WO2016104728A1 - Cooler - Google Patents

Cooler Download PDF

Info

Publication number
WO2016104728A1
WO2016104728A1 PCT/JP2015/086287 JP2015086287W WO2016104728A1 WO 2016104728 A1 WO2016104728 A1 WO 2016104728A1 JP 2015086287 W JP2015086287 W JP 2015086287W WO 2016104728 A1 WO2016104728 A1 WO 2016104728A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
pipe
cooler
refrigerant
pipes
Prior art date
Application number
PCT/JP2015/086287
Other languages
French (fr)
Japanese (ja)
Inventor
靖人 末木
俊一 佐田
季朗 久野
Original Assignee
三菱アルミニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱アルミニウム株式会社 filed Critical 三菱アルミニウム株式会社
Priority to JP2016566528A priority Critical patent/JP6448666B2/en
Publication of WO2016104728A1 publication Critical patent/WO2016104728A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a construction machine (hybrid), a wind power / solar power generation power converter, a power converter such as a power supply / uninterruptible power supply, a so-called inverter for motor control of an elevator / rolling machine / machine tool, etc., railway
  • the present invention relates to a cooler used for cooling a control device using a semiconductor element such as a power transistor or a thyristor of a vehicle or an electric vehicle.
  • cooler used for cooling control devices using semiconductor elements such as power transistors and thyristors
  • a cooler that cools a heating element using latent heat when the refrigerant boils is known. Yes.
  • a cooler heat pipe cooler
  • a cooler embeds a plurality of circular tanks having a large cross-sectional area in a base block that receives heat from a heating element such as a semiconductor element.
  • a plurality of thin pipes are erected on the side surface of the exposed portion, and a plurality of fins are attached to the pipes, so that the heat of the heating element can be cooled by outside air.
  • the pipe axis of the pipe placed upright in the tank may be inclined.
  • the refrigerant enter the pipe in a liquid state and the condensation area decreases, but the cooling performance may decrease, and the boiling bubbles violently collide with the tip of the pipe, causing a boiling sound (impact sound). ) May occur.
  • the present invention has been made in view of such circumstances, and can provide a cooler that can improve cooling performance and can maintain good cooling performance even when the posture during use changes. With the goal.
  • the cooler of the present invention includes a base block having a mounting surface on which a heating element is mounted along the vertical direction; a circular tank embedded in a surface opposite to the mounting surface of the base block and containing a refrigerant; And a plurality of parallel pipe pipes connected in a standing manner to the side of the tank; and a plurality of heat radiations attached to the pipes through the pipes.
  • the tank extends in a horizontal direction, the pipe is inclined upward from a connection end to the tank toward a closed end, and an inner diameter d2 of the pipe Is set smaller than the inner diameter d1 of the tank, and the center line of the pipe is in the range of greater than 0 and less than or equal to (d1 ⁇ d2) / 2 in parallel with the radial radiation from the center line of the tank. It is arranged eccentrically above the in the radiation.
  • thermosiphon type heat pipe in which a plurality of pipes are connected to one tank, the condensation area of the plurality of pipes is larger than that of a single pipe type heat pipe, so that it is accommodated in the pipe unit.
  • the amount of refrigerant is large.
  • the refrigerant in the pipe unit is biased to one side (lower side), so that the other side (higher side) from the bottom of the tank In order to prevent the refrigerant from running out (so as not to dry up), it is necessary to increase the amount of refrigerant stored in the pipe unit.
  • each pipe is inclined upward from the tank and is eccentric upward from the tank, so that the storage area for the liquid refrigerant in the tank can be increased. it can. For this reason, even when the cooler is inclined, a space can be secured between the liquid refrigerant in the tank and the pipe. Further, since the pipe is eccentric upward and the storage area in the tank is deepened, the liquid refrigerant can be held in the tank even if the attitude of the cooler changes. Therefore, the bottom of the tank does not dry, and the boiling cooling performance can be exhibited smoothly and maintained at all times.
  • each pipe is inclined upward from the tank and connected to the tank and is arranged eccentrically on the upper side of the tank.
  • the set liquid level of the refrigerant stored in the tank is the set liquid level at the connection end of the pipe in a state where the extending direction of the tank is left in a horizontal direction.
  • the ratio (m2 / d1) between the maximum opening height m2 exposed from the inner diameter d1 and the inner diameter d1 of the tank is set to be 0.27 or more.
  • the present inventor has found that the liquid level of the refrigerant accommodated in the pipe unit is left standing along the horizontal direction of the tank extending direction and the maximum opening height m2 of the pipe connection end and the tank It was found that the generation of boiling noise can be avoided by setting the ratio (m2 / d1) to the inner diameter d1 to be 0.27 or more. As described above, when the ratio (m2 / d1) is set to 0.27 or more, a steam passage is ensured between the tank and the pipe, so that boiling bubbles can be prevented from pushing up the refrigerant. Therefore, even when the amount of the refrigerant stored in the pipe unit is increased, generation of boiling noise can be avoided.
  • the cooling performance can be improved, and the cooling performance can be satisfactorily maintained even when the posture during use is changed. it can.
  • FIG. 1 It is a side view which shows the cooler which is embodiment of this invention. It is sectional drawing of the cooler shown in FIG. It is a front view of the cooler shown in FIG. It is a rear view of the cooler shown in FIG. It is principal part sectional drawing in the connection part of the tank and pipe of a pipe unit. It is a cross-sectional arrow view of the cooler along the AA line shown in FIG. It is principal part sectional drawing of the pipe unit in other embodiment of this invention.
  • FIG. 1 to 3A and 3B show a cooler 100 according to an embodiment of the present invention.
  • the vehicle cooler 100 is embedded in a base block 20 in which a mounting surface 21a on which the heating element 10 is mounted is formed in the vertical direction, and an opposite surface 21b opposite to the mounting surface 21a of the base block 20.
  • the radiating fin 40 is used for a vehicle.
  • the cooler 100 is installed in the lower part of the side surface of the vehicle so that the mounting surface 21a of the base block 20 is along the vertical direction.
  • the base block 20 is formed of a metal having a high heat capacity and excellent heat conductivity such as aluminum and copper.
  • a heating element 10 such as a semiconductor element is mounted on the mounting surface 21a on one side (left side in FIG. 1) of the base block 20, and the side opposite to the mounting surface 21a on which the heating element 10 is mounted (right side in FIG. 1).
  • the tank 31 is embedded in the opposite surface 21b.
  • the pipe unit 30 is configured by connecting a plurality of thin tubular pipes 32 having an inner diameter d2 smaller in diameter than the inner diameter d1 of the tank 31 to the side surface of the tubular tank 31.
  • a tank 31 having an inner diameter d1 of 27.6 mm and a pipe 32 having an inner diameter d2 of 13.88 mm can be suitably used.
  • the tank 31 is formed of a circular pipe, the extending direction thereof is arranged along the horizontal direction, and the tank 31 is attached to the opposite surface 21 b of the base block 20.
  • the pipe 32 has the inner diameter d2 set smaller than the inner diameter d1 of the tank 31, and is connected to the side surface of each tank 31 as shown in FIG. Further, as shown in FIG. 3B, the pipes 32 are erected in a row along the extending direction of the tank 31 in parallel with each other at regular intervals. As shown in FIGS. 2 and 4, each pipe 32 is disposed so as to be inclined upward at an angle ⁇ with respect to the horizontal direction from the connecting end to the tank 31 toward the closed end on the opposite side.
  • the angle ⁇ is set with reference to an angle at which the vehicle travels on a slope and the cooler 100 may tilt (for example, 7 °).
  • the center line of the pipe 32 is arranged in parallel with the radiation going from the center line of the tank 31 in the radial direction and is eccentric to the upper side of the radiation within the range of (d1-d2) / 2 or less.
  • the eccentric amount of the pipe 32 is indicated by a symbol L.
  • the eccentricity L is 0 mm within the range of (d1 ⁇ d2) / 2 or less. It is made into the range of 6.86 mm or less exceeding.
  • the tank 31 and the pipe 32 are made of aluminum or copper, and are joined together by brazing with the internal space integrated.
  • a refrigerant 60 such as pure water or perfluorocarbon is accommodated in the pipe unit 30 formed by joining the tank 31 and each pipe 32.
  • the set liquid level of the refrigerant 60 accommodated in the pipe unit 30 is set at the connection end of the pipe 32 in the state where the extending direction of the tank 31 is left along the horizontal direction.
  • the ratio (m2 / d1) between the maximum opening height m2 exposed from the liquid surface and the inner diameter d1 of the tank 31 is set to be 0.27 or more.
  • a plurality of tanks 31 (pipe units 30) to which a plurality of pipes 32 are attached in this manner are vertically arranged on the opposite surface 21b of the base block 20.
  • the pipes 32 are arranged in a matrix by arranging them in parallel.
  • the pipes 32 are arranged in a lattice shape in a top view.
  • the pipes 32 may be arranged in a zigzag manner or other arrangements. .
  • the base block 20 and each tank 31 are joined together by soldering or the like. Thereby, the heat transfer between the base block 32 and the tank 31 is performed smoothly.
  • the joint between the base block 20 and the tank 31 is fixed by soldering or the like, as shown in FIG. 1 and FIG. It is fixed by screwing to the cooling device 100 and is reinforced so as to be able to endure when the cooler 100 is subjected to severe vibration.
  • a plurality of thin plate-like heat radiation fins 40 made of aluminum or copper having excellent thermal conductivity are attached to the pipe 32 so as to be skewered with the pipe 32 penetrating.
  • the heat radiating fin 40 is provided with a plurality of through holes (not shown) formed at a predetermined position of the thin plate by, for example, burring. By press-fitting the pipes 32 into these through holes, the radiation fins 40 are attached to the pipes 32 so that the radiation fins 40 and the pipes 32 are integrally provided.
  • the heat radiation fin 40 can also be attached by expanding the pipe 32 inserted into the through hole of the heat radiation fin 40.
  • the heat generated from the heating element 10 is transmitted to the base block 20 and further transmitted from the base block 20 to the tank 31 of the pipe unit 30 to boil the refrigerant 60 in the tank 31. Let it evaporate. Then, the vapor of the evaporated refrigerant 60 rises in the tank 31 and moves into the pipe 32, and is cooled by transferring heat to the radiating fins 40 through the pipe 32.
  • the pipe unit 30 is configured such that each pipe 32 is inclined upward from the tank 31. Therefore, when the vehicle travels on a sloped place and the cooler 100 tilts, The pipe 32 can maintain an attitude at an angle greater than horizontal. Moreover, since each pipe 32 is eccentrically arranged on the upper side with respect to the tank 31, the storage area of the liquid refrigerant 60 in the tank 31 can be increased. As a result, even when the cooler 100 is tilted and its posture is changed, a space can be secured in the tank 31 while holding the liquid refrigerant 60 in the tank 31, and the refrigerant 60 remains in liquid form from the tank 31 to the pipe 32. Inflow can be prevented. That is, since the liquid refrigerant 60 is prevented from flowing into the pipe 32 and the bottom of the tank 31 is not dried, the boiling cooling performance can be exhibited smoothly at all times, and the cooling performance can be maintained well. it can.
  • the bottom of the tank 31 can be managed not to dry up by increasing the amount of the refrigerant 60 accommodated in the pipe unit 30. For this reason, the tank 31 is lengthened and unified, and the temperature difference between the windward and leeward can be reduced by the heat equalization characteristics of the heat pipe, and the cooling performance can be improved.
  • the ratio (m2 / d1) is set to be equal to or greater than 0.27 and the vapor passage is secured, so that it is possible to prevent boiling bubbles from pushing up the liquid refrigerant 60. Therefore, even when the amount of the refrigerant 60 accommodated in the pipe unit 30 is increased, generation of boiling noise can be avoided.
  • the radiating fin 40 is configured to be attached in a state in which all the pipes 32 are penetrated as in the above embodiment, and the plurality of pipes 32 are divided into several blocks, and each of the plurality of pipes 32 is divided. It can also be set as the structure which attaches the small radiation fin divided into.
  • each pipe 32 is cut
  • Provide a cooler that can improve cooling performance and maintain good boiling cooling performance even when the posture during use changes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Sustainable Development (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

Provided is a cooler capable of improving cooling performance and favorably maintaining cooling performance even when the orientation thereof changes during use. A tank 31 of a cooler 100 extends in the horizontal direction. A pipe 32 is slanted upward from the end connected to the tank 31 toward a closed end. The inner diameter d2 of the pipe 32 is set so as to be smaller than the inner diameter d1 of the tank 31. The center line of the pipe 32 is parallel to a radiating line extending in the radial direction from the center line of the tank 31, and is positioned upwardly eccentric relative to the radiating line in a range greater than 0 and no greater than (d1-d2)/2.

Description

冷却器Cooler
 本発明は、建設機械(ハイブリッド)、風力・太陽光発電の電力変換装置、電源装置・無停電電源装置等の電力変換装置、エレベータ・圧延機・工作機械などのモータ制御などのいわゆるインバータ、鉄道車両・電気車両等のパワートランジスタやサイリスタ等の半導体素子を利用した制御機器等の冷却に用いる冷却器に関する。
 本願は、2014年12月25日に出願された特願2014-262357号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a construction machine (hybrid), a wind power / solar power generation power converter, a power converter such as a power supply / uninterruptible power supply, a so-called inverter for motor control of an elevator / rolling machine / machine tool, etc., railway The present invention relates to a cooler used for cooling a control device using a semiconductor element such as a power transistor or a thyristor of a vehicle or an electric vehicle.
This application claims priority based on Japanese Patent Application No. 2014-262357 for which it applied on December 25, 2014, and uses the content here.
 パワートランジスタやサイリスタ等の半導体素子を利用した制御機器等の冷却に使用する冷却器として、冷媒が沸騰する際の潜熱を利用して発熱体を冷却する冷却器(沸騰冷却器)が知られている。 As a cooler used for cooling control devices using semiconductor elements such as power transistors and thyristors, a cooler (boiling cooler) that cools a heating element using latent heat when the refrigerant boils is known. Yes.
 例えば、特許文献1に記載の冷却器(ヒートパイプ冷却器)は、半導体素子等の発熱体の熱を受けるベースブロックに、断面積の大きな複数本の円管状のタンクを埋設するとともに、タンクの露出部分の側面に複数の細いパイプを立設させ、そのパイプに複数のフィンを取り付けた構成とされ、発熱体の熱を外気によって冷却することができるようになっている。 For example, a cooler (heat pipe cooler) described in Patent Document 1 embeds a plurality of circular tanks having a large cross-sectional area in a base block that receives heat from a heating element such as a semiconductor element. A plurality of thin pipes are erected on the side surface of the exposed portion, and a plurality of fins are attached to the pipes, so that the heat of the heating element can be cooled by outside air.
特開2004‐125381号公報JP 2004-125381 A
 沸騰冷却性能を発揮するためには、冷媒の入ったタンクに適正な空間が確保され、この空間部分にパイプが接続されていることが必要とされる。この空間は、通常、タンクの体積の1/3以上あることが理想である。一方、タンクの管底面に液状の冷媒がないと、沸騰冷却性能を発揮することができない。 In order to exhibit boiling cooling performance, it is necessary to secure an appropriate space in the tank containing the refrigerant and to connect a pipe to this space portion. Ideally, this space is usually 1/3 or more of the volume of the tank. On the other hand, if there is no liquid refrigerant on the bottom surface of the tank, boiling cooling performance cannot be exhibited.
 特許文献1に記載される冷却器においては、ベースブロックの側面に対して複数のパイプが直立して設置されている。この冷却器が取り付けられた車両が勾配のある場所を走行すると、タンクの円管軸方向において、部分的にタンクの空間が液状の冷媒で埋まって液状のまま冷媒がパイプに到達したりタンクの底部に液状の冷媒がない状況ができたりすることが問題であった。 In the cooler described in Patent Document 1, a plurality of pipes are installed upright with respect to the side surface of the base block. When a vehicle equipped with this cooler travels on a slope, the tank space is partially filled with liquid refrigerant in the axial direction of the tank tube, and the refrigerant reaches the pipes in the liquid state. The problem was that there was no liquid refrigerant at the bottom.
 また、タンクの円管軸の傾きとは別に、タンクに直立して配置されたパイプの円管軸の傾きが生じることがある。この場合には、パイプ内に冷媒が液状のまま進入して凝縮面積が減少することで冷却性能が低下するおそれがあるだけでなく、沸騰気泡がパイプ先端に激しく衝突して沸騰音(衝突音)を生じるおそれもある。 In addition to the inclination of the tank pipe axis, the pipe axis of the pipe placed upright in the tank may be inclined. In this case, not only does the refrigerant enter the pipe in a liquid state and the condensation area decreases, but the cooling performance may decrease, and the boiling bubbles violently collide with the tip of the pipe, causing a boiling sound (impact sound). ) May occur.
 本発明は、このような事情に鑑みてなされたもので、冷却性能の向上を図ることができ、使用時の姿勢が変化した場合においても、冷却性能を良好に維持できる冷却器を提供することを目的とする。 The present invention has been made in view of such circumstances, and can provide a cooler that can improve cooling performance and can maintain good cooling performance even when the posture during use changes. With the goal.
 本発明の冷却器は、上下方向に沿い発熱体が装着される装着面を有するベースブロックと:該ベースブロックの前記装着面とは反対面に埋設され、冷媒が収容された円管状のタンク;及び該タンクの側面に立設状態で接続された、相互に平行な複数の円管状のパイプ;からなるパイプユニットと:複数の前記パイプを貫通させた状態でこれらパイプに取り付けられた複数の放熱フィンと:を備え、前記タンクは、水平方向に沿って延在し、前記パイプは、前記タンクとの接続端から閉塞端に向けて上方に向かうように傾斜しており、前記パイプの内径d2は、前記タンクの内径d1よりも小さく設定されており、前記パイプの中心線は、前記タンクの中心線から径方向に向かう放射線と平行に、0より大きく(d1-d2)/2以下の範囲内で前記放射線よりも上側に偏芯して配置されている。 The cooler of the present invention includes a base block having a mounting surface on which a heating element is mounted along the vertical direction; a circular tank embedded in a surface opposite to the mounting surface of the base block and containing a refrigerant; And a plurality of parallel pipe pipes connected in a standing manner to the side of the tank; and a plurality of heat radiations attached to the pipes through the pipes. The tank extends in a horizontal direction, the pipe is inclined upward from a connection end to the tank toward a closed end, and an inner diameter d2 of the pipe Is set smaller than the inner diameter d1 of the tank, and the center line of the pipe is in the range of greater than 0 and less than or equal to (d1−d2) / 2 in parallel with the radial radiation from the center line of the tank. It is arranged eccentrically above the in the radiation.
 通常、1つのタンクに複数のパイプを接続したサーモサイフォン型ヒートパイプ(パイプユニット)においては、単管式ヒートパイプと比較して、複数のパイプによる凝縮面積が大きいので、パイプユニットに収容される冷媒の液量が多い。また、車両の登降走行に伴う勾配時等にも沸騰冷却性能を発揮するには、パイプユニット内の冷媒が片側(低い方)に偏ることで、その反対側(高い方)のタンクの底部から冷媒がなくならないように(干上がらないように)するため、パイプユニットにおいて収容する冷媒の液量を多くしておく必要がある。ところが、その一方で、沸騰冷却性能を発揮するためには、パイプユニットの内部に収容された冷媒(冷媒の液面)とタンクに取り付けられたパイプとの間に適正な空間を確保することも必要とされるので、冷媒の液量が多いことが不利になるおそれがある。 Usually, in a thermosiphon type heat pipe (pipe unit) in which a plurality of pipes are connected to one tank, the condensation area of the plurality of pipes is larger than that of a single pipe type heat pipe, so that it is accommodated in the pipe unit. The amount of refrigerant is large. Also, in order to demonstrate boiling cooling performance when the vehicle is climbing up and down, the refrigerant in the pipe unit is biased to one side (lower side), so that the other side (higher side) from the bottom of the tank In order to prevent the refrigerant from running out (so as not to dry up), it is necessary to increase the amount of refrigerant stored in the pipe unit. However, on the other hand, in order to exert the boiling cooling performance, it is also possible to secure an appropriate space between the refrigerant (liquid level of the refrigerant) accommodated in the pipe unit and the pipe attached to the tank. Since it is required, it may be disadvantageous that the amount of the refrigerant is large.
 この点、本発明の冷却器においては、各パイプをタンクから上方に向かうように傾斜させるとともに、タンクから上側に偏芯させているので、タンク内の液状の冷媒の貯留領域を増加させることができる。このため、冷却器が傾いた際にも、タンク内の液状の冷媒とパイプとの間に空間を確保することができる。また、パイプを上側に偏芯させ、タンク内の貯留領域を深くしているので、冷却器の姿勢が変化しても、タンク内に液状の冷媒を保持することができる。したがって、タンクの底部が乾くことがなく、常時、沸騰冷却性能を円滑に発揮させ良好に維持することができる。 In this respect, in the cooler of the present invention, each pipe is inclined upward from the tank and is eccentric upward from the tank, so that the storage area for the liquid refrigerant in the tank can be increased. it can. For this reason, even when the cooler is inclined, a space can be secured between the liquid refrigerant in the tank and the pipe. Further, since the pipe is eccentric upward and the storage area in the tank is deepened, the liquid refrigerant can be held in the tank even if the attitude of the cooler changes. Therefore, the bottom of the tank does not dry, and the boiling cooling performance can be exhibited smoothly and maintained at all times.
 なお、車両の傾き等によるタンクの底部の干上がり対策として、タンクの長さを短くして、その分、タンクの設置数を増やして縦列状態に複数列配置することが考えられる。ところが、タンクの長さを短くして複数列配置した場合には、車両の走行方向すなわち冷却風の風上と風下とでヒートパイプ構造が分断されるため、温度勾配が生じて、風下側の温度が高くなることが懸念される。これに対し、本発明の冷却器においては、各パイプをタンクから上方に傾斜させてタンクに接続するとともにタンクの上側に偏芯させて配置したので、タンクを長尺化した場合においても冷媒の液量を増やすことができ、タンクの底部が干上がらないように管理することができる。このため、冷却風の風上から風下に至る長い一本のタンクを構成して、ヒートパイプの均熱特性により風上と風下との温度差を小さくし、冷却性能の向上を図ることができる。 In order to prevent the bottom of the tank from drying up due to the inclination of the vehicle, it is conceivable to shorten the length of the tank and increase the number of tanks installed accordingly, and arrange them in multiple columns. However, when the tank is shortened and arranged in multiple rows, the heat pipe structure is divided in the vehicle traveling direction, that is, the windward and leeward side of the cooling air, so that a temperature gradient occurs and the leeward side There is a concern that the temperature will rise. On the other hand, in the cooler of the present invention, each pipe is inclined upward from the tank and connected to the tank and is arranged eccentrically on the upper side of the tank. Therefore, even when the tank is elongated, The amount of liquid can be increased, and management can be performed so that the bottom of the tank does not dry up. For this reason, one long tank from the windward side to the leeward side of the cooling air can be configured, and the temperature difference between the windward and leeward can be reduced by the heat equalization characteristics of the heat pipe, so that the cooling performance can be improved. .
 本発明の冷却器において、前記タンクに収容される前記冷媒の設定液面は、前記タンクの延在方向を水平方向に沿って静置した状態において、前記パイプの前記接続端における前記設定液面から露出した最大開口高さm2と前記タンクの内径d1との比率(m2/d1)が0.27以上となるように設定されている。 In the cooler of the present invention, the set liquid level of the refrigerant stored in the tank is the set liquid level at the connection end of the pipe in a state where the extending direction of the tank is left in a horizontal direction. The ratio (m2 / d1) between the maximum opening height m2 exposed from the inner diameter d1 and the inner diameter d1 of the tank is set to be 0.27 or more.
 タンクに対してパイプを上側に偏芯させることで、パイプユニットの内部に収容する冷媒の液量を増加させることが可能となり、冷却性能の向上を図ることができる。しかし、パイプユニットの内部に収容する冷媒の液量をあまり多くすると、タンク内の沸騰気泡がパイプに向かって冷媒を押し上げることで、パイプ先端に沸騰気泡が激しく衝突し、沸騰音(衝突音)が生じることがある。 By decentering the pipe upward with respect to the tank, it is possible to increase the amount of refrigerant accommodated in the pipe unit, and to improve the cooling performance. However, if the amount of refrigerant contained in the pipe unit is increased too much, the boiling bubbles in the tank push the refrigerant toward the pipe, causing the boiling bubbles to collide violently at the tip of the pipe, resulting in a boiling sound (collision sound). May occur.
 この点、本発明者は、パイプユニットに収容される冷媒の液面を、タンクの延在方向を水平方向に沿って静置した状態において、パイプの接続端の最大開口高さm2とタンクの内径d1との比率(m2/d1)が0.27以上となるように設定することにより、沸騰音の発生を回避できることを突き止めた。このように、比率(m2/d1)を0.27以上に設定した場合においては、タンクとパイプとの間で蒸気の通路が確保されることから、沸騰気泡が冷媒を押し上げることを防止できる。したがって、パイプユニットの内部に収容する冷媒の液量を増量した場合であっても、沸騰音の発生を回避することができる。 In this regard, the present inventor has found that the liquid level of the refrigerant accommodated in the pipe unit is left standing along the horizontal direction of the tank extending direction and the maximum opening height m2 of the pipe connection end and the tank It was found that the generation of boiling noise can be avoided by setting the ratio (m2 / d1) to the inner diameter d1 to be 0.27 or more. As described above, when the ratio (m2 / d1) is set to 0.27 or more, a steam passage is ensured between the tank and the pipe, so that boiling bubbles can be prevented from pushing up the refrigerant. Therefore, even when the amount of the refrigerant stored in the pipe unit is increased, generation of boiling noise can be avoided.
 本発明によれば、冷却性能の向上を図ることができ、使用時における姿勢が変化した場合においても、冷却性能を良好に維持することができる。
できる。
According to the present invention, the cooling performance can be improved, and the cooling performance can be satisfactorily maintained even when the posture during use is changed.
it can.
本発明の実施形態である冷却器を示す側面図である。It is a side view which shows the cooler which is embodiment of this invention. 図1に示す冷却器の断面図である。It is sectional drawing of the cooler shown in FIG. 図1に示す冷却器の正面図である。It is a front view of the cooler shown in FIG. 図1に示す冷却器の背面図である。It is a rear view of the cooler shown in FIG. パイプユニットのタンクとパイプとの接続部分における要部断面図である。It is principal part sectional drawing in the connection part of the tank and pipe of a pipe unit. 図1に示すA‐A線に沿う冷却器の断面矢視図である。It is a cross-sectional arrow view of the cooler along the AA line shown in FIG. 本発明のその他の実施形態におけるパイプユニットの要部断面図である。It is principal part sectional drawing of the pipe unit in other embodiment of this invention.
 以下、本発明の冷却器の実施形態について、図面を参照して説明する。
 図1から図3A,3Bは、本発明の実施形態の冷却器100を示している。この車両用冷却器100は、発熱体10が装着される装着面21aが上下方向に沿って形成されたベースブロック20と、このベースブロック20の装着面21aとは反対側の反対面21bに埋設された複数のタンク31及び各タンク31の側面に立設した状態で接続された複数のパイプ32からなるパイプユニット30と、複数のパイプ32を貫通させた状態でこれらパイプ32に取り付けられた複数の放熱フィン40とを備え、車両に用いられる。
Hereinafter, embodiments of the cooler of the present invention will be described with reference to the drawings.
1 to 3A and 3B show a cooler 100 according to an embodiment of the present invention. The vehicle cooler 100 is embedded in a base block 20 in which a mounting surface 21a on which the heating element 10 is mounted is formed in the vertical direction, and an opposite surface 21b opposite to the mounting surface 21a of the base block 20. A plurality of tanks 31 and a plurality of pipes 32 connected in a standing state on the side of each tank 31, and a plurality of pipes 30 attached to these pipes 32 in a state of passing through the plurality of pipes 32. The radiating fin 40 is used for a vehicle.
 この冷却器100は、図示は省略するが、車両の側面の下部において、ベースブロック20の装着面21aが上下方向に沿うようにして設置される。 Although not shown, the cooler 100 is installed in the lower part of the side surface of the vehicle so that the mounting surface 21a of the base block 20 is along the vertical direction.
 ベースブロック20は、熱伝導性に優れる熱容量の大きなアルミニウムや銅等の金属により形成されている。そして、ベースブロック20の片側(図1では左側)の装着面21aに、半導体素子等の発熱体10が装着され、その発熱体10が装着された装着面21aとは反対側(図1では右側)の反対面21bに、タンク31が埋設されている。 The base block 20 is formed of a metal having a high heat capacity and excellent heat conductivity such as aluminum and copper. A heating element 10 such as a semiconductor element is mounted on the mounting surface 21a on one side (left side in FIG. 1) of the base block 20, and the side opposite to the mounting surface 21a on which the heating element 10 is mounted (right side in FIG. 1). The tank 31 is embedded in the opposite surface 21b.
 パイプユニット30は、円管状のタンク31の側面に、このタンク31の内径d1よりも径の小さい内径d2の円管状の細いパイプ32を複数接続することにより構成されている。例えば、内径d1を27.6mmとするタンク31と、内径d2を13.88mmとするパイプ32とを、好適に用いることができる。 The pipe unit 30 is configured by connecting a plurality of thin tubular pipes 32 having an inner diameter d2 smaller in diameter than the inner diameter d1 of the tank 31 to the side surface of the tubular tank 31. For example, a tank 31 having an inner diameter d1 of 27.6 mm and a pipe 32 having an inner diameter d2 of 13.88 mm can be suitably used.
 タンク31は、図2に示すように、円管状のパイプにより形成され、その延在方向が水平方向に沿って配置され、ベースブロック20の反対面21bに取り付けられている。 As shown in FIG. 2, the tank 31 is formed of a circular pipe, the extending direction thereof is arranged along the horizontal direction, and the tank 31 is attached to the opposite surface 21 b of the base block 20.
 パイプ32は、上述したように、内径d2がタンク31の内径d1よりも小さく設定され、図2に示すように各タンク31の側面に接続されている。また、パイプ32は、図3Bに示すように、一定間隔をおいて相互に平行に、タンク31の延伸方向に沿う列をなして立設されている。各パイプ32は、図2及び図4に示すように、タンク31との接続端からその反対側の閉塞端に向けて、水平方向に対して上方に角度αで傾斜して配置されている。この角度αは、車両が勾配のある場所を走行し、冷却器100が傾く可能性のある角度を基準(例えば7°)に設定される。そして、パイプ32の中心線は、タンク31の中心線から径方向に向かう放射線と平行に、(d1-d2)/2以下の範囲内で、その放射線よりも上側に偏芯して配置されている。なお、図4においては、このパイプ32の偏芯量を符号Lで示す。また、偏芯量Lは、例えば、タンク31の内径d1を27.6mm、パイプ32の内径d2を13.88mmとした場合においては、(d1-d2)/2以下の範囲内は、0mmを超えて6.86mm以下の範囲内とされる。 As described above, the pipe 32 has the inner diameter d2 set smaller than the inner diameter d1 of the tank 31, and is connected to the side surface of each tank 31 as shown in FIG. Further, as shown in FIG. 3B, the pipes 32 are erected in a row along the extending direction of the tank 31 in parallel with each other at regular intervals. As shown in FIGS. 2 and 4, each pipe 32 is disposed so as to be inclined upward at an angle α with respect to the horizontal direction from the connecting end to the tank 31 toward the closed end on the opposite side. The angle α is set with reference to an angle at which the vehicle travels on a slope and the cooler 100 may tilt (for example, 7 °). The center line of the pipe 32 is arranged in parallel with the radiation going from the center line of the tank 31 in the radial direction and is eccentric to the upper side of the radiation within the range of (d1-d2) / 2 or less. Yes. In FIG. 4, the eccentric amount of the pipe 32 is indicated by a symbol L. For example, when the inner diameter d1 of the tank 31 is 27.6 mm and the inner diameter d2 of the pipe 32 is 13.88 mm, the eccentricity L is 0 mm within the range of (d1−d2) / 2 or less. It is made into the range of 6.86 mm or less exceeding.
 これらタンク31及びパイプ32は、アルミニウム又は銅により形成され、内部空間を一体としてろう付けにより接合されている。タンク31および各パイプ32を接合してなるパイプユニット30の内部には、純水やパーフルオロカーボン等の冷媒60が収容されている。 The tank 31 and the pipe 32 are made of aluminum or copper, and are joined together by brazing with the internal space integrated. A refrigerant 60 such as pure water or perfluorocarbon is accommodated in the pipe unit 30 formed by joining the tank 31 and each pipe 32.
 パイプユニット30に収容される冷媒60の設定液面は、図2及び図4に示すように、タンク31の延在方向を水平方向に沿って静置した状態において、パイプ32の接続端における設定液面から露出した最大開口高さm2とタンク31の内径d1との比率(m2/d1)が0.27以上となるように設定されている。 As shown in FIGS. 2 and 4, the set liquid level of the refrigerant 60 accommodated in the pipe unit 30 is set at the connection end of the pipe 32 in the state where the extending direction of the tank 31 is left along the horizontal direction. The ratio (m2 / d1) between the maximum opening height m2 exposed from the liquid surface and the inner diameter d1 of the tank 31 is set to be 0.27 or more.
 冷却器100では、このように複数のパイプ32が取り付けられたタンク31(パイプユニット30)を、図1から図3A,3Bに示すように、ベースブロック20の反対面21bに複数個を上下方向に並列に配置することにより、パイプ32をマトリクス状に配置している。なお、本実施例では、図3B及び図5に示すように、パイプ32を上面視で格子状に配置しているが、ジグザグに配列する構成としたり、他の配列とすることも可能である。 In the cooler 100, as shown in FIGS. 1 to 3A and 3B, a plurality of tanks 31 (pipe units 30) to which a plurality of pipes 32 are attached in this manner are vertically arranged on the opposite surface 21b of the base block 20. The pipes 32 are arranged in a matrix by arranging them in parallel. In this embodiment, as shown in FIGS. 3B and 5, the pipes 32 are arranged in a lattice shape in a top view. However, the pipes 32 may be arranged in a zigzag manner or other arrangements. .
 ベースブロック20と各タンク31とは、はんだ付け等により、一体に接合されている。これにより、ベースブロック32とタンク31との間の熱移動が円滑に行われるようになっている。 The base block 20 and each tank 31 are joined together by soldering or the like. Thereby, the heat transfer between the base block 32 and the tank 31 is performed smoothly.
 なお、本実施形態の冷却器100においては、ベースブロック20とタンク31との接合部分が、はんだ付け等による固定の他に、図1及び図2に示すように、固定金具50をベースブロック20にねじ止めすることにより固定されており、冷却器100に激しい振動が加えられた際において耐えうるように補強がなされている。 In the cooler 100 according to the present embodiment, the joint between the base block 20 and the tank 31 is fixed by soldering or the like, as shown in FIG. 1 and FIG. It is fixed by screwing to the cooling device 100 and is reinforced so as to be able to endure when the cooler 100 is subjected to severe vibration.
 パイプ32には、熱伝導率に優れたアルミニウムや銅からなる薄い板状の放熱フィン40が、パイプ32を貫通させた状態で、串刺しにされたように複数枚重ねて取り付けられている。放熱フィン40には、薄板の所定位置に、例えばバーリング加工等により形成された複数の貫通孔(図示略)が設けられている。これらの貫通孔にパイプ32を圧入することにより、各パイプ32に放熱フィン40が跨って取り付けられ、放熱フィン40と各パイプ32とが一体に設けられる。なお、放熱フィン40の貫通孔に挿入したパイプ32を拡管することにより、放熱フィン40を取り付けることもできる。 A plurality of thin plate-like heat radiation fins 40 made of aluminum or copper having excellent thermal conductivity are attached to the pipe 32 so as to be skewered with the pipe 32 penetrating. The heat radiating fin 40 is provided with a plurality of through holes (not shown) formed at a predetermined position of the thin plate by, for example, burring. By press-fitting the pipes 32 into these through holes, the radiation fins 40 are attached to the pipes 32 so that the radiation fins 40 and the pipes 32 are integrally provided. In addition, the heat radiation fin 40 can also be attached by expanding the pipe 32 inserted into the through hole of the heat radiation fin 40.
 このように構成された冷却器100においては、発熱体10から発生した熱が、ベースブロック20に伝わり、さらにベースブロック20からパイプユニット30のタンク31に伝わって、タンク31内の冷媒60を沸騰させて蒸発させる。そして、蒸発した冷媒60の蒸気は、タンク31内を上昇してパイプ32内に移動し、パイプ32を介して放熱フィン40に熱が伝わることにより冷却される。 In the cooler 100 configured as described above, the heat generated from the heating element 10 is transmitted to the base block 20 and further transmitted from the base block 20 to the tank 31 of the pipe unit 30 to boil the refrigerant 60 in the tank 31. Let it evaporate. Then, the vapor of the evaporated refrigerant 60 rises in the tank 31 and moves into the pipe 32, and is cooled by transferring heat to the radiating fins 40 through the pipe 32.
 この冷却器100においては、各パイプ32をタンク31から上方に傾斜させたパイプユニット30を構成しているので、車両が勾配のある場所を走行して冷却器100が傾いた際にも、各パイプ32は水平以上の角度の姿勢を保つことができる。また、タンク31に対して各パイプ32を上側に偏芯させて配置したので、タンク31内の液状の冷媒60の貯留領域を増加させることができる。これにより、冷却器100が傾いて姿勢が変化した際にも、タンク31内に液状の冷媒60を保持しながら、タンク31に空間を確保でき、冷媒60が液状のままタンク31からパイプ32に流れ込むことを防止することができる。つまり、液状の冷媒60のパイプ32への流れ込みが防止され、タンク31の底部が乾くことがないので、常時、沸騰冷却性能を円滑に発揮させることができ、冷却性能を良好に維持することができる。 In the cooler 100, the pipe unit 30 is configured such that each pipe 32 is inclined upward from the tank 31. Therefore, when the vehicle travels on a sloped place and the cooler 100 tilts, The pipe 32 can maintain an attitude at an angle greater than horizontal. Moreover, since each pipe 32 is eccentrically arranged on the upper side with respect to the tank 31, the storage area of the liquid refrigerant 60 in the tank 31 can be increased. As a result, even when the cooler 100 is tilted and its posture is changed, a space can be secured in the tank 31 while holding the liquid refrigerant 60 in the tank 31, and the refrigerant 60 remains in liquid form from the tank 31 to the pipe 32. Inflow can be prevented. That is, since the liquid refrigerant 60 is prevented from flowing into the pipe 32 and the bottom of the tank 31 is not dried, the boiling cooling performance can be exhibited smoothly at all times, and the cooling performance can be maintained well. it can.
 冷却器100においては、タンク31を長尺化した場合においても、パイプユニット30に収容される冷媒60の液量を増やすことにより、タンク31の底部が干上がらないように管理することができる。このため、タンク31を長尺化して一本化し、ヒートパイプの均熱特性により、風上と風下との温度差を小さくすることができ、冷却性能の向上を図ることができる。 In the cooler 100, even when the tank 31 is elongated, the bottom of the tank 31 can be managed not to dry up by increasing the amount of the refrigerant 60 accommodated in the pipe unit 30. For this reason, the tank 31 is lengthened and unified, and the temperature difference between the windward and leeward can be reduced by the heat equalization characteristics of the heat pipe, and the cooling performance can be improved.
 冷却器100においては、冷媒60の設定液面を、タンク31の延在方向を水平方向に沿って静置した状態において、パイプ32の接続端の最大開口高さm2とタンク31の内径d1との比率(m2/d1)が0.27以上となるように設定し、蒸気の通路を確保しているので、沸騰気泡が液状の冷媒60を押し上げることを防止できる。したがって、パイプユニット30の内部に収容する冷媒60の液量を増量した場合であっても、沸騰音の発生を回避することができる。 In the cooler 100, the maximum opening height m2 of the connection end of the pipe 32 and the inner diameter d1 of the tank 31 in the state where the set liquid level of the refrigerant 60 is left in the horizontal direction along the extending direction of the tank 31. The ratio (m2 / d1) is set to be equal to or greater than 0.27 and the vapor passage is secured, so that it is possible to prevent boiling bubbles from pushing up the liquid refrigerant 60. Therefore, even when the amount of the refrigerant 60 accommodated in the pipe unit 30 is increased, generation of boiling noise can be avoided.
 なお、本発明は上記実施形態の構成のものに限定されるものではなく、細部構成においては、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 Note that the present invention is not limited to the configuration of the above-described embodiment, and various modifications can be made in the detailed configuration without departing from the spirit of the present invention.
 例えば、放熱フィン40は、上記実施形態のように、全部のパイプ32を貫通させた状態で取り付ける構成とする他、これら複数のパイプ32をいくつかのブロックに分けて、複数個のパイプ32毎に分けた小型の放熱フィンを取り付ける構成とすることもできる。 For example, the radiating fin 40 is configured to be attached in a state in which all the pipes 32 are penetrated as in the above embodiment, and the plurality of pipes 32 are divided into several blocks, and each of the plurality of pipes 32 is divided. It can also be set as the structure which attaches the small radiation fin divided into.
 また、上記実施形態において、各パイプ32は接続端において、図4に示すように、各パイプ32の中心線と直交するように切断されているが、図6に示すパイプユニット30Aのように、中心線に対して斜めに切断された接続端を有するパイプ32Aを用いてもよい。この場合、タンク31内へのパイプ32Aの接続端の進入量を極力少なくすることができる。 Moreover, in the said embodiment, although each pipe 32 is cut | disconnected in the connection end so as to be orthogonal to the centerline of each pipe 32 as shown in FIG. 4, like the pipe unit 30A shown in FIG. You may use the pipe 32A which has the connection end cut | disconnected diagonally with respect to the centerline. In this case, the amount of entry of the connection end of the pipe 32A into the tank 31 can be reduced as much as possible.
 冷却性能の向上を図ることができ、使用時の姿勢が変化した場合においても、沸騰冷却性能を良好に維持できる冷却器を提供する。 ∙ Provide a cooler that can improve cooling performance and maintain good boiling cooling performance even when the posture during use changes.
10 発熱体
20 ベースブロック
21a 装着面
21b 反対面
30,30A パイプユニット
31 タンク
32,32A パイプ
40 放熱フィン
50 固定金具
60 冷媒
100 冷却器
DESCRIPTION OF SYMBOLS 10 Heat generating body 20 Base block 21a Mounting surface 21b Opposite surface 30, 30A Pipe unit 31 Tank 32, 32A Pipe 40 Radiation fin 50 Fixing metal 60 Refrigerant 100 Cooler

Claims (2)

  1.  上下方向に沿い発熱体が装着される装着面を有するベースブロックと:
     該ベースブロックの前記装着面とは反対面に埋設され、冷媒が収容された円管状のタンク;及び該タンクの側面に立設状態で接続された、相互に平行な複数の円管状のパイプ;からなるパイプユニットと:
     複数の前記パイプを貫通させた状態でこれらパイプに取り付けられた複数の放熱フィンと:を備え、
     前記タンクは、水平方向に延在し、
     前記パイプは、前記タンクとの接続端から閉塞端に向けて上方に向かうように傾斜しており、
     前記パイプの内径d2は、前記タンクの内径d1よりも小さく設定され、
     前記パイプの中心線は、前記タンクの中心線から径方向に向かう放射線と平行に、0より大きく(d1-d2)/2以下の範囲内で前記放射線よりも上側に偏芯して配置されている冷却器。
    A base block having a mounting surface on which a heating element is mounted along the vertical direction:
    A tubular tank embedded in a surface opposite to the mounting surface of the base block and containing a refrigerant; and a plurality of parallel tubular pipes connected in a standing state to a side surface of the tank; A pipe unit consisting of:
    A plurality of heat dissipating fins attached to these pipes in a state of penetrating the plurality of pipes;
    The tank extends in a horizontal direction;
    The pipe is inclined so as to go upward from the connection end with the tank toward the closed end,
    An inner diameter d2 of the pipe is set smaller than an inner diameter d1 of the tank,
    The center line of the pipe is arranged in parallel with the radial radiation from the center line of the tank and eccentrically above the radiation within a range greater than 0 (d1-d2) / 2. The cooler.
  2.  前記タンクに収容される前記冷媒の設定液面は
     前記タンクの延在方向を水平方向に沿って静置した状態において、
     前記パイプの前記接続端における前記設定液面から露出した最大開口高さm2と前記タンクの内径d1との比率(m2/d1)が0.27以上となるように設定されている請求項1に記載の冷却器。

     
    The set liquid level of the refrigerant stored in the tank is in a state where the extending direction of the tank is allowed to stand along the horizontal direction.
    The ratio (m2 / d1) between the maximum opening height m2 exposed from the set liquid level at the connection end of the pipe and the inner diameter d1 of the tank is set to be 0.27 or more. The cooler described.

PCT/JP2015/086287 2014-12-25 2015-12-25 Cooler WO2016104728A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016566528A JP6448666B2 (en) 2014-12-25 2015-12-25 Cooler

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-262357 2014-12-25
JP2014262357 2014-12-25

Publications (1)

Publication Number Publication Date
WO2016104728A1 true WO2016104728A1 (en) 2016-06-30

Family

ID=56150740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/086287 WO2016104728A1 (en) 2014-12-25 2015-12-25 Cooler

Country Status (2)

Country Link
JP (1) JP6448666B2 (en)
WO (1) WO2016104728A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016104729A1 (en) * 2014-12-25 2017-10-05 三菱アルミニウム株式会社 Cooler
JPWO2016104727A1 (en) * 2014-12-25 2017-10-05 三菱アルミニウム株式会社 Cooler
JPWO2019131834A1 (en) * 2017-12-28 2020-12-10 古河電気工業株式会社 Cooling system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004048489A (en) * 2002-07-12 2004-02-12 Mitsubishi Electric Corp Traveling object mounted antenna and its cooling device
JP2004353874A (en) * 2003-05-26 2004-12-16 Hitoshi Shiga Heat exchanger and housing air conditioning structure equipped therewith as well as its constructing method
JP2010060164A (en) * 2008-09-01 2010-03-18 Sumitomo Light Metal Ind Ltd Heat pipe type heat sink

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0231313B2 (en) * 1985-12-02 1990-07-12 Fujikura Densen Kk BUNRIGATAHIITOPAIPUSHIKIKUKYONETSUKI
KR100768575B1 (en) * 2004-11-05 2007-10-24 (주)드림에너지 Loop type heating coil of heat pipe for hypocaust, and its assembly method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004048489A (en) * 2002-07-12 2004-02-12 Mitsubishi Electric Corp Traveling object mounted antenna and its cooling device
JP2004353874A (en) * 2003-05-26 2004-12-16 Hitoshi Shiga Heat exchanger and housing air conditioning structure equipped therewith as well as its constructing method
JP2010060164A (en) * 2008-09-01 2010-03-18 Sumitomo Light Metal Ind Ltd Heat pipe type heat sink

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016104729A1 (en) * 2014-12-25 2017-10-05 三菱アルミニウム株式会社 Cooler
JPWO2016104727A1 (en) * 2014-12-25 2017-10-05 三菱アルミニウム株式会社 Cooler
JPWO2019131834A1 (en) * 2017-12-28 2020-12-10 古河電気工業株式会社 Cooling system
EP3734214A4 (en) * 2017-12-28 2021-09-22 Furukawa Electric Co., Ltd. Cooling device
JP7222920B2 (en) 2017-12-28 2023-02-15 古河電気工業株式会社 Cooling system

Also Published As

Publication number Publication date
JPWO2016104728A1 (en) 2017-10-05
JP6448666B2 (en) 2019-01-09

Similar Documents

Publication Publication Date Title
JP6505130B2 (en) Cooler
JP5401419B2 (en) Railway vehicle power converter
TWI361655B (en) Heat pipe heat sink
TWI525300B (en) Composite heat sink assembly for power module
JP6015675B2 (en) COOLING DEVICE AND ELECTRONIC DEVICE USING THE SAME
JP6440822B2 (en) Cooler, power conversion device and cooling system
JP6448666B2 (en) Cooler
JP2010060164A (en) Heat pipe type heat sink
JP6534686B2 (en) Cooler
JP2005268658A (en) Boiling cooler
JP2010050326A (en) Cooling device
JP2015055380A (en) Cooling device
WO2015128951A1 (en) Semiconductor element cooling device and electronic apparatus
JP5827559B2 (en) Cooler
JP2009150575A (en) Ebullient cooling device
US20070295488A1 (en) Thermosyphon for operation in multiple orientations relative to gravity
WO2017128812A1 (en) Integrated heat radiator and heat dissipation method
JP4969979B2 (en) heatsink
JPWO2017169969A1 (en) Cooling system
JP2013083399A (en) Cooling device, and electronic apparatus with the same, and electric vehicle
JP2014152983A (en) Cooler
JP6028232B2 (en) COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR
JP3169367U (en) Heat dissipation device
JP5887479B2 (en) COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR
JP2008292053A (en) Ebullient cooling device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873296

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016566528

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15873296

Country of ref document: EP

Kind code of ref document: A1