WO2016104530A1 - Coil conductor manufacturing method, and induction coil provided with coil conductor manufactured by such method - Google Patents
Coil conductor manufacturing method, and induction coil provided with coil conductor manufactured by such method Download PDFInfo
- Publication number
- WO2016104530A1 WO2016104530A1 PCT/JP2015/085873 JP2015085873W WO2016104530A1 WO 2016104530 A1 WO2016104530 A1 WO 2016104530A1 JP 2015085873 W JP2015085873 W JP 2015085873W WO 2016104530 A1 WO2016104530 A1 WO 2016104530A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coil conductor
- coil
- copper plating
- electrolytic copper
- plating solution
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/38—Electroplating: Baths therefor from solutions of copper
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/02—Electroplating of selected surface areas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/04—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
Definitions
- the present invention relates to a method of manufacturing a coil conductor and an induction coil including the coil conductor manufactured by using the method, and more particularly, a method of manufacturing a coil conductor by electrolytic copper plating and a coil conductor manufactured by using the method. It is related with the induction coil provided with.
- a method of manufacturing a coil by printed wiring technology has been proposed.
- printed wiring technology electromagnetic induction efficiency is high, and design characteristics are high. It is possible to manufacture an induction coil having an excellent shape.
- the printed wiring technique it becomes easy to adjust the aspect ratio of the cross section of the coil conductor to be formed, and the shape of the cross section can be controlled to an arbitrary shape such as a circular shape or a quadrangular shape.
- the coil interval can be adjusted, which can contribute to higher efficiency.
- the method of forming a coil conductor by printed wiring technology is to form a coil conductor by etching after forming a conductor layer on a substrate, and it is difficult to uniformly increase the conductor thickness.
- the conventional electrolytic plating method and electroless plating method have a problem that it takes a lot of time to increase the conductor thickness uniformly, leading to an increase in running cost.
- the coil used for non-contact charging of portable terminal devices or the like is mainly used by a method in which a conductive wire is wound by human power or a machine, and an induction coil manufactured by this method is used. Attempts have been made to reduce the size and thickness.
- Patent Document 1 discloses a contactless power transmission coil including a spiral planar coil that can be further reduced in thickness.
- the non-contact power transmission coil of Patent Document 1 is formed by winding a linear conductor made of a single wire or a stranded wire in a spiral shape in substantially the same plane, and an inner peripheral side end portion of the planar coil.
- the linear conductor of the planar coil is prevented from overlapping, as in the case of pulling out the linear conductor from the inner circumference side to the outer circumference side. (See, for example, 0008 and 0011 of Patent Document 1.)
- the induction coil used for non-contact charging of a portable terminal device or the like is particularly improved. It has been difficult to reduce the size and thickness.
- the induction coil can be made smaller and thinner.
- the resistance of the conductor increases and the temperature of the induction coil increases. This causes an increase in the size of the product, which hinders downsizing and thinning of the product, such as the need for a separate cooling space.
- a method of manufacturing a coil conductor capable of uniformly increasing the conductor thickness and improving the manufacturing efficiency, and a coil conductor manufactured using the method are provided. It is an object to provide an induction coil.
- the coil conductor manufacturing method according to the present invention is a coil conductor manufacturing method by an electrolytic copper plating method, and the electrolytic copper plating solution contains copper sulfate, sulfuric acid, and a cationic system.
- a surfactant, an organic sulfur compound, and a smoothing agent are included, and a coil shape is formed by electrolytic deposition while spraying the electrolytic copper plating solution on the surface to be plated at a flow rate of 2 m / min or more.
- the electrolytic copper plating solution is sprayed onto the surface to be plated at a flow rate of 50 m / min to 120 m / min.
- the organic sulfur compound is preferably bis (3-sulfopropyl) disulfide (SPS) or mercaptopropanesulfonic acid (MPS).
- the cationic surfactant is preferably polyethylene glycol (PEG).
- the smoothing agent is preferably Janus Green (JGB).
- the coil shape is preferably formed by electrolytic deposition at a current density of 10 A / dm 2 to 200 A / dm 2 .
- the electrolytic copper plating solution comprises copper sulfate hexahydrate 200 g / l to 300 g / l, sulfuric acid 25 g / l to 150 g / l, polyethylene glycol (PEG). It preferably contains 10 mg / l to 30 mg / l, bis (3-sulfopropyl) disulfide (SPS) 10 mg / l to 100 mg / l, and Janus Green (JGB) 10 mg / l to 30 mg / l.
- SPS bis (3-sulfopropyl) disulfide
- JGB Janus Green
- the temperature of the electrolytic copper plating solution is preferably 20 ° C. to 30 ° C.
- the manufacturing method of the coil conductor according to the present invention includes immersing a substrate having a plating resist layer provided with a groove patterned in a spiral shape on the surface thereof in the electrolytic copper plating solution, and electrolytic copper plating in the groove.
- copper is deposited to form a coil shape.
- the induction coil according to the present invention includes a coil conductor manufactured by using the above-described method of manufacturing a coil conductor.
- the induction coil according to the present invention can be suitably used for non-contact charging such as a secondary battery built in a portable terminal device by including a coil conductor manufactured using the manufacturing method, It is possible to contribute to further downsizing of electronic products.
- the coil conductor manufacturing method according to the present invention is a method of manufacturing a coil conductor by electrolytic copper plating, and the electrolytic copper plating solution contains copper sulfate, sulfuric acid, and a cationic system.
- a surfactant, an organic sulfur compound, and a smoothing agent are included, and a coil shape is formed by electrolytic deposition while spraying the electrolytic copper plating solution on the surface to be plated at a flow rate of 2 m / min or more.
- the method for producing a coil conductor according to the present invention is such that the electrolytic copper plating solution contains copper sulfate, sulfuric acid, a cationic surfactant, an organic sulfur compound, and a smoothing agent.
- the electrolytic copper plating film having excellent thermal conductivity is deposited, and a high-quality coil conductor can be stably manufactured.
- copper sulfate is contained to supply copper ions into the plating solution.
- sulfuric acid exhibits the effect of improving the electrical conductivity of the plating solution.
- the method for manufacturing a coil conductor according to the present invention is preferable because copper sulfate hexahydrate is used as copper sulfate, since the above-described effects are more remarkably exhibited.
- the cationic surfactant adheres to the plating surface to form a film, and exhibits an effect of electrochemically suppressing the copper precipitation reaction.
- the cationic surfactant include polyethylene glycol (PEG) and polyoxyethylene polyoxypropylene glycol (POEPOPG).
- PEG polyethylene glycol
- POEPOPG polyoxyethylene polyoxypropylene glycol
- the method for producing a coil conductor according to the present invention is preferable by using polyethylene glycol (PEG), in particular, as the cationic surfactant, because the above-described effects can be exhibited more remarkably.
- the organic sulfur compound accelerates the copper precipitation reaction, and by coexisting with the above-mentioned cationic surfactant, exhibits an effect of improving the gloss of the plating film by refining the deposited copper crystals.
- the method for producing a coil conductor according to the present invention uses, in particular, bis (3-sulfopropyl) disulfide (SPS) or 3-mercaptopropane-1-sulfonic acid (MPS), which is an SPS derivative, as the organic sulfur compound. Therefore, it is preferable because the above-described effects are more remarkably exhibited.
- the smoothing agent exhibits the effect of suppressing the copper precipitation reaction at the portion where the flow of the plating solution is strong.
- the manufacturing method of the coil conductor according to the present invention is preferable because Janus Green (JGB) is used as the smoothing agent, because the above-described effects can be exhibited more remarkably.
- the method for manufacturing a coil conductor according to the present invention employs an electrolytic copper plating solution containing the above-mentioned components, and sprays the electrolytic copper plating solution on the surface to be plated at a flow rate of 2 m / min or more. Analyze to form a coil shape.
- the deposition rate of copper can be effectively increased by the flow rate when the electrolytic copper plating solution is sprayed on the surface to be plated being 2 m / min or more.
- the above-described electrolytic copper plating solution onto the surface to be plated at a flow rate of 50 m / min to 120 m / min.
- the copper deposition rate can be increased more effectively.
- the above-described electrolytic copper plating solution is sprayed onto the surface to be plated at a flow rate of 120 m / min or less to prevent damage to the resist. I can do it.
- FIG. 1 shows a schematic diagram of a high-speed jet apparatus for electrolytic copper plating solution.
- the electrolytic copper plating solution high-speed jet apparatus 20 shown in FIG. 1 includes a pressurized stirring bath 22 for stirring the electrolytic copper plating solution 30, an anode 23, and an electrolytic copper plating solution 30 accommodated in the pressurized stirring bath 22.
- Nozzle 24 for spraying 40 drain path 25 for collecting electrolytic copper plating solution 30 that was not used for inner plating formation of electrolytic copper plating solution 30 sprayed toward workpiece 40, and plating bath 21 And a pump 27 that transfers the electrolytic copper plating solution 30 accommodated in the pressure stirring tank 22 through the transfer pipe 26.
- FIG. 1 shows a state in which only one hole for spraying the electrolytic copper plating solution 30 onto the workpiece 20 is formed, but this hole may be composed of a plurality of holes.
- the electrolytic copper plating solution 30 is stirred with the pressurization stirring tank 3. The plating film formed by this stirring can be effectively smoothed.
- the diameter of the drain hole formed in the drain path 25 is too small with respect to the blowing ability of the nozzle, the electrolytic copper plating solution 30 is not smoothly collected in the plating bath 21, which is not preferable.
- the pressure of the pump 27 is increased too much, and air pumping occurs in the pump 27, leading to deterioration of plating physical properties.
- the current density it is preferable to increase the current density to 10 A / dm 2 to 200 A / dm 2 which is higher than the conventional maximum average of 5 A / dm 2 .
- the copper deposition rate can be increased by about 40 times compared to the conventional method, which is necessary for non-contact charging of portable terminal devices and the like.
- a coil conductor capable of handling current can be manufactured in a short time.
- a coil conductor having excellent plating properties can be stably manufactured by employing the electrolytic copper plating solution having the above-described composition and the electrolytic copper plating conditions of current density. I can do it.
- the current density is less than 10 A / dm 2
- the electrolytic deposition rate of copper cannot be sufficiently increased, resulting in a decrease in production efficiency. End up.
- the current density exceeds 200 A / dm 2
- the above-described electrolytic copper plating solution contains copper sulfate hexahydrate 200 g / l to 300 g / l, sulfuric acid 25 g / l to 150 g / l, polyethylene glycol (PEG More preferably, it contains 10 mg / l to 30 mg / l, bis (3-sulfopropyl) disulfide (SPS) 10 mg / l to 100 mg / l, and Janus green (JGB) 10 mg / l to 30 mg / l.
- SPS bis (3-sulfopropyl) disulfide
- JGB Janus green
- the electrolytic copper plating solution of the present invention can increase the current density during the electrolytic deposition of copper even in the range of 200 g / l to 300 g / l of copper sulfate hexahydrate, and the formed copper plating layer Can be made thick at high speed.
- copper sulfate hexahydrate in the range of 200 g / l to 300 g / l, even when electrolytic deposition of copper is performed at a high current density, plating burn can be prevented and plating physical properties ( (Appearance, tensile strength, elongation, etc.) can be prevented from decreasing.
- the method for manufacturing a coil conductor according to the present invention it is possible to perform electrolytic copper plating at a high speed without deteriorating quality, and the time required for the electrolytic copper plating process can be greatly shortened.
- the content of copper sulfate hexahydrate is less than 200 g / l, copper is formed while suppressing deterioration of plating physical properties when electrolytic deposition of copper is performed at a high current density. Since it becomes difficult to make a plating layer thick uniformly, it is not preferable.
- the electrolytic copper plating solution of the present invention contains sulfuric acid in a range of 25 g / l to 150 g / l, so that the electrolytic copper plating solution is sprayed onto the surface to be plated at a flow rate of 2 m / min or more.
- the current density can be made higher than before, and the copper plating layer to be formed can be made thick at high speed.
- the content of sulfuric acid is less than 25 g / l, the surface roughness of the deposited metal is increased, and it is difficult to increase the speed of electrolytic deposition of copper.
- the content of sulfuric acid exceeds 150 g / l, the stability of the electrolytic copper plating solution is impaired due to precipitation of copper sulfate crystals and it becomes difficult to stabilize the plating physical properties.
- the electrolytic copper plating solution of the present invention contains polyethylene glycol (PEG) in the range of 10 mg / l to 30 mg / l, and bis (3-sulfopropyl) disulfide (SPS) in the range of 10 mg / l to 100 mg / l.
- PEG polyethylene glycol
- SPS bis (3-sulfopropyl) disulfide
- JGB Janus Green
- the electrodeposition reaction can be improved.
- the content of polyethylene glycol (PEG) is less than 10 mg / l, the thickness variation of the formed copper plating layer becomes large.
- the content of polyethylene glycol (PEG) exceeds 30 mg / l, the gloss of the deposited copper plating becomes non-uniform.
- the temperature of the electrolytic copper plating solution is preferably 20 ° C. to 30 ° C.
- the temperature of the electrolytic copper plating solution is preferably 20 ° C. to 30 ° C.
- the temperature of the electrolytic copper plating solution is less than 20 ° C., the plating appearance deteriorates when the current density is set to 10 A / dm 2 or more even if the electrolytic copper plating solution is stirred. The physical properties become unstable.
- the temperature of the electrolytic copper plating solution exceeds 30 ° C.
- the effect of including polyethylene glycol (PEG), bis (3-sulfopropyl) disulfide (SPS), Janus Green (JGB) is lost early, and the electrodeposition reaction It becomes difficult to improve.
- the temperature of the electrolytic copper plating solution exceeds 25 ° C.
- the consumption of the brightening agent increases, so it is more preferable to set the temperature to around 25 ° C.
- the manufacturing method of the coil conductor according to the present invention includes immersing a substrate having a plating resist layer provided with a groove patterned in a spiral shape on the surface thereof in the electrolytic copper plating solution, and electrolytic copper plating in the groove.
- copper is deposited to form a coil shape.
- FIG. 2 is a configuration diagram of an induction coil according to an embodiment of the present invention.
- the coil conductor 3 of the present invention can adopt a coil shape patterned in a spiral shape on the substrate 2, for example.
- the coil shape patterned into a flat spiral shape as shown in FIG. 2 has an advantage that it can be reduced in size and thickness as compared with a conventional induction coil wound with a conducting wire.
- the shape of the coil conductor of the present invention is not limited to that shown in FIG. 2, but may be, for example, a rectangular shape, a polygonal shape, a circular shape, an elliptical shape, or the like patterned in a spiral shape. The shape can be appropriately selected according to the purpose.
- the copper plating layer is stably thickened by providing a plating resist layer having grooves patterned in a spiral shape on the substrate. And a high-quality coil conductor can be obtained.
- FIG. 3 is an explanatory view of the method of manufacturing a coil conductor according to the present invention, and (a) to (e) are explanatory views sequentially showing the manufacturing steps.
- the steps of the method for manufacturing a coil conductor according to the present invention are illustrated.
- the insulating layer 10 is formed on the surface of the substrate 2 on the side where the coil conductor 3 is to be formed (see (a) in FIG. 3).
- a plating catalyst (platinum or the like) 11 is applied on the insulating layer 10 (see (b) in FIG. 3).
- the plating resist layer 12 is formed in a place other than the coil shape forming region 13 on the plating catalyst 11 (see (c) in FIG. 3).
- a conventionally known technique can be appropriately employed.
- a conductive layer (copper layer) 14 is formed on the exposed surface of the plating catalyst 11 on which the plating resist layer 12 is not formed by an electroless plating method (see FIG. 3D).
- the conductive layer 14 is also formed in the through hole.
- electrolytic copper plating is performed so that the conductive layer 14 forms one electrode circuit, and the coil conductor 3 is formed on the coil-shaped conductive layer 14 (see (e) in FIG. 3).
- the induction coil according to the present invention includes a coil conductor manufactured using the above-described method of manufacturing a coil conductor.
- the induction coil 1 according to the present invention includes the coil conductor 3 manufactured by using the above-described method for manufacturing a coil conductor, and can achieve high efficiency while realizing miniaturization and thinning. Therefore, the induction coil 1 according to the present invention is a recent mobile phone which is equipped with various applications such as a small instrument such as a hearing aid using a coin-type secondary battery, a large display with high brightness and a game machine, and is required to be rapidly charged. It can be suitably used for non-contact charging of mobile terminal devices such as smartphones.
- the induction coil 1 when the induction coil 1 according to the present invention is used in these devices, the induction coil 1 is formed by forming a coil conductor inside the casing case or directly forming a coil conductor on the surface of the coin-type secondary battery. As a result, the device can be further reduced in size, thickness, and performance.
- the induction coil according to the present invention can employ the structure shown in FIG.
- the induction coil 1 shown in FIG. 2 has a structure in which the through holes 5 and 7 are provided so that the external connection terminals 8 are provided on the same substrate surface as the external connection terminals 4.
- Conductive wires 6 for connecting the through holes 5 and 7 are formed on the surface opposite to the surface on which 4 and 8 are provided.
- the terminals 4 and 8 are connected to a drive board that supplies current to the coil conductor 3.
- the induction coil generates a high-frequency magnetic field by a high-frequency current, and the induced current flows in the coil conductor by the high-frequency magnetic field generated by the induction coil.
- the shape of the conductive wire 6 for connecting the through holes 5 and 7 can also be a spiral shape.
- the external connection terminals 4 and 8 may be provided on the side surface of the coil.
- examples of the induction coil for performing non-contact charging include a wound type, a laminated type, and a thin film type.
- the induction coil according to the present invention is not limited to the planar coil illustrated in FIG. .
- the induction coil according to the present invention can be a laminated type or a wound type, and can also be used as a small antenna or the like built in a smartphone.
- a power transmission method by the non-contact charging method there are an electromagnetic induction method, a magnetic resonance method, and the like. In these methods, power is supplied by connecting a power source to one side with the coils facing each other, and the other coil. Since both receive power and use the same principle using the physical phenomenon of electromagnetic induction, the induction coil according to the present invention can be used.
- Example 1 when the composition and the current density of the electrolytic copper plating solution were constant, the change in the deposited film thickness according to the jet condition of the electrolytic copper plating solution on the surface to be plated of the workpiece was confirmed.
- the workpiece was subjected to alkaline degreasing (5 min ⁇ 3 times) and then pickling (1 min ⁇ 3 times) to perform electrolytic copper plating.
- the plating process temperature was 25 degreeC and the current density was 50 A / dm ⁇ 2 >.
- Example 1 The composition of the electrolytic copper plating solution used in Example 1 is as shown below. Moreover, the workpiece
- Table 1 below shows the conditions and results of measuring the deposited film thickness by jet conditions. From Table 1, at the jet velocity “34 (m / min)” of the plating solution of Example 1, the average film thickness of 5 times was 2.0 ⁇ m, and the average deposition efficiency of 5 times was 7.5%. . For measuring the film thickness, an electronic balance (“GR-202” manufactured by A & D) was used.
- Example 2 as in Example 1, changes in the deposited film thickness according to the jet conditions of the electrolytic copper plating solution when the composition and current density of the electrolytic copper plating solution were made constant were confirmed.
- the composition, current density, workpiece material and shape of the electrolytic copper plating solution used in Example 2 were the same as in Example 1.
- Table 1 below shows the conditions and results of measuring the deposited film thickness by jet conditions. From Table 1, in the jet velocity “68 (m / min)” of the plating solution of Example 2, the average film thickness of 5 times was 20.6 ⁇ m, and the average deposition efficiency of 5 times was 79.3%. . The film thickness was measured under the same conditions as in Example 1.
- Example 3 as in Example 1, changes in the deposited film thickness according to the jet conditions of the electrolytic copper plating solution when the composition and current density of the electrolytic copper plating solution were made constant were confirmed.
- the composition, current density, workpiece material and shape of the electrolytic copper plating solution used in Example 3 were the same as in Example 1.
- Table 1 below shows the conditions and results of measuring the deposited film thickness by jet conditions. From Table 1, at the jet velocity “102 (m / min)” of the plating solution of Example 3, the average film thickness of 5 times was 19.3 ⁇ m, and the average deposition efficiency of 5 times was 74.2%. . The film thickness was measured under the same conditions as in Example 1.
- Example 4 the crystal orientation of the plating deposited film according to the content of bis (3-sulfopropyl) disulfide (SPS) (hereinafter simply referred to as “SPS”) added to the electrolytic copper plating solution was confirmed.
- SPS bis (3-sulfopropyl) disulfide
- Example 4 the same components as in Example 1 were used for the electrolytic copper plating solution used, and only the amount of SPS added was changed with respect to the composition of the electrolytic copper plating solution.
- the current density, the workpiece material and the shape were the same as in Example 1.
- FIG. 4 shows the relationship between the SPS addition amount and the crystal orientation strength ratio. From FIG. 4, the tendency to be preferentially oriented to the 111 plane was obtained by adding SPS. In particular, when the SPS content in the electrolytic copper plating solution was 20 to 50 ppm, the growth of 111 faces was remarkable. Note that an X-ray diffraction apparatus (XRD) manufactured by Rigaku Corporation was used to confirm the crystal orientation of the plated film.
- XRD X-ray diffraction apparatus
- Comparative Example 1 As a comparison with Example 4, Comparative Example 1 confirmed the crystal orientation of the plating deposition film according to the SPS content added to the electrolytic copper plating solution, as in Example 4. The composition, current density, workpiece material and shape of the electrolytic copper plating solution used in Comparative Example 1 were the same as in Example 4.
- FIG. 4 shows the results of measuring the deposited film thickness according to the jet conditions. From FIG. 4, when the SPS content (mg / l) as in Comparative Example 1 is “0”, the growth of the 111 plane cannot be sufficiently achieved and the 200 plane tends to be preferentially oriented. It was. Note that the confirmation of the crystal orientation of the plated film was performed under the same conditions as in Example 4.
- the method for manufacturing a coil conductor according to the present invention it is possible to suppress a decrease in plating physical properties when performing electrolytic deposition of copper at a high speed, thereby reducing the time for electrolytic copper plating treatment. It is possible to improve manufacturing efficiency.
- the length of the electrolytic copper plating tank can be shortened by increasing the current density, and the space for the plating equipment can be saved.
- the induction coil which concerns on this invention is provided with the coil conductor manufactured by the manufacturing method of the above-mentioned coil conductor, it can contribute to the further size reduction of an electronic product, and is built in a portable terminal device.
- the induction coil according to the present invention can be suitably used for various devices or devices such as transportation devices such as trains and electric cars in addition to electronic devices such as portable terminal devices and hearing aids.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Electroplating And Plating Baths Therefor (AREA)
- Electroplating Methods And Accessories (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
The purpose of the present invention is to provide: a coil conductor manufacturing method that enables conductor thickness to be made uniformly thick and manufacturing efficiency to be improved; and an induction coil provided with a coil conductor manufactured by such method. In order to achieve the foregoing, utilized is a coil conductor manufacturing method that uses an electrolytic copper plating method, wherein the method is characterized in that: an electrolytic copper plating liquid contains copper sulfate, sulfuric acid, a cationic surfactant, an organic sulfur compound, and a smoothing agent; and the coil shape is formed by carrying out electrolytic deposition while spraying the electrolytic copper plating liquid onto the surface to be plated, at a flow rate of at least 2m/min.
Description
本件発明は、コイル導体の製造方法、及びその方法を用いて製造したコイル導体を備えた誘導コイルに関し、特に、電解銅めっき法によるコイル導体の製造方法、及びその方法を用いて製造したコイル導体を備えた誘導コイルに関する。
The present invention relates to a method of manufacturing a coil conductor and an induction coil including the coil conductor manufactured by using the method, and more particularly, a method of manufacturing a coil conductor by electrolytic copper plating and a coil conductor manufactured by using the method. It is related with the induction coil provided with.
近年、携帯電話やスマートフォン等の携帯端末機器を含めた電子製品においては、多機能化及び小型化が進み、当該電子製品に用いられるコイル(誘導コイル)に関してもより一層の小型化、薄型化が求められている。例えば、携帯端末機器においては、内蔵されるリチウムイオン蓄電池等の二次電池の充電を行うに際し、電磁誘導を利用した非接触による電力電送を行う充電機能を備えたものがあるが、この非接触充電方法に用いる誘導コイルに関しても更なる小型化、薄型化が求められている。非接触充電方法は、電磁誘導という物理現象を利用して電力伝送を行うものであるため、防水性や防塵性が求められる電動歯ブラシや携帯端末機器等に内蔵される二次電池を非接触で充電することができ、露出した端子部分に錆や汚れが生じて充電できなくなるという問題が生じない。
In recent years, electronic products including mobile terminal devices such as mobile phones and smartphones have become multifunctional and miniaturized, and coils (inductive coils) used in the electronic products have been further reduced in size and thickness. It has been demanded. For example, some portable terminal devices have a charging function that performs non-contact power transmission using electromagnetic induction when charging a secondary battery such as a built-in lithium ion storage battery. Further reductions in the size and thickness of the induction coil used in the charging method are also required. Since the non-contact charging method uses the physical phenomenon of electromagnetic induction to transmit power, a secondary battery built in an electric toothbrush or portable terminal device that is required to be waterproof and dust-proof is contactless. The battery can be charged, and there is no problem that the exposed terminal portion becomes rusted or dirty and cannot be charged.
なお、上述した電子製品の小型化及び薄型化を図るにあたっては、コイルをプリント配線技術により製造する方法が提案されているが、プリント配線技術を採用することで、電磁誘導効率が高く、デザイン性に優れた形状の誘導コイルを製造することが可能となる。ちなみに、プリント配線技術を採用することで、形成するコイル導体の断面の縦横比の調整が容易となり、当該断面の形状を円形状や四角形状等の任意の形状にコントロールすることも可能となる。また、プリント配線技術を採用することで、コイル間隔の調整も行えるため、高効率化にも寄与することが出来る。
In order to reduce the size and thickness of the electronic products described above, a method of manufacturing a coil by printed wiring technology has been proposed. By adopting printed wiring technology, electromagnetic induction efficiency is high, and design characteristics are high. It is possible to manufacture an induction coil having an excellent shape. Incidentally, by adopting the printed wiring technique, it becomes easy to adjust the aspect ratio of the cross section of the coil conductor to be formed, and the shape of the cross section can be controlled to an arbitrary shape such as a circular shape or a quadrangular shape. Also, by adopting the printed wiring technology, the coil interval can be adjusted, which can contribute to higher efficiency.
ところが、プリント配線技術によりコイル導体を形成する手法は、基板上に導体層を形成した後にエッチングによりコイル導体を形成するものであり、導体厚さを均一に厚くすることが困難で、携帯端末機器等の非接触充電を行うのに必要となる電流を扱えるコイル導体を製造することが困難であった。また、従来の電解めっき法や無電解めっき法では、導体厚さを均一に大きくするまでに多くの時間がかかり、ランニングコストの増大を招く等の問題があった。そのため、現在では、携帯端末機器等の非接触充電を行うために用いるコイルは、導線を人力又は機械により巻回して製造する方法が主に採用されており、この方法で製造される誘導コイルの小型化及び薄型化を図る試みがなされている。
However, the method of forming a coil conductor by printed wiring technology is to form a coil conductor by etching after forming a conductor layer on a substrate, and it is difficult to uniformly increase the conductor thickness. Thus, it has been difficult to manufacture a coil conductor that can handle the current required to perform non-contact charging. In addition, the conventional electrolytic plating method and electroless plating method have a problem that it takes a lot of time to increase the conductor thickness uniformly, leading to an increase in running cost. For this reason, at present, the coil used for non-contact charging of portable terminal devices or the like is mainly used by a method in which a conductive wire is wound by human power or a machine, and an induction coil manufactured by this method is used. Attempts have been made to reduce the size and thickness.
例えば、特許文献1には、更なる薄型化が可能な渦巻き状平面コイルからなる無接点電力電送コイルについて開示がされている。具体的には、特許文献1の無接点電力電送コイルは、単線又は撚り線からなる線状導体を略々同一平面内に渦巻き状に巻回して形成され、その平面コイルの内周側端部と外部接続端子との間の接続を、プリント基板の導体パターンにより行うことで、平面コイルの線状導体を内周側から外周側へ引き出す場合のように、線状導体が重なるのを防ぐものである(特許文献1の0008,0011等参照のこと。)。
For example, Patent Document 1 discloses a contactless power transmission coil including a spiral planar coil that can be further reduced in thickness. Specifically, the non-contact power transmission coil of Patent Document 1 is formed by winding a linear conductor made of a single wire or a stranded wire in a spiral shape in substantially the same plane, and an inner peripheral side end portion of the planar coil. By connecting the external conductor terminal to the external connection terminal using the conductor pattern on the printed circuit board, the linear conductor of the planar coil is prevented from overlapping, as in the case of pulling out the linear conductor from the inner circumference side to the outer circumference side. (See, for example, 0008 and 0011 of Patent Document 1.)
しかしながら、特許文献1に開示の無接点電力電送コイルの製造方法のような、コイル導線を人力又は機械により巻回して非接触充電用コイルを製造する方法では、コイル導線の径が大きくなるにつれて一定の力で安定して巻回することが難しく、コイル導線を密着させて巻き付けることが出来ない。そのため、特許文献1に開示の無接点電力電送コイルの製造方法では、製品品質のばらつきが大きくなり、また十分にコイルの小型化及び薄型化を図ることも出来なかった。特に、コイル導線を人力で巻回して非接触充電用コイルを製造する場合には、コイル導線を巻くために多くの時間がかかり、製造効率が悪く、製造コストの増大を招いていた。従って、従来より主に採用されてきた、コイル導線を人力又は機械により巻回して非接触充電用コイルを製造する方法では、特に携帯端末機器等の非接触充電を行うために用いる誘導コイルの更なる小型化及び薄型化を図ることが困難であった。
However, in a method of manufacturing a non-contact charging coil by winding a coil wire by human power or a machine, such as the method for manufacturing a non-contact power transmission coil disclosed in Patent Document 1, it is constant as the diameter of the coil wire increases. It is difficult to wind stably with the force of, and it is not possible to wind the coil conductor in close contact. Therefore, in the method for manufacturing a contactless power transmission coil disclosed in Patent Document 1, the product quality varies greatly, and the coil cannot be sufficiently reduced in size and thickness. In particular, when a non-contact charging coil is manufactured by manually winding a coil conductor, it takes a lot of time to wind the coil conductor, resulting in poor manufacturing efficiency and an increase in manufacturing cost. Therefore, in the method of manufacturing a non-contact charging coil by winding a coil lead wire by human power or a machine, which has been mainly employed conventionally, the induction coil used for non-contact charging of a portable terminal device or the like is particularly improved. It has been difficult to reduce the size and thickness.
ちなみに、コイル導線の径を小さくすることで、誘導コイルの小型化及び薄型化を図ることが出来るが、導線の太さを細くすることで、当該導線の抵抗値が上昇して誘導コイルの温度上昇を招くため、別途冷却用のスペースを設ける必要が生じる等、製品の小型化及び薄型化を妨げることとなる。
Incidentally, by reducing the diameter of the coil conductor, the induction coil can be made smaller and thinner. However, by reducing the thickness of the conductor, the resistance of the conductor increases and the temperature of the induction coil increases. This causes an increase in the size of the product, which hinders downsizing and thinning of the product, such as the need for a separate cooling space.
そこで本件発明では、上述した問題に鑑み、導体厚さを均一に厚くすると共に、製造効率の向上を図ることの可能なコイル導体の製造方法、及びその方法を用いて製造されたコイル導体を備えた誘導コイルを提供することを目的とする。
Therefore, in the present invention, in view of the above-described problems, a method of manufacturing a coil conductor capable of uniformly increasing the conductor thickness and improving the manufacturing efficiency, and a coil conductor manufactured using the method are provided. It is an object to provide an induction coil.
本件発明に係るコイル導体の製造方法:本件発明に係るコイル導体の製造方法は、電解銅めっき法によるコイル導体の製造方法であって、電解銅めっき液は、硫酸銅と、硫酸と、カチオン系界面活性剤と、有機硫黄化合物と、平滑化剤とを含み、被めっき面に対して当該電解銅めっき液を流速2m/min以上で吹き付けながら、電解析出してコイル形状を形成することを特徴とする。
Coil conductor manufacturing method according to the present invention: The coil conductor manufacturing method according to the present invention is a coil conductor manufacturing method by an electrolytic copper plating method, and the electrolytic copper plating solution contains copper sulfate, sulfuric acid, and a cationic system. A surfactant, an organic sulfur compound, and a smoothing agent are included, and a coil shape is formed by electrolytic deposition while spraying the electrolytic copper plating solution on the surface to be plated at a flow rate of 2 m / min or more. And
また、本件発明に係るコイル導体の製造方法において、前記被めっき面に対して前記電解銅めっき液を流速50m/min~120m/minで吹き付けることが好ましい。
In the coil conductor manufacturing method according to the present invention, it is preferable that the electrolytic copper plating solution is sprayed onto the surface to be plated at a flow rate of 50 m / min to 120 m / min.
また、本件発明に係るコイル導体の製造方法において、前記有機硫黄化合物は、ビス(3-スルホプロピル)ジスルフィド(SPS)、又は、メルカプトプロパンスルホン酸(MPS)であることが好ましい。
In the method for producing a coil conductor according to the present invention, the organic sulfur compound is preferably bis (3-sulfopropyl) disulfide (SPS) or mercaptopropanesulfonic acid (MPS).
また、本件発明に係るコイル導体の製造方法において、前記カチオン系界面活性剤は、ポリエチレングリコール(PEG)であることが好ましい。
In the method for producing a coil conductor according to the present invention, the cationic surfactant is preferably polyethylene glycol (PEG).
また、本件発明に係るコイル導体の製造方法において、前記平滑化剤は、ヤヌスグリーン(JGB)であることが好ましい。
In the method for manufacturing a coil conductor according to the present invention, the smoothing agent is preferably Janus Green (JGB).
また、本件発明に係るコイル導体の製造方法は、電流密度10A/dm2~200A/dm2で電解析出してコイル形状を形成することが好ましい。
In the coil conductor manufacturing method according to the present invention, the coil shape is preferably formed by electrolytic deposition at a current density of 10 A / dm 2 to 200 A / dm 2 .
また、本件発明に係るコイル導体の製造方法は、前記電解銅めっき液が、硫酸銅6水和物200g/l~300g/lと、硫酸25g/l~150g/lと、ポリエチレングリコール(PEG)10mg/l~30mg/lと、ビス(3-スルホプロピル)ジスルフィド(SPS)10mg/l~100mg/lと、ヤヌスグリーン(JGB)10mg/l~30mg/lとを含むことが好ましい。
In the coil conductor manufacturing method according to the present invention, the electrolytic copper plating solution comprises copper sulfate hexahydrate 200 g / l to 300 g / l, sulfuric acid 25 g / l to 150 g / l, polyethylene glycol (PEG). It preferably contains 10 mg / l to 30 mg / l, bis (3-sulfopropyl) disulfide (SPS) 10 mg / l to 100 mg / l, and Janus Green (JGB) 10 mg / l to 30 mg / l.
また、本件発明に係るコイル導体の製造方法は、前記電解銅めっき液の温度が20℃~30℃であることが好ましい。
In the coil conductor manufacturing method according to the present invention, the temperature of the electrolytic copper plating solution is preferably 20 ° C. to 30 ° C.
また、本件発明に係るコイル導体の製造方法は、渦巻き形状にパターニングされた溝を備えるめっきレジスト層を表面に設けた基板を前記電解銅めっき液に浸漬させ、電解銅めっき法で当該溝内に銅を堆積させてコイル形状を形成することが好ましい。
Moreover, the manufacturing method of the coil conductor according to the present invention includes immersing a substrate having a plating resist layer provided with a groove patterned in a spiral shape on the surface thereof in the electrolytic copper plating solution, and electrolytic copper plating in the groove. Preferably, copper is deposited to form a coil shape.
本件発明に係る誘導コイル:本件発明に係る誘導コイルは、上述したコイル導体の製造方法を用いて製造したコイル導体を備えたことを特徴とする。
Induction coil according to the present invention: The induction coil according to the present invention includes a coil conductor manufactured by using the above-described method of manufacturing a coil conductor.
本件発明に係るコイル導体の製造方法では、コイル導体の厚さを均一に厚くすると共に、製造効率の向上を図ることが可能である。従って、本件発明に係る誘導コイルは、当該製造方法を用いて製造されたコイル導体を備えることで、特に携帯端末機器に内蔵される二次電池等の非接触充電に好適に用いることができ、電子製品の更なる小型化に寄与することが可能である。
In the method for manufacturing a coil conductor according to the present invention, it is possible to uniformly increase the thickness of the coil conductor and improve the manufacturing efficiency. Therefore, the induction coil according to the present invention can be suitably used for non-contact charging such as a secondary battery built in a portable terminal device by including a coil conductor manufactured using the manufacturing method, It is possible to contribute to further downsizing of electronic products.
以下、本件発明に係るコイル導体の製造方法、及びその方法を用いて製造されたコイル導体を備えた誘導コイルの一実施形態について説明する。
Hereinafter, an embodiment of a coil conductor manufacturing method according to the present invention and an induction coil including a coil conductor manufactured using the method will be described.
本件発明に係るコイル導体の製造方法: 本件発明に係るコイル導体の製造方法は、電解銅めっき法によるコイル導体の製造方法であって、電解銅めっき液は、硫酸銅と、硫酸と、カチオン系界面活性剤と、有機硫黄化合物と、平滑化剤とを含み、被めっき面に対して当該電解銅めっき液を流速2m/min以上で吹き付けながら、電解析出してコイル形状を形成することを特徴とする。
Coil conductor manufacturing method according to the present invention: The coil conductor manufacturing method according to the present invention is a method of manufacturing a coil conductor by electrolytic copper plating, and the electrolytic copper plating solution contains copper sulfate, sulfuric acid, and a cationic system. A surfactant, an organic sulfur compound, and a smoothing agent are included, and a coil shape is formed by electrolytic deposition while spraying the electrolytic copper plating solution on the surface to be plated at a flow rate of 2 m / min or more. And
本件発明に係るコイル導体の製造方法は、電解銅めっき液が、硫酸銅と、硫酸と、カチオン系界面活性剤と、有機硫黄化合物と、平滑化剤とを含むことで、光沢性、平滑性、及び熱伝導性に優れた電解銅めっき皮膜が析出し、高品質のコイル導体を安定的に製造することが可能となる。
The method for producing a coil conductor according to the present invention is such that the electrolytic copper plating solution contains copper sulfate, sulfuric acid, a cationic surfactant, an organic sulfur compound, and a smoothing agent. In addition, an electrolytic copper plating film having excellent thermal conductivity is deposited, and a high-quality coil conductor can be stably manufactured.
ここで、硫酸銅は、めっき液中に銅イオンを供給するために含有される。また、硫酸は、めっき液の電導度を向上させるという効果を発揮する。本件発明に係るコイル導体の製造方法は、硫酸銅として、特に硫酸銅6水和物を用いることで、上述した効果がより顕著に発揮されるため好ましい。
Here, copper sulfate is contained to supply copper ions into the plating solution. Moreover, sulfuric acid exhibits the effect of improving the electrical conductivity of the plating solution. The method for manufacturing a coil conductor according to the present invention is preferable because copper sulfate hexahydrate is used as copper sulfate, since the above-described effects are more remarkably exhibited.
また、カチオン系界面活性剤は、めっき表面に付着して皮膜を形成し、電気化学的に銅の析出反応を抑制する効果を発揮する。このカチオン系界面活性剤としては、ポリエチレングリコール(PEG)、ポリオキシエチレンポリオキシプロピレングリコール(POEPOPG)等を挙げることが出来る。本件発明に係るコイル導体の製造方法は、カチオン系界面活性剤として、特にポリエチレングリコール(PEG)を用いることで、上述した効果がより顕著に発揮されるため好ましい。
In addition, the cationic surfactant adheres to the plating surface to form a film, and exhibits an effect of electrochemically suppressing the copper precipitation reaction. Examples of the cationic surfactant include polyethylene glycol (PEG) and polyoxyethylene polyoxypropylene glycol (POEPOPG). The method for producing a coil conductor according to the present invention is preferable by using polyethylene glycol (PEG), in particular, as the cationic surfactant, because the above-described effects can be exhibited more remarkably.
そして、有機硫黄化合物は、銅の析出反応を促進し、上述したカチオン系界面活性剤と共存することで析出した銅の結晶を微細化してめっき皮膜の光沢性を向上させる効果を発揮する。本件発明に係るコイル導体の製造方法は、有機硫黄化合物として、特にビス(3-スルホプロピル)ジスルフィド(SPS)、又は、SPS誘導体である3-メルカプトプロパン-1-スルホン酸(MPS)を用いることで、上述した効果がより顕著に発揮されるため好ましい。
The organic sulfur compound accelerates the copper precipitation reaction, and by coexisting with the above-mentioned cationic surfactant, exhibits an effect of improving the gloss of the plating film by refining the deposited copper crystals. The method for producing a coil conductor according to the present invention uses, in particular, bis (3-sulfopropyl) disulfide (SPS) or 3-mercaptopropane-1-sulfonic acid (MPS), which is an SPS derivative, as the organic sulfur compound. Therefore, it is preferable because the above-described effects are more remarkably exhibited.
更に、平滑化剤は、めっき液の流れが強い部分での銅の析出反応を抑制する効果を発揮する。本件発明に係るコイル導体の製造方法は、平滑化剤として、特にヤヌスグリーン(JGB)を用いることで、上述した効果がより顕著に発揮されるため好ましい。
Furthermore, the smoothing agent exhibits the effect of suppressing the copper precipitation reaction at the portion where the flow of the plating solution is strong. The manufacturing method of the coil conductor according to the present invention is preferable because Janus Green (JGB) is used as the smoothing agent, because the above-described effects can be exhibited more remarkably.
また、本件発明に係るコイル導体の製造方法は、上述した成分を含む電解銅めっき液を採用し、且つ、被めっき面に対して当該電解銅めっき液を流速2m/min以上で吹き付けながら、電解析出してコイル形状を形成する。本件発明に係るコイル導体の製造方法において、被めっき面に対して当該電解銅めっき液を吹き付ける際の流速が2m/min以上であることで、銅の析出速度を効果的に上げることが出来る。仮に、被めっき面に対して当該電解銅めっき液を吹き付ける速度が2m/min未満である場合、銅の電解析出速度を十分に速くすることが出来ず、製造効率の低下を招いてしまう。
In addition, the method for manufacturing a coil conductor according to the present invention employs an electrolytic copper plating solution containing the above-mentioned components, and sprays the electrolytic copper plating solution on the surface to be plated at a flow rate of 2 m / min or more. Analyze to form a coil shape. In the method of manufacturing a coil conductor according to the present invention, the deposition rate of copper can be effectively increased by the flow rate when the electrolytic copper plating solution is sprayed on the surface to be plated being 2 m / min or more. Temporarily, when the speed | rate which sprays the said electrolytic copper plating solution with respect to a to-be-plated surface is less than 2 m / min, the electrolytic deposition speed | rate of copper cannot fully be made quick, and the fall of manufacturing efficiency will be caused.
ここで、本件発明に係るコイル導体の製造方法は、被めっき面に対して上述した電解銅めっき液を流速50m/min~120m/minで吹き付けることがより好ましい。被めっき面に対して上述した電解銅めっき液を流速50m/min以上で吹き付けることで、銅の析出速度をより効果的に上げることが可能となる。また、被めっき面に対して上述した電解銅めっき液を流速120m/min以下で吹き付けることで、被めっき面に精密なレジストパターンを形成した場合であっても、当該レジストの損傷を防ぐことが出来る。
Here, in the method of manufacturing a coil conductor according to the present invention, it is more preferable to spray the above-described electrolytic copper plating solution onto the surface to be plated at a flow rate of 50 m / min to 120 m / min. By spraying the above-described electrolytic copper plating solution onto the surface to be plated at a flow rate of 50 m / min or more, the copper deposition rate can be increased more effectively. Moreover, even when a precise resist pattern is formed on the surface to be plated, the above-described electrolytic copper plating solution is sprayed onto the surface to be plated at a flow rate of 120 m / min or less to prevent damage to the resist. I can do it.
なお、被めっき面に対して電解銅めっき液を吹き付ける方法に関しては、特に限定されず、従来公知の装置を用いることが出来る。本件発明の一実施形態として、図1に、電解銅めっき液の高速噴流装置の概略図を示す。図1に示す電解銅めっき液の高速噴流装置20は、電解銅めっき液30を攪拌する加圧攪拌槽22と、アノード23と、加圧攪拌槽22に収容された電解銅めっき液30をワーク40へ噴射するノズル24と、ワーク40に向けて吹き付けられた電解銅めっき液30の内めっき形成に用いられなかった電解銅めっき液30をめっき浴槽21に回収するドレン経路25と、めっき浴槽21に収容された電解銅めっき液30を移送管26を介して加圧攪拌槽22に移送するポンプ27とから構成されたものである。
In addition, it does not specifically limit regarding the method of spraying an electrolytic copper plating solution with respect to a to-be-plated surface, A conventionally well-known apparatus can be used. As an embodiment of the present invention, FIG. 1 shows a schematic diagram of a high-speed jet apparatus for electrolytic copper plating solution. The electrolytic copper plating solution high-speed jet apparatus 20 shown in FIG. 1 includes a pressurized stirring bath 22 for stirring the electrolytic copper plating solution 30, an anode 23, and an electrolytic copper plating solution 30 accommodated in the pressurized stirring bath 22. Nozzle 24 for spraying 40, drain path 25 for collecting electrolytic copper plating solution 30 that was not used for inner plating formation of electrolytic copper plating solution 30 sprayed toward workpiece 40, and plating bath 21 And a pump 27 that transfers the electrolytic copper plating solution 30 accommodated in the pressure stirring tank 22 through the transfer pipe 26.
図1中では、ワーク20に電解銅めっき液30を噴き当てるための孔が1カ所のみ形成された状態を示しているが、この孔は複数の孔から構成されていても良い。そして、本件発明に係るコイル導体の製造方法では、上述したように、電解銅めっき液30をワーク40に噴き当てる前に、加圧攪拌槽3で電解銅めっき液30の攪拌を行っているが、この攪拌を行うことで形成されるめっき皮膜の平滑化を効果的に図ることが出来る。なお、ドレン経路25に形成されるドレン孔の径が、ノズルの吹き出し能力に対して小さ過ぎると、めっき浴槽21に電解銅めっき液30がスムーズに回収されず好ましくない。また、当該ドレン孔からの排出能力に対してノズル24の径が大きくなり過ぎると、ポンプ27の圧力が上がり過ぎてポンプ27にエア噛みが生じ、めっき物性の低下を招いてしまうため好ましくない。
FIG. 1 shows a state in which only one hole for spraying the electrolytic copper plating solution 30 onto the workpiece 20 is formed, but this hole may be composed of a plurality of holes. And in the manufacturing method of the coil conductor which concerns on this invention, as above-mentioned, before spraying the electrolytic copper plating solution 30 on the workpiece | work 40, the electrolytic copper plating solution 30 is stirred with the pressurization stirring tank 3. The plating film formed by this stirring can be effectively smoothed. In addition, when the diameter of the drain hole formed in the drain path 25 is too small with respect to the blowing ability of the nozzle, the electrolytic copper plating solution 30 is not smoothly collected in the plating bath 21, which is not preferable. In addition, if the diameter of the nozzle 24 becomes too large with respect to the discharge capacity from the drain hole, the pressure of the pump 27 is increased too much, and air pumping occurs in the pump 27, leading to deterioration of plating physical properties.
そして、本件発明に係るコイル導体の製造方法において、電流密度を従来の最大平均5A/dm2よりも高い10A/dm2~200A/dm2に高めることが好ましい。電流密度を10A/dm2~200A/dm2に高めることで、銅の析出速度を従来方法に比べ約40倍速くすることができ、携帯端末機器等の非接触充電を行うのに必要となる電流を扱うことが可能なコイル導体を短時間で製造することが出来る。更に、本件発明に係るコイル導体の製造方法によれば、上述した組成の電解銅めっき液及び電流密度の電解銅めっき条件を採用することで、めっき物性の優れたコイル導体を安定して製造することが出来る。ここで、電流密度が10A/dm2未満である場合、本件発明の電解銅めっき液を用いた場合でも、銅の電解析出速度を十分に速くすることが出来ず、製造効率の低下を招いてしまう。一方、電流密度が200A/dm2を超える場合、電流密度が高くなり過ぎることで、めっき外観が悪化する等してめっき物性の優れたコイル導体を安定して製造することが困難となる。
In the coil conductor manufacturing method according to the present invention, it is preferable to increase the current density to 10 A / dm 2 to 200 A / dm 2 which is higher than the conventional maximum average of 5 A / dm 2 . By increasing the current density from 10 A / dm 2 to 200 A / dm 2 , the copper deposition rate can be increased by about 40 times compared to the conventional method, which is necessary for non-contact charging of portable terminal devices and the like. A coil conductor capable of handling current can be manufactured in a short time. Furthermore, according to the method for manufacturing a coil conductor according to the present invention, a coil conductor having excellent plating properties can be stably manufactured by employing the electrolytic copper plating solution having the above-described composition and the electrolytic copper plating conditions of current density. I can do it. Here, when the current density is less than 10 A / dm 2, even when the electrolytic copper plating solution of the present invention is used, the electrolytic deposition rate of copper cannot be sufficiently increased, resulting in a decrease in production efficiency. End up. On the other hand, when the current density exceeds 200 A / dm 2, it becomes difficult to stably manufacture a coil conductor having excellent plating physical properties because the plating appearance is deteriorated because the current density becomes too high.
更に、本件発明に係るコイル導体の製造方法において、上述した電解銅めっき液が、硫酸銅6水和物200g/l~300g/lと、硫酸25g/l~150g/lと、ポリエチレングリコール(PEG)10mg/l~30mg/lと、ビス(3-スルホプロピル)ジスルフィド(SPS)10mg/l~100mg/lと、ヤヌスグリーン(JGB)10mg/l~30mg/lとを含むことがより好ましい。
Furthermore, in the method of manufacturing a coil conductor according to the present invention, the above-described electrolytic copper plating solution contains copper sulfate hexahydrate 200 g / l to 300 g / l, sulfuric acid 25 g / l to 150 g / l, polyethylene glycol (PEG More preferably, it contains 10 mg / l to 30 mg / l, bis (3-sulfopropyl) disulfide (SPS) 10 mg / l to 100 mg / l, and Janus green (JGB) 10 mg / l to 30 mg / l.
本件発明の電解銅めっき液は、硫酸銅6水和物を200g/l~300g/lの範囲でも、銅の電解析出時に電流密度を従来よりも高くすることができ、形成する銅めっき層を高速で厚くすることが可能になる。また、硫酸銅6水和物を200g/l~300g/lの範囲で含むことにより、高い電流密度で銅の電解析出を行った場合にも、めっき焼けが生じるのを防いでめっき物性(外観、抗張力、伸び率等)の低下を防止することができる。従って、本件発明に係るコイル導体の製造方法によれば、品質を低下させずに高速で電解銅めっきを行うことが可能になり、電解銅めっき処理に要する時間を大幅に短縮することが出来る。ここで、硫酸銅6水和物の含有量が200g/l未満の場合は、高電流密度で銅の電解析出を行った場合、めっき物性の低下が生じるのを抑制しつつ、形成する銅めっき層を均一に厚くすることが困難になるため好ましくない。一方、硫酸銅6水和物の含有量が300g/lを超えた場合には、電解銅めっき液の温度が15℃以下で静止状態にしていると硫酸銅の結晶の沈殿が生じたり、この沈殿物が装置配管内に固着する等して、めっき物性を安定させることが困難になる。
The electrolytic copper plating solution of the present invention can increase the current density during the electrolytic deposition of copper even in the range of 200 g / l to 300 g / l of copper sulfate hexahydrate, and the formed copper plating layer Can be made thick at high speed. In addition, by containing copper sulfate hexahydrate in the range of 200 g / l to 300 g / l, even when electrolytic deposition of copper is performed at a high current density, plating burn can be prevented and plating physical properties ( (Appearance, tensile strength, elongation, etc.) can be prevented from decreasing. Therefore, according to the method for manufacturing a coil conductor according to the present invention, it is possible to perform electrolytic copper plating at a high speed without deteriorating quality, and the time required for the electrolytic copper plating process can be greatly shortened. Here, in the case where the content of copper sulfate hexahydrate is less than 200 g / l, copper is formed while suppressing deterioration of plating physical properties when electrolytic deposition of copper is performed at a high current density. Since it becomes difficult to make a plating layer thick uniformly, it is not preferable. On the other hand, when the content of copper sulfate hexahydrate exceeds 300 g / l, if the temperature of the electrolytic copper plating solution is kept at a temperature of 15 ° C. or lower, precipitation of copper sulfate crystals may occur. It becomes difficult to stabilize the plating physical properties because, for example, the precipitate is fixed in the apparatus piping.
また、本発明の電解銅めっき液は、硫酸を25g/l~150g/lの範囲で含むことにより、被めっき面に対して当該電解銅めっき液を流速2m/min以上で吹き付けて、銅の電解析出時に電流密度を従来よりも高くすることができ、形成する銅めっき層を高速で厚くすることが可能になる。ここで、硫酸の含有量が25g/l未満の場合には、析出金属の表面粗度が大きくなり、また、銅の電解析出の高速化を図ることが困難となる。一方、硫酸の含有量が150g/lを超える場合は、硫酸銅の結晶の沈殿が生じる等して電解銅めっき液の安定性が損なわれ、めっき物性を安定させることが困難になる。
In addition, the electrolytic copper plating solution of the present invention contains sulfuric acid in a range of 25 g / l to 150 g / l, so that the electrolytic copper plating solution is sprayed onto the surface to be plated at a flow rate of 2 m / min or more. At the time of electrolytic deposition, the current density can be made higher than before, and the copper plating layer to be formed can be made thick at high speed. Here, when the content of sulfuric acid is less than 25 g / l, the surface roughness of the deposited metal is increased, and it is difficult to increase the speed of electrolytic deposition of copper. On the other hand, when the content of sulfuric acid exceeds 150 g / l, the stability of the electrolytic copper plating solution is impaired due to precipitation of copper sulfate crystals and it becomes difficult to stabilize the plating physical properties.
また、本件発明の電解銅めっき液は、ポリエチレングリコール(PEG)を10mg/l~30mg/lの範囲で含み、ビス(3-スルホプロピル)ジスルフィド(SPS)を10mg/l~100mg/lの範囲で含み、ヤヌスグリーン(JGB)を10mg/l~30mg/lの範囲で含むことで、電着反応を向上させることが可能となる。ここで、ポリエチレングリコール(PEG)の含有量が10mg/l未満の場合は、形成した銅めっき層の厚さのばらつきが大きくなる。一方、ポリエチレングリコール(PEG)の含有量が30mg/lを超えた場合には、析出した銅めっきの光沢が不均一となる。また、ビス(3-スルホプロピル)ジスルフィド(SPS)の含有量が10mg/l未満の場合は、析出した銅めっきの光沢が全く無くなる。一方、ビス(3-スルホプロピル)ジスルフィド(SPS)の含有量が100mg/lを超えた場合にも、析出した銅めっきの光沢が無くなる。また、ヤヌスグリーン(JGB)の含有量が10mg/l未満の場合は、析出した銅めっきの光沢が無くなる。一方、ヤヌスグリーン(JGB)の含有量が30mg/lを超えた場合には、形成した銅めっき層の物性が悪化し、基板を変形させると割れが生じてしまう。
The electrolytic copper plating solution of the present invention contains polyethylene glycol (PEG) in the range of 10 mg / l to 30 mg / l, and bis (3-sulfopropyl) disulfide (SPS) in the range of 10 mg / l to 100 mg / l. By including Janus Green (JGB) in the range of 10 mg / l to 30 mg / l, the electrodeposition reaction can be improved. Here, when the content of polyethylene glycol (PEG) is less than 10 mg / l, the thickness variation of the formed copper plating layer becomes large. On the other hand, when the content of polyethylene glycol (PEG) exceeds 30 mg / l, the gloss of the deposited copper plating becomes non-uniform. Further, when the content of bis (3-sulfopropyl) disulfide (SPS) is less than 10 mg / l, the gloss of the deposited copper plating is completely lost. On the other hand, when the content of bis (3-sulfopropyl) disulfide (SPS) exceeds 100 mg / l, the gloss of the deposited copper plating is lost. Moreover, when the content of Janus Green (JGB) is less than 10 mg / l, the gloss of the deposited copper plating is lost. On the other hand, when the content of Janus Green (JGB) exceeds 30 mg / l, the physical properties of the formed copper plating layer deteriorate, and cracking occurs when the substrate is deformed.
また、本件発明に係るコイル導体の製造方法は、電解銅めっき液の温度が20℃~30℃であることが好ましい。電解銅めっき液の温度を20℃~30℃の範囲内に設定することで、電解銅めっき液が高濃度の硫酸銅を含んでいたとしても硫酸銅の結晶の沈殿を防止し、より高い電流密度で銅の電解析出を行うことが可能になり、形成する銅めっき層を高速で厚くすることが出来る。また、電解銅めっき液の温度を20℃~30℃の範囲内に設定することで、コイル形状にめっきする際に使用するレジストが当該電解銅めっき液により溶解するのを防止し、また、当該レジストの溶解等に伴う不純物の増加を抑制することが出来る。ここで、電解銅めっき液の温度が20℃未満である場合、電解銅めっき液を攪拌する等しても電流密度を10A/dm2以上に設定した際にめっき外観が悪化する等してめっき物性が不安定となる。一方、電解銅めっき液の温度が30℃を超える場合、ポリエチレングリコール(PEG)、ビス(3-スルホプロピル)ジスルフィド(SPS)、ヤヌスグリーン(JGB)を含める効果が早期に失われ、電着反応を向上させることが困難となる。電解銅めっき液の温度は、25℃を超えると光沢剤の消耗が大きくなるため、25℃付近の温度に設定することがより好ましい。
In the coil conductor manufacturing method according to the present invention, the temperature of the electrolytic copper plating solution is preferably 20 ° C. to 30 ° C. By setting the temperature of the electrolytic copper plating solution within a range of 20 ° C. to 30 ° C., even if the electrolytic copper plating solution contains a high concentration of copper sulfate, precipitation of copper sulfate crystals is prevented and a higher current is obtained. It is possible to perform electrolytic deposition of copper at a density, and the formed copper plating layer can be thickened at high speed. Further, by setting the temperature of the electrolytic copper plating solution within a range of 20 ° C. to 30 ° C., it is possible to prevent the resist used when plating into a coil shape from being dissolved by the electrolytic copper plating solution. It is possible to suppress an increase in impurities accompanying dissolution of the resist. Here, when the temperature of the electrolytic copper plating solution is less than 20 ° C., the plating appearance deteriorates when the current density is set to 10 A / dm 2 or more even if the electrolytic copper plating solution is stirred. The physical properties become unstable. On the other hand, when the temperature of the electrolytic copper plating solution exceeds 30 ° C., the effect of including polyethylene glycol (PEG), bis (3-sulfopropyl) disulfide (SPS), Janus Green (JGB) is lost early, and the electrodeposition reaction It becomes difficult to improve. When the temperature of the electrolytic copper plating solution exceeds 25 ° C., the consumption of the brightening agent increases, so it is more preferable to set the temperature to around 25 ° C.
また、本件発明に係るコイル導体の製造方法は、渦巻き形状にパターニングされた溝を備えるめっきレジスト層を表面に設けた基板を前記電解銅めっき液に浸漬させ、電解銅めっき法で当該溝内に銅を堆積させてコイル形状を形成することが好ましい。
Moreover, the manufacturing method of the coil conductor according to the present invention includes immersing a substrate having a plating resist layer provided with a groove patterned in a spiral shape on the surface thereof in the electrolytic copper plating solution, and electrolytic copper plating in the groove. Preferably, copper is deposited to form a coil shape.
図2は、本件発明の一実施形態に係る誘導コイルの構成図である。図2に示するように、本件発明のコイル導体3は、例えば基板2上に渦巻き形状にパターニングされたコイル形状を採用することが出来る。ちなみに、図2に示すような、平面状の渦巻き形状にパターニングされたコイル形状は、導線を巻きつけた従来の誘導コイルに比べて小型化及び薄型化を図ることが出来るという利点を有する。なお、本件発明のコイル導体の形状は、図2に示すものに限られず、例えば矩形状、多角形状、円形状、楕円形状等で渦巻き形状にパターニングされたものであってもよく、コイルの使用目的に応じてその形状を適宜選択することが出来る。
FIG. 2 is a configuration diagram of an induction coil according to an embodiment of the present invention. As shown in FIG. 2, the coil conductor 3 of the present invention can adopt a coil shape patterned in a spiral shape on the substrate 2, for example. Incidentally, the coil shape patterned into a flat spiral shape as shown in FIG. 2 has an advantage that it can be reduced in size and thickness as compared with a conventional induction coil wound with a conducting wire. Note that the shape of the coil conductor of the present invention is not limited to that shown in FIG. 2, but may be, for example, a rectangular shape, a polygonal shape, a circular shape, an elliptical shape, or the like patterned in a spiral shape. The shape can be appropriately selected according to the purpose.
また、本件発明に係るコイル導体の製造方法は、コイル形状を形成するに際して、基板上に渦巻き形状にパターニングされた溝を備えるめっきレジスト層を設けることで、安定して銅めっき層を厚くすることができ、高品質のコイル導体を得ることが出来る。
Further, in the coil conductor manufacturing method according to the present invention, when forming the coil shape, the copper plating layer is stably thickened by providing a plating resist layer having grooves patterned in a spiral shape on the substrate. And a high-quality coil conductor can be obtained.
図3は、本発明のコイル導体の製造方法の説明図であり、(a)~(e)は製造工程を順に示した説明図である。ここで、参考として、本件発明に係るコイル導体の製造方法の工程を例示しておく。まず、基板2におけるコイル導体3を形成する側の表面に絶縁層10を形成する(図3中(a)参照のこと。)。次に、当該絶縁層10の上にめっき触媒(白金等)11を付与する(図3中(b)参照のこと。)。次に、当該めっき触媒11上のコイル形状形成領域13以外の場所にめっきレジスト層12を形成する(図3中(c)参照のこと。)。ここで、めっきレジスト層12を形成するにあたっては、従来公知の技術を適宜採用することが出来る。次に、無電解めっき法で、めっきレジスト層12の形成されないめっき触媒11の露出した面に導電層(銅層)14を形成する(図3中(d)参照のこと。)。なお、この工程では、図示していないが、基板を貫通するようにスルーホールを設けた場合に、当該スルーホール内にも導電層14が形成される。そして、当該導電層14が一方の電極回路を構成するような電解銅めっきを行い、コイル形状の導電層14上にコイル導体3を形成する(図3中(e)参照のこと。)。
FIG. 3 is an explanatory view of the method of manufacturing a coil conductor according to the present invention, and (a) to (e) are explanatory views sequentially showing the manufacturing steps. Here, as a reference, the steps of the method for manufacturing a coil conductor according to the present invention are illustrated. First, the insulating layer 10 is formed on the surface of the substrate 2 on the side where the coil conductor 3 is to be formed (see (a) in FIG. 3). Next, a plating catalyst (platinum or the like) 11 is applied on the insulating layer 10 (see (b) in FIG. 3). Next, the plating resist layer 12 is formed in a place other than the coil shape forming region 13 on the plating catalyst 11 (see (c) in FIG. 3). Here, in forming the plating resist layer 12, a conventionally known technique can be appropriately employed. Next, a conductive layer (copper layer) 14 is formed on the exposed surface of the plating catalyst 11 on which the plating resist layer 12 is not formed by an electroless plating method (see FIG. 3D). In this step, although not shown, when a through hole is provided so as to penetrate the substrate, the conductive layer 14 is also formed in the through hole. Then, electrolytic copper plating is performed so that the conductive layer 14 forms one electrode circuit, and the coil conductor 3 is formed on the coil-shaped conductive layer 14 (see (e) in FIG. 3).
本件発明に係る誘導コイル: 本件発明に係る誘導コイルは、上述したコイル導体の製造方法を用いて製造したコイル導体を備えたことを特徴とする。
Induction coil according to the present invention: The induction coil according to the present invention includes a coil conductor manufactured using the above-described method of manufacturing a coil conductor.
本件発明に係る誘導コイル1は、上述したコイル導体の製造方法を用いて製造したコイル導体3を備えたものであり、小型化及び薄型化を実現しながらも高効率を実現することが出来る。従って、本件発明に係る誘導コイル1は、コイン型二次電池を用いる補聴器等の小型機器や、高輝度で大型のディスプレイやゲーム機等様々なアプリケーションが備わり急速充電が求められる最近の携帯電話やスマートフォン等の携帯端末機器の非接触充電用として好適に用いることが出来る。ちなみに、本件発明に係る誘導コイル1は、これら機器に用いるに際して、筐体ケースの内側にコイル導体を形成したり、コイン型二次電池の表面に直接コイル導体を形成する等して誘導コイルとすることで、当該機器の更なる小型化、薄型化、及び高性能化を図ることが可能となる。
The induction coil 1 according to the present invention includes the coil conductor 3 manufactured by using the above-described method for manufacturing a coil conductor, and can achieve high efficiency while realizing miniaturization and thinning. Therefore, the induction coil 1 according to the present invention is a recent mobile phone which is equipped with various applications such as a small instrument such as a hearing aid using a coin-type secondary battery, a large display with high brightness and a game machine, and is required to be rapidly charged. It can be suitably used for non-contact charging of mobile terminal devices such as smartphones. Incidentally, when the induction coil 1 according to the present invention is used in these devices, the induction coil 1 is formed by forming a coil conductor inside the casing case or directly forming a coil conductor on the surface of the coin-type secondary battery. As a result, the device can be further reduced in size, thickness, and performance.
参考までに、本件発明に係る誘導コイルは、図2に示す構造を採用することが出来る。図2に示す誘導コイル1は、スルーホール5,7を設けることで、外部接続用端子8を、外部接続用端子4と同じ基板面に設けられる構造としたものであり、当該外部接続用端子4,8が設けられる面とは反対側の面に当該スルーホール5,7連結用の導線6が形成される。ここで、当該端子4,8は、当該コイル導体3に電流を供給する駆動基板に接続される。例えば、このような構造を備えることで、誘導コイルは、高周波電流によって高周波磁界を発生させ、コイル導体に当該誘導コイルが発生する高周波磁界によって誘導電流が流れることとなる。なお、図2に示す誘導コイル1において、スルーホール5,7連結用の導線6の形状に関しても、渦巻き形状にすることも可能である。更に、当該外部接続用端子4,8をコイルの側面に設けるようにしてもよい。
For reference, the induction coil according to the present invention can employ the structure shown in FIG. The induction coil 1 shown in FIG. 2 has a structure in which the through holes 5 and 7 are provided so that the external connection terminals 8 are provided on the same substrate surface as the external connection terminals 4. Conductive wires 6 for connecting the through holes 5 and 7 are formed on the surface opposite to the surface on which 4 and 8 are provided. Here, the terminals 4 and 8 are connected to a drive board that supplies current to the coil conductor 3. For example, by providing such a structure, the induction coil generates a high-frequency magnetic field by a high-frequency current, and the induced current flows in the coil conductor by the high-frequency magnetic field generated by the induction coil. In addition, in the induction coil 1 shown in FIG. 2, the shape of the conductive wire 6 for connecting the through holes 5 and 7 can also be a spiral shape. Further, the external connection terminals 4 and 8 may be provided on the side surface of the coil.
ちなみに、非接触充電を行うための誘導コイルとして、巻き線型、積層型、薄膜型があげられるが、本件発明に係る誘導コイルは、図2に例示した平面状のコイルに限定されるものではない。例えば、本件発明に係る誘導コイルは、積層型や巻き線型とすることもでき、スマートフォンに内蔵されるような小型アンテナ等としても用いることが出来る。また、非接触充電方法による電力伝送方式として、電磁誘導方式や磁気共鳴方式等が挙げられるが、これらはいずれもコイルを向かい合わせに置いて一方に電源を接続して給電し、他方のコイルで受電するものであり、共に電磁誘導という物理現象を利用し同じ原理を用いたものであるため、本件発明に係る誘導コイルを用いることが出来る。
Incidentally, examples of the induction coil for performing non-contact charging include a wound type, a laminated type, and a thin film type. However, the induction coil according to the present invention is not limited to the planar coil illustrated in FIG. . For example, the induction coil according to the present invention can be a laminated type or a wound type, and can also be used as a small antenna or the like built in a smartphone. In addition, as a power transmission method by the non-contact charging method, there are an electromagnetic induction method, a magnetic resonance method, and the like. In these methods, power is supplied by connecting a power source to one side with the coils facing each other, and the other coil. Since both receive power and use the same principle using the physical phenomenon of electromagnetic induction, the induction coil according to the present invention can be used.
以上に、本件発明に係るコイル導体の製造方法、及びその方法を用いて製造したコイル導体を備えた誘導コイルについて説明したが、以下に本件発明の実施例を示し、本件発明をより詳細に説明する。なお、本件発明はこれらの例により何ら限定されるものではない。
As described above, the manufacturing method of the coil conductor according to the present invention and the induction coil including the coil conductor manufactured by using the method have been described. Hereinafter, examples of the present invention will be shown, and the present invention will be described in more detail. To do. In addition, this invention is not limited at all by these examples.
実施例1では、電解銅めっき液の組成及び電流密度を一定とした場合における、ワークの被めっき面に対する当該電解銅めっき液の噴流条件別の析出膜厚の変化について確認を行った。この実施例1では、ワークに対して、アルカリ脱脂(5min×3回)を行った後に酸洗い(1min×3回)を行い、電気銅めっきを施した。また、電解銅めっき処理を行うに際し、めっき処理温度は、25℃とし、電流密度は50A/dm2とした。
In Example 1, when the composition and the current density of the electrolytic copper plating solution were constant, the change in the deposited film thickness according to the jet condition of the electrolytic copper plating solution on the surface to be plated of the workpiece was confirmed. In Example 1, the workpiece was subjected to alkaline degreasing (5 min × 3 times) and then pickling (1 min × 3 times) to perform electrolytic copper plating. Moreover, when performing an electrolytic copper plating process, the plating process temperature was 25 degreeC and the current density was 50 A / dm < 2 >.
実施例1で用いる電解銅めっき液の組成は、以下に示す通りである。また、実施例1で用いるワークは、10×20×0.5(mm)の板状の鋼材とした。
The composition of the electrolytic copper plating solution used in Example 1 is as shown below. Moreover, the workpiece | work used in Example 1 was made into the plate-shaped steel material of 10x20x0.5 (mm).
<電解銅めっき液の組成>
・硫酸銅5水和物(CUSO4・5H2O):250g/l
・硫酸(H2SO4):50g/l
・塩化物イオン(NaCl):50mg/l
・ポリエチレングリコール(PEG2000):30mg/l
・ビス(3-スルホプロピル)ジスルフィド(SPS):50mg/l
・ヤヌスグリーンB(JGB):30mg/l <Composition of electrolytic copper plating solution>
Copper sulfate pentahydrate (C U SO 4 · 5H 2 O): 250g / l
・ Sulfuric acid (H 2 SO 4 ): 50 g / l
Chloride ion (NaCl): 50 mg / l
-Polyethylene glycol (PEG2000): 30 mg / l
Bis (3-sulfopropyl) disulfide (SPS): 50 mg / l
・ Janus Green B (JGB): 30mg / l
・硫酸銅5水和物(CUSO4・5H2O):250g/l
・硫酸(H2SO4):50g/l
・塩化物イオン(NaCl):50mg/l
・ポリエチレングリコール(PEG2000):30mg/l
・ビス(3-スルホプロピル)ジスルフィド(SPS):50mg/l
・ヤヌスグリーンB(JGB):30mg/l <Composition of electrolytic copper plating solution>
Copper sulfate pentahydrate (C U SO 4 · 5H 2 O): 250g / l
・ Sulfuric acid (H 2 SO 4 ): 50 g / l
Chloride ion (NaCl): 50 mg / l
-Polyethylene glycol (PEG2000): 30 mg / l
Bis (3-sulfopropyl) disulfide (SPS): 50 mg / l
・ Janus Green B (JGB): 30mg / l
以下に示す表1には、噴流条件別の析出膜厚を測定した条件及び結果を示す。表1より、実施例1のめっき液の噴流速度「34(m/min)」では、計5回の平均膜厚が2.0μm、計5回の平均析出効率が7.5%となった。なお、膜厚の測定に関しては、電子天秤(A&D社製「GR-202」)を用いた。
Table 1 below shows the conditions and results of measuring the deposited film thickness by jet conditions. From Table 1, at the jet velocity “34 (m / min)” of the plating solution of Example 1, the average film thickness of 5 times was 2.0 μm, and the average deposition efficiency of 5 times was 7.5%. . For measuring the film thickness, an electronic balance (“GR-202” manufactured by A & D) was used.
実施例2では、実施例1と同様に、電解銅めっき液の組成及び電流密度を一定とした場合における電解銅めっき液の噴流条件別の析出膜厚の変化について確認を行った。実施例2で用いる電解銅めっき液の組成、電流密度、ワークの材質及び形状は、実施例1と同じとした。
In Example 2, as in Example 1, changes in the deposited film thickness according to the jet conditions of the electrolytic copper plating solution when the composition and current density of the electrolytic copper plating solution were made constant were confirmed. The composition, current density, workpiece material and shape of the electrolytic copper plating solution used in Example 2 were the same as in Example 1.
以下に示す表1には、噴流条件別の析出膜厚を測定した条件及び結果を示す。表1より、実施例2のめっき液の噴流速度「68(m/min)」では、計5回の平均膜厚が20.6μm、計5回の平均析出効率が79.3%となった。なお、膜厚の測定に関しては、実施例1と同じ条件で行った。
Table 1 below shows the conditions and results of measuring the deposited film thickness by jet conditions. From Table 1, in the jet velocity “68 (m / min)” of the plating solution of Example 2, the average film thickness of 5 times was 20.6 μm, and the average deposition efficiency of 5 times was 79.3%. . The film thickness was measured under the same conditions as in Example 1.
実施例3では、実施例1と同様に、電解銅めっき液の組成及び電流密度を一定とした場合における電解銅めっき液の噴流条件別の析出膜厚の変化について確認を行った。実施例3で用いる電解銅めっき液の組成、電流密度、ワークの材質及び形状は、実施例1と同じとした。
In Example 3, as in Example 1, changes in the deposited film thickness according to the jet conditions of the electrolytic copper plating solution when the composition and current density of the electrolytic copper plating solution were made constant were confirmed. The composition, current density, workpiece material and shape of the electrolytic copper plating solution used in Example 3 were the same as in Example 1.
以下に示す表1には、噴流条件別の析出膜厚を測定した条件及び結果を示す。表1より、実施例3のめっき液の噴流速度「102(m/min)」では、計5回の平均膜厚が19.3μm、計5回の平均析出効率が74.2%となった。なお、膜厚の測定に関しては、実施例1と同じ条件で行った。
Table 1 below shows the conditions and results of measuring the deposited film thickness by jet conditions. From Table 1, at the jet velocity “102 (m / min)” of the plating solution of Example 3, the average film thickness of 5 times was 19.3 μm, and the average deposition efficiency of 5 times was 74.2%. . The film thickness was measured under the same conditions as in Example 1.
実施例4では、電解銅めっき液に添加するビス(3-スルホプロピル)ジスルフィド(SPS)(以下、単に「SPS」と称す)の含有量別のめっき析出膜の結晶配向の確認を行った。実施例4では、用いる電解銅めっき液の成分を実施例1と同じものを用い、電解銅めっき液の組成に関してはSPSの添加量のみを変更した。また、実施例4では、電流密度、ワークの材質及び形状は、実施例1と同じとした。
In Example 4, the crystal orientation of the plating deposited film according to the content of bis (3-sulfopropyl) disulfide (SPS) (hereinafter simply referred to as “SPS”) added to the electrolytic copper plating solution was confirmed. In Example 4, the same components as in Example 1 were used for the electrolytic copper plating solution used, and only the amount of SPS added was changed with respect to the composition of the electrolytic copper plating solution. In Example 4, the current density, the workpiece material and the shape were the same as in Example 1.
図4には、SPS添加量と結晶配向強度比との関係を示す。図4より、SPSを添加することで、111面に優先的に配向される傾向が得られた。また、特に電解銅めっき液におけるSPS含有量が20~50ppmのときに111面の成長が著しい結果が得られた。なお、めっき析出膜の結晶配向の確認には、リガク社製X線回折装置(XRD)を用いた。
FIG. 4 shows the relationship between the SPS addition amount and the crystal orientation strength ratio. From FIG. 4, the tendency to be preferentially oriented to the 111 plane was obtained by adding SPS. In particular, when the SPS content in the electrolytic copper plating solution was 20 to 50 ppm, the growth of 111 faces was remarkable. Note that an X-ray diffraction apparatus (XRD) manufactured by Rigaku Corporation was used to confirm the crystal orientation of the plated film.
[比較例1]
比較例1は、実施例4の対比用として、実施例4と同様に、電解銅めっき液に添加するSPSの含有量別のめっき析出膜の結晶配向の確認を行った。比較例1で用いる電解銅めっき液の組成、電流密度、ワークの材質及び形状は、実施例4と同じとした。 [Comparative Example 1]
As a comparison with Example 4, Comparative Example 1 confirmed the crystal orientation of the plating deposition film according to the SPS content added to the electrolytic copper plating solution, as in Example 4. The composition, current density, workpiece material and shape of the electrolytic copper plating solution used in Comparative Example 1 were the same as in Example 4.
比較例1は、実施例4の対比用として、実施例4と同様に、電解銅めっき液に添加するSPSの含有量別のめっき析出膜の結晶配向の確認を行った。比較例1で用いる電解銅めっき液の組成、電流密度、ワークの材質及び形状は、実施例4と同じとした。 [Comparative Example 1]
As a comparison with Example 4, Comparative Example 1 confirmed the crystal orientation of the plating deposition film according to the SPS content added to the electrolytic copper plating solution, as in Example 4. The composition, current density, workpiece material and shape of the electrolytic copper plating solution used in Comparative Example 1 were the same as in Example 4.
図4には、噴流条件別の析出膜厚を測定した結果を示す。図4より、比較例1のようなSPS含有量(mg/l)が「0」である場合には、111面の成長が十分に図れず、200面が優先的に配向される傾向が得られた。なお、めっき析出膜の結晶配向の確認に関しては、実施例4と同じ条件で行った。
FIG. 4 shows the results of measuring the deposited film thickness according to the jet conditions. From FIG. 4, when the SPS content (mg / l) as in Comparative Example 1 is “0”, the growth of the 111 plane cannot be sufficiently achieved and the 200 plane tends to be preferentially oriented. It was. Note that the confirmation of the crystal orientation of the plated film was performed under the same conditions as in Example 4.
<析出膜厚確認の評価>
以下に、実施例1~3について行った、ワークの被めっき面に対する電解銅めっき液の噴流条件別の析出膜厚確認の評価を示す。表1には、実施例2及び3の方が実施例1に比べて、銅の電解析出速度を十分に速くするという優れた効果が発揮出来ることが示されている。よって、表1に示す結果より、ワークの被めっき面に対して電解銅めっき液を50m/min~120m/minで吹き付けるのが、高速で且つ性状の良い析出膜を得る上でより好ましいことが分かった。 <Evaluation of deposited film thickness confirmation>
The following is an evaluation of the deposited film thickness confirmation according to the jet conditions of the electrolytic copper plating solution on the surface to be plated of Examples 1 to 3. Table 1 shows that Examples 2 and 3 can exhibit an excellent effect of sufficiently increasing the electrolytic deposition rate of copper as compared with Example 1. Therefore, from the results shown in Table 1, it is more preferable to spray the electrolytic copper plating solution on the work surface to be plated at 50 m / min to 120 m / min in order to obtain a high-speed and good-quality deposited film. I understood.
以下に、実施例1~3について行った、ワークの被めっき面に対する電解銅めっき液の噴流条件別の析出膜厚確認の評価を示す。表1には、実施例2及び3の方が実施例1に比べて、銅の電解析出速度を十分に速くするという優れた効果が発揮出来ることが示されている。よって、表1に示す結果より、ワークの被めっき面に対して電解銅めっき液を50m/min~120m/minで吹き付けるのが、高速で且つ性状の良い析出膜を得る上でより好ましいことが分かった。 <Evaluation of deposited film thickness confirmation>
The following is an evaluation of the deposited film thickness confirmation according to the jet conditions of the electrolytic copper plating solution on the surface to be plated of Examples 1 to 3. Table 1 shows that Examples 2 and 3 can exhibit an excellent effect of sufficiently increasing the electrolytic deposition rate of copper as compared with Example 1. Therefore, from the results shown in Table 1, it is more preferable to spray the electrolytic copper plating solution on the work surface to be plated at 50 m / min to 120 m / min in order to obtain a high-speed and good-quality deposited film. I understood.
<結晶配向確認の評価>
以下に、実施例3、比較例2について行った、SPSの含有量別のめっき析出膜の結晶配向の確認の評価を示す。図4には、SPS含有量(mg/l)が「0」の場合よりも、SPS含有量(mg/l)が「10」、「20」、「30」、「40」、「50」、「60」、「70」の方が、111面の成長が促進されることが示されている。111面の成長が促進されることで、良好な展延性が得られるという効果を得ることが可能となる。 <Evaluation of crystal orientation confirmation>
Below, evaluation of confirmation of the crystal orientation of the plating deposit film according to SPS content performed for Example 3 and Comparative Example 2 is shown. In FIG. 4, the SPS content (mg / l) is “10”, “20”, “30”, “40”, “50”, compared to the case where the SPS content (mg / l) is “0”. , “60” and “70” are shown to promote the growth of the 111 plane. By promoting the growth of the 111 plane, it is possible to obtain an effect that good spreadability is obtained.
以下に、実施例3、比較例2について行った、SPSの含有量別のめっき析出膜の結晶配向の確認の評価を示す。図4には、SPS含有量(mg/l)が「0」の場合よりも、SPS含有量(mg/l)が「10」、「20」、「30」、「40」、「50」、「60」、「70」の方が、111面の成長が促進されることが示されている。111面の成長が促進されることで、良好な展延性が得られるという効果を得ることが可能となる。 <Evaluation of crystal orientation confirmation>
Below, evaluation of confirmation of the crystal orientation of the plating deposit film according to SPS content performed for Example 3 and Comparative Example 2 is shown. In FIG. 4, the SPS content (mg / l) is “10”, “20”, “30”, “40”, “50”, compared to the case where the SPS content (mg / l) is “0”. , “60” and “70” are shown to promote the growth of the 111 plane. By promoting the growth of the 111 plane, it is possible to obtain an effect that good spreadability is obtained.
本件発明に係るコイル導体の製造方法によれば、高速で銅の電解析出を行った際に、めっき物性の低下が生じるのを抑制することが出来るため、電解銅めっき処理の時間を短縮し、製造効率を向上させることが可能である。また、本件発明に係るコイル導体の製造方法によれば、電流密度を高くすることで電解銅めっき処理槽の長さを短くすることができ、めっき設備の省スペース化を図ることも可能である。そして、本件発明に係る誘導コイルは、上述のコイル導体の製造方法により製造されたコイル導体を備えるものであるため、電子製品の更なる小型化に寄与することが可能となり、携帯端末機器に内蔵されるリチウムイオン蓄電池等の二次電池の充電用コイルや携帯端末機器のCPU電源回路向けのコイル、コイン型二次電池の無線充電用コイル、無線通信用小型アンテナ等として好適に用いることが出来る。更に、本件発明に係る誘導コイルは、携帯端末機器や補聴器等の電子機器以外にも電車や電気自動車等の輸送機器等様々な機器又は装置に好適に用いることが出来る。
According to the method for manufacturing a coil conductor according to the present invention, it is possible to suppress a decrease in plating physical properties when performing electrolytic deposition of copper at a high speed, thereby reducing the time for electrolytic copper plating treatment. It is possible to improve manufacturing efficiency. In addition, according to the method for manufacturing a coil conductor according to the present invention, the length of the electrolytic copper plating tank can be shortened by increasing the current density, and the space for the plating equipment can be saved. . And since the induction coil which concerns on this invention is provided with the coil conductor manufactured by the manufacturing method of the above-mentioned coil conductor, it can contribute to the further size reduction of an electronic product, and is built in a portable terminal device. Can be suitably used as a charging coil for a secondary battery such as a lithium ion storage battery, a coil for a CPU power supply circuit of a portable terminal device, a wireless charging coil for a coin-type secondary battery, a small antenna for wireless communication, etc. . Furthermore, the induction coil according to the present invention can be suitably used for various devices or devices such as transportation devices such as trains and electric cars in addition to electronic devices such as portable terminal devices and hearing aids.
1 誘導コイル
2 基板
3 コイル導体
4 端子
5 スルーホール
6 導線
7 スルーホール
8 端子
10 絶縁層
11 触媒
12 めっきレジスト層
13 コイル形状形成領域
14 導電層
20 高速噴流装置
21 めっき浴槽
22 加圧攪拌槽
23 アノード
24 ノズル
25 ドレン経路
26 移送管
27 ポンプ
30 電解銅めっき液
40 ワーク DESCRIPTION OFSYMBOLS 1 Induction coil 2 Board | substrate 3 Coil conductor 4 Terminal 5 Through-hole 6 Conductor 7 Through-hole 8 Terminal 10 Insulating layer 11 Catalyst 12 Plating resist layer 13 Coil shape formation area 14 Conductive layer 20 High-speed jet apparatus 21 Plating bathtub 22 Pressurized stirring tank 23 Anode 24 Nozzle 25 Drain path 26 Transfer pipe 27 Pump 30 Electrolytic copper plating solution 40 Workpiece
2 基板
3 コイル導体
4 端子
5 スルーホール
6 導線
7 スルーホール
8 端子
10 絶縁層
11 触媒
12 めっきレジスト層
13 コイル形状形成領域
14 導電層
20 高速噴流装置
21 めっき浴槽
22 加圧攪拌槽
23 アノード
24 ノズル
25 ドレン経路
26 移送管
27 ポンプ
30 電解銅めっき液
40 ワーク DESCRIPTION OF
Claims (10)
- 電解銅めっき法によるコイル導体の製造方法であって、
電解銅めっき液は、硫酸銅と、硫酸と、カチオン系界面活性剤と、有機硫黄化合物と、平滑化剤とを含み、
被めっき面に対して当該電解銅めっき液を流速2m/min以上で吹き付けながら、電解析出してコイル形状を形成することを特徴とするコイル導体の製造方法。 A method for producing a coil conductor by electrolytic copper plating,
The electrolytic copper plating solution contains copper sulfate, sulfuric acid, a cationic surfactant, an organic sulfur compound, and a smoothing agent.
A method of manufacturing a coil conductor, comprising forming a coil shape by electrolytic deposition while spraying the electrolytic copper plating solution on a surface to be plated at a flow rate of 2 m / min or more. - 前記被めっき面に対して前記電解銅めっき液を流速50m/min~120m/minで吹き付ける請求項1に記載のコイル導体の製造方法。 The method for producing a coil conductor according to claim 1, wherein the electrolytic copper plating solution is sprayed onto the surface to be plated at a flow rate of 50 m / min to 120 m / min.
- 前記有機硫黄化合物は、ビス(3-スルホプロピル)ジスルフィド(SPS)、又は、メルカプトプロパンスルホン酸(MPS)である請求項1又は請求項2に記載のコイル導体の製造方法。 3. The method for producing a coil conductor according to claim 1, wherein the organic sulfur compound is bis (3-sulfopropyl) disulfide (SPS) or mercaptopropanesulfonic acid (MPS).
- 前記カチオン系界面活性剤は、ポリエチレングリコール(PEG)である請求項1~請求項3のいずれかに記載のコイル導体の製造方法。 The method for producing a coil conductor according to any one of claims 1 to 3, wherein the cationic surfactant is polyethylene glycol (PEG).
- 前記平滑化剤は、ヤヌスグリーン(JGB)である請求項1~請求項4のいずれかに記載のコイル導体の製造方法。 The method for manufacturing a coil conductor according to any one of claims 1 to 4, wherein the smoothing agent is Janus Green (JGB).
- 電流密度10A/dm2~200A/dm2で電解析出してコイル形状を形成する請求項1~請求項5のいずれかに記載のコイル導体の製造方法。 The method for producing a coil conductor according to any one of claims 1 to 5, wherein the coil shape is formed by electrolytic deposition at a current density of 10 A / dm 2 to 200 A / dm 2 .
- 前記電解銅めっき液が、硫酸銅6水和物200g/l~300g/lと、硫酸25g/l~150g/lと、ポリエチレングリコール(PEG)10mg/l~30mg/lと、ビス(3-スルホプロピル)ジスルフィド(SPS)10mg/l~100mg/lと、ヤヌスグリーン(JGB)10mg/l~30mg/lとを含む請求項1~請求項6のいずれかに記載のコイル導体の製造方法。 The electrolytic copper plating solution comprises copper sulfate hexahydrate 200 g / l to 300 g / l, sulfuric acid 25 g / l to 150 g / l, polyethylene glycol (PEG) 10 mg / l to 30 mg / l, bis (3- The method for producing a coil conductor according to any one of claims 1 to 6, comprising 10 mg / l to 100 mg / l of (sulfopropyl) disulfide (SPS) and 10 mg / l to 30 mg / l of Janus Green (JGB).
- 前記電解銅めっき液の温度が20℃~30℃である請求項1~請求項7のいずれかに記載のコイル導体の製造方法。 The method for producing a coil conductor according to any one of claims 1 to 7, wherein the temperature of the electrolytic copper plating solution is 20 ° C to 30 ° C.
- 渦巻き形状にパターニングされた溝を備えるめっきレジスト層を表面に設けた基板を前記電解銅めっき液に浸漬させ、電解銅めっき法で当該溝内に銅を堆積させてコイル形状を形成する請求項1~請求項8のいずれかに記載のコイル導体の製造方法。 2. A coil shape is formed by immersing a substrate on a surface of which a plating resist layer having grooves patterned in a spiral shape is immersed in the electrolytic copper plating solution and depositing copper in the grooves by an electrolytic copper plating method. A method for producing a coil conductor according to any one of claims 8 to 9.
- 請求項1~請求項9のいずれかに記載のコイル導体の製造方法を用いて製造したコイル導体を備えたことを特徴とする誘導コイル。 An induction coil comprising a coil conductor manufactured using the method for manufacturing a coil conductor according to any one of claims 1 to 9.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016566404A JPWO2016104530A1 (en) | 2014-12-22 | 2015-12-22 | Coil conductor manufacturing method and induction coil provided with coil conductor manufactured using the method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-258612 | 2014-12-22 | ||
JP2014258612 | 2014-12-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016104530A1 true WO2016104530A1 (en) | 2016-06-30 |
Family
ID=56150546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/085873 WO2016104530A1 (en) | 2014-12-22 | 2015-12-22 | Coil conductor manufacturing method, and induction coil provided with coil conductor manufactured by such method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2016104530A1 (en) |
WO (1) | WO2016104530A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111074306A (en) * | 2020-01-02 | 2020-04-28 | 江苏矽智半导体科技有限公司 | Copper pillar electroplating solution suitable for ultrahigh current density and electroplating method |
WO2021200614A1 (en) * | 2020-04-01 | 2021-10-07 | 住友電気工業株式会社 | Flexible printed wiring board and manufacturing method thereof |
JP2022153684A (en) * | 2021-03-30 | 2022-10-13 | 株式会社村田製作所 | Coil component and manufacturing method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6392005A (en) * | 1986-10-06 | 1988-04-22 | Canon Inc | Coil with fine pattern |
JP2006265709A (en) * | 2005-03-25 | 2006-10-05 | Tdk Corp | Jet plating equipment |
-
2015
- 2015-12-22 WO PCT/JP2015/085873 patent/WO2016104530A1/en active Application Filing
- 2015-12-22 JP JP2016566404A patent/JPWO2016104530A1/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6392005A (en) * | 1986-10-06 | 1988-04-22 | Canon Inc | Coil with fine pattern |
JP2006265709A (en) * | 2005-03-25 | 2006-10-05 | Tdk Corp | Jet plating equipment |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111074306A (en) * | 2020-01-02 | 2020-04-28 | 江苏矽智半导体科技有限公司 | Copper pillar electroplating solution suitable for ultrahigh current density and electroplating method |
WO2021200614A1 (en) * | 2020-04-01 | 2021-10-07 | 住友電気工業株式会社 | Flexible printed wiring board and manufacturing method thereof |
JPWO2021200614A1 (en) * | 2020-04-01 | 2021-10-07 | ||
US11871514B2 (en) | 2020-04-01 | 2024-01-09 | Sumitomo Electric Industries, Ltd. | Flexible printed circuit board and method for producing the same |
JP2022153684A (en) * | 2021-03-30 | 2022-10-13 | 株式会社村田製作所 | Coil component and manufacturing method thereof |
JP7367722B2 (en) | 2021-03-30 | 2023-10-24 | 株式会社村田製作所 | Coil parts and their manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016104530A1 (en) | 2017-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6029590B2 (en) | Copper foil excellent in adhesiveness with resin, method for producing the same, and printed wiring board or battery negative electrode material using the electrolytic copper foil | |
KR101931895B1 (en) | Surface-treated copper foil for forming high frequency signal transmission circuit, copper clad laminate board and printed wiring board | |
US11160171B2 (en) | Circuit forming method using selective etching of electrically conductive metal this film seed layer and etching solution composition | |
JP2008101267A (en) | Electrolytic copper foil, surface treated copper foil using the electrolytic copper foil, copper-clad laminated plate using the surface treated copper foil, and method for manufacturing the electrolytic copper foil | |
JP4344714B2 (en) | Low-roughness copper foil having high strength and method for producing the same | |
TWI791776B (en) | Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery, copper clad laminate, and printed circuit board using the electrolytic copper foil | |
WO2016104530A1 (en) | Coil conductor manufacturing method, and induction coil provided with coil conductor manufactured by such method | |
CN102820132A (en) | Electronic component | |
JP2013229851A (en) | High frequency transmission line, antenna and electronic circuit board | |
JP2012112009A (en) | Copper foil, and method for producing copper foil | |
JP2022008857A (en) | Electrolytic copper foil for secondary battery and manufacturing method thereof | |
JP2022120813A (en) | Ultrathin copper foil, and method of producing the same | |
WO2010079735A1 (en) | Copper material for plating, process for producing copper material for plating, and process for producing copper-plated material | |
JP5116943B2 (en) | Copper foil for high frequency circuit and manufacturing method thereof | |
JP6526558B2 (en) | Composite metal foil for printed wiring board, composite metal foil with carrier for printed wiring board, metal-clad laminate for printed wiring board obtained using these, and printed wiring board | |
JP2022050471A (en) | Electrolytic copper foil for secondary battery, having excellent flexural resistance, and method for producing the same | |
JP6818141B2 (en) | Electrolytic copper foil for secondary batteries and its manufacturing method | |
JP6054523B2 (en) | Copper foil with carrier, method for producing copper foil with carrier, copper-clad laminate obtained using copper foil with carrier, and method for producing printed wiring board | |
JP6081224B2 (en) | Manufacturing method of surface-treated steel sheet | |
JP2004342645A (en) | Method for manufacturing planar coil | |
JP2008308749A (en) | Copper plating method | |
JP2008085077A (en) | Ring-shaped insulating coil board and its manufacturing method | |
CN107645852A (en) | A kind of two-sided surface treatment process of copper foil of high frequency printed circuit boards | |
JP5503814B1 (en) | Electrolytic copper foil and method for producing the same, negative electrode of lithium ion secondary battery, and lithium ion secondary battery | |
JP2010205799A (en) | Two-layer plated substrate and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15873098 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016566404 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15873098 Country of ref document: EP Kind code of ref document: A1 |