WO2016104503A1 - Oil supply structure, oil supply method, and gyratory crusher - Google Patents

Oil supply structure, oil supply method, and gyratory crusher Download PDF

Info

Publication number
WO2016104503A1
WO2016104503A1 PCT/JP2015/085837 JP2015085837W WO2016104503A1 WO 2016104503 A1 WO2016104503 A1 WO 2016104503A1 JP 2015085837 W JP2015085837 W JP 2015085837W WO 2016104503 A1 WO2016104503 A1 WO 2016104503A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
cylinder bush
oil supply
oil
inner cylinder
Prior art date
Application number
PCT/JP2015/085837
Other languages
French (fr)
Japanese (ja)
Inventor
西 昌彦
猪股 尚治
浩 ▲高▼田
崇 木島
章将 古賀
裕 智 ▲高▼浪
敦志 大山
寿恭 佐藤
Original Assignee
株式会社 アーステクニカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014261127A external-priority patent/JP6552818B2/en
Priority claimed from JP2015047373A external-priority patent/JP6567298B2/en
Priority claimed from JP2015047381A external-priority patent/JP6567299B2/en
Application filed by 株式会社 アーステクニカ filed Critical 株式会社 アーステクニカ
Priority to AU2015368587A priority Critical patent/AU2015368587B2/en
Publication of WO2016104503A1 publication Critical patent/WO2016104503A1/en
Priority to ZA2017/05031A priority patent/ZA201705031B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C2/00Crushing or disintegrating by gyratory or cone crushers
    • B02C2/02Crushing or disintegrating by gyratory or cone crushers eccentrically moved
    • B02C2/04Crushing or disintegrating by gyratory or cone crushers eccentrically moved with vertical axis

Definitions

  • the present invention relates to a rotary crusher for supplying a material to be crushed such as a rough stone between a rotating mantle and a corn cave and crushing, and an oil supply structure and an oil supply method of such a rotary crusher.
  • a rotary crusher such as a cone crusher or a gyratory crusher is formed between a funnel-shaped mantle fixed to the upper part of the main spindle assembly to be rotated and a cone cave provided to cover the mantle.
  • a machine equipped with a crushing chamber is formed between a funnel-shaped mantle fixed to the upper part of the main spindle assembly to be rotated and a cone cave provided to cover the mantle.
  • a lower frame assembly having an outer cylinder bush portion is disposed below the cone cave, and an inner cylinder bush portion of an eccentric sleeve assembly is fitted to the outer cylinder bush portion of the lower frame assembly.
  • a hole extending in a direction inclined with respect to the rotation axis of the inner cylinder bush part is formed, and the spindle assembly with the mantle fixed is fitted into the hole of the inner cylinder bush part Has been.
  • a flange portion extending outward from the outer cylinder bush portion is fixed to the end portion of the inner cylinder bush portion, and a rotational power transmission system is connected to the tip of the flange portion.
  • the main shaft assembly and the mantle are integrally rotated around the rotation axis of the inner cylinder bush portion by rotating the flange portion and the inner cylinder bush portion integrally around the rotation axis of the inner cylinder bush portion by the rotational power from the rotational power transmission system. It is turned around.
  • a lower frame assembly having an outer cylinder bush portion is disposed below the cone cave, and an eccentric sleeve assembly sleeve portion is fitted to the outer cylinder bush portion of the lower frame assembly.
  • the sleeve portion is formed with a hole extending in a direction inclined with respect to the rotational axis of the eccentric sleeve assembly, and the inner cylinder bush portion is fitted in the hole extending in the inclined direction. Further, the main shaft assembly to which the mantle is fixed is fitted into the eccentric hole of the inner cylinder bush portion.
  • a flange portion extending outward of the outer cylinder bush portion extends at the upper portion or the lower portion of the sleeve portion, and a rotational power transmission system is connected to the tip of the flange portion.
  • Patent Literature 1 discloses an upper open maintenance type rotary crusher
  • Patent Literature 2 discloses a lower open maintenance type rotational crusher.
  • the flange portion extends to the upper portion of the sleeve portion (hereinafter referred to as the upper open maintenance type), and the flange portion extends to the lower portion of the sleeve portion.
  • the existing type hereinafter referred to as the lower open maintenance type
  • Patent Literature 1 discloses an upper open maintenance type rotary crusher
  • Patent Literature 2 discloses a lower open maintenance type rotational crusher.
  • the upper open maintenance type rotary crusher is excellent in maintainability, but it is difficult to control the amount of oil supplied to maintain a healthy oil film in each bearing part.
  • the lower open maintenance type rotary crusher is easy to control the amount of oil supplied to maintain a healthy oil film in each bearing portion, but has low maintainability.
  • An object of the present invention is to provide a lubrication structure, a lubrication method, and a rotation type of a crushing crusher capable of controlling a lubrication amount for maintaining a healthy oil film in a bearing portion while being an open top maintenance type having excellent maintainability. To provide a crusher.
  • An oil supply structure includes: A lower frame assembly having an outer cylinder bush portion, an eccentric sleeve assembly having an inner cylinder bush portion fitted into the outer cylinder bush portion and rotated, and a flange portion fixed to the upper portion of the inner cylinder bush portion; A spindle assembly that holds a mantle that is rotated by being fitted to the inner cylinder bush portion, and a rotational power transmission system that transmits rotational power to the flange portion, and between the rotating mantle and the cone cable
  • a rotary crusher for crushing an object to be crushed, a first bearing part between the main shaft assembly and the inner cylinder bush part and a second bearing part between the inner cylinder bush part and the outer cylinder bush part
  • Each of which has a lubricating structure for supplying lubricating oil
  • An annular thrust seal that is installed inside the lower frame assembly and supports the lower end of the inner cylinder bushing from below; A first refueling inlet that opens at a bottom of the lower frame assembly to refuel the
  • a thrust bearing that supports the flange portion from below may be provided at an upper end portion of the outer cylinder bush portion.
  • the upper end portion of the outer cylinder bush portion may not be provided with a thrust bearing that supports the flange portion from below.
  • a stepped portion is provided on the outer diameter side of the thrust seal, and the inner peripheral surface of the stepped portion surrounds the outer peripheral surface of the lower end portion of the inner cylinder bushing portion. May be.
  • a rotary crusher includes: A lower frame assembly having an outer cylinder bush part; An eccentric sleeve assembly having an inner cylinder bush part that is fitted and rotated in the outer cylinder bush part and a flange part fixed to the upper part of the inner cylinder bush part; A spindle assembly that holds a mantle that is fitted to the inner cylinder bushing and rotated, A rotational power transmission system for transmitting rotational power to the flange portion; With A rotary crusher that crushes objects to be crushed between a rotating mantle and a corn cave, And an oil supply structure for supplying lubricating oil to the first bearing portion between the main shaft assembly and the inner cylinder bush portion and the second bearing portion between the inner cylinder bush portion and the outer cylinder bush portion, respectively.
  • the oil supply structure is An annular thrust seal that is installed inside the lower frame assembly and supports the lower end of the inner cylinder bushing from below; A first refueling inlet that opens at a bottom of the lower frame assembly to refuel the first bearing portion; A second oil supply inlet that opens on an inner peripheral surface of the outer cylinder bush portion so as to supply oil to the second bearing portion;
  • the thrust seal includes a flow path of lubricating oil supplied from the first oil supply inlet to the first bearing portion, and a flow path of lubricating oil supplied from the second oil supply inlet to the second bearing portion. It is separated.
  • An oil supply structure includes: a lower frame assembly having an outer cylinder bush part; a sleeve part that holds the inner cylinder bush part that is rotated by being fitted to the outer cylinder bush part; and an upper part of the sleeve part
  • An eccentric sleeve assembly having a flange portion extending to the main shaft assembly, a main shaft assembly that holds a mantle that is rotated by being fitted to the inner cylinder bush portion, and a rotational power transmission system that transmits rotational power to the flange portion.
  • a rotary crushing machine for crushing an object to be crushed between a rotating mantle and a cone cave, a first bearing part between the main shaft assembly and the inner cylinder bush part, the sleeve part, and the An oil supply structure for supplying lubricating oil to each of the second bearing portions between the outer cylinder bush portion and a first oil supply inlet that opens at the bottom of the lower frame assembly so as to supply oil to the first bearing portion
  • a second oil supply inlet that opens on a circumferential surface of the outer cylinder bushing so as to supply oil to the second bearing portion; and a non-facing portion that is provided inside the lower frame assembly and that faces the end surface of the lower end portion of the sleeve portion.
  • An annular seal forming portion having a contact surface, and a gap between the non-contact surface of the seal forming portion and an end surface of the lower end portion of the sleeve portion is sealed with the lubricant, and the annular seal
  • a partition plate is disposed on the outer periphery of the forming portion, and an annular oil reservoir is formed between the partition plate and the outer peripheral surface of the lower end portion of the sleeve portion.
  • the oil reservoir portion may be formed at a position higher than the gap.
  • a rotary crusher includes a lower frame assembly having an outer cylinder bush portion, a sleeve portion that holds the inner cylinder bush portion that is rotated by being fitted to the outer cylinder bush portion, and the sleeve.
  • An eccentric sleeve assembly having a flange portion extending at the top of the portion, a main shaft assembly that holds a mantle that is rotated by being fitted to the inner cylinder bush portion, and a rotational power that transmits rotational power to the flange portion
  • a rotary crushing machine for crushing an object to be crushed between a rotating mantle and a cone cave, the first bearing part between the main shaft assembly and the inner cylinder bush part,
  • the lower frame is further provided with an oil supply structure for supplying lubricating oil to each of the second bearing portions between the sleeve portion and the outer cylinder bush portion, and the oil supply structure supplies oil to the first bearing portion.
  • a first oil supply inlet that opens a second oil supply inlet that opens on a circumferential surface of the outer cylinder bush portion so as to supply oil to the second bearing portion, and an inner side of the lower frame assembly
  • An annular seal forming portion having a non-contact surface facing the end surface of the lower end portion, and the gap between the non-contact surface of the seal forming portion and the end surface of the lower end portion of the sleeve portion is the lubricating oil
  • a partition plate is disposed on the outer periphery of the annular seal forming portion, and an annular oil reservoir portion is formed between the partition plate and the outer peripheral surface of the lower end portion of the sleeve portion.
  • An oil supply method includes: a lower frame assembly having an outer cylinder bush part; a sleeve part holding the inner cylinder bush part rotated by being fitted to the outer cylinder bush part; and an upper part of the sleeve part
  • An eccentric sleeve assembly having a flange portion extending to the main shaft assembly, a main shaft assembly that holds a mantle that is rotated by being fitted to the inner cylinder bush portion, and a rotational power transmission system that transmits rotational power to the flange portion.
  • Frame assembly Supplied from the fuel supply inlet opening in the bottom.
  • a longitudinal groove is provided in the inner cylinder bush part, the sleeve part or the outer cylinder bush part, and the flow rate of the lubricating oil supplied from the oil supply inlet to the first bearing part, The flow rate of the lubricating oil supplied from the oil supply inlet to the second bearing portion may be controlled.
  • a partition plate is provided between the lower end portion of the sleeve portion and the bottom portion of the lower frame assembly, and the flow rate of the lubricating oil supplied from the oil supply inlet to the first bearing portion; You may control the flow volume of the lubricating oil supplied to the said 2nd bearing part from the said oil supply inlet.
  • An oil supply structure includes: a lower frame assembly having an outer cylinder bush part; a sleeve part that holds the inner cylinder bush part that is rotated by being fitted to the outer cylinder bush part; and an upper part of the sleeve part
  • An eccentric sleeve assembly having a flange portion extending to the main shaft assembly, a main shaft assembly that holds a mantle that is rotated by being fitted to the inner cylinder bush portion, and a rotational power transmission system that transmits rotational power to the flange portion.
  • a rotary crushing machine for crushing an object to be crushed between a rotating mantle and a cone cave, a first bearing part between the main shaft assembly and the inner cylinder bush part, the sleeve part, and the An oil supply structure for supplying lubricating oil to each of the second bearing portions between the outer cylinder bush portion and an oil supply inlet that opens at a bottom of the lower frame assembly.
  • bearing Has both lubricating oils and lubricating oil of the second bearing portion adapted to supply.
  • the inner cylinder bush portion, the sleeve portion, or the outer cylinder bush portion includes a flow rate of lubricating oil supplied from the oil supply inlet to the first bearing portion, and the oil supply inlet from the oil supply inlet.
  • a longitudinal groove for controlling the flow rate of the lubricating oil supplied to the second bearing portion may be provided.
  • the flow rate of the lubricating oil supplied from the oil supply inlet to the first bearing portion, and the oil supply inlet A partition plate for controlling the flow rate of the lubricating oil supplied to the second bearing portion may be provided.
  • a rotary crusher includes a lower frame assembly having an outer cylinder bush portion, a sleeve portion that holds the inner cylinder bush portion that is rotated by being fitted to the outer cylinder bush portion, and the sleeve.
  • An eccentric sleeve assembly having a flange portion extending at the top of the portion, a main shaft assembly that holds a mantle that is rotated by being fitted to the inner cylinder bush portion, and a rotational power that transmits rotational power to the flange portion
  • a rotary crushing machine for crushing an object to be crushed between a rotating mantle and a cone cave, the first bearing part between the main shaft assembly and the inner cylinder bush part,
  • An oil supply structure for supplying lubricating oil to each of the second bearing parts between the sleeve part and the outer cylinder bush part is further provided, and the oil supply structure has an oil supply inlet opening at the bottom of the lower frame assembly. And said Oil inlet is adapted to supply both the lubricating oil in the lubricating oil and the second bearing portion of the first bearing portion.
  • the present invention it is possible to control the amount of oil supplied for maintaining a healthy oil film in the bearing portion, while being an upper open maintenance type excellent in maintainability.
  • FIG. 1 is a longitudinal sectional view showing a rotary crusher according to an embodiment of the present invention.
  • FIG. 2 is an enlarged schematic view showing an oil supply structure in the rotary crusher of FIG.
  • FIG. 3 is a schematic view showing a comparative example of an oil supply structure in an upper open type rotary crusher.
  • FIG. 4 is a longitudinal sectional view showing a rotary crusher according to an embodiment of the present invention.
  • FIG. 5 is an enlarged schematic view showing an oil supply structure in the rotary crusher of FIG. 6 is a cross-sectional view showing an oil film formed on the first bearing portion of the rotary crusher of FIG.
  • FIG. 7 is a graph showing the pressure of the oil film of FIG. FIG.
  • FIG. 8 is a graph showing the distribution (inflow) amount of lubricating oil in the gap between the seal forming portion and the sleeve portion.
  • FIG. 9 is a schematic diagram showing a comparative example of an oil supply structure in an upper open type rotary crusher.
  • FIG. 10 is a longitudinal sectional view showing a rotary crusher according to an embodiment of the present invention.
  • FIG. 11 is an enlarged schematic view showing an oil supply structure in the rotary crusher of FIG. 12 is a view for explaining the longitudinal groove portion, and is a cross-sectional view of a bearing portion of the rotary crusher of FIG.
  • FIG. 13 is a diagram corresponding to FIG. 11, and is a schematic diagram illustrating a modified example of the oil supply structure.
  • FIG. 14 is a schematic diagram showing a comparative example of an oil supply structure in an upper open type rotary crusher.
  • FIG. 1 is a longitudinal sectional view showing a rotary crusher according to an embodiment of the present invention.
  • the rotary crusher 10 includes an upper frame assembly 11 that holds a cone cable 12 and a lower frame that includes an outer cylinder bush portion 13 a that is disposed below the upper frame assembly 11.
  • a rotational power transmission system 20 that transmits power.
  • the eccentric sleeve assembly 14 includes an inner cylinder bush portion 14a that is rotated by being fitted to the outer cylinder bush portion 13a of the lower frame assembly 13, and a flange portion 14b that is fixed to the upper portion of the inner cylinder bush portion 14a.
  • the flange part 14b extends from the upper part of the inner cylinder bush part 14a to the gear space 40 outside the outer cylinder bush part 13a, and is supported from below by a thrust bearing 19 provided at the upper end part of the outer cylinder bush part 13a.
  • the eccentric sleeve assembly 14 can be pulled upward from the lower frame assembly 13 by fixing the flange portion 14b to the upper portion of the inner cylinder bush portion 14a.
  • a bevel gear 21a is fixed to the distal end portion of the flange portion 14b.
  • the bevel gear 21a is disposed coaxially with the rotation axis of the inner cylinder bush portion 14a.
  • Rotational power transmission system 20 has a horizontal shaft 22 connected to a drive motor (not shown), and a bevel pinion 21b fixed to one end of horizontal shaft 22.
  • the horizontal shaft 22 is oriented in a direction perpendicular to the rotation axis of the inner cylinder bush portion 14a.
  • the bevel pinion 21b fixed to one end of the horizontal shaft 22 is disposed so as to mesh with the bevel gear 21a fixed to the flange portion 14b.
  • a through-hole extending in a direction inclined with respect to the rotation axis of the inner cylinder bush portion 14a is formed at an eccentric position of the inner cylinder bush portion 14a, and the main shaft assembly 15 is inserted into the through hole of the inner cylinder bush portion 14a.
  • a funnel-shaped mantle 17 is fixed to the upper part of the main shaft assembly 15.
  • the rotary crusher 10 is a so-called hydraulic cone crusher, and the upper end of the spindle assembly 15 is supported by a bearing 23 held by the upper frame assembly 11.
  • a spindle step 15a having a convex spherical surface is fixed to the lower end portion of the spindle assembly 15.
  • Plates 13b are stacked and arranged.
  • the wear plate 13 b is fixed to the bottom of the lower frame assembly 13, more specifically, to the ram of the hydraulic cylinder assembly installed below the lower frame assembly 13.
  • a sliding portion is formed in which the convex spherical surface of the main spindle step 15a and the concave spherical surface of the step washer 13c slide.
  • the main shaft assembly 15 moves around the rotation axis of the inner cylinder bush portion 14a with the bearing 23 as a fulcrum.
  • the difference is exercised.
  • the mantle 17 is precessed with respect to the cone cave 12 according to the precession of the main shaft assembly 15 so as to crush the object to be crushed supplied to the crushing chamber 18 sandwiched between the mantle 17 and the cone cave 12. It has become.
  • the first bearing portion 41 and the inner cylinder bush between the main shaft assembly 15 and the inner cylinder bush portion 14a are used to smoothly precess the main spindle assembly 15 that is subjected to a large load. It is necessary to supply a proper amount of lubricating oil to the second bearing portion 42 between the portion 14a and the outer cylinder bush portion 13a to maintain a healthy oil film. Therefore, the rotary crusher 10 is provided with an oil supply structure 30 for supplying lubricating oil to the first bearing portion 41 and the second bearing portion 42, respectively.
  • FIG. 2 is a schematic view showing the oil supply structure 30 in an enlarged manner.
  • the arrow indicates the direction in which the lubricating oil flows.
  • the oil supply structure 30 is installed inside the lower frame assembly 13 and supplies oil to the first thrust bearing portion 41 and the annular thrust seal 33 that supports the lower end portion of the inner cylinder bush portion 14 a from below. Open to the bottom of the lower frame assembly 13, more specifically, the first oil inlet 31 that opens to the center of the ram of the hydraulic cylinder assembly, and the inner peripheral surface of the outer cylinder bush portion 13 a to supply oil to the second bearing portion 42. And a second refueling inlet 32.
  • the thrust seal 33 is, for example, a metal ring (ring) having a parallel plate-like longitudinal section.
  • an annular thrust seal mounting frame 34 is fixed to the bottom of the lower frame assembly 13 so as to surround the outside of the first oil supply inlet 31.
  • An annular step 35 is protruded from the upper end of the thrust seal mounting frame 34, and the thrust seal 33 is fitted to the inner diameter side of the step 35 and supported from below.
  • the lower end surface of the inner cylinder bush portion 14 a is pressed against the upper surface of the thrust seal 33 by the weight of the eccentric sleeve assembly 14 and is in surface contact.
  • the lower end surface of the inner cylinder bush portion 14a is preferably chamfered or planarized in order to increase the contact area with the upper surface of the thrust seal 33.
  • a through hole 36 is formed so as to penetrate the central portion of the wear plate 13b and the central portion of the step washer 13c, and the first oil supply inlet 31 is opened inside the through hole 36.
  • the lubricating oil introduced into the through hole 36 from the first oil supply inlet 31 is the inner diameter side end of the sliding portion between the wear plate 13b and the step washer 13c, the step washer 13c and the main spindle step. It flows into the inner diameter side end of the sliding part between 15a and lubricates each sliding part.
  • the lubricating oil that has passed through each sliding portion flows out from the outer diameter side end portion of each sliding portion into the annular space 37 outside the lower end portion of the spindle assembly 15, and from the annular space 37, the first bearing portion 41.
  • the first bearing portion 41 is lubricated.
  • the lubricating oil that has passed through the first bearing portion 41 flows out from the upper end portion of the first bearing portion 41 into the gear housing space 40 outside the outer cylinder bush portion 13a, and the lubricating oil that accumulates on the floor of the gear housing space 40 is 1 is recovered from the fuel supply outlet 39 shown in FIG.
  • a part of the lubricating oil introduced from the second oil supply inlet 32 to the second bearing portion 42 flows into a region below the second oil supply inlet 32 in the second bearing portion 42 and lubricates the lower region.
  • the lubricating oil that has passed through the lower region of the second bearing portion 42 flows out from the lower end portion of the second bearing portion 42 into the annular space 38 provided below, and the lubricating oil that accumulates on the floor of the annular space 38 is 1 is recovered from the fuel supply outlet 39 shown in FIG.
  • the remaining portion of the lubricating oil introduced directly from the second oil supply inlet 32 to the second bearing portion 42 flows into a region above the second oil supply inlet 32 in the second bearing portion 42, and the upper region Lubricate.
  • the lubricating oil that has passed through the upper region of the second bearing portion 42 flows out from the upper end portion of the second bearing portion 42 into the gear housing space 40 outside the outer cylinder bush portion 13a and accumulates on the floor of the gear housing space 40.
  • the lubricating oil is recovered from the oil supply outlet 39 shown in FIG.
  • FIG. 4 is a schematic view showing a comparative example of an oil supply structure in an upper open type rotary crusher.
  • the arrow indicates the direction in which the lubricating oil flows.
  • the flange portion 114b is supported from below by a thrust bearing 119 provided at the upper end portion of the outer cylinder bush portion 113a.
  • a thrust seal is not installed at the lower end of 115a, and is supplied from the first oil supply inlet 131 to the first bearing part 141 and from the second oil supply inlet 132 to the second bearing part 142.
  • the lubricating oil flow path is not structurally separated.
  • the oil supply outlet side 152 of the second bearing portion 142 and the oil supply inlet side 151 of the first bearing portion 141 communicate with each other. Therefore, the oil distribution amount to each bearing part 141 and 142 is unstable, and it may be difficult to maintain a healthy oil film especially under adverse conditions.
  • the lower end surface of the inner cylinder bush portion 14 a is in surface contact with the upper surface of the thrust seal 33, so that the annular space 37 outside the lower end portion of the spindle assembly 15
  • the annular space 38 provided below the lower end portion of the second bearing portion 42 is structurally separated.
  • the inner peripheral surface of the step portion 35 protruding from the outer diameter side of the thrust seal 33 surrounds the outer peripheral surface of the lower end portion of the inner cylinder bush portion 14 a supported by the thrust seal 33. Yes.
  • the gap between the inner peripheral surface of the step portion 35 and the outer peripheral surface of the lower end portion of the inner cylinder bush portion 14a is preferably narrow.
  • the stepped portion 35 protruding from the outer diameter side of the thrust seal 33 functions as a flow resistance.
  • the lubricating oil is supplied from the first oil supply inlet 31 to the first bearing portion 41, and the lubricating oil is supplied from the second oil supply inlet 32 to the second bearing portion 42.
  • the thrust seal 33 structurally separates the flow path of the lubricating oil supplied to the first bearing portion 41 and the flow path of the lubricating oil supplied to the second bearing portion 42,
  • the first bearing portion 41 and the second bearing portion 42 can be independently lubricated, and the amount of lubrication is controlled so that a healthy oil film is maintained in the first bearing portion 41 and the second bearing portion 42. Is possible.
  • rotational power is transmitted from the rotational power transmission system 20 to the flange portion 14b of the eccentric sleeve assembly 14, and the flange portion 14b and the inner cylinder bush portion 14a are integrally rotated around the rotation axis of the inner cylinder bush portion 14a.
  • the main shaft assembly 15 fitted to the inner cylinder bush portion 14a is precessed about the bearing 23 as a fulcrum.
  • the mantle 17 fixed to the main shaft assembly 15 is precessed with respect to the cone cave 12 according to the precession of the main shaft assembly 15, and the gap between the mantle 17 and the cone cave 12 is changed in a wide and narrow manner with each rotation. .
  • an object to be crushed such as a rough stone is fed from the hopper 25 at the upper part of the upper frame assembly 11.
  • the thrown object to be crushed falls into a crushing chamber 18 formed between the mantle 17 and the corn cave 12 and is captured between the mantle 17 and the corn cave 12.
  • the object to be crushed is crushed.
  • the material to be crushed falls in the crushing chamber 18 to a portion where the gap between the mantle 17 and the corn cave 12 becomes wider, and the mantle 17 and the corn cave 12.
  • the material to be crushed gradually becomes fine by repeating crushing and dropping, becomes a product of a predetermined particle size, falls to the floor through the gap between the mantle 17 and the corn cave 12, and is discharged from the opening of the floor to the outside of the machine. Is done.
  • the oil supply amount is controlled so that a healthy oil film is maintained in the first bearing portion 41 and the second bearing portion 42, thereby reducing the replacement frequency of the lubricating oil.
  • the bearing portions 41 and 42 can be prevented from being damaged due to seizure or the like.
  • the eccentric sleeve assembly 14 can be pulled upward from the lower frame assembly 13. If the bearing portions 41 and 42 and the gears 21a and 21b are damaged, the eccentric sleeve assembly 14 can be pulled upward to perform maintenance work on the bearing portions 41 and 42 and the gears 21a and 21b. it can. Therefore, it is not necessary to disassemble the hydraulic cylinder assembly arranged below the lower frame assembly 13, and there is no need for a dangerous work performed by an operator under the suspended load, which is superior to the lower open maintenance type. Maintainability.
  • the annular thrust seal 33 that is installed inside the lower frame assembly 13 and supports the lower end portion of the inner cylinder bush portion 14a from below is provided from the first oil supply inlet 31 to the first bearing portion. Since the flow path of the lubricating oil supplied to 41 and the flow path of the lubricating oil supplied from the second oil supply inlet 32 to the second bearing portion 42 are separated, the first bearing portion 41 and the second bearing Oil supply amount control for maintaining a healthy oil film in the unit 42 is possible. As a result, the replacement frequency of the lubricating oil is reduced, and the bearing portions 41 and 42 can be prevented from being damaged due to seizure or the like.
  • the inner peripheral surface of the step portion 35 surrounds the outer peripheral surface of the lower end portion of the inner cylinder portion 14 a, and between the lower end surface of the inner cylinder bush portion 14 a and the upper surface of the thrust seal 33.
  • the step portion 35 functions as a flow resistance for the lubricating oil infiltrated into. Therefore, even if an outward force is applied to the lubricating oil infiltrated between the lower end surface of the inner cylinder bush portion 14a and the upper surface of the thrust seal 33 with the eccentric motion of the main shaft assembly 15, the lubricating oil jets outward. This can be suppressed.
  • the thrust bearing 19 that supports the flange portion 14b from below is provided at the upper end portion of the outer cylinder portion 13a, the load of the eccentric sleeve 14 causes the thrust seal 33 and the thrust bearing 19 to load. And distributed. Thereby, the wear of the thrust seal 33 can be delayed.
  • the thrust bearing 19 is provided at the upper end portion of the outer cylinder portion 13a. That is, the thrust bearing 19 can be omitted from the upper end portion of the outer cylinder portion 13a.
  • the load applied from the lower end surface of the inner cylinder portion 14a to the upper surface of the thrust seal 33 may become insufficient, or the inner tolerance may increase due to assembly tolerances. There is a possibility that a gap may be formed between the lower end surface of the cylindrical portion 14a and the upper surface of the thrust seal 33.
  • the rotary crusher 10 is a so-called hydraulic cone crusher, but is not limited thereto.
  • the oil supply structure 30 according to the present embodiment can also be applied to a mechanical (Simons) cone crusher.
  • FIG. 4 is a longitudinal sectional view showing a rotary crusher according to an embodiment of the present invention.
  • the rotary crusher 210 includes an upper frame assembly 211 that holds a cone cave 212 and a lower frame that has an outer cylinder bush portion 213 a disposed below the upper frame assembly 211.
  • the assembly 213, the eccentric sleeve assembly 214 rotated inside the outer cylinder bush portion 213a, the spindle assembly 215 holding the mantle 217 fitted and rotated in the eccentric sleeve assembly 214, and the eccentric sleeve assembly 214 rotated.
  • a rotational power transmission system 220 that transmits power.
  • the eccentric sleeve assembly 214 includes a sleeve portion 214c that holds the inner cylinder bush portion 214a that is rotated by being fitted to the outer cylinder bush portion 213a of the lower frame assembly 213, and a flange portion that is fixed to the upper portion of the sleeve portion 214c. 214b.
  • the flange portion 214b extends from the upper portion of the sleeve portion 214c to a gear accommodating space 240 formed outside the outer cylinder bush portion 213a, and is lowered by a thrust bearing 219 provided at the upper end portion of the outer cylinder bush portion 213a. It is supported from.
  • a bevel gear 221a is fixed to the distal end portion of the flange portion 214b.
  • the bevel gear 221a is disposed coaxially with the rotation axis of the outer cylinder bush portion 213a.
  • the rotational power transmission system 220 has a horizontal shaft 222 connected to a drive motor (not shown), and a bevel pinion 221b fixed to one end of the horizontal shaft 222.
  • the horizontal shaft 222 is oriented in a direction perpendicular to the rotation axis of the outer cylinder bush portion 213a.
  • the bevel pinion 221b fixed to one end of the horizontal shaft 222 is disposed in the gear housing space 240 so as to mesh with the bevel gear 221a fixed to the flange portion 214b.
  • the sleeve portion 214c is formed with a through hole extending in a direction inclined with respect to the rotation axis of the outer cylinder bush portion 213a, and the inner cylinder bush portion 214a is fitted into the hole extending in the inclination direction. .
  • the main shaft assembly 215 is inserted into the inner cylinder bush portion 214a.
  • a funnel-shaped mantle 217 is fixed to the upper part of the main shaft assembly 215.
  • the rotary crusher 210 is a so-called hydraulic cone crusher, and the upper end portion of the spindle assembly 215 is supported by a bearing 223 held by the upper frame assembly 211.
  • a spindle step 215a having a convex spherical surface is fixed to the lower end portion of the spindle assembly 215.
  • Plates 213b are stacked and arranged.
  • the wear plate 213b is fixed to the bottom of the lower frame assembly 213, more specifically, to a ram of a hydraulic cylinder assembly installed below the lower frame assembly 213.
  • a sliding part is formed in which the convex spherical surface of the main spindle step 215a and the concave spherical surface of the step washer 213c slide.
  • the main shaft assembly 215 When the eccentric sleeve assembly 214 is rotated by the rotational power transmission system 220, the main shaft assembly 215 is precessed around the rotation axis of the inner cylinder bush portion 214a with the bearing 223 as a fulcrum.
  • the mantle 217 is precessed with respect to the cone cave 212 according to the precession of the main shaft assembly 215 so as to crush the object to be crushed supplied to the crushing chamber 218 sandwiched between the mantle 217 and the cone cave 212. It has become.
  • the first bearing portion 241 and the sleeve portion 214c between the main shaft assembly 215 and the inner cylinder bush portion 214a are used in order to smoothly precess the main shaft assembly 215 to which a large load is applied. It is necessary to supply a proper amount of lubricating oil to the second bearing portion 242 between the outer cylinder bush portion 213a and maintain a healthy oil film. Therefore, the rotary crusher 210 is provided with an oil supply structure 230 for supplying lubricating oil to the first bearing portion 241 and the second bearing portion 242, respectively.
  • FIG. 5 is a schematic diagram showing the refueling structure 230 in an enlarged manner.
  • the arrow indicates the direction in which the lubricating oil flows.
  • the oil supply structure 230 includes a first oil supply inlet 231 that opens to the bottom of the lower frame assembly 213, more specifically, the ram center of the hydraulic cylinder assembly, so as to supply oil to the first bearing portion 241.
  • the second oil supply inlet 232 that opens to the inner peripheral surface of the outer cylinder bush portion 213a so as to supply oil to the second bearing portion 242 and the inner side of the lower frame assembly 213 are opposed to the end surface of the lower end portion of the sleeve portion 214c.
  • an annular seal forming portion 234 having a non-contact surface.
  • the seal forming portion 234 is provided so as to protrude upward from the inner surface of the lower frame assembly 213, and a non-contact surface is provided at the upper end portion thereof. Since the flange portion 214 b of the eccentric sleeve assembly 214 is supported from below by the thrust bearing 219, the sleeve portion 214 c of the eccentric sleeve assembly 214 is positioned at a certain height position, and thereby the non-contact surface of the seal forming portion 234. A gap 233 with a constant interval is formed between the sleeve portion 214c and the end surface of the lower end portion of the sleeve portion 214c.
  • a gap 233 formed between the non-contact surface of the seal forming portion 234 and the end surface of the lower end portion of the sleeve portion 214c is sealed with lubricating oil, and the lubricating oil supplied from the first oil supply inlet 231 is second.
  • the interval is adjusted so as to prevent inflow into the bearing portion 242.
  • the gap 233 is, for example, about 0.5 mm to 1.0 mm, but is not limited to a value within this range.
  • a partition plate 235 is disposed on the outer periphery of the annular seal forming portion 234.
  • the partition plate 235 is provided below the second bearing portion 242 so as to surround the outer peripheral surface of the lower end portion of the sleeve portion 214c, and the inner peripheral surface of the partition plate 235 and the outer peripheral surface of the lower end portion of the sleeve portion 214c.
  • An annular oil reservoir 250 is formed between the two. A part of the lubricating oil flowing out from the lower end portion of the second bearing portion 242 is stored in the oil reservoir portion 250.
  • the oil reservoir 250 is communicated with a gap 233 between the non-contact surface of the seal forming portion 234 and the end surface of the lower end portion of the sleeve portion 214c.
  • FIG. 6 is a cross-sectional view showing an oil film formed on the first bearing portion 241 of the rotary crusher 210.
  • 180 °, and clockwise is the positive direction.
  • the part corresponding to the phase of °) also rotates clockwise.
  • the lubricating oil supplied to the bearing portion 241 is pushed clockwise while being sandwiched between the outer peripheral surface of the main shaft assembly 215 and the inner peripheral surface of the inner cylinder bush portion 214a.
  • FIG. 7 shows the pressure distribution of this oil film.
  • the eccentric sleeve assembly 214 rotates clockwise, so that the outer peripheral surface of the spindle assembly 215 and the inner cylinder bush portion Since the oil film is crushed between the inner peripheral surface of 214a, the pressure of the oil film increases.
  • the oil film is lost, and the space between the outer peripheral surface of the main shaft assembly 215 and the inner peripheral surface of the inner cylinder bush portion 214a is widened, so that negative pressure is generated in the space.
  • a mode in which the oil reservoir 250 is not formed outside the gap 233 is considered.
  • the air in the annular space 238 is sucked into the clearance 233 and bubbles are generated in the lubricating oil. Is mixed, there is a high possibility that an oil film breakage, which is one of the causes of bearing damage, occurs inside the first bearing portion 241.
  • the oil reservoir 250 is formed outside the gap 233, the lubricating oil directed to flow into the first bearing portion 241 from the gap 233 by the rotation of the eccentric sleeve assembly 214 is used.
  • the lubricating oil stored in the oil reservoir 250 is sucked into the gap 233.
  • air in the annular space 238 is effectively prevented from being sucked into the gap 233 and bubbles being mixed into the lubricating oil.
  • the oil reservoir 250 is preferably formed at a position higher than the gap 233.
  • the lubricating oil stored in the oil reservoir 250 is gathered near the gap 233 due to gravity, the flow of the lubricating oil flowing in the direction from the gap 233 to the first bearing portion 241 is caused by the rotation of the eccentric sleeve assembly 214.
  • it is guaranteed that the lubricating oil stored in the oil reservoir 250 is sucked into the gap 233, and the air in the annular space 238 can be more reliably prevented from being sucked into the gap 233.
  • a through hole 236 is formed so as to penetrate the central portion of the wear plate 213b and the central portion of the step washer 213c, and the first oil supply inlet 231 is opened inside the through hole 236.
  • the lubricating oil introduced into the through hole 236 from the first oil supply inlet 231 is the inner diameter side end portion of the sliding portion between the wear plate 213b and the step washer 213c and the step washer 213c and the main spindle step.
  • Each of the sliding portions is lubricated by flowing into the inner diameter side end portion of the sliding portion between 215a.
  • the lubricating oil that has passed through each sliding portion flows out from the outer diameter side end portion of each sliding portion into the annular space 237 outside the lower end portion of the spindle assembly 215, and from the annular space 237 to the first bearing portion 241.
  • the first bearing portion 241 is lubricated.
  • the lubricating oil that has passed through the first bearing portion 241 flows out from the upper end portion of the first bearing portion 241 to the gear housing space 240 outside the outer cylinder bush portion 213a, and the lubricating oil that accumulates on the floor of the gear housing space 240 is These are recovered from the fuel supply outlet 239 shown in FIG.
  • Lubricating oil overflowing from the oil reservoir 250 flows into the outer annular space 238, and the lubricating oil remaining on the floor of the annular space 238 is recovered from the oil supply outlet 239 shown in FIG.
  • FIG. 9 is a schematic view showing a comparative example of an oil supply structure in an upper open type rotary crusher.
  • the arrow indicates the direction in which the lubricating oil flows.
  • the flow path of the lubricating oil supplied from the first oil supply inlet 2131 to the first bearing portion 2141 and the second bearing portion 2142 from the second oil supply inlet 2132. Is not structurally separated from the flow path of the lubricating oil supplied to.
  • the oil supply outlet side 2152 of the second bearing portion 2142 and the oil supply inlet side 2151 of the first bearing portion 2141 communicate with each other, and the lubricating oil supplied from the first oil supply inlet 2131 is not only the first bearing portion 2141 but also the first oil. It also flows into the two bearing portions 2142. Therefore, the amount of oil distribution to the bearings 2141 and 2142 is unstable, and it may be difficult to maintain a healthy oil film particularly under adverse conditions.
  • a seal forming portion 234 is provided inside the lower frame assembly 213, and the non-contact surface of the seal forming portion 234 and the end surface of the lower end portion of the sleeve portion 214c. Since the gap 233 between them is sealed with lubricating oil, the first bearing portion 241 and the second bearing portion 242 can be independently supplied with oil. Therefore, the amount of oil supply can be controlled so that a healthy oil film is maintained in the first bearing portion 241 and the second bearing portion 242.
  • the lubricating oil is supplied from the first oil supply inlet 231 to the first bearing portion 241, and the lubricating oil is supplied from the second oil supply inlet 232 to the second bearing portion 242. Further, rotational power is transmitted from the rotational power transmission system 220 to the flange portion 214b of the eccentric sleeve assembly 214, and the eccentric sleeve assembly 214 is rotated about the rotational axis of the outer cylinder bush portion 213a.
  • the lubricating oil supplied from the first oil supply inlet 231 by the gap 233 between the non-contact surface of the seal forming portion 234 and the end surface of the lower end portion of the sleeve portion 214c. Is prevented from flowing into the second bearing portion 242. Therefore, a healthy oil film can be maintained in the first bearing portion 241 and the second bearing portion 242 by controlling the amount of oil supplied to the bearing portions 241 and 242.
  • the spindle assembly 215 fitted to the inner cylinder bush portion 214a is precessed about the bearing 223 as a fulcrum.
  • the mantle 217 fixed to the main shaft assembly 215 is precessed with respect to the cone cave 212 in accordance with the precession of the main shaft assembly 215, and the gap between the mantle 217 and the cone cave 212 is changed widely with each rotation. .
  • an object to be crushed such as a rough stone is fed from the hopper 25 at the upper part of the upper frame assembly 211.
  • the thrown object to be crushed falls into the crushing chamber 218 formed between the mantle 217 and the corn cave 212 and is captured between the mantle 217 and the corn cave 212.
  • the mantle 217 is rotated and the gap between the mantle 217 and the corn cave 212 is narrowed, the object to be crushed is crushed.
  • the material to be crushed falls in the crushing chamber 218 to a portion where the gap between the mantle 217 and the corn cave 212 becomes wider, and the mantle 217 and the corn cave 212 are dropped.
  • the gap between is narrowed again, it is further crushed.
  • the material to be crushed gradually becomes finer by repeated crushing and dropping, becomes a product of a predetermined particle size, falls to the floor through the gap between the mantle 217 and the corn cave 212, and is discharged from the opening of the floor to the outside of the machine. Is done.
  • a sufficient amount of oil can be stably and independently controlled so that a healthy oil film is maintained in the first bearing portion 241 and the second bearing portion 242.
  • the bearing portions 241 and 242 can be prevented from being damaged due to seizure or the like.
  • the eccentric sleeve assembly 214 can be pulled upward from the lower frame assembly 213.
  • the eccentric sleeve assembly 214 can be pulled upward to perform maintenance work on the bearing parts 241 and 242 and the gears 221a and 221b. . Therefore, it is not necessary to disassemble the hydraulic cylinder assembly arranged below the lower frame assembly 213, and there is no need for dangerous work performed by the operator under the suspended load, which is superior to the lower open maintenance type. Maintainability.
  • the first bearing portion 241 and the first The oil supply amount control for maintaining a healthy oil film in the two bearing portions 242 is possible. This can prevent the bearing portions 241 and 242 from being damaged due to seizure or the like.
  • the partition plate 235 is provided so as to surround the outer peripheral surface of the lower end portion of the sleeve portion 214c, and the inner peripheral surface of the partition plate 235 and the outer peripheral surface of the lower end portion of the sleeve portion 214c Since the annular oil reservoir 250 formed between the gaps 233 communicates with the gap 233, when the eccentric sleeve assembly 214 rotates, the lubricating oil in the gap 233 generates a radially inward flow. Thus, the lubricating oil stored in is sucked into the gap 233. As a result, air in the annular space 238 can be prevented from being sucked into the gap 233 and bubbles being mixed with the lubricating oil.
  • the oil reservoir 250 is formed at a position higher than the gap 233, the lubricating oil stored in the oil reservoir 250 is gathered near the gap 233 by gravity. This ensures that the lubricating oil stored in the oil reservoir 250 is sucked into the gap 233 when the eccentric sleeve assembly 214 rotates to cause the lubricating oil in the gap 233 to flow inward in the radial direction.
  • the air of 238 can be reliably prevented from being sucked into the gap 233.
  • the rotary crusher 210 is a so-called hydraulic cone crusher, but is not limited to this.
  • the oil supply structure 230 according to the present embodiment can also be applied to a mechanical (Simons type) cone crusher.
  • FIG. 10 is a longitudinal sectional view showing a rotary crusher according to an embodiment of the present invention.
  • the rotary crusher 310 includes an upper frame assembly 311 that holds a cone cave 312 and a lower frame that has an outer cylinder bush portion 313 a disposed below the upper frame assembly 311.
  • the assembly 313, the eccentric sleeve assembly 314 rotated inside the outer cylinder bushing 313a, the spindle assembly 315 holding the mantle 317 fitted and rotated in the eccentric sleeve assembly 314, and the eccentric sleeve assembly 314 rotated.
  • a rotational power transmission system 320 that transmits power.
  • the eccentric sleeve assembly 314 includes a sleeve portion 314c that holds the inner cylinder bush portion 314a that is rotated by being fitted to the outer cylinder bush portion 313a of the lower frame assembly 313, and a flange portion that extends above the sleeve portion 314c. 314b.
  • the flange portion 314b extends from the upper portion of the sleeve portion 314c to a gear housing space 340 formed outside the outer cylinder bush portion 313a, and is lowered by a thrust bearing 319 provided at the upper end portion of the outer cylinder bush portion 313a. It is supported from.
  • the flange portion 314b extends above the sleeve portion 314c, so that the eccentric sleeve assembly 314 can be pulled upward from the lower frame assembly 313.
  • a bevel gear 321a is fixed to the tip of the flange portion 314b.
  • the bevel gear 321a is disposed coaxially with the rotation axis of the outer cylinder bush portion 313a.
  • Rotational power transmission system 320 has a horizontal shaft 322 connected to a drive motor (not shown), and a bevel pinion 321b fixed to one end of horizontal shaft 322.
  • the horizontal shaft 322 is oriented in a direction perpendicular to the rotation axis of the outer cylinder bush portion 313a.
  • the bevel pinion 321b fixed to one end of the horizontal shaft 322 is disposed in the gear housing space 340 so as to mesh with the bevel gear 321a fixed to the flange portion 314b.
  • the sleeve portion 314c is formed with a through hole extending in a direction inclined with respect to the rotation axis of the outer cylinder bush portion 313a, and the inner cylinder bush portion 314a is fitted in the hole extending in the inclination direction. .
  • the main shaft assembly 315 is inserted into the inner cylinder bush portion 314a.
  • a funnel-shaped mantle 317 is fixed to the upper portion of the main shaft assembly 315.
  • the rotary crusher 310 is a so-called hydraulic cone crusher, and the upper end portion of the spindle assembly 315 is supported by a bearing 323 held by the upper frame assembly 311.
  • a spindle step 315a having a convex spherical surface is fixed to the lower end portion of the spindle assembly 315.
  • a step washer 313c having a concave spherical surface and wear for supporting the back surface of the step washer 313c.
  • Plates 313b are stacked and arranged.
  • the wear plate 313b is fixed to the bottom of the lower frame assembly 313, more specifically, to a ram of a hydraulic cylinder assembly installed below the lower frame assembly 313.
  • a sliding part is formed in which the convex spherical surface of the main spindle step 315a and the concave spherical surface of the step washer 313c slide.
  • the main shaft assembly 315 When the eccentric sleeve assembly 314 is rotated by the rotational power transmission system 320, the main shaft assembly 315 is precessed around the rotation axis of the inner cylinder bush portion 314a with the bearing 323 as a fulcrum.
  • the mantle 317 is precessed with respect to the cone cave 312 according to the precession of the main shaft assembly 315 so as to crush the object to be crushed supplied to the crushing chamber 318 sandwiched between the mantle 317 and the cone cave 312. It has become.
  • the first bearing portion 341 and the sleeve portion 314c between the main shaft assembly 315 and the inner cylinder bush portion 314a are used for smoothly precessing the main shaft assembly 315 which is subjected to a large load. It is necessary to supply an appropriate amount of lubricating oil to the second bearing portion 342 between the outer cylinder bush portion 313a and the outer cylinder bush portion 313a to maintain a healthy oil film. Therefore, the rotary crusher 310 is provided with an oil supply structure 330 for supplying lubricating oil to the first bearing portion 341 and the second bearing portion 342, respectively.
  • FIG. 11 is a schematic diagram showing the refueling structure 330 in an enlarged manner.
  • the arrow indicates the direction in which the lubricating oil flows.
  • the oil supply structure 330 has an oil supply inlet 331 that opens to the bottom of the lower frame assembly 313, more specifically, to the center of the ram of the hydraulic cylinder assembly.
  • the oil supply inlet 331 supplies both the lubricating oil for the first bearing portion 341 and the lubricating oil for the second bearing portion 342.
  • FIG. 12 is a cross-sectional view of the bearing portions 341 and 342 of the rotary crusher 310.
  • the inner peripheral surface of the inner cylinder bush portion 314a and the outer peripheral surface of the sleeve portion 314c are supplied from the oil supply inlet 331 to the first bearing portion 341, respectively.
  • Vertical groove portions 351 and 352 for controlling the flow rate of the lubricating oil and the flow rate of the lubricating oil supplied from the oil supply inlet 331 to the second bearing portion 342 are provided.
  • the vertical groove portion 351 provided on the inner peripheral surface of the inner cylinder bush portion 314a is exposed to the first bearing portion 341, and the vertical groove portion 352 provided on the outer peripheral surface of the sleeve portion 314c is provided on the second bearing portion 342. Exposed.
  • a through hole 336 is formed so as to penetrate the central portion of the wear plate 313b and the central portion of the step washer 313c, and the oil supply inlet 331 is opened inside the through hole 336.
  • the lubricating oil introduced into the through hole 336 from the oil supply inlet 331 includes the inner diameter side end of the sliding portion between the wear plate 313b and the step washer 313c, the step washer 313c, the main spindle step 315a,
  • Each of the sliding parts is lubricated by flowing into the inner diameter side end part of the sliding part between. Then, the lubricating oil that has passed through each sliding portion flows out from the outer diameter side end portion of each sliding portion into the annular space 337 outside the lower end portion of the spindle assembly 315.
  • the remaining portion of the lubricating oil that has flowed out into the annular space 337 flows under the sleeve portion 314c and into the lower end portion of the second bearing portion 342, and lubricates the second bearing portion 342.
  • the lubricating oil that has passed through the second bearing portion 342 flows out from the upper end portion of the second bearing portion 342 into the gear housing space 340 outside the outer cylinder bush portion 313a, and the lubricating oil that accumulates on the floor of the gear housing space 340 is These are recovered from the fuel supply outlet 339 shown in FIG.
  • FIG. 14 is a schematic view showing a comparative example of an oil supply structure in an upper open type rotary crusher.
  • the arrow indicates the direction in which the lubricating oil flows.
  • the lubricating oil of the first bearing portion 3141 is supplied from the first oil supply inlet 3131 opening at the bottom of the lower frame assembly 3113, whereas the second The lubricating oil of the bearing portion 3142 is supplied from a second oil supply inlet 3132 that opens on the circumferential surface of the outer cylinder bush portion 3113a.
  • a flow path of the lubricating oil supplied from the first oil supply inlet 3131 to the first bearing portion 3141 and a flow path of the lubricating oil supplied from the second oil supply inlet 3132 to the second bearing portion 3142 are provided.
  • the lubricating oil supplied from the first oil supply inlet 3131 is not structurally separated, and in particular, the oil supply outlet side 3152 of the second bearing portion 3142 and the oil supply inlet side 3151 of the first bearing portion 3141 communicate with each other. Flows into not only the first bearing portion 3141 but also the second bearing portion 3142.
  • the oil supply inlet 331 that opens to the bottom of the lower frame assembly 313 supplies both the lubricating oil of the first bearing portion 341 and the lubricating oil of the second bearing portion 342. It is supposed to be. Therefore, only the upward flow is formed in each of the bearing portions 341 and 342, and there is no possibility that poor lubrication will occur. As a result, the distribution amount of oil supply to the bearing portions 341 and 342 is stabilized, and the oil supply amount can be controlled so that a healthy oil film is maintained in the first bearing portion 341 and the second bearing portion 342.
  • lubricating oil is supplied from the oil supply inlet 331 to both the first bearing portion 341 and the second bearing portion 342.
  • both the lubricating oil of the first bearing portion 341 and the lubricating oil of the second bearing portion 342 are supplied from the oil supply inlet 331 that opens to the bottom of the lower frame assembly 313, the bearing portions 341 and 342 are provided.
  • the amount of oil distribution to the is stable, and the amount of oil supply can be controlled so that a healthy oil film is maintained in the first bearing portion 341 and the second bearing portion 342.
  • rotational power is transmitted from the rotational power transmission system 320 to the flange portion 314b of the eccentric sleeve assembly 314, and the eccentric sleeve assembly 314 is rotated about the rotational axis of the outer cylinder bush portion 313a.
  • the main shaft assembly 315 fitted to the inner cylinder bush portion 314a is precessed about the bearing 323 as a fulcrum.
  • the mantle 317 fixed to the main shaft assembly 315 is precessed with respect to the cone cave 312 in accordance with the precession of the main shaft assembly 315, and the gap between the mantle 317 and the cone cave 312 is changed widely with each rotation. .
  • an object to be crushed such as a rough stone
  • the input crushed material falls into a crushing chamber 318 formed between the mantle 317 and the corn cave 312 and is captured between the mantle 317 and the corn cave 312.
  • the object to be crushed is crushed.
  • the object to be crushed falls in the crushing chamber 318 to a portion where the gap between the mantle 317 and the corn cave 312 becomes wider, and the mantle 317 and the corn cave 312.
  • the material to be crushed gradually becomes fine by repeating crushing and dropping, becomes a product of a predetermined particle size, falls to the floor through the gap between the mantle 317 and the corn cave 312, and is discharged out of the machine from the floor opening. Is done.
  • a sufficient oil supply amount is controlled so that a healthy oil film is maintained in the first bearing portion 341 and the second bearing portion 342, so that the bearing portion 341, 342 can be prevented from being damaged.
  • the eccentric sleeve assembly 314 can be pulled upward from the lower frame assembly 313.
  • the eccentric sleeve assembly 314 can be pulled upward to perform maintenance work on the bearing portions 341 and 342 and the gears 321a and 321b. . Therefore, it is not necessary to disassemble the hydraulic cylinder assembly arranged below the lower frame assembly 313, and there is no need for dangerous work performed by an operator under the suspended load, which is superior to the lower open maintenance type. Maintainability.
  • both the lubricating oil of the first bearing portion 341 and the lubricating oil of the second bearing portion 342 are supplied from the oil supply inlet 331 that opens at the bottom of the lower frame assembly 313.
  • the oil distribution amount to the parts 341 and 342 is stable, and the oil supply amount can be controlled so that a healthy oil film is maintained in the first bearing part 341 and the second bearing part 342. This can prevent the bearing portions 341 and 342 from being damaged due to seizure or the like.
  • both the first bearing portion 341 and the second bearing portion 342 are supplied from one place of the oil supply inlet 331, a piping material for supplying lubricating oil (not shown). Need only be connected to one location of the oil supply inlet 331, and the piping is simple.
  • the longitudinal groove portions 351 and 352 are provided on both the inner peripheral surface of the inner cylinder bush portion 314a and the outer peripheral surface of the sleeve portion 314c. It may be provided only on either the inner peripheral surface of the portion 314a or the outer peripheral surface of the sleeve portion 314c. Moreover, the vertical groove part 352 may be provided in the internal peripheral surface of the outer cylinder bush part 315a.
  • the rotary crusher 310 is a so-called hydraulic cone crusher, but is not limited to this.
  • the oil supply structure 330 according to the present embodiment can also be applied to a mechanical (Simons) cone crusher.
  • FIG. 13 is a schematic view showing a modified example of the oil supply structure 330.
  • the partition plate 353 has a cylindrical shape and is fixed to the bottom of the lower frame assembly 313 so as to surround the annular space 337.
  • a gap of a predetermined size is formed between the upper end portion of the partition plate 353 and the lower end portion of the sleeve portion 314c. Since the flange portion 314b of the eccentric sleeve assembly 314 is supported from below by the thrust bearing 319, the sleeve portion 314c of the eccentric sleeve assembly 314 is positioned at a certain height position, whereby the upper end portion of the partition plate 350 and the sleeve A gap between the lower end portion of the portion 314c is maintained at a constant interval.
  • the lubricating oil of the second bearing portion 342 supplied from the oil supply inlet 331 passes through the gap between the upper end portion of the partition plate 353 and the lower end portion of the sleeve portion 314c, and then flows into the second bearing portion 342. It has become.
  • the lubrication supplied from the oil supply inlet 331 to the first bearing portion 341 is adjusted by adjusting the size of the gap between the upper end portion of the partition plate 353 and the lower end portion of the sleeve portion 314 c. It is possible to easily control the flow rate of the oil and the flow rate of the lubricating oil supplied from the oil supply inlet 331 to the second bearing portion 342.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Food Science & Technology (AREA)
  • Crushing And Grinding (AREA)

Abstract

[Problem] To provide a gyratory crusher serviced through an opening at the top for excellent serviceability, in which the amount of oil supplied can be controlled to maintain a sound oil film in a bearing portion; also to provide an oil supply structure and an oil supply method for such a gyratory crusher. [Solution] An oil supply structure (30) is a structure for supplying lubricating oil to both a first bearing part (41) and a second bearing part (42), the oil supply structure having an annular thrust seal (33) arranged on the inner side of a lower frame assembly (13) and supporting the bottom end of an inner cylinder bush part (14a) from below, a first oil supply inlet (31) opening in the bottom part of the lower frame assembly (13) so as to supply oil to the first bearing part (41), and a second oil supply inlet (32) opening in the inner peripheral surface of an outer cylinder bush part (13a) so as to supply oil to the second bearing part (42). The thrust seal (33) separates the flow channel of lubricating oil supplied from the first oil supply inlet (31) to the first bearing part (41), and the flow channel of lubricating oil supplied from the second oil supply inlet (32) to the second bearing part (42).

Description

給油構造、給油方法及び旋動式破砕機Lubrication structure, lubrication method and rotary crusher
 本発明は、旋動するマントルとコーンケーブとの間に原石等の被破砕物を供給して破砕する旋動式破砕機及びそのような旋動式破砕機の給油構造及び給油方法に関する。 [Technical Field] The present invention relates to a rotary crusher for supplying a material to be crushed such as a rough stone between a rotating mantle and a corn cave and crushing, and an oil supply structure and an oil supply method of such a rotary crusher.
 コーンクラッシャやジャイレトリクラッシャなどの旋動式破砕機は、旋動される主軸組立の上部に固定された漏斗状のマントルと、マントルを覆うように設けられたコーンケーブと、の間に形成される破砕室を備えた機械である。 A rotary crusher such as a cone crusher or a gyratory crusher is formed between a funnel-shaped mantle fixed to the upper part of the main spindle assembly to be rotated and a cone cave provided to cover the mantle. A machine equipped with a crushing chamber.
 コーンケーブの下方には外筒ブッシュ部を有する下部フレーム組立が配置されており、下部フレーム組立の外筒ブッシュ部には、偏心スリーブ組立の内筒ブッシュ部が嵌合されている。内筒ブッシュ部の偏心位置には、内筒ブッシュ部の回転軸線に対して傾斜する向きに延びる孔が形成されており、マントルが固定された主軸組立は、内筒ブッシュ部の孔に嵌合されている。また、内筒ブッシュ部の端部には、外筒ブッシュ部の外方に延びるフランジ部が固定されており、フランジ部の先端には回転動力伝達系が接続されている。回転動力伝達系からの回転動力によりフランジ部と内筒ブッシュ部とが一体に内筒ブッシュ部の回転軸線回りに回転されることにより、主軸組立とマントルとが一体に内筒ブッシュ部の回転軸線回りに旋動される。 A lower frame assembly having an outer cylinder bush portion is disposed below the cone cave, and an inner cylinder bush portion of an eccentric sleeve assembly is fitted to the outer cylinder bush portion of the lower frame assembly. At the eccentric position of the inner cylinder bush part, a hole extending in a direction inclined with respect to the rotation axis of the inner cylinder bush part is formed, and the spindle assembly with the mantle fixed is fitted into the hole of the inner cylinder bush part Has been. Further, a flange portion extending outward from the outer cylinder bush portion is fixed to the end portion of the inner cylinder bush portion, and a rotational power transmission system is connected to the tip of the flange portion. The main shaft assembly and the mantle are integrally rotated around the rotation axis of the inner cylinder bush portion by rotating the flange portion and the inner cylinder bush portion integrally around the rotation axis of the inner cylinder bush portion by the rotational power from the rotational power transmission system. It is turned around.
 また、コーンケーブの下方には外筒ブッシュ部を有する下部フレーム組立が配置されており、下部フレーム組立の外筒ブッシュ部には、偏心スリーブ組立のスリーブ部が嵌合されている。スリーブ部には、偏心スリーブ組立の回転軸線に対して傾斜する向きに延びる孔が形成されており、その傾斜する向きに延びる孔に、内筒ブッシュ部が嵌合されている。また、マントルが固定された主軸組立は、内筒ブッシュ部の偏心孔に嵌合されている。また、スリーブ部の上部または下部には、外筒ブッシュ部の外方に延びるフランジ部が延在しており、フランジ部の先端には回転動力伝達系が接続されている。回転動力伝達系からの回転動力により偏心スリーブ組立が回転することにより、主軸組立とマントルとが一体に内筒ブッシュ部の偏心孔の回転軸線回りに旋動される。 Also, a lower frame assembly having an outer cylinder bush portion is disposed below the cone cave, and an eccentric sleeve assembly sleeve portion is fitted to the outer cylinder bush portion of the lower frame assembly. The sleeve portion is formed with a hole extending in a direction inclined with respect to the rotational axis of the eccentric sleeve assembly, and the inner cylinder bush portion is fitted in the hole extending in the inclined direction. Further, the main shaft assembly to which the mantle is fixed is fitted into the eccentric hole of the inner cylinder bush portion. Further, a flange portion extending outward of the outer cylinder bush portion extends at the upper portion or the lower portion of the sleeve portion, and a rotational power transmission system is connected to the tip of the flange portion. When the eccentric sleeve assembly is rotated by the rotational power from the rotational power transmission system, the main shaft assembly and the mantle are integrally rotated around the rotational axis of the eccentric hole of the inner cylinder bush portion.
 旋動式破砕機の上部に設けられたホッパから破砕室に原石が供給されると、旋動されるマントルとコーンケーブとの間に捕捉された原石が所定の粒度まで圧砕されて排出される。 When the rough is supplied to the crushing chamber from the hopper provided at the top of the rotary crusher, the rough captured between the rotating mantle and the corn cave is crushed to a predetermined particle size and discharged.
 ところで、偏心スリーブ組立の内筒ブッシュ部とフランジ部との位置関係に関して、フランジ部が内筒ブッシュ部の上部に固定されたタイプ(以下、上部開放整備型と呼ぶ)と、フランジ部が内筒ブッシュ部の下部に固定されたタイプ(以下、下部開放整備型と呼ぶ)とが知られている。たとえば特許文献1には、上部開放整備型の旋動式破砕機が開示されており、特許文献2には、下部開放整備型の旋動式破砕機が開示されている。 By the way, regarding the positional relationship between the inner cylinder bush part and the flange part of the eccentric sleeve assembly, the type in which the flange part is fixed to the upper part of the inner cylinder bush part (hereinafter referred to as the upper open maintenance type), the flange part is the inner cylinder. A type fixed to the lower portion of the bush portion (hereinafter referred to as a lower open maintenance type) is known. For example, Patent Literature 1 discloses an upper open maintenance type rotary crusher, and Patent Literature 2 discloses a lower open maintenance type rotational crusher.
 また、偏心スリーブ組立のスリーブ部とフランジ部との位置関係に関して、フランジ部がスリーブ部の上部に延在するタイプ(以下、上部開放整備型と呼ぶ)と、フランジ部がスリーブ部の下部に延在するタイプ(以下、下部開放整備型と呼ぶ)とが知られている。たとえば特許文献1には、上部開放整備型の旋動式破砕機が開示されており、特許文献2には、下部開放整備型の旋動式破砕機が開示されている。 In addition, regarding the positional relationship between the sleeve portion and the flange portion of the eccentric sleeve assembly, the flange portion extends to the upper portion of the sleeve portion (hereinafter referred to as the upper open maintenance type), and the flange portion extends to the lower portion of the sleeve portion. The existing type (hereinafter referred to as the lower open maintenance type) is known. For example, Patent Literature 1 discloses an upper open maintenance type rotary crusher, and Patent Literature 2 discloses a lower open maintenance type rotational crusher.
 上部開放整備型の旋動式破砕機は、整備性に優れるが、各軸受部分において健全な油膜を維持するための給油量制御が困難である。一方、下部開放整備型の旋動式破砕機は、各軸受部分において健全な油膜を維持するための給油量制御は容易であるが、整備性は低い。 The upper open maintenance type rotary crusher is excellent in maintainability, but it is difficult to control the amount of oil supplied to maintain a healthy oil film in each bearing part. On the other hand, the lower open maintenance type rotary crusher is easy to control the amount of oil supplied to maintain a healthy oil film in each bearing portion, but has low maintainability.
特開平5-345136号公報JP-A-5-345136 特開2014-108390号公報JP 2014-108390 A
 本発明は、このような点を考慮してなされたものである。本発明の目的は、整備性に優れる上部開放整備型でありながら、軸受部分おける健全な油膜維持のための給油量制御を可能とする旋動式破砕機の給油構造、給油方法及び旋動式破砕機を提供することにある。 The present invention has been made in consideration of such points. An object of the present invention is to provide a lubrication structure, a lubrication method, and a rotation type of a crushing crusher capable of controlling a lubrication amount for maintaining a healthy oil film in a bearing portion while being an open top maintenance type having excellent maintainability. To provide a crusher.
 本発明の一態様による給油構造は、
 外筒ブッシュ部を有する下部フレーム組立と、前記外筒ブッシュ部に嵌合して回転される内筒ブッシュ部と前記内筒ブッシュ部の上部に固定されたフランジ部とを有する偏心スリーブ組立と、前記内筒ブッシュ部に嵌合して旋動されるマントルを保持する主軸組立と、前記フランジ部に回転動力を伝達する回転動力伝達系と、を備え、旋動するマントルとコーンケーブとの間で被破砕物を破砕する旋動式破砕機において、前記主軸組立と前記内筒ブッシュ部との間の第1軸受部および前記内筒ブッシュ部と前記外筒ブッシュ部との間の第2軸受部にそれぞれ潤滑油を供給するための給油構造であって、
 前記下部フレーム組立の内側に設置され、前記内筒ブッシュ部の下端部を下から支持する環状のスラストシールと、
 前記第1軸受部に給油するように前記下部フレーム組立の底部に開口する第1給油入口と、
 前記第2軸受部に給油するように前記外筒ブッシュ部の内周面に開口する第2給油入口と、
を有し、
 前記スラストシールは、前記第1給油入口から前記第1軸受部に供給される潤滑油の流路と、前記第2給油入口から前記第2軸受部に供給される潤滑油の流路と、を分離している。
An oil supply structure according to an aspect of the present invention includes:
A lower frame assembly having an outer cylinder bush portion, an eccentric sleeve assembly having an inner cylinder bush portion fitted into the outer cylinder bush portion and rotated, and a flange portion fixed to the upper portion of the inner cylinder bush portion; A spindle assembly that holds a mantle that is rotated by being fitted to the inner cylinder bush portion, and a rotational power transmission system that transmits rotational power to the flange portion, and between the rotating mantle and the cone cable In a rotary crusher for crushing an object to be crushed, a first bearing part between the main shaft assembly and the inner cylinder bush part and a second bearing part between the inner cylinder bush part and the outer cylinder bush part Each of which has a lubricating structure for supplying lubricating oil,
An annular thrust seal that is installed inside the lower frame assembly and supports the lower end of the inner cylinder bushing from below;
A first refueling inlet that opens at a bottom of the lower frame assembly to refuel the first bearing portion;
A second oil supply inlet that opens on an inner peripheral surface of the outer cylinder bush portion so as to supply oil to the second bearing portion;
Have
The thrust seal includes a flow path of lubricating oil supplied from the first oil supply inlet to the first bearing portion, and a flow path of lubricating oil supplied from the second oil supply inlet to the second bearing portion. It is separated.
 上述の態様の給油構造において、前記外筒ブッシュ部の上端部には、前記フランジ部を下から支持するスラストベアリングが設けられていてもよい。 In the fuel supply structure of the above-described aspect, a thrust bearing that supports the flange portion from below may be provided at an upper end portion of the outer cylinder bush portion.
 上述の態様の給油構造において、前記外筒ブッシュ部の上端部には、前記フランジ部を下から支持するスラストベアリングが設けられていなくてもよい。 In the fuel supply structure according to the above aspect, the upper end portion of the outer cylinder bush portion may not be provided with a thrust bearing that supports the flange portion from below.
 上述の態様の給油構造において、前記スラストシールの外径側には、段部が凸設されており、前記段部の内周面は、前記内筒ブッシュ部の下端部の外周面を取り囲んでいてもよい。 In the fuel supply structure of the above aspect, a stepped portion is provided on the outer diameter side of the thrust seal, and the inner peripheral surface of the stepped portion surrounds the outer peripheral surface of the lower end portion of the inner cylinder bushing portion. May be.
 本発明の他の態様による旋動式破砕機は、
 外筒ブッシュ部を有する下部フレーム組立と、
 前記外筒ブッシュ部に嵌合して回転される内筒ブッシュ部と前記内筒ブッシュ部の上部に固定されたフランジ部とを有する偏心スリーブ組立と、
 前記内筒ブッシュ部に嵌合して旋動されるマントルを保持する主軸組立と、
 前記フランジ部に回転動力を伝達する回転動力伝達系と、
を備え、
 旋動するマントルとコーンケーブとの間で被破砕物を破砕する旋動式破砕機であって、
 前記主軸組立と前記内筒ブッシュ部との間の第1軸受部および前記内筒ブッシュ部と前記外筒ブッシュ部との間の第2軸受部にそれぞれ潤滑油を供給するための給油構造をさらに備え、
 前記給油構造は、
 前記下部フレーム組立の内側に設置され、前記内筒ブッシュ部の下端部を下から支持する環状のスラストシールと、
 前記第1軸受部に給油するように前記下部フレーム組立の底部に開口する第1給油入口と、
 前記第2軸受部に給油するように前記外筒ブッシュ部の内周面に開口する第2給油入口と、
を有し、
 前記スラストシールは、前記第1給油入口から前記第1軸受部に供給される潤滑油の流路と、前記第2給油入口から前記第2軸受部に供給される潤滑油の流路と、を分離している。
A rotary crusher according to another aspect of the present invention includes:
A lower frame assembly having an outer cylinder bush part;
An eccentric sleeve assembly having an inner cylinder bush part that is fitted and rotated in the outer cylinder bush part and a flange part fixed to the upper part of the inner cylinder bush part;
A spindle assembly that holds a mantle that is fitted to the inner cylinder bushing and rotated,
A rotational power transmission system for transmitting rotational power to the flange portion;
With
A rotary crusher that crushes objects to be crushed between a rotating mantle and a corn cave,
And an oil supply structure for supplying lubricating oil to the first bearing portion between the main shaft assembly and the inner cylinder bush portion and the second bearing portion between the inner cylinder bush portion and the outer cylinder bush portion, respectively. Prepared,
The oil supply structure is
An annular thrust seal that is installed inside the lower frame assembly and supports the lower end of the inner cylinder bushing from below;
A first refueling inlet that opens at a bottom of the lower frame assembly to refuel the first bearing portion;
A second oil supply inlet that opens on an inner peripheral surface of the outer cylinder bush portion so as to supply oil to the second bearing portion;
Have
The thrust seal includes a flow path of lubricating oil supplied from the first oil supply inlet to the first bearing portion, and a flow path of lubricating oil supplied from the second oil supply inlet to the second bearing portion. It is separated.
 本発明の他の態様による給油構造は、外筒ブッシュ部を有する下部フレーム組立と、前記外筒ブッシュ部に嵌合して回転される内筒ブッシュ部を保持するスリーブ部と前記スリーブ部の上部に延在するフランジ部とを有する偏心スリーブ組立と、前記内筒ブッシュ部に嵌合して旋動されるマントルを保持する主軸組立と、前記フランジ部に回転動力を伝達する回転動力伝達系と、を備え、旋動するマントルとコーンケーブとの間で被破砕物を破砕する旋動式破砕機において、前記主軸組立と前記内筒ブッシュ部との間の第1軸受部および前記スリーブ部と前記外筒ブッシュ部との間の第2軸受部にそれぞれ潤滑油を供給するための給油構造であって、前記第1軸受部に給油するように前記下部フレーム組立の底部に開口する第1給油入口と、前記第2軸受部に給油するように前記外筒ブッシュ部の円周面に開口する第2給油入口と、前記下部フレーム組立の内側に設けられ、前記スリーブ部の下端部の端面と対向する非接触面を有する環状のシール形成部と、を有し、前記シール形成部の前記非接触面と前記スリーブ部の下端部の端面との間の隙間は前記潤滑油でシールされ、前記環状のシール形成部の外周には仕切板が配設され、前記仕切板と前記スリーブ部の下端部の外周面との間に環状の油溜まり部が形成されている。 An oil supply structure according to another aspect of the present invention includes: a lower frame assembly having an outer cylinder bush part; a sleeve part that holds the inner cylinder bush part that is rotated by being fitted to the outer cylinder bush part; and an upper part of the sleeve part An eccentric sleeve assembly having a flange portion extending to the main shaft assembly, a main shaft assembly that holds a mantle that is rotated by being fitted to the inner cylinder bush portion, and a rotational power transmission system that transmits rotational power to the flange portion. A rotary crushing machine for crushing an object to be crushed between a rotating mantle and a cone cave, a first bearing part between the main shaft assembly and the inner cylinder bush part, the sleeve part, and the An oil supply structure for supplying lubricating oil to each of the second bearing portions between the outer cylinder bush portion and a first oil supply inlet that opens at the bottom of the lower frame assembly so as to supply oil to the first bearing portion When A second oil supply inlet that opens on a circumferential surface of the outer cylinder bushing so as to supply oil to the second bearing portion; and a non-facing portion that is provided inside the lower frame assembly and that faces the end surface of the lower end portion of the sleeve portion. An annular seal forming portion having a contact surface, and a gap between the non-contact surface of the seal forming portion and an end surface of the lower end portion of the sleeve portion is sealed with the lubricant, and the annular seal A partition plate is disposed on the outer periphery of the forming portion, and an annular oil reservoir is formed between the partition plate and the outer peripheral surface of the lower end portion of the sleeve portion.
 上述の態様による給油構造において、前記油溜まり部は、前記隙間より高い位置に形成されていてもよい。 In the oil supply structure according to the above-described aspect, the oil reservoir portion may be formed at a position higher than the gap.
 本発明の他の態様による旋動式破砕機は、外筒ブッシュ部を有する下部フレーム組立と、前記外筒ブッシュ部に嵌合して回転される内筒ブッシュ部を保持するスリーブ部と前記スリーブ部の上部に延在するフランジ部とを有する偏心スリーブ組立と、前記内筒ブッシュ部に嵌合して旋動されるマントルを保持する主軸組立と、前記フランジ部に回転動力を伝達する回転動力伝達系と、を備え、旋動するマントルとコーンケーブとの間で被破砕物を破砕する旋動式破砕機であって、前記主軸組立と前記内筒ブッシュ部との間の第1軸受部および前記スリーブ部と前記外筒ブッシュ部との間の第2軸受部にそれぞれ潤滑油を供給するための給油構造をさらに備え、前記給油構造は、前記第1軸受部に給油するように前記下部フレーム組立の底部に開口する第1給油入口と、前記第2軸受部に給油するように前記外筒ブッシュ部の円周面に開口する第2給油入口と、前記下部フレーム組立の内側に設けられ、前記スリーブ部の下端部の端面と対向する非接触面を有する環状のシール形成部と、を有し、前記シール形成部の前記非接触面と前記スリーブ部の下端部の端面との間の隙間は前記潤滑油でシールされ、前記環状のシール形成部の外周には仕切板が配設され、前記仕切板と前記スリーブ部の下端部の外周面との間に環状の油溜まり部が形成されている。 A rotary crusher according to another aspect of the present invention includes a lower frame assembly having an outer cylinder bush portion, a sleeve portion that holds the inner cylinder bush portion that is rotated by being fitted to the outer cylinder bush portion, and the sleeve. An eccentric sleeve assembly having a flange portion extending at the top of the portion, a main shaft assembly that holds a mantle that is rotated by being fitted to the inner cylinder bush portion, and a rotational power that transmits rotational power to the flange portion A rotary crushing machine for crushing an object to be crushed between a rotating mantle and a cone cave, the first bearing part between the main shaft assembly and the inner cylinder bush part, The lower frame is further provided with an oil supply structure for supplying lubricating oil to each of the second bearing portions between the sleeve portion and the outer cylinder bush portion, and the oil supply structure supplies oil to the first bearing portion. Bottom of assembly A first oil supply inlet that opens, a second oil supply inlet that opens on a circumferential surface of the outer cylinder bush portion so as to supply oil to the second bearing portion, and an inner side of the lower frame assembly, An annular seal forming portion having a non-contact surface facing the end surface of the lower end portion, and the gap between the non-contact surface of the seal forming portion and the end surface of the lower end portion of the sleeve portion is the lubricating oil A partition plate is disposed on the outer periphery of the annular seal forming portion, and an annular oil reservoir portion is formed between the partition plate and the outer peripheral surface of the lower end portion of the sleeve portion.
 本発明の他の態様による給油方法は、外筒ブッシュ部を有する下部フレーム組立と、前記外筒ブッシュ部に嵌合して回転される内筒ブッシュ部を保持するスリーブ部と前記スリーブ部の上部に延在するフランジ部とを有する偏心スリーブ組立と、前記内筒ブッシュ部に嵌合して旋動されるマントルを保持する主軸組立と、前記フランジ部に回転動力を伝達する回転動力伝達系と、を備え、旋動するマントルとコーンケーブとの間で被破砕物を破砕する旋動式破砕機において、前記主軸組立と前記内筒ブッシュ部との間の第1軸受部および前記スリーブ部と前記外筒ブッシュ部との間の第2軸受部にそれぞれ潤滑油を供給するための給油方法であって、前記第1軸受部の潤滑油および前記第2軸受部の潤滑油の両方を、前記下部フレーム組立の底部に開口する給油入口から供給する。 An oil supply method according to another aspect of the present invention includes: a lower frame assembly having an outer cylinder bush part; a sleeve part holding the inner cylinder bush part rotated by being fitted to the outer cylinder bush part; and an upper part of the sleeve part An eccentric sleeve assembly having a flange portion extending to the main shaft assembly, a main shaft assembly that holds a mantle that is rotated by being fitted to the inner cylinder bush portion, and a rotational power transmission system that transmits rotational power to the flange portion. A rotary crushing machine for crushing an object to be crushed between a rotating mantle and a cone cave, a first bearing part between the main shaft assembly and the inner cylinder bush part, the sleeve part, and the An oil supply method for supplying lubricating oil to each of the second bearing portions between the outer cylinder bush portions, wherein both the lubricating oil of the first bearing portion and the lubricating oil of the second bearing portion are supplied to the lower portion. Frame assembly Supplied from the fuel supply inlet opening in the bottom.
 上述の態様による給油方法において、前記内筒ブッシュ部、前記スリーブ部または前記外筒ブッシュ部に縦溝部を設けて、前記給油入口から前記第1軸受部に供給される潤滑油の流量と、前記給油入口から前記第2軸受部に供給される潤滑油の流量と、を制御してもよい。 In the oil supply method according to the above aspect, a longitudinal groove is provided in the inner cylinder bush part, the sleeve part or the outer cylinder bush part, and the flow rate of the lubricating oil supplied from the oil supply inlet to the first bearing part, The flow rate of the lubricating oil supplied from the oil supply inlet to the second bearing portion may be controlled.
 上述の態様による給油方法において、前記スリーブ部の下端部と前記下部フレーム組立の底部との間に仕切板を設けて、前記給油入口から前記第1軸受部に供給される潤滑油の流量と、前記給油入口から前記第2軸受部に供給される潤滑油の流量と、を制御してもよい。 In the oil supply method according to the above aspect, a partition plate is provided between the lower end portion of the sleeve portion and the bottom portion of the lower frame assembly, and the flow rate of the lubricating oil supplied from the oil supply inlet to the first bearing portion; You may control the flow volume of the lubricating oil supplied to the said 2nd bearing part from the said oil supply inlet.
 本発明の他の態様による給油構造は、外筒ブッシュ部を有する下部フレーム組立と、前記外筒ブッシュ部に嵌合して回転される内筒ブッシュ部を保持するスリーブ部と前記スリーブ部の上部に延在するフランジ部とを有する偏心スリーブ組立と、前記内筒ブッシュ部に嵌合して旋動されるマントルを保持する主軸組立と、前記フランジ部に回転動力を伝達する回転動力伝達系と、を備え、旋動するマントルとコーンケーブとの間で被破砕物を破砕する旋動式破砕機において、前記主軸組立と前記内筒ブッシュ部との間の第1軸受部および前記スリーブ部と前記外筒ブッシュ部との間の第2軸受部にそれぞれ潤滑油を供給するための給油構造であって、前記下部フレーム組立の底部に開口する給油入口を有し、前記給油入口は、前記第1軸受部の潤滑油および前記第2軸受部の潤滑油の両方を供給するようになっている。 An oil supply structure according to another aspect of the present invention includes: a lower frame assembly having an outer cylinder bush part; a sleeve part that holds the inner cylinder bush part that is rotated by being fitted to the outer cylinder bush part; and an upper part of the sleeve part An eccentric sleeve assembly having a flange portion extending to the main shaft assembly, a main shaft assembly that holds a mantle that is rotated by being fitted to the inner cylinder bush portion, and a rotational power transmission system that transmits rotational power to the flange portion. A rotary crushing machine for crushing an object to be crushed between a rotating mantle and a cone cave, a first bearing part between the main shaft assembly and the inner cylinder bush part, the sleeve part, and the An oil supply structure for supplying lubricating oil to each of the second bearing portions between the outer cylinder bush portion and an oil supply inlet that opens at a bottom of the lower frame assembly. bearing Has both lubricating oils and lubricating oil of the second bearing portion adapted to supply.
 上述の態様による給油構造において、前記内筒ブッシュ部、前記スリーブ部または前記外筒ブッシュ部には、前記給油入口から前記第1軸受部に供給される潤滑油の流量と、前記給油入口から前記第2軸受部に供給される潤滑油の流量と、を制御する縦溝部が設けられていてもよい。 In the oil supply structure according to the above-described aspect, the inner cylinder bush portion, the sleeve portion, or the outer cylinder bush portion includes a flow rate of lubricating oil supplied from the oil supply inlet to the first bearing portion, and the oil supply inlet from the oil supply inlet. A longitudinal groove for controlling the flow rate of the lubricating oil supplied to the second bearing portion may be provided.
 上述の態様による給油構造において、前記スリーブ部の下端部と前記下部フレーム組立の底部との間には、前記給油入口から前記第1軸受部に供給される潤滑油の流量と、前記給油入口から前記第2軸受部に供給される潤滑油の流量と、を制御する仕切板が設けられていてもよい。 In the oil supply structure according to the above aspect, between the lower end portion of the sleeve portion and the bottom portion of the lower frame assembly, the flow rate of the lubricating oil supplied from the oil supply inlet to the first bearing portion, and the oil supply inlet A partition plate for controlling the flow rate of the lubricating oil supplied to the second bearing portion may be provided.
 本発明の他の態様による旋動式破砕機は、外筒ブッシュ部を有する下部フレーム組立と、前記外筒ブッシュ部に嵌合して回転される内筒ブッシュ部を保持するスリーブ部と前記スリーブ部の上部に延在するフランジ部とを有する偏心スリーブ組立と、前記内筒ブッシュ部に嵌合して旋動されるマントルを保持する主軸組立と、前記フランジ部に回転動力を伝達する回転動力伝達系と、を備え、旋動するマントルとコーンケーブとの間で被破砕物を破砕する旋動式破砕機であって、前記主軸組立と前記内筒ブッシュ部との間の第1軸受部および前記スリーブ部と前記外筒ブッシュ部との間の第2軸受部にそれぞれ潤滑油を供給するための給油構造をさらに備え、前記給油構造は、前記下部フレーム組立の底部に開口する給油入口を有し、前記給油入口は、前記第1軸受部の潤滑油および前記第2軸受部の潤滑油の両方を供給するようになっている。 A rotary crusher according to another aspect of the present invention includes a lower frame assembly having an outer cylinder bush portion, a sleeve portion that holds the inner cylinder bush portion that is rotated by being fitted to the outer cylinder bush portion, and the sleeve. An eccentric sleeve assembly having a flange portion extending at the top of the portion, a main shaft assembly that holds a mantle that is rotated by being fitted to the inner cylinder bush portion, and a rotational power that transmits rotational power to the flange portion A rotary crushing machine for crushing an object to be crushed between a rotating mantle and a cone cave, the first bearing part between the main shaft assembly and the inner cylinder bush part, An oil supply structure for supplying lubricating oil to each of the second bearing parts between the sleeve part and the outer cylinder bush part is further provided, and the oil supply structure has an oil supply inlet opening at the bottom of the lower frame assembly. And said Oil inlet is adapted to supply both the lubricating oil in the lubricating oil and the second bearing portion of the first bearing portion.
 本発明によれば、整備性に優れる上部開放整備型でありながら、軸受部分おける健全な油膜維持のための給油量制御が可能である。 According to the present invention, it is possible to control the amount of oil supplied for maintaining a healthy oil film in the bearing portion, while being an upper open maintenance type excellent in maintainability.
図1は、本発明の一実施の形態による旋動式破砕機を示す縦断面図である。FIG. 1 is a longitudinal sectional view showing a rotary crusher according to an embodiment of the present invention. 図2は、図1の旋動式破砕機における給油構造を拡大して示す概略図である。FIG. 2 is an enlarged schematic view showing an oil supply structure in the rotary crusher of FIG. 図3は、上部開放型の旋動式破砕機における給油構造の比較例を示す概略図である。FIG. 3 is a schematic view showing a comparative example of an oil supply structure in an upper open type rotary crusher. 図4は、本発明の一実施の形態による旋動式破砕機を示す縦断面図である。FIG. 4 is a longitudinal sectional view showing a rotary crusher according to an embodiment of the present invention. 図5は、図4の旋動式破砕機における給油構造を拡大して示す概略図である。FIG. 5 is an enlarged schematic view showing an oil supply structure in the rotary crusher of FIG. 図6は、図4の旋動式破砕機の第1軸受部に形成される油膜を示す横断面図である。6 is a cross-sectional view showing an oil film formed on the first bearing portion of the rotary crusher of FIG. 図7は、図6の油膜の圧力を示すグラフである。FIG. 7 is a graph showing the pressure of the oil film of FIG. 図8は、シール形成部とスリーブ部との間の隙間における潤滑油の流出(流入)量分布を示すグラフである。FIG. 8 is a graph showing the distribution (inflow) amount of lubricating oil in the gap between the seal forming portion and the sleeve portion. 図9は、上部開放型の旋動式破砕機における給油構造の比較例を示す概略図である。FIG. 9 is a schematic diagram showing a comparative example of an oil supply structure in an upper open type rotary crusher. 図10は、本発明の一実施の形態による旋動式破砕機を示す縦断面図である。FIG. 10 is a longitudinal sectional view showing a rotary crusher according to an embodiment of the present invention. 図11は、図10の旋動式破砕機における給油構造を拡大して示す概略図である。FIG. 11 is an enlarged schematic view showing an oil supply structure in the rotary crusher of FIG. 図12は、縦溝部を説明するための図であって、図10の旋動式破砕機の軸受部分の横断面図である。12 is a view for explaining the longitudinal groove portion, and is a cross-sectional view of a bearing portion of the rotary crusher of FIG. 図13は、図11に対応する図面であって、給油構造の変形例を示す概略図である。FIG. 13 is a diagram corresponding to FIG. 11, and is a schematic diagram illustrating a modified example of the oil supply structure. 図14は、上部開放型の旋動式破砕機における給油構造の比較例を示す概略図である。FIG. 14 is a schematic diagram showing a comparative example of an oil supply structure in an upper open type rotary crusher.
 以下、図面を参照して、本発明の実施の形態について具体例を説明する。なお、本明細書に添付する図面においては、図示と理解のしやすさの便宜上、適宜縮尺および縦横の寸法比等を、実物のそれらから変更し誇張してある。 Hereinafter, specific examples of embodiments of the present invention will be described with reference to the drawings. In the drawings attached to the present specification, for the sake of illustration and ease of understanding, the scale, the vertical / horizontal dimension ratio, and the like are appropriately changed and exaggerated from those of the actual ones.
[第1の実施の形態]
 図1は、本発明の一実施の形態による旋動式破砕機を示す縦断面図である。
[First Embodiment]
FIG. 1 is a longitudinal sectional view showing a rotary crusher according to an embodiment of the present invention.
 図1に示すように、本実施の形態による旋動式破砕機10は、コーンケーブ12を保持する上部フレーム組立11と、上部フレーム組立11の下方に配置された外筒ブッシュ部13aを有する下部フレーム組立13と、外筒ブッシュ部13aの内側で回転される偏心スリーブ組立14と、偏心スリーブ組立14に嵌合して旋動されるマントル17を保持する主軸組立15と、偏心スリーブ組立14に回転動力を伝達する回転動力伝達系20と、を備えている。 As shown in FIG. 1, the rotary crusher 10 according to the present embodiment includes an upper frame assembly 11 that holds a cone cable 12 and a lower frame that includes an outer cylinder bush portion 13 a that is disposed below the upper frame assembly 11. The assembly 13, the eccentric sleeve assembly 14 that is rotated inside the outer cylinder bush portion 13 a, the main shaft assembly 15 that holds the mantle 17 that is fitted and rotated in the eccentric sleeve assembly 14, and the eccentric sleeve assembly 14 rotates. And a rotational power transmission system 20 that transmits power.
 このうち偏心スリーブ組立14は、下部フレーム組立13の外筒ブッシュ部13aに嵌合して回転される内筒ブッシュ部14aと、内筒ブッシュ部14aの上部に固定されたフランジ部14bと、を有している。フランジ部14bは、内筒ブッシュ部14aの上部から外筒ブッシュ部13aの外方のギア空間40へと延びており、外筒ブッシュ部13aの上端部に設けられたスラストベアリング19により下から支持されている。本実施の形態では、フランジ部14bが内筒ブッシュ部14aの上部に固定されていることで、下部フレーム組立13から偏心スリーブ組立14を上方へ引き抜くことが可能となっている。フランジ部14bの先端部には、ベベルギア21aが固定されている。ベベルギア21aは、内筒ブッシュ部14aの回転軸線と同軸状に配置されている。 Among these, the eccentric sleeve assembly 14 includes an inner cylinder bush portion 14a that is rotated by being fitted to the outer cylinder bush portion 13a of the lower frame assembly 13, and a flange portion 14b that is fixed to the upper portion of the inner cylinder bush portion 14a. Have. The flange part 14b extends from the upper part of the inner cylinder bush part 14a to the gear space 40 outside the outer cylinder bush part 13a, and is supported from below by a thrust bearing 19 provided at the upper end part of the outer cylinder bush part 13a. Has been. In the present embodiment, the eccentric sleeve assembly 14 can be pulled upward from the lower frame assembly 13 by fixing the flange portion 14b to the upper portion of the inner cylinder bush portion 14a. A bevel gear 21a is fixed to the distal end portion of the flange portion 14b. The bevel gear 21a is disposed coaxially with the rotation axis of the inner cylinder bush portion 14a.
 回転動力伝達系20は、駆動モータ(不図示)に連結された横軸22と、横軸22の一端部に固定されたベベルピニオン21bと、を有している。横軸22は、内筒ブッシュ部14aの回転軸線に対して直角な向きに向けられている。横軸22の一端に固定されたベベルピニオン21bは、フランジ部14bに固定されたベベルギア21aと噛み合うように配置されている。駆動モータの回転動力により横軸22とベベルピニオン21bとが一体に回転されると、ベベルピニオン21bからベベルギア21aへと回転動力が伝達され、ベベルギア21aとフランジ部14bと内筒ブッシュ部14aとが一体に内筒ブッシュ部14aの回転軸線回りに回転駆動される。 Rotational power transmission system 20 has a horizontal shaft 22 connected to a drive motor (not shown), and a bevel pinion 21b fixed to one end of horizontal shaft 22. The horizontal shaft 22 is oriented in a direction perpendicular to the rotation axis of the inner cylinder bush portion 14a. The bevel pinion 21b fixed to one end of the horizontal shaft 22 is disposed so as to mesh with the bevel gear 21a fixed to the flange portion 14b. When the horizontal shaft 22 and the bevel pinion 21b are rotated together by the rotational power of the drive motor, the rotational power is transmitted from the bevel pinion 21b to the bevel gear 21a, and the bevel gear 21a, the flange portion 14b, and the inner cylinder bush portion 14a. It is integrally driven to rotate around the rotation axis of the inner cylinder bush portion 14a.
 内筒ブッシュ部14aの偏心位置には、内筒ブッシュ部14aの回転軸線に対して傾斜する向きに延びる貫通孔が形成されており、主軸組立15は、内筒ブッシュ部14aの貫通孔に挿入されている。主軸組立15の上部には、漏斗状のマントル17が固定されている。 A through-hole extending in a direction inclined with respect to the rotation axis of the inner cylinder bush portion 14a is formed at an eccentric position of the inner cylinder bush portion 14a, and the main shaft assembly 15 is inserted into the through hole of the inner cylinder bush portion 14a. Has been. A funnel-shaped mantle 17 is fixed to the upper part of the main shaft assembly 15.
 図示された例では、旋動式破砕機10は、いわゆる油圧式コーンクラッシャであり、主軸組立15の上端部は、上部フレーム組立11に保持された軸受23により支持されている。一方、主軸組立15の下端部には、凸球面を有する主軸ステップ15aが固定されており、主軸ステップ15aの下方には、凹球面を有するステップ座金13cと、ステップ座金13cの裏面を支持する摩耗板13bとが積み重ねられて配置されている。摩耗板13bは、下部フレーム組立13の底部、より詳しくは下部フレーム組立13の下方に設置された油圧シリンダ組立のラムに固定されている。主軸ステップ15aの凸球面とステップ座金13cの凹球面とが摺動する摺動部を形成している。 In the illustrated example, the rotary crusher 10 is a so-called hydraulic cone crusher, and the upper end of the spindle assembly 15 is supported by a bearing 23 held by the upper frame assembly 11. On the other hand, a spindle step 15a having a convex spherical surface is fixed to the lower end portion of the spindle assembly 15. Under the spindle step 15a, a step washer 13c having a concave spherical surface and wear for supporting the back surface of the step washer 13c. Plates 13b are stacked and arranged. The wear plate 13 b is fixed to the bottom of the lower frame assembly 13, more specifically, to the ram of the hydraulic cylinder assembly installed below the lower frame assembly 13. A sliding portion is formed in which the convex spherical surface of the main spindle step 15a and the concave spherical surface of the step washer 13c slide.
 回転動力伝達系20により偏心スリーブ組立14のフランジ部14bと内筒ブッシュ部14aとが一体に回転されると、主軸組立15は、軸受23を支点として内筒ブッシュ部14aの回転軸線回りを歳差運動される。マントル17は、主軸組立15の歳差運動に応じてコーンケーブ12に対して歳差運動され、マントル17とコーンケーブ12との間に挟まれた破砕室18に供給される被破砕物を破砕するようになっている。 When the flange portion 14b of the eccentric sleeve assembly 14 and the inner cylinder bush portion 14a are integrally rotated by the rotational power transmission system 20, the main shaft assembly 15 moves around the rotation axis of the inner cylinder bush portion 14a with the bearing 23 as a fulcrum. The difference is exercised. The mantle 17 is precessed with respect to the cone cave 12 according to the precession of the main shaft assembly 15 so as to crush the object to be crushed supplied to the crushing chamber 18 sandwiched between the mantle 17 and the cone cave 12. It has become.
 旋動式破砕機10の運転中は、大きな負荷の掛かる主軸組立15を円滑に歳差運動させるために、主軸組立15と内筒ブッシュ部14aとの間の第1軸受部41および内筒ブッシュ部14aと外筒ブッシュ部13aとの間の第2軸受部42にそれぞれ適切な量の潤滑油を供給して健全な油膜を維持する必要がある。そのため、旋動式破砕機10には、第1軸受部41および第2軸受部42にそれぞれ潤滑油を供給するための給油構造30が設けられている。 During the operation of the rotary crusher 10, the first bearing portion 41 and the inner cylinder bush between the main shaft assembly 15 and the inner cylinder bush portion 14a are used to smoothly precess the main spindle assembly 15 that is subjected to a large load. It is necessary to supply a proper amount of lubricating oil to the second bearing portion 42 between the portion 14a and the outer cylinder bush portion 13a to maintain a healthy oil film. Therefore, the rotary crusher 10 is provided with an oil supply structure 30 for supplying lubricating oil to the first bearing portion 41 and the second bearing portion 42, respectively.
 図2は、給油構造30を拡大して示す概略図である。図2において、矢印は潤滑油の流れる向きを示している。 FIG. 2 is a schematic view showing the oil supply structure 30 in an enlarged manner. In FIG. 2, the arrow indicates the direction in which the lubricating oil flows.
 図2に示すように、給油構造30は、下部フレーム組立13の内側に設置され、内筒ブッシュ部14aの下端部を下から支持する環状のスラストシール33と、第1軸受部41に給油するように下部フレーム組立13の底部、より詳しくは油圧シリンダ組立のラム中央部に開口する第1給油入口31と、第2軸受部42に給油するように外筒ブッシュ部13aの内周面に開口する第2給油入口32と、を有している。 As shown in FIG. 2, the oil supply structure 30 is installed inside the lower frame assembly 13 and supplies oil to the first thrust bearing portion 41 and the annular thrust seal 33 that supports the lower end portion of the inner cylinder bush portion 14 a from below. Open to the bottom of the lower frame assembly 13, more specifically, the first oil inlet 31 that opens to the center of the ram of the hydraulic cylinder assembly, and the inner peripheral surface of the outer cylinder bush portion 13 a to supply oil to the second bearing portion 42. And a second refueling inlet 32.
 スラストシール33は、具体的には、たとえば、平行板状の縦断面を有する金属製の円環(円輪)である。図示された例では、下部フレーム組立13の底部には、第1給油入口31の外側を取り囲むように環状のスラストシール取付枠34が固定されている。スラストシール取付枠34の上端部には環状の段部35が凸設されており、スラストシール33は段部35の内径側に嵌合されて下から支持されている。内筒ブッシュ部14aの下端面は、偏心スリーブ組立14の自重により、スラストシール33の上面に押し付けられて面接触されている。内筒ブッシュ部14aの下端面は、スラストシール33の上面との接触面積を広げるために、面取りまたは平面加工されていることが好ましい。 Specifically, the thrust seal 33 is, for example, a metal ring (ring) having a parallel plate-like longitudinal section. In the illustrated example, an annular thrust seal mounting frame 34 is fixed to the bottom of the lower frame assembly 13 so as to surround the outside of the first oil supply inlet 31. An annular step 35 is protruded from the upper end of the thrust seal mounting frame 34, and the thrust seal 33 is fitted to the inner diameter side of the step 35 and supported from below. The lower end surface of the inner cylinder bush portion 14 a is pressed against the upper surface of the thrust seal 33 by the weight of the eccentric sleeve assembly 14 and is in surface contact. The lower end surface of the inner cylinder bush portion 14a is preferably chamfered or planarized in order to increase the contact area with the upper surface of the thrust seal 33.
 図示された例では、摩耗板13bの中央部およびステップ座金13cの中央部をそれぞれ貫通するように貫通孔36が形成されており、第1給油入口31は、貫通孔36の内側に開口している。図2に示すように、第1給油入口31から貫通孔36に導入される潤滑油は、摩耗板13bとステップ座金13cとの間の摺動部の内径側端部およびステップ座金13cと主軸ステップ15aとの間の摺動部の内径側端部にそれぞれ流入し、各摺動部を潤滑させる。そして、各摺動部を通過した潤滑油は、各摺動部の外径側端部から主軸組立15の下端部の外側の環状空間37に流出し、当該環状空間37から第1軸受部41の下端部に流入して、第1軸受部41を潤滑させる。そして、第1軸受部41を通過した潤滑油は、第1軸受部41の上端部から外筒ブッシュ部13aの外側のギア収容空間40に流出し、ギア収容空間40の床に溜まる潤滑油は、図1に示す給油出口39から回収される。 In the illustrated example, a through hole 36 is formed so as to penetrate the central portion of the wear plate 13b and the central portion of the step washer 13c, and the first oil supply inlet 31 is opened inside the through hole 36. Yes. As shown in FIG. 2, the lubricating oil introduced into the through hole 36 from the first oil supply inlet 31 is the inner diameter side end of the sliding portion between the wear plate 13b and the step washer 13c, the step washer 13c and the main spindle step. It flows into the inner diameter side end of the sliding part between 15a and lubricates each sliding part. Then, the lubricating oil that has passed through each sliding portion flows out from the outer diameter side end portion of each sliding portion into the annular space 37 outside the lower end portion of the spindle assembly 15, and from the annular space 37, the first bearing portion 41. The first bearing portion 41 is lubricated. The lubricating oil that has passed through the first bearing portion 41 flows out from the upper end portion of the first bearing portion 41 into the gear housing space 40 outside the outer cylinder bush portion 13a, and the lubricating oil that accumulates on the floor of the gear housing space 40 is 1 is recovered from the fuel supply outlet 39 shown in FIG.
 一方、第2給油入口32から第2軸受部42に導入される潤滑油の一部は、第2軸受部42のうち第2給油入口32より下方の領域に流入して、当該下方領域を潤滑させる。そして、第2軸受部42の下方領域を通過した潤滑油は、第2軸受部42の下端部からその下方に設けられた環状空間38に流出し、当該環状空間38の床に溜まる潤滑油は、図1に示す給油出口39から回収される。また、第2給油入口32から第2軸受部42に直接導入される潤滑油の残りの部分は、第2軸受部42のうち第2給油入口32より上方の領域に流入して、当該上方領域を潤滑させる。そして、第2軸受部42の上方領域を通過した潤滑油は、第2軸受部42の上端部から外筒ブッシュ部13aの外側のギア収容空間40に流出し、ギア収容空間40の床に溜まる潤滑油は、図1に示す給油出口39から回収される。 On the other hand, a part of the lubricating oil introduced from the second oil supply inlet 32 to the second bearing portion 42 flows into a region below the second oil supply inlet 32 in the second bearing portion 42 and lubricates the lower region. Let Then, the lubricating oil that has passed through the lower region of the second bearing portion 42 flows out from the lower end portion of the second bearing portion 42 into the annular space 38 provided below, and the lubricating oil that accumulates on the floor of the annular space 38 is 1 is recovered from the fuel supply outlet 39 shown in FIG. Further, the remaining portion of the lubricating oil introduced directly from the second oil supply inlet 32 to the second bearing portion 42 flows into a region above the second oil supply inlet 32 in the second bearing portion 42, and the upper region Lubricate. Then, the lubricating oil that has passed through the upper region of the second bearing portion 42 flows out from the upper end portion of the second bearing portion 42 into the gear housing space 40 outside the outer cylinder bush portion 13a and accumulates on the floor of the gear housing space 40. The lubricating oil is recovered from the oil supply outlet 39 shown in FIG.
 ところで、図4は、上部開放型の旋動式破砕機における給油構造の比較例を示す概略図である。図4において、矢印は潤滑油の流れる向きを示している。図4に示すような上部開放整備型の旋動式破砕機では、フランジ部114bが外筒ブッシュ部113aの上端部に設けられたスラストベアリング119により下から支持されているが、内筒ブッシュ部115aの下端部にはスラストシールが設置されておらず、第1給油入口131から第1軸受部141に供給される潤滑油の流路と第2給油入口132から第2軸受部142に供給される潤滑油の流路とが構造的に分離されていない。とくに第2軸受部142の給油出口側152と第1軸受部141の給油入口側151とが連通している。そのため、各軸受部141、142への給油配分量が不安定であり、とくに悪条件下においては健全な油膜維持が困難となる可能性がある。 Incidentally, FIG. 4 is a schematic view showing a comparative example of an oil supply structure in an upper open type rotary crusher. In FIG. 4, the arrow indicates the direction in which the lubricating oil flows. In the upper open maintenance type rotary crusher as shown in FIG. 4, the flange portion 114b is supported from below by a thrust bearing 119 provided at the upper end portion of the outer cylinder bush portion 113a. A thrust seal is not installed at the lower end of 115a, and is supplied from the first oil supply inlet 131 to the first bearing part 141 and from the second oil supply inlet 132 to the second bearing part 142. The lubricating oil flow path is not structurally separated. In particular, the oil supply outlet side 152 of the second bearing portion 142 and the oil supply inlet side 151 of the first bearing portion 141 communicate with each other. Therefore, the oil distribution amount to each bearing part 141 and 142 is unstable, and it may be difficult to maintain a healthy oil film especially under adverse conditions.
 一方、図2に示すように、本実施の形態では、内筒ブッシュ部14aの下端面がスラストシール33の上面に面接触されることにより、主軸組立15の下端部の外側の環状空間37と第2軸受部42の下端部の下方に設けられた環状空間38とが構造的に分離されている。これにより、第1給油入口31から第1軸受部41に供給される潤滑油の流路と、第2給油入口32から第2軸受部42に供給される潤滑油の流路とが、実質的に分離され、結果的に、第1軸受部41および第2軸受部42における健全な油膜維持のための給油量制御が可能となっている。 On the other hand, as shown in FIG. 2, in the present embodiment, the lower end surface of the inner cylinder bush portion 14 a is in surface contact with the upper surface of the thrust seal 33, so that the annular space 37 outside the lower end portion of the spindle assembly 15 The annular space 38 provided below the lower end portion of the second bearing portion 42 is structurally separated. Thereby, the flow path of the lubricating oil supplied from the first oil supply inlet 31 to the first bearing portion 41 and the flow path of the lubricating oil supplied from the second oil supply inlet 32 to the second bearing portion 42 are substantially reduced. As a result, the oil supply amount control for maintaining a healthy oil film in the first bearing portion 41 and the second bearing portion 42 is possible.
 また、本実施の形態では、スラストシール33の外径側に凸設された段部35の内周面が、スラストシール33に支持された内筒ブッシュ部14aの下端部の外周面を取り囲んでいる。段部35の内周面と内筒ブッシュ部14aの下端部の外周面との間の隙間は狭い方が好ましい。内筒ブッシュ部14aの下端面とスラストシール33の上面との間に浸潤した潤滑油にとっては、スラストシール33の外径側に凸設された段部35が流れの抵抗として機能する。したがって、内筒ブッシュ部14aの下端面とスラストシール33の上面との間に浸潤した潤滑油に、主軸組立15の偏心運動に伴って外向きの力が加わっても、潤滑油が外側に噴き出すことが抑制され得る。 Further, in the present embodiment, the inner peripheral surface of the step portion 35 protruding from the outer diameter side of the thrust seal 33 surrounds the outer peripheral surface of the lower end portion of the inner cylinder bush portion 14 a supported by the thrust seal 33. Yes. The gap between the inner peripheral surface of the step portion 35 and the outer peripheral surface of the lower end portion of the inner cylinder bush portion 14a is preferably narrow. For the lubricating oil that has infiltrated between the lower end surface of the inner cylinder bush portion 14 a and the upper surface of the thrust seal 33, the stepped portion 35 protruding from the outer diameter side of the thrust seal 33 functions as a flow resistance. Therefore, even if an outward force is applied to the lubricating oil infiltrated between the lower end surface of the inner cylinder bush portion 14a and the upper surface of the thrust seal 33 with an eccentric motion of the main shaft assembly 15, the lubricating oil is ejected to the outside. This can be suppressed.
 次に、本実施の形態による旋動式破砕機10の作用について説明する。 Next, the operation of the rotary crusher 10 according to this embodiment will be described.
 まず、第1給油入口31から第1軸受部41に潤滑油が供給されるとともに、第2給油入口32から第2軸受部42に潤滑油が供給される。本実施の形態では、スラストシール33が第1軸受部41に供給される潤滑油の流路と第2軸受部42に供給される潤滑油の流路とを構造的に分離しているため、第1軸受部41および第2軸受部42にそれぞれ独立に給油することが可能であり、第1軸受部41および第2軸受部42において健全な油膜が維持されるように給油量を制御することが可能である。 First, the lubricating oil is supplied from the first oil supply inlet 31 to the first bearing portion 41, and the lubricating oil is supplied from the second oil supply inlet 32 to the second bearing portion 42. In the present embodiment, since the thrust seal 33 structurally separates the flow path of the lubricating oil supplied to the first bearing portion 41 and the flow path of the lubricating oil supplied to the second bearing portion 42, The first bearing portion 41 and the second bearing portion 42 can be independently lubricated, and the amount of lubrication is controlled so that a healthy oil film is maintained in the first bearing portion 41 and the second bearing portion 42. Is possible.
 次に、回転動力伝達系20から偏心スリーブ組立14のフランジ部14bに回転動力が伝達され、フランジ部14bと内筒ブッシュ部14aとが一体に内筒ブッシュ部14aの回転軸線回りに回転される。内筒ブッシュ部14aの回転に伴って、内筒ブッシュ部14aに嵌合された主軸組立15は、軸受23を支点として歳差運動される。主軸組立15に固定されたマントル17は、主軸組立15の歳差運動に応じてコーンケーブ12に対して歳差運動され、回転ごとにマントル17とコーンケーブ12との間の間隙が広狭に変化される。 Next, rotational power is transmitted from the rotational power transmission system 20 to the flange portion 14b of the eccentric sleeve assembly 14, and the flange portion 14b and the inner cylinder bush portion 14a are integrally rotated around the rotation axis of the inner cylinder bush portion 14a. . Along with the rotation of the inner cylinder bush portion 14a, the main shaft assembly 15 fitted to the inner cylinder bush portion 14a is precessed about the bearing 23 as a fulcrum. The mantle 17 fixed to the main shaft assembly 15 is precessed with respect to the cone cave 12 according to the precession of the main shaft assembly 15, and the gap between the mantle 17 and the cone cave 12 is changed in a wide and narrow manner with each rotation. .
 次に、上部フレーム組立11の上部のホッパ25から原石等の被破砕物が投入される。投入された被破砕物は、マントル17とコーンケーブ12との間に形成される破砕室18に落下し、マントル17とコーンケーブ12との間に捕捉される。マントル17が旋動されて、マントル17とコーンケーブ12との間の間隙が狭くなった時に、被破砕物の圧砕が行われる。 Next, an object to be crushed such as a rough stone is fed from the hopper 25 at the upper part of the upper frame assembly 11. The thrown object to be crushed falls into a crushing chamber 18 formed between the mantle 17 and the corn cave 12 and is captured between the mantle 17 and the corn cave 12. When the mantle 17 is rotated and the gap between the mantle 17 and the corn cave 12 becomes narrow, the object to be crushed is crushed.
 その後、マントル17とコーンケーブ12との間の間隙が広がると、被破砕物は、破砕室18内においてマントル17とコーンケーブ12との間の間隙がより広くなる部分に落下し、マントル17とコーンケーブ12との間の間隙が再び狭くなった時に、さらに細かく圧砕される。被破砕物は、圧砕と落下とを繰り返して徐々に細かくなり、所定粒度の製品となってマントル17とコーンケーブ12との間の間隙を通って床に落下し、床の開口から機外に排出される。 Thereafter, when the gap between the mantle 17 and the corn cave 12 is widened, the material to be crushed falls in the crushing chamber 18 to a portion where the gap between the mantle 17 and the corn cave 12 becomes wider, and the mantle 17 and the corn cave 12. When the gap between is narrowed again, it is further crushed. The material to be crushed gradually becomes fine by repeating crushing and dropping, becomes a product of a predetermined particle size, falls to the floor through the gap between the mantle 17 and the corn cave 12, and is discharged from the opening of the floor to the outside of the machine. Is done.
 旋動式破砕機10の運転中は、第1軸受部41および第2軸受部42において健全な油膜が維持されるように給油量が制御されることで、潤滑油の交換頻度が低減されるとともに、焼き付き等により軸受部分41、42が破損することが防止され得る。 During operation of the rotary crusher 10, the oil supply amount is controlled so that a healthy oil film is maintained in the first bearing portion 41 and the second bearing portion 42, thereby reducing the replacement frequency of the lubricating oil. At the same time, the bearing portions 41 and 42 can be prevented from being damaged due to seizure or the like.
 以上のような本実施の形態によれば、偏心スリーブ組立14のフランジ部14bが内筒ブッシュ部14aの上部に固定されているため、下部フレーム組立13から偏心スリーブ組立14を上方へ引き抜くことが可能であり、軸受部分41、42やギア21a、21bが破損した場合には、偏心スリーブ組立14を上方へ引き抜くことで、各軸受部分41、42やギア21a、21bの整備作業を行うことができる。そのため、下部フレーム組立13の下方に配置された油圧シリンダ組立を分解する必要がなく、かつ吊り荷の下に作業者が入って行う危険な作業も不要であり、下部開放整備型に比べて優れた整備性が得られる。 According to the present embodiment as described above, since the flange portion 14b of the eccentric sleeve assembly 14 is fixed to the upper portion of the inner cylinder bush portion 14a, the eccentric sleeve assembly 14 can be pulled upward from the lower frame assembly 13. If the bearing portions 41 and 42 and the gears 21a and 21b are damaged, the eccentric sleeve assembly 14 can be pulled upward to perform maintenance work on the bearing portions 41 and 42 and the gears 21a and 21b. it can. Therefore, it is not necessary to disassemble the hydraulic cylinder assembly arranged below the lower frame assembly 13, and there is no need for a dangerous work performed by an operator under the suspended load, which is superior to the lower open maintenance type. Maintainability.
 また、本実施の形態によれば、下部フレーム組立13の内側に設置されて内筒ブッシュ部14aの下端部を下から支持する環状のスラストシール33が、第1給油入口31から第1軸受部41に供給される潤滑油の流路と、第2給油入口32から第2軸受部42に供給される潤滑油の流路と、を分離しているため、第1軸受部41および第2軸受部42における健全な油膜維持のための給油量制御が可能である。これにより、潤滑油の交換頻度が低減されるとともに、焼き付き等により軸受部分41、42が破損することが防止され得る。 Further, according to the present embodiment, the annular thrust seal 33 that is installed inside the lower frame assembly 13 and supports the lower end portion of the inner cylinder bush portion 14a from below is provided from the first oil supply inlet 31 to the first bearing portion. Since the flow path of the lubricating oil supplied to 41 and the flow path of the lubricating oil supplied from the second oil supply inlet 32 to the second bearing portion 42 are separated, the first bearing portion 41 and the second bearing Oil supply amount control for maintaining a healthy oil film in the unit 42 is possible. As a result, the replacement frequency of the lubricating oil is reduced, and the bearing portions 41 and 42 can be prevented from being damaged due to seizure or the like.
 また、本実施の形態によれば、段部35の内周面が内筒部14aの下端部の外周面を取り囲んでおり、内筒ブッシュ部14aの下端面とスラストシール33の上面との間に浸潤した潤滑油にとって、段部35が流れの抵抗として機能する。そのため、内筒ブッシュ部14aの下端面とスラストシール33の上面との間に浸潤した潤滑油に、主軸組立15の偏心運動に伴って外向きの力が加わっても、潤滑油が外側に噴き出すことが抑制され得る。 Further, according to the present embodiment, the inner peripheral surface of the step portion 35 surrounds the outer peripheral surface of the lower end portion of the inner cylinder portion 14 a, and between the lower end surface of the inner cylinder bush portion 14 a and the upper surface of the thrust seal 33. The step portion 35 functions as a flow resistance for the lubricating oil infiltrated into. Therefore, even if an outward force is applied to the lubricating oil infiltrated between the lower end surface of the inner cylinder bush portion 14a and the upper surface of the thrust seal 33 with the eccentric motion of the main shaft assembly 15, the lubricating oil jets outward. This can be suppressed.
 また、本実施の形態によれば、外筒部13aの上端部にはフランジ部14bを下から支持するスラストベアリング19が設けられているため、偏心スリーブ14の荷重がスラストシール33とスラストベアリング19とに分散される。これにより、スラストシール33の摩耗を遅らせることができる。 In addition, according to the present embodiment, since the thrust bearing 19 that supports the flange portion 14b from below is provided at the upper end portion of the outer cylinder portion 13a, the load of the eccentric sleeve 14 causes the thrust seal 33 and the thrust bearing 19 to load. And distributed. Thereby, the wear of the thrust seal 33 can be delayed.
 なお、外筒部13aの上端部にスラストベアリング19が設けられていることは、必ずしも必須ではない。すなわち、外筒部13aの上端部からスラストベアリング19を省略することも可能である。 In addition, it is not necessarily essential that the thrust bearing 19 is provided at the upper end portion of the outer cylinder portion 13a. That is, the thrust bearing 19 can be omitted from the upper end portion of the outer cylinder portion 13a.
 外筒部13aの上端部にスラストベアリング19が設けられている態様では、場合によっては内筒部14aの下端面からスラストシール33の上面に加えられる荷重が不十分になったり、組立て公差により内筒部14aの下端面とスラストシール33の上面との間に隙間が生じたりする可能性が考えられる。 In the aspect in which the thrust bearing 19 is provided at the upper end portion of the outer cylinder portion 13a, in some cases, the load applied from the lower end surface of the inner cylinder portion 14a to the upper surface of the thrust seal 33 may become insufficient, or the inner tolerance may increase due to assembly tolerances. There is a possibility that a gap may be formed between the lower end surface of the cylindrical portion 14a and the upper surface of the thrust seal 33.
 一方、外筒部13aの上端部からスラストベアリング19が省略された態様では、内筒部14aの下端面からスラストシール33の上面に十分な荷重が加えられるため、第1軸受部41に供給される潤滑油の流路と第2軸受部42に供給される潤滑油の流路とが分離されることが、より確実に保証され得る。 On the other hand, in a mode in which the thrust bearing 19 is omitted from the upper end portion of the outer cylinder portion 13a, a sufficient load is applied from the lower end surface of the inner cylinder portion 14a to the upper surface of the thrust seal 33, so that the first bearing portion 41 is supplied. It can be ensured more reliably that the flow path of the lubricating oil and the flow path of the lubricating oil supplied to the second bearing portion 42 are separated.
 なお、図1に示す例では、旋動式破砕機10は、いわゆる油圧式コーンクラッシャであったが、これに限定されるものではない。たとえば機械式(サイモンズ式)コーンクラッシャに対しても、本実施の形態による給油構造30を適用することは可能である。 In the example shown in FIG. 1, the rotary crusher 10 is a so-called hydraulic cone crusher, but is not limited thereto. For example, the oil supply structure 30 according to the present embodiment can also be applied to a mechanical (Simons) cone crusher.
[第2の実施の形態]
 図4は、本発明の一実施の形態による旋動式破砕機を示す縦断面図である。
[Second Embodiment]
FIG. 4 is a longitudinal sectional view showing a rotary crusher according to an embodiment of the present invention.
 図4に示すように、本実施の形態による旋動式破砕機210は、コーンケーブ212を保持する上部フレーム組立211と、上部フレーム組立211の下方に配置された外筒ブッシュ部213aを有する下部フレーム組立213と、外筒ブッシュ部213aの内側で回転される偏心スリーブ組立214と、偏心スリーブ組立214に嵌合して旋動されるマントル217を保持する主軸組立215と、偏心スリーブ組立214に回転動力を伝達する回転動力伝達系220と、を備えている。 As shown in FIG. 4, the rotary crusher 210 according to the present embodiment includes an upper frame assembly 211 that holds a cone cave 212 and a lower frame that has an outer cylinder bush portion 213 a disposed below the upper frame assembly 211. The assembly 213, the eccentric sleeve assembly 214 rotated inside the outer cylinder bush portion 213a, the spindle assembly 215 holding the mantle 217 fitted and rotated in the eccentric sleeve assembly 214, and the eccentric sleeve assembly 214 rotated. And a rotational power transmission system 220 that transmits power.
 このうち偏心スリーブ組立214は、下部フレーム組立213の外筒ブッシュ部213aに嵌合して回転される内筒ブッシュ部214aを保持するスリーブ部214cと、スリーブ部214cの上部に固定されたフランジ部214bと、を有している。フランジ部214bは、スリーブ部214cの上部から外筒ブッシュ部213aの外方に形成されたギア収容空間240へと延びており、外筒ブッシュ部213aの上端部に設けられたスラストベアリング219により下から支持されている。本実施の形態では、フランジ部214bがスリーブ部214cの上部に延在していることで、下部フレーム組立213から偏心スリーブ組立214を上方へ引き抜くことが可能となっている。フランジ部214bの先端部には、ベベルギア221aが固定されている。ベベルギア221aは、外筒ブッシュ部213aの回転軸線と同軸状に配置されている。 Among these, the eccentric sleeve assembly 214 includes a sleeve portion 214c that holds the inner cylinder bush portion 214a that is rotated by being fitted to the outer cylinder bush portion 213a of the lower frame assembly 213, and a flange portion that is fixed to the upper portion of the sleeve portion 214c. 214b. The flange portion 214b extends from the upper portion of the sleeve portion 214c to a gear accommodating space 240 formed outside the outer cylinder bush portion 213a, and is lowered by a thrust bearing 219 provided at the upper end portion of the outer cylinder bush portion 213a. It is supported from. In the present embodiment, since the flange portion 214b extends above the sleeve portion 214c, the eccentric sleeve assembly 214 can be pulled out upward from the lower frame assembly 213. A bevel gear 221a is fixed to the distal end portion of the flange portion 214b. The bevel gear 221a is disposed coaxially with the rotation axis of the outer cylinder bush portion 213a.
 回転動力伝達系220は、駆動モータ(不図示)に連結された横軸222と、横軸222の一端部に固定されたベベルピニオン221bと、を有している。横軸222は、外筒ブッシュ部213aの回転軸線に対して直角な向きに向けられている。横軸222の一端に固定されたベベルピニオン221bは、ギア収容空間240において、フランジ部214bに固定されたベベルギア221aと噛み合うように配置されている。駆動モータの回転動力により横軸222とベベルピニオン221bとが一体に回転されると、ベベルピニオン221bからベベルギア221aへと回転動力が伝達され、偏心スリーブ組立214が外筒ブッシュ部213aの回転軸線回りに回転駆動される。 The rotational power transmission system 220 has a horizontal shaft 222 connected to a drive motor (not shown), and a bevel pinion 221b fixed to one end of the horizontal shaft 222. The horizontal shaft 222 is oriented in a direction perpendicular to the rotation axis of the outer cylinder bush portion 213a. The bevel pinion 221b fixed to one end of the horizontal shaft 222 is disposed in the gear housing space 240 so as to mesh with the bevel gear 221a fixed to the flange portion 214b. When the horizontal shaft 222 and the bevel pinion 221b are rotated together by the rotational power of the drive motor, the rotational power is transmitted from the bevel pinion 221b to the bevel gear 221a, and the eccentric sleeve assembly 214 rotates around the rotational axis of the outer cylinder bush portion 213a. Is driven to rotate.
 スリーブ部214cには、外筒ブッシュ部213aの回転軸線に対して傾斜する向きに延びる貫通孔が形成されており、その傾斜する向きに延びる孔に、内筒ブッシュ部214aが嵌合されている。主軸組立215は、内筒ブッシュ部214aに挿入されている。主軸組立215の上部には、漏斗状のマントル217が固定されている。 The sleeve portion 214c is formed with a through hole extending in a direction inclined with respect to the rotation axis of the outer cylinder bush portion 213a, and the inner cylinder bush portion 214a is fitted into the hole extending in the inclination direction. . The main shaft assembly 215 is inserted into the inner cylinder bush portion 214a. A funnel-shaped mantle 217 is fixed to the upper part of the main shaft assembly 215.
 図示された例では、旋動式破砕機210は、いわゆる油圧式コーンクラッシャであり、主軸組立215の上端部は、上部フレーム組立211に保持された軸受223により支持されている。一方、主軸組立215の下端部には、凸球面を有する主軸ステップ215aが固定されており、主軸ステップ215aの下方には、凹球面を有するステップ座金213cと、ステップ座金213cの裏面を支持する摩耗板213bとが積み重ねられて配置されている。摩耗板213bは、下部フレーム組立213の底部、より詳しくは下部フレーム組立213の下方に設置された油圧シリンダ組立のラム、に固定されている。主軸ステップ215aの凸球面とステップ座金213cの凹球面とが摺動する摺動部を形成している。 In the illustrated example, the rotary crusher 210 is a so-called hydraulic cone crusher, and the upper end portion of the spindle assembly 215 is supported by a bearing 223 held by the upper frame assembly 211. On the other hand, a spindle step 215a having a convex spherical surface is fixed to the lower end portion of the spindle assembly 215. Under the spindle step 215a, a step washer 213c having a concave spherical surface and wear for supporting the back surface of the step washer 213c. Plates 213b are stacked and arranged. The wear plate 213b is fixed to the bottom of the lower frame assembly 213, more specifically, to a ram of a hydraulic cylinder assembly installed below the lower frame assembly 213. A sliding part is formed in which the convex spherical surface of the main spindle step 215a and the concave spherical surface of the step washer 213c slide.
 回転動力伝達系220により偏心スリーブ組立214が回転されると、主軸組立215は、軸受223を支点として内筒ブッシュ部214aの回転軸線回りを歳差運動される。マントル217は、主軸組立215の歳差運動に応じてコーンケーブ212に対して歳差運動され、マントル217とコーンケーブ212との間に挟まれた破砕室218に供給される被破砕物を破砕するようになっている。 When the eccentric sleeve assembly 214 is rotated by the rotational power transmission system 220, the main shaft assembly 215 is precessed around the rotation axis of the inner cylinder bush portion 214a with the bearing 223 as a fulcrum. The mantle 217 is precessed with respect to the cone cave 212 according to the precession of the main shaft assembly 215 so as to crush the object to be crushed supplied to the crushing chamber 218 sandwiched between the mantle 217 and the cone cave 212. It has become.
 旋動式破砕機210の運転中は、大きな負荷の掛かる主軸組立215を円滑に歳差運動させるために、主軸組立215と内筒ブッシュ部214aとの間の第1軸受部241およびスリーブ部214cと外筒ブッシュ部213aとの間の第2軸受部242にそれぞれ適切な量の潤滑油を供給して健全な油膜を維持する必要がある。そのため、旋動式破砕機210には、第1軸受部241および第2軸受部242にそれぞれ潤滑油を供給するための給油構造230が設けられている。 During the operation of the rotary crusher 210, the first bearing portion 241 and the sleeve portion 214c between the main shaft assembly 215 and the inner cylinder bush portion 214a are used in order to smoothly precess the main shaft assembly 215 to which a large load is applied. It is necessary to supply a proper amount of lubricating oil to the second bearing portion 242 between the outer cylinder bush portion 213a and maintain a healthy oil film. Therefore, the rotary crusher 210 is provided with an oil supply structure 230 for supplying lubricating oil to the first bearing portion 241 and the second bearing portion 242, respectively.
 図5は、給油構造230を拡大して示す概略図である。図5において、矢印は潤滑油の流れる向きを示している。 FIG. 5 is a schematic diagram showing the refueling structure 230 in an enlarged manner. In FIG. 5, the arrow indicates the direction in which the lubricating oil flows.
 図5に示すように、給油構造230は、第1軸受部241に給油するように下部フレーム組立213の底部、より詳しくは油圧シリンダ組立のラム中央部、に開口する第1給油入口231と、第2軸受部242に給油するように外筒ブッシュ部213aの内周面に開口する第2給油入口232と、下部フレーム組立213の内側に設けられ、スリーブ部214cの下端部の端面と対向する非接触面を有する環状のシール形成部234と、を有している。 As shown in FIG. 5, the oil supply structure 230 includes a first oil supply inlet 231 that opens to the bottom of the lower frame assembly 213, more specifically, the ram center of the hydraulic cylinder assembly, so as to supply oil to the first bearing portion 241. The second oil supply inlet 232 that opens to the inner peripheral surface of the outer cylinder bush portion 213a so as to supply oil to the second bearing portion 242 and the inner side of the lower frame assembly 213 are opposed to the end surface of the lower end portion of the sleeve portion 214c. And an annular seal forming portion 234 having a non-contact surface.
 図示された例では、シール形成部234は、下部フレーム組立213の内面から上向きに突き出すように設けられており、その上端部に非接触面が設けられている。偏心スリーブ組立214のフランジ部214bがスラストベアリング219により下から支持されているため、偏心スリーブ組立214のスリーブ部214cは一定の高さ位置に位置決めされ、これにより、シール形成部234の非接触面とスリーブ部214cの下端部の端面との間には一定の間隔の隙間233が形成されるようになっている。 In the illustrated example, the seal forming portion 234 is provided so as to protrude upward from the inner surface of the lower frame assembly 213, and a non-contact surface is provided at the upper end portion thereof. Since the flange portion 214 b of the eccentric sleeve assembly 214 is supported from below by the thrust bearing 219, the sleeve portion 214 c of the eccentric sleeve assembly 214 is positioned at a certain height position, and thereby the non-contact surface of the seal forming portion 234. A gap 233 with a constant interval is formed between the sleeve portion 214c and the end surface of the lower end portion of the sleeve portion 214c.
 シール形成部234の非接触面とスリーブ部214cの下端部の端面との間に形成される隙間233は、潤滑油でシールされており、第1給油入口231から供給された潤滑油が第2軸受部242に流入することを防止するような間隔に調整されている。隙間233の間隔は、具体的には、例えば0.5mm~1.0mm程度であるが、この範囲の値に限定されるものではない。 A gap 233 formed between the non-contact surface of the seal forming portion 234 and the end surface of the lower end portion of the sleeve portion 214c is sealed with lubricating oil, and the lubricating oil supplied from the first oil supply inlet 231 is second. The interval is adjusted so as to prevent inflow into the bearing portion 242. Specifically, the gap 233 is, for example, about 0.5 mm to 1.0 mm, but is not limited to a value within this range.
 図5に示すように、環状のシール形成部234の外周には、仕切板235が配設されている。仕切板235は、第2軸受部242の下方において、スリーブ部214cの下端部の外周面を取り囲むように設けられており、仕切板235の内周面とスリーブ部214cの下端部の外周面との間には、環状の油溜まり部250が形成されている。第2軸受部242の下端部から流出する潤滑油の一部は、油溜まり部250に溜められるようになっている。油溜まり部250は、シール形成部234の非接触面とスリーブ部214cの下端部の端面との間の隙間233と連通されている。 As shown in FIG. 5, a partition plate 235 is disposed on the outer periphery of the annular seal forming portion 234. The partition plate 235 is provided below the second bearing portion 242 so as to surround the outer peripheral surface of the lower end portion of the sleeve portion 214c, and the inner peripheral surface of the partition plate 235 and the outer peripheral surface of the lower end portion of the sleeve portion 214c. An annular oil reservoir 250 is formed between the two. A part of the lubricating oil flowing out from the lower end portion of the second bearing portion 242 is stored in the oil reservoir portion 250. The oil reservoir 250 is communicated with a gap 233 between the non-contact surface of the seal forming portion 234 and the end surface of the lower end portion of the sleeve portion 214c.
 以下、図6~図8を参照して偏心スリーブ組立214の回転に伴う油溜まり部250の作用について説明する。 Hereinafter, with reference to FIGS. 6 to 8, the operation of the oil reservoir 250 accompanying the rotation of the eccentric sleeve assembly 214 will be described.
 図6は、旋動式破砕機210の第1軸受部241に形成される油膜を示す横断面図である。図6では、偏心スリーブ組立214の位相のうち、主軸組立215の外周面と内筒ブッシュ部214aの内周面との間の間隔が最大となる位相をθ=0°、最小となる位相をθ=180°とし、時計回りを正方向とする。 FIG. 6 is a cross-sectional view showing an oil film formed on the first bearing portion 241 of the rotary crusher 210. In FIG. 6, among the phases of the eccentric sleeve assembly 214, θ = 0 ° is the phase at which the distance between the outer peripheral surface of the spindle assembly 215 and the inner peripheral surface of the inner cylinder bush portion 214 a is maximum, and the phase at which the interval is minimum. θ = 180 °, and clockwise is the positive direction.
 図6では、偏心スリーブ組立214は時計回りに回転しており、これにより、主軸組立215の外周面と内筒ブッシュ部214aの内周面との間の間隔が最小となる部分(θ=180°の位相に対応する部分)も、時計回りに回転する。主軸組立215の外周面と内筒ブッシュ部214aの内周面との間の間隔が最小となる部分(θ=180°の位相に対応する部分)が、時計回りに回転することで、第1軸受部241に供給される潤滑油は、主軸組立215の外周面と内筒ブッシュ部214aの内周面との間に押し挟まれながら、時計回りに押し出される。これにより、主軸組立215の外周面と内筒ブッシュ部214aの内周面との間の第1軸受部241には、図6に示すように、θ=180°の位相に対応する部分の近傍からθ=0°の位相に対応する部分にわたって、油膜が形成される。 In FIG. 6, the eccentric sleeve assembly 214 rotates clockwise, whereby the portion (θ = 180) in which the distance between the outer peripheral surface of the main shaft assembly 215 and the inner peripheral surface of the inner cylinder bush portion 214a is minimized. The part corresponding to the phase of °) also rotates clockwise. The portion where the distance between the outer peripheral surface of the spindle assembly 215 and the inner peripheral surface of the inner cylinder bush portion 214a is the minimum (the portion corresponding to the phase of θ = 180 °) rotates clockwise, so that the first The lubricating oil supplied to the bearing portion 241 is pushed clockwise while being sandwiched between the outer peripheral surface of the main shaft assembly 215 and the inner peripheral surface of the inner cylinder bush portion 214a. As a result, the first bearing portion 241 between the outer peripheral surface of the spindle assembly 215 and the inner peripheral surface of the inner cylinder bush portion 214a has a vicinity of a portion corresponding to a phase of θ = 180 ° as shown in FIG. An oil film is formed over a portion corresponding to the phase of θ = 0 °.
 図7は、この油膜の圧力分布を示している。第1軸受部241のうちθ=180°の位相に対して時計回りの方向に隣接する領域では、偏心スリーブ組立214が時計回りに回転することで、主軸組立215の外周面と内筒ブッシュ部214aの内周面との間で油膜が押し潰されるため、油膜の圧力が上昇する。 FIG. 7 shows the pressure distribution of this oil film. In the region adjacent to the first bearing portion 241 in the clockwise direction with respect to the phase of θ = 180 °, the eccentric sleeve assembly 214 rotates clockwise, so that the outer peripheral surface of the spindle assembly 215 and the inner cylinder bush portion Since the oil film is crushed between the inner peripheral surface of 214a, the pressure of the oil film increases.
 これにより、図8に示すように、シール形成部234の非接触面とスリーブ部214cの下端部の端面との間の隙間233のうち、θ=180°付近~360°の位相に対応する領域では、隙間233の潤滑油が第1軸受部241に形成される油膜から圧力を受けることで、隙間233から油溜まり部250へと流出する向きの潤滑油の流れが生じる。 As a result, as shown in FIG. 8, in the gap 233 between the non-contact surface of the seal forming portion 234 and the end surface of the lower end portion of the sleeve portion 214c, a region corresponding to a phase of around θ = 180 ° to 360 °. Then, when the lubricating oil in the gap 233 receives pressure from the oil film formed in the first bearing portion 241, the lubricating oil flows in a direction that flows out from the gap 233 to the oil reservoir 250.
 一方、図7には示されていないが、第1軸受部241のうちθ=180°の位相に対して反時計回りの方向に隣接する領域では、偏心スリーブ組立214が時計回りに回転することで、油膜が失われるとともに、主軸組立215の外周面と内筒ブッシュ部214aの内周面との間の間隔が広げられるため、その空間には負圧が生じる。 On the other hand, although not shown in FIG. 7, the eccentric sleeve assembly 214 rotates clockwise in the region adjacent to the first bearing portion 241 in the counterclockwise direction with respect to the phase of θ = 180 °. Thus, the oil film is lost, and the space between the outer peripheral surface of the main shaft assembly 215 and the inner peripheral surface of the inner cylinder bush portion 214a is widened, so that negative pressure is generated in the space.
 これにより、図8に示すように、シール形成部234の非接触面とスリーブ部214cの下端部の端面との間の隙間233のうち、θ=0°~180°付近の位相に対応する領域では、隙間233の潤滑油が第1軸受部241に生じる負圧を受けることで、隙間233から第1軸受部241へと流入する向きの潤滑油の流れが生じる。 As a result, as shown in FIG. 8, in the gap 233 between the non-contact surface of the seal forming portion 234 and the end surface of the lower end portion of the sleeve portion 214c, a region corresponding to a phase around θ = 0 ° to 180 °. Then, when the lubricating oil in the gap 233 receives the negative pressure generated in the first bearing portion 241, the lubricating oil flows in a direction flowing from the gap 233 to the first bearing portion 241.
 ここで、比較例として、隙間233の外側に油溜まり部250が形成されていない態様を考える。この態様では、偏心スリーブ組立214の回転により隙間233から第1軸受部241へと流入する向きの潤滑油の流れが生じる時に、環状空間238のエアが隙間233へと吸い込まれて潤滑油に気泡が混ざると、第1軸受部241内部で軸受破損の原因のひとつである油膜切れが発生する可能性が高い。 Here, as a comparative example, a mode in which the oil reservoir 250 is not formed outside the gap 233 is considered. In this aspect, when the flow of the lubricating oil flows in the direction from the clearance 233 to the first bearing portion 241 due to the rotation of the eccentric sleeve assembly 214, the air in the annular space 238 is sucked into the clearance 233 and bubbles are generated in the lubricating oil. Is mixed, there is a high possibility that an oil film breakage, which is one of the causes of bearing damage, occurs inside the first bearing portion 241.
 これに対し、本実施の形態では、隙間233の外側に油溜まり部250が形成されているため、偏心スリーブ組立214の回転により隙間233から第1軸受部241へと流入する向きの潤滑油の流れが生じる時に、油溜まり部250に溜められた潤滑油が隙間233へと吸い込まれることになる。これにより、環状空間238のエアが隙間233へと吸い込まれて潤滑油に気泡が混じることが、効果的に防止される。 On the other hand, in the present embodiment, since the oil reservoir 250 is formed outside the gap 233, the lubricating oil directed to flow into the first bearing portion 241 from the gap 233 by the rotation of the eccentric sleeve assembly 214 is used. When the flow occurs, the lubricating oil stored in the oil reservoir 250 is sucked into the gap 233. As a result, air in the annular space 238 is effectively prevented from being sucked into the gap 233 and bubbles being mixed into the lubricating oil.
 図示されたように、油溜まり部250は、隙間233より高い位置に形成されていることが好ましい。この場合、油溜まり部250に溜められた潤滑油は重力により隙間233側に寄せ集められるため、偏心スリーブ組立214の回転により隙間233から第1軸受部241へ流入する向きの潤滑油の流れが生じる時に、油溜まり部250に溜められた潤滑油が隙間233へと吸い込まれることが保証され、環状空間238のエアが隙間233へと吸い込まれることが、より確実に防止され得る。 As shown in the figure, the oil reservoir 250 is preferably formed at a position higher than the gap 233. In this case, since the lubricating oil stored in the oil reservoir 250 is gathered near the gap 233 due to gravity, the flow of the lubricating oil flowing in the direction from the gap 233 to the first bearing portion 241 is caused by the rotation of the eccentric sleeve assembly 214. When it occurs, it is guaranteed that the lubricating oil stored in the oil reservoir 250 is sucked into the gap 233, and the air in the annular space 238 can be more reliably prevented from being sucked into the gap 233.
 図示された例では、摩耗板213bの中央部およびステップ座金213cの中央部をそれぞれ貫通するように貫通孔236が形成されており、第1給油入口231は、貫通孔236の内側に開口している。図5に示すように、第1給油入口231から貫通孔236に導入される潤滑油は、摩耗板213bとステップ座金213cとの間の摺動部の内径側端部およびステップ座金213cと主軸ステップ215aとの間の摺動部の内径側端部にそれぞれ流入し、各摺動部を潤滑させる。そして、各摺動部を通過した潤滑油は、各摺動部の外径側端部から主軸組立215の下端部の外側の環状空間237に流出し、当該環状空間237から第1軸受部241の下端部に流入して、第1軸受部241を潤滑させる。そして、第1軸受部241を通過した潤滑油は、第1軸受部241の上端部から外筒ブッシュ部213aの外側のギア収容空間240に流出し、ギア収容空間240の床に溜まる潤滑油は、図4に示す給油出口239から回収される。 In the illustrated example, a through hole 236 is formed so as to penetrate the central portion of the wear plate 213b and the central portion of the step washer 213c, and the first oil supply inlet 231 is opened inside the through hole 236. Yes. As shown in FIG. 5, the lubricating oil introduced into the through hole 236 from the first oil supply inlet 231 is the inner diameter side end portion of the sliding portion between the wear plate 213b and the step washer 213c and the step washer 213c and the main spindle step. Each of the sliding portions is lubricated by flowing into the inner diameter side end portion of the sliding portion between 215a. Then, the lubricating oil that has passed through each sliding portion flows out from the outer diameter side end portion of each sliding portion into the annular space 237 outside the lower end portion of the spindle assembly 215, and from the annular space 237 to the first bearing portion 241. The first bearing portion 241 is lubricated. The lubricating oil that has passed through the first bearing portion 241 flows out from the upper end portion of the first bearing portion 241 to the gear housing space 240 outside the outer cylinder bush portion 213a, and the lubricating oil that accumulates on the floor of the gear housing space 240 is These are recovered from the fuel supply outlet 239 shown in FIG.
 一方、第2給油入口232から第2軸受部242に導入される潤滑油の一部は、第2軸受部242のうち第2給油入口232より下方の領域に流入して、当該下方領域を潤滑させる。そして、第2軸受部242の下方領域を通過した潤滑油は、第2軸受部242の下端部から流出して、その下方に設けられた油溜まり部250に溜められる。油溜まり部250から溢れた潤滑油は、その外側の環状空間238に流出し、当該環状空間238の床に溜まる潤滑油は、図4に示す給油出口239から回収される。また、第2給油入口232から第2軸受部242に直接導入される潤滑油の残りの部分は、第2軸受部242のうち第2給油入口232より上方の領域に流入して、当該上方領域を潤滑させる。そして、第2軸受部242の上方領域を通過した潤滑油は、第2軸受部242の上端部から外筒ブッシュ部213aの外側のギア収容空間240に流出し、ギア収容空間240の床に溜まる潤滑油は、図4に示す給油出口239から回収される。 On the other hand, a part of the lubricating oil introduced into the second bearing portion 242 from the second oil supply inlet 232 flows into a region below the second oil supply inlet 232 in the second bearing portion 242 and lubricates the lower region. Let Then, the lubricating oil that has passed through the lower region of the second bearing portion 242 flows out from the lower end portion of the second bearing portion 242 and is stored in the oil reservoir 250 provided below the lubricating oil. Lubricating oil overflowing from the oil reservoir 250 flows into the outer annular space 238, and the lubricating oil remaining on the floor of the annular space 238 is recovered from the oil supply outlet 239 shown in FIG. Further, the remaining portion of the lubricating oil introduced directly from the second oil supply inlet 232 to the second bearing portion 242 flows into a region above the second oil supply inlet 232 in the second bearing portion 242, and the upper region Lubricate. Then, the lubricating oil that has passed through the upper region of the second bearing portion 242 flows out from the upper end portion of the second bearing portion 242 to the gear accommodating space 240 outside the outer cylinder bush portion 213a and accumulates on the floor of the gear accommodating space 240. Lubricating oil is collect | recovered from the oil supply exit 239 shown in FIG.
 ところで、図9は、上部開放型の旋動式破砕機における給油構造の比較例を示す概略図である。図9において、矢印は潤滑油の流れる向きを示している。図9に示すような上部開放整備型の旋動式破砕機では、第1給油入口2131から第1軸受部2141に供給される潤滑油の流路と第2給油入口2132から第2軸受部2142に供給される潤滑油の流路とが構造的に分離されていない。とくに第2軸受部2142の給油出口側2152と第1軸受部2141の給油入口側2151とが連通しており、第1給油入口2131から供給される潤滑油は第1軸受部2141だけでなく第2軸受部2142へも流入するようになっている。そのため、各軸受部2141、2142への給油配分量が不安定であり、とくに悪条件下においては健全な油膜維持が困難となる可能性がある。 Incidentally, FIG. 9 is a schematic view showing a comparative example of an oil supply structure in an upper open type rotary crusher. In FIG. 9, the arrow indicates the direction in which the lubricating oil flows. In the upper open maintenance type rotary crusher as shown in FIG. 9, the flow path of the lubricating oil supplied from the first oil supply inlet 2131 to the first bearing portion 2141 and the second bearing portion 2142 from the second oil supply inlet 2132. Is not structurally separated from the flow path of the lubricating oil supplied to. In particular, the oil supply outlet side 2152 of the second bearing portion 2142 and the oil supply inlet side 2151 of the first bearing portion 2141 communicate with each other, and the lubricating oil supplied from the first oil supply inlet 2131 is not only the first bearing portion 2141 but also the first oil. It also flows into the two bearing portions 2142. Therefore, the amount of oil distribution to the bearings 2141 and 2142 is unstable, and it may be difficult to maintain a healthy oil film particularly under adverse conditions.
 一方、図5に示すように、本実施の形態では、下部フレーム組立213の内側にはシール形成部234が設けられており、シール形成部234の非接触面とスリーブ部214cの下端部の端面との間の隙間233が潤滑油でシールされているため、第1軸受部241および第2軸受部242にそれぞれ独立に給油することが可能である。したがって、第1軸受部241および第2軸受部242において健全な油膜が維持されるように給油量を制御することができる。 On the other hand, as shown in FIG. 5, in the present embodiment, a seal forming portion 234 is provided inside the lower frame assembly 213, and the non-contact surface of the seal forming portion 234 and the end surface of the lower end portion of the sleeve portion 214c. Since the gap 233 between them is sealed with lubricating oil, the first bearing portion 241 and the second bearing portion 242 can be independently supplied with oil. Therefore, the amount of oil supply can be controlled so that a healthy oil film is maintained in the first bearing portion 241 and the second bearing portion 242.
 次に、本実施の形態による旋動式破砕機210の作用について説明する。 Next, the operation of the rotary crusher 210 according to this embodiment will be described.
 まず、第1給油入口231から第1軸受部241に潤滑油が供給されるとともに、第2給油入口232から第2軸受部242に潤滑油が供給される。また、回転動力伝達系220から偏心スリーブ組立214のフランジ部214bに回転動力が伝達され、偏心スリーブ組立214が外筒ブッシュ部213aの回転軸線回りに回転される。 First, the lubricating oil is supplied from the first oil supply inlet 231 to the first bearing portion 241, and the lubricating oil is supplied from the second oil supply inlet 232 to the second bearing portion 242. Further, rotational power is transmitted from the rotational power transmission system 220 to the flange portion 214b of the eccentric sleeve assembly 214, and the eccentric sleeve assembly 214 is rotated about the rotational axis of the outer cylinder bush portion 213a.
 本実施の形態では、偏心スリーブ組立214の回転中、シール形成部234の非接触面とスリーブ部214cの下端部の端面との間の隙間233により、第1給油入口231から供給された潤滑油が第2軸受部242に流入することが防止される。そのため、各軸受部241、242への給油量を制御することで、第1軸受部241および第2軸受部242において健全な油膜を維持することができる。 In the present embodiment, during the rotation of the eccentric sleeve assembly 214, the lubricating oil supplied from the first oil supply inlet 231 by the gap 233 between the non-contact surface of the seal forming portion 234 and the end surface of the lower end portion of the sleeve portion 214c. Is prevented from flowing into the second bearing portion 242. Therefore, a healthy oil film can be maintained in the first bearing portion 241 and the second bearing portion 242 by controlling the amount of oil supplied to the bearing portions 241 and 242.
 偏心スリーブ組立214の回転に伴って、内筒ブッシュ部214aに嵌合された主軸組立215は、軸受223を支点として歳差運動される。主軸組立215に固定されたマントル217は、主軸組立215の歳差運動に応じてコーンケーブ212に対して歳差運動され、回転ごとにマントル217とコーンケーブ212との間の間隙が広狭に変化される。 As the eccentric sleeve assembly 214 rotates, the spindle assembly 215 fitted to the inner cylinder bush portion 214a is precessed about the bearing 223 as a fulcrum. The mantle 217 fixed to the main shaft assembly 215 is precessed with respect to the cone cave 212 in accordance with the precession of the main shaft assembly 215, and the gap between the mantle 217 and the cone cave 212 is changed widely with each rotation. .
 次に、上部フレーム組立211の上部のホッパ25から原石等の被破砕物が投入される。投入された被破砕物は、マントル217とコーンケーブ212との間に形成される破砕室218に落下し、マントル217とコーンケーブ212との間に捕捉される。マントル217が旋動されて、マントル217とコーンケーブ212との間の間隙が狭くなった時に、被破砕物の圧砕が行われる。 Next, an object to be crushed such as a rough stone is fed from the hopper 25 at the upper part of the upper frame assembly 211. The thrown object to be crushed falls into the crushing chamber 218 formed between the mantle 217 and the corn cave 212 and is captured between the mantle 217 and the corn cave 212. When the mantle 217 is rotated and the gap between the mantle 217 and the corn cave 212 is narrowed, the object to be crushed is crushed.
 その後、マントル217とコーンケーブ212との間の間隙が広がると、被破砕物は、破砕室218内においてマントル217とコーンケーブ212との間の間隙がより広くなる部分に落下し、マントル217とコーンケーブ212との間の間隙が再び狭くなった時に、さらに細かく圧砕される。被破砕物は、圧砕と落下とを繰り返して徐々に細かくなり、所定粒度の製品となってマントル217とコーンケーブ212との間の間隙を通って床に落下し、床の開口から機外に排出される。 Thereafter, when the gap between the mantle 217 and the corn cave 212 is widened, the material to be crushed falls in the crushing chamber 218 to a portion where the gap between the mantle 217 and the corn cave 212 becomes wider, and the mantle 217 and the corn cave 212 are dropped. When the gap between is narrowed again, it is further crushed. The material to be crushed gradually becomes finer by repeated crushing and dropping, becomes a product of a predetermined particle size, falls to the floor through the gap between the mantle 217 and the corn cave 212, and is discharged from the opening of the floor to the outside of the machine. Is done.
 旋動式破砕機210の運転中は、第1軸受部241および第2軸受部242において健全な油膜が維持されるように十分な給油量を安定的且つ各々独立して制御することができるため、焼き付き等により軸受部分241、242が破損することが防止され得る。 During operation of the rotary crusher 210, a sufficient amount of oil can be stably and independently controlled so that a healthy oil film is maintained in the first bearing portion 241 and the second bearing portion 242. The bearing portions 241 and 242 can be prevented from being damaged due to seizure or the like.
 以上のような本実施の形態によれば、偏心スリーブ組立214のフランジ部214bがスリーブ部214cの上部に延在しているため、下部フレーム組立213から偏心スリーブ組立214を上方へ引き抜くことが可能であり、軸受部分241、242やギア221a、221bが破損した場合には、偏心スリーブ組立214を上方へ引き抜くことで、各軸受部分241、242やギア221a、221bの整備作業を行うことができる。そのため、下部フレーム組立213の下方に配置された油圧シリンダ組立を分解する必要がなく、かつ吊り荷の下に作業者が入って行う危険な作業も不要であり、下部開放整備型に比べて優れた整備性が得られる。 According to the present embodiment as described above, since the flange portion 214b of the eccentric sleeve assembly 214 extends above the sleeve portion 214c, the eccentric sleeve assembly 214 can be pulled upward from the lower frame assembly 213. When the bearing parts 241 and 242 and the gears 221a and 221b are damaged, the eccentric sleeve assembly 214 can be pulled upward to perform maintenance work on the bearing parts 241 and 242 and the gears 221a and 221b. . Therefore, it is not necessary to disassemble the hydraulic cylinder assembly arranged below the lower frame assembly 213, and there is no need for dangerous work performed by the operator under the suspended load, which is superior to the lower open maintenance type. Maintainability.
 また、本実施の形態によれば、シール形成部234の非接触面とスリーブ部214cの下端部の端面との間の隙間233が潤滑油でシールされているため、第1軸受部241および第2軸受部242における健全な油膜維持のための給油量制御が可能である。これにより、焼き付き等により軸受部分241、242が破損することが防止され得る。 Further, according to the present embodiment, since the gap 233 between the non-contact surface of the seal forming portion 234 and the end surface of the lower end portion of the sleeve portion 214c is sealed with the lubricating oil, the first bearing portion 241 and the first The oil supply amount control for maintaining a healthy oil film in the two bearing portions 242 is possible. This can prevent the bearing portions 241 and 242 from being damaged due to seizure or the like.
 また、本実施の形態によれば、スリーブ部214cの下端部の外周面を取り囲むように仕切板235が設けられており、仕切板235の内周面とスリーブ部214cの下端部の外周面との間に形成される環状の油溜まり部250が、隙間233と連通されているため、偏心スリーブ組立214の回転により隙間233の潤滑油に径方向内向きの流れが生じる時に、油溜まり部250に溜められた潤滑油が隙間233へと吸い込まれることになる。これにより、環状空間238のエアが隙間233へと吸い込まれて潤滑油に気泡が混じることが防止され得る。 Further, according to the present embodiment, the partition plate 235 is provided so as to surround the outer peripheral surface of the lower end portion of the sleeve portion 214c, and the inner peripheral surface of the partition plate 235 and the outer peripheral surface of the lower end portion of the sleeve portion 214c Since the annular oil reservoir 250 formed between the gaps 233 communicates with the gap 233, when the eccentric sleeve assembly 214 rotates, the lubricating oil in the gap 233 generates a radially inward flow. Thus, the lubricating oil stored in is sucked into the gap 233. As a result, air in the annular space 238 can be prevented from being sucked into the gap 233 and bubbles being mixed with the lubricating oil.
 また、本実施の形態によれば、油溜まり部250が隙間233より高い位置に形成されているため、油溜まり部250に溜められた潤滑油は重力により隙間233側に寄せ集められる。これにより、偏心スリーブ組立214の回転により隙間233の潤滑油に径方向内向きの流れが生じる時に、油溜まり部250に溜められた潤滑油が隙間233へと吸い込まれることが保証され、環状空間238のエアが隙間233へと吸い込まれることが確実に防止され得る。 Further, according to the present embodiment, since the oil reservoir 250 is formed at a position higher than the gap 233, the lubricating oil stored in the oil reservoir 250 is gathered near the gap 233 by gravity. This ensures that the lubricating oil stored in the oil reservoir 250 is sucked into the gap 233 when the eccentric sleeve assembly 214 rotates to cause the lubricating oil in the gap 233 to flow inward in the radial direction. The air of 238 can be reliably prevented from being sucked into the gap 233.
 なお、図4に示す例では、旋動式破砕機210は、いわゆる油圧式コーンクラッシャであったが、これに限定されるものではない。たとえば機械式(サイモンズ式)コーンクラッシャに対しても、本実施の形態による給油構造230を適用することは可能である。 In the example shown in FIG. 4, the rotary crusher 210 is a so-called hydraulic cone crusher, but is not limited to this. For example, the oil supply structure 230 according to the present embodiment can also be applied to a mechanical (Simons type) cone crusher.
[第3の実施の形態]
 図10は、本発明の一実施の形態による旋動式破砕機を示す縦断面図である。
[Third Embodiment]
FIG. 10 is a longitudinal sectional view showing a rotary crusher according to an embodiment of the present invention.
 図10に示すように、本実施の形態による旋動式破砕機310は、コーンケーブ312を保持する上部フレーム組立311と、上部フレーム組立311の下方に配置された外筒ブッシュ部313aを有する下部フレーム組立313と、外筒ブッシュ部313aの内側で回転される偏心スリーブ組立314と、偏心スリーブ組立314に嵌合して旋動されるマントル317を保持する主軸組立315と、偏心スリーブ組立314に回転動力を伝達する回転動力伝達系320と、を備えている。 As shown in FIG. 10, the rotary crusher 310 according to the present embodiment includes an upper frame assembly 311 that holds a cone cave 312 and a lower frame that has an outer cylinder bush portion 313 a disposed below the upper frame assembly 311. The assembly 313, the eccentric sleeve assembly 314 rotated inside the outer cylinder bushing 313a, the spindle assembly 315 holding the mantle 317 fitted and rotated in the eccentric sleeve assembly 314, and the eccentric sleeve assembly 314 rotated. And a rotational power transmission system 320 that transmits power.
 このうち偏心スリーブ組立314は、下部フレーム組立313の外筒ブッシュ部313aに嵌合して回転される内筒ブッシュ部314aを保持するスリーブ部314cと、スリーブ部314cの上部に延在するフランジ部314bと、を有している。フランジ部314bは、スリーブ部314cの上部から外筒ブッシュ部313aの外方に形成されたギア収容空間340へと延びており、外筒ブッシュ部313aの上端部に設けられたスラストベアリング319により下から支持されている。本実施の形態では、フランジ部314bがスリーブ部314cの上部に延在していることで、下部フレーム組立313から偏心スリーブ組立314を上方へ引き抜くことが可能となっている。フランジ部314bの先端部には、ベベルギア321aが固定されている。ベベルギア321aは、外筒ブッシュ部313aの回転軸線と同軸状に配置されている。 Among them, the eccentric sleeve assembly 314 includes a sleeve portion 314c that holds the inner cylinder bush portion 314a that is rotated by being fitted to the outer cylinder bush portion 313a of the lower frame assembly 313, and a flange portion that extends above the sleeve portion 314c. 314b. The flange portion 314b extends from the upper portion of the sleeve portion 314c to a gear housing space 340 formed outside the outer cylinder bush portion 313a, and is lowered by a thrust bearing 319 provided at the upper end portion of the outer cylinder bush portion 313a. It is supported from. In the present embodiment, the flange portion 314b extends above the sleeve portion 314c, so that the eccentric sleeve assembly 314 can be pulled upward from the lower frame assembly 313. A bevel gear 321a is fixed to the tip of the flange portion 314b. The bevel gear 321a is disposed coaxially with the rotation axis of the outer cylinder bush portion 313a.
 回転動力伝達系320は、駆動モータ(不図示)に連結された横軸322と、横軸322の一端部に固定されたベベルピニオン321bと、を有している。横軸322は、外筒ブッシュ部313aの回転軸線に対して直角な向きに向けられている。横軸322の一端に固定されたベベルピニオン321bは、ギア収容空間340において、フランジ部314bに固定されたベベルギア321aと噛み合うように配置されている。駆動モータの回転動力により横軸322とベベルピニオン321bとが一体に回転されると、ベベルピニオン321bからベベルギア321aへと回転動力が伝達され、偏心スリーブ組立314が外筒ブッシュ部313aの回転軸線回りに回転駆動される。 Rotational power transmission system 320 has a horizontal shaft 322 connected to a drive motor (not shown), and a bevel pinion 321b fixed to one end of horizontal shaft 322. The horizontal shaft 322 is oriented in a direction perpendicular to the rotation axis of the outer cylinder bush portion 313a. The bevel pinion 321b fixed to one end of the horizontal shaft 322 is disposed in the gear housing space 340 so as to mesh with the bevel gear 321a fixed to the flange portion 314b. When the horizontal shaft 322 and the bevel pinion 321b are rotated together by the rotational power of the drive motor, the rotational power is transmitted from the bevel pinion 321b to the bevel gear 321a, and the eccentric sleeve assembly 314 rotates around the rotational axis of the outer cylinder bush portion 313a. Is driven to rotate.
 スリーブ部314cには、外筒ブッシュ部313aの回転軸線に対して傾斜する向きに延びる貫通孔が形成されており、その傾斜する向きに延びる孔に、内筒ブッシュ部314aが嵌合されている。主軸組立315は、内筒ブッシュ部314aに挿入されている。主軸組立315の上部には、漏斗状のマントル317が固定されている。 The sleeve portion 314c is formed with a through hole extending in a direction inclined with respect to the rotation axis of the outer cylinder bush portion 313a, and the inner cylinder bush portion 314a is fitted in the hole extending in the inclination direction. . The main shaft assembly 315 is inserted into the inner cylinder bush portion 314a. A funnel-shaped mantle 317 is fixed to the upper portion of the main shaft assembly 315.
 図示された例では、旋動式破砕機310は、いわゆる油圧式コーンクラッシャであり、主軸組立315の上端部は、上部フレーム組立311に保持された軸受323により支持されている。一方、主軸組立315の下端部には、凸球面を有する主軸ステップ315aが固定されており、主軸ステップ315aの下方には、凹球面を有するステップ座金313cと、ステップ座金313cの裏面を支持する摩耗板313bとが積み重ねられて配置されている。摩耗板313bは、下部フレーム組立313の底部、より詳しくは下部フレーム組立313の下方に設置された油圧シリンダ組立のラム、に固定されている。主軸ステップ315aの凸球面とステップ座金313cの凹球面とが摺動する摺動部を形成している。 In the illustrated example, the rotary crusher 310 is a so-called hydraulic cone crusher, and the upper end portion of the spindle assembly 315 is supported by a bearing 323 held by the upper frame assembly 311. On the other hand, a spindle step 315a having a convex spherical surface is fixed to the lower end portion of the spindle assembly 315. Under the spindle step 315a, a step washer 313c having a concave spherical surface and wear for supporting the back surface of the step washer 313c. Plates 313b are stacked and arranged. The wear plate 313b is fixed to the bottom of the lower frame assembly 313, more specifically, to a ram of a hydraulic cylinder assembly installed below the lower frame assembly 313. A sliding part is formed in which the convex spherical surface of the main spindle step 315a and the concave spherical surface of the step washer 313c slide.
 回転動力伝達系320により偏心スリーブ組立314が回転されると、主軸組立315は、軸受323を支点として内筒ブッシュ部314aの回転軸線回りを歳差運動される。マントル317は、主軸組立315の歳差運動に応じてコーンケーブ312に対して歳差運動され、マントル317とコーンケーブ312との間に挟まれた破砕室318に供給される被破砕物を破砕するようになっている。 When the eccentric sleeve assembly 314 is rotated by the rotational power transmission system 320, the main shaft assembly 315 is precessed around the rotation axis of the inner cylinder bush portion 314a with the bearing 323 as a fulcrum. The mantle 317 is precessed with respect to the cone cave 312 according to the precession of the main shaft assembly 315 so as to crush the object to be crushed supplied to the crushing chamber 318 sandwiched between the mantle 317 and the cone cave 312. It has become.
 旋動式破砕機310の運転中は、大きな負荷の掛かる主軸組立315を円滑に歳差運動させるために、主軸組立315と内筒ブッシュ部314aとの間の第1軸受部341およびスリーブ部314cと外筒ブッシュ部313aとの間の第2軸受部342にそれぞれ適切な量の潤滑油を供給して健全な油膜を維持する必要がある。そのため、旋動式破砕機310には、第1軸受部341および第2軸受部342にそれぞれ潤滑油を供給するための給油構造330が設けられている。 During the operation of the rotary crusher 310, the first bearing portion 341 and the sleeve portion 314c between the main shaft assembly 315 and the inner cylinder bush portion 314a are used for smoothly precessing the main shaft assembly 315 which is subjected to a large load. It is necessary to supply an appropriate amount of lubricating oil to the second bearing portion 342 between the outer cylinder bush portion 313a and the outer cylinder bush portion 313a to maintain a healthy oil film. Therefore, the rotary crusher 310 is provided with an oil supply structure 330 for supplying lubricating oil to the first bearing portion 341 and the second bearing portion 342, respectively.
 図11は、給油構造330を拡大して示す概略図である。図11において、矢印は潤滑油の流れる向きを示している。 FIG. 11 is a schematic diagram showing the refueling structure 330 in an enlarged manner. In FIG. 11, the arrow indicates the direction in which the lubricating oil flows.
 図11に示すように、給油構造330は、下部フレーム組立313の底部、より詳しくは油圧シリンダ組立のラム中央部、に開口する給油入口331を有している。この給油入口331は、第1軸受部341の潤滑油および第2軸受部342の潤滑油の両方を供給するようになっている。 As shown in FIG. 11, the oil supply structure 330 has an oil supply inlet 331 that opens to the bottom of the lower frame assembly 313, more specifically, to the center of the ram of the hydraulic cylinder assembly. The oil supply inlet 331 supplies both the lubricating oil for the first bearing portion 341 and the lubricating oil for the second bearing portion 342.
 図12は、旋動式破砕機310の軸受部分341、342の横断面図である。 FIG. 12 is a cross-sectional view of the bearing portions 341 and 342 of the rotary crusher 310.
 本実施の形態では、図11および図12に示すように、内筒ブッシュ部314aの内周面およびスリーブ部314cの外周面には、それぞれ、給油入口331から第1軸受部341に供給される潤滑油の流量と、給油入口331から第2軸受部342に供給される潤滑油の流量と、を制御する縦溝部351、352が設けられている。 In the present embodiment, as shown in FIGS. 11 and 12, the inner peripheral surface of the inner cylinder bush portion 314a and the outer peripheral surface of the sleeve portion 314c are supplied from the oil supply inlet 331 to the first bearing portion 341, respectively. Vertical groove portions 351 and 352 for controlling the flow rate of the lubricating oil and the flow rate of the lubricating oil supplied from the oil supply inlet 331 to the second bearing portion 342 are provided.
 内筒ブッシュ部314aの内周面に設けられた縦溝部351は、第1軸受部341に露出されており、スリーブ部314cの外周面に設けられた縦溝部352は、第2軸受部342に露出されている。 The vertical groove portion 351 provided on the inner peripheral surface of the inner cylinder bush portion 314a is exposed to the first bearing portion 341, and the vertical groove portion 352 provided on the outer peripheral surface of the sleeve portion 314c is provided on the second bearing portion 342. Exposed.
 第1軸受部341に露出される縦溝部351の断面積や数が大きいほど、第1軸受部341の流路断面が大きくなり、すなわち第1軸受部341への流量配分が大きくなる。また、第2軸受部342に露出される縦溝部352の断面積や数が大きいほど、第2軸受部342の流路断面が大きくなり、すなわち第2軸受部342への流量配分が大きくなる。よって、各軸受部341、342に露出される縦溝部351、352の断面積や数を適宜調整することで、各軸受部341、342の流量配分の相対的な割合を調整することができ、結果的に、給油入口331から各軸受部341、342への給油配分量を容易に制御することができる。 The larger the cross-sectional area and the number of the longitudinal groove portions 351 exposed to the first bearing portion 341, the larger the cross section of the flow path of the first bearing portion 341, that is, the flow distribution to the first bearing portion 341 increases. Further, the larger the cross-sectional area and the number of the longitudinal groove portions 352 exposed to the second bearing portion 342, the larger the flow path cross section of the second bearing portion 342, that is, the flow rate distribution to the second bearing portion 342 increases. Therefore, by appropriately adjusting the cross-sectional area and number of the longitudinal groove portions 351 and 352 exposed to the bearing portions 341 and 342, the relative proportion of the flow distribution of the bearing portions 341 and 342 can be adjusted. As a result, the amount of oil distribution from the oil supply inlet 331 to each of the bearing portions 341 and 342 can be easily controlled.
 図示された例では、摩耗板313bの中央部およびステップ座金313cの中央部をそれぞれ貫通するように貫通孔336が形成されており、給油入口331は、貫通孔336の内側に開口している。図11に示すように、給油入口331から貫通孔336に導入される潤滑油は、摩耗板313bとステップ座金313cとの間の摺動部の内径側端部およびステップ座金313cと主軸ステップ315aとの間の摺動部の内径側端部にそれぞれ流入し、各摺動部を潤滑させる。そして、各摺動部を通過した潤滑油は、各摺動部の外径側端部から主軸組立315の下端部の外側の環状空間337に流出する。 In the illustrated example, a through hole 336 is formed so as to penetrate the central portion of the wear plate 313b and the central portion of the step washer 313c, and the oil supply inlet 331 is opened inside the through hole 336. As shown in FIG. 11, the lubricating oil introduced into the through hole 336 from the oil supply inlet 331 includes the inner diameter side end of the sliding portion between the wear plate 313b and the step washer 313c, the step washer 313c, the main spindle step 315a, Each of the sliding parts is lubricated by flowing into the inner diameter side end part of the sliding part between. Then, the lubricating oil that has passed through each sliding portion flows out from the outer diameter side end portion of each sliding portion into the annular space 337 outside the lower end portion of the spindle assembly 315.
 環状空間337に流出した潤滑油の一部は、第1軸受部341の下端部に流入して、第1軸受部341を潤滑させる。そして、第1軸受部341を通過した潤滑油は、第1軸受部341の上端部から外筒ブッシュ部313aの外側のギア収容空間340に流出し、ギア収容空間340の床に溜まる潤滑油は、図10に示す給油出口339から回収される。 Part of the lubricating oil that has flowed out into the annular space 337 flows into the lower end portion of the first bearing portion 341 and lubricates the first bearing portion 341. The lubricating oil that has passed through the first bearing portion 341 flows out from the upper end portion of the first bearing portion 341 to the gear housing space 340 outside the outer cylinder bush portion 313a, and the lubricating oil that accumulates on the floor of the gear housing space 340 is These are recovered from the fuel supply outlet 339 shown in FIG.
 一方、環状空間337に流出した潤滑油の残りの部分は、スリーブ部314cの下方を通って第2軸受部342の下端部に流入し、第2軸受部342を潤滑させる。そして、第2軸受部342を通過した潤滑油は、第2軸受部342の上端部から外筒ブッシュ部313aの外側のギア収容空間340に流出し、ギア収容空間340の床に溜まる潤滑油は、図10に示す給油出口339から回収される。 On the other hand, the remaining portion of the lubricating oil that has flowed out into the annular space 337 flows under the sleeve portion 314c and into the lower end portion of the second bearing portion 342, and lubricates the second bearing portion 342. The lubricating oil that has passed through the second bearing portion 342 flows out from the upper end portion of the second bearing portion 342 into the gear housing space 340 outside the outer cylinder bush portion 313a, and the lubricating oil that accumulates on the floor of the gear housing space 340 is These are recovered from the fuel supply outlet 339 shown in FIG.
 ところで、図14は、上部開放型の旋動式破砕機における給油構造の比較例を示す概略図である。図14において、矢印は潤滑油の流れる向きを示している。図14に示すような上部開放整備型の旋動式破砕機では、第1軸受部3141の潤滑油を下部フレーム組立3113の底部に開口する第1給油入口3131から供給するのに対し、第2軸受部3142の潤滑油を外筒ブッシュ部3113aの円周面に開口する第2給油入口3132から供給するようになっている。 Incidentally, FIG. 14 is a schematic view showing a comparative example of an oil supply structure in an upper open type rotary crusher. In FIG. 14, the arrow indicates the direction in which the lubricating oil flows. In the upper open maintenance type rotary crusher as shown in FIG. 14, the lubricating oil of the first bearing portion 3141 is supplied from the first oil supply inlet 3131 opening at the bottom of the lower frame assembly 3113, whereas the second The lubricating oil of the bearing portion 3142 is supplied from a second oil supply inlet 3132 that opens on the circumferential surface of the outer cylinder bush portion 3113a.
 しかしながら、この給油構造では、第1給油入口3131から第1軸受部3141に供給される潤滑油の流路と第2給油入口3132から第2軸受部3142に供給される潤滑油の流路とが構造的に分離されておらず、とくに第2軸受部3142の給油出口側3152と第1軸受部3141の給油入口側3151とが連通しているため、第1給油入口3131から供給される潤滑油は、第1軸受部3141だけでなく第2軸受部3142へも流入してしまう。そのため、第2軸受部3142のうち第2給油入口3132より下方の領域では下向きの流れと上向きの流れとが混在して潤滑不良が生じるおそれがある。これにより、各軸受部3141、3142への給油配分量が不安定となり、とくに悪条件下においては健全な油膜維持が困難となる可能性がある。 However, in this oil supply structure, a flow path of the lubricating oil supplied from the first oil supply inlet 3131 to the first bearing portion 3141 and a flow path of the lubricating oil supplied from the second oil supply inlet 3132 to the second bearing portion 3142 are provided. The lubricating oil supplied from the first oil supply inlet 3131 is not structurally separated, and in particular, the oil supply outlet side 3152 of the second bearing portion 3142 and the oil supply inlet side 3151 of the first bearing portion 3141 communicate with each other. Flows into not only the first bearing portion 3141 but also the second bearing portion 3142. Therefore, in the region below the second oil supply inlet 3132 in the second bearing portion 3142, there is a possibility that a downward flow and an upward flow are mixed and poor lubrication occurs. As a result, the amount of oil distribution to the bearing portions 3141 and 3142 becomes unstable, and it may be difficult to maintain a healthy oil film particularly under adverse conditions.
 また、図14に示す例では、第1給油入口3131および第2給油入口3132の2箇所から給油を行うために、潤滑油を給油するための配管材(不図示)を第1給油入口3131および第2給油入口3132の2箇所に接続する必要があり、配管が複雑である。 Further, in the example shown in FIG. 14, in order to supply oil from two locations of the first oil supply inlet 3131 and the second oil supply inlet 3132, piping materials (not shown) for supplying lubricating oil are used as the first oil supply inlet 3131 and It is necessary to connect to two places of the 2nd oil supply inlet 3132, and piping is complicated.
 一方、図11に示すように、本実施の形態では、下部フレーム組立313の底部に開口する給油入口331が、第1軸受部341の潤滑油および第2軸受部342の潤滑油の両方を供給するようになっている。そのため、各軸受部341、342にはそれぞれ上向きの流れだけが形成され潤滑不良が生じるおそれは無い。これにより、各軸受部341、342への給油配分量が安定し、第1軸受部341および第2軸受部342において健全な油膜が維持されるように給油量を制御することが可能となる。 On the other hand, as shown in FIG. 11, in the present embodiment, the oil supply inlet 331 that opens to the bottom of the lower frame assembly 313 supplies both the lubricating oil of the first bearing portion 341 and the lubricating oil of the second bearing portion 342. It is supposed to be. Therefore, only the upward flow is formed in each of the bearing portions 341 and 342, and there is no possibility that poor lubrication will occur. As a result, the distribution amount of oil supply to the bearing portions 341 and 342 is stabilized, and the oil supply amount can be controlled so that a healthy oil film is maintained in the first bearing portion 341 and the second bearing portion 342.
 また、本実施の形態では、給油入口331の1箇所から給油を行うため、潤滑油を給油するための配管材(不図示)を給油入口331の1箇所だけに接続すればよく、配管が単純である。 Further, in this embodiment, since oil is supplied from one place of the oil supply inlet 331, a piping material (not shown) for supplying the lubricant need only be connected to one place of the oil supply inlet 331, and the piping is simple. It is.
 次に、本実施の形態による旋動式破砕機310の作用について説明する。 Next, the operation of the rotary crusher 310 according to this embodiment will be described.
 まず、給油入口331から第1軸受部341および第2軸受部342の両方に潤滑油が供給される。本実施の形態では、第1軸受部341の潤滑油および第2軸受部342の潤滑油の両方を、下部フレーム組立313の底部に開口する給油入口331から供給するため、各軸受部341、342への給油配分量は安定しており、第1軸受部341および第2軸受部342において健全な油膜が維持されるように給油量を制御することが可能である。 First, lubricating oil is supplied from the oil supply inlet 331 to both the first bearing portion 341 and the second bearing portion 342. In the present embodiment, since both the lubricating oil of the first bearing portion 341 and the lubricating oil of the second bearing portion 342 are supplied from the oil supply inlet 331 that opens to the bottom of the lower frame assembly 313, the bearing portions 341 and 342 are provided. The amount of oil distribution to the is stable, and the amount of oil supply can be controlled so that a healthy oil film is maintained in the first bearing portion 341 and the second bearing portion 342.
 また、本実施の形態では、内筒ブッシュ部314aの内周面およびスリーブ部314cの外周面に、給油入口331から第1軸受部341に供給される潤滑油の流量と、給油入口331から第2軸受部342に供給される潤滑油の流量と、を制御する縦溝部351、352が設けられているため、第1軸受部341および第2軸受部342において健全な油膜が維持されるように給油量を容易に制御することができる。 Further, in the present embodiment, the flow rate of the lubricating oil supplied from the oil supply inlet 331 to the first bearing portion 341 and the oil supply inlet 331 to the inner peripheral surface of the inner cylinder bush portion 314a and the outer peripheral surface of the sleeve portion 314c. 2 Since the longitudinal groove portions 351 and 352 for controlling the flow rate of the lubricating oil supplied to the bearing portion 342 are provided, a healthy oil film is maintained in the first bearing portion 341 and the second bearing portion 342. The amount of oil supply can be easily controlled.
 次に、回転動力伝達系320から偏心スリーブ組立314のフランジ部314bに回転動力が伝達され、偏心スリーブ組立314が外筒ブッシュ部313aの回転軸線回りに回転される。偏心スリーブ組立314の回転に伴って、内筒ブッシュ部314aに嵌合された主軸組立315は、軸受323を支点として歳差運動される。主軸組立315に固定されたマントル317は、主軸組立315の歳差運動に応じてコーンケーブ312に対して歳差運動され、回転ごとにマントル317とコーンケーブ312との間の間隙が広狭に変化される。 Next, rotational power is transmitted from the rotational power transmission system 320 to the flange portion 314b of the eccentric sleeve assembly 314, and the eccentric sleeve assembly 314 is rotated about the rotational axis of the outer cylinder bush portion 313a. Along with the rotation of the eccentric sleeve assembly 314, the main shaft assembly 315 fitted to the inner cylinder bush portion 314a is precessed about the bearing 323 as a fulcrum. The mantle 317 fixed to the main shaft assembly 315 is precessed with respect to the cone cave 312 in accordance with the precession of the main shaft assembly 315, and the gap between the mantle 317 and the cone cave 312 is changed widely with each rotation. .
 次に、上部フレーム組立311の上部のホッパ325から原石等の被破砕物が投入される。投入された被破砕物は、マントル317とコーンケーブ312との間に形成される破砕室318に落下し、マントル317とコーンケーブ312との間に捕捉される。マントル317が旋動されて、マントル317とコーンケーブ312との間の間隙が狭くなった時に、被破砕物の圧砕が行われる。 Next, an object to be crushed, such as a rough stone, is fed from the upper hopper 325 of the upper frame assembly 311. The input crushed material falls into a crushing chamber 318 formed between the mantle 317 and the corn cave 312 and is captured between the mantle 317 and the corn cave 312. When the mantle 317 is rotated and the gap between the mantle 317 and the corn cave 312 is narrowed, the object to be crushed is crushed.
 その後、マントル317とコーンケーブ312との間の間隙が広がると、被破砕物は、破砕室318内においてマントル317とコーンケーブ312との間の間隙がより広くなる部分に落下し、マントル317とコーンケーブ312との間の間隙が再び狭くなった時に、さらに細かく圧砕される。被破砕物は、圧砕と落下とを繰り返して徐々に細かくなり、所定粒度の製品となってマントル317とコーンケーブ312との間の間隙を通って床に落下し、床の開口から機外に排出される。 Thereafter, when the gap between the mantle 317 and the corn cave 312 widens, the object to be crushed falls in the crushing chamber 318 to a portion where the gap between the mantle 317 and the corn cave 312 becomes wider, and the mantle 317 and the corn cave 312. When the gap between is narrowed again, it is further crushed. The material to be crushed gradually becomes fine by repeating crushing and dropping, becomes a product of a predetermined particle size, falls to the floor through the gap between the mantle 317 and the corn cave 312, and is discharged out of the machine from the floor opening. Is done.
 旋動式破砕機310の運転中は、第1軸受部341および第2軸受部342において健全な油膜が維持されるように十分な給油量が制御されることで、焼き付き等により軸受部分341、342が破損することが防止され得る。 During operation of the rotary crusher 310, a sufficient oil supply amount is controlled so that a healthy oil film is maintained in the first bearing portion 341 and the second bearing portion 342, so that the bearing portion 341, 342 can be prevented from being damaged.
 以上のような本実施の形態によれば、偏心スリーブ組立314のフランジ部314bがスリーブ部314cの上部に延在しているため、下部フレーム組立313から偏心スリーブ組立314を上方へ引き抜くことが可能であり、軸受部分341、342やギア321a、321bが破損した場合には、偏心スリーブ組立314を上方へ引き抜くことで、各軸受部分341、342やギア321a、321bの整備作業を行うことができる。そのため、下部フレーム組立313の下方に配置された油圧シリンダ組立を分解する必要がなく、かつ吊り荷の下に作業者が入って行う危険な作業も不要であり、下部開放整備型に比べて優れた整備性が得られる。 According to the present embodiment as described above, since the flange portion 314b of the eccentric sleeve assembly 314 extends to the upper portion of the sleeve portion 314c, the eccentric sleeve assembly 314 can be pulled upward from the lower frame assembly 313. When the bearing portions 341 and 342 and the gears 321a and 321b are damaged, the eccentric sleeve assembly 314 can be pulled upward to perform maintenance work on the bearing portions 341 and 342 and the gears 321a and 321b. . Therefore, it is not necessary to disassemble the hydraulic cylinder assembly arranged below the lower frame assembly 313, and there is no need for dangerous work performed by an operator under the suspended load, which is superior to the lower open maintenance type. Maintainability.
 また、本実施の形態によれば、第1軸受部341の潤滑油および第2軸受部342の潤滑油の両方を、下部フレーム組立313の底部に開口する給油入口331から供給するため、各軸受部341、342への給油配分量は安定しており、第1軸受部341および第2軸受部342において健全な油膜が維持されるように給油量を制御することが可能である。これにより、焼き付き等により軸受部分341、342が破損することが防止され得る。 Further, according to the present embodiment, both the lubricating oil of the first bearing portion 341 and the lubricating oil of the second bearing portion 342 are supplied from the oil supply inlet 331 that opens at the bottom of the lower frame assembly 313. The oil distribution amount to the parts 341 and 342 is stable, and the oil supply amount can be controlled so that a healthy oil film is maintained in the first bearing part 341 and the second bearing part 342. This can prevent the bearing portions 341 and 342 from being damaged due to seizure or the like.
 また、本実施の形態によれば、第1軸受部341および第2軸受部342の両方の給油を、給油入口331の1箇所から行うため、潤滑油を給油するための配管材(不図示)を給油入口331の1箇所だけに接続すればよく、配管が単純である。 In addition, according to the present embodiment, since both the first bearing portion 341 and the second bearing portion 342 are supplied from one place of the oil supply inlet 331, a piping material for supplying lubricating oil (not shown). Need only be connected to one location of the oil supply inlet 331, and the piping is simple.
 また、本実施の形態によれば、内筒ブッシュ部314aの内周面およびスリーブ部314cの外周面に、給油入口331から第1軸受部341に供給される潤滑油の流量と、給油入口331から第2軸受部342に供給される潤滑油の流量と、を制御する縦溝部351、352が設けられているため、各軸受部341、342に露出される縦溝部351、352の断面積や数を適宜調整することで、各軸受部341、342において健全な油膜が維持されるように給油量を容易に制御することができる。 Further, according to the present embodiment, the flow rate of the lubricating oil supplied from the oil supply inlet 331 to the first bearing portion 341 and the oil supply inlet 331 on the inner peripheral surface of the inner cylinder bush portion 314a and the outer peripheral surface of the sleeve portion 314c. Since the vertical groove portions 351 and 352 for controlling the flow rate of the lubricating oil supplied to the second bearing portion 342 are provided, the cross-sectional areas of the vertical groove portions 351 and 352 exposed to the bearing portions 341 and 342 are By appropriately adjusting the number, the oil supply amount can be easily controlled so that a healthy oil film is maintained in each of the bearing portions 341 and 342.
 なお、本実施の形態では、縦溝部351、352は、内筒ブッシュ部314aの内周面およびスリーブ部314cの外周面の両方にそれぞれ設けられていたが、これに限定されず、内筒ブッシュ部314aの内周面およびスリーブ部314cの外周面のいずれか一方のみに設けられていてもよい。また、縦溝部352は、外筒ブッシュ部315aの内周面に設けられていてもよい。 In the present embodiment, the longitudinal groove portions 351 and 352 are provided on both the inner peripheral surface of the inner cylinder bush portion 314a and the outer peripheral surface of the sleeve portion 314c. It may be provided only on either the inner peripheral surface of the portion 314a or the outer peripheral surface of the sleeve portion 314c. Moreover, the vertical groove part 352 may be provided in the internal peripheral surface of the outer cylinder bush part 315a.
 なお、図10に示す例では、旋動式破砕機310は、いわゆる油圧式コーンクラッシャであったが、これに限定されるものではない。たとえば機械式(サイモンズ式)コーンクラッシャに対しても、本実施の形態による給油構造330を適用することは可能である。 In the example shown in FIG. 10, the rotary crusher 310 is a so-called hydraulic cone crusher, but is not limited to this. For example, the oil supply structure 330 according to the present embodiment can also be applied to a mechanical (Simons) cone crusher.
 上述した本実施の形態に対して様々な変更を加えることが可能である。以下、図面を参照しながら、変形例について説明する。以下の説明および以下の説明で用いる図面では、上述した本実施の形態と同様に構成され得る部分について、上述の実施の形態における対応する部分に対して用いた符号と同一の符号を用いることとし、重複する説明を省略する。また、上述した実施の形態において得られる作用効果が変形例においても得られることが明らかである場合、その説明を省略することもある。 It is possible to add various changes to the above-described embodiment. Hereinafter, modified examples will be described with reference to the drawings. In the following description and the drawings used in the following description, the same reference numerals as those used for the corresponding parts in the above embodiment are used for the parts that can be configured in the same manner as the above embodiment. The duplicated explanation is omitted. In addition, when it is clear that the operational effects obtained in the above-described embodiment can be obtained in the modified example, the description thereof may be omitted.
 図13は、給油構造330の変形例を示す概略図である。 FIG. 13 is a schematic view showing a modified example of the oil supply structure 330.
 図13に示す給油構造330では、スリーブ部314cの下端部と下部フレーム組立313の底部との間に、給油入口331から第1軸受部341に供給される潤滑油の流量と、給油入口331から第2軸受部342に供給される潤滑油の流量と、を制御する仕切板353が設置されている。 In the oil supply structure 330 shown in FIG. 13, between the lower end portion of the sleeve portion 314 c and the bottom portion of the lower frame assembly 313, the flow rate of the lubricating oil supplied from the oil supply inlet 331 to the first bearing portion 341, and the oil supply inlet 331 A partition plate 353 for controlling the flow rate of the lubricating oil supplied to the second bearing portion 342 is installed.
 図示された例では、仕切板353は、円筒形状を有しており、環状空間337を取り囲むように、下部フレーム組立313の底部に固定されている。仕切板353の上端部とスリーブ部314cの下端部との間には、所定の大きさの隙間が形成されている。偏心スリーブ組立314のフランジ部314bがスラストベアリング319により下から支持されているため、偏心スリーブ組立314のスリーブ部314cは一定の高さ位置に位置決めされ、これにより、仕切板350の上端部とスリーブ部314cの下端部との間の隙間は一定の間隔に維持されている。給油入口331から供給される第2軸受部342の潤滑油は、仕切板353の上端部とスリーブ部314cの下端部との間の隙間を通過した後で、第2軸受部342に流入するようになっている。 In the illustrated example, the partition plate 353 has a cylindrical shape and is fixed to the bottom of the lower frame assembly 313 so as to surround the annular space 337. A gap of a predetermined size is formed between the upper end portion of the partition plate 353 and the lower end portion of the sleeve portion 314c. Since the flange portion 314b of the eccentric sleeve assembly 314 is supported from below by the thrust bearing 319, the sleeve portion 314c of the eccentric sleeve assembly 314 is positioned at a certain height position, whereby the upper end portion of the partition plate 350 and the sleeve A gap between the lower end portion of the portion 314c is maintained at a constant interval. The lubricating oil of the second bearing portion 342 supplied from the oil supply inlet 331 passes through the gap between the upper end portion of the partition plate 353 and the lower end portion of the sleeve portion 314c, and then flows into the second bearing portion 342. It has become.
 図13に示す態様によれば、仕切板353の上端部とスリーブ部314cの下端部との間の隙間の大きさを調整することで、給油入口331から第1軸受部341に供給される潤滑油の流量と、給油入口331から第2軸受部342に供給される潤滑油の流量と、を容易に制御することが可能である。 According to the aspect shown in FIG. 13, the lubrication supplied from the oil supply inlet 331 to the first bearing portion 341 is adjusted by adjusting the size of the gap between the upper end portion of the partition plate 353 and the lower end portion of the sleeve portion 314 c. It is possible to easily control the flow rate of the oil and the flow rate of the lubricating oil supplied from the oil supply inlet 331 to the second bearing portion 342.
 なお、上述した個々の実施の形態により開示する発明が限定されるものではない。各実施の形態は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。 Note that the disclosed invention is not limited to the individual embodiments described above. Each embodiment can be appropriately combined as long as the processing contents do not contradict each other.
10  旋動式破砕機
11  上部フレーム組立
12  コーンケーブ
13  下部フレーム組立
13a 外筒ブッシュ部
13b 摩耗板
13c ステップ座金
14  偏心スリーブ組立
14a 内筒ブッシュ部
14b フランジ部
15  主軸組立
15a 主軸ステップ
17  マントル
18  破砕室
19  スラストベアリング
20  回転動力伝達系
21a ベベルギア
21b ベベルピニオン
22  横軸
23  軸受
25  ホッパ
30  給油構造
31  第1給油入口
32  第2給油入口
33  スラストシール
34  スラストシール取付枠
35  段部
36  貫通孔
37  環状空間
38  環状空間
39  給油出口
40  ギア空間
41  第1軸受部
42  第2軸受部
210  旋動式破砕機
211  上部フレーム組立
212  コーンケーブ
213  下部フレーム組立
213a 外筒ブッシュ部
213b 摩耗板
213c ステップ座金
214  偏心スリーブ組立
214a 内筒ブッシュ部
214b フランジ部
214c スリーブ部
215  主軸組立
215a 主軸ステップ
217  マントル
218  破砕室
219  スラストベアリング
220  回転動力伝達系
221a ベベルギア
221b ベベルピニオン
222  横軸
223  軸受
225  ホッパ
230  給油構造
231  第1給油入口
232  第2給油入口
233  隙間
234  シール形成部
235  仕切板
236  貫通孔
237  環状空間
238  環状空間
239  給油出口
240  ギア収容空間
241  第1軸受部
242  第2軸受部
250  油溜まり部
310  旋動式破砕機
311  上部フレーム組立
312  コーンケーブ
313  下部フレーム組立
313a 外筒ブッシュ部
313b 摩耗板
313c ステップ座金
314  偏心スリーブ組立
314a 内筒ブッシュ部
314b フランジ部
314c スリーブ部
315  主軸組立
315a 主軸ステップ
317  マントル
318  破砕室
319  スラストベアリング
320  回転動力伝達系
321a ベベルギア
321b ベベルピニオン
322  横軸
323  軸受
325  ホッパ
330  給油構造
331  給油入口
336  貫通孔
337  環状空間
339  給油出口
340  ギア収容空間
341  第1軸受部
342  第2軸受部
351  縦溝部
352  縦溝部
353  仕切板
DESCRIPTION OF SYMBOLS 10 Rotating type crusher 11 Upper frame assembly 12 Cone cave 13 Lower frame assembly 13a Outer cylinder bush part 13b Wear plate 13c Step washer 14 Eccentric sleeve assembly 14a Inner cylinder bush part 14b Flange part 15 Spindle assembly 15a Spindle step 17 Mantle 18 Crushing chamber 19 Thrust bearing 20 Rotational power transmission system 21a Bevel gear 21b Bevel pinion 22 Horizontal shaft 23 Bearing 25 Hopper 30 Oil supply structure 31 First oil inlet 32 Second oil inlet 33 Thrust seal 34 Thrust seal mounting frame 35 Step portion 36 Through hole 37 Annular space 38 annular space 39 oil supply outlet 40 gear space 41 first bearing portion 42 second bearing portion 210 rotative crusher 211 upper frame assembly 212 cone cave 213 lower frame assembly 213a outer cylinder bush portion 213 Wear plate 213c Step washer 214 Eccentric sleeve assembly 214a Inner cylinder bush portion 214b Flange portion 214c Sleeve portion 215 Main shaft assembly 215a Main shaft step 217 Mantle 218 Crushing chamber 219 Thrust bearing 220 Rotational power transmission system 221a Bevel gear 221b Bevel pinion 222 Horizontal shaft 223 Bearing 225 Hopper 230 Oiling structure 231 First oiling inlet 232 Second oiling inlet 233 Clearance 234 Seal forming portion 235 Partition plate 236 Through hole 237 Annular space 238 Annular space 239 Oiling outlet 240 Gear housing space 241 First bearing portion 242 Second bearing portion 250 Oil sump part 310 Rotating crusher 311 Upper frame assembly 312 Cone cable 313 Lower frame assembly 313a Outer cylinder bush part 313b Wear plate 313c Step Push washer 314 Eccentric sleeve assembly 314a Inner cylinder bush portion 314b Flange portion 314c Sleeve portion 315 Main shaft assembly 315a Main shaft step 317 Mantle 318 Crushing chamber 319 Thrust bearing 320 Rotational power transmission system 321a Bevel gear 321b Bevel pinion 322 Horizontal shaft 323 Bearing 325 Hopper 330 Oil supply Structure 331 Oil supply inlet 336 Through hole 337 Annular space 339 Oil supply outlet 340 Gear housing space 341 First bearing portion 342 Second bearing portion 351 Vertical groove portion 352 Vertical groove portion 353 Partition plate

Claims (15)

  1.  外筒ブッシュ部を有する下部フレーム組立と、前記外筒ブッシュ部に嵌合して回転される内筒ブッシュ部と前記内筒ブッシュ部の上部に固定されたフランジ部とを有する偏心スリーブ組立と、前記内筒ブッシュ部に嵌合して旋動されるマントルを保持する主軸組立と、前記フランジ部に回転動力を伝達する回転動力伝達系と、を備え、旋動するマントルとコーンケーブとの間で被破砕物を破砕する旋動式破砕機において、前記主軸組立と前記内筒ブッシュ部との間の第1軸受部および前記内筒ブッシュ部と前記外筒ブッシュ部との間の第2軸受部にそれぞれ潤滑油を供給するための給油構造であって、
     前記下部フレーム組立の内側に設置され、前記内筒ブッシュ部の下端部を下から支持する環状のスラストシールと、
     前記第1軸受部に給油するように前記下部フレーム組立の底部に開口する第1給油入口と、
     前記第2軸受部に給油するように前記外筒ブッシュ部の内周面に開口する第2給油入口と、
    を有し、
     前記スラストシールは、前記第1給油入口から前記第1軸受部に供給される潤滑油の流路と、前記第2給油入口から前記第2軸受部に供給される潤滑油の流路と、を分離している
    ことを特徴とする給油構造。
    A lower frame assembly having an outer cylinder bush portion, an eccentric sleeve assembly having an inner cylinder bush portion fitted into the outer cylinder bush portion and rotated, and a flange portion fixed to the upper portion of the inner cylinder bush portion; A spindle assembly that holds a mantle that is rotated by being fitted to the inner cylinder bush portion, and a rotational power transmission system that transmits rotational power to the flange portion, and between the rotating mantle and the cone cable In a rotary crusher for crushing an object to be crushed, a first bearing part between the main shaft assembly and the inner cylinder bush part and a second bearing part between the inner cylinder bush part and the outer cylinder bush part Each of which has a lubricating structure for supplying lubricating oil,
    An annular thrust seal that is installed inside the lower frame assembly and supports the lower end of the inner cylinder bushing from below;
    A first refueling inlet that opens at a bottom of the lower frame assembly to refuel the first bearing portion;
    A second oil supply inlet that opens on an inner peripheral surface of the outer cylinder bush portion so as to supply oil to the second bearing portion;
    Have
    The thrust seal includes a flow path of lubricating oil supplied from the first oil supply inlet to the first bearing portion, and a flow path of lubricating oil supplied from the second oil supply inlet to the second bearing portion. Oiling structure characterized by being separated.
  2.  前記外筒ブッシュ部の上端部には、前記フランジ部を下から支持するスラストベアリングが設けられている
    ことを特徴とする請求項1に記載の給油構造。
    The oil supply structure according to claim 1, wherein a thrust bearing for supporting the flange portion from below is provided at an upper end portion of the outer cylinder bush portion.
  3.  前記外筒ブッシュ部の上端部には、前記フランジ部を下から支持するスラストベアリングが設けられていない
    ことを特徴とする請求項1に記載の給油構造。
    The oil supply structure according to claim 1, wherein a thrust bearing that supports the flange portion from below is not provided at an upper end portion of the outer cylinder bush portion.
  4.  前記スラストシールの外径側には、段部が凸設されており、前記段部の内周面は、前記内筒ブッシュ部の下端部の外周面を取り囲んでいる
    ことを特徴とする請求項1~3のいずれかに記載の給油構造。
    The step portion is provided on the outer diameter side of the thrust seal, and the inner peripheral surface of the step portion surrounds the outer peripheral surface of the lower end portion of the inner cylinder bush portion. 4. The oil supply structure according to any one of 1 to 3.
  5.  外筒ブッシュ部を有する下部フレーム組立と、
     前記外筒ブッシュ部に嵌合して回転される内筒ブッシュ部と前記内筒ブッシュ部の上部に固定されたフランジ部とを有する偏心スリーブ組立と、
     前記内筒ブッシュ部に嵌合して旋動されるマントルを保持する主軸組立と、
     前記フランジ部に回転動力を伝達する回転動力伝達系と、
    を備え、
     旋動するマントルとコーンケーブとの間で被破砕物を破砕する旋動式破砕機であって、
     前記主軸組立と前記内筒ブッシュ部との間の第1軸受部および前記内筒ブッシュ部と前記外筒ブッシュ部との間の第2軸受部にそれぞれ潤滑油を供給するための給油構造をさらに備え、
     前記給油構造は、
     前記下部フレーム組立の内側に設置され、前記内筒ブッシュ部の下端部を下から支持する環状のスラストシールと、
     前記第1軸受部に給油するように前記下部フレーム組立の底部に開口する第1給油入口と、
     前記第2軸受部に給油するように前記外筒ブッシュ部の内周面に開口する第2給油入口と、
    を有し、
     前記スラストシールは、前記第1給油入口から前記第1軸受部に供給される潤滑油の流路と、前記第2給油入口から前記第2軸受部に供給される潤滑油の流路と、を分離している
    ことを特徴とする旋動式破砕機。
    A lower frame assembly having an outer cylinder bush part;
    An eccentric sleeve assembly having an inner cylinder bush part that is fitted and rotated in the outer cylinder bush part and a flange part fixed to the upper part of the inner cylinder bush part;
    A spindle assembly that holds a mantle that is fitted to the inner cylinder bushing and rotated,
    A rotational power transmission system for transmitting rotational power to the flange portion;
    With
    A rotary crusher that crushes objects to be crushed between a rotating mantle and a corn cave,
    And an oil supply structure for supplying lubricating oil to the first bearing portion between the main shaft assembly and the inner cylinder bush portion and the second bearing portion between the inner cylinder bush portion and the outer cylinder bush portion, respectively. Prepared,
    The oil supply structure is
    An annular thrust seal that is installed inside the lower frame assembly and supports the lower end of the inner cylinder bushing from below;
    A first refueling inlet that opens at a bottom of the lower frame assembly to refuel the first bearing portion;
    A second oil supply inlet that opens on an inner peripheral surface of the outer cylinder bush portion so as to supply oil to the second bearing portion;
    Have
    The thrust seal includes a flow path of lubricating oil supplied from the first oil supply inlet to the first bearing portion, and a flow path of lubricating oil supplied from the second oil supply inlet to the second bearing portion. A rotary crusher characterized by separation.
  6.  外筒ブッシュ部を有する下部フレーム組立と、前記外筒ブッシュ部に嵌合して回転される内筒ブッシュ部を保持するスリーブ部と前記スリーブ部の上部に延在するフランジ部とを有する偏心スリーブ組立と、前記内筒ブッシュ部に嵌合して旋動されるマントルを保持する主軸組立と、前記フランジ部に回転動力を伝達する回転動力伝達系と、を備え、旋動するマントルとコーンケーブとの間で被破砕物を破砕する旋動式破砕機において、前記主軸組立と前記内筒ブッシュ部との間の第1軸受部および前記スリーブ部と前記外筒ブッシュ部との間の第2軸受部にそれぞれ潤滑油を供給するための給油構造であって、
     前記第1軸受部に給油するように前記下部フレーム組立の底部に開口する第1給油入口と、
     前記第2軸受部に給油するように前記外筒ブッシュ部の円周面に開口する第2給油入口と、
     前記下部フレーム組立の内側に設けられ、前記スリーブ部の下端部の端面と対向する非接触面を有する環状のシール形成部と、
    を有し、
     前記シール形成部の前記非接触面と前記スリーブ部の下端部の端面との間の隙間は前記潤滑油でシールされ、前記環状のシール形成部の外周には仕切板が配設され、前記仕切板と前記スリーブ部の下端部の外周面との間に環状の油溜まり部が形成されている
    ことを特徴とする給油構造。
    An eccentric sleeve having a lower frame assembly having an outer cylinder bush part, a sleeve part holding the inner cylinder bush part rotated by being fitted to the outer cylinder bush part, and a flange part extending above the sleeve part An assembly, a main shaft assembly that holds a mantle that is rotated by being fitted to the inner cylinder bush portion, and a rotational power transmission system that transmits rotational power to the flange portion. In a rotary crushing machine for crushing an object to be crushed, a first bearing part between the spindle assembly and the inner cylinder bush part and a second bearing between the sleeve part and the outer cylinder bush part An oil supply structure for supplying lubricating oil to each part,
    A first refueling inlet that opens at a bottom of the lower frame assembly to refuel the first bearing portion;
    A second oil supply inlet opening in a circumferential surface of the outer cylinder bush portion so as to supply oil to the second bearing portion;
    An annular seal forming portion provided inside the lower frame assembly and having a non-contact surface facing the end surface of the lower end portion of the sleeve portion;
    Have
    The gap between the non-contact surface of the seal forming portion and the end surface of the lower end portion of the sleeve portion is sealed with the lubricating oil, and a partition plate is disposed on the outer periphery of the annular seal forming portion. An oil supply structure in which an annular oil reservoir is formed between the plate and the outer peripheral surface of the lower end of the sleeve portion.
  7.  前記油溜まり部は、前記隙間より高い位置に形成されている
    ことを特徴とする請求項6に記載の給油構造。
    The oil supply structure according to claim 6, wherein the oil reservoir is formed at a position higher than the gap.
  8.  外筒ブッシュ部を有する下部フレーム組立と、
     前記外筒ブッシュ部に嵌合して回転される内筒ブッシュ部を保持するスリーブ部と前記内筒ブッシュ部の上部に固定されたフランジ部とを有する偏心スリーブ組立と、
     前記内筒ブッシュ部に嵌合して旋動されるマントルを保持する主軸組立と、
     前記フランジ部に回転動力を伝達する回転動力伝達系と、
    を備え、
     旋動するマントルとコーンケーブとの間で被破砕物を破砕する旋動式破砕機であって、
     前記主軸組立と前記内筒ブッシュ部との間の第1軸受部および前記スリーブ部と前記外筒ブッシュ部との間の第2軸受部にそれぞれ潤滑油を供給するための給油構造をさらに備え、
     前記給油構造は、
     前記第1軸受部に給油するように前記下部フレーム組立の底部に開口する第1給油入口と、
     前記第2軸受部に給油するように前記外筒ブッシュ部の円周面に開口する第2給油入口と、
     前記下部フレーム組立の内側に設けられ、前記スリーブ部の下端部の端面と対向する非接触面を有する環状のシール形成部と、
    を有し、
     前記シール形成部の前記非接触面と前記スリーブ部の下端部の端面との間の隙間は前記潤滑油でシールされ、前記環状のシール形成部の外周には仕切板が配設され、前記仕切板と前記スリーブ部の下端部の外周面との間に環状の油溜まり部が形成されている
    ことを特徴とする旋動式破砕機。
    A lower frame assembly having an outer cylinder bush part;
    An eccentric sleeve assembly having a sleeve portion that holds an inner cylinder bush portion that is rotated by being fitted to the outer cylinder bush portion, and a flange portion that is fixed to an upper portion of the inner cylinder bush portion;
    A spindle assembly that holds a mantle that is fitted to the inner cylinder bushing and rotated,
    A rotational power transmission system for transmitting rotational power to the flange portion;
    With
    A rotary crusher that crushes objects to be crushed between a rotating mantle and a corn cave,
    An oil supply structure for supplying lubricating oil to the first bearing part between the main shaft assembly and the inner cylinder bush part and the second bearing part between the sleeve part and the outer cylinder bush part, respectively.
    The oil supply structure is
    A first refueling inlet that opens at a bottom of the lower frame assembly to refuel the first bearing portion;
    A second oil supply inlet opening in a circumferential surface of the outer cylinder bush portion so as to supply oil to the second bearing portion;
    An annular seal forming portion provided inside the lower frame assembly and having a non-contact surface facing the end surface of the lower end portion of the sleeve portion;
    Have
    The gap between the non-contact surface of the seal forming portion and the end surface of the lower end portion of the sleeve portion is sealed with the lubricating oil, and a partition plate is disposed on the outer periphery of the annular seal forming portion. A rotary crusher characterized in that an annular oil reservoir is formed between the plate and the outer peripheral surface of the lower end of the sleeve.
  9.  外筒ブッシュ部を有する下部フレーム組立と、前記外筒ブッシュ部に嵌合して回転される内筒ブッシュ部を保持するスリーブ部と前記スリーブ部の上部に延在するフランジ部とを有する偏心スリーブ組立と、前記内筒ブッシュ部に嵌合して旋動されるマントルを保持する主軸組立と、前記フランジ部に回転動力を伝達する回転動力伝達系と、を備え、旋動するマントルとコーンケーブとの間で被破砕物を破砕する旋動式破砕機において、前記主軸組立と前記内筒ブッシュ部との間の第1軸受部および前記スリーブ部と前記外筒ブッシュ部との間の第2軸受部にそれぞれ潤滑油を供給するための給油方法であって、
     前記第1軸受部の潤滑油および前記第2軸受部の潤滑油の両方を、前記下部フレーム組立の底部に開口する給油入口から供給する
    ことを特徴とする給油方法。
    An eccentric sleeve having a lower frame assembly having an outer cylinder bush part, a sleeve part holding the inner cylinder bush part rotated by being fitted to the outer cylinder bush part, and a flange part extending above the sleeve part An assembly, a main shaft assembly that holds a mantle that is rotated by being fitted to the inner cylinder bush portion, and a rotational power transmission system that transmits rotational power to the flange portion. In a rotary crushing machine for crushing an object to be crushed, a first bearing part between the spindle assembly and the inner cylinder bush part and a second bearing between the sleeve part and the outer cylinder bush part An oil supply method for supplying lubricating oil to each part,
    Both the lubricating oil of the said 1st bearing part and the lubricating oil of the said 2nd bearing part are supplied from the oil supply inlet opened to the bottom part of the said lower frame assembly, The oil supply method characterized by the above-mentioned.
  10.  前記内筒ブッシュ部、前記スリーブ部または前記外筒ブッシュ部に縦溝部を設けて、前記給油入口から前記第1軸受部に供給される潤滑油の流量と、前記給油入口から前記第2軸受部に供給される潤滑油の流量と、を制御する
    ことを特徴とする請求項9に記載の給油方法。
    A longitudinal groove is provided in the inner cylinder bush part, the sleeve part or the outer cylinder bush part, and the flow rate of lubricating oil supplied from the oil supply inlet to the first bearing part, and the second bearing part from the oil supply inlet. The oil supply method according to claim 9, wherein the flow rate of the lubricating oil supplied to the oil is controlled.
  11.  前記スリーブ部の下端部と前記下部フレーム組立の底部との間に仕切板を設けて、前記給油入口から前記第1軸受部に供給される潤滑油の流量と、前記給油入口から前記第2軸受部に供給される潤滑油の流量と、を制御する
    ことを特徴とする請求項9または10に記載の給油方法。
    A partition plate is provided between a lower end portion of the sleeve portion and a bottom portion of the lower frame assembly, and a flow rate of lubricating oil supplied from the oil supply inlet to the first bearing portion, and from the oil supply inlet to the second bearing. The oil supply method according to claim 9 or 10, wherein the flow rate of the lubricating oil supplied to the section is controlled.
  12.  外筒ブッシュ部を有する下部フレーム組立と、前記外筒ブッシュ部に嵌合して回転される内筒ブッシュ部を保持するスリーブ部と前記スリーブ部の上部に延在するフランジ部とを有する偏心スリーブ組立と、前記内筒ブッシュ部に嵌合して旋動されるマントルを保持する主軸組立と、前記フランジ部に回転動力を伝達する回転動力伝達系と、を備え、旋動するマントルとコーンケーブとの間で被破砕物を破砕する旋動式破砕機において、前記主軸組立と前記内筒ブッシュ部との間の第1軸受部および前記スリーブ部と前記外筒ブッシュ部との間の第2軸受部にそれぞれ潤滑油を供給するための給油構造であって、
     前記下部フレーム組立の底部に開口する給油入口を有し、
     前記給油入口は、前記第1軸受部の潤滑油および前記第2軸受部の潤滑油の両方を供給するようになっている
    ことを特徴とする給油構造。
    An eccentric sleeve having a lower frame assembly having an outer cylinder bush part, a sleeve part holding the inner cylinder bush part rotated by being fitted to the outer cylinder bush part, and a flange part extending above the sleeve part An assembly, a main shaft assembly that holds a mantle that is rotated by being fitted to the inner cylinder bush portion, and a rotational power transmission system that transmits rotational power to the flange portion. In a rotary crushing machine for crushing an object to be crushed, a first bearing part between the spindle assembly and the inner cylinder bush part and a second bearing between the sleeve part and the outer cylinder bush part An oil supply structure for supplying lubricating oil to each part,
    A refueling inlet opening at the bottom of the lower frame assembly;
    The oil supply inlet is configured to supply both the lubricating oil of the first bearing portion and the lubricating oil of the second bearing portion.
  13.  前記内筒ブッシュ部、前記スリーブ部または前記外筒ブッシュ部には、前記給油入口から前記第1軸受部に供給される潤滑油の流量と、前記給油入口から前記第2軸受部に供給される潤滑油の流量と、を制御する縦溝部が設けられている
    ことを特徴とする請求項12に記載の給油構造。
    The inner cylinder bush part, the sleeve part or the outer cylinder bush part is supplied with the flow rate of lubricating oil supplied from the oil supply inlet to the first bearing part and supplied from the oil supply inlet to the second bearing part. The oil supply structure according to claim 12, wherein a longitudinal groove portion for controlling a flow rate of the lubricating oil is provided.
  14.  前記スリーブ部の下端部と下部フレーム組立の底部との間には、前記給油入口から前記第1軸受部に供給される潤滑油の流量と、前記給油入口から前記第2軸受部に供給される潤滑油の流量と、を制御する仕切板が設けられている
    ことを特徴とする請求項12または13に記載の給油構造。
    Between the lower end portion of the sleeve portion and the bottom portion of the lower frame assembly, the flow rate of the lubricating oil supplied from the oil supply inlet to the first bearing portion and the oil supply inlet supplied to the second bearing portion. The oil supply structure according to claim 12 or 13, wherein a partition plate for controlling a flow rate of the lubricating oil is provided.
  15.  外筒ブッシュ部を有する下部フレーム組立と、
     前記外筒ブッシュ部に嵌合して回転される内筒ブッシュ部を保持するスリーブ部と前記スリーブ部の上部に延在するフランジ部とを有する偏心スリーブ組立と、
     前記内筒ブッシュ部に嵌合して旋動されるマントルを保持する主軸組立と、
     前記フランジ部に回転動力を伝達する回転動力伝達系と、
    を備え、
     旋動するマントルとコーンケーブとの間で被破砕物を破砕する旋動式破砕機であって、
     前記主軸組立と前記内筒ブッシュ部との間の第1軸受部および前記スリーブ部と前記外筒ブッシュ部との間の第2軸受部にそれぞれ潤滑油を供給するための給油構造をさらに備え、
     前記給油構造は、
     前記下部フレーム組立の底部に開口する給油入口を有し、
     前記給油入口は、前記第1軸受部の潤滑油および前記第2軸受部の潤滑油の両方を供給するようになっている
    ことを特徴とする旋動式破砕機。
    A lower frame assembly having an outer cylinder bush part;
    An eccentric sleeve assembly having a sleeve portion that holds the inner cylinder bush portion that is rotated by being fitted to the outer cylinder bush portion, and a flange portion that extends above the sleeve portion;
    A spindle assembly that holds a mantle that is fitted to the inner cylinder bushing and rotated,
    A rotational power transmission system for transmitting rotational power to the flange portion;
    With
    A rotary crusher that crushes objects to be crushed between a rotating mantle and a corn cave,
    An oil supply structure for supplying lubricating oil to the first bearing part between the main shaft assembly and the inner cylinder bush part and the second bearing part between the sleeve part and the outer cylinder bush part, respectively.
    The oil supply structure is
    A refueling inlet opening at the bottom of the lower frame assembly;
    The oil supply inlet is configured to supply both the lubricating oil of the first bearing portion and the lubricating oil of the second bearing portion.
PCT/JP2015/085837 2014-12-24 2015-12-22 Oil supply structure, oil supply method, and gyratory crusher WO2016104503A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2015368587A AU2015368587B2 (en) 2014-12-24 2015-12-22 Oil supply structure, oil supply method, and gyratory crusher
ZA2017/05031A ZA201705031B (en) 2014-12-24 2017-07-24 Oil supply structure, oil supply method, and gyratory crusher

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014-261127 2014-12-24
JP2014261127A JP6552818B2 (en) 2014-12-24 2014-12-24 Refueling structure of rotary crusher
JP2015-047373 2015-03-10
JP2015047373A JP6567298B2 (en) 2015-03-10 2015-03-10 Oiling structure of a rotary crusher
JP2015-047381 2015-03-10
JP2015047381A JP6567299B2 (en) 2015-03-10 2015-03-10 Oiling method and oiling structure of a rotary crusher

Publications (1)

Publication Number Publication Date
WO2016104503A1 true WO2016104503A1 (en) 2016-06-30

Family

ID=56150520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085837 WO2016104503A1 (en) 2014-12-24 2015-12-22 Oil supply structure, oil supply method, and gyratory crusher

Country Status (3)

Country Link
AU (1) AU2015368587B2 (en)
WO (1) WO2016104503A1 (en)
ZA (1) ZA201705031B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111013703A (en) * 2019-12-12 2020-04-17 西藏华泰龙矿业开发有限公司 Cone crusher oil flow protection device and cone crusher oil flow protection method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0430525A (en) * 1990-05-28 1992-02-03 Toshiba Corp Semiconductor device and manufacture thereof
WO1997015396A1 (en) * 1995-10-25 1997-05-01 Nordberg-Lokomo Oy Axial bearing for crusher, and crusher
JP2004084815A (en) * 2002-08-27 2004-03-18 Komatsu Ltd Bearing device
US20100116915A1 (en) * 2008-07-04 2010-05-13 Sandvik Intellectual Property Ab Bearing for a shaft of a gyratory crusher and method of adjusting the gap width of the crusher
EP2774682A1 (en) * 2013-03-08 2014-09-10 Sandvik Intellectual Property AB Gyratory crusher main shaft mounting assembly

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2601047B2 (en) * 1991-03-29 1997-04-16 株式会社栗本鐵工所 Rotating crusher

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0430525A (en) * 1990-05-28 1992-02-03 Toshiba Corp Semiconductor device and manufacture thereof
WO1997015396A1 (en) * 1995-10-25 1997-05-01 Nordberg-Lokomo Oy Axial bearing for crusher, and crusher
JP2004084815A (en) * 2002-08-27 2004-03-18 Komatsu Ltd Bearing device
US20100116915A1 (en) * 2008-07-04 2010-05-13 Sandvik Intellectual Property Ab Bearing for a shaft of a gyratory crusher and method of adjusting the gap width of the crusher
EP2774682A1 (en) * 2013-03-08 2014-09-10 Sandvik Intellectual Property AB Gyratory crusher main shaft mounting assembly

Also Published As

Publication number Publication date
ZA201705031B (en) 2018-09-26
AU2015368587A1 (en) 2017-08-10
AU2015368587B2 (en) 2020-12-24

Similar Documents

Publication Publication Date Title
US9404568B2 (en) Epicyclic reduction gear, notably for a turbomachine
KR101191267B1 (en) Cone type crusher
JP6058369B2 (en) Dust seal structure of rotary crusher
EP2775176A1 (en) Sealing ring for gyratory crusher
CN103534031A (en) Cone crusher and processing plant for mineral material
AU2015376854B2 (en) Centrifugal screening apparatus
CN103842668A (en) Squeeze film damper
CN109843441A (en) Eccentric assembly for gyratory crusher
CN205084804U (en) Grinder
WO2016104503A1 (en) Oil supply structure, oil supply method, and gyratory crusher
JP2012512738A (en) Centrifuge with lubrication device
CN104437728B (en) A kind of single casing gyratory crusher
JP6567299B2 (en) Oiling method and oiling structure of a rotary crusher
EP3151968B1 (en) Two oil chamber counterweight
JP6552818B2 (en) Refueling structure of rotary crusher
JP6567298B2 (en) Oiling structure of a rotary crusher
CN104525307B (en) Single casing gyratory crusher
KR102243560B1 (en) Rotating device
EP2603718B1 (en) Housing with a direct flow path for hardware lubrication
US2484971A (en) Gyratory crusher with lubricated dust seal
US2052706A (en) Crushing machine
JP2016120447A (en) Dust seal structure of gyratory crusher
KR101198484B1 (en) Cone type crusher
CN216519241U (en) Grease lubrication bearing seat and centrifugal machine
RU2714730C1 (en) Conical inertia crusher with thrust slide bearing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015368587

Country of ref document: AU

Date of ref document: 20151222

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15873071

Country of ref document: EP

Kind code of ref document: A1