素化合物(C1)の配合割合は特に制限はないが、成分(C1)としてフッ素化ポリマー等の数平均分子量3,000以上の高分子化合物を用いる場合は、(A)架橋性ケイ素基含有有機重合体100質量部に対して、0.01~80質量部が好ましく、0.01~30質量部がより好ましく、0.05~20質量部が更に好ましい。成分(C1)として数平均分子量3,000未満のフルオロシリル基を有する低分子化合物(例えば、式(5)で示されるフルオロシラン類や式(6)で示されるフルオロシリル基を有する低分子有機ケイ素化合物、フルオロシリル基を有する無機ケイ素化合物等)を用いる場合は、(A)架橋性ケイ素基含有有機重合体100質量部に対して、0.01~10質量部が好ましく、0.05~5質量部がより好ましい。 The mixing ratio of the silicon compound (C1) having a Si—F bond is not particularly limited, but when a polymer compound having a number average molecular weight of 3,000 or more such as a fluorinated polymer is used as the component (C1), (A) The amount is preferably 0.01 to 80 parts by weight, more preferably 0.01 to 30 parts by weight, and still more preferably 0.05 to 20 parts by weight with respect to 100 parts by weight of the crosslinkable silicon group-containing organic polymer. A low molecular compound having a fluorosilyl group having a number average molecular weight of less than 3,000 as the component (C1) (for example, a low molecular organic compound having a fluorosilane group represented by the formula (5) or a fluorosilyl group represented by the formula (6) In the case of using a silicon compound, an inorganic silicon compound having a fluorosilyl group, etc., the amount is preferably 0.01 to 10 parts by weight, preferably 0.05 to 100 parts by weight with respect to 100 parts by weight of the (A) crosslinkable silicon group-containing organic polymer. 5 parts by mass is more preferable.
 硬化触媒として用いられる光塩基発生剤(B)とSi-F結合を有するケイ素化合物(C1)との配合割合は、(B):(C1)が質量比で1:0.008~1:300が好ましく、1:0.016~1:40がより好ましい。 The blending ratio of the photobase generator (B) used as the curing catalyst and the silicon compound (C1) having a Si—F bond is such that (B) :( C1) is in a mass ratio of 1: 0.008 to 1: 300. Is preferable, and 1: 0.016 to 1:40 is more preferable.
[(C2)フッ素系化合物]
 (C2)フッ素系化合物としては、例えば、WO2015-088021号公報記載の三フッ化ホウ素、三フッ化ホウ素の錯体、フッ素化剤、及び多価フルオロ化合物のアルカリ金属塩からなる群から選択される1種以上のフッ素系化合物が挙げられる。フッ素系化合物は、架橋性ケイ素基の加水分解縮合反応を促進させる化合物として機能し、架橋性ケイ素基含有有機重合体の硬化触媒として作用する。
[(C2) fluorinated compound]
(C2) The fluorine compound is selected from the group consisting of boron trifluoride, boron trifluoride complex, fluorinating agent, and alkali metal salt of polyvalent fluoro compound described in WO2015-088021, for example. One or more fluorine-based compounds may be mentioned. The fluorine-based compound functions as a compound that promotes the hydrolysis-condensation reaction of the crosslinkable silicon group and acts as a curing catalyst for the crosslinkable silicon group-containing organic polymer.
 三フッ化ホウ素の錯体としては、例えば、三フッ化ホウ素のアミン錯体、アルコール錯体、エーテル錯体、チオール錯体、スルフィド錯体、カルボン酸錯体、水錯体等が挙げられる。三フッ化ホウ素の錯体の中では、安定性と触媒活性を兼ね備えたアミン錯体が特に好ましい。三フッ化ホウ素のアミン錯体に用いられるアミン化合物としては、例えば、モノエチルアミン等が挙げられる。 Examples of boron trifluoride complexes include boron trifluoride amine complexes, alcohol complexes, ether complexes, thiol complexes, sulfide complexes, carboxylic acid complexes, and water complexes. Among the boron trifluoride complexes, amine complexes having both stability and catalytic activity are particularly preferred. Examples of the amine compound used for the boron trifluoride amine complex include monoethylamine.
 (C2)フッ素系化合物の配合割合は特に制限はないが、(A)架橋性ケイ素基含有有機重合体100質量部に対して、0.001~10質量部が好ましく、0.001~5質量部がより好ましく、0.001~2質量部が更に好ましい。これらフッ素系化合物は単独で用いても、2種以上を併用してもよい。 The blending ratio of the (C2) fluorine-based compound is not particularly limited, but is preferably 0.001 to 10 parts by mass, and 0.001 to 5 parts by mass with respect to 100 parts by mass of the (A) crosslinkable silicon group-containing organic polymer. Part is more preferable, and 0.001 to 2 parts by mass is still more preferable. These fluorine compounds may be used alone or in combination of two or more.
 光硬化性組成物は、(C1)Si-F結合を有するケイ素化合物及び(C2)フッ素系化合物からなる群から選択される1種以上を含むことができる。特に、本実施形態に係る光硬化性組成物において、後硬化(すなわち、接着剤化)する組成物としての効果を向上させる場合、架橋性ケイ素基含有有機重合体を含むと共に、Si-F結合を有するケイ素化合物を含むことが好ましい。 The photocurable composition may contain one or more selected from the group consisting of (C1) a silicon compound having a Si—F bond and (C2) a fluorine-based compound. In particular, in the photocurable composition according to the present embodiment, in order to improve the effect as a composition to be post-cured (that is, made into an adhesive), it contains a crosslinkable silicon group-containing organic polymer and has an Si—F bond. It is preferable that the silicon compound which has this is included.
[(D)多官能化合物]
 (D)1分子中に1個を超える(メタ)アクリロイル基を有する多官能化合物としては、1分子中に1個を超える(メタ)アクリロイルオキシ基を有する化合物や1分子中に1個を超える(メタ)アクリルアミド基を有する化合物が挙げられる。貯蔵安定性の観点からは、1分子中に1個を超える(メタ)アクリロイルオキシ基を有する化合物が好ましい。また、反応性の観点からは、1分子中に1個を超える(メタ)アクリルアミド基を有する化合物が好ましい。
[(D) polyfunctional compound]
(D) As a polyfunctional compound having more than one (meth) acryloyl group in one molecule, a compound having more than one (meth) acryloyloxy group in one molecule or more than one in one molecule Examples include compounds having a (meth) acrylamide group. From the viewpoint of storage stability, a compound having more than one (meth) acryloyloxy group in one molecule is preferable. From the viewpoint of reactivity, a compound having more than one (meth) acrylamide group in one molecule is preferable.
 本実施形態において(D)多官能化合物は、1分子中に1個を超える(メタ)アクリロイル基を有し、好ましくは1分子中に1.5個以上の(メタ)アクリロイル基を有する。 In this embodiment, the (D) polyfunctional compound has more than one (meth) acryloyl group in one molecule, preferably 1.5 or more (meth) acryloyl groups in one molecule.
 1分子中に1個を超える(メタ)アクリロイルオキシ基を有する化合物は、単量体(以下、モノマーとも称する)及び重合体のいずれも用いることができる。粘度の観点からは(メタ)アクリロイルオキシ基を有するモノマーが好ましい。また、硬化性の観点からは(メタ)アクリロイルオキシ基を有する重合体が好適である。なお、本実施形態において、オリゴマーとポリマーとを併せて重合体と称する。 As the compound having more than one (meth) acryloyloxy group in one molecule, either a monomer (hereinafter also referred to as a monomer) or a polymer can be used. From the viewpoint of viscosity, a monomer having a (meth) acryloyloxy group is preferred. From the viewpoint of curability, a polymer having a (meth) acryloyloxy group is preferred. In the present embodiment, the oligomer and the polymer are collectively referred to as a polymer.
 1分子中に1個を超える(メタ)アクリロイルオキシ基を有するモノマーとしては、1分子中に2個以上の(メタ)アクリロイルオキシ基を有するモノマーが好ましく、例えば、多官能(メタ)アクリレート類等が挙げられる。 As a monomer having more than one (meth) acryloyloxy group in one molecule, a monomer having two or more (meth) acryloyloxy groups in one molecule is preferable. For example, polyfunctional (meth) acrylates, etc. Is mentioned.
 多官能アクリレート類としては、例えば、1,6-ヘキサジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、2,2-ビス(4-(メタ)アクリロキシジエトキシフェニル)プロパン、又は2,2-ビス(4-(メタ)アクリロキシテトラエトキシフェニル)プロパン等の2官能(メタ)アクリレートモノマー、トリメチロールプロパントリ(メタ)アクリレート、トリス[(メタ)アクリロイキシエチル]イソシアヌレート等の3官能(メタ)アクリレートモノマー、ジメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、又はペンタエリスリトールエトキシテトラ(メタ)アクリレート等の4官能以上の(メタ)アクリレートモノマーが挙げられる。光硬化性粘着の柔軟性を保持する観点からは、2官能(メタ)アクリレートモノマーが好ましく、良好な反応性の観点からは3官能(メタ)アクリレートモノマー、及び4官能以上の(メタ)アクリレートモノマーが好ましい。 Examples of the polyfunctional acrylates include 1,6-hexadiol di (meth) acrylate, neopentyl glycol di (meth) acrylate, dicyclopentanyl di (meth) acrylate, polypropylene glycol di (meth) acrylate, 2, 2-functional (meth) acrylate monomers such as 2-bis (4- (meth) acryloxydiethoxyphenyl) propane or 2,2-bis (4- (meth) acryloxytetraethoxyphenyl) propane, trimethylolpropane tri Trifunctional (meth) acrylate monomers such as (meth) acrylate and tris [(meth) acryloyloxyethyl] isocyanurate, dimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, or pentaerythritol Tokishitetora (meth) acrylate such as 4 or more functional (meth) acrylate monomers. A bifunctional (meth) acrylate monomer is preferable from the viewpoint of maintaining the flexibility of the photocurable adhesive, and a trifunctional (meth) acrylate monomer and a tetrafunctional or higher (meth) acrylate monomer from the viewpoint of good reactivity. Is preferred.
 1分子中に1個を超える(メタ)アクリロイルオキシ基を有する重合体としては、1分子中に平均して1個を超える(メタ)アクリロイルオキシ基を有する重合体であれば特に制限はないが、1分子中に平均して1.5個以上の(メタ)アクリロイルオキシ基を有する重合体が好ましい。 The polymer having more than one (meth) acryloyloxy group in one molecule is not particularly limited as long as it is a polymer having an average of more than one (meth) acryloyloxy group in one molecule. A polymer having an average of 1.5 or more (meth) acryloyloxy groups in one molecule is preferable.
 1分子中に1個を超える(メタ)アクリロイルオキシ基を有する重合体としては、ポリエーテル系ウレタン(メタ)アクリレート(例えば、日本合成社製「UV-3700B」、「UV-6100B」)、ポリエステル系ウレタン(メタ)アクリート(例えば、日本合成社製「UV-2000B」、「UV-3000B」、「UV-7000B」、根上工業社製「KHP-11」、「KHP-17」)、非芳香族ポリカーボネート系ウレタン(メタ)アクリレート(例えば、根上工業社製「アートレジンUN-9200A」)、アクリル系(メタ)アクリレート(例えば、カネカ社製「RC-300」、「RC-100C」、「RC-200C」)、1,2-ポリブタジエン末端ウレタン(メタ)アクリレート(例えば、日本曹達社製「TE-2000」、「TEA-1000」)、1,2-ポリブタジエン末端ウレタン(メタ)アクリレートの水素添加物(例えば、日本曹達社製「TEAI-1000」)、1,4-ポリブタジエン末端ウレタン(メタ)アクリレート(例えば、大阪有機化学社製「BAC-45」)、ポリイソプレン末端(メタ)アクリレート、ビスフェノールA型エポキシ(メタ)アクリレート等が挙げられる。 Examples of the polymer having more than one (meth) acryloyloxy group in one molecule include polyether urethane (meth) acrylate (for example, “UV-3700B”, “UV-6100B” manufactured by Nippon Gosei Co., Ltd.), polyester Urethane (meth) acrylate (for example, “UV-2000B”, “UV-3000B”, “UV-7000B” manufactured by Nihon Gosei Co., Ltd., “KHP-11”, “KHP-17” manufactured by Negami Kogyo Co., Ltd.), non-aromatic Group polycarbonate urethane (meth) acrylate (for example, “Art Resin UN-9200A” manufactured by Negami Kogyo Co., Ltd.), acrylic (meth) acrylate (for example, “RC-300”, “RC-100C”, “RC manufactured by Kaneka Corporation) -200C "), 1,2-polybutadiene-terminated urethane (meth) acrylate (for example," T "manufactured by Nippon Soda Co., Ltd. -2000 ”,“ TEA-1000 ”), 1,2-polybutadiene-terminated urethane (meth) acrylate hydrogenated product (for example,“ TEAI-1000 ”manufactured by Nippon Soda Co., Ltd.), 1,4-polybutadiene-terminated urethane (meth) Examples thereof include acrylates (for example, “BAC-45” manufactured by Osaka Organic Chemical Co., Ltd.), polyisoprene-terminated (meth) acrylates, bisphenol A type epoxy (meth) acrylates, and the like.
 (A)成分に対する相溶性の点より、ポリエーテル系ウレタン(メタ)アクリレート、アクリル系(メタ)アクリレート、ポリエステル系ウレタン(メタ)アクリート、非芳香族ポリカーボネート系ウレタン(メタ)アクリレートが好ましく、(A)成分に対する相溶性がよく、また、硬化物の柔軟性確保の観点から、ポリエーテル系ウレタン(メタ)アクリレート、アクリル系(メタ)アクリレートがより好ましく、ポリエーテル系ウレタン(メタ)アクリレートが更に好ましい。 From the viewpoint of compatibility with the component (A), polyether urethane (meth) acrylate, acrylic (meth) acrylate, polyester urethane (meth) acrylate, and non-aromatic polycarbonate urethane (meth) acrylate are preferred. ) Good compatibility with the component, and from the viewpoint of ensuring flexibility of the cured product, polyether urethane (meth) acrylate and acrylic (meth) acrylate are more preferable, and polyether urethane (meth) acrylate is more preferable. .
 1分子中に1個を超える(メタ)アクリルアミド基を有する化合物としては、1分子中に2個以上の(メタ)アクリルアミド基を有する化合物が好ましく、例えば、メチレンビスアクリルアミド、エチレンビスアクリルアミド、メチレンビスメタクリルアミド、オキシジメチレンビスアクリルアミド、エチレンジオキシビス(N-メチレンアクリルアミド)等が挙げられる。 The compound having more than one (meth) acrylamide group in one molecule is preferably a compound having two or more (meth) acrylamide groups in one molecule. For example, methylene bisacrylamide, ethylene bisacrylamide, methylene bis Examples include methacrylamide, oxydimethylene bisacrylamide, ethylene dioxybis (N-methylene acrylamide) and the like.
 (D)多官能化合物の配合割合は特に制限はないが、(A)架橋性ケイ素基含有有機重合体100質量部に対して0.01~100質量部が好ましく、0.1~100質量部がより好ましく、0.2~100質量部が更に好ましい。これら(D)多官能化合物は単独で用いることも、2種以上を併用することもできる。 The blending ratio of the polyfunctional compound (D) is not particularly limited, but is preferably 0.01 to 100 parts by weight, preferably 0.1 to 100 parts by weight with respect to 100 parts by weight of the (A) crosslinkable silicon group-containing organic polymer. Is more preferable, and 0.2 to 100 parts by mass is still more preferable. These (D) polyfunctional compounds can be used alone or in combination of two or more.
[(E)光によりアミノ基を生成する架橋性ケイ素基含有化合物]
 本実施形態に係る光硬化性組成物は、(E)光により、第一級アミノ基及び第二級アミノ基からなる群から選択される1種以上のアミノ基を生成する架橋性ケイ素基含有化合物を更に含むこともできる。(E)光により、第一級アミノ基及び第二級アミノ基からなる群から選択される1種以上のアミノ基を生成する架橋性ケイ素基含有化合物は、接着性能を向上させる。
[(E) Crosslinkable silicon group-containing compound that generates an amino group by light]
The photocurable composition according to this embodiment comprises (E) a crosslinkable silicon group that generates one or more amino groups selected from the group consisting of primary amino groups and secondary amino groups by light. A compound may further be included. (E) The crosslinkable silicon group-containing compound that generates one or more amino groups selected from the group consisting of a primary amino group and a secondary amino group by light improves adhesion performance.
 光により、第一級アミノ基及び第二級アミノ基からなる群から選択される1種以上のアミノ基を生成する架橋性ケイ素基含有化合物としては、光照射により、第一級アミノ基及び第二級アミノ基からなる群から選択される1種以上のアミノ基と、架橋性ケイ素基とを有するアミノシラン化合物を発生する化合物であればいかなるものでも用いることができる。本実施形態において、光により、第一級アミノ基及び第二級アミノ基からなる群から選択される1種以上のアミノ基を生成する架橋性ケイ素基含有化合物を光アミノシラン発生化合物とも称する。 As the crosslinkable silicon group-containing compound that generates one or more amino groups selected from the group consisting of primary amino groups and secondary amino groups by light, the primary amino group and the primary amino group can be obtained by light irradiation. Any compound that generates an aminosilane compound having at least one amino group selected from the group consisting of secondary amino groups and a crosslinkable silicon group can be used. In this embodiment, the crosslinkable silicon group-containing compound that generates one or more amino groups selected from the group consisting of a primary amino group and a secondary amino group by light is also referred to as a photoaminosilane generating compound.
 光照射により発生するアミノシラン化合物としては、架橋性ケイ素基、及び置換若しくは非置換のアミノ基を有する化合物が用いられる。置換アミノ基の置換基としては、例えば、アルキル基、アラルキル基、アリール基等が挙げられる。これらのうち、接着性が良好になる観点からは、アルキル基が好ましい。また、架橋性ケイ素基としては、加水分解性基が結合したケイ素含有基が好ましい。この中でも、メトキシ基、エトキシ基等のアルコキシ基が、加水分解性が穏やかで取り扱いやすいことから好ましい。アミノシラン化合物中、加水分解性基や水酸基は1個のケイ素原子に1~3個の範囲で結合することができ、2個以上が好ましく、特に3個が好ましい。 As the aminosilane compound generated by light irradiation, a compound having a crosslinkable silicon group and a substituted or unsubstituted amino group is used. Examples of the substituent of the substituted amino group include an alkyl group, an aralkyl group, and an aryl group. Among these, an alkyl group is preferable from the viewpoint of improving adhesiveness. The crosslinkable silicon group is preferably a silicon-containing group to which a hydrolyzable group is bonded. Among these, alkoxy groups such as a methoxy group and an ethoxy group are preferable because they are mildly hydrolyzable and easy to handle. In the aminosilane compound, a hydrolyzable group or hydroxyl group can be bonded to one silicon atom in the range of 1 to 3, preferably 2 or more, particularly preferably 3.
 光照射により発生するアミノシラン化合物としては、特に限定されず、接着性の点から第一級アミノ基(-NH)を有するアミノシラン化合物が好ましく、入手性の点からγ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシランが好ましく、接着性、硬化性よりγ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシランがより好ましい。 The aminosilane compound generated by light irradiation is not particularly limited, and an aminosilane compound having a primary amino group (—NH 2 ) is preferable from the viewpoint of adhesion, and γ-aminopropyltrimethoxysilane from the viewpoint of availability, γ-aminopropyltriethoxysilane, γ-aminopropylmethyldimethoxysilane, and γ- (2-aminoethyl) aminopropyltrimethoxysilane are preferable, and γ-aminopropyltrimethoxysilane and γ-aminopropyl are preferable in terms of adhesiveness and curability. Triethoxysilane is more preferred.
 光アミノシラン発生化合物としては、例えば、式(7)~(8)で示されるWO2015-088021号公報記載の光官能基を有するケイ素化合物、芳香族スルホンアミド誘導体、O-アシルオキシム誘導体、及びtrans-O-クマル酸誘導体等が挙げられる。 Examples of the photoaminosilane generating compound include silicon compounds having a photofunctional group, aromatic sulfonamide derivatives, O-acyloxime derivatives, and trans- described in WO2015-088021 represented by formulas (7) to (8). Examples thereof include O-coumaric acid derivatives.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(7)中、nは1~3の整数であり、Yは水酸基又は加水分解性基を示し、アルコキシ基が好ましい。Yが複数存在する場合、それらは同一であっても異なっていてもよい。Rは炭素数が1~20の炭化水素基若しくは置換基を有する炭化水素基を示し、ビニル基、アリル基、炭素数が1~10の非置換若しくは置換アルキル基、非置換若しくは置換アリール基が好ましい。Rが複数存在する場合、それらは同一であっても異なっていてもよい。Rは水素原子又は有機基であり、水素原子、炭素数が1~20の炭化水素基若しくは置換基を有する炭化水素基が好ましく、水素原子がより好ましい。hは1~5の整数であり、jは1~6個の整数である。R10は、h+j個の異なる炭素原子でケイ素原子及び窒素原子と結合する、置換又は非置換の炭化水素基、及び1以上のエーテル酸素原子を介して互いに結合した複数個の置換又は非置換の炭化水素基からなる群から選択されるh+j価の基であり、分子量は1,000以下である。R及びR10はそれらが結合して環状構造を形成していてもよく、ヘテロ原子の結合を含んでいてもよい。Zは酸素原子又は硫黄原子であり、酸素原子が好ましい。Qは光官能基を表す。 In the formula (7), n is an integer of 1 to 3, Y represents a hydroxyl group or a hydrolyzable group, and an alkoxy group is preferable. When a plurality of Y are present, they may be the same or different. R 8 represents a hydrocarbon group having 1 to 20 carbon atoms or a hydrocarbon group having a substituent, vinyl group, allyl group, unsubstituted or substituted alkyl group having 1 to 10 carbon atoms, unsubstituted or substituted aryl group Is preferred. When a plurality of R 8 are present, they may be the same or different. R 9 is a hydrogen atom or an organic group, preferably a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms or a hydrocarbon group having a substituent, and more preferably a hydrogen atom. h is an integer of 1 to 5, and j is an integer of 1 to 6. R 10 is a substituted or unsubstituted hydrocarbon group bonded to a silicon atom and a nitrogen atom at h + j different carbon atoms, and a plurality of substituted or unsubstituted groups bonded to each other via one or more ether oxygen atoms. It is an h + j-valent group selected from the group consisting of hydrocarbon groups and has a molecular weight of 1,000 or less. R 9 and R 10 may be bonded to each other to form a cyclic structure, and may include a hetero atom bond. Z is an oxygen atom or a sulfur atom, preferably an oxygen atom. Q represents a photofunctional group.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(8)中、n、Y、R、Z、及びQは式(7)と同様である。R12は、置換又は非置換の炭化水素基、及び1以上のエーテル酸素原子を介して互いに結合した複数個の置換又は非置換の炭化水素基からなる群から選択される2価の基である。tは1以上の整数であり、1又は2が好ましい。tが2以上の場合、R11に結合するt個の基は同一でも異なっていてもよい。R11は水素原子又は有機基であり、水素原子又は置換若しくは非置換のt価の炭化水素基が好ましく、水素原子、置換若しくは非置換のt価のアルキル基がより好ましい。R11及びR12はそれらが結合して環状構造を形成していてもよく、ヘテロ原子の結合を含んでいてもよい。 In formula (8), n, Y, R 8 , Z, and Q are the same as in formula (7). R 12 is a divalent group selected from the group consisting of a substituted or unsubstituted hydrocarbon group and a plurality of substituted or unsubstituted hydrocarbon groups bonded to each other via one or more ether oxygen atoms. . t is an integer of 1 or more, and 1 or 2 is preferable. When t is 2 or more, t groups bonded to R 11 may be the same or different. R 11 is a hydrogen atom or an organic group, preferably a hydrogen atom or a substituted or unsubstituted t-valent hydrocarbon group, more preferably a hydrogen atom or a substituted or unsubstituted t-valent alkyl group. R 11 and R 12 may be bonded to each other to form a cyclic structure, and may include a hetero atom bond.
 光官能基Qとしては、公知の感光性基が挙げられ特に制限はないが、例えば、WO2015-088021号公報記載の環状構造を有する基、オキシム残基や置換されたこれらの基等が挙げられ、環状構造を有する基が好ましい。 The photofunctional group Q is a known photosensitive group and is not particularly limited. Examples thereof include a group having a cyclic structure described in WO2015-088021, an oxime residue, and these substituted groups. A group having a cyclic structure is preferred.
 環状構造を有する基としては、例えば、WO2015-088021号公報記載の芳香族基や、複素環構造を有する基、置換されたこれらの基が挙げられ、芳香族基が好ましい。また、光官能性基中の基が互いに結合し、環状構造を形成してもよい。 Examples of the group having a cyclic structure include an aromatic group described in WO2015-088021, a group having a heterocyclic structure, and a substituted group, and an aromatic group is preferable. Further, groups in the photofunctional group may be bonded to each other to form a cyclic structure.
 芳香族基としては、例えば、WO2015-088021号公報記載のo-ニトロベンジル基、WO2015-088021号公報記載のm-ニトロベンジル基、及びWO2015-088021号公報記載のp-ニトロベンジル基等のニトロベンジル基、並びにWO2015-088021号公報記載のベンジル基、及びベンゾイル基や置換されたこれらの基が挙げられ、ニトロベンジル基が好ましく、o-ニトロベンジル基及びp-ニトロベンジル基がより好ましく、o-ニトロベンジル基が特に好ましい。また、光官能性基中の基が互いに結合し、環状構造を形成してもよい。 Examples of the aromatic group include nitro such as o-nitrobenzyl group described in WO2015-088021, m-nitrobenzyl group described in WO2015-088021, and p-nitrobenzyl group described in WO2015-088021. Examples thereof include benzyl group, benzyl group described in WO2015-088021, and benzoyl group and substituted groups thereof, nitrobenzyl group is preferable, o-nitrobenzyl group and p-nitrobenzyl group are more preferable, o A nitrobenzyl group is particularly preferred. Further, groups in the photofunctional group may be bonded to each other to form a cyclic structure.
 複素環構造を有する基としては、例えば、WO2015-088021号公報記載のクマリン誘導体残基、及びイミド基や置換されたこれらの基等が挙げられる。 Examples of the group having a heterocyclic structure include a coumarin derivative residue described in WO2015-088021 and an imide group or a substituted group thereof.
 光官能基Qがo-ニトロベンジル基である-OQ基としては、例えば、(2,6-ジニトロベンジル)オキシ基、(2-ニトロベンジル)オキシ基、(3,4-ジメトキシ-2-ニトロベンジル)オキシ基等のニトロベンジルオキシ基が挙げられる。 Examples of the —OQ group in which the photofunctional group Q is an o-nitrobenzyl group include (2,6-dinitrobenzyl) oxy group, (2-nitrobenzyl) oxy group, (3,4-dimethoxy-2-nitro group) And nitrobenzyloxy groups such as (benzyl) oxy group.
 光官能基Qがp-ニトロベンジル基である-OQ基としては、例えば、(2,4-ジニトロベンジル)オキシ基、(4-ニトロベンジル)オキシ基、[1-(4-ニトロナフタレン)メチル]オキシ基等のニトロベンジルオキシ基が挙げられる。 Examples of the —OQ group in which the photofunctional group Q is a p-nitrobenzyl group include (2,4-dinitrobenzyl) oxy group, (4-nitrobenzyl) oxy group, and [1- (4-nitronaphthalene) methyl. Nitrobenzyloxy group such as oxy group.
 光官能基Qがベンジル基である-OQ基としては、例えば、3,5-ジメトキシベンジルオキシ基、[1-(3,5-ジメトキシフェニル)-1-メチルエチル]オキシ基、9-アントリルメチルオキシ基、9ーファナントリルメチルオキシ基、1-ピレニルメチルオキシ基、[1-(アントラキノン-2-イル)エチル]オキシ基、9-フェニルキサンテン-9-イルオキシ基等のベンジルオキシ基が挙げられる。 As the —OQ group in which the photofunctional group Q is a benzyl group, for example, 3,5-dimethoxybenzyloxy group, [1- (3,5-dimethoxyphenyl) -1-methylethyl] oxy group, 9-anthryl Benzyloxy groups such as methyloxy group, 9-phananthrylmethyloxy group, 1-pyrenylmethyloxy group, [1- (anthraquinone-2-yl) ethyl] oxy group, 9-phenylxanthen-9-yloxy group Can be mentioned.
 式(7)及び(8)中、ZQ基を除いた残基としては、例えば、3-(トリメトキシシリル)プロピルアミノカルボニル基、3-(トリエトキシシリル)プロピルアミノカルボニル基、3-(メチルジメトキシシリル)プロピルアミノカルボニル基、3-(メチルジエトキシシリル)プロピルアミノカルボニル基等のモノアミノカルボニル基;N-[3-(トリメトキシシリル)プロピル]エチレンジアミノカルボニル基、N,N’-ビス[3-(トリメトキシシリル)プロピル]エチレンジアミノカルボニル基等のジアミノカルボニル基;N-[3-(トリメトキシシリル)プロピル]ジエチレントリアミノカルボニル基等のトリアミノカルボニル基等のアミノカルボニル基が挙げられる。 In the formulas (7) and (8), examples of the residues excluding the ZQ group include 3- (trimethoxysilyl) propylaminocarbonyl group, 3- (triethoxysilyl) propylaminocarbonyl group, 3- (methyl Monoaminocarbonyl groups such as dimethoxysilyl) propylaminocarbonyl group, 3- (methyldiethoxysilyl) propylaminocarbonyl group; N- [3- (trimethoxysilyl) propyl] ethylenediaminocarbonyl group, N, N′-bis And diaminocarbonyl groups such as [3- (trimethoxysilyl) propyl] ethylenediaminocarbonyl group; and aminocarbonyl groups such as triaminocarbonyl group such as N- [3- (trimethoxysilyl) propyl] diethylenetriaminocarbonyl group. .
 アミノカルボニル基のなかでも、接着性の点からアミノ基(-NH)を有するアミノカルボニル基が好ましく、3-(トリメトキシシリル)プロピルアミノカルボニル基、3-(トリエトキシシリル)プロピルアミノカルボニル基、3-(メチルジメトキシシリル)プロピルアミノカルボニル基、N-[3-(トリメトキシシリル)プロピル]エチレンジアミノカルボニル基がより好ましく、接着性、硬化性より3-(トリメトキシシリル)プロピルアミノカルボニル基、3-(トリエトキシシリル)プロピルアミノカルボニル基が最も好ましい。 Among the aminocarbonyl groups, an aminocarbonyl group having an amino group (—NH 2 ) is preferable from the viewpoint of adhesion, and 3- (trimethoxysilyl) propylaminocarbonyl group, 3- (triethoxysilyl) propylaminocarbonyl group , 3- (methyldimethoxysilyl) propylaminocarbonyl group and N- [3- (trimethoxysilyl) propyl] ethylenediaminocarbonyl group are more preferable, and 3- (trimethoxysilyl) propylaminocarbonyl group is preferred in view of adhesiveness and curability. 3- (triethoxysilyl) propylaminocarbonyl group is most preferred.
 光アミノシラン発生化合物の配合割合は特に制限はないが、(A)架橋性ケイ素基含有有機重合体100質量部に対して、0.01~50質量部が好ましく、0.1~30質量部がより好ましく、0.1~20質量部が更に好ましい。これら光アミノシラン発生化合物は単独で用いてもよく、2種以上を併用してもよい。 The blending ratio of the photoaminosilane generating compound is not particularly limited, but is preferably 0.01 to 50 parts by mass, and 0.1 to 30 parts by mass with respect to 100 parts by mass of the (A) crosslinkable silicon group-containing organic polymer. More preferred is 0.1 to 20 parts by mass. These photoaminosilane generating compounds may be used alone or in combination of two or more.
[(F)光重合性不飽和基を有する単官能化合物]
 本実施形態に係る光硬化性組成物は、(F)光重合性不飽和基を有する単官能化合物を更に含むことが好ましい。単官能化合物(F)により光硬化性化合物の粘度を下げることができる。(F)光重合性不飽和基を有する単官能化合物としては、様々な光重合性不飽和基を有する単官能化合物を使用することができ、特に制限はないが、例えば、(メタ)アクリロイル基を1分子中に1個有する化合物、及び窒素原子にビニル基が直接結合したN-ビニル化合物が挙げられる。
[(F) Monofunctional compound having a photopolymerizable unsaturated group]
The photocurable composition according to this embodiment preferably further comprises (F) a monofunctional compound having a photopolymerizable unsaturated group. The viscosity of the photocurable compound can be lowered by the monofunctional compound (F). (F) As the monofunctional compound having a photopolymerizable unsaturated group, various monofunctional compounds having a photopolymerizable unsaturated group can be used, and there is no particular limitation. For example, a (meth) acryloyl group And one N-vinyl compound in which a vinyl group is directly bonded to a nitrogen atom.
 (メタ)アクリロイル基を1分子中に1個有する化合物としては、1分子中に1個の(メタ)アクリロイルオキシ基を有する化合物や1分子中に1個の(メタ)アクリルアミド基を有する化合物が挙げられ、貯蔵安定性の観点から1分子中に1個の(メタ)アクリロイルオキシ基を有する化合物が好ましい。また、反応性の観点からは1分子中に1個の(メタ)アクリルアミド基を有する化合物が好ましい。 Examples of the compound having one (meth) acryloyl group in one molecule include a compound having one (meth) acryloyloxy group in one molecule and a compound having one (meth) acrylamide group in one molecule. From the viewpoint of storage stability, a compound having one (meth) acryloyloxy group in one molecule is preferable. Moreover, the compound which has one (meth) acrylamide group in 1 molecule from a reactive viewpoint is preferable.
 1分子中に1個の(メタ)アクリロイルオキシ基を有する化合物は、モノマー、オリゴマー及びポリマーのいずれも用いることができる。粘度の観点からは(メタ)アクリロイルオキシ基を有するモノマーが好ましい。また、硬化性の観点からは(メタ)アクリロイルオキシ基を有するオリゴマーが好適である。 As the compound having one (meth) acryloyloxy group in one molecule, any of a monomer, an oligomer and a polymer can be used. From the viewpoint of viscosity, a monomer having a (meth) acryloyloxy group is preferred. From the viewpoint of curability, an oligomer having a (meth) acryloyloxy group is preferable.
 1分子中に1個の(メタ)アクリロイルオキシ基を有するモノマーとしては、(メタ)アクリロイルオキシ基を1個有する化合物であれば、特に限定はないが、例えば、単官能(メタ)アクリレート類等が挙げられる。 The monomer having one (meth) acryloyloxy group in one molecule is not particularly limited as long as it is a compound having one (meth) acryloyloxy group. For example, monofunctional (meth) acrylates, etc. Is mentioned.
 単官能(メタ)アクリレートとしては、水酸基を有する(メタ)アクリレートとしては、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート2-ヒドロキシ-3-オクチルオキシプロピルアクリレート等が挙げられる。アルコキシ基を有する(メタ)アクリレートとしては、メトキシトリエチレングリコール(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート等が挙げられる。芳香族(メタ)アクリレートとしては、フェノキシエチル(メタ)アクリレート、ノニルフェノキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート等が挙げられる。炭素数が8~20の長鎖炭化水素系(メタ)アクリレートとしては、2-エチルヘキシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、及びイソステアリル(メタ)アクリレート等が挙げられ、入手の容易性の観点から炭素数が8~18の長鎖炭化水素系(メタ)アクリレートが好ましい。脂環式(メタ)アクリレートとしては、シクロヘキシル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、イソボルニル(メタ)アクリレート等が挙げられる。複素環基を有する(メタ)アクリレートとしては、テトラヒドロフルフリル(メタ)アクリレート等が挙げられる。また、N-(メタ)アクリロイルオキシエチルヘキサヒドロフタルイミド等が挙げられる。架橋性ケイ素基を有する(メタ)アクリレートとしては、3-(トリメトキシシリル)プロピル(メタ)アクリレート等が挙げられる。柔軟性が求められる場合には、単官能(メタ)アクリレート類を用いることが好ましい。 As monofunctional (meth) acrylate, as hydroxyl-containing (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, hexaethylene glycol mono (meth) acrylate, octapropylene glycol mono And (meth) acrylate 2-hydroxy-3-octyloxypropyl acrylate. Examples of the (meth) acrylate having an alkoxy group include methoxytriethylene glycol (meth) acrylate, ethoxydiethylene glycol (meth) acrylate, and dicyclopentenyloxyethyl (meth) acrylate. Examples of the aromatic (meth) acrylate include phenoxyethyl (meth) acrylate, nonylphenoxyethyl (meth) acrylate, and benzyl (meth) acrylate. Examples of the long-chain hydrocarbon (meth) acrylate having 8 to 20 carbon atoms include 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, lauryl (meth) acrylate, and isostearyl (meth) acrylate. From the viewpoint of availability, long-chain hydrocarbon (meth) acrylates having 8 to 18 carbon atoms are preferred. Examples of the alicyclic (meth) acrylate include cyclohexyl (meth) acrylate, dicyclopentenyl (meth) acrylate, and isobornyl (meth) acrylate. Examples of the (meth) acrylate having a heterocyclic group include tetrahydrofurfuryl (meth) acrylate. Further, N- (meth) acryloyloxyethyl hexahydrophthalimide and the like can be mentioned. Examples of the (meth) acrylate having a crosslinkable silicon group include 3- (trimethoxysilyl) propyl (meth) acrylate. When flexibility is required, monofunctional (meth) acrylates are preferably used.
 1分子中に1個の(メタ)アクリロイルオキシ基を有するオリゴマーとしては、(メタ)アクリロイルオキシ基を1つ有する重合体を用いることができる。例えば、(メタ)アクリロイルオキシ基を1個有するアクリル重合体を骨格とするアクリル系重合体、ウレタン(メタ)アクリレート系重合体、ポリエステル(メタ)アクリレート系重合体、ポリエーテル(メタ)アクリレート系重合体、エポキシ(メタ)アクリレート系重合体等が挙げられる。 As the oligomer having one (meth) acryloyloxy group in one molecule, a polymer having one (meth) acryloyloxy group can be used. For example, an acrylic polymer having an acrylic polymer having one (meth) acryloyloxy group as a skeleton, a urethane (meth) acrylate polymer, a polyester (meth) acrylate polymer, a polyether (meth) acrylate polymer Examples thereof include an epoxy polymer and an epoxy (meth) acrylate polymer.
 1分子中に1個の(メタ)アクリルアミド基を有する化合物としては、例えば、N-メチル(メタ)アクリルアミド、(メタ)アクリロリルモルホリン等が挙げられる。 Examples of the compound having one (meth) acrylamide group in one molecule include N-methyl (meth) acrylamide and (meth) acryloylmorpholine.
 N-ビニル化合物としては、例えば、N-ビニルピロリドン及びN-ビニルカプロラクタム等が挙げられる。本実施形態において、N-ビニル化合物は、反応性の点や酸素阻害が生じにくい点から好ましい。 Examples of the N-vinyl compound include N-vinyl pyrrolidone and N-vinyl caprolactam. In the present embodiment, the N-vinyl compound is preferred from the viewpoint of reactivity and resistance to oxygen inhibition.
 (F)単官能化合物の配合割合は特に制限はないが、(A)架橋性ケイ素基含有有機重合体100質量部に対して、0.01~100質量部が好ましく、0.1~100質量部がより好ましく、1~100質量部が更に好ましい。これら(F)単官能化合物は単独で用いてもよく、2種以上を併用してもよい。 The blending ratio of the monofunctional compound (F) is not particularly limited, but is preferably 0.01 to 100 parts by weight, preferably 0.1 to 100 parts by weight with respect to 100 parts by weight of the (A) crosslinkable silicon group-containing organic polymer. Part is more preferable, and 1 to 100 parts by weight is still more preferable. These (F) monofunctional compounds may be used alone or in combination of two or more.
[(G)粘着付与樹脂]
 本実施形態に係る光硬化性組成物は、(G)粘着付与樹脂を更に含むことが好ましい。(G)粘着付与樹脂としては特に制限はなく、通常用いられる樹脂が挙げられる。具体例としては、テルペン樹脂、芳香族変性テルペン樹脂、及びこれらを水素添加した水素添加テルペン樹脂、テルペン類をフェノール類と共重合させたテルペン-フェノール樹脂、フェノール樹脂、変性フェノール樹脂、キシレン樹脂、キシレン-フェノール樹脂、シクロペンタジエン樹脂、シクロペンタジエン-フェノール樹脂、クマロンインデン樹脂、ロジン系樹脂、ロジンエステル樹脂、水添ロジンエステル樹脂、低分子量ポリスチレン系樹脂、スチレン共重合体樹脂、石油樹脂(例えば、C5系炭化水素樹脂、C9系炭化水素樹脂、C5、C9炭化水素共重合樹脂、C5、C9炭化水素、フェノール共重合樹脂等)、水添石油樹脂等が挙げられる。これらは単独で用いても、2種以上を併用してもよい。
[(G) Tackifying resin]
The photocurable composition according to this embodiment preferably further comprises (G) a tackifying resin. (G) There is no restriction | limiting in particular as tackifying resin, Resin normally used is mentioned. Specific examples include terpene resins, aromatic modified terpene resins, hydrogenated terpene resins obtained by hydrogenation of these, terpene-phenol resins obtained by copolymerizing terpenes with phenols, phenol resins, modified phenol resins, xylene resins, Xylene-phenol resin, cyclopentadiene resin, cyclopentadiene-phenol resin, coumarone indene resin, rosin resin, rosin ester resin, hydrogenated rosin ester resin, low molecular weight polystyrene resin, styrene copolymer resin, petroleum resin (for example C5 hydrocarbon resin, C9 hydrocarbon resin, C5, C9 hydrocarbon copolymer resin, C5, C9 hydrocarbon, phenol copolymer resin, etc.), hydrogenated petroleum resin, and the like. These may be used alone or in combination of two or more.
 ここで、粘着付与樹脂を極性の低い被着体に用いる場合は、極性の低い粘着付与樹脂を用いることが好ましく、極性の高い被着体に用いる場合は、極性の高い粘着付与樹脂を用いることが好ましい。極性が高い被着体から極性の低い被着体まで幅広い被着体に粘着付与樹脂を用いる場合には、極性の低い粘着付与樹脂と極性の高い粘着付与樹脂とを混合して用いることが好ましい。 Here, when the tackifying resin is used for an adherend having a low polarity, it is preferable to use a tackifying resin having a low polarity. When the tackifying resin is used for an adherend having a high polarity, a tackifying resin having a high polarity is used. Is preferred. When using a tackifier resin for a wide range of adherends from a high polarity adherend to a low polarity adherend, it is preferable to use a mixture of a low polarity tackifier resin and a high polarity tackifier resin. .
 (G)粘着付与樹脂の配合割合は特に制限はないが、(A)架橋性ケイ素基含有有機重合体100質量部に対して、0.1~100質量部が好ましく、1~80質量部がより好ましい。これら粘着付与樹脂は単独で用いてもよく、2種以上を併用してもよい。 The blending ratio of the (G) tackifying resin is not particularly limited, but is preferably 0.1 to 100 parts by weight, preferably 1 to 80 parts by weight with respect to 100 parts by weight of the (A) crosslinkable silicon group-containing organic polymer. More preferred. These tackifier resins may be used alone or in combination of two or more.
[その他の添加剤]
 本実施形態に係る配合物は、必要に応じて、(メタ)アクリルアミド基を有する化合物、エポキシ基を有する化合物、シランカップリング剤、塩基増殖型アミノシラン、光ラジカル重合開始剤、光増感剤、増量剤、希釈剤、可塑剤、水分吸収剤、シラノール縮合触媒、引張特性等を改善する物性調整剤、補強剤、着色剤、難燃剤、タレ防止剤、酸化防止剤、老化防止剤、紫外線吸収剤、溶剤、香料、顔料、染料、導電性粉、熱伝導性粉、蛍光体、ワックス、樹脂フィラー等の各種添加剤を更に含むこともできる。
[Other additives]
The formulation according to the present embodiment includes, as necessary, a compound having a (meth) acrylamide group, a compound having an epoxy group, a silane coupling agent, a base-growing aminosilane, a photoradical polymerization initiator, a photosensitizer, Extenders, diluents, plasticizers, moisture absorbers, silanol condensation catalysts, physical property modifiers that improve tensile properties, reinforcing agents, colorants, flame retardants, sagging inhibitors, antioxidants, anti-aging agents, UV absorption Various additives such as an agent, a solvent, a fragrance, a pigment, a dye, a conductive powder, a heat conductive powder, a phosphor, a wax, and a resin filler can be further included.
 N-メチル(メタ)アクリルアミド基を有する化合物としては、例えば、N-メチル(メタ)アクリルアミド、N-(メタ)アクリロリルモルホリン等が挙げられ、硬化性、物性及び安全性のバランスが良い点から、アクリロイルモルホリンが好ましい。 Examples of the compound having an N-methyl (meth) acrylamide group include N-methyl (meth) acrylamide, N- (meth) acryloylmorpholine, etc., and have a good balance between curability, physical properties, and safety. Therefore, acryloylmorpholine is preferable.
 また、エポキシ基を有する化合物としては、例えば、ビスフェノールA系エポキシ樹脂、水添ビスフェノールA系エポキシ樹脂、ビスフェノールF系エポキシ樹脂、ノボラック型エポキシ樹脂、脂肪族環式エポキシ樹脂、臭素化エポキシ樹脂、ゴム変成エポキシ樹脂、ウレタン変成エポキシ樹脂、グリシジルエステル系化合物、エポキシ化ポリブタジエン、エポキシ化SBS(SBSは、スチレン-ブタジエン-スチレン共重合体を示す。)等が挙げられる。エポキシ基を有する化合物を本実施形態に係る配合物に更に添加した場合、本実施形態に係る配合物は、硬化後に高い接着性、及び耐久性を発現し、特に芳香環を有する被着体に効果がある。また、光アミノシラン発生化合物やアミノシラン化合物と併用することで、更に接着性の向上に効果がある。 Examples of the compound having an epoxy group include bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, aliphatic cyclic epoxy resin, brominated epoxy resin, and rubber. Examples include modified epoxy resins, urethane modified epoxy resins, glycidyl ester compounds, epoxidized polybutadiene, and epoxidized SBS (SBS represents a styrene-butadiene-styrene copolymer). When a compound having an epoxy group is further added to the formulation according to the present embodiment, the formulation according to the present embodiment expresses high adhesion and durability after curing, and particularly to an adherend having an aromatic ring. effective. In addition, when used in combination with a photoaminosilane-generating compound or an aminosilane compound, the adhesiveness is further improved.
 本実施形態に係る配合物は、シランカップリング剤を配合することにより、金属、プラスチック、ガラス等、全般的な被着体に対する接着性を向上させることができる。 The compound according to the present embodiment can improve the adhesion to general adherends such as metal, plastic, glass, etc. by compounding a silane coupling agent.
 シランカップリング剤としては、例えば、アミノ基含有シラン類;ケチミン型シラン類;エポキシ基含有シラン類;メルカプト基含有シラン類;ビニル型不飽和基含有シラン類;塩素原子含有シラン類;イソシアネート含有シラン類;アルキルシラン類;フェニル基含有シラン類;イソシアヌレート基含有シラン類等が挙げられるが、これらに限定されるものではない。また、アミノ基含有シラン類と前記のシラン類を含むエポキシ基含有化合物、イソシアネート基含有化合物、(メタ)アクリロイル基含有化合物とを反応させて、アミノ基を変性した変性アミノ基含有シラン類を用いてもよい。 Examples of silane coupling agents include amino group-containing silanes; ketimine type silanes; epoxy group-containing silanes; mercapto group-containing silanes; vinyl type unsaturated group-containing silanes; chlorine atom-containing silanes; Alkyl silanes; phenyl group-containing silanes; isocyanurate group-containing silanes, and the like, but are not limited thereto. Also, modified amino group-containing silanes in which amino groups are modified by reacting amino group-containing silanes with epoxy group-containing compounds, isocyanate group-containing compounds, and (meth) acryloyl group-containing compounds containing the above silanes are used. May be.
 また、粘着付与樹脂と架橋性ケイ素基含有有機重合体とを架橋させることを目的としてシランカップリング剤を添加してもよい。フェノールやカルボン酸を含有する粘着付与樹脂を用いた場合、例えば、エポキシシランを添加することで、架橋性ケイ素基含有有機重合体と粘着付与樹脂とを架橋させることができ、粘着力(接着力)の向上、耐熱クリープの改善、粘着付与樹脂の継時での移動による粘着力(接着力)の変化を抑制できる。 Further, a silane coupling agent may be added for the purpose of crosslinking the tackifier resin and the crosslinkable silicon group-containing organic polymer. When a tackifying resin containing phenol or carboxylic acid is used, for example, by adding an epoxy silane, the crosslinkable silicon group-containing organic polymer and the tackifying resin can be cross-linked. ), Improvement of heat-resistant creep, and change in adhesive strength (adhesive strength) due to movement of the tackifying resin at the time of joining.
 シランカップリング剤の配合割合は特に制限はないが、(A)架橋性ケイ素基含有有機重合体100質量部に対して、0.2~20質量部が好ましく、0.3~15質量部がより好ましく、0.5~10質量部が更に好ましい。これらシランカップリング剤は単独で用いてもよく、2種以上を併用してもよい。 The blending ratio of the silane coupling agent is not particularly limited, but is preferably 0.2 to 20 parts by weight, and 0.3 to 15 parts by weight with respect to 100 parts by weight of the (A) crosslinkable silicon group-containing organic polymer. More preferred is 0.5 to 10 parts by mass. These silane coupling agents may be used alone or in combination of two or more.
 本実施形態に係る配合物は、接着性能を向上させる目的で更に塩基増殖型アミノシランを添加してもよい。塩基増殖型アミノシランとしては、例えば、塩基増殖型アミン化合物であってアミン残基に架橋性ケイ素基を有する化合物(分解した際に架橋性ケイ素基を有するアミン化合物を生成する化合物)が挙げられる。このような化合物として、架橋性ケイ素基を有するカルバミン酸の9-フルオレニルメチルエステル(C13CHOCONR1314、式中R13、R14は水素原子若しくは炭化水素基等の有機基であり、R13、R14の少なくとも1つは架橋性ケイ素基を有する炭化水素基等の有機基である)、架橋性ケイ素基を有するカルバミン酸の2-アリールスルフォニルエチルエステル(ArSOCHCHOCONR1314、式中Arは置換基を有してもよい芳香族基、R13、R14は上記と同じ)、架橋性ケイ素基を有するカルバミン酸の3-ニトロペンタン-2-イルエステル(CHCHCH(NO)CH(CH)OCONR1314、式中、R13、R14は上記と同じ)等が挙げられる。 The compound according to this embodiment may further contain a base-growing aminosilane for the purpose of improving the adhesion performance. Examples of the base-growing aminosilane include compounds that are base-growing amine compounds and have a crosslinkable silicon group in the amine residue (a compound that generates an amine compound having a crosslinkable silicon group when decomposed). As such a compound, 9-fluorenylmethyl ester of carbamic acid having a crosslinkable silicon group (C 13 H 9 CH 2 OCONR 13 R 14 , wherein R 13 and R 14 are hydrogen atoms or hydrocarbon groups, etc. An organic group, and at least one of R 13 and R 14 is an organic group such as a hydrocarbon group having a crosslinkable silicon group), 2-arylsulfonylethyl ester of carbamic acid having a crosslinkable silicon group (ArSO 2 CH 2 CH 2 OCONR 13 R 14 , wherein Ar is an aromatic group which may have a substituent, R 13 and R 14 are the same as above, and 3-nitropentane of carbamic acid having a crosslinkable silicon group 2- yl ester (CH 3 CH 2 CH (NO 2) CH (CH 3) OCONR 13 R 14, wherein, R 13, R 14 are as defined above Etc. The.
 光ラジカル重合開始剤としては、例えば、ベンゾインエーテル誘導体、アセトフェノン誘導体等のアリールアルキルケトン類、オキシムケトン類、アシルホスフィンオキシド類、チオ安息香酸S-フェニル類、チタノセン類、及びそれらを高分子量化した誘導体が挙げられる。 Examples of the photo radical polymerization initiator include arylalkyl ketones such as benzoin ether derivatives and acetophenone derivatives, oxime ketones, acylphosphine oxides, S-phenyl thiobenzoates, titanocenes, and high molecular weights thereof. Derivatives.
 本実施形態に係る配合物は、希釈剤を更に含有できる。希釈剤を配合することにより、粘度等の物性を調整できる。希釈剤としては、様々な希釈剤を用いることができ、特に制限はない。例えば、ノルマルパラフィン、イソパラフィン等の飽和炭化水素系溶剤、HSダイマー(豊国製油株式会社商品名)等のα-オレフィン誘導体、芳香族炭化水素系溶剤、ダイアセトンアルコール等のアルコール系溶剤、エステル系溶剤、クエン酸アセチルトリエチル等のクエン酸エステル系溶剤、ケトン系溶剤等の各種溶剤が挙げられる。 The formulation according to this embodiment can further contain a diluent. By blending a diluent, physical properties such as viscosity can be adjusted. As the diluent, various diluents can be used, and there is no particular limitation. For example, saturated hydrocarbon solvents such as normal paraffin and isoparaffin, α-olefin derivatives such as HS dimer (trade name of Toyokuni Oil Co., Ltd.), aromatic hydrocarbon solvents, alcohol solvents such as diacetone alcohol, ester solvents And various solvents such as citrate ester solvents such as acetyltriethyl citrate and ketone solvents.
 希釈剤の引火点に特に制限はないが、得られる本実施形態に係る配合物の安全性を考慮すると、本実施形態に係る配合物の引火点は高い方が望ましく、本実施形態に係る配合物からの揮発物質は少ない方が好ましい。そのため、希釈剤の引火点は60℃以上であることが好ましく、70℃以上であることがより好ましい。2種以上の希釈剤を混合する場合、混合した希釈剤の引火点が70℃以上であることが好ましい。なお、一般的に引火点が高い希釈剤は本実施形態に係る配合物に対する希釈効果が低くなる傾向があるので、引火点は250℃以下であることが好適である。 There is no particular limitation on the flash point of the diluent, but considering the safety of the resulting composition according to this embodiment, it is desirable that the flash point of the composition according to this embodiment is higher, the composition according to this embodiment It is preferable that there are few volatile substances from a thing. Therefore, the flash point of the diluent is preferably 60 ° C. or higher, and more preferably 70 ° C. or higher. When mixing 2 or more types of diluents, it is preferable that the flash point of the mixed diluent is 70 degreeC or more. In general, since a diluent having a high flash point tends to have a low dilution effect on the formulation according to the present embodiment, the flash point is preferably 250 ° C. or lower.
 本実施形態に係る配合物の安全性、希釈効果の双方を考慮すると、希釈剤としては飽和炭化水素系溶剤が好適であり、ノルマルパラフィン、イソパラフィンがより好適である。ノルマルパラフィン、イソパラフィンの炭素数は10~16であることが好ましく、使用環境に与える影響(VOC)より炭素数は14~16であることがより好ましい。 Considering both the safety and the dilution effect of the formulation according to this embodiment, a saturated hydrocarbon solvent is preferable as the diluent, and normal paraffin and isoparaffin are more preferable. Normal paraffins and isoparaffins preferably have 10 to 16 carbon atoms, and more preferably have 14 to 16 carbon atoms due to the influence on the use environment (VOC).
 希釈剤の配合割合は特に制限はないが、配合による塗布作業性向上と物性低下とのバランスの観点から、本実施形態に係る配合物の単位重量に対し、希釈剤を0~25%配合することが好ましく、0.1~15%配合することがより好ましく、1~7%配合することが更に好ましい。希釈剤は単独で用いても、2種以上を併用してもよい。 The mixing ratio of the diluent is not particularly limited, but 0 to 25% of the diluent is blended with respect to the unit weight of the blend according to the present embodiment from the viewpoint of the balance between the improvement of coating workability and the decrease in physical properties due to blending. It is preferable to add 0.1 to 15%, more preferably 1 to 7%. A diluent may be used independently or may use 2 or more types together.
 樹脂フィラーとしては、有機樹脂等からなる粒子状のフィラーを用いることができる。例えば、樹脂フィラーとして、ポリアクリル酸エチル樹脂、ポリウレタン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、尿素樹脂、メラミン樹脂系、ベンゾグアナミン樹脂、フェノール樹脂、アクリル樹脂、スチレン樹脂等の有機質微粒子を用いることができる。 As the resin filler, a particulate filler made of an organic resin or the like can be used. For example, as the resin filler, organic fine particles such as polyethyl acrylate resin, polyurethane resin, polyethylene resin, polypropylene resin, urea resin, melamine resin, benzoguanamine resin, phenol resin, acrylic resin, and styrene resin can be used.
 樹脂フィラー(樹脂微粉末)は、単量体(例えば、メタクリル酸メチル)等を懸濁重合させること等によって容易に得られる真球状のものが好適である。また、樹脂フィラーは、溶液組成物に充填材として好適に含有されるから、球状の架橋樹脂フィラーが好ましい。 The resin filler (resin fine powder) is preferably a true spherical material that can be easily obtained by suspension polymerization of a monomer (for example, methyl methacrylate). Moreover, since a resin filler is suitably contained as a filler in the solution composition, a spherical crosslinked resin filler is preferable.
 樹脂フィラーとしては、本実施形態に係る配合物に対する相溶性が良い点でウレタン樹脂系フィラー、アクリル樹脂系フィラーが好ましく、ウレタン樹脂系フィラーがより好ましい。 As the resin filler, a urethane resin filler and an acrylic resin filler are preferable, and a urethane resin filler is more preferable in terms of good compatibility with the formulation according to the present embodiment.
 樹脂フィラーの平均粒子径は1~150μmが好ましく、5~30μmが更に好ましい。本実施形態において平均粒子径はレーザー回折散乱法により測定される50%累積粒径である。平均粒子径が1μmより小さいと、導電性接着剤の系中に分散しにくくなる場合がある。また、150μmより大きいとアプリケーションのノズルで詰まりやすくなる傾向がある。 The average particle size of the resin filler is preferably 1 to 150 μm, more preferably 5 to 30 μm. In this embodiment, the average particle diameter is a 50% cumulative particle diameter measured by a laser diffraction scattering method. If the average particle size is smaller than 1 μm, it may be difficult to disperse in the conductive adhesive system. On the other hand, if it is larger than 150 μm, it tends to be clogged with an application nozzle.
 樹脂フィラーの配合割合は、(A)成分100質量部に対して、0.5~200質量部が好ましく、1~50質量部がより好ましい。樹脂フィラーは、単独で用いてもよく、2種以上を併用してもよい。 The blending ratio of the resin filler is preferably 0.5 to 200 parts by mass, more preferably 1 to 50 parts by mass with respect to 100 parts by mass of the component (A). A resin filler may be used independently and may use 2 or more types together.
 本実施形態に係る配合物を遮光性が要求される用途に用いる場合は、樹脂フィラーが黒色の樹脂フィラーを含むことが好ましい。平均粒子径1~150μmの黒色の樹脂フィラーを用いることにより、単一波長のLEDランプ等を用いた場合においても良好な深部硬化性を得ることができ、優れた遮光性と深部硬化性とを達成できる。 When using the composition according to the present embodiment for applications requiring light shielding properties, the resin filler preferably contains a black resin filler. By using a black resin filler having an average particle size of 1 to 150 μm, good deep curability can be obtained even when a single wavelength LED lamp or the like is used, and excellent light shielding properties and deep curability are obtained. Can be achieved.
 光硬化性組成物を製造する方法は特に制限はなく、例えば、成分(A)~(D)を所定量配合し、また必要に応じて他の配合物質を配合し、脱気攪拌することにより製造できる。各成分及び他の配合物質の配合順は特に制限はなく、適宜決定できる。 The method for producing the photocurable composition is not particularly limited. For example, the components (A) to (D) are mixed in a predetermined amount, and if necessary, other compounding materials are mixed and deaerated and stirred. Can be manufactured. The order of blending each component and other compounding substances is not particularly limited and can be determined as appropriate.
 光硬化性組成物は、必要に応じて1液型とすることもできるし、2液型とすることもできるが、特に1液型として好適に用いることができる。本実施形態に係る光硬化性組成物は光照射により硬化する光硬化性組成物であって、常温(例えば、23℃)で硬化可能であり、常温光硬化型硬化性組成物として好適に用いられるが、必要に応じて、適宜、加熱により硬化を促進させてもよい。 The photocurable composition can be a one-component type or a two-component type as required, but can be suitably used particularly as a one-component type. The photocurable composition according to this embodiment is a photocurable composition that is cured by light irradiation, can be cured at room temperature (for example, 23 ° C.), and is preferably used as a room temperature photocurable curable composition. However, if necessary, curing may be accelerated by heating.
 本実施形態に係る硬化物の製造方法は、本実施形態に係る光硬化性組成物に対し、光を照射することにより硬化物を形成する方法である。本実施形態に係る硬化物は、この方法により形成されて得られる硬化物である。
 また、本実施形態に係る製品の製造方法は、本実施形態に係る光硬化性組成物を用いて製造する方法である。本実施形態に係る製品は、この方法を用いて製造されてえられる製品であり、電子回路、電子部品、建材、自動車等の様々な製品に好適に利用可能である。
The manufacturing method of the hardened | cured material which concerns on this embodiment is a method of forming hardened | cured material by irradiating light with respect to the photocurable composition which concerns on this embodiment. The cured product according to the present embodiment is a cured product obtained by this method.
Moreover, the manufacturing method of the product which concerns on this embodiment is a method of manufacturing using the photocurable composition which concerns on this embodiment. The product according to the present embodiment is a product obtained by using this method, and can be suitably used for various products such as an electronic circuit, an electronic component, a building material, and an automobile.
 本実施形態に係る光硬化性組成物に対し、光を照射する条件としては特に制限はないが、硬化時に活性エネルギー線を照射する場合、活性エネルギー線としては、紫外線、可視光線、赤外線等の光線、X線、γ線等の電磁波の他、電子線、プロトン線、中性子線等が利用できる。硬化速度、照射装置の入手のしやすさ及び価格、太陽光や一般照明下での取扱の容易性等から紫外線又は電子線照射による硬化が好ましく、紫外線照射による硬化がより好ましい。なお、紫外線には、g線(波長436nm)、h線(波長405nm)、i線(波長365nm)等も含まれる。活性エネルギー線源としては、特に限定されないが、用いる光塩基発生剤の性質に応じて、例えば、高圧水銀灯、低圧水銀灯、電子線照射装置、ハロゲンランプ、発光ダイオード、半導体レーザー、メタルハライド等が挙げられ、発光ダイオードが好ましい。 Although there is no restriction | limiting in particular as conditions which irradiate light with respect to the photocurable composition which concerns on this embodiment, When irradiating an active energy ray at the time of hardening, as an active energy ray, ultraviolet rays, visible rays, infrared rays, etc. In addition to electromagnetic waves such as light rays, X-rays, and γ rays, electron beams, proton beams, neutron beams, and the like can be used. Curing by ultraviolet ray or electron beam irradiation is preferred, and curing by ultraviolet ray irradiation is more preferred from the viewpoint of curing speed, availability and price of the irradiation device, easiness of handling under sunlight or general illumination, and the like. The ultraviolet ray includes g-line (wavelength 436 nm), h-line (wavelength 405 nm), i-line (wavelength 365 nm), and the like. The active energy ray source is not particularly limited, and includes, for example, a high-pressure mercury lamp, a low-pressure mercury lamp, an electron beam irradiation device, a halogen lamp, a light-emitting diode, a semiconductor laser, and a metal halide depending on the properties of the photobase generator used. A light emitting diode is preferred.
 照射エネルギーとしては、例えば紫外線の場合、10~20,000mJ/cmが好ましく、20~10,000mJ/cmがより好ましく、50~5,000mJ/cmが更に好ましい。10mJ/cm未満では硬化性が不十分となる場合があり、20,000mJ/cmより大きいと、必要以上に光照射しても時間とコストが無駄になり、基材を傷めてしまう場合がある。 For example, in the case of ultraviolet rays, the irradiation energy is preferably 10 to 20,000 mJ / cm 2, more preferably 20 to 10,000 mJ / cm 2, and still more preferably 50 to 5,000 mJ / cm 2 . If it is less than 10 mJ / cm 2 , the curability may be insufficient, and if it is greater than 20,000 mJ / cm 2 , even if light is irradiated more than necessary, time and cost are wasted and the substrate is damaged. There is.
 本実施形態に係る光硬化性組成物の被着体への塗布方法は特に制限はないが、スクリーン印刷、ステンシル印刷、ロール印刷、ディスペンサー塗布、ジェットディスペンサー塗布、スプレー塗布、スピンコート等の塗布方法が好適に用いられる。 The method for applying the photocurable composition according to the present embodiment to the adherend is not particularly limited, but screen printing, stencil printing, roll printing, dispenser coating, jet dispenser coating, spray coating, spin coating, and other coating methods. Are preferably used.
 また、本実施形態において、光硬化性組成物の被着体への塗布及び光照射の時期に制限はない。例えば、光硬化性組成物に光を照射させた後、被着体と接合し、製品を製造できる。また、光硬化性組成物を被着体に塗布し、光を照射することにより組成物を硬化させて製品を製造できる。 Moreover, in this embodiment, there is no restriction | limiting in the time of application | coating to a to-be-adhered body of a photocurable composition, and light irradiation. For example, after irradiating light to a photocurable composition, it can join with a to-be-adhered body and a product can be manufactured. Moreover, a photocurable composition is apply | coated to a to-be-adhered body, a product can be manufactured by hardening a composition by irradiating light.
 本実施形態に係る光硬化性組成物は、作業性に優れた速硬化型の光硬化性組成物であり、特に、粘・接着性組成物として有用であり、接着剤、シーリング材、粘着材、コーティング材、ポッティング材、塗料、パテ材、プライマー、及びガスケット等として好適に用いることができる。本実施形態に係る光硬化性組成物は、例えば、実装回路基板等の防湿や絶縁を目的とするコーティング、ソーラー発電のパネルやパネルの外周部分のコーティング等に用いられるコーティング剤;複層ガラス用シーリング剤、車両用シーリング剤等、建築用及び工業用のシーリング剤;太陽電池裏面封止剤等の電気・電子部品材料;電線・ケーブル用絶縁被覆材等の電気絶縁材料;光造形法による立体造形物形成用の材料;粘着剤;接着剤;弾性接着剤;コンタクト接着剤;リワークやリペアを要する用途;液状ガスケット等の用途に好適に利用可能である。 The photocurable composition according to the present embodiment is a fast-curing photocurable composition excellent in workability, and is particularly useful as an adhesive / adhesive composition, and is an adhesive, a sealing material, and an adhesive. , Coating materials, potting materials, paints, putty materials, primers, gaskets, and the like. The photocurable composition according to the present embodiment includes, for example, a coating agent used for moisture-proofing and insulation of a mounted circuit board and the like, a coating for solar power generation panels and a peripheral portion of the panel, and the like; Sealing agents, sealing agents for vehicles, etc .; architectural and industrial sealing agents; electrical and electronic component materials such as solar cell back surface sealing agents; electrical insulating materials such as insulation coating materials for electric wires and cables; Materials for forming a molded article; pressure-sensitive adhesive; adhesive; elastic adhesive; contact adhesive; use requiring rework or repair; use for liquid gaskets and the like.
 液状ガスケットとしては、例えば、電子機器用のFormed In Place Gasket(FIPG)に利用できる。すなわち、本実施形態に係る光硬化性組成物は硬化前は液状である。したがって、本実施形態に係る光硬化性組成物は、電子機器用FIPGであって、活性エネルギー線照射前には空気中に暴露しても硬化しないため十分な作業時間を確保でき、活性エネルギー線照射後には貼り合わせ可能時間を十分に有しつつ短時間で硬化する電子機器製品用液状ガスケットとして用いることができる。 As the liquid gasket, for example, it can be used for Formed In Place Gasket (FIPG) for electronic equipment. That is, the photocurable composition according to this embodiment is liquid before curing. Therefore, the photocurable composition according to the present embodiment is a FIPG for electronic equipment, and it can be secured even when exposed to the air before irradiation with active energy rays, so that a sufficient working time can be secured, and the active energy rays After irradiation, it can be used as a liquid gasket for electronic device products that has a sufficient bonding time and is cured in a short time.
 また、本実施形態に係る光硬化性組成物による液状ガスケットを用いて接合したハウジング部材においては、活性エネルギー線照射後にハウジング部材を挟みつける際、ハウジング部材のシールを望まない部分に光硬化性組成物を用いて形成された液状ガスケットがはみ出すことがないだけでなく、小さい力でハウジング部材を取り外すことができる。また、ハウジング部材の取り外しは硬化初期に限らず、養生後であっても小さい力でハウジング部材取り外すことができる。そして、ハウジング部材を取り外した後、この液状ガスケットをそのまま用いてハウジング部材を再結合でき、再結合後も当初の防水性能等のシール性能を維持できる。ただし、光アミノシラン発生化合物やアミノシラン化合物等を更に添加することで、一定時間内は取り外し可能であっても、一定期間を経過した後には取り外し不可となるよう設計することもできる。 Moreover, in the housing member joined using the liquid gasket made of the photocurable composition according to the present embodiment, when the housing member is sandwiched after the active energy ray irradiation, the photocurable composition is applied to a portion where the seal of the housing member is not desired. The liquid gasket formed using the object does not protrude, and the housing member can be removed with a small force. Moreover, the removal of the housing member is not limited to the initial stage of curing, and the housing member can be removed with a small force even after curing. And after removing a housing member, a housing member can be recombined using this liquid gasket as it is, and sealing performances, such as an initial waterproof performance, can be maintained even after recombination. However, by further adding a photoaminosilane generating compound, an aminosilane compound, etc., it can be designed so that it can be removed after a certain period of time even if it can be removed within a certain period of time.
 本実施形態に係る光硬化性組成物による液状ガスケットは、本体や蓋体等の複数のハウジング部材の一方、若しくは双方のシールすべき箇所に塗布し、活性エネルギー線を照射した後、ハウジング部材を合体して用いることができる。架橋性ケイ素基含有有機重合体は活性エネルギー線照射の後、空気中の湿分によって硬化するので、ハウジング部材を合体後に放置しておけば硬化が進行する。硬化速度を高める場合には加熱してもよい。 The liquid gasket of the photocurable composition according to the present embodiment is applied to one or both of the plurality of housing members such as the main body and the lid, and irradiated with active energy rays, and then the housing member is applied. Can be used in combination. Since the crosslinkable silicon group-containing organic polymer is cured by moisture in the air after irradiation with active energy rays, curing proceeds if the housing members are left after being combined. Heating may be performed to increase the curing rate.
 以下に実施例を挙げて本発明を更に具体的に説明する。なお、これらの実施例は例示であり、限定的に解釈されるべきでないことはいうまでもない。 Hereinafter, the present invention will be described more specifically with reference to examples. Needless to say, these examples are illustrative and should not be interpreted in a limited manner.
1)数平均分子量の測定
 数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により下記条件で測定した。実施例の説明において、下記測定条件でGPCにより測定し、標準ポリエチレンで換算した最大頻度の分子量を数平均分子量と称する。
・分析装置:Alliance(Waters社製)、2410型示差屈折検出器(Waters社製)、996型多波長検出器(Waters社製)、Milleniamデータ処理装置(Waters社製)
・カラム:Plgel GUARD+5μmMixed-C×3本(50×7.5mm、300×7.5mm:PolymerLab社製)
・流速:1mL/分
・換算したポリマー:ポリエチレン
・測定温度:40℃
・GPC測定時の溶媒:THF
1) Measurement of number average molecular weight The number average molecular weight was measured by gel permeation chromatography (GPC) under the following conditions. In the description of the examples, the maximum frequency molecular weight measured by GPC under the following measurement conditions and converted with standard polyethylene is referred to as the number average molecular weight.
・ Analyzer: Alliance (manufactured by Waters), 2410 type differential refraction detector (manufactured by Waters), 996 type multi-wavelength detector (manufactured by Waters), Millenium data processor (manufactured by Waters)
Column: Plgel GUARD + 5 μmMixed-C × 3 (50 × 7.5 mm, 300 × 7.5 mm: manufactured by Polymer Lab)
・ Flow rate: 1 mL / min ・ Converted polymer: Polyethylene ・ Measurement temperature: 40 ° C.
・ Solvent for GPC measurement: THF
2)NMR及びIRの測定
 NMR及びIRの測定は、下記測定装置を用いて実施した。
 FT-NMR測定装置:日本電子(株)製JNM-ECA500(500MHz)
 FT-IR測定装置:日本分光(株)製FT-IR460Plus
2) Measurement of NMR and IR NMR and IR were measured using the following measuring apparatus.
FT-NMR measuring device: JNM-ECA500 (500 MHz) manufactured by JEOL Ltd.
FT-IR measuring device: FT-IR460Plus manufactured by JASCO Corporation
(合成例1)末端にトリメトキシシリル基を有するポリオキシアルキレン系重合体A1の合成
 エチレングリコールを開始剤とし、亜鉛ヘキサシアノコバルテート-グライム錯体触媒の存在下、プロピレンオキシドを反応させ、ポリオキシプロピレンジオールを得た。WO2015-088021の合成例2の方法に準じ、得られたポリオキシプロピレンジオールの末端にアリル基を有するポリオキシアルキレン系重合体を得た。この末端にアリル基を有するポリオキシアルキレン系重合体に対し、水素化ケイ素化合物であるトリメトキシシランを白金ビニルシロキサン錯体イソプロパノール溶液を添加して反応させ、末端にトリメトキシシリル基を有するポリオキシアルキレン系重合体A1を得た。
(Synthesis Example 1) Synthesis of polyoxyalkylene polymer A1 having a trimethoxysilyl group at its terminal Polyoxypropylene was reacted with propylene oxide in the presence of zinc hexacyanocobaltate-glyme complex catalyst using ethylene glycol as an initiator. Diol was obtained. According to the method of Synthesis Example 2 of WO2015-088021, a polyoxyalkylene polymer having an allyl group at the terminal of the obtained polyoxypropylene diol was obtained. This polyoxyalkylene polymer having an allyl group at the end is reacted with trimethoxysilane, which is a silicon hydride compound, by adding a platinum vinyl siloxane complex isopropanol solution to react with the polyoxyalkylene having a trimethoxysilyl group at the end. A polymer A1 was obtained.
 得られた末端にトリメトキシシリル基を有するポリオキシアルキレン系重合体A1の分子量をGPCにより測定した結果、ピークトップ分子量は25,000、分子量分布1.3であった。H-NMR測定により末端のトリメトキシシリル基は1分子あたり1.7個であった。 As a result of measuring the molecular weight of the obtained polyoxyalkylene polymer A1 having a trimethoxysilyl group by GPC, the peak top molecular weight was 25,000 and the molecular weight distribution was 1.3. As a result of 1 H-NMR measurement, the number of terminal trimethoxysilyl groups was 1.7 per molecule.
(合成例2)末端にトリメトキシシリル基を有するポリオキシアルキレン系重合体A2の合成
 エチレングリコールを開始剤とし、亜鉛ヘキサシアノコバルテート-グライム錯体触媒の存在下、プロピレンオキシドを反応させ、ポリオキシプロピレンジオールを得た。WO2015-088021の合成例2の方法に準じ、得られたポリオキシプロピレンジオールの末端にアリル基を有するポリオキシアルキレン系重合体を得た。この末端にアリル基を有するポリオキシアルキレン系重合体に対し、水素化ケイ素化合物であるトリメトキシシランを白金ビニルシロキサン錯体イソプロパノール溶液を添加して反応させ、末端にトリメトキシシリル基を有するポリオキシアルキレン系重合体A2を得た。
(Synthesis Example 2) Synthesis of polyoxyalkylene polymer A2 having a trimethoxysilyl group at its terminal Polyoxypropylene was reacted with propylene oxide in the presence of zinc hexacyanocobaltate-glyme complex catalyst using ethylene glycol as an initiator. Diol was obtained. According to the method of Synthesis Example 2 of WO2015-088021, a polyoxyalkylene polymer having an allyl group at the terminal of the obtained polyoxypropylene diol was obtained. This polyoxyalkylene polymer having an allyl group at the end is reacted with trimethoxysilane, which is a silicon hydride compound, by adding a platinum vinyl siloxane complex isopropanol solution to react with the polyoxyalkylene having a trimethoxysilyl group at the end. A polymer A2 was obtained.
 得られた末端にトリメトキシシリル基を有するポリオキシアルキレン系重合体A2の分子量をGPCにより測定した結果、ピークトップ分子量は12,000、分子量分布1.3であった。H-NMR測定により末端のトリメトキシシリル基は1分子あたり1.7個であった。 As a result of measuring the molecular weight of the obtained polyoxyalkylene polymer A2 having a trimethoxysilyl group at the terminal by GPC, the peak top molecular weight was 12,000 and the molecular weight distribution was 1.3. As a result of 1 H-NMR measurement, the number of terminal trimethoxysilyl groups was 1.7 per molecule.
(合成例3)トリメトキシシリル基を有する(メタ)アクリル系重合体A3の合成
 メチルメタクリレート70.00g、2-エチルヘキシルメタクリレート30.00g、3-メタクリロキシプロピルトリメトキシシラン12.00g、金属触媒としてのチタノセンジクライド0.10g、3-メルカプトプロピルトリメトキシシラン8.60g、重合停止剤としてのベンゾキノン溶液(95%THF溶液)20.00gを用いて、WO2015-088021の合成例4の方法に準じ、トリメトキシシリル基を有する(メタ)アクリル系重合体A3を得た。(メタ)アクリル系重合体A3のピークトップ分子量は4,000、分子量分布は2.4であった。H-NMR測定により含有されるトリメトキシシリル基は1分子あたり2.00個であった。
(Synthesis Example 3) Synthesis of (meth) acrylic polymer A3 having a trimethoxysilyl group 70.00 g of methyl methacrylate, 30.00 g of 2-ethylhexyl methacrylate, 12.00 g of 3-methacryloxypropyltrimethoxysilane, as a metal catalyst In accordance with the method of Synthesis Example 4 of WO2015-088021 using 0.10 g of titanocene dicylide, 8.60 g of 3-mercaptopropyltrimethoxysilane, and 20.00 g of a benzoquinone solution (95% THF solution) as a polymerization terminator. The (meth) acrylic polymer A3 having a trimethoxysilyl group was obtained. The (meth) acrylic polymer A3 had a peak top molecular weight of 4,000 and a molecular weight distribution of 2.4. The number of trimethoxysilyl groups contained by 1 H-NMR measurement was 2.00 per molecule.
(合成例4)フッ素化ポリマーC1-1の合成
 分子量約2,000のポリオキシプロピレンジオールを開始剤とし、亜鉛ヘキサシアノコバルテート-グライム錯体触媒の存在下、プロピレンオキシドを反応させ、水酸基価換算分子量14,500、かつ分子量分布1.3のポリオキシプロピレンジオールを得た。WO2015-088021の合成例2の方法に準じ、得られたポリオキシプロピレンジオールの末端にアリル基を有するポリオキシアルキレン系重合体を得た。この末端にアリル基を有するポリオキシアルキレン系重合体に対し、水素化ケイ素化合物であるメチルジメトキシシランを白金ビニルシロキサン錯体イソプロパノール溶液を添加して反応させ、末端にメチルジメトキシシリル基を有するポリオキシアルキレン系重合体A4を得た。得られた末端にメチルジメトキシシリル基を有するポリオキシアルキレン系重合体A4の分子量をGPCにより測定した結果、ピークトップ分子量は15,000、分子量分布1.3であった。H-NMR測定により末端のメチルジメトキシシリル基は1分子あたり1.7個であった。
(Synthesis Example 4) Synthesis of fluorinated polymer C1-1 Polyoxypropylene diol having a molecular weight of about 2,000 is used as an initiator, and propylene oxide is reacted in the presence of a zinc hexacyanocobaltate-glyme complex catalyst to obtain a molecular weight in terms of hydroxyl value. A polyoxypropylene diol having a molecular weight distribution of 1.3 was obtained. According to the method of Synthesis Example 2 of WO2015-088021, a polyoxyalkylene polymer having an allyl group at the terminal of the obtained polyoxypropylene diol was obtained. The polyoxyalkylene polymer having an allyl group at the terminal is reacted with methyldimethoxysilane, which is a silicon hydride compound, by adding a platinum vinylsiloxane complex isopropanol solution, and the polyoxyalkylene having a methyldimethoxysilyl group at the terminal is reacted. A polymer A4 was obtained. As a result of measuring the molecular weight of the obtained polyoxyalkylene polymer A4 having a methyldimethoxysilyl group by GPC, the peak top molecular weight was 15,000 and the molecular weight distribution was 1.3. According to 1 H-NMR measurement, the number of terminal methyldimethoxysilyl groups was 1.7 per molecule.
 次に、BFジエチルエーテル錯体2.4g、脱水メタノール1.6g、重合体A4を100g、トルエン5gを用いて、WO2015-088021の合成例4の方法に準じ、末端にフルオロシリル基を有するポリオキシアルキレン系重合体C1-1(以下、フッ素化ポリマーC1-1と称する)を得た。得られたフッ素化ポリマーC1-1のH-NMRスペクトル(Shimazu社製のNMR400を用いて、CDCl溶媒中で測定)を測定したところ、原料である重合体A4のシリルメチレン(-CH-Si)に対応するピーク(m,0.63ppm)が消失し、低磁場側(0.7ppm~)にブロードピークが現れた。 Next, 2.4 g of BF 3 diethyl ether complex, 1.6 g of dehydrated methanol, 100 g of polymer A4, and 5 g of toluene were used according to the method of Synthesis Example 4 of WO2015-088021 to obtain a polysilyl having a fluorosilyl group at the terminal. An oxyalkylene polymer C1-1 (hereinafter referred to as fluorinated polymer C1-1) was obtained. The 1 H-NMR spectrum of the obtained fluorinated polymer C1-1 (measured in a CDCl 3 solvent using NMR400 manufactured by Shimazu) was measured. As a result, silylmethylene (—CH 2 The peak (m, 0.63 ppm) corresponding to -Si) disappeared, and a broad peak appeared on the low magnetic field side (0.7 ppm-).
(合成例5)光によりアミノ基を生成する架橋性ケイ素基含有化合物E1の合成
 フラスコに2-ニトロベンジルアルコール15.3部とトルエン344部とを加え、約113℃で60分間還流した。その後、3-イソシアネートプロピルトリメトキシシラン20.5部を滴下し、5時間撹拌し、合成物(下記式(9)で示される光によりアミノ基を生成する架橋性ケイ素基含有化合物。以下光アミノシラン発生化合物E1と称する。)を得た。光アミノシラン発生化合物E1のIRスペクトル測定の結果、-N=C=O結合は検出されなかった。
(Synthesis Example 5) Synthesis of crosslinkable silicon group-containing compound E1 that generates an amino group by light 15.3 parts of 2-nitrobenzyl alcohol and 344 parts of toluene were added to a flask and refluxed at about 113 ° C. for 60 minutes. Thereafter, 20.5 parts of 3-isocyanatopropyltrimethoxysilane was added dropwise and stirred for 5 hours to produce a compound (a crosslinkable silicon group-containing compound that generates an amino group by light represented by the following formula (9). Referred to as generating compound E1). As a result of IR spectrum measurement of the photoaminosilane-generating compound E1, a —N═C═O bond was not detected.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(合成例6)
 温度計を備えた撹拌機中に、ポリプロピレングリコール(三井化学ポリウレタン(株)製、商品名:Diol-2000)589.4重量部を脱水処理した後、4,4-ジフェニルメタンジイソシアネート(MDI)110.6重量部を添加し、窒素気流下70~90℃で3時間反応させ、NCO/OH当量比1.5のウレタンプレポリマーAを得た。このウレタンプレポリマーAのNCO基に対し0.5当量の3-メルカプトプロピルトリメトキシシランをウレタンプレポリマーAと反応させ、平均して片末端にトリメトキシシリル基を他の末端にNCO基を有する重合体を得た。得られた重合体のNCO基に対し、当量の4-ヒドロキシブチルアクリレートをこの重合体と反応させ、平均して片末端にトリメトキシシリル基を他の末端にアクリロイルオキシ基を有する重合体A4を得た。
(Synthesis Example 6)
In a stirrer equipped with a thermometer, 589.4 parts by weight of polypropylene glycol (manufactured by Mitsui Chemicals Polyurethane Co., Ltd., trade name: Diol-2000) was dehydrated, and then 4,4-diphenylmethane diisocyanate (MDI) 110. 6 parts by weight was added and reacted at 70 to 90 ° C. for 3 hours under a nitrogen stream to obtain a urethane prepolymer A having an NCO / OH equivalent ratio of 1.5. 0.5 equivalent of 3-mercaptopropyltrimethoxysilane is reacted with urethane prepolymer A with respect to the NCO group of this urethane prepolymer A, and on average, it has a trimethoxysilyl group at one end and an NCO group at the other end. A polymer was obtained. With respect to the NCO group of the obtained polymer, an equivalent amount of 4-hydroxybutyl acrylate is reacted with this polymer, and an average polymer A4 having a trimethoxysilyl group at one end and an acryloyloxy group at the other end is obtained. Obtained.
(実施例1~12及び比較例1~7)
 表1に示す配合割合で各配合物質をそれぞれ添加し、混合撹拌して光硬化性組成物を調製した。
(Examples 1 to 12 and Comparative Examples 1 to 7)
Each compounding substance was added at the blending ratio shown in Table 1, mixed and stirred to prepare a photocurable composition.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1において、各配合物質の配合量はgで示され、ポリオキシアルキレン系重合体A1及びA2は合成例1及び2で得たポリオキシアルキレン系重合体A1及びA2であり、アクリル系重合体A3は合成例3で得たアクリル系重合体A3であり、分子内に架橋性ケイ素基と光ラジカル重合性のビニル基を有する有機重合体A4は合成例6で得られた重合体A4であり、フッ素化ポリマーC1-1は合成例4で得たフッ素化ポリマーC1-1であり、光アミノシラン発生化合物E1は合成例5で得た光アミノシラン発生化合物E1であり、他の配合物質の詳細は下記の通りである。
*1)光塩基発生剤B1:Irgacure(登録商標)379EG[BASF社製の商品名、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン]の70%PC(プロピレンカーボネート)溶液。
*2)光塩基発生剤B2:SA-2[サンアプロ(株)製の商品名]5%PC溶液。
*3)多官能化合物D1:1,6-ヘキサンジオールジアクリレート、商品名「SR238NS」(サートマー社製)、2官能アクリレートモノマー。
*4)多官能化合物D2:トリメチロールプロパン、商品名「ライトアクリレートTMP-A」(共栄社化学(株)製)、3官能アクリレートモノマー。
*5)多官能化合物D3:ジペンタエリスリトールヘキサアクリレート、商品名「ライトアクリレートDPE-6A」(共栄社化学(株)製)、6官能アクリレートモノマー。
*6)多官能化合物D4:ウレタンアクリレート、商品名「NKオリゴU-15HA」(新中村化学工業(株)製)、アクリロイルオキシ基を15個有する重合体。
*7)多官能化合物D5:アクリル系アクリレート、商品名「RC100C」((株)カネカ製)、アクリロイルオキシ基を2個有する重合体。
*8)単官能化合物F1:メトキシジプロピレングルコールアクリレート、商品名「ライトアクリレートDPM-A」(共栄社化学(株)製)、単官能アクリレート。
*9)単官能化合物F2:フェノキシエチルアクリレート、商品名「ライトアクリレートPO-A」(共栄社化学(株)製)。
*10)粘着付与樹脂G1:商品名「パインクリスタルKE-100」(荒川化学工業(株)製)。
*11)エポキシ基を有する化合物:ビスフェノールA型エポキシ樹脂、商品名「JER828」(三菱樹脂(株)製)。
*12)開裂型光ラジカル発生剤:商品名「Irgacure(登録商標)1173」(BASF社製、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン。)
*13)錫触媒:ネオスタンU-100[日東化成(株)製の商品名]の33%PC溶液。
In Table 1, the compounding amount of each compounding substance is indicated by g, and the polyoxyalkylene polymers A1 and A2 are the polyoxyalkylene polymers A1 and A2 obtained in Synthesis Examples 1 and 2, and the acrylic polymer. A3 is the acrylic polymer A3 obtained in Synthesis Example 3, and the organic polymer A4 having a crosslinkable silicon group and a photoradically polymerizable vinyl group in the molecule is the polymer A4 obtained in Synthesis Example 6. The fluorinated polymer C1-1 is the fluorinated polymer C1-1 obtained in Synthesis Example 4, the photoaminosilane generating compound E1 is the photoaminosilane generating compound E1 obtained in Synthesis Example 5, and details of other compounding substances are as follows. It is as follows.
* 1) Photobase generator B1: Irgacure (registered trademark) 379EG [trade name, manufactured by BASF, 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4- Morpholinyl) phenyl] -1-butanone] in 70% PC (propylene carbonate) solution.
* 2) Photobase generator B2: SA-2 [trade name of San Apro Co., Ltd.] 5% PC solution.
* 3) Multifunctional compound D1: 1,6-hexanediol diacrylate, trade name “SR238NS” (manufactured by Sartomer), bifunctional acrylate monomer.
* 4) Multifunctional compound D2: trimethylolpropane, trade name “Light Acrylate TMP-A” (manufactured by Kyoeisha Chemical Co., Ltd.), trifunctional acrylate monomer.
* 5) Polyfunctional compound D3: dipentaerythritol hexaacrylate, trade name “Light acrylate DPE-6A” (manufactured by Kyoeisha Chemical Co., Ltd.), hexafunctional acrylate monomer.
* 6) Polyfunctional compound D4: urethane acrylate, trade name “NK Oligo U-15HA” (manufactured by Shin-Nakamura Chemical Co., Ltd.), polymer having 15 acryloyloxy groups.
* 7) Polyfunctional compound D5: acrylic acrylate, trade name “RC100C” (manufactured by Kaneka Corporation), polymer having two acryloyloxy groups.
* 8) Monofunctional compound F1: Methoxydipropylene glycol acrylate, trade name “Light acrylate DPM-A” (manufactured by Kyoeisha Chemical Co., Ltd.), monofunctional acrylate.
* 9) Monofunctional compound F2: Phenoxyethyl acrylate, trade name “Light Acrylate PO-A” (manufactured by Kyoeisha Chemical Co., Ltd.).
* 10) Tackifying resin G1: Trade name “Pine Crystal KE-100” (manufactured by Arakawa Chemical Industries, Ltd.).
* 11) Compound having an epoxy group: bisphenol A type epoxy resin, trade name “JER828” (manufactured by Mitsubishi Plastics).
* 12) Cleavage type photo radical generator: Trade name “Irgacure (registered trademark) 1173” (manufactured by BASF, 2-hydroxy-2-methyl-1-phenyl-propan-1-one)
* 13) Tin catalyst: 33% PC solution of Neostan U-100 [trade name, manufactured by Nitto Kasei Co., Ltd.]
 得られた光硬化性組成物に対して下記方法によりクリープ試験、及び引張せん断接着強さ試験を実施した。結果を表1に示す。
1)クリープ試験
 得られた光硬化性組成物を被着材[アクリル樹脂]に面積:5mm×25mm、厚み100μmで塗布し、UV照射[照射条件:UV-LEDランプ(波長365nm、照度1000mW/cm)、積算光量:3000mJ/cm]した。照射後直ちに、被着材[アクリル樹脂]を貼り合わせ、目玉クリップ小により圧締し、暗室下23℃50%RHの環境下において30秒間養生した後、クリープ試験(重り:10g)し、下記評価基準にて評価した。
 ○:被着材が落下しない、×:被着材が落下した。
A creep test and a tensile shear bond strength test were performed on the obtained photocurable composition by the following methods. The results are shown in Table 1.
1) Creep test The obtained photocurable composition was applied to an adherend [acrylic resin] with an area of 5 mm × 25 mm and a thickness of 100 μm, and UV irradiation [irradiation conditions: UV-LED lamp (wavelength 365 nm, illuminance 1000 mW / cm 2 ), integrated light quantity: 3000 mJ / cm 2 ]. Immediately after irradiation, the adherend [acrylic resin] was bonded together, pressed with a small eyeball clip, cured in a dark room at 23 ° C. and 50% RH for 30 seconds, and then subjected to a creep test (weight: 10 g). Evaluation was made based on evaluation criteria.
○: The adherend did not fall, ×: The adherend dropped.
2)引張せん断接着強さ試験
 被着材[アクリル樹脂]に、得られた光硬化性組成物を厚さ100μmになるように塗布し、UV照射[照射条件:UV-LEDランプ(波長365nm、照度1000mW/cm)、積算光量:3000mJ/cm]した。照射後直ちに、25mm×25mmの面積で被着材[アクリル樹脂]を貼り合わせ、目玉クリップ小により圧締し、暗室下23℃50%RHの環境下で3時間養生した。養生後、JIS K6850 剛性被着材の引張りせん断接着強さ試験方法に準拠し、試験速度50mm/分で測定した。結果を表1に示す。
2) Tensile shear bond strength test The obtained photocurable composition was applied to an adherend [acrylic resin] to a thickness of 100 μm, and UV irradiation [irradiation conditions: UV-LED lamp (wavelength 365 nm, Illuminance 1000 mW / cm 2 ), integrated light quantity: 3000 mJ / cm 2 ]. Immediately after the irradiation, an adherend [acrylic resin] was pasted in an area of 25 mm × 25 mm, pressed with a small eyeball clip, and cured in an environment of 23 ° C. and 50% RH in a dark room for 3 hours. After curing, it was measured at a test speed of 50 mm / min in accordance with the tensile shear bond strength test method of JIS K6850 rigid adherend. The results are shown in Table 1.
 表1から分かるように、実施例1~12に係る光硬化性組成物はいずれも、クリープ試験が良好であり、かつ、十分な引張せん断接着強さを有することが示された。 As can be seen from Table 1, it was shown that all of the photocurable compositions according to Examples 1 to 12 had good creep tests and sufficient tensile shear adhesive strength.
(実施例13~15、比較例8~11)
 更に、表2に示す配合割合で各配合物質をそれぞれ添加し、混合撹拌して液状ガスケット用の光硬化性組成物を調製した。
(Examples 13 to 15, Comparative Examples 8 to 11)
Furthermore, each compounding substance was added in the blending ratio shown in Table 2, mixed and stirred to prepare a photocurable composition for a liquid gasket.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表2において、各配合物質の配合量はgで示され、ポリオキシアルキレン系重合体A1及びA2は合成例1及び2で得たポリオキシアルキレン系重合体A1及びA2であり、アクリル系重合体A3は合成例3で得たアクリル系重合体A3であり、フッ素化ポリマーC1-1は合成例4で得たフッ素化ポリマーC1-1である。また、表1と同一の注釈が付されている化合物は、表1と同一の化合物を示す。他の配合物質の詳細は下記の通りである。
*14)光塩基発生剤B3:Irgacure(登録商標)379EG(BASF社製、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン)、プロピレンカーボネート溶液で50質量%に希釈して使用。表2では、固形分の質量部を記載している。)
*15)多官能化合物D6:ライトアクリレートDPM-A(共栄社化学(株)製、商品名、メトキシジプロピレングルコールアクリレート)
*16)多官能化合物D7:UV3700B(日本合成化学工業(株)製、ウレタンアクリレート、アクリロイルオキシ基を2個有する重合体)
*17)タレ止め材:AEROSIL(登録商標)R972(日本アエロジル(株)製、疎水性シリカ)
In Table 2, the compounding amount of each compounding substance is indicated by g, and the polyoxyalkylene polymers A1 and A2 are the polyoxyalkylene polymers A1 and A2 obtained in Synthesis Examples 1 and 2, and the acrylic polymer. A3 is the acrylic polymer A3 obtained in Synthesis Example 3, and the fluorinated polymer C1-1 is the fluorinated polymer C1-1 obtained in Synthesis Example 4. Further, the compounds annotated the same as in Table 1 indicate the same compounds as in Table 1. Details of other compounding substances are as follows.
* 14) Photobase generator B3: Irgacure (registered trademark) 379EG (manufactured by BASF, 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl 1-butanone), diluted to 50% by mass with a propylene carbonate solution. In Table 2, the mass part of solid content is described. )
* 15) Polyfunctional compound D6: Light acrylate DPM-A (Kyoeisha Chemical Co., Ltd., trade name, methoxydipropylene glycol acrylate)
* 16) Polyfunctional compound D7: UV3700B (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., polymer having urethane acrylate and two acryloyloxy groups)
* 17) Sagging stop material: AEROSIL (registered trademark) R972 (Nippon Aerosil Co., Ltd., hydrophobic silica)
 得られた液状ガスケットに対して下記方法で試験した。その結果を表2に示す。 The obtained liquid gasket was tested by the following method. The results are shown in Table 2.
(UV未照射時の作業性試験)
 500nm以下の波長をカットするフィルムを貼り付けた蛍光灯下、23℃50%RHの条件下で内径0.84mmのニードルを吐出用ニードルとして備えたディスペンサーロボット(以下、「ディスペンサーロボットA」という)を用いて実施例13で調製した組成物のUV未照射時の作業性を試験した。23℃50%RHの環境下で、PETフィルムへ連続塗布し、指触にてディスペンス塗布が可能な時間を測定した。
 8時間以上作業可能な場合を「◎」、4時間以上8時間未満作業可能な場合を「○」、4時間未満でノズル先が硬化し作業不可となった場合を「×」と評価した。
(Workability test without UV irradiation)
A dispenser robot (hereinafter referred to as “dispenser robot A”) having a needle with an inner diameter of 0.84 mm as a discharge needle under the condition of a fluorescent lamp with a film that cuts a wavelength of 500 nm or less and having a temperature of 23 ° C. and 50% RH. Was used to test the workability of the composition prepared in Example 13 when not irradiated with UV. In an environment of 23 ° C. and 50% RH, the film was continuously applied to a PET film, and the time during which dispensing can be applied by finger touch was measured.
The case where it was possible to work for 8 hours or more was evaluated as “◎”, the case where it was possible to work for 4 hours or more but less than 8 hours was evaluated as “◯”, and the case where the nozzle tip was hardened in 4 hours and became unworkable was evaluated as “x”.
(形状保持性)
 ディスペンサーロボットAを用いて、縦75.00mm、横25.00mm、厚さ2.00mmのガラス板の外周部に、縦65.00mm、横18.00mmの四角形状(線幅1mm)に光硬化性組成物を塗工し、UV照射[照射条件:UV-LEDランプ(波長365nm、照度:1000mW/cm)、積算光量:1000mJ/cm、以下、「照射条件1」という。]した。照射後直ちに、もう一枚の同じ大きさのガラス板を貼り合わせた。その後、23℃50%RHの環境下で、500gの重りをのせて15分間養生した。養生後、貼り合わせ前の硬化性組成物の幅と比較して幅が2倍未満の場合に「〇」、3倍未満の場合に「△」、3倍以上の場合に「×」と評価した。
(Shape retention)
Using dispenser robot A, photocuring into a rectangular shape (line width 1 mm) of 65.00 mm length and 18.00 mm width on the outer periphery of a glass plate of 75.00 mm length, 25.00 mm width, 2.00 mm thickness The composition is coated and irradiated with UV [irradiation conditions: UV-LED lamp (wavelength 365 nm, illuminance: 1000 mW / cm 2 ), integrated light quantity: 1000 mJ / cm 2 , hereinafter referred to as “irradiation conditions 1”. ]did. Immediately after irradiation, another glass plate of the same size was bonded. Then, in an environment of 23 ° C. and 50% RH, a 500 g weight was placed and cured for 15 minutes. After curing, “◯” when the width is less than 2 times compared to the width of the curable composition before bonding, “△” when less than 3 times, and “×” when 3 times or more did.
(初期防水性)
 ディスペンサーロボットAを用いて、縦75.00mm、横25.00mm、厚さ2.00mmのガラス板の外周部に、縦65.00mm、横18.00mmの四角形状(線幅1mm)に光硬化性組成物を塗工し、UV照射(照射条件は、照射条件1である。)した。照射後直ちに、もう一枚の同じ大きさのガラス板を貼り合わせた。その後、23℃50%RHの環境下で、500gの重りをのせて15分間養生した。養生後、水深1.0mの水槽に、重ね合わせて貼り合わせたガラス板を30分間没し、ガスケット内側への水の浸入の有無を目視にて判定した。水の浸入がない場合「○」、水の侵入がある場合「×」と評価した。なお、比較例8は貼り合わせができない状態まで硬化しており、比較例10及び11は未硬化であったため評価できなかった。
(Initial waterproof)
Using dispenser robot A, photocuring into a rectangular shape (line width 1 mm) of 65.00 mm length and 18.00 mm width on the outer periphery of a glass plate of 75.00 mm length, 25.00 mm width, 2.00 mm thickness The composition was coated and irradiated with UV (irradiation conditions were irradiation conditions 1). Immediately after irradiation, another glass plate of the same size was bonded. Then, in an environment of 23 ° C. and 50% RH, a 500 g weight was placed and cured for 15 minutes. After curing, the laminated and bonded glass plate was submerged in a water tank having a depth of 1.0 m for 30 minutes, and the presence or absence of water intrusion into the gasket was visually determined. The evaluation was “◯” when there was no water intrusion and “×” when there was water intrusion. Note that Comparative Example 8 was cured to a state where it could not be bonded, and Comparative Examples 10 and 11 could not be evaluated because they were uncured.
(初期剥離性)
 ディスペンサーロボットAを用いて、縦75.00mm、横25.00mm、厚さ2.00mmのガラス板の外周部に、縦65.00mm、横18.00mmの四角形状(線幅1mm)に光硬化性組成物を塗工し、UV照射(照射条件は、照射条件1である。)した。照射後直ちに、もう一枚の同じ大きさのガラス板を貼り合わせた。その後、23℃50%RHの環境下で、500gの重りをのせて1分間養生した。養生後、重ね合わせて貼り合わせたガラス板をはがし、ガラスと接着剤間で破断させた。ガラス板の界面での破壊を「○」、接着剤の凝集破壊を「×」と評価した。なお、比較例8は貼り合わせができない状態まで硬化しており、比較例9~11は未硬化であったため評価できなかった。
(Initial peelability)
Using dispenser robot A, photocuring into a rectangular shape (line width 1 mm) of 65.00 mm length and 18.00 mm width on the outer periphery of a glass plate of 75.00 mm length, 25.00 mm width, 2.00 mm thickness The composition was coated and irradiated with UV (irradiation conditions were irradiation conditions 1). Immediately after irradiation, another glass plate of the same size was bonded. Then, in an environment of 23 ° C. and 50% RH, a 500 g weight was placed and cured for 1 minute. After curing, the laminated and bonded glass plates were peeled off and broken between the glass and the adhesive. The breaking at the interface of the glass plate was evaluated as “◯” and the cohesive failure of the adhesive was evaluated as “×”. Note that Comparative Example 8 was cured to a state where it could not be bonded, and Comparative Examples 9 to 11 were uncured and could not be evaluated.
(剥離した液状ガスケットの防水性)
 ディスペンサーロボットAを用いて、縦75.00mm、横25.00mm、厚さ2.00mmのガラス板の外周部に、縦65.00mm、横18.00mmの四角形状(線幅1mm)に光硬化性組成物を塗工し、UV照射(照射条件は、照射条件1である。)した。照射後直ちに、もう一枚の同じ大きさのガラス板を貼り合わせ、1分間養生した。その後、重ね合わせて貼り合わせたガラス板を一度はがし、再び貼り合わせた。再び貼り合わせた後、23℃50%RHの環境下で、500gの重りをのせて15分間養生した。養生後、水深1.0mの水槽に、重ね合わせて貼り合わせたガラス板を30分間没し、ガスケット内側への水の浸入の有無を目視にて判定した。水の浸入がない場合「○」、水の侵入がある場合「×」と評価した。なお、比較例8は貼り合わせができない状態まで硬化しており、比較例9~11は1分間の養生後に未硬化であり、両方のガラス板からきれいに剥がすことができなかったため評価しなかった。
(Water resistance of peeled liquid gasket)
Using dispenser robot A, photocuring into a rectangular shape (line width 1 mm) of 65.00 mm length and 18.00 mm width on the outer periphery of a glass plate of 75.00 mm length, 25.00 mm width, 2.00 mm thickness The composition was coated and irradiated with UV (irradiation conditions were irradiation conditions 1). Immediately after irradiation, another glass plate of the same size was bonded and cured for 1 minute. Thereafter, the laminated and bonded glass plates were peeled off once and bonded again. After pasting again, in an environment of 23 ° C. and 50% RH, a 500 g weight was placed and cured for 15 minutes. After curing, the laminated and bonded glass plate was submerged in a water tank having a depth of 1.0 m for 30 minutes, and the presence or absence of water intrusion into the gasket was visually determined. The evaluation was “◯” when there was no water intrusion and “×” when there was water intrusion. Note that Comparative Example 8 was cured to a state where it could not be bonded, and Comparative Examples 9 to 11 were not cured after curing for 1 minute and were not evaluated because they could not be peeled cleanly from both glass plates.
(養生後の剥離性)
 ディスペンサーロボットAを用いて、縦75.00mm、横25.00mm、厚さ2.00mmのガラス板の外周部に、縦65.00mm、横18.00mmの四角形状(線幅1mm)に光硬化性組成物を塗工し、UV照射(照射条件は、照射条件1である。)した。照射後直ちに、もう一枚の同じ大きさのガラス板を貼り合わせた。その後、23℃50%RHの環境下で、500gの重りをのせて1日間養生した。養生後、重ね合わせて貼り合わせたガラス板をはがし、ガラスと接着剤間で破断させた。ガラス板の界面での破壊を「○」、接着剤の凝集破壊を「×」と評価した。なお、比較例8は貼り合わせができない状態まで硬化しており、比較例10及び11は未硬化であったため評価できなかった。
(Peelability after curing)
Using dispenser robot A, photocuring into a rectangular shape (line width 1 mm) of 65.00 mm length and 18.00 mm width on the outer periphery of a glass plate of 75.00 mm length, 25.00 mm width, 2.00 mm thickness The composition was coated and irradiated with UV (irradiation conditions were irradiation conditions 1). Immediately after irradiation, another glass plate of the same size was bonded. Then, in an environment of 23 ° C. and 50% RH, a 500 g weight was placed and cured for 1 day. After curing, the laminated and bonded glass plates were peeled off and broken between the glass and the adhesive. The breaking at the interface of the glass plate was evaluated as “◯” and the cohesive failure of the adhesive was evaluated as “×”. Note that Comparative Example 8 was cured to a state where it could not be bonded, and Comparative Examples 10 and 11 could not be evaluated because they were uncured.
(実施例14~15、比較例8~11)
 表2に示すように、配合物質の変更以外は実施例13と同様の方法により光硬化性組成物、及び硬化性組成物を調製した。そして、実施例13と同様に、光硬化性組成物の硬化性試験、及び接着性試験を実施した。その結果を表2に示す。
(Examples 14 to 15, Comparative Examples 8 to 11)
As shown in Table 2, a photocurable composition and a curable composition were prepared by the same method as in Example 13 except that the compounding substances were changed. And like Example 13, the sclerosing | hardenable test and adhesiveness test of the photocurable composition were implemented. The results are shown in Table 2.
 比較例9~11の液状ガスケットは形状保持性が悪く、ガラス板を貼り合わせた際にぬれ広がり、ガスケットとして用いることができなかった。 The liquid gaskets of Comparative Examples 9 to 11 had poor shape retention, spread when the glass plates were bonded together, and could not be used as gaskets.
 表2に示すように、実施例に係る液状ガスケットは、活性エネルギー線未照射時は硬化せず、形状保持性に優れており、活性エネルギー線照射後には貼り合わせ可能時間を十分に有していることが示された。また、実施例に係る液状ガスケットを用いて接合したハウジング部材においては、シールを望まない部分にはみ出すことがなく、硬化初期及び養生後も小さい力でハウジング部材を取り外すことができ、リワーク後、このガスケットをそのまま用いてハウジング部材を再結合可能であり、再結合後も当初の防水性能等のシール性能を維持していることが示された。 As shown in Table 2, the liquid gasket according to the example does not cure when not irradiated with active energy rays, has excellent shape retention, and has sufficient time for bonding after irradiation with active energy rays. It was shown that Moreover, in the housing member joined using the liquid gasket according to the embodiment, the housing member can be removed with a small force even at the initial stage of curing and after curing, without protruding to a portion where sealing is not desired. It was shown that the housing member can be recombined using the gasket as it is, and the sealing performance such as the initial waterproof performance is maintained after the recombination.

Claims (12)

  1.  (A)架橋性ケイ素基含有有機重合体と、
     (B)光塩基発生剤と、
     (C1)Si-F結合を有するケイ素化合物、並びに(C2)三フッ化ホウ素、三フッ化ホウ素の錯体、フッ素化剤、及び多価フルオロ化合物のアルカリ金属塩からなる群から選択される1種以上のフッ素系化合物と、
     (D)1分子中に1個を超える(メタ)アクリロイル基を有する多官能化合物と
    を含有する光硬化性組成物。
    (A) a crosslinkable silicon group-containing organic polymer;
    (B) a photobase generator;
    (C1) a silicon compound having a Si—F bond, and (C2) one selected from the group consisting of boron trifluoride, a complex of boron trifluoride, a fluorinating agent, and an alkali metal salt of a polyvalent fluoro compound The above fluorine compound,
    (D) A photocurable composition containing a polyfunctional compound having more than one (meth) acryloyl group in one molecule.
  2.  (E)光により、第一級アミノ基及び第二級アミノ基からなる群から選択される1種以上のアミノ基を生成する架橋性ケイ素基含有化合物を更に含む請求項1記載の光硬化性組成物。 The photocurable composition according to claim 1, further comprising (E) a crosslinkable silicon group-containing compound that generates one or more amino groups selected from the group consisting of primary amino groups and secondary amino groups by light. Composition.
  3.  (F)光重合性不飽和基を有する単官能化合物を更に含む請求項1又は2記載の光硬化性組成物。 (F) The photocurable composition according to claim 1 or 2, further comprising a monofunctional compound having a photopolymerizable unsaturated group.
  4.  (G)粘着付与樹脂を更に含む請求項1~3のいずれか1項に記載の光硬化性組成物。 The photocurable composition according to any one of claims 1 to 3, further comprising (G) a tackifier resin.
  5.  前記(A)架橋性ケイ素基含有有機重合体が、架橋性ケイ素基含有ポリオキシアルキレン系重合体、及び架橋性ケイ素基含有(メタ)アクリル系重合体からなる群から選択される1種以上である請求項1~4のいずれか1項に記載の光硬化性組成物。 The (A) crosslinkable silicon group-containing organic polymer is one or more selected from the group consisting of a crosslinkable silicon group-containing polyoxyalkylene polymer and a crosslinkable silicon group-containing (meth) acrylic polymer. The photocurable composition according to any one of claims 1 to 4.
  6.  前記(B)光塩基発生剤が、光潜在性第3級アミンである請求項1~5のいずれか1項に記載の光硬化性組成物。 The photocurable composition according to any one of claims 1 to 5, wherein the (B) photobase generator is a photolatent tertiary amine.
  7.  前記(A)架橋性ケイ素基を有する有機重合体が、(a-1)分子内に架橋性ケイ素基と光ラジカル重合性のビニル基とを有する重合体(但し、Si-F結合を有するものを除く)及び(a-2) (a-1)以外の架橋性ケイ素基を有する有機重合体からなる群から選択される1種以上の重合体である請求項5又は6に記載の光硬化性組成物。 (A) The organic polymer having a crosslinkable silicon group is (a-1) a polymer having a crosslinkable silicon group and a photoradically polymerizable vinyl group in the molecule (however, having a Si—F bond). The photocuring according to claim 5 or 6, which is one or more polymers selected from the group consisting of organic polymers having a crosslinkable silicon group other than (a-2) and (a-2) Sex composition.
  8.  請求項1~7のいずれか1項に記載の光硬化性組成物に対し、光を照射することにより形成される硬化物。 A cured product formed by irradiating the photocurable composition according to any one of claims 1 to 7 with light.
  9.  請求項1~7のいずれか1項に記載の光硬化性組成物を用いて製造される製品。 A product manufactured using the photocurable composition according to any one of claims 1 to 7.
  10.  請求項1~7のいずれか1項に記載の光硬化性組成物を接着剤として用いる製品。 A product using the photocurable composition according to any one of claims 1 to 7 as an adhesive.
  11.  請求項1~7のいずれか1項に記載の光硬化性組成物を用いてなる電子機器製品。 An electronic device product using the photocurable composition according to any one of claims 1 to 7.
  12.  電子機器のリワーク方法であって、
     (イ)前記電子機器用現場成形型液状ガスケットとして、(A)架橋性ケイ素基含有有機重合体と、(B)光塩基発生剤と、(C1)Si-F結合を有するケイ素化合物と、(D)1分子中に1個を超える(メタ)アクリロイル基を有する多官能化合物とを含有する現場成形型液状ガスケットを用意する工程と、
     (ロ)前記液状ガスケットを未硬化の状態で電子機器の一方のハウジング部材のシールすべき箇所に塗布し、活性エネルギー線を照射し、他方のハウジング部材を挟みつける工程と、
     (ハ)硬化後リワークが必要な電子機器のハウジング部材を取り外し、内部の部品を交換する工程と
    を備える電子機器のリワーク方法。
    An electronic device rework method,
    (A) As the on-site molded liquid gasket for electronic equipment, (A) a crosslinkable silicon group-containing organic polymer, (B) a photobase generator, (C1) a silicon compound having a Si—F bond, D) preparing an in-situ molded liquid gasket containing a polyfunctional compound having more than one (meth) acryloyl group in one molecule;
    (B) applying the liquid gasket to an area to be sealed of one housing member of an electronic device in an uncured state, irradiating with active energy rays, and sandwiching the other housing member;
    (C) A method of reworking an electronic device comprising: removing a housing member of an electronic device that requires rework after curing, and replacing an internal component.
PCT/JP2015/086413 2014-12-26 2015-12-25 Photocurable composition WO2016104787A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016566568A JP6683133B2 (en) 2014-12-26 2015-12-25 Photocurable composition
CN201580057525.1A CN107074999B (en) 2014-12-26 2015-12-25 Photocurable composition
KR1020177010755A KR102494910B1 (en) 2014-12-26 2015-12-25 Photocurable composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-264558 2014-12-26
JP2014264558 2014-12-26

Publications (1)

Publication Number Publication Date
WO2016104787A1 true WO2016104787A1 (en) 2016-06-30

Family

ID=56150799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/086413 WO2016104787A1 (en) 2014-12-26 2015-12-25 Photocurable composition

Country Status (4)

Country Link
JP (1) JP6683133B2 (en)
KR (1) KR102494910B1 (en)
CN (1) CN107074999B (en)
WO (1) WO2016104787A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017002267A (en) * 2015-06-11 2017-01-05 セメダイン株式会社 Photocurable composition, conductive structure, and electronic component
WO2018020939A1 (en) * 2016-07-25 2018-02-01 セメダイン株式会社 Pressure-sensitive adhesive
WO2018030435A1 (en) * 2016-08-09 2018-02-15 積水化学工業株式会社 Adhesive composition, cured body, electronic component, and assembly component
JP2018188634A (en) * 2017-05-11 2018-11-29 株式会社豊田自動織機 Coating agent, resin member and method for producing the same
WO2019064385A1 (en) * 2017-09-27 2019-04-04 日立化成株式会社 Curable resin composition, image display device, and method for manufacturing image display device
JP2020525612A (en) * 2017-06-27 2020-08-27 サートプラスト・テヒニシェ・クレーベベンダー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Adhesive tape manufacturing method
WO2022259783A1 (en) 2021-06-08 2022-12-15 綜研化学株式会社 Curable composition and cured product

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108864954A (en) * 2018-06-07 2018-11-23 苏州袭麟光电科技产业有限公司 A kind of high light transmittance dual cure OCA glue
CN113214720A (en) * 2021-04-28 2021-08-06 深圳永昌和科技有限公司 Cationic photopolymer and method for changing cationic photopolymerization conversion rate thereof under action of magnetic field

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004137403A (en) * 2002-10-18 2004-05-13 Asahi Glass Co Ltd Curable composition
JP2007126513A (en) * 2005-11-01 2007-05-24 Daido Kasei Kogyo Kk Photo- and moisture-curable composition
JP2010260910A (en) * 2009-04-30 2010-11-18 Konishi Co Ltd Curable silicone-based resin composition
JP2013001852A (en) * 2011-06-17 2013-01-07 Kaneka Corp Curable composition and adhesive using the same
JP2013067738A (en) * 2011-09-22 2013-04-18 Kaneka Corp Curable composition excellent in adhesion to polyester
JP2014077064A (en) * 2012-10-10 2014-05-01 Kaneka Corp Active energy ray-curable coating resin composition
JP2015021103A (en) * 2013-07-23 2015-02-02 スリーボンドファインケミカル株式会社 Photocurable resin composition
WO2015056717A1 (en) * 2013-10-18 2015-04-23 積水化学工業株式会社 Light/moisture-curable resin composition, adhesive for electronic component, and adhesive for display device
JP2015110745A (en) * 2013-11-01 2015-06-18 セメダイン株式会社 Photocurable conductive composition

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001139893A (en) 1999-08-27 2001-05-22 Sekisui Chem Co Ltd Adhesive composition and bonding method using same
US20070219285A1 (en) 2006-03-17 2007-09-20 3M Innovative Properties Company Uv b-stageable, moisture curable composition useful for rapid electronic device assembly
CN101426859B (en) * 2006-04-20 2012-03-21 株式会社钟化 Curable composition
JP2008274119A (en) * 2007-04-27 2008-11-13 Kaneka Corp Curable composition
JP5264105B2 (en) * 2007-05-28 2013-08-14 コニシ株式会社 Curable resin composition
EP2270114B1 (en) * 2008-03-31 2014-07-09 San-Apro Limited Photobase generator
JP2010047722A (en) * 2008-08-25 2010-03-04 Konishi Co Ltd Sealing material composition
JP5533232B2 (en) * 2009-06-29 2014-06-25 Jsr株式会社 Positive radiation sensitive composition, cured film, interlayer insulating film, method for forming interlayer insulating film, display element, and siloxane polymer for forming interlayer insulating film
CN105392845B (en) * 2013-07-18 2020-10-20 思美定株式会社 Photocurable composition
JP6642834B2 (en) * 2014-10-24 2020-02-12 セメダイン株式会社 Photocurable composition

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004137403A (en) * 2002-10-18 2004-05-13 Asahi Glass Co Ltd Curable composition
JP2007126513A (en) * 2005-11-01 2007-05-24 Daido Kasei Kogyo Kk Photo- and moisture-curable composition
JP2010260910A (en) * 2009-04-30 2010-11-18 Konishi Co Ltd Curable silicone-based resin composition
JP2013001852A (en) * 2011-06-17 2013-01-07 Kaneka Corp Curable composition and adhesive using the same
JP2013067738A (en) * 2011-09-22 2013-04-18 Kaneka Corp Curable composition excellent in adhesion to polyester
JP2014077064A (en) * 2012-10-10 2014-05-01 Kaneka Corp Active energy ray-curable coating resin composition
JP2015021103A (en) * 2013-07-23 2015-02-02 スリーボンドファインケミカル株式会社 Photocurable resin composition
WO2015056717A1 (en) * 2013-10-18 2015-04-23 積水化学工業株式会社 Light/moisture-curable resin composition, adhesive for electronic component, and adhesive for display device
JP2015110745A (en) * 2013-11-01 2015-06-18 セメダイン株式会社 Photocurable conductive composition

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017002267A (en) * 2015-06-11 2017-01-05 セメダイン株式会社 Photocurable composition, conductive structure, and electronic component
WO2018020939A1 (en) * 2016-07-25 2018-02-01 セメダイン株式会社 Pressure-sensitive adhesive
WO2018030435A1 (en) * 2016-08-09 2018-02-15 積水化学工業株式会社 Adhesive composition, cured body, electronic component, and assembly component
WO2018030434A1 (en) * 2016-08-09 2018-02-15 積水化学工業株式会社 Adhesive composition, cured object, electronic component, and assembly component
JP2018188634A (en) * 2017-05-11 2018-11-29 株式会社豊田自動織機 Coating agent, resin member and method for producing the same
JP7057970B2 (en) 2017-05-11 2022-04-21 株式会社豊田自動織機 Coating agent, resin member and its manufacturing method
JP2022079588A (en) * 2017-05-11 2022-05-26 株式会社豊田自動織機 Resin member and method for producing the same
JP7334916B2 (en) 2017-05-11 2023-08-29 株式会社豊田自動織機 Resin member and its manufacturing method
JP2020525612A (en) * 2017-06-27 2020-08-27 サートプラスト・テヒニシェ・クレーベベンダー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Adhesive tape manufacturing method
JP7064519B2 (en) 2017-06-27 2022-05-10 サートプラスト・テヒニシェ・クレーベベンダー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Adhesive tape manufacturing method
WO2019064385A1 (en) * 2017-09-27 2019-04-04 日立化成株式会社 Curable resin composition, image display device, and method for manufacturing image display device
WO2022259783A1 (en) 2021-06-08 2022-12-15 綜研化学株式会社 Curable composition and cured product

Also Published As

Publication number Publication date
KR102494910B1 (en) 2023-02-01
JPWO2016104787A1 (en) 2017-10-05
JP6683133B2 (en) 2020-04-15
CN107074999A (en) 2017-08-18
KR20170099840A (en) 2017-09-01
CN107074999B (en) 2019-02-01

Similar Documents

Publication Publication Date Title
JP6683133B2 (en) Photocurable composition
JP6156607B1 (en) Adhesion method using photocurable adhesive
JP6645495B2 (en) Pressure sensitive adhesive
JP6489441B2 (en) Method for producing conductive cured product and method for curing pulsed light curable composition
WO2015088021A1 (en) Photocurable composition having adhesive properties
CN107148453B (en) Photocurable composition
WO2019073978A1 (en) Bonding method, and photocurable adhesive composition
JP2018030989A (en) Photocurable composition, cured composition-containing product, sticking method, and method for producing product
WO2019073979A1 (en) Photocurable adhesive composition, and bonding method
WO2019073980A1 (en) Photocurable adhesive composition, and bonding method
JP2017125098A (en) Method for curing photocurable adhesive, cured product, photocurable adhesive, and product
JP2016135852A (en) Photocurable composition
JP4426866B2 (en) Heat extinguishing material
WO2018020939A1 (en) Pressure-sensitive adhesive
JP2017218558A (en) Bonding method, bonding device, and method for producing structure
JP2019019243A (en) Method for forming light-shielding part
JP4426867B2 (en) Heat extinguishing material
JP6562378B2 (en) Liquid gasket for electronic equipment
JP2017218526A (en) Pressure-sensitive adhesive

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873355

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016566568

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177010755

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15873355

Country of ref document: EP

Kind code of ref document: A1