WO2016104489A1 - Carbon material for secondary cell negative electrode, active substance for secondary cell negative electrode, secondary cell negative electrode, and secondary cell - Google Patents

Carbon material for secondary cell negative electrode, active substance for secondary cell negative electrode, secondary cell negative electrode, and secondary cell Download PDF

Info

Publication number
WO2016104489A1
WO2016104489A1 PCT/JP2015/085798 JP2015085798W WO2016104489A1 WO 2016104489 A1 WO2016104489 A1 WO 2016104489A1 JP 2015085798 W JP2015085798 W JP 2015085798W WO 2016104489 A1 WO2016104489 A1 WO 2016104489A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
secondary battery
carbon
carbon material
secondary cell
Prior art date
Application number
PCT/JP2015/085798
Other languages
French (fr)
Japanese (ja)
Inventor
保明 三井
竹内 健
栄造 東▲崎▼
炭山 宜也
哲志 小野
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015052628A external-priority patent/JP2016122641A/en
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Publication of WO2016104489A1 publication Critical patent/WO2016104489A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a carbon material for a secondary battery negative electrode, an active material for a secondary battery negative electrode, a secondary battery negative electrode, and a secondary battery.
  • hard carbon is excellent in terms of high cycle characteristics and is expected as a carbon material for secondary battery negative electrodes.
  • the present invention has been made in view of the above problems. That is, the present invention provides a carbon material for a secondary battery negative electrode that suppresses an increase in electrical resistance during charge and discharge when used in a low temperature environment and can ensure sufficient battery performance.
  • the present invention also provides a secondary battery negative electrode active material produced by including the secondary battery negative electrode carbon material, a secondary battery negative electrode composed of the secondary battery negative electrode active material, and the second battery negative electrode active material.
  • a secondary battery using a secondary battery negative electrode is provided.
  • the carbon material for a secondary battery negative electrode of the present invention is characterized by containing carbon particles having a surface area per unit volume determined from a particle size distribution on a number basis in a range of 10,000 cm ⁇ 1 to 16000 cm ⁇ 1 .
  • the active material for secondary battery negative electrode of the present invention is characterized by containing the carbon material for secondary battery negative electrode of the present invention.
  • the secondary battery negative electrode of the present invention includes a secondary battery negative electrode active material layer containing the secondary battery negative electrode active material of the present invention, and a negative electrode current collector in which the secondary battery negative electrode active material layer is laminated. It is characterized by having.
  • the secondary battery of the present invention is characterized by comprising the secondary battery negative electrode of the present invention, an electrolytic layer, and a secondary battery positive electrode.
  • a carbon material for a secondary battery negative electrode, an active material for a secondary battery negative electrode, and a secondary battery negative electrode capable of suppressing an increase in electrical resistance during charging and discharging of the secondary battery in a low temperature environment.
  • a secondary battery negative electrode capable of suppressing an increase in electrical resistance during charging and discharging of the secondary battery in a low temperature environment.
  • FIG. 1 It is a schematic diagram which shows an example of a lithium ion secondary battery provided with the negative electrode manufactured using the carbon material of this invention.
  • the inventors examined the electrical characteristics of the secondary battery negative electrode in a low temperature environment. As a result, it was found that the conventional secondary battery negative electrode has a possibility that the electrical resistance during charging / discharging is remarkably increased and the battery characteristics are deteriorated as compared with that at normal temperature. As a result of further detailed studies, the present inventors have found that secondary battery negative electrodes used in a low temperature environment have the following problems. That is, in a low temperature environment below freezing point, in particular, -10 ° C or lower, particularly -20 ° C or lower, the electrolyte is frozen or the viscosity rises even if it is not frozen.
  • the secondary battery negative electrode carbon material of the present invention (hereinafter also simply referred to as carbon material), secondary battery negative electrode active material (hereinafter also simply referred to as negative electrode active material), secondary battery negative electrode (hereinafter simply referred to as negative electrode). And the secondary battery will be described in order.
  • the secondary battery in which the carbon material of the present invention, the negative electrode active material, or the negative electrode is used
  • the secondary battery of the present invention for example, an alkali metal secondary such as a lithium ion secondary battery or a sodium ion secondary battery is used.
  • a battery can be mentioned.
  • the secondary battery is not limited to this, and includes various types such as a secondary battery that occludes and releases other charge carriers, a non-aqueous electrolyte secondary battery, or a solid secondary battery.
  • a lithium ion secondary battery will be described as an example of a secondary battery.
  • the carbon material of the present invention comprises carbon particles having a surface area per unit volume (hereinafter, also simply referred to as a surface area per unit volume) determined from the particle size distribution on a number basis within a range of 10000 cm ⁇ 1 to 16000 cm ⁇ 1. Including.
  • the lower limit of the surface area per unit volume may be further 12000 cm ⁇ 1 or more. Further, the upper limit of the surface area per unit volume may be further 15500 cm ⁇ 1 or less, or 14000 cm ⁇ 1 or less.
  • the carbon material of the present invention is a carbon material that can be used as a material for an active material for a negative electrode.
  • the carbon material of the present invention has an effect of suppressing an increase in electric resistance (hereinafter also referred to as an electric resistance suppressing effect) during charging / discharging of the secondary battery in a low temperature environment.
  • an electric resistance suppressing effect an increase in electric resistance
  • the reason why the electrical resistance suppressing effect is exhibited in the carbon material of the present invention is not clear, but the present inventors infer as follows. That is, the carbon material of the present invention is configured such that the particle diameter is moderately small and the surface area per unit volume is sufficiently large.
  • the carbon material of the present invention has a high efficiency of occlusion and release of lithium ions, and even when the operation of lithium ions becomes dull in a low temperature environment, the occlusion and release are performed smoothly.
  • the carbon material of the present invention covers a decrease in the mobility of lithium ions in a low temperature environment by significantly increasing the surface area of the particles, which are the occlusion / release regions of lithium ions, as compared to conventional carbon materials. It is assumed that the increase in electrical resistance is suppressed.
  • the carbon material of the present invention has a surface area per unit volume of 10,000 cm ⁇ 1 or more, the total area of the particle surface, which is a lithium ion storage / release region, is sufficiently large. Thereby, the carbon material of this invention is excellent in the occlusion / release capability of lithium ion compared with the conventional carbon material, and exhibits an electrical resistance inhibitory effect also in a low temperature environment.
  • the carbon material of the present invention has a surface area per unit volume in the range of 16000 cm ⁇ 1 or less, and extremely minute carbon material particles are excluded.
  • the carbon material of the present invention specifies the upper limit of the surface area per unit volume as 16000 cm ⁇ 1 , thereby suppressing a significant increase in the self-discharge and maintaining good coatability.
  • the electrical resistance in a low temperature environment can be determined by the magnitude of the value of DC resistance (DC-IR) measured under a predetermined low temperature environment condition (for example, an environment of ⁇ 20 ° C.).
  • DC-IR DC resistance
  • the particle size distribution based on the number means the particle size distribution based on the number obtained by the laser diffraction / scattering method.
  • the particle size distribution can be measured with a laser diffraction / scattering particle size distribution measuring apparatus.
  • it can be measured by LA-920 manufactured by Horiba, Ltd.
  • the particle diameter means the diameter of the particle.
  • the surface area per unit volume determined from the particle size distribution on the basis of the number is the data obtained from the particle size distribution on the basis of the number measured by an arbitrary laser diffraction / scattering particle size distribution measuring device, It can be calculated by equation (1).
  • Area per unit volume (cm ⁇ 1 ) total surface area (cm 2 ) / total volume (cm 3 ) (1)
  • total surface area is the sum of values obtained by multiplying the surface area when particles of each particle size in the particle size distribution are converted into true spheres by the frequency (%) of particles at each particle size.
  • total volume is the sum of values obtained by multiplying the volume of particles of each particle size in the particle size distribution into true spheres by the frequency (%) of particles at each particle size.
  • Frequency is the ratio of particles at each particle diameter to the total number of particles subjected to measurement.
  • a method for obtaining a carbon material including carbon particles having a surface area per unit volume in a preferable range specified in the present invention is not particularly limited, and as an example, a pulverization treatment is appropriately performed in the process of manufacturing the carbon material. It is done. Details of the grinding process will be described later.
  • the carbon material of the present invention preferably has an average square radius (hereinafter also simply referred to as an average square radius) determined from the particle size distribution described above in a range of 1 ⁇ m 2 or more and 4 ⁇ m 2 or less. That is, when the mean square radius is 1 ⁇ m 2 or more, carbon particles contained in the carbon material are excluded from those having a remarkably small particle diameter, and deterioration of self-discharge in a high temperature environment is prevented. Maintains good coatability on electrical objects. In addition, when the mean square radius is 4 ⁇ m 2 or less, it is easy to select carbon particles whose surface area per unit volume falls within a preferable range specified by the present invention.
  • the upper limit of the mean square radius is more preferably 3 ⁇ m 2 or less, and even more preferably 2 ⁇ m 2 or less.
  • the sum of the squares of the radii of each particle ( ⁇ m 2 ) is a value that is a half of each particle diameter in the particle size distribution, and the value obtained by squaring this value is the particle at each particle diameter. The sum of the values multiplied by the frequency (%).
  • One of the preferable aspects of the carbon material of the present invention is such that the true specific gravity of the carbon particles contained in the carbon material is in the range of 1.5 g / cm 3 or more and 1.7 g / cm 3 or less.
  • the true specific gravity of the carbon particles contained in the carbon material is in the range of 1.5 g / cm 3 or more and 1.7 g / cm 3 or less.
  • the true specific gravity can be determined by a true specific gravity measurement method using butanol.
  • the method for adjusting the carbon particles contained in the carbon material of the present invention to have a true specific gravity within the above preferable range is not particularly limited. It is possible to adjust the specific gravity.
  • the carbon material of the present invention contains carbon as a main material, and may further contain components other than carbon as necessary.
  • carbon is a main material” means that carbon is contained in an amount of 80% by mass or more, preferably 90% by mass or more, and more preferably 95% by mass or more when the carbon material is 100% by mass.
  • the carbon contained in the carbon material in the present invention is carbon particles that are substantially granular.
  • the carbon material in the present invention may contain the carbon particles and an optional additive, or may be substantially composed only of carbon particles.
  • the optional component other than carbon in the carbon material is not particularly limited, and examples thereof include nitrogen and phosphorus.
  • nitrogen in the carbon material electrical characteristics suitable for the carbon material (particularly, carbon material containing hard carbon) can be imparted due to the electronegativity of nitrogen. Thereby, occlusion / release of the lithium ion with respect to a carbon material is accelerated
  • phosphorus is contained in a carbon material (particularly, a carbon material containing hard carbon), it is possible to increase the occlusion amount of lithium ions in the negative electrode active material containing the carbon material.
  • any additive such as a curing agent and an additive can be appropriately used in addition to the carbon material, and a part of the additive remains in the carbon material. It is not excluded that the present invention.
  • the carbon used as the main material can be appropriately selected and used as long as it is a material of the negative electrode active material and can absorb and release chemical species such as lithium ions. Specific examples include hard carbon and graphite, but are not limited thereto.
  • the carbon particles contained in the carbon material are obtained by an X-ray diffraction method using CuK ⁇ rays as a radiation source, and an average interplanar spacing d 002 of (002) planes. May contain hard carbon having a thickness of 0.340 nm or more.
  • Hard carbon is a carbon material obtained by firing a polymer that does not easily develop a graphite crystal structure, and is an amorphous substance.
  • the hard carbon is a carbon material that does not have a graphene structure or carbon that only partially has a graphene structure, and has the specific average interplanar spacing d 002 .
  • the average interplanar spacing d 002 of hard carbon is 0.340 nm or more, especially 0.360 nm or more, the shrinkage / expansion between layers due to occlusion of lithium ions is difficult to occur. it can.
  • the upper limit of the average interplanar distance d 002 is not particularly defined, but can be set to 0.390 nm or less, for example.
  • the average spacing d 002 is 0.390nm or less, particularly when it is 0.380nm or less performed smoothly absorbing and releasing lithium ions, it is possible to suppress the deterioration of the charge-discharge efficiency.
  • the hard carbon has a crystallite size Lc of 0.8 nm or more and 5 nm or less in the c-axis direction ((002) plane orthogonal direction).
  • Lc By setting Lc to 0.8 nm or more, particularly 0.9 nm or more, there is an effect that a space between carbon layers capable of occluding and releasing lithium ions is formed, and a sufficient charge / discharge capacity can be obtained.
  • the thickness By setting the thickness to 0.5 nm or less, it is possible to suppress the collapse of the carbon laminate structure due to the occlusion and release of lithium ions and the reductive decomposition of the electrolytic solution, and to suppress the decrease in charge / discharge efficiency and charge / discharge cycleability.
  • Lc is calculated as follows. It was determined from the half width of the 002 plane peak and the diffraction angle in the spectrum obtained from the X-ray diffraction measurement using the following Scherrer equation.
  • Lc 0.94 ⁇ / ( ⁇ cos ⁇ ) (Scherrer equation)
  • Lc crystallite size
  • wavelength of characteristic X-ray K ⁇ 1 output from the cathode
  • half width of peak (radian)
  • Reflection angle of spectrum
  • the X-ray diffraction spectrum of hard carbon can be measured by, for example, an X-ray diffraction apparatus “XRD-7000” manufactured by Shimadzu Corporation.
  • the method for measuring the average spacing in hard carbon is as follows.
  • the average interplanar spacing d can be calculated from the following Bragg equation as follows.
  • the carbon particles, which are hard carbon, have the property that lithium ions can be occluded and released over the entire surface. Therefore, the carbon material containing the carbon particles of hard carbon having a surface area per unit volume in the above-described range exhibits a remarkable effect of being excellent in the ability to occlude and release lithium ions by increasing the surface area. That is, the carbon material of the present invention containing carbon particles that are hard carbon sufficiently enjoys the action produced by the configuration of the present invention and exhibits excellent effects.
  • carbon particles which are hard carbon
  • the carbon particles, which are hard carbon contained in the carbon material of the present invention are finely divided to such an extent that the surface area per unit volume is sufficiently increased. can do.
  • the carbon particles that are hard carbon have a remarkable improvement in the ability to occlude and release lithium ions.
  • the carbon particles in the present invention may contain 90% by mass or more of hard carbon.
  • the raw material of the hard carbon is not particularly limited, and examples thereof include a resin material such as a thermosetting resin or a thermoplastic resin.
  • the raw materials include petroleum-based tar or pitch produced as a by-product during ethylene production, coal tar produced during coal dry distillation, heavy component or pitch obtained by distilling off low-boiling components of coal tar, and tar obtained by coal liquefaction. Examples thereof include petroleum-based or coal-based materials such as pitch, and those obtained by crosslinking the above-described petroleum-based or coal-based materials.
  • the hard carbon raw materials described above can be used alone or in combination of two or more. Also, plant materials such as coconut shells can be used as raw materials for hard carbon.
  • thermosetting resin is not particularly limited, and examples thereof include phenolic resins such as novolac type phenolic resin and resol type phenolic resin, epoxy resins such as bisphenol type epoxy resin and novolac type epoxy resin, melamine resin, urea resin, and aniline. Examples thereof include resins, cyanate resins, furan resins, ketone resins, unsaturated polyester resins, and urethane resins.
  • the carbon material may be a modified product obtained by modifying these materials with various components.
  • thermoplastic resin is not particularly limited.
  • polyethylene polystyrene, polyacrylonitrile, acrylonitrile-styrene (AS) resin, acrylonitrile-butadiene-styrene (ABS) resin, polypropylene, vinyl chloride, methacrylic resin, polyethylene terephthalate
  • AS acrylonitrile-styrene
  • ABS acrylonitrile-butadiene-styrene
  • polypropylene vinyl chloride
  • methacrylic resin polyethylene terephthalate
  • examples include polyamide, polycarbonate, polyacetal, polyphenylene ether, polybutylene terephthalate, polyphenylene sulfide, polysulfone, polyether sulfone, polyether ether ketone, polyether imide, polyamide imide, polyimide, and polyphthalamide.
  • thermosetting resin is preferable as the main resin used for hard carbon. Thereby, the residual carbon rate of hard carbon can be raised more.
  • thermosetting resins a resin selected from a novolak-type phenol resin, a resol-type phenol resin, a melamine resin, a furan resin, an aniline resin, or a modified product thereof is preferable as a resin that is a main component of hard carbon.
  • the curing agent can be used in combination.
  • curing agent is not specifically limited, A well-known hardening
  • curing agent in the case of a novolac type phenol resin, hexamethylenetetramine, resol type phenol resin, polyacetal, paraformaldehyde, or the like can be used as a curing agent.
  • epoxy resins use polyamine compounds such as aliphatic polyamines and aromatic polyamines, acid anhydrides, imidazole compounds, dicyandiamide, novolac-type phenol resins, bisphenol-type phenol resins, or resole-type phenol resins as curing agents. Can do.
  • nitrogen is contained in the carbon material
  • one kind of hexamethylenetetramine, aliphatic polyamine, aromatic polyamine, dicyandiamide, amine compound, ammonium salt nitrate, or nitro compound is used together with the above-described carbon material raw material. Two or more types may be used in combination.
  • a phosphorus-containing compound such as phosphoric acid, phosphate, phosphorus pentoxide, or phosphate ester may be blended together with the above-described carbon material raw material.
  • a phosphorus-containing compound such as phosphoric acid, phosphate, phosphorus pentoxide, or phosphate ester
  • phosphate ester Daihachi Chemical Industry which is a phosphate triester such as triphenyl phosphate, cresyl diphenyl phosphate or cresyl di 2,6-xylenyl phosphate, or a commercially available aromatic condensed phosphate ester Mention may be made of condensed phosphate esters such as a flame retardant “trade name: PX-200” manufactured by Co., Ltd.
  • Graphite is one of the allotropes of carbon, and is a hexagonal hexagonal plate crystal material that forms a layered lattice made of layers of six-carbon rings. It has a so-called graphene structure.
  • the graphite includes natural graphite and artificial graphite.
  • Graphite has a desirable property that there is little voltage change from the beginning of discharge to the end of discharge, and can maintain a stable high voltage until the end of discharge.
  • Part or all of the carbon particles contained in the carbon material of the present invention may be composed of graphite.
  • the carbon particles in the carbon material of the present invention may contain hard carbon and graphite from the viewpoint of providing a well-balanced carbon material by utilizing the advantages of hard carbon and graphite.
  • the aspect of the present invention that includes both hard carbon and graphite as carbon particles is the case where the hard carbon particles and the graphite particles are individually observed in the microscopic observation, and the two are fused or bound, and apparently , When observed integrally.
  • a raw material or a composition containing the raw material is prepared.
  • the said raw material is 1 type (s) or 2 or more types selected from resin or plant material etc. which become the raw material of the hard carbon mentioned above.
  • the said composition contains the said raw material and arbitrary additives.
  • a method for producing a carbon material using the composition will be described in detail. However, the curing treatment, the pulverization treatment of the cured product, and the carbonization treatment described later are substantially performed using only raw materials. The same applies to the case of manufacturing.
  • the apparatus for preparing the composition is not particularly limited.
  • a kneading apparatus such as a kneading roll, a uniaxial or biaxial kneader can be used.
  • a mixing device such as a Henschel mixer or a disperser can be used, and when performing pulverization and mixing, for example, a device such as a hammer mill or a jet mill can be used. Can do.
  • metals, pigments, lubricants, antistatic agents are prepared during the preparation of the above composition or after the curing treatment described later and before the carbonization treatment. Additives such as additives and antioxidants may be further added.
  • the composition prepared as described above is cured.
  • the raw materials contained in the composition can be cured and infusible.
  • the crushed composition or resin is prevented from being re-fused during the carbonization treatment, and carbon particles having a desired particle diameter are efficiently obtained. Obtainable.
  • the conditions for the curing treatment are not particularly limited, for example, heating can be performed for 1 hour or more and 10 hours or less at a temperature (for example, 200 ° C. or more and 600 ° C. or less) at which a raw material contained in the composition can cause a curing reaction.
  • the heating device used in the curing process is not particularly limited, and a large continuous furnace, a medium batch furnace, or a small furnace can be appropriately selected and used.
  • the pulverization treatment is generally performed after the above curing treatment and before the carbonization treatment described later. However, in the production of the carbon material of the present invention, the curing treatment is omitted, and after the preparation of the raw material or the composition, the carbonization treatment is performed. A pulverization process can also be performed before.
  • a carbon material containing carbon particles having a surface area per unit volume within a predetermined range specified by the present invention can be produced.
  • the pulverization conditions may be appropriately changed depending on the type of raw materials used, and are not limited to the predetermined conditions.
  • prescribed range can be easily manufactured by performing a grinding
  • the pulverization method in the pulverization process is not particularly limited, and for example, an arbitrary pulverizer can be used.
  • the pulverizer include impact mills such as ball mills, vibrating ball mills, rod mills, and bead mills, and airflow pulverizers such as cyclone mills, jet mills, and dry air pulverizers. It is not limited.
  • these devices may be used alone or in combination of two or more, or may be used by pulverizing a plurality of times with one device.
  • classification may be appropriately performed using a sieve or a pulverization apparatus having a classification function may be used.
  • the carbonization process In order to produce a carbon material containing hard carbon, the composition or a cured product of the composition is carbonized.
  • the carbonization treatment may be performed once or twice or more.
  • the pre-carbonization treatment may be performed at a relatively low temperature (for example, 200 ° C. or more and less than 800 ° C.), and then the carbonization treatment may be performed at a high temperature (for example, 800 ° C. or more and 3000 ° C. or less).
  • the conditions for the carbonization treatment are not particularly limited.
  • the temperature is raised from normal temperature to a temperature increase rate in the range of 1 ° C./hour to 200 ° C./hour, and the temperature in the range of 800 ° C. to 3000 ° C. is set for 0.1 hour. It can be carried out by holding for not less than 50 hours, preferably not less than 0.5 hours and not more than 10 hours.
  • the atmosphere during the carbonization treatment is not particularly limited.
  • a reducing gas atmosphere mainly containing.
  • the carbon material of the present invention containing hard carbon carbon particles can be produced by the above production method.
  • the carbon material of the present invention containing hard carbon and graphite can be produced by preliminarily blending graphite with a composition as a raw material.
  • the carbon material of the present invention containing hard carbon and graphite is mixed with the carbon material containing hard carbon carbon particles obtained as described above and mixed with graphite pulverized to an appropriate particle size. It can also be manufactured.
  • the negative electrode active material of the present invention including the carbon material of the present invention
  • the secondary battery negative electrode of the present invention including the negative electrode active material layer including the negative electrode active material
  • the present invention including the secondary battery negative electrode.
  • the secondary battery will be described.
  • the active material for secondary battery negative electrode of the present invention contains the carbon material for secondary battery negative electrode of the present invention described above.
  • the negative electrode active material of the present invention suppresses a significant increase in electrical resistance in a low temperature environment of the negative electrode, and has excellent charge and discharge efficiency.
  • the negative electrode active material refers to a material that can occlude and release chemical species as a charge carrier in a secondary battery negative electrode. Examples of the chemical species include lithium ions or sodium ions in an alkali metal ion secondary battery.
  • the negative electrode active material is a substance that can occlude and release chemical species such as alkali metal ions (for example, lithium ions or sodium ions) in a secondary battery such as an alkali metal ion battery.
  • alkali metal ions for example, lithium ions or sodium ions
  • the negative electrode active material described in this specification means a material containing a carbon material produced using the resin composition or the like of the present invention.
  • the negative electrode active material may be substantially composed of only the carbon material of the present invention, but may further include a material different from the carbon material.
  • examples of such materials include materials generally known as negative electrode materials such as silicon, silicon monoxide, and other graphite materials.
  • the particle size (average particle size) at 50% accumulation in the volume-based particle size distribution of the graphite material used is preferably 2 ⁇ m or more and 50 ⁇ m or less, more preferably 5 ⁇ m or more and 30 ⁇ m or less.
  • the secondary battery negative electrode of the present invention is a negative electrode current collector in which a secondary battery negative electrode active material layer including the above-described secondary battery negative electrode active material of the present invention and a secondary battery negative electrode active material layer are laminated. And is configured. Moreover, the secondary battery of this invention is comprised including the secondary battery negative electrode of this invention mentioned above, an electrolysis layer, and a secondary battery positive electrode.
  • the negative electrode of the present invention is configured using the negative electrode active material of the present invention, thereby exhibiting an effect of suppressing electrical resistance in a low temperature environment.
  • the secondary battery of the present invention including the negative electrode of the present invention reflects the above-described effects of the negative electrode, and can suppress an increase in battery resistance even under a low temperature environment, and can exhibit excellent input / output characteristics and cycle characteristics.
  • the secondary battery examples include, but are not limited to, alkali metal secondary batteries such as lithium ion secondary batteries and sodium ion secondary batteries.
  • the secondary battery includes various types using different electrolytes such as a non-aqueous electrolyte secondary battery and a solid secondary battery. In the following description, a lithium ion secondary battery will be described as an example of a secondary battery.
  • FIG. 1 is a schematic diagram showing an example of a lithium ion secondary battery 100 including the carbon material of the present invention.
  • the lithium ion secondary battery 100 includes a negative electrode 10, a positive electrode 20, a separator 30, and an electrolytic layer 40.
  • the negative electrode 10 includes a negative electrode active material layer 12 and a negative electrode current collector 14.
  • the negative electrode active material layer 12 contains the above-described carbon material (not shown) of the present invention.
  • the negative electrode current collector 14 is not particularly limited, and a current collector that can be used for the negative electrode can be appropriately selected and used. For example, a copper foil or a nickel foil can be used, but is not limited thereto.
  • the negative electrode 10 can be manufactured as follows, for example.
  • organic polymer binders for example, fluoropolymers such as polyvinylidene fluoride and polytetrafluoroethylene, styrene-butadiene rubber, butyl rubber, 1 to 30 parts by mass of a rubbery polymer such as butadiene rubber
  • a viscosity adjusting solvent N-methyl-2-pyrrolidone, dimethylformamide, alcohol, water, etc.
  • a electrically conductive material further with respect to the active material for negative electrodes mentioned above as needed.
  • the conductive material for example, any one of acetylene black, ketjen black, vapor grown carbon fiber, or a combination of two or more thereof can be used.
  • the compounding quantity of a electrically conductive material is not specifically limited, For example, 2 mass parts or more and 10 mass parts or less are preferable with respect to 100 mass parts of negative electrode active materials, More preferably, they are 3 mass parts or more and 7 mass parts or less. Although it can be used outside these ranges, if the amount of the conductive agent is too large, the amount of the negative electrode active material present in the electrode may be reduced more than necessary, and the electric capacity of the negative electrode may be reduced. .
  • the obtained slurry can be formed into a sheet shape, a pellet shape, or the like by compression molding, roll molding, or the like, and the negative electrode active material layer 12 can be obtained.
  • the negative electrode 10 can be obtained by laminating the negative electrode active material layer 12 and the negative electrode current collector 14 thus obtained. Moreover, the negative electrode 10 can also be manufactured by apply
  • the electrolytic layer 40 fills between the positive electrode 20 and the negative electrode 10, and is a layer in which lithium ions move by charge / discharge.
  • Electrolytic layer 40 is not particularly limited, and can be generally formed by filling a known electrolyte.
  • a known electrolyte for example, a nonaqueous electrolytic solution in which a lithium salt serving as an electrolyte is dissolved in a nonaqueous solvent is used.
  • non-aqueous solvent examples include cyclic esters such as propylene carbonate, ethylene carbonate, and ⁇ -butyrolactone; chain esters such as dimethyl carbonate and diethyl carbonate; chain ethers such as dimethoxyethane; or a mixture thereof. Can be used.
  • electrolytes generally be a known electrolyte, for example, it may be used lithium metal salt such as LiClO 4, LiPF 6.
  • the electrolytic layer 40 has a gel polymer electrolyte containing a polymer material such as polyethylene oxide or polyacrylonitrile, or a solid such as zirconia.
  • a polymer material such as polyethylene oxide or polyacrylonitrile
  • a solid such as zirconia
  • the separator 30 is not particularly limited, and can be a member that is permeable to chemical species such as lithium ions, and a generally known separator can be used.
  • a porous film constituted by using polyethylene or polypropylene, Nonwoven fabrics can be mentioned.
  • the positive electrode 20 includes a positive electrode active material layer 22 and a positive electrode current collector 24. It does not specifically limit as the positive electrode active material layer 22, Generally, it can form with a well-known positive electrode active material. Is not particularly limited as the cathode active material include lithium cobalt oxide (LiCoO 2), lithium nickel oxide (LiNiO 2), composite oxides such as lithium manganese oxide (LiMn 2 O 4); polyaniline, polypyrrole, etc. Or the like can be used.
  • the positive electrode active material contains an organic polymer binder and a conductive material in the same manner as the negative electrode active material described above. The blending amounts of the organic polymer binder and the conductive material in the positive electrode active material are not particularly limited, and may be the same as the negative electrode active material or may be blended in an amount different from the negative electrode active material.
  • the positive electrode current collector 24 is not particularly limited, and generally known positive electrode current collectors can be used.
  • aluminum foil, stainless steel foil, titanium foil, nickel foil, copper foil, and the like can be used.
  • the positive electrode 20 in the present embodiment can be manufactured by a generally known positive electrode manufacturing method.
  • the lithium ion secondary battery 100 has been described above as an example, but the above does not exclude that the carbon material of the present invention, the negative electrode active material, and the negative electrode are used for secondary batteries other than lithium ion secondary batteries. Absent.
  • the carbon material of the present invention can also be used for a secondary battery using alkali ions other than lithium ions such as sodium ions as chemical species.
  • each alkaline ion secondary battery may be configured using a member similar to the member used for the lithium ion secondary battery 100 described above, or may be configured using a different member.
  • an aluminum foil can be selected in addition to the negative electrode current collector exemplified above.
  • the secondary battery can be formed by appropriately disposing the negative electrode 10, the positive electrode 20, the separator 30, and the electrolytic layer 40 in a case suitable for the secondary battery.
  • the type of the secondary battery is not specified, and examples thereof include a cylindrical type, a coin type, a square type, and a film type.
  • FIG. 1 an example in which the negative electrode active material layer 12 is formed on one surface of the negative electrode current collector 14 and the positive electrode active material layer 22 is formed on one surface of the positive electrode current collector 24. Indicated. As a modification, the negative electrode active material layer 12 is formed on both surfaces of the negative electrode current collector 14, the positive electrode active material layer 22 is formed on both surfaces of the positive electrode current collector 24, and these are interposed via the separator 30 and the electrolytic layer 40. You may comprise a secondary battery by making it oppose. Further, the present invention is not limited to the above-described embodiment, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.
  • a carbon material for a secondary battery negative electrode (hereinafter, also referred to as a carbon material) used in Examples or Comparative Examples was prepared as follows.
  • a resin (carbon material raw material) blended in a resin composition used for producing a carbon material was prepared as follows. (Synthesis of aniline resin) 100 parts of aniline, 697 parts of 37% formaldehyde aqueous solution, and 2 parts of oxalic acid were placed in a three-necked flask equipped with a stirrer and a condenser, reacted at 100 ° C. for 3 hours, and dehydrated to obtain 110 parts of aniline resin.
  • Example 1 A resin composition obtained by blending 10 parts of hexamethylenetetramine with 100 parts of the above aniline resin and pulverizing and mixing with a vibration ball mill was used at room temperature to 100 under a nitrogen atmosphere using a large continuous furnace. The temperature was raised at a rate of temperature rise of °C / hour, and after reaching 550 ° C., the fired state was maintained for 1.5 hours to carry out the curing treatment.
  • Example 2 The curing process was performed under the same first firing conditions as in Example 1.
  • Example 3 To 100 parts of the novolak type phenol resin, 10 parts of triphenyl phosphate (manufactured by Daihachi Chemical Industry Co., Ltd., trade name: TPP) and 3 parts of hexamethylenetetramine were blended, and a vibration ball mill was used. The resin composition obtained by pulverization and mixing was heated from room temperature to a temperature increase rate of 100 ° C./hour in a nitrogen atmosphere using a medium-sized batch furnace. After reaching 550 ° C., the fired state was maintained for 1.5 hours. It was held and cured.
  • Example 4 A curing treatment was performed under the same first firing conditions as in Example 3.
  • Example 5 After performing infusibilization treatment on coconut shells, the temperature was increased from room temperature to 100 ° C./hour in a nitrogen atmosphere using a medium-sized batch furnace, and after reaching 550 ° C., the firing state was 1 Curing treatment was carried out for 5 hours.
  • Comparative Example 1 The curing treatment was performed under the same first firing conditions as in Example 1.
  • Comparative Example 2 The curing process was performed under the same first firing conditions as in Example 1.
  • Comparative Example 3 The curing process was performed under the same first firing conditions as in Example 3.
  • Comparative Example 4 The curing treatment was performed under the same first firing conditions as in Example 3.
  • Comparative Example 5 Curing treatment was performed under the same first firing conditions as in Example 3.
  • Comparative Example 6 Curing treatment was performed under the same first firing conditions as in Example 3.
  • Comparative Example 7 The curing process was performed under the same first firing conditions as in Example 5.
  • Example 1 Using an ACM pulverizer, pulverization was performed under the conditions of a powder supply rate of 1000 g / min, an air volume of 20 m 3 / min, a pulverization rotor rotation speed of 6500 rpm, and a classification rotor rotation speed of 4500 rpm, and further pulverization using a jet mill.
  • a pulverized intermediate obtained by pulverizing under the conditions of a supply amount of 80 g / min, a pulverization pressure of 0.8 MPa, and a repetition rate of 2 Pass was obtained by removing coarse particles through a sieve having an opening of 75 ⁇ m.
  • Example 2 Using an ACM pulverizer, pulverization was performed under the conditions of a powder supply rate of 1000 g / min, an air volume of 20 m 3 / min, a pulverization rotor rotation speed of 6500 rpm, and a classification rotor rotation speed of 4500 rpm, and further pulverization using a jet mill.
  • a pulverized intermediate obtained by pulverizing under the conditions of a supply amount of 80 g / min, a pulverization pressure of 0.8 MPa, and a repetition rate of 2 Pass was obtained by removing coarse particles through a sieve having an opening of 75 ⁇ m.
  • Example 3 Using a cyclone mill crusher, obtained by crushing under the conditions of powder feed rate 50 g / min, air flow rate 0.5 m 3 / min, first crushing impeller rotation speed 15000 rpm, second crushing impeller rotation speed 15000 rpm The pulverized intermediate was passed through a sieve having an opening of 75 ⁇ m to obtain a pulverized product from which coarse particles were removed.
  • Example 4 Coarse particles obtained by placing powder in a container containing 5000 g of ⁇ 15 mm alumina balls and 900 g of ⁇ 10 mm alumina balls in a ball mill pulverizer and passing through a sieve having an opening of 75 ⁇ m are coarse particles. A pulverized product from which was removed was obtained.
  • Example 5 Using an ACM pulverizer, pulverization was performed under the conditions of a powder supply rate of 1000 g / min, an air volume of 20 m 3 / min, a pulverization rotor rotation speed of 6500 rpm, and a classification rotor rotation speed of 4500 rpm, and further pulverization using a jet mill.
  • a pulverized intermediate obtained by pulverizing under the conditions of a supply amount of 80 g / min, a pulverization pressure of 0.8 MPa, and a repetition rate of 2 Pass was obtained by removing coarse particles through a sieve having an opening of 75 ⁇ m.
  • Comparative Example 1 A pulverized intermediate obtained by pulverization using an ACM pulverizer under the conditions of a powder supply rate of 1000 g / min, an air volume of 20 m 3 / min, a pulverization rotor rotation speed of 6500 rpm, and a classification rotor rotation speed of 4500 rpm, A pulverized product from which coarse particles were removed was obtained through a sieve having an opening of 75 ⁇ m.
  • Comparative Example 2 A pulverized intermediate obtained by pulverization using an ACM pulverizer under the conditions of a powder supply rate of 1000 g / min, an air volume of 20 m 3 / min, a pulverization rotor rotation speed of 6500 rpm, and a classification rotor rotation speed of 4500 rpm, A pulverized product from which coarse particles were removed was obtained through a sieve having an opening of 75 ⁇ m.
  • Comparative Example 3 Obtained by pulverization using a cyclone mill pulverizer under the conditions of a powder supply rate of 30 g / min, an air flow rate of 0.8 m 3 / min, a first pulverization impeller rotation speed of 13000 rpm, and a second pulverization impeller rotation speed of 13000 rpm.
  • the pulverized intermediate was passed through a sieve having an opening of 75 ⁇ m to obtain a pulverized product from which coarse particles were removed.
  • Comparative Example 4 Obtained by pulverization using a cyclone mill pulverizer under the conditions of a powder supply rate of 30 g / min, an air volume of 0.8 m 3 / min, a first pulverization impeller rotation speed of 13000 rpm, and a second pulverization impeller rotation speed of 13000 rpm.
  • the pulverized intermediate was passed through a sieve having an opening of 75 ⁇ m to obtain a pulverized product from which coarse particles were removed.
  • Comparative Example 5 obtained by pulverization using a cyclone mill pulverizer under the conditions of a powder supply rate of 30 g / min, an air volume of 0.8 m 3 / min, a first pulverization impeller rotation speed of 13000 rpm, and a second pulverization impeller rotation speed of 13000 rpm.
  • the pulverized intermediate was passed through a sieve having an opening of 75 ⁇ m to obtain a pulverized product from which coarse particles were removed.
  • Comparative Example 6 obtained by pulverization using a cyclone mill pulverizer under the conditions of a powder supply rate of 30 g / min, an air volume of 0.8 m 3 / min, a first pulverization impeller rotation speed of 13000 rpm, and a second pulverization impeller rotation speed of 13000 rpm.
  • the pulverized intermediate was passed through a sieve having an opening of 75 ⁇ m to obtain a pulverized product from which coarse particles were removed.
  • Comparative Example 7 Using an ACM pulverizer, pulverization was performed under the conditions of a powder supply rate of 1000 g / min, an air volume of 20 m 3 / min, a pulverizing rotor rotational speed of 6500 rpm, and a classification rotor rotational speed of 4500 rpm, and further using a cyclone classifier The pulverized intermediate from which the coarse particles were removed was passed through a sieve having an opening of 75 ⁇ m to obtain a pulverized product from which coarse particles had been removed.
  • the pulverization apparatus used in the above pulverization process is as follows.
  • ACM pulverizer an impact classifier built-in pulverizer (ACM30HC), manufactured by Hosokawa Micron Corporation) was used.
  • ACM30HC impact classifier built-in pulverizer
  • jet mill pulverizer a nano jet mizer (NJ-300 type, manufactured by Aisin Nano Technologies) was used.
  • cyclone mill a dry pulverizer (150BMW type cyclone mill, manufactured by Shizuoka Plant) was used.
  • ball mill crusher a rotary ball mill (1-stage type-B, manufactured by Irie Shokai) was used.
  • Example 1 In a large continuous furnace, firing was performed at room temperature to 100 ° C / hour in a nitrogen atmosphere, and after reaching 1200 ° C, the firing state was maintained for 2 hours for carbonization treatment. 1 carbon material was obtained.
  • Example 2 Carbonization treatment was performed under the same firing conditions as in Example 1 to obtain a carbon material of Example 2.
  • Example 3 Carbonization was performed under the same firing conditions as in Example 1 except that the large continuous furnace was changed to the small continuous furnace, and the carbon material of Example 3 was obtained.
  • Example 4 Carbonization treatment was performed under the same firing conditions as in Example 3 to obtain a carbon material of Example 4.
  • Example 5 Carbonization treatment was performed under the same firing conditions as in Example 3 to obtain a carbon material of Example 5.
  • Comparative Example 1 Carbonization was performed under the same firing conditions as in Example 1 to obtain a carbon material of Comparative Example 1.
  • Comparative Example 2 Carbonization was performed under the same firing conditions as in Example 1 to obtain a carbon material of Comparative Example 2.
  • Comparative Example 3 Carbonization was performed under the same firing conditions as in Example 3 to obtain a carbon material of Comparative Example 3.
  • Comparative Example 4 Carbonization was performed under the same firing conditions as in Example 3 to obtain a carbon material of Comparative Example 4.
  • Comparative Example 5 Carbonization was performed under the same firing conditions as in Example 3 to obtain a carbon material of Comparative Example 5.
  • Comparative Example 6 Carbonization was performed under the same firing conditions as in Example 3 to obtain a carbon material of Comparative Example 6.
  • Comparative Example 7 Carbonization was performed under the same firing conditions as in Example 3 to obtain a carbon material of Comparative Example 7.
  • half-cell lithium ion secondary batteries were prepared.
  • 100 parts of the carbon material obtained in each example and each comparative example 1.5 parts of carboxymethyl cellulose (Daicel Finechem Co., Ltd., CMC Daicel 2200), styrene-butadiene rubber (manufactured by JSR Corporation, TRD-2001) ) 1.5 parts, 2 parts of acetylene black (Denka Black, manufactured by Denki Kagaku Kogyo Co., Ltd.) and 100 parts of distilled water were added and stirred and mixed with a rotating / revolving mixer to prepare a slurry-like negative electrode mixture.
  • the negative electrode mixture was applied to one side of a 14 ⁇ m thick copper foil (Furukawa Electric Co., Ltd., NC-WS), followed by preliminary drying in air at 60 ° C. for 2 hours, and then at 120 ° C. for 15 hours. Vacuum dried. After vacuum drying, the electrode was pressure-formed by a roll press. This was cut into a disk shape having a diameter of 13 mm to produce a negative electrode.
  • the thickness of the negative electrode material layer was 50 ⁇ m.
  • a 1 mm thick lithium metal was prepared as a working electrode.
  • a porous polyolefin film manufactured by Celgard, trade name: Celgard 2400 was used.
  • LiPF Lithium hexafluorophosphate
  • full-cell lithium ion secondary batteries were prepared.
  • the production method was the same as that in the production method of the half-cell lithium ion secondary battery described above except that the working electrode was changed to the positive electrode.
  • a positive electrode made of LiCoO 2 as an active material and coated on a current collector was used, and a single layer sheet using an aluminum foil as a positive electrode current collector (trade name; Pioxel C, manufactured by Pionics Corporation). ⁇ 100) formed into a disk shape with a diameter of 12 mm was used.
  • Evaluation was performed as follows using each of the examples, the carbon materials of the comparative examples, and the lithium ion secondary batteries prepared using the carbon materials of the examples and the comparative examples.
  • particle size distribution measuring device LA-920 manufactured by Horiba, Ltd.
  • the particle size distribution on the basis of the number of carbon materials of each example and each comparative example was measured by the following procedure.
  • About 20 mg of the carbon material obtained as described above and each comparative example, about 1 ml of surfactant (Tween 20, manufactured by Kishida Chemical Co., Ltd.) diluted to about 1 wt%, and about 5 ml of distilled water are put in one plastic container. Then, the mixture was dispersed by applying ultrasonic waves while mixing with a poly dropper for about 1 minute in an ultrasonic cleaner to obtain a dispersion.
  • surfactant Teween 20, manufactured by Kishida Chemical Co., Ltd.
  • each lithium ion secondary battery is charged to 4.2 V at a constant current of 0.2 C in a temperature environment of 25 ° C., and then the current value is attenuated to 0.02 C at a constant voltage of 4.2 V. Charged until Next, the battery was discharged at a constant current of 0.2 C, adjusted to 50% SOC (State of Charge), and left at 25 ° C. for 1 hour. Subsequently, each full cell type lithium ion secondary battery was allowed to stand for 1 hour in a temperature environment of ⁇ 20 ° C., and the following “low temperature environment charge / discharge treatment” was performed for 3 cycles.
  • the low temperature environmental discharge treatment is performed by placing a full-cell type lithium ion secondary battery in a temperature environment of ⁇ 20 ° C., measuring a voltage when charged at a predetermined current value for 10 seconds, and then allowing to stand for 10 minutes. The voltage when discharged for 10 seconds at a predetermined current value is measured, and then left for 10 minutes.
  • the predetermined current value is 1 / 3C, 0.5C, and 1C in order from the first cycle to the third cycle.
  • the upper limit voltage was 4.2 V and the lower limit voltage was 2.5 V.
  • “1C” means a current density at which discharge is completed in one hour.
  • the horizontal axis represents the current value
  • the vertical axis represents the voltage after charging or discharging for 10 seconds
  • the DC resistance during charging and discharging in the battery from the absolute value of the slope of the approximate straight line ( DC-IR) was determined.
  • a low DC-IR means that the electrical resistance is small and the output characteristics are good.
  • the surface area per unit volume satisfied the predetermined range specified in the present invention.
  • the surface area per unit volume is out of the predetermined range.
  • the initial charge / discharge efficiency at 25 ° C. showed a high value of 84% or more, and the DC-IR during charging and discharging at ⁇ 20 ° C. tended to be low.
  • Examples 1 and 2 are compared with Comparative Examples 1 and 2 using the same material as Examples 1 and 2, the DC-IR during charging and discharging in a low temperature environment is different due to the difference in surface area. There was a significant difference.
  • Examples 1 and 2 had a larger surface area and lower DC-IR during charging / discharging than Comparative Examples 1 and 2. The same tendency was confirmed in Examples 3 and 4 and Comparative Examples 3 to 6, and Example 5 and Comparative Example 7. From the above results, in each example, the decrease in the resistance value in the low temperature environment is reduced by including the surface area within the predetermined range, and the good charge / discharge efficiency shown at 25 ° C. is significantly reflected even in the low temperature environment. It was suggested that
  • a carbon material for a secondary battery negative electrode comprising carbon particles having a surface area per unit volume determined from a particle size distribution on a number basis in a range of 10,000 cm ⁇ 1 to 16000 cm ⁇ 1 .
  • the carbon particles include hard carbon having an average interplanar spacing d 002 of (002) planes of 0.340 nm or more determined by an X-ray diffraction method using CuK ⁇ rays as a radiation source.
  • the carbon material for secondary battery negative electrode as described in any one of 3).
  • a secondary battery negative electrode active material comprising the carbon material for a secondary battery negative electrode according to any one of (1) to (6) above.
  • a secondary battery negative electrode active material layer comprising the secondary battery negative electrode active material described in (7) above, and a negative electrode current collector in which the secondary battery negative electrode active material layer is laminated.
  • a secondary battery negative electrode comprising: (9) A secondary battery comprising the secondary battery negative electrode described in (8) above, an electrolytic layer, and a secondary battery positive electrode.

Abstract

The present invention provides a carbon material for a secondary cell negative electrode in which increases in electrical resistance during charging and discharging are suppressed when used in low temperature environments and adequate cell characteristics can be ensured, an active substance for a secondary cell negative electrode that is created by including the carbon material for a secondary cell negative electrode, a secondary cell negative electrode that is configured by using the active substance for a secondary cell negative electrode, and a secondary cell in which the secondary cell negative electrode is used. This carbon material for a secondary cell negative electrode includes carbon particles in which the surface area per unit volume derived from the particle size distribution on a count basis is in the range of 10000 cm-1 to 16000 cm-1, and the active substance for a secondary cell negative electrode contains the carbon material for a secondary cell negative electrode. The secondary cell negative electrode (10) has an active substance layer (12) for a secondary cell negative electrode that includes the active substance for a secondary cell negative electrode, and a collector (14) for a negative electrode. The secondary cell (100) is provided with this secondary cell negative electrode (10), an electrolyte layer (40), and a secondary cell positive electrode (20).

Description

二次電池負極用炭素材、二次電池負極用活物質、二次電池負極および二次電池Carbon material for secondary battery negative electrode, active material for secondary battery negative electrode, secondary battery negative electrode and secondary battery
 本発明は、二次電池負極用炭素材、二次電池負極用活物質、二次電池負極および二次電池に関する。
 本願は、2014年12月24日に、日本に出願された特願2014-260833号、及び2015年3月16日に、日本に出願された特願2015-052628号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a carbon material for a secondary battery negative electrode, an active material for a secondary battery negative electrode, a secondary battery negative electrode, and a secondary battery.
This application claims priority based on Japanese Patent Application No. 2014-260833 filed in Japan on December 24, 2014, and Japanese Patent Application No. 2015-052628 filed in Japan on March 16, 2015. , The contents of which are incorporated herein.
 近年、携帯電話などの小型電気製品から自動車など大型機械製品まで種々の技術分野で二次電池の利用が検討されている。二次電池としては、電解質として有機電解質液等を使用する非水電解液二次電池、または固体電解質を使用する固体電池など種々のタイプが検討されている。いずれのタイプの二次電池においても、従来の二次電池の負極には、ハードカーボンまたは黒鉛などの炭素材が汎用されている(例えば特許文献1参照)。 In recent years, the use of secondary batteries has been studied in various technical fields ranging from small electrical products such as mobile phones to large machine products such as automobiles. As the secondary battery, various types such as a non-aqueous electrolyte secondary battery using an organic electrolyte solution or the like as an electrolyte or a solid battery using a solid electrolyte have been studied. In any type of secondary battery, a carbon material such as hard carbon or graphite is widely used for the negative electrode of the conventional secondary battery (see, for example, Patent Document 1).
 中でも、ハードカーボンは高サイクル特性などの点で優れており、二次電池負極の炭素材として期待される。 Among them, hard carbon is excellent in terms of high cycle characteristics and is expected as a carbon material for secondary battery negative electrodes.
特開平5-74457号公報JP-A-5-74457
 ところで、二次電池が種々の技術分野に亘り利用されたことにより、新たな課題があることが認識されてきた。即ち、氷点下、特には-10℃以下、より顕著には-20℃以下といった低温環境で二次電池を使用した場合に、充放電時における電気抵抗が増大するという問題があることがわかった。この結果、低温環境下で使用した二次電池は、常温環境下で使用した場合に比べてサイクル特性や出入力特性が低くなる虞があることがわかった。 By the way, it has been recognized that there are new problems due to the use of secondary batteries in various technical fields. That is, it has been found that there is a problem that the electrical resistance at the time of charging / discharging increases when the secondary battery is used in a low temperature environment, such as below freezing point, particularly −10 ° C. or less, more preferably −20 ° C. or less. As a result, it was found that the secondary battery used in a low temperature environment may have lower cycle characteristics and input / output characteristics than those used in a room temperature environment.
 特に、二次電池負極の炭素材として用いられる一般的なハードカーボンは、黒鉛と比較して挿入脱離するリチウムイオン等の電荷担体となる化学種の内部拡散性に劣ることが知られている。そのため、低温環境下において電池抵抗が上がった場合に充分な電池性能が得られない虞があった。 In particular, it is known that general hard carbon used as a carbon material for a negative electrode of a secondary battery is inferior in internal diffusibility of chemical species serving as charge carriers such as lithium ions that are inserted and desorbed compared to graphite. . For this reason, there is a possibility that sufficient battery performance cannot be obtained when battery resistance increases in a low temperature environment.
 本発明は上記課題に鑑みてなされたものである。即ち、本発明は、低温環境下で使用した場合に充放電時における電気抵抗の増大が抑制され、充分な電池性能を担保し得る二次電池負極用炭素材を提供する。
 また、本発明は、上記二次電池負極用炭素材を含んで生成される二次電池負極用活物質、当該二次電池負極用活物質を用いて構成される二次電池負極、および当該二次電池負極を用いる二次電池を提供する。
The present invention has been made in view of the above problems. That is, the present invention provides a carbon material for a secondary battery negative electrode that suppresses an increase in electrical resistance during charge and discharge when used in a low temperature environment and can ensure sufficient battery performance.
The present invention also provides a secondary battery negative electrode active material produced by including the secondary battery negative electrode carbon material, a secondary battery negative electrode composed of the secondary battery negative electrode active material, and the second battery negative electrode active material. A secondary battery using a secondary battery negative electrode is provided.
 本発明の二次電池負極用炭素材は、個数基準における粒子径分布から求めた単位体積当たりの表面積が、10000cm-1以上16000cm-1以下の範囲である炭素粒子を含むことを特徴とする。 The carbon material for a secondary battery negative electrode of the present invention is characterized by containing carbon particles having a surface area per unit volume determined from a particle size distribution on a number basis in a range of 10,000 cm −1 to 16000 cm −1 .
 また本発明の二次電池負極用活物質は、本発明の二次電池負極用炭素材を含有することを特徴とする。 The active material for secondary battery negative electrode of the present invention is characterized by containing the carbon material for secondary battery negative electrode of the present invention.
 また本発明の二次電池負極は、本発明の二次電池負極用活物質を含む二次電池負極用活物質層と、上記二次電池負極用活物質層が積層された負極用集電体と、を有することを特徴とする。 Further, the secondary battery negative electrode of the present invention includes a secondary battery negative electrode active material layer containing the secondary battery negative electrode active material of the present invention, and a negative electrode current collector in which the secondary battery negative electrode active material layer is laminated. It is characterized by having.
 また本発明の二次電池は、本発明の二次電池負極と、電解層と、二次電池正極と、を備えることを特徴とする。 The secondary battery of the present invention is characterized by comprising the secondary battery negative electrode of the present invention, an electrolytic layer, and a secondary battery positive electrode.
 本発明によれば、低温環境下において二次電池の充放電時における電気抵抗の増大を抑制可能な二次電池負極用炭素材、二次電池負極用活物質、二次電池負極を提供し、また低温環境下においても電気抵抗の増大が抑制された二次電池を提供し得る。 According to the present invention, a carbon material for a secondary battery negative electrode, an active material for a secondary battery negative electrode, and a secondary battery negative electrode capable of suppressing an increase in electrical resistance during charging and discharging of the secondary battery in a low temperature environment, In addition, it is possible to provide a secondary battery in which an increase in electrical resistance is suppressed even in a low temperature environment.
本発明の炭素材を用いて製造された負極を備えるリチウムイオン二次電池の一例を示す模式図である。It is a schematic diagram which shows an example of a lithium ion secondary battery provided with the negative electrode manufactured using the carbon material of this invention.
 本発明者らは、低温環境下における二次電池負極の電気特性について検討した。その結果、従来の二次電池負極は、常温時と比較して充放電時における電気抵抗が顕著に増大し電池特性を低下させる可能性があることがわかった。本発明者らは、さらに詳細に検討した結果、低温環境下において使用される二次電池負極には以下の問題があることがわかった。即ち、氷点下、中でも-10℃以下、特には-20℃以下の低温環境下では、電解質が凍結し、あるいは凍結しないまでも粘度が上昇する。その結果、低温環境下では、電解質と負極用活物質とを移動するリチウムイオンなどの化学種の動作が鈍くなり、負極用活物質に対する吸蔵放出が不活発になることが推測された。本発明者らは、負極用活物質の化学種を吸蔵放出する能力を改善し低温環境下でも良好な吸蔵放出を維持することによれば、電気抵抗の増大を抑制することが可能であるという考えに至った。より具体的には、本発明者らは、負極活物質に含まれる炭素粒子の単位体積当たりの表面積を従来よりも有意に増大させることにより上記課題を解決可能であるという技術思想のもと本発明の完成に至った。
 以下に本発明の二次電池負極用炭素材(以下、単に炭素材ともいう)、二次電池負極用活物質(以下、単に負極用活物質ともいう)、二次電池負極(以下、単に負極ともいう)、および二次電池について、順に説明する。
The inventors examined the electrical characteristics of the secondary battery negative electrode in a low temperature environment. As a result, it was found that the conventional secondary battery negative electrode has a possibility that the electrical resistance during charging / discharging is remarkably increased and the battery characteristics are deteriorated as compared with that at normal temperature. As a result of further detailed studies, the present inventors have found that secondary battery negative electrodes used in a low temperature environment have the following problems. That is, in a low temperature environment below freezing point, in particular, -10 ° C or lower, particularly -20 ° C or lower, the electrolyte is frozen or the viscosity rises even if it is not frozen. As a result, it was speculated that under the low temperature environment, the operation of chemical species such as lithium ions moving between the electrolyte and the negative electrode active material becomes dull and the occlusion and release of the negative electrode active material becomes inactive. According to the present inventors, it is possible to suppress an increase in electrical resistance by improving the ability to occlude and release chemical species of the negative electrode active material and maintain good occlusion and release even in a low temperature environment. I came up with an idea. More specifically, the inventors of the present invention are based on the technical idea that the above problem can be solved by significantly increasing the surface area per unit volume of the carbon particles contained in the negative electrode active material. The invention has been completed.
The secondary battery negative electrode carbon material of the present invention (hereinafter also simply referred to as carbon material), secondary battery negative electrode active material (hereinafter also simply referred to as negative electrode active material), secondary battery negative electrode (hereinafter simply referred to as negative electrode). And the secondary battery will be described in order.
 尚、本発明の炭素材、負極用活物質、または負極が用いられる二次電池、および本発明の二次電池としては、たとえばリチウムイオン二次電池またはナトリウムイオン二次電池などのアルカリ金属二次電池を挙げることができる。ただし、当該二次電池は、これに限定されず、他の電荷担体を吸蔵放出する形式の二次電池、非水電解液二次電池、または固体二次電池などの種々の形式を包含する。以下の説明では、二次電池として、リチウムイオン二次電池を例に説明する。 As the secondary battery in which the carbon material of the present invention, the negative electrode active material, or the negative electrode is used, and the secondary battery of the present invention, for example, an alkali metal secondary such as a lithium ion secondary battery or a sodium ion secondary battery is used. A battery can be mentioned. However, the secondary battery is not limited to this, and includes various types such as a secondary battery that occludes and releases other charge carriers, a non-aqueous electrolyte secondary battery, or a solid secondary battery. In the following description, a lithium ion secondary battery will be described as an example of a secondary battery.
<炭素材>
 本発明の炭素材は、個数基準における粒子径分布から求めた単位体積当たりの表面積(以下、単に単位体積当たりの表面積ともいう)が、10000cm-1以上16000cm-1以下の範囲である炭素粒子を含む。
<Carbon material>
The carbon material of the present invention comprises carbon particles having a surface area per unit volume (hereinafter, also simply referred to as a surface area per unit volume) determined from the particle size distribution on a number basis within a range of 10000 cm −1 to 16000 cm −1. Including.
 上記単位体積当たりの表面積の下限は、さらに12000cm-1以上とすることができる。また上記単位体積当たりの表面積の上限は、さらに15500cm-1以下、または14000cm-1以下とすることができる。 The lower limit of the surface area per unit volume may be further 12000 cm −1 or more. Further, the upper limit of the surface area per unit volume may be further 15500 cm −1 or less, or 14000 cm −1 or less.
 本発明の炭素材は、負極用活物質の材料として用いることができる炭素材料である。本発明の炭素材は、低温環境下、二次電池の充放電時における電気抵抗の増大を抑制する効果(以下、電気抵抗抑制効果ともいう)を有する。本発明の炭素材において電気抵抗抑制効果が発揮される理由は明らかではないが、本発明者らは、以下のとおり推察する。即ち、本発明の炭素材は、粒子径が適度に微小であり、単位体積当たりの表面積が充分に大きくなるよう構成されている。そのため本発明の炭素材は、リチウムイオンの吸蔵放出効率が高く、低温環境下においてリチウムイオンの動作が鈍くなった場合でも、スムーズに吸蔵放出が行われるものと推測される。換言すると、本発明の炭素材は、リチウムイオンの吸蔵放出領域である粒子の表面の面積を従来の炭素材より有意に増大させたことによって、低温環境下におけるリチウムイオンの移動性の低下をカバーし電気抵抗の増大を抑制するものと推察される。 The carbon material of the present invention is a carbon material that can be used as a material for an active material for a negative electrode. The carbon material of the present invention has an effect of suppressing an increase in electric resistance (hereinafter also referred to as an electric resistance suppressing effect) during charging / discharging of the secondary battery in a low temperature environment. The reason why the electrical resistance suppressing effect is exhibited in the carbon material of the present invention is not clear, but the present inventors infer as follows. That is, the carbon material of the present invention is configured such that the particle diameter is moderately small and the surface area per unit volume is sufficiently large. Therefore, it is estimated that the carbon material of the present invention has a high efficiency of occlusion and release of lithium ions, and even when the operation of lithium ions becomes dull in a low temperature environment, the occlusion and release are performed smoothly. In other words, the carbon material of the present invention covers a decrease in the mobility of lithium ions in a low temperature environment by significantly increasing the surface area of the particles, which are the occlusion / release regions of lithium ions, as compared to conventional carbon materials. It is assumed that the increase in electrical resistance is suppressed.
 具体的には本発明の炭素材は、上記単位体積当たりの表面積が10000cm-1以上であるため、リチウムイオンの吸蔵放出領域である粒子表面の総面積が充分に大きい。これにより本発明の炭素材は、従来の炭素材に比べてリチウムイオンの吸蔵放出能に優れ、低温環境下でも電気抵抗抑制効果を発揮する。
 また、本発明の炭素材は、上記単位体積当たりの表面積が、16000cm-1以下の範囲であり、極端に微小な炭素材の粒子が排除されている。炭素材に極端に微小な炭素材の粒子が含まれていると、高温時における自己放電量が増加する傾向にあり、また炭素材を含む材料をスラリー化して集電体に塗工する際、当該スラリーの粘度の著しい上昇により塗工性が低下する傾向にある。そのため、本発明の炭素材は、単位体積当たりの表面積の上限を16000cm-1と特定することにより、上記自己放電の顕著な増加を抑制し、また塗工性を良好に維持する。
Specifically, since the carbon material of the present invention has a surface area per unit volume of 10,000 cm −1 or more, the total area of the particle surface, which is a lithium ion storage / release region, is sufficiently large. Thereby, the carbon material of this invention is excellent in the occlusion / release capability of lithium ion compared with the conventional carbon material, and exhibits an electrical resistance inhibitory effect also in a low temperature environment.
The carbon material of the present invention has a surface area per unit volume in the range of 16000 cm −1 or less, and extremely minute carbon material particles are excluded. If the carbon material contains extremely fine carbon material particles, the amount of self-discharge at high temperatures tends to increase, and when the material containing the carbon material is slurried and applied to the current collector, The coatability tends to decrease due to a significant increase in the viscosity of the slurry. Therefore, the carbon material of the present invention specifies the upper limit of the surface area per unit volume as 16000 cm −1 , thereby suppressing a significant increase in the self-discharge and maintaining good coatability.
 本発明において、低温環境下における電気抵抗は、所定の低温環境条件(例えば-20℃の環境)下において測定された直流抵抗(DC-IR)の値の大小によって判断することができる。直流抵抗値が相対的に大きい場合には、電気抵抗が相対的に高いと判断される。 In the present invention, the electrical resistance in a low temperature environment can be determined by the magnitude of the value of DC resistance (DC-IR) measured under a predetermined low temperature environment condition (for example, an environment of −20 ° C.). When the direct current resistance value is relatively large, it is determined that the electrical resistance is relatively high.
 本発明において個数基準における粒子径分布とは、レーザー回折・散乱法によって求めた個数基準の粒子径分布を意味する。当該粒子径分布は、レーザー回折/散乱式粒度分布測定装置で測定することができる。例えば、株式会社堀場製作所製のLA-920などにより測定することができる。ここで粒子径とは、粒子の直径を意味する。 In the present invention, the particle size distribution based on the number means the particle size distribution based on the number obtained by the laser diffraction / scattering method. The particle size distribution can be measured with a laser diffraction / scattering particle size distribution measuring apparatus. For example, it can be measured by LA-920 manufactured by Horiba, Ltd. Here, the particle diameter means the diameter of the particle.
 本発明において個数基準における粒子径分布から求めた単位体積当たりの表面積とは、任意のレーザー回折/散乱式粒度分布測定装置により測定された個数基準の粒子径分布から得られたデータを用い、下記式(1)により算出することができる。
[数1]
単位体積当たりの面積(cm-1)=総表面積(cm)/総体積(cm) (1)
In the present invention, the surface area per unit volume determined from the particle size distribution on the basis of the number is the data obtained from the particle size distribution on the basis of the number measured by an arbitrary laser diffraction / scattering particle size distribution measuring device, It can be calculated by equation (1).
[Equation 1]
Area per unit volume (cm −1 ) = total surface area (cm 2 ) / total volume (cm 3 ) (1)
 ここで「総表面積」は、粒子径分布における各粒子径の粒子を真球に換算した際の表面積に各粒子径における粒子の頻度(%)を乗じた値の総和である。
 また「総体積」は、粒子径分布における各粒子径の粒子を真球に換算した際の体積に各粒子径における粒子の頻度(%)を乗じた値の総和である。
 また「頻度」とは、測定に供された総粒子数に対する各粒子径における粒子の比率である。
Here, the “total surface area” is the sum of values obtained by multiplying the surface area when particles of each particle size in the particle size distribution are converted into true spheres by the frequency (%) of particles at each particle size.
Further, “total volume” is the sum of values obtained by multiplying the volume of particles of each particle size in the particle size distribution into true spheres by the frequency (%) of particles at each particle size.
“Frequency” is the ratio of particles at each particle diameter to the total number of particles subjected to measurement.
 本発明において特定する好ましい範囲の単位体積当たりの表面積を有する炭素粒子を含む炭素材を得る方法は特に限定されず、一例としては、炭素材を製造する過程において適宜、粉砕処理を行うことが挙げられる。粉砕処理の詳細は後述する。 A method for obtaining a carbon material including carbon particles having a surface area per unit volume in a preferable range specified in the present invention is not particularly limited, and as an example, a pulverization treatment is appropriately performed in the process of manufacturing the carbon material. It is done. Details of the grinding process will be described later.
 本発明の炭素材は、上述する粒子径分布から求めた平均2乗半径(以下、単に平均2乗半径ともいう)が、1μm以上4μm以下の範囲であることが好ましい。
 即ち、上記平均2乗半径が、1μm以上であることにより、炭素材に含まれる炭素粒子から著しく微小な粒子径であるものを除外し、高温環境下における自己放電の悪化を防止、また集電体への塗工性を良好に維持する。また、上記平均2乗半径が、4μm以下であることにより、単位体積当たりの表面積が本発明の特定する好ましい範囲に含まれる炭素粒子を選択しやすい。
The carbon material of the present invention preferably has an average square radius (hereinafter also simply referred to as an average square radius) determined from the particle size distribution described above in a range of 1 μm 2 or more and 4 μm 2 or less.
That is, when the mean square radius is 1 μm 2 or more, carbon particles contained in the carbon material are excluded from those having a remarkably small particle diameter, and deterioration of self-discharge in a high temperature environment is prevented. Maintains good coatability on electrical objects. In addition, when the mean square radius is 4 μm 2 or less, it is easy to select carbon particles whose surface area per unit volume falls within a preferable range specified by the present invention.
 本発明の所期の課題を良好に解決するという観点からは、上記平均2乗半径の上限は、3μm以下とすることがより好ましく、2μm以下とすることがさらに好ましい。 From the viewpoint of satisfactorily solving the intended problem of the present invention, the upper limit of the mean square radius is more preferably 3 μm 2 or less, and even more preferably 2 μm 2 or less.
 本発明の好ましい態様における、上記粒子径分布から求めた平均2乗半径は、個数基準における粒子径分布から求められる。具体的には、任意のレーザー回折/散乱式粒度分布測定装置により測定された個数基準の粒子径分布から得られたデータを用い、下記式(2)により算出することができる。
[数2]
平均2乗半径(μm)=各粒子の半径の2乗の総和(μm) (2)
In a preferred embodiment of the present invention, the mean square radius determined from the particle size distribution is determined from the particle size distribution on a number basis. Specifically, it can be calculated by the following formula (2) using data obtained from a number-based particle size distribution measured by an arbitrary laser diffraction / scattering particle size distribution measuring apparatus.
[Equation 2]
Mean square radius ([mu] m 2) = radius of the square of the sum of each particle (μm 2) (2)
 ここで「各粒子の半径の2乗の総和(μm)」とは、粒子径分布における各粒子径の2分の1の値を半径とし、これを2乗した値に各粒子径における粒子の頻度(%)を乗じた値の総和である。 Here, “the sum of the squares of the radii of each particle (μm 2 )” is a value that is a half of each particle diameter in the particle size distribution, and the value obtained by squaring this value is the particle at each particle diameter. The sum of the values multiplied by the frequency (%).
 本発明の炭素材の好ましい態様の一つは、炭素材に含まれる炭素粒子の真比重が1.5g/cm以上1.7g/cm以下の範囲である。
 真比重が1.5g/cm以上である炭素粒子を選択することにより、充放電容量の値を安定させることできる。また真比重が1.7g/cm以下である炭素粒子を選択することにより、本発明の炭素材が用いられる二次電池の寿命特性の向上に貢献する。
One of the preferable aspects of the carbon material of the present invention is such that the true specific gravity of the carbon particles contained in the carbon material is in the range of 1.5 g / cm 3 or more and 1.7 g / cm 3 or less.
By selecting carbon particles having a true specific gravity of 1.5 g / cm 3 or more, the charge / discharge capacity value can be stabilized. Further, by selecting carbon particles having a true specific gravity of 1.7 g / cm 3 or less, it contributes to the improvement of the life characteristics of the secondary battery using the carbon material of the present invention.
 上記真比重は、ブタノールを用いた真比重測定方法により求めることができる。 The true specific gravity can be determined by a true specific gravity measurement method using butanol.
 本発明の炭素材に含まれる炭素粒子が上記好ましい範囲の真比重になるよう調整する方法は、特に限定されないが、たとえば、炭素材の原料の選定、または炭素材の原料の加熱条件によって、真比重を調整することが可能である。 The method for adjusting the carbon particles contained in the carbon material of the present invention to have a true specific gravity within the above preferable range is not particularly limited. It is possible to adjust the specific gravity.
 以下に、本発明の炭素材の主材となる炭素について説明する。
 本発明の炭素材は、主材として炭素を含み、必要に応じてさらに炭素以外の成分を含んでいてもよい。ここで炭素が主材であるとは、炭素材を100質量%としたときに、炭素が80質量%以上、好ましくは90質量%以上、より好ましくは、95質量%以上含まれていることをいう。本発明における炭素材に含まれる炭素は、実質的に粒状をなす炭素粒子である。本発明における炭素材は、上記炭素粒子と任意の添加剤とを含んでいてもよいし、実質的に炭素粒子のみから構成されていてもよい。
Below, carbon used as the main material of the carbon material of this invention is demonstrated.
The carbon material of the present invention contains carbon as a main material, and may further contain components other than carbon as necessary. Here, the term “carbon is a main material” means that carbon is contained in an amount of 80% by mass or more, preferably 90% by mass or more, and more preferably 95% by mass or more when the carbon material is 100% by mass. Say. The carbon contained in the carbon material in the present invention is carbon particles that are substantially granular. The carbon material in the present invention may contain the carbon particles and an optional additive, or may be substantially composed only of carbon particles.
 炭素材における炭素以外の含有可能な任意成分は、特に限定されないが、たとえば窒素やリンを挙げることができる。炭素材に窒素が含まれていることによって、窒素の有する電気陰性度により、炭素材(特に、ハードカーボンを含む炭素材)に好適な電気的特性を付与することができる。これにより、炭素材に対するリチウムイオンの吸蔵放出を促進させ、高い充放電特性を付与することができる。また炭素材(特に、ハードカーボンを含む炭素材)にリンが含まれていることによって、当該炭素材を含む負極用活物質におけるリチウムイオンの吸蔵量を増大させることが可能である。また、本発明の炭素材を製造する場合には、炭素材料以外に適宜、硬化剤、添加剤などの任意の添加剤を併せて用いることができ、添加剤の一部が炭素材に残存していることを本発明は除外しない。 The optional component other than carbon in the carbon material is not particularly limited, and examples thereof include nitrogen and phosphorus. By including nitrogen in the carbon material, electrical characteristics suitable for the carbon material (particularly, carbon material containing hard carbon) can be imparted due to the electronegativity of nitrogen. Thereby, occlusion / release of the lithium ion with respect to a carbon material is accelerated | stimulated, and a high charging / discharging characteristic can be provided. Further, since phosphorus is contained in a carbon material (particularly, a carbon material containing hard carbon), it is possible to increase the occlusion amount of lithium ions in the negative electrode active material containing the carbon material. In addition, when producing the carbon material of the present invention, any additive such as a curing agent and an additive can be appropriately used in addition to the carbon material, and a part of the additive remains in the carbon material. It is not excluded that the present invention.
 主材となる炭素は、負極活物質の材料となり、かつリチウムイオンなどの化学種を吸蔵放出可能な炭素であれば、適宜選択して使用することができる。具体的には、ハードカーボン、黒鉛などを挙げることができるが、これに限定されない。 The carbon used as the main material can be appropriately selected and used as long as it is a material of the negative electrode active material and can absorb and release chemical species such as lithium ions. Specific examples include hard carbon and graphite, but are not limited thereto.
 以下に、本発明の炭素材における炭素粒子が、ハードカーボンを含む態様について説明する。 Hereinafter, an aspect in which the carbon particles in the carbon material of the present invention contain hard carbon will be described.
 即ち、本発明の炭素材の好ましい態様の一つとして、当該炭素材に含まれる炭素粒子は、線源としてCuKα線を用いたX線回折法により求められる(002)面の平均面間隔d002が0.340nm以上であるハードカーボンを含むことができる。 That is, as one preferred embodiment of the carbon material of the present invention, the carbon particles contained in the carbon material are obtained by an X-ray diffraction method using CuKα rays as a radiation source, and an average interplanar spacing d 002 of (002) planes. May contain hard carbon having a thickness of 0.340 nm or more.
 ハードカーボン(難黒鉛化性炭素)とは、グラファイト結晶構造が発達しにくい高分子を焼成して得られる炭素材であって、アモルファス(非晶質)な物質である。換言すると、ハードカーボンは、グラフェン構造を有しない炭素材料またはグラフェン構造を部分的にしか有しない炭素であって、上記特定の平均面間隔d002を有する。ハードカーボンの平均面間隔d002が0.340nm以上、特に0.360nm以上である場合には、リチウムイオンの吸蔵に伴う層間の収縮・膨張が起こり難くなるため、充放電サイクル性の低下を抑制できる。平均面間隔d002の上限は、特に規定されないが、たとえば0.390nm以下とすることができる。上記平均面間隔d002が0.390nm以下、特に0.380nm以下である場合にはリチウムイオンの吸蔵放出が円滑に行われ、充放電効率の低下を抑制できる。 Hard carbon (non-graphitizable carbon) is a carbon material obtained by firing a polymer that does not easily develop a graphite crystal structure, and is an amorphous substance. In other words, the hard carbon is a carbon material that does not have a graphene structure or carbon that only partially has a graphene structure, and has the specific average interplanar spacing d 002 . When the average interplanar spacing d 002 of hard carbon is 0.340 nm or more, especially 0.360 nm or more, the shrinkage / expansion between layers due to occlusion of lithium ions is difficult to occur. it can. The upper limit of the average interplanar distance d 002 is not particularly defined, but can be set to 0.390 nm or less, for example. The average spacing d 002 is 0.390nm or less, particularly when it is 0.380nm or less performed smoothly absorbing and releasing lithium ions, it is possible to suppress the deterioration of the charge-discharge efficiency.
 さらに、上記ハードカーボンは、c軸方向((002)面直交方向)の結晶子の大きさLcが0.8nm以上、5nm以下であることが好ましい。 Furthermore, it is preferable that the hard carbon has a crystallite size Lc of 0.8 nm or more and 5 nm or less in the c-axis direction ((002) plane orthogonal direction).
 Lcを0.8nm以上、特に0.9nm以上とすることでリチウムイオンを吸蔵放出することができる炭素層間スペースが形成され、十分な充放電容量が得られるという効果があり、5nm以下、特に1.5nm以下とすることでリチウムイオンの吸蔵放出による炭素積層構造の崩壊や、電解液の還元分解を抑制し、充放電効率と充放電サイクル性の低下を抑制できるという効果がある。 By setting Lc to 0.8 nm or more, particularly 0.9 nm or more, there is an effect that a space between carbon layers capable of occluding and releasing lithium ions is formed, and a sufficient charge / discharge capacity can be obtained. By setting the thickness to 0.5 nm or less, it is possible to suppress the collapse of the carbon laminate structure due to the occlusion and release of lithium ions and the reductive decomposition of the electrolytic solution, and to suppress the decrease in charge / discharge efficiency and charge / discharge cycleability.
 Lcは以下のようにして算出される。
 X線回折測定から求められるスペクトルにおける002面ピークの半値幅と回折角から次のScherrerの式を用いて決定した。
Lc is calculated as follows.
It was determined from the half width of the 002 plane peak and the diffraction angle in the spectrum obtained from the X-ray diffraction measurement using the following Scherrer equation.
Lc=0.94λ/(βcosθ) (Scherrerの式)
Lc:結晶子の大きさ
λ:陰極から出力される特性X線Kα1の波長
β:ピークの半値幅(ラジアン)
θ:スペクトルの反射角度
Lc = 0.94λ / (βcos θ) (Scherrer equation)
Lc: crystallite size λ: wavelength of characteristic X-ray K α1 output from the cathode β: half width of peak (radian)
θ: Reflection angle of spectrum
 ハードカーボンにおけるX線回折スペクトルは、例えば、島津製作所製・X線回折装置「XRD-7000」により測定することができる。ハードカーボンにおける、上記平均面間隔の測定方法は以下の通りである。 The X-ray diffraction spectrum of hard carbon can be measured by, for example, an X-ray diffraction apparatus “XRD-7000” manufactured by Shimadzu Corporation. The method for measuring the average spacing in hard carbon is as follows.
 ハードカーボンのX線回折測定から求められるスペクトルより、平均面間隔dを以下のBragg式より以下のとおり算出することができる。 From the spectrum obtained from the X-ray diffraction measurement of hard carbon, the average interplanar spacing d can be calculated from the following Bragg equation as follows.
λ=2dhklsinθ (Bragg式)(dhkl=d002
λ:陰極から出力される特性X線Kα1の波長
θ:スペクトルの反射角度
λ = 2d hkl sin θ (Bragg equation) (d hkl = d 002 )
λ: wavelength of characteristic X-ray K α1 output from the cathode θ: reflection angle of spectrum
 ハードカーボンである炭素粒子は、その表面全体において、リチウムイオンの吸蔵放出が可能であるという特性を有する。そのため、上述する範囲の単位体積当たりの表面積を示すハードカーボンの炭素粒子を含む炭素材は、表面積の増大によりリチウムイオンの吸蔵放出能に優れるという効果が顕著に発揮される。即ち、ハードカーボンである炭素粒子を含む本発明の炭素材は、本発明の構成により生じる作用を充分に享受し、優れた効果を発揮する。 The carbon particles, which are hard carbon, have the property that lithium ions can be occluded and released over the entire surface. Therefore, the carbon material containing the carbon particles of hard carbon having a surface area per unit volume in the above-described range exhibits a remarkable effect of being excellent in the ability to occlude and release lithium ions by increasing the surface area. That is, the carbon material of the present invention containing carbon particles that are hard carbon sufficiently enjoys the action produced by the configuration of the present invention and exhibits excellent effects.
 また一般的に、ハードカーボンである炭素粒子は、黒鉛である炭素粒子に比べると、粒子内におけるリチウムイオンの拡散性(移動性)が低いという課題を有している。これに対し、本発明の炭素材に含まれるハードカーボンである炭素粒子は、単位体積当たりの表面積が充分に増大する程度に当該炭素粒子が微粒子化されているため、上記拡散性の不良をカバーすることができる。この観点からも、本発明において、ハードカーボンである炭素粒子は、リチウムイオンの吸蔵放出能の向上が顕著である。 In general, carbon particles, which are hard carbon, have a problem that lithium ion diffusibility (mobility) in the particles is lower than carbon particles that are graphite. In contrast, the carbon particles, which are hard carbon contained in the carbon material of the present invention, are finely divided to such an extent that the surface area per unit volume is sufficiently increased. can do. Also from this point of view, in the present invention, the carbon particles that are hard carbon have a remarkable improvement in the ability to occlude and release lithium ions.
 上述のとおり炭素粒子にハードカーボンを含むことにより得られる効果を充分に享受する観点からは、本発明における炭素粒子は、ハードカーボンを90質量%以上含んでいてもよい。 From the viewpoint of sufficiently enjoying the effects obtained by including hard carbon in the carbon particles as described above, the carbon particles in the present invention may contain 90% by mass or more of hard carbon.
 上記ハードカーボンの原材料は、特に限定されず、例えば、熱硬化性樹脂、または熱可塑性樹脂などの樹脂材料を挙げることができる。また上記原材料は、エチレン製造時に副生する石油系のタールまたはピッチ、石炭乾留時に生成するコールタール、コールタールの低沸点成分を蒸留除去した重質成分またはピッチ、および石炭の液化により得られるタールまたはピッチ等の石油系または石炭系の材料、ならびに前述する石油系または石炭系の材料を架橋処理したもの等を挙げることができる。上述するハードカーボンの原材料は、1種または2種以上を組み合わせて用いることができる。また、ヤシ殻などの植物材料をハードカーボンの原材料とすることもできる。 The raw material of the hard carbon is not particularly limited, and examples thereof include a resin material such as a thermosetting resin or a thermoplastic resin. The raw materials include petroleum-based tar or pitch produced as a by-product during ethylene production, coal tar produced during coal dry distillation, heavy component or pitch obtained by distilling off low-boiling components of coal tar, and tar obtained by coal liquefaction. Examples thereof include petroleum-based or coal-based materials such as pitch, and those obtained by crosslinking the above-described petroleum-based or coal-based materials. The hard carbon raw materials described above can be used alone or in combination of two or more. Also, plant materials such as coconut shells can be used as raw materials for hard carbon.
 上記熱硬化性樹脂としては、特に限定されず、例えば、ノボラック型フェノール樹脂、レゾール型フェノール樹脂などのフェノール樹脂、ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂などのエポキシ樹脂、メラミン樹脂、尿素樹脂、アニリン樹脂、シアネート樹脂、フラン樹脂、ケトン樹脂、不飽和ポリエステル樹脂、またはウレタン樹脂などを挙げることができる。また炭素材の原料は、これらが種々の成分で変性された変性物であってもよい。 The thermosetting resin is not particularly limited, and examples thereof include phenolic resins such as novolac type phenolic resin and resol type phenolic resin, epoxy resins such as bisphenol type epoxy resin and novolac type epoxy resin, melamine resin, urea resin, and aniline. Examples thereof include resins, cyanate resins, furan resins, ketone resins, unsaturated polyester resins, and urethane resins. The carbon material may be a modified product obtained by modifying these materials with various components.
 上記熱可塑性樹脂としては、特に限定されず、例えば、ポリエチレン、ポリスチレン、ポリアクリロニトリル、アクリロニトリル-スチレン(AS)樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂、ポリプロピレン、塩化ビニル、メタクリル樹脂、ポリエチレンテレフタレート、ポリアミド、ポリカーボネート、ポリアセタール、ポリフェニレンエーテル、ポリブチレンテレフタレート、ポリフェニレンサルファイド、ポリサルホン、ポリエーテルサルホン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアミドイミド、ポリイミド、またはポリフタルアミドなどが挙げられる。 The thermoplastic resin is not particularly limited. For example, polyethylene, polystyrene, polyacrylonitrile, acrylonitrile-styrene (AS) resin, acrylonitrile-butadiene-styrene (ABS) resin, polypropylene, vinyl chloride, methacrylic resin, polyethylene terephthalate, Examples include polyamide, polycarbonate, polyacetal, polyphenylene ether, polybutylene terephthalate, polyphenylene sulfide, polysulfone, polyether sulfone, polyether ether ketone, polyether imide, polyamide imide, polyimide, and polyphthalamide.
 特にハードカーボンに用いられる主成分となる樹脂としては、熱硬化性樹脂が好ましい。これにより、ハードカーボンの残炭率をより高めることができる。 In particular, a thermosetting resin is preferable as the main resin used for hard carbon. Thereby, the residual carbon rate of hard carbon can be raised more.
 熱硬化性樹脂の中でも、ノボラック型フェノール樹脂、レゾール型フェノール樹脂、メラミン樹脂、フラン樹脂、もしくはアニリン樹脂、またはこれらの変性物から選ばれる樹脂がハードカーボンの主成分となる樹脂として好ましい。これにより、炭素材の設計の自由度が広がり、低価格で製造することができる。また、サイクル時の安定性、および、大電流の入出力特性をさらに高いものとすることができる。 Among thermosetting resins, a resin selected from a novolak-type phenol resin, a resol-type phenol resin, a melamine resin, a furan resin, an aniline resin, or a modified product thereof is preferable as a resin that is a main component of hard carbon. Thereby, the freedom degree of design of a carbon material spreads and it can manufacture at low cost. Further, the stability during cycling and the input / output characteristics of a large current can be further improved.
 また、熱硬化性樹脂を用いる場合には、その硬化剤を併用することができる。上記硬化剤は、特に限定されず、公知の硬化剤を用いることができる。例えば、ノボラック型フェノール樹脂の場合はヘキサメチレンテトラミン、レゾール型フェノール樹脂、ポリアセタール、またはパラホルムアルデヒドなどを硬化剤として用いることができる。またエポキシ樹脂の場合は、脂肪族ポリアミン、芳香族ポリアミンなどのポリアミン化合物、酸無水物、イミダゾール化合物、ジシアンジアミド、ノボラック型フェノール樹脂、ビスフェノール型フェノール樹脂、またはレゾール型フェノール樹脂などを硬化剤として用いることができる。 Further, when a thermosetting resin is used, the curing agent can be used in combination. The said hardening | curing agent is not specifically limited, A well-known hardening | curing agent can be used. For example, in the case of a novolac type phenol resin, hexamethylenetetramine, resol type phenol resin, polyacetal, paraformaldehyde, or the like can be used as a curing agent. In the case of epoxy resins, use polyamine compounds such as aliphatic polyamines and aromatic polyamines, acid anhydrides, imidazole compounds, dicyandiamide, novolac-type phenol resins, bisphenol-type phenol resins, or resole-type phenol resins as curing agents. Can do.
 炭素材に窒素を含有させる場合には、上述する炭素材の原料とともに、例えば、ヘキサメチレンテトラミン、脂肪族ポリアミン、芳香族ポリアミン、ジシアンジアミド、アミン化合物、アンモニウム塩硝酸塩、またはニトロ化合物などを1種類または2種類以上を併用してもよい。 In the case where nitrogen is contained in the carbon material, for example, one kind of hexamethylenetetramine, aliphatic polyamine, aromatic polyamine, dicyandiamide, amine compound, ammonium salt nitrate, or nitro compound is used together with the above-described carbon material raw material. Two or more types may be used in combination.
 炭素材にリンを含有させる場合には、上述する炭素材の原料とともに、例えば、リン酸、リン酸塩、五酸化リンなどのリン含有化合物、またはリン酸エステルを配合するとよい。上記リン酸エステルとしては、リン酸トリフェニル、クレジルジフェニルホスフェート、もしくはクレジルジ2,6-キシレニルホスフェートなどのリン酸トリエステル、または市販品の芳香族縮合リン酸エステルである大八化学工業株式会社製の難燃剤「商品名:PX-200」などの縮合リン酸エステルを挙げることができる。 When phosphorus is contained in the carbon material, for example, a phosphorus-containing compound such as phosphoric acid, phosphate, phosphorus pentoxide, or phosphate ester may be blended together with the above-described carbon material raw material. As the above-mentioned phosphate ester, Daihachi Chemical Industry which is a phosphate triester such as triphenyl phosphate, cresyl diphenyl phosphate or cresyl di 2,6-xylenyl phosphate, or a commercially available aromatic condensed phosphate ester Mention may be made of condensed phosphate esters such as a flame retardant “trade name: PX-200” manufactured by Co., Ltd.
 次に本発明の炭素材における炭素粒子が、黒鉛を含む態様について説明する。
 黒鉛とは、炭素の同素体の1つであり、六炭素環が連なった層からできている層状格子をなす六方晶系、六角板状結晶の物質である。所謂、グラフェン構造を有する。上記黒鉛は、天然黒鉛と人造黒鉛を含む。
 黒鉛は、放電初期から放電末期まで電圧変化が少ないという望ましい性質を有しており、放電末期まで安定した高い電圧を維持可能である。本発明の炭素材に含まれる炭素粒子の一部または全部が黒鉛から構成されていてもよい。
Next, the aspect in which the carbon particles in the carbon material of the present invention contain graphite will be described.
Graphite is one of the allotropes of carbon, and is a hexagonal hexagonal plate crystal material that forms a layered lattice made of layers of six-carbon rings. It has a so-called graphene structure. The graphite includes natural graphite and artificial graphite.
Graphite has a desirable property that there is little voltage change from the beginning of discharge to the end of discharge, and can maintain a stable high voltage until the end of discharge. Part or all of the carbon particles contained in the carbon material of the present invention may be composed of graphite.
 ハードカーボンおよび黒鉛の長所をそれぞれ活かし、バランスのよい炭素材を提供するという観点から、本発明の炭素材における炭素粒子は、ハードカーボンおよび黒鉛を含んでいてもよい。
 炭素粒子としてハードカーボンおよび黒鉛の両方を含む本発明の態様は、顕微鏡観察において、ハードカーボンの粒子と黒鉛の粒子とが個別独立に観察される場合と、両者が融合または結着し、見かけ上、一体的に観察される場合と、を含む。
The carbon particles in the carbon material of the present invention may contain hard carbon and graphite from the viewpoint of providing a well-balanced carbon material by utilizing the advantages of hard carbon and graphite.
The aspect of the present invention that includes both hard carbon and graphite as carbon particles is the case where the hard carbon particles and the graphite particles are individually observed in the microscopic observation, and the two are fused or bound, and apparently , When observed integrally.
 本発明の炭素材におけるハードカーボンと黒鉛との含有比率は特に限定されない。しかし、単位体積当たりの表面積が所定範囲内であるハードカーボンを多く含むことによって本発明の所期の課題を良好に解決するという観点からは、以下の比率の範囲であることが好ましい。即ち、ハードカーボンと黒鉛とを含む態様の本発明の炭素材において、炭素材における両者の質量比は、ハードカーボン:黒鉛=51質量%:49質量%から95質量%:5質量%の範囲であることが好ましい。 The content ratio of hard carbon and graphite in the carbon material of the present invention is not particularly limited. However, from the viewpoint of satisfactorily solving the intended problem of the present invention by containing a large amount of hard carbon having a surface area per unit volume within a predetermined range, the following ratio ranges are preferable. That is, in the carbon material of the present invention including hard carbon and graphite, the mass ratio of both in the carbon material is in the range of hard carbon: graphite = 51 mass%: 49 mass% to 95 mass%: 5 mass%. Preferably there is.
 次に、本発明の炭素材の製造方法の例について説明する。ここでは炭素材に含まれる炭素がハードカーボンである態様を例に説明するが、これは本発明を何ら制限するものではない。 Next, an example of the carbon material manufacturing method of the present invention will be described. Here, an embodiment in which the carbon contained in the carbon material is hard carbon will be described as an example, but this does not limit the present invention.
 本発明の炭素材を製造するために、まず原材料、または原材料を含む組成物を準備する。上記原材料は、上述するハードカーボンの原材料となる樹脂または植物材料等から選択された1種または2種以上である。また上記組成物は、上記原材料および任意の添加材を含む。以下の説明では、組成物を用いて炭素材を製造する方法を具体的に説明するが、後述する硬化処理、硬化物の粉砕処理、および炭化処理は、実質的に原材料だけを用いて炭素材を製造する場合も同様である。 In order to produce the carbon material of the present invention, first, a raw material or a composition containing the raw material is prepared. The said raw material is 1 type (s) or 2 or more types selected from resin or plant material etc. which become the raw material of the hard carbon mentioned above. Moreover, the said composition contains the said raw material and arbitrary additives. In the following description, a method for producing a carbon material using the composition will be described in detail. However, the curing treatment, the pulverization treatment of the cured product, and the carbonization treatment described later are substantially performed using only raw materials. The same applies to the case of manufacturing.
 組成物の調製のための装置としては特に限定されないが、例えば、原材料と添加材とを溶融混合する場合には、混練ロール、単軸あるいは二軸ニーダーなどの混練装置を用いることができる。また、原材料と添加材とを溶解混合する場合は、ヘンシェルミキサー、ディスパーザなどの混合装置を用いることができ、また粉砕混合を行う場合には、例えば、ハンマーミル、ジェットミルなどの装置を用いることができる。
 尚、製造される炭素材に所望の特性を付与するために、上記組成物の調製の際に、または後述する硬化処理の後であって炭化処理の前に、金属、顔料、滑剤、帯電防止剤、酸化防止剤などの添加材をさらに添加してもよい。
The apparatus for preparing the composition is not particularly limited. For example, when the raw material and the additive are melt-mixed, a kneading apparatus such as a kneading roll, a uniaxial or biaxial kneader can be used. In addition, when the raw materials and additives are dissolved and mixed, a mixing device such as a Henschel mixer or a disperser can be used, and when performing pulverization and mixing, for example, a device such as a hammer mill or a jet mill can be used. Can do.
In addition, in order to impart desired characteristics to the carbon material to be produced, metals, pigments, lubricants, antistatic agents are prepared during the preparation of the above composition or after the curing treatment described later and before the carbonization treatment. Additives such as additives and antioxidants may be further added.
 次に、上述のとおり準備された組成物に対し硬化処理を行う。硬化処理を行うことで、組成物に含まれる原材料を硬化させて不融化させることができる。これによって、炭化処理前に樹脂組成物の粉砕処理を行った場合でも、粉砕後の組成物あるいは樹脂等が炭化処理時に再融着するのを防ぎ、所望の粒子径の炭素粒子を効率的に得ることができる。 Next, the composition prepared as described above is cured. By performing the curing treatment, the raw materials contained in the composition can be cured and infusible. As a result, even when the resin composition is pulverized before the carbonization treatment, the crushed composition or resin is prevented from being re-fused during the carbonization treatment, and carbon particles having a desired particle diameter are efficiently obtained. Obtainable.
 硬化処理の条件は特に限定されないが、例えば、組成物に含まれる原料に硬化反応を生じさせ得る温度(たとえば200℃以上600℃以下)で1時間以上10時間以下の加熱を行うことができる。硬化処理において用いられる加熱装置は、特に限定されず、大型連続炉、中型バッチ炉、または小型炉を適宜選択して使用することができる。 Although the conditions for the curing treatment are not particularly limited, for example, heating can be performed for 1 hour or more and 10 hours or less at a temperature (for example, 200 ° C. or more and 600 ° C. or less) at which a raw material contained in the composition can cause a curing reaction. The heating device used in the curing process is not particularly limited, and a large continuous furnace, a medium batch furnace, or a small furnace can be appropriately selected and used.
 次に粉砕処理を行う。粉砕処理は、一般的には上記硬化処理の後、後述する炭化処理の前に行うが、本発明の炭素材の製造は、硬化処理を省略し、原材料または組成物の調製の後、炭化処理の前に粉砕処理を行うこともできる。
 粉砕処理における粉砕条件を調整することによって、本発明の特定する所定範囲の単位体積当たりの表面積を備える炭素粒子を含む炭素材を製造することができる。粉砕条件は、用いる原材料等の種類によって適宜変更してよく、所定条件に限定されるものではない。また粉砕処理を行うことで、本発明の炭素材の好ましい態様として説明する平均2乗半径が所定の範囲の炭素粒子を含む炭素材を容易に製造することができる。
Next, a grinding process is performed. The pulverization treatment is generally performed after the above curing treatment and before the carbonization treatment described later. However, in the production of the carbon material of the present invention, the curing treatment is omitted, and after the preparation of the raw material or the composition, the carbonization treatment is performed. A pulverization process can also be performed before.
By adjusting the pulverization conditions in the pulverization process, a carbon material containing carbon particles having a surface area per unit volume within a predetermined range specified by the present invention can be produced. The pulverization conditions may be appropriately changed depending on the type of raw materials used, and are not limited to the predetermined conditions. Moreover, the carbon material containing the carbon particle of the mean square radius demonstrated as a preferable aspect of the carbon material of this invention by a predetermined | prescribed range can be easily manufactured by performing a grinding | pulverization process.
 粉砕処理における粉砕方法は特に限定されないが、たとえば任意の粉砕装置を用いることができる。上記粉砕装置としては、ボールミル装置、振動ボールミル装置、ロッドミル装置、ビーズミル装置などの衝撃型粉砕装置、またはサイクロンミル装置、ジェットミル装置、乾式気流粉砕装置など気流粉砕装置を挙げることができるがこれに限定されない。粉砕処理において、これらの装置を1種または2種以上使用し、または、1種の装置で複数回粉砕して用いてもよい。また粉砕処理において、これらの装置に加え、篩などを用いて適宜、分級してもよく、また分級機能を有する粉砕装置を用いてもよい。 The pulverization method in the pulverization process is not particularly limited, and for example, an arbitrary pulverizer can be used. Examples of the pulverizer include impact mills such as ball mills, vibrating ball mills, rod mills, and bead mills, and airflow pulverizers such as cyclone mills, jet mills, and dry air pulverizers. It is not limited. In the pulverization treatment, these devices may be used alone or in combination of two or more, or may be used by pulverizing a plurality of times with one device. In the pulverization treatment, in addition to these apparatuses, classification may be appropriately performed using a sieve or a pulverization apparatus having a classification function may be used.
 次に炭化処理について説明する。
 ハードカーボンを含む炭素材を製造するために、上記組成物または上記組成物の硬化物を炭化処理する。炭化処理は、1回または2回以上行ってもよい。たとえば比較的に低温(たとえば200℃以上800℃未満)でプレ炭化処理を行い、その後に高温(例えば800℃以上3000℃以下)で炭化処理を行ってもよい。またプレ炭化処理と上述する硬化処理を同時に行ってもよい。
Next, the carbonization process will be described.
In order to produce a carbon material containing hard carbon, the composition or a cured product of the composition is carbonized. The carbonization treatment may be performed once or twice or more. For example, the pre-carbonization treatment may be performed at a relatively low temperature (for example, 200 ° C. or more and less than 800 ° C.), and then the carbonization treatment may be performed at a high temperature (for example, 800 ° C. or more and 3000 ° C. or less). Moreover, you may perform a pre carbonization process and the hardening process mentioned above simultaneously.
 炭化処理の条件は特に限定されないが、例えば、常温から1℃/時間以上200℃/時間以下の範囲の昇温速度で昇温し、800℃以上3000℃以下の範囲の温度を0.1時間以上50時間以下、好ましくは0.5時間以上10時間以下保持して行うことができる。炭化処理時の雰囲気は特に限定されず、例えば窒素もしくはヘリウムガスなどの不活性ガスを含む不活性ガス雰囲気、上記不活性ガス雰囲気に微量の酸素を含む不活性ガス雰囲気、または水素などの還元ガスを主として含む還元ガス雰囲気を採用することが好ましい。かかるガス雰囲気を選択することによって、樹脂などの原材料の熱分解(酸化分解)を抑制し、所望の炭素粒子を含む炭素材を得ることができる。 The conditions for the carbonization treatment are not particularly limited. For example, the temperature is raised from normal temperature to a temperature increase rate in the range of 1 ° C./hour to 200 ° C./hour, and the temperature in the range of 800 ° C. to 3000 ° C. is set for 0.1 hour. It can be carried out by holding for not less than 50 hours, preferably not less than 0.5 hours and not more than 10 hours. The atmosphere during the carbonization treatment is not particularly limited. For example, an inert gas atmosphere containing an inert gas such as nitrogen or helium gas, an inert gas atmosphere containing a small amount of oxygen in the inert gas atmosphere, or a reducing gas such as hydrogen. It is preferable to employ a reducing gas atmosphere mainly containing. By selecting such a gas atmosphere, it is possible to suppress thermal decomposition (oxidative decomposition) of raw materials such as a resin and obtain a carbon material containing desired carbon particles.
 以上の製造方法で、ハードカーボンの炭素粒子を含む本発明の炭素材を製造することができる。変形例としては、原料となる組成物に予め黒鉛を配合し、ハードカーボンと黒鉛とを含む本発明の炭素材を製造することができる。また異なる変形例として、上述のとおり得られたハードカーボンの炭素粒子を含む炭素材に、適当な粒子径に粉砕した黒鉛を混合し、これによってハードカーボンと黒鉛とを含む本発明の炭素材を製造することもできる。 The carbon material of the present invention containing hard carbon carbon particles can be produced by the above production method. As a modification, the carbon material of the present invention containing hard carbon and graphite can be produced by preliminarily blending graphite with a composition as a raw material. Further, as a different modification, the carbon material of the present invention containing hard carbon and graphite is mixed with the carbon material containing hard carbon carbon particles obtained as described above and mixed with graphite pulverized to an appropriate particle size. It can also be manufactured.
 以下に、本発明の炭素材を含む本発明の負極用活物質、当該負極用活物質を含む負極用活物質層を備える本発明の二次電池負極、および当該二次電池負極を備える本発明の二次電池について説明する。 Hereinafter, the negative electrode active material of the present invention including the carbon material of the present invention, the secondary battery negative electrode of the present invention including the negative electrode active material layer including the negative electrode active material, and the present invention including the secondary battery negative electrode. The secondary battery will be described.
<負極用活物質>
 本発明の二次電池負極用活物質は、上述する本発明の二次電池負極用炭素材を含有する。
 上述する電気抵抗抑制効果を発揮する本発明の炭素材を含有することによって、本発明の負極用活物質は、負極の低温環境下での著しい電気抵抗の増大を抑制し、優れた充放電効率の発揮に貢献する。本発明において負極用活物質とは、二次電池負極において電荷担体となる化学種を吸蔵放出し得る材料をいう。上記化学種は、例えばアルカリ金属イオン二次電池においては、リチウムイオンまたはナトリウムイオンなどを挙げることができる。
<Active material for negative electrode>
The active material for secondary battery negative electrode of the present invention contains the carbon material for secondary battery negative electrode of the present invention described above.
By including the carbon material of the present invention that exhibits the above-described electrical resistance suppressing effect, the negative electrode active material of the present invention suppresses a significant increase in electrical resistance in a low temperature environment of the negative electrode, and has excellent charge and discharge efficiency. Contribute to the demonstration of In the present invention, the negative electrode active material refers to a material that can occlude and release chemical species as a charge carrier in a secondary battery negative electrode. Examples of the chemical species include lithium ions or sodium ions in an alkali metal ion secondary battery.
 以下、本発明の炭素材を含む負極用活物質について説明する。
 負極用活物質とは、アルカリ金属イオン電池などの二次電池において、アルカリ金属イオン(例えばリチウムイオンまたはナトリウムイオン)などの化学種を吸蔵および放出することのできる物質である。本明細書において説明する負極用活物質は、本発明の樹脂組成物などを用いて生成された炭素材を含有する物質を意味する。
Hereinafter, the negative electrode active material containing the carbon material of the present invention will be described.
The negative electrode active material is a substance that can occlude and release chemical species such as alkali metal ions (for example, lithium ions or sodium ions) in a secondary battery such as an alkali metal ion battery. The negative electrode active material described in this specification means a material containing a carbon material produced using the resin composition or the like of the present invention.
 負極用活物質は、実質的に本発明の炭素材のみから構成されてもよいが、当該炭素材とは異なる材料をさらに含んでもよい。このような材料としては、例えば、シリコン、一酸化ケイ素、他の黒鉛質材料など一般的に負極材料として公知の材料が挙げられる。 The negative electrode active material may be substantially composed of only the carbon material of the present invention, but may further include a material different from the carbon material. Examples of such materials include materials generally known as negative electrode materials such as silicon, silicon monoxide, and other graphite materials.
 使用する黒鉛質材料の体積基準の粒子径分布における50%累積時の粒径(平均粒子径)は、2μm以上50μm以下が好ましく、5μm以上30μm以下がより好ましい。 The particle size (average particle size) at 50% accumulation in the volume-based particle size distribution of the graphite material used is preferably 2 μm or more and 50 μm or less, more preferably 5 μm or more and 30 μm or less.
<二次電池負極および二次電池>
 以下、本発明の二次電池負極および当該二次電池負極を備える本発明の二次電池について説明する。
<Secondary battery negative electrode and secondary battery>
Hereinafter, the secondary battery negative electrode of the present invention and the secondary battery of the present invention including the secondary battery negative electrode will be described.
 本発明の二次電池負極は、上述する本発明の二次電池負極用活物質を含む二次電池負極用活物質層と、二次電池負極用活物質層が積層された負極用集電体と、を有して構成される。
 また本発明の二次電池は、上述する本発明の二次電池負極と、電解層と、二次電池正極と、を備えて構成される。
The secondary battery negative electrode of the present invention is a negative electrode current collector in which a secondary battery negative electrode active material layer including the above-described secondary battery negative electrode active material of the present invention and a secondary battery negative electrode active material layer are laminated. And is configured.
Moreover, the secondary battery of this invention is comprised including the secondary battery negative electrode of this invention mentioned above, an electrolysis layer, and a secondary battery positive electrode.
 本発明の負極は、本発明の負極用活物質を用いて構成されることにより、低温環境下における電気抵抗抑制効果が発揮される。また、本発明の負極を備える本発明の二次電池は、負極の上記効果が反映され、低温環境下でも電池抵抗の増大が抑制され優れた出入力特性やサイクル特性を発揮可能である。 The negative electrode of the present invention is configured using the negative electrode active material of the present invention, thereby exhibiting an effect of suppressing electrical resistance in a low temperature environment. In addition, the secondary battery of the present invention including the negative electrode of the present invention reflects the above-described effects of the negative electrode, and can suppress an increase in battery resistance even under a low temperature environment, and can exhibit excellent input / output characteristics and cycle characteristics.
 上記二次電池としては、例えば、リチウムイオン二次電池またはナトリウムイオン二次電池などのアルカリ金属二次電池を挙げることができるがこれに限定されるものではない。また上記二次電池は、非水電解液二次電池、および固体二次電池などの異なる電解質を使用する種々の形式を含む。以下の説明では、二次電池として、リチウムイオン二次電池を例に説明する。 Examples of the secondary battery include, but are not limited to, alkali metal secondary batteries such as lithium ion secondary batteries and sodium ion secondary batteries. The secondary battery includes various types using different electrolytes such as a non-aqueous electrolyte secondary battery and a solid secondary battery. In the following description, a lithium ion secondary battery will be described as an example of a secondary battery.
 以下に、図1を用いて、本発明の炭素材を含むリチウムイオン二次電池の一例を説明する。図1は、本発明の炭素材を含むリチウムイオン二次電池100の一例を示す模式図である。
 リチウムイオン二次電池100は、図1に示すように、負極10と、正極20と、セパレータ30と、電解層40とを有している。
Hereinafter, an example of a lithium ion secondary battery including the carbon material of the present invention will be described with reference to FIG. FIG. 1 is a schematic diagram showing an example of a lithium ion secondary battery 100 including the carbon material of the present invention.
As shown in FIG. 1, the lithium ion secondary battery 100 includes a negative electrode 10, a positive electrode 20, a separator 30, and an electrolytic layer 40.
 負極10は、図1に示すように、負極用活物質層12と負極集電体14とを有している。
 負極用活物質層12は、上述した本発明の炭素材(図示省略)を含有している。
 負極集電体14は特に限定されず、負極に用いられ得る集電体を適宜選択して使用することができ、例えば、銅箔またはニッケル箔などを用いることができるがこれに限定されない。
As shown in FIG. 1, the negative electrode 10 includes a negative electrode active material layer 12 and a negative electrode current collector 14.
The negative electrode active material layer 12 contains the above-described carbon material (not shown) of the present invention.
The negative electrode current collector 14 is not particularly limited, and a current collector that can be used for the negative electrode can be appropriately selected and used. For example, a copper foil or a nickel foil can be used, but is not limited thereto.
 負極10は、例えば、以下のようにして製造することができる。
 上述する負極用活物質100質量部に対して、一般的に公知の有機高分子結着剤(例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレンなどのフッ素系高分子、またはスチレン・ブタジエンゴム、ブチルゴム、ブタジエンゴムなどのゴム状高分子など)を1質量部以上30質量部以下、および適量の粘度調整用溶剤(N-メチル-2-ピロリドン、ジメチルホルムアミド、アルコール、または水など)または水を添加して混練して、負極用スラリーを調製する。
 また、上述する負極用活物質に対し、必要に応じてさらに導電材を添加してもよい。導電材としては、たとえばアセチレンブラック、ケッチェンブラック、気相法炭素繊維などのいずれかまたはこれらの二つ以上の組み合わせを用いることができる。導電材の配合量は、特に限定されないが、たとえば負極用活物質100質量部に対して、2質量部以上10質量部以下が好ましく、さらに好ましくは3質量部以上7質量部以下である。これらの範囲外でも用いることができるが、導電剤の配合量が多すぎると電極中に存在する負極用活物質量が必要以上に減少するおそれがあり、負極の電気容量が低下する虞がある。
The negative electrode 10 can be manufactured as follows, for example.
For 100 parts by mass of the negative electrode active material described above, generally known organic polymer binders (for example, fluoropolymers such as polyvinylidene fluoride and polytetrafluoroethylene, styrene-butadiene rubber, butyl rubber, 1 to 30 parts by mass of a rubbery polymer such as butadiene rubber) and an appropriate amount of a viscosity adjusting solvent (N-methyl-2-pyrrolidone, dimethylformamide, alcohol, water, etc.) or water. And kneading to prepare a negative electrode slurry.
Moreover, you may add a electrically conductive material further with respect to the active material for negative electrodes mentioned above as needed. As the conductive material, for example, any one of acetylene black, ketjen black, vapor grown carbon fiber, or a combination of two or more thereof can be used. Although the compounding quantity of a electrically conductive material is not specifically limited, For example, 2 mass parts or more and 10 mass parts or less are preferable with respect to 100 mass parts of negative electrode active materials, More preferably, they are 3 mass parts or more and 7 mass parts or less. Although it can be used outside these ranges, if the amount of the conductive agent is too large, the amount of the negative electrode active material present in the electrode may be reduced more than necessary, and the electric capacity of the negative electrode may be reduced. .
 得られたスラリーを圧縮成形、ロール成形などによりシート状、ペレット状などに成形して、負極用活物質層12を得ることができる。そして、このようにして得られた負極用活物質層12と負極集電体14とを積層することにより、負極10を得ることができる。
 また、得られた負極スラリーを負極集電体14に塗布して乾燥することにより、負極10を製造することもできる。
The obtained slurry can be formed into a sheet shape, a pellet shape, or the like by compression molding, roll molding, or the like, and the negative electrode active material layer 12 can be obtained. The negative electrode 10 can be obtained by laminating the negative electrode active material layer 12 and the negative electrode current collector 14 thus obtained.
Moreover, the negative electrode 10 can also be manufactured by apply | coating the obtained negative electrode slurry to the negative electrode collector 14, and drying.
 電解層40は、正極20と負極10との間を満たすものであり、充放電によってリチウムイオンが移動する層である。 The electrolytic layer 40 fills between the positive electrode 20 and the negative electrode 10, and is a layer in which lithium ions move by charge / discharge.
 電解層40は特に、限定されず、一般的に公知の電解物を満たして構成することができる。電解物としては、例えば、非水系溶媒に電解質となるリチウム塩を溶解した非水電解液が用いられる。 Electrolytic layer 40 is not particularly limited, and can be generally formed by filling a known electrolyte. As the electrolyte, for example, a nonaqueous electrolytic solution in which a lithium salt serving as an electrolyte is dissolved in a nonaqueous solvent is used.
 この非水系溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、γ-ブチロラクトンなどの環状エステル類;ジメチルカーボネート、ジエチルカーボネートなどの鎖状エステル類;ジメトキシエタンなどの鎖状エーテル類;あるいはこれらの混合物などを用いることができる。 Examples of the non-aqueous solvent include cyclic esters such as propylene carbonate, ethylene carbonate, and γ-butyrolactone; chain esters such as dimethyl carbonate and diethyl carbonate; chain ethers such as dimethoxyethane; or a mixture thereof. Can be used.
 電解質としては特に限定されず、一般的に公知の電解質を用いることができ、例えば、LiClO、LiPFなどのリチウム金属塩を用いることができる。 Is not particularly limited as electrolytes generally be a known electrolyte, for example, it may be used lithium metal salt such as LiClO 4, LiPF 6.
 また非水電解液二次電池以外の態様の二次電池の場合、電解層40は、たとえばポリエチレンオキサイドまたはポリアクリロニトリルなどの高分子材料を含むゲル状のポリマー電解質を有する態様、またはジルコニアなどの固体電解質を有する態様が挙げられる。 In the case of a secondary battery other than the non-aqueous electrolyte secondary battery, the electrolytic layer 40 has a gel polymer electrolyte containing a polymer material such as polyethylene oxide or polyacrylonitrile, or a solid such as zirconia. The aspect which has electrolyte is mentioned.
 セパレータ30は特に限定されず、リチウムイオンなどの化学種を透過可能な部材であって一般的に公知のセパレータを用いることができ、例えば、ポリエチレンまたはポリプロピレンなどを用いて構成される多孔質フィルム、不織布などを挙げることができる。 The separator 30 is not particularly limited, and can be a member that is permeable to chemical species such as lithium ions, and a generally known separator can be used. For example, a porous film constituted by using polyethylene or polypropylene, Nonwoven fabrics can be mentioned.
 正極20は、図1に示すように、正極活物質層22と正極集電体24とを有している。
 正極活物質層22としては特に限定されず、一般的に公知の正極活物質により形成することができる。正極活物質としては特に限定されず、例えば、リチウムコバルト酸化物(LiCoO)、リチウムニッケル酸化物(LiNiO)、リチウムマンガン酸化物(LiMn)などの複合酸化物;ポリアニリン、ポリピロールなどの導電性高分子;などを用いることができる。
 正極活物質は、上述する負極用活物質と同様に、有機高分子結着剤および導電材が含有される。正極活物質における有機高分子結着剤および導電材の配合量は、特に限定されず、負極用活物質と同等にしてもよく、また負極用活物質とは異なる量を配合してもよい。
As illustrated in FIG. 1, the positive electrode 20 includes a positive electrode active material layer 22 and a positive electrode current collector 24.
It does not specifically limit as the positive electrode active material layer 22, Generally, it can form with a well-known positive electrode active material. Is not particularly limited as the cathode active material include lithium cobalt oxide (LiCoO 2), lithium nickel oxide (LiNiO 2), composite oxides such as lithium manganese oxide (LiMn 2 O 4); polyaniline, polypyrrole, etc. Or the like can be used.
The positive electrode active material contains an organic polymer binder and a conductive material in the same manner as the negative electrode active material described above. The blending amounts of the organic polymer binder and the conductive material in the positive electrode active material are not particularly limited, and may be the same as the negative electrode active material or may be blended in an amount different from the negative electrode active material.
 正極集電体24としては特に限定されず、一般的に公知の正極集電体を用いることができ、例えば、アルミニウム箔、ステンレス箔、チタン箔、ニッケル箔、銅箔などを用いることができる。本実施形態における正極20は、一般的に公知の正極の製造方法により製造することができる。 The positive electrode current collector 24 is not particularly limited, and generally known positive electrode current collectors can be used. For example, aluminum foil, stainless steel foil, titanium foil, nickel foil, copper foil, and the like can be used. The positive electrode 20 in the present embodiment can be manufactured by a generally known positive electrode manufacturing method.
 以上にリチウムイオン二次電池100を例に説明したが、上述は本発明の炭素材、負極用活物質、および負極がリチウムイオン二次電池以外の二次電池に用いられることを除外するものではない。本発明の炭素材は、たとえばナトリウムイオンなどのリチウムイオン以外のアルカリイオンを化学種とする二次電池に用いることも可能である。このとき各アルカリイオン二次電池は、上述するリチウムイオン二次電池100に用いられる部材と同様の部材を用いて構成されてもよいし、異なる部材を用いて構成されてもよい。たとえば、ナトリウムイオン二次電池における負極集電体には、上述にて例示される負極集電体の他、アルミニウム箔を選択することもできる。 The lithium ion secondary battery 100 has been described above as an example, but the above does not exclude that the carbon material of the present invention, the negative electrode active material, and the negative electrode are used for secondary batteries other than lithium ion secondary batteries. Absent. The carbon material of the present invention can also be used for a secondary battery using alkali ions other than lithium ions such as sodium ions as chemical species. At this time, each alkaline ion secondary battery may be configured using a member similar to the member used for the lithium ion secondary battery 100 described above, or may be configured using a different member. For example, as the negative electrode current collector in the sodium ion secondary battery, an aluminum foil can be selected in addition to the negative electrode current collector exemplified above.
 二次電池は、負極10、正極20、セパレータ30、および電解層40を二次電池に適応するケースに適切に配置して形成することができる。二次電池の型は、特定されないが、例えば円筒型、コイン型、角型、またはフィルム型などを挙げることができる。 The secondary battery can be formed by appropriately disposing the negative electrode 10, the positive electrode 20, the separator 30, and the electrolytic layer 40 in a case suitable for the secondary battery. The type of the secondary battery is not specified, and examples thereof include a cylindrical type, a coin type, a square type, and a film type.
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。たとえば、図1では、負極集電体14の一方側の面に負極用活物質層12が形成され、また正極集電体24の一方側の面に正極活物質層22が形成された例を示した。変形例として、負極集電体14の両面に負極用活物質層12を形成し、正極集電体24の両面に正極活物質層22を形成し、これらをセパレータ30および電解層40を介して対向させて二次電池を構成してもよい。
 また、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良などは本発明に含まれるものである。
As mentioned above, although embodiment of this invention was described, these are illustrations of this invention and various structures other than the above are also employable. For example, in FIG. 1, an example in which the negative electrode active material layer 12 is formed on one surface of the negative electrode current collector 14 and the positive electrode active material layer 22 is formed on one surface of the positive electrode current collector 24. Indicated. As a modification, the negative electrode active material layer 12 is formed on both surfaces of the negative electrode current collector 14, the positive electrode active material layer 22 is formed on both surfaces of the positive electrode current collector 24, and these are interposed via the separator 30 and the electrolytic layer 40. You may comprise a secondary battery by making it oppose.
Further, the present invention is not limited to the above-described embodiment, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.
 以下、本発明の実施例および比較例を説明する。ただし、本発明は以下に示す実施例および比較例に限定されるものではない。尚、実施例では、「部」は「質量部」を示し、「%」は「質量%」を示す。 Hereinafter, examples and comparative examples of the present invention will be described. However, the present invention is not limited to the following examples and comparative examples. In Examples, “part” indicates “part by mass”, and “%” indicates “% by mass”.
<二次電池負極用炭素材の調製>
 実施例または比較例に用いる二次電池負極用炭素材(以下、炭素材ともいう)を以下のとおり調製した。まず、炭素材を生成するために用いられる樹脂組成物に配合される樹脂(炭素材原料)を以下の通り準備した。
(アニリン樹脂の合成)
 アニリン100部と37%ホルムアルデヒド水溶液697部、蓚酸2部を攪拌装置及び冷却管を備えた3つ口フラスコに入れ、100℃で3時間反応後、脱水し、アニリン樹脂110部を得た。
(ノボラック型フェノール樹脂の合成)
フェノール100部、37%ホルムアルデヒド水溶液64.5部、および蓚酸3部を攪拌機および冷却管を備えた3つ口フラスコに入れ、100℃で3時間反応後、昇温脱水し、ノボラック型フェノール樹脂90部を得た。 
<Preparation of carbon material for secondary battery negative electrode>
A carbon material for a secondary battery negative electrode (hereinafter, also referred to as a carbon material) used in Examples or Comparative Examples was prepared as follows. First, a resin (carbon material raw material) blended in a resin composition used for producing a carbon material was prepared as follows.
(Synthesis of aniline resin)
100 parts of aniline, 697 parts of 37% formaldehyde aqueous solution, and 2 parts of oxalic acid were placed in a three-necked flask equipped with a stirrer and a condenser, reacted at 100 ° C. for 3 hours, and dehydrated to obtain 110 parts of aniline resin.
(Synthesis of novolac type phenolic resin)
100 parts of phenol, 64.5 parts of 37% formaldehyde aqueous solution, and 3 parts of oxalic acid were placed in a three-necked flask equipped with a stirrer and a condenser, reacted at 100 ° C. for 3 hours, dehydrated at elevated temperature, and novolak-type phenolic resin 90 Got a part.
 上述のとおり得たアニリン樹脂、ノボラック型フェノール樹脂、またはヤシガラを用い、以下第一焼成条件で焼成して硬化処理を行い、一次炭化物を得た。
(第一焼成条件)
実施例1:上記アニリン樹脂100部に対して、ヘキサメチレンテトラミン10部を配合し、振動ボールミルにて粉砕混合し得られた樹脂組成物を、大型連続炉を用い窒素雰囲気下にて室温から100℃/時間の昇温速度にて昇温し、550℃に到達後、焼成状態を1.5時間保持して硬化処理を行った。
実施例2:実施例1と同様の第一焼成条件にて硬化処理を行った。
実施例3:上記ノボラック型フェノール樹脂100部に対して、リン酸トリフェニル(大八化学工業株式会社製、商品名:TPP)10部、およびヘキサメチレンテトラミン3部を配合し、振動ボールミルにて粉砕混合し得られた樹脂組成物を、中型バッチ炉を用い窒素雰囲気下にて室温から100℃/時間の昇温速度にて昇温し、550℃に到達後、焼成状態を1.5時間保持して硬化処理を行った。
実施例4:実施例3と同様の第一焼成条件にて硬化処理を行った。
実施例5:ヤシガラに不融化処理を行った後、中型バッチ炉を用い窒素雰囲気下にて室温から100℃/時間の昇温速度にて昇温し、550℃に到達後、焼成状態を1.5時間保持して硬化処理を行った。
比較例1:実施例1と同様の第一焼成条件にて硬化処理を行った。
比較例2:実施例1と同様の第一焼成条件にて硬化処理を行った。
比較例3:実施例3と同様の第一焼成条件にて硬化処理を行った。
比較例4:実施例3と同様の第一焼成条件にて硬化処理を行った。
比較例5:実施例3と同様の第一焼成条件にて硬化処理を行った。
比較例6:実施例3と同様の第一焼成条件にて硬化処理を行った。
比較例7:実施例5と同様の第一焼成条件にて硬化処理を行った。
Using the aniline resin, novolac-type phenolic resin, or coconut shell obtained as described above, baking treatment was performed under the first baking conditions to obtain a primary carbide.
(First firing condition)
Example 1: A resin composition obtained by blending 10 parts of hexamethylenetetramine with 100 parts of the above aniline resin and pulverizing and mixing with a vibration ball mill was used at room temperature to 100 under a nitrogen atmosphere using a large continuous furnace. The temperature was raised at a rate of temperature rise of ℃ / hour, and after reaching 550 ° C., the fired state was maintained for 1.5 hours to carry out the curing treatment.
Example 2: The curing process was performed under the same first firing conditions as in Example 1.
Example 3 To 100 parts of the novolak type phenol resin, 10 parts of triphenyl phosphate (manufactured by Daihachi Chemical Industry Co., Ltd., trade name: TPP) and 3 parts of hexamethylenetetramine were blended, and a vibration ball mill was used. The resin composition obtained by pulverization and mixing was heated from room temperature to a temperature increase rate of 100 ° C./hour in a nitrogen atmosphere using a medium-sized batch furnace. After reaching 550 ° C., the fired state was maintained for 1.5 hours. It was held and cured.
Example 4: A curing treatment was performed under the same first firing conditions as in Example 3.
Example 5: After performing infusibilization treatment on coconut shells, the temperature was increased from room temperature to 100 ° C./hour in a nitrogen atmosphere using a medium-sized batch furnace, and after reaching 550 ° C., the firing state was 1 Curing treatment was carried out for 5 hours.
Comparative Example 1: The curing treatment was performed under the same first firing conditions as in Example 1.
Comparative Example 2: The curing process was performed under the same first firing conditions as in Example 1.
Comparative Example 3: The curing process was performed under the same first firing conditions as in Example 3.
Comparative Example 4: The curing treatment was performed under the same first firing conditions as in Example 3.
Comparative Example 5: Curing treatment was performed under the same first firing conditions as in Example 3.
Comparative Example 6: The curing process was performed under the same first firing conditions as in Example 3.
Comparative Example 7: The curing process was performed under the same first firing conditions as in Example 5.
 上述により得た一次炭化物を、以下の条件で粉砕し、粉砕物を調製した。
(粉砕条件)
実施例1:ACM粉砕装置を用い、粉体供給量1000g/min、風量20m/min、粉砕ローター回転数6500rpm、分級ローター回転数4500rpmの条件にて粉砕し、さらにジェットミルを用いて、粉砕供給量80g/min、粉砕圧0.8MPa、繰り返し回数2Passの条件にて粉砕して得た粉砕中間物を、目開き75μmの篩を通して粗大粒子が取り除かれた粉砕物を得た。
実施例2:ACM粉砕装置を用い、粉体供給量1000g/min、風量20m/min、粉砕ローター回転数6500rpm、分級ローター回転数4500rpmの条件にて粉砕し、さらにジェットミルを用いて、粉砕供給量80g/min、粉砕圧0.8MPa、繰り返し回数2Passの条件にて粉砕して得た粉砕中間物を、目開き75μmの篩を通して粗大粒子が取り除かれた粉砕物を得た。
実施例3:サイクロンミル粉砕装置を用い粉体供給量50g/min、風量0.5m/min、第1粉砕インペラ回転数15000rpm、第2粉砕インペラ回転数15000rpmの条件にて粉砕して得た粉砕中間物を、目開き75μmの篩を通して粗大粒子が取り除かれた粉砕物を得た。
実施例4:ボールミル粉砕装置にて、φ15mmのアルミナボール5000gとφ10mmのアルミナボール900gを入れた容器の中に粉体を入れ処理して得た粉砕中間物を、目開き75μmの篩を通して粗大粒子が取り除かれた粉砕物を得た。
実施例5:ACM粉砕装置を用い、粉体供給量1000g/min、風量20m/min、粉砕ローター回転数6500rpm、分級ローター回転数4500rpmの条件にて粉砕し、さらにジェットミルを用いて、粉砕供給量80g/min、粉砕圧0.8MPa、繰り返し回数2Passの条件にて粉砕して得た粉砕中間物を、目開き75μmの篩を通して粗大粒子が取り除かれた粉砕物を得た。
比較例1:ACM粉砕装置を用い、粉体供給量1000g/min、風量20m/min、粉砕ローター回転数6500rpm、分級ローター回転数4500rpmの条件にて粉砕して得た粉砕中間物を、目開き75μmの篩を通して粗大粒子が取り除かれた粉砕物を得た。
比較例2:ACM粉砕装置を用い、粉体供給量1000g/min、風量20m/min、粉砕ローター回転数6500rpm、分級ローター回転数4500rpmの条件にて粉砕して得た粉砕中間物を、目開き75μmの篩を通して粗大粒子が取り除かれた粉砕物を得た。
比較例3:サイクロンミル粉砕装置を用い粉体供給量30g/min、風量0.8m/min、第1粉砕インペラ回転数13000rpm、第2粉砕インペラ回転数13000rpmの条件にて粉砕して得た粉砕中間物を、目開き75μmの篩を通して粗大粒子が取り除かれた粉砕物を得た。
比較例4:サイクロンミル粉砕装置を用い粉体供給量30g/min、風量0.8m/min、第1粉砕インペラ回転数13000rpm、第2粉砕インペラ回転数13000rpmの条件にて粉砕して得た粉砕中間物を、目開き75μmの篩を通して粗大粒子が取り除かれた粉砕物を得た。
比較例5:サイクロンミル粉砕装置を用い粉体供給量30g/min、風量0.8m/min、第1粉砕インペラ回転数13000rpm、第2粉砕インペラ回転数13000rpmの条件にて粉砕して得た粉砕中間物を、目開き75μmの篩を通して粗大粒子が取り除かれた粉砕物を得た。
比較例6:サイクロンミル粉砕装置を用い粉体供給量30g/min、風量0.8m/min、第1粉砕インペラ回転数13000rpm、第2粉砕インペラ回転数13000rpmの条件にて粉砕して得た粉砕中間物を、目開き75μmの篩を通して粗大粒子が取り除かれた粉砕物を得た。
比較例7:ACM粉砕装置を用い、粉体供給量1000g/min、風量20m/min、粉砕ローター回転数6500rpm、分級ローター回転数4500rpmの条件にて粉砕し、さらにサイクロン分級機を用いて微粒子をカットした粉砕中間物を、目開き75μmの篩を通して粗大粒子が取り除かれた粉砕物を得た。
The primary carbide obtained as described above was pulverized under the following conditions to prepare a pulverized product.
(Crushing conditions)
Example 1: Using an ACM pulverizer, pulverization was performed under the conditions of a powder supply rate of 1000 g / min, an air volume of 20 m 3 / min, a pulverization rotor rotation speed of 6500 rpm, and a classification rotor rotation speed of 4500 rpm, and further pulverization using a jet mill. A pulverized intermediate obtained by pulverizing under the conditions of a supply amount of 80 g / min, a pulverization pressure of 0.8 MPa, and a repetition rate of 2 Pass was obtained by removing coarse particles through a sieve having an opening of 75 μm.
Example 2: Using an ACM pulverizer, pulverization was performed under the conditions of a powder supply rate of 1000 g / min, an air volume of 20 m 3 / min, a pulverization rotor rotation speed of 6500 rpm, and a classification rotor rotation speed of 4500 rpm, and further pulverization using a jet mill. A pulverized intermediate obtained by pulverizing under the conditions of a supply amount of 80 g / min, a pulverization pressure of 0.8 MPa, and a repetition rate of 2 Pass was obtained by removing coarse particles through a sieve having an opening of 75 μm.
Example 3: Using a cyclone mill crusher, obtained by crushing under the conditions of powder feed rate 50 g / min, air flow rate 0.5 m 3 / min, first crushing impeller rotation speed 15000 rpm, second crushing impeller rotation speed 15000 rpm The pulverized intermediate was passed through a sieve having an opening of 75 μm to obtain a pulverized product from which coarse particles were removed.
Example 4: Coarse particles obtained by placing powder in a container containing 5000 g of φ15 mm alumina balls and 900 g of φ10 mm alumina balls in a ball mill pulverizer and passing through a sieve having an opening of 75 μm are coarse particles. A pulverized product from which was removed was obtained.
Example 5: Using an ACM pulverizer, pulverization was performed under the conditions of a powder supply rate of 1000 g / min, an air volume of 20 m 3 / min, a pulverization rotor rotation speed of 6500 rpm, and a classification rotor rotation speed of 4500 rpm, and further pulverization using a jet mill. A pulverized intermediate obtained by pulverizing under the conditions of a supply amount of 80 g / min, a pulverization pressure of 0.8 MPa, and a repetition rate of 2 Pass was obtained by removing coarse particles through a sieve having an opening of 75 μm.
Comparative Example 1: A pulverized intermediate obtained by pulverization using an ACM pulverizer under the conditions of a powder supply rate of 1000 g / min, an air volume of 20 m 3 / min, a pulverization rotor rotation speed of 6500 rpm, and a classification rotor rotation speed of 4500 rpm, A pulverized product from which coarse particles were removed was obtained through a sieve having an opening of 75 μm.
Comparative Example 2: A pulverized intermediate obtained by pulverization using an ACM pulverizer under the conditions of a powder supply rate of 1000 g / min, an air volume of 20 m 3 / min, a pulverization rotor rotation speed of 6500 rpm, and a classification rotor rotation speed of 4500 rpm, A pulverized product from which coarse particles were removed was obtained through a sieve having an opening of 75 μm.
Comparative Example 3: Obtained by pulverization using a cyclone mill pulverizer under the conditions of a powder supply rate of 30 g / min, an air flow rate of 0.8 m 3 / min, a first pulverization impeller rotation speed of 13000 rpm, and a second pulverization impeller rotation speed of 13000 rpm. The pulverized intermediate was passed through a sieve having an opening of 75 μm to obtain a pulverized product from which coarse particles were removed.
Comparative Example 4: Obtained by pulverization using a cyclone mill pulverizer under the conditions of a powder supply rate of 30 g / min, an air volume of 0.8 m 3 / min, a first pulverization impeller rotation speed of 13000 rpm, and a second pulverization impeller rotation speed of 13000 rpm. The pulverized intermediate was passed through a sieve having an opening of 75 μm to obtain a pulverized product from which coarse particles were removed.
Comparative Example 5: obtained by pulverization using a cyclone mill pulverizer under the conditions of a powder supply rate of 30 g / min, an air volume of 0.8 m 3 / min, a first pulverization impeller rotation speed of 13000 rpm, and a second pulverization impeller rotation speed of 13000 rpm. The pulverized intermediate was passed through a sieve having an opening of 75 μm to obtain a pulverized product from which coarse particles were removed.
Comparative Example 6: obtained by pulverization using a cyclone mill pulverizer under the conditions of a powder supply rate of 30 g / min, an air volume of 0.8 m 3 / min, a first pulverization impeller rotation speed of 13000 rpm, and a second pulverization impeller rotation speed of 13000 rpm. The pulverized intermediate was passed through a sieve having an opening of 75 μm to obtain a pulverized product from which coarse particles were removed.
Comparative Example 7: Using an ACM pulverizer, pulverization was performed under the conditions of a powder supply rate of 1000 g / min, an air volume of 20 m 3 / min, a pulverizing rotor rotational speed of 6500 rpm, and a classification rotor rotational speed of 4500 rpm, and further using a cyclone classifier The pulverized intermediate from which the coarse particles were removed was passed through a sieve having an opening of 75 μm to obtain a pulverized product from which coarse particles had been removed.
 尚、上述する粉砕処理にて用いた粉砕装置は以下のとおりである。
 ACM粉砕装置は、衝撃型分級機内蔵粉砕機(ACMパルベライザ(ACM30HC)、ホソカワミクロン製)を用いた。
 ジェットミル粉砕装置は、ナノジェットマイザー(NJ-300型、アイシンナノテクノロジーズ製)を用いた。
 サイクロンミル粉砕装置は、乾式粉砕機(150BMW型サイクロンミル、静岡プラント製)を用いた。
 ボールミル粉砕装置は、回転式ボールミル(1段式―B、入江商会製)を用いた。
The pulverization apparatus used in the above pulverization process is as follows.
As the ACM pulverizer, an impact classifier built-in pulverizer (ACM pulverizer (ACM30HC), manufactured by Hosokawa Micron Corporation) was used.
As the jet mill pulverizer, a nano jet mizer (NJ-300 type, manufactured by Aisin Nano Technologies) was used.
As the cyclone mill, a dry pulverizer (150BMW type cyclone mill, manufactured by Shizuoka Plant) was used.
As the ball mill crusher, a rotary ball mill (1-stage type-B, manufactured by Irie Shokai) was used.
 上述により得た粉砕物を、以下の焼成条件で焼成して炭化処理を行い、炭素材を得た。
(焼成条件)
実施例1:大型連続炉にて、窒素雰囲気下にて室温から100℃/時間の昇温速度にて焼成し1200℃に到達後、焼成状態を2時間保持して炭化処理を行い、実施例1の炭素材を得た。
実施例2:実施例1と同様の焼成条件で炭化処理を行い、実施例2の炭素材を得た。
実施例3:大型連続炉から小型連続炉に変更したこと以外は実施例1と同様の焼成条件で炭化処理を行い、実施例3の炭素材を得た。
実施例4:実施例3と同様の焼成条件で炭化処理を行い、実施例4の炭素材を得た。
実施例5:実施例3と同様の焼成条件で炭化処理を行い、実施例5の炭素材を得た。
比較例1:実施例1と同様の焼成条件で炭化処理を行い、比較例1の炭素材を得た。
比較例2:実施例1と同様の焼成条件で炭化処理を行い、比較例2の炭素材を得た。
比較例3:実施例3と同様の焼成条件で炭化処理を行い、比較例3の炭素材を得た。
比較例4:実施例3と同様の焼成条件で炭化処理を行い、比較例4の炭素材を得た。
比較例5:実施例3と同様の焼成条件で炭化処理を行い、比較例5の炭素材を得た。
比較例6:実施例3と同様の焼成条件で炭化処理を行い、比較例6の炭素材を得た。
比較例7:実施例3と同様の焼成条件で炭化処理を行い、比較例7の炭素材を得た。
The pulverized material obtained as described above was baked under the following calcination conditions and carbonized to obtain a carbon material.
(Baking conditions)
Example 1: In a large continuous furnace, firing was performed at room temperature to 100 ° C / hour in a nitrogen atmosphere, and after reaching 1200 ° C, the firing state was maintained for 2 hours for carbonization treatment. 1 carbon material was obtained.
Example 2: Carbonization treatment was performed under the same firing conditions as in Example 1 to obtain a carbon material of Example 2.
Example 3 Carbonization was performed under the same firing conditions as in Example 1 except that the large continuous furnace was changed to the small continuous furnace, and the carbon material of Example 3 was obtained.
Example 4: Carbonization treatment was performed under the same firing conditions as in Example 3 to obtain a carbon material of Example 4.
Example 5 Carbonization treatment was performed under the same firing conditions as in Example 3 to obtain a carbon material of Example 5.
Comparative Example 1: Carbonization was performed under the same firing conditions as in Example 1 to obtain a carbon material of Comparative Example 1.
Comparative Example 2: Carbonization was performed under the same firing conditions as in Example 1 to obtain a carbon material of Comparative Example 2.
Comparative Example 3: Carbonization was performed under the same firing conditions as in Example 3 to obtain a carbon material of Comparative Example 3.
Comparative Example 4: Carbonization was performed under the same firing conditions as in Example 3 to obtain a carbon material of Comparative Example 4.
Comparative Example 5: Carbonization was performed under the same firing conditions as in Example 3 to obtain a carbon material of Comparative Example 5.
Comparative Example 6: Carbonization was performed under the same firing conditions as in Example 3 to obtain a carbon material of Comparative Example 6.
Comparative Example 7: Carbonization was performed under the same firing conditions as in Example 3 to obtain a carbon material of Comparative Example 7.
<ハーフセル型リチウムイオン二次電池の製造>
 上述のとおり得られた実施例および比較例の炭素材の初回充放電特性評価を行うために、ハーフセル型リチウムイオン二次電池の作成を行った。各実施例、各比較例で得られた炭素材100部に対して、カルボキシメチルセルロース(ダイセルファインケム株式会社製、CMCダイセル2200)1.5部、スチレン・ブタジエンゴム(JSR株式会社製、TRD-2001)1.5部、アセチレンブラック(電気化学工業株式会社製、デンカブラック)2部、および、蒸留水100部を加え、自転・公転ミキサーで撹拌・混合し、スラリー状の負極混合物を調製した。
<Manufacture of half-cell lithium ion secondary batteries>
In order to evaluate the initial charge / discharge characteristics of the carbon materials of Examples and Comparative Examples obtained as described above, half-cell lithium ion secondary batteries were prepared. For 100 parts of the carbon material obtained in each example and each comparative example, 1.5 parts of carboxymethyl cellulose (Daicel Finechem Co., Ltd., CMC Daicel 2200), styrene-butadiene rubber (manufactured by JSR Corporation, TRD-2001) ) 1.5 parts, 2 parts of acetylene black (Denka Black, manufactured by Denki Kagaku Kogyo Co., Ltd.) and 100 parts of distilled water were added and stirred and mixed with a rotating / revolving mixer to prepare a slurry-like negative electrode mixture.
 上記負極混合物を厚み14μmの銅箔(古河電気工業株式会社製、NC-WS)の片面に塗布し、その後、60℃で2時間空気中で予備乾燥を行い、次に、120℃で15時間真空乾燥した。真空乾燥後、ロールプレスによって電極を加圧成形した。これを直径13mmの円盤状として切り出し負極を作製した。負極材層の厚さは50μmであった。 The negative electrode mixture was applied to one side of a 14 μm thick copper foil (Furukawa Electric Co., Ltd., NC-WS), followed by preliminary drying in air at 60 ° C. for 2 hours, and then at 120 ° C. for 15 hours. Vacuum dried. After vacuum drying, the electrode was pressure-formed by a roll press. This was cut into a disk shape having a diameter of 13 mm to produce a negative electrode. The thickness of the negative electrode material layer was 50 μm.
 作用極として厚さ1mmのリチウム金属を準備した。 A 1 mm thick lithium metal was prepared as a working electrode.
 セパレータとして、ポリオレフィンの多孔質膜(セルガード社製、商品名;セルガード2400)を用いた。 As the separator, a porous polyolefin film (manufactured by Celgard, trade name: Celgard 2400) was used.
 上記の負極、作用極、セパレータを用い、電解液としてエチレンカーボネートと、ジエチルカーボネートと、を体積比で3:7で混合した混合溶媒に1mol/dmの割合で六フッ化リン酸リチウム(LiPF)を加えたものを用いて、アルゴン雰囲気下のグローブボックス内で、2032型コインセル形状のハーフセル型リチウムイオン二次電池を製造した。 Lithium hexafluorophosphate (LiPF) at a rate of 1 mol / dm 3 in a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 3: 7 using the above negative electrode, working electrode, and separator. 6 ) was added to produce a 2032 type coin cell half-cell lithium ion secondary battery in a glove box under an argon atmosphere.
<フルセル型リチウムイオン二次電池の作成>
 上述のとおり得られた実施例および比較例の炭素材の低温環境における電池特性を評価するために、フルセル型リチウムイオン二次電池の作成を行った。
 作成方法は上述のハーフセル型リチウムイオン二次電池の作成方法における、作用極を正極に変更したこと以外は、同様の方法で行った。
 正極として、LiCoOを活物質とし、集電体上に塗布して作製したものを用い、正極の集電体として、アルミ箔を用いた単層シート(パイオニクス株式会社製、商品名;ピオクセル C-100)を直径12mmの円盤状に形成したものを用いた。
<Creation of full-cell lithium-ion secondary battery>
In order to evaluate the battery characteristics in the low temperature environment of the carbon materials of Examples and Comparative Examples obtained as described above, full-cell lithium ion secondary batteries were prepared.
The production method was the same as that in the production method of the half-cell lithium ion secondary battery described above except that the working electrode was changed to the positive electrode.
A positive electrode made of LiCoO 2 as an active material and coated on a current collector was used, and a single layer sheet using an aluminum foil as a positive electrode current collector (trade name; Pioxel C, manufactured by Pionics Corporation). −100) formed into a disk shape with a diameter of 12 mm was used.
 以上のとおり得られた各実施例、各比較例の炭素材、ならびに各実施例および各比較例の炭素材を用いて作成したリチウムイオン二次電池を用いて以下のとおり評価した。 Evaluation was performed as follows using each of the examples, the carbon materials of the comparative examples, and the lithium ion secondary batteries prepared using the carbon materials of the examples and the comparative examples.
[真比重の測定]
 上述のとおり得た各実施例および各比較例の炭素材について、ブタノールを用いた真比重測定方法により真比重を測定した。測定結果は、表1に示す。
[Measurement of true specific gravity]
About the carbon material of each Example and each comparative example which were obtained as mentioned above, true specific gravity was measured with the true specific gravity measuring method using butanol. The measurement results are shown in Table 1.
[表面積の測定]
 粒度分布測定装置(粒度分布測定装置LA-920、株式会社堀場製作所製)を用い、各実施例および各比較例の炭素材の個数基準における粒子径分布を以下の手順により測定した。
 上述のとおり得た各実施例および各比較例の炭素材約20mg、約1wt%に希釈した界面活性剤(ツイーン20、キシダ化学株式会社製)1ml、蒸留水約5mlを一つのポリ容器に入れ、超音波洗浄機内において約1分間ポリスポイトで混ぜながら超音波をかけて分散させて分散物を得た。以上のとおり得た各分散物の粒子径分布を、上述の粒度分布測定装置を用い、相対屈折率1.5の設定にて測定を行った。
 上記粒子径分布測定により得られたデータを用い、上記式(1)により単位体積当たりの表面積を算出した。算出された値は、表1に示す。
[Measurement of surface area]
Using a particle size distribution measuring device (particle size distribution measuring device LA-920, manufactured by Horiba, Ltd.), the particle size distribution on the basis of the number of carbon materials of each example and each comparative example was measured by the following procedure.
About 20 mg of the carbon material obtained as described above and each comparative example, about 1 ml of surfactant (Tween 20, manufactured by Kishida Chemical Co., Ltd.) diluted to about 1 wt%, and about 5 ml of distilled water are put in one plastic container. Then, the mixture was dispersed by applying ultrasonic waves while mixing with a poly dropper for about 1 minute in an ultrasonic cleaner to obtain a dispersion. The particle size distribution of each dispersion obtained as described above was measured at the setting of the relative refractive index of 1.5 using the particle size distribution measuring apparatus described above.
Using the data obtained by the particle size distribution measurement, the surface area per unit volume was calculated by the above formula (1). The calculated values are shown in Table 1.
[平均2乗半径の算出]
 上述する粒子径分布測定により得られたデータを用い、上記式(2)により平均2乗半径を算出した。算出された値は、表1に示す。
[Calculation of mean square radius]
Using the data obtained by the particle size distribution measurement described above, the mean square radius was calculated by the above equation (2). The calculated values are shown in Table 1.
[初回充放電特性評価]
 各実施例または各比較例の炭素材を用いて上述のとおり作成したハーフセル型リチウムイオン二次電池を用いて以下のとおり電池特性を評価した。
 測定温度を25℃とし、充電時の電流密度を25mA/gとして定電流充電を行い、電位が0Vに達した時点から、0Vを保持して定電圧充電を行い、電流密度が2.5mA/gになるまで充電した電気量を初回充電容量とした。
 次いで、放電時の電流密度を25mA/gとして定電流放電を行い、電位が2.5Vに達した時点の電気量を初回放電容量とした。
 下記数式(3)に示すとおり、初回充電容量で初回放電容量を除した値に100を乗じて初回充放電効率を算出した。尚、初回充放電特性評価の結果は、表1に示す。
 [数3]
初回充放電効率(%)=(初回放電容量(mAh/g)/初回充電容量(mAh/g))×100 (3)
 尚、上記充放電特性評価において、「充電」とは、電圧の印加により、正極から炭素材を用いて構成された負極にリチウムイオンを移動させることをいう。また「放電」とは、炭素材を用いて構成された負極から、正極にリチウムイオンが移動する現象のことをいう。
 上述で得られた初回放電容量および初回充放電効率を、いずれも表1に示す。
[Evaluation of initial charge / discharge characteristics]
Battery characteristics were evaluated as follows using a half-cell lithium ion secondary battery prepared as described above using the carbon material of each Example or each Comparative Example.
Constant current charging was performed at a measurement temperature of 25 ° C. and a current density during charging of 25 mA / g. When the potential reached 0 V, constant voltage charging was performed while maintaining 0 V, and the current density was 2.5 mA / g. The amount of electricity charged until g was taken as the initial charge capacity.
Next, constant current discharge was performed at a current density of 25 mA / g during discharge, and the amount of electricity when the potential reached 2.5 V was defined as the initial discharge capacity.
As shown in the following mathematical formula (3), the initial charge / discharge efficiency was calculated by multiplying the value obtained by dividing the initial discharge capacity by the initial charge capacity by 100. The results of the first charge / discharge characteristic evaluation are shown in Table 1.
[Equation 3]
Initial charge / discharge efficiency (%) = (initial discharge capacity (mAh / g) / initial charge capacity (mAh / g)) × 100 (3)
In the charge / discharge characteristic evaluation, “charging” refers to moving lithium ions from a positive electrode to a negative electrode formed using a carbon material by applying a voltage. “Discharge” refers to a phenomenon in which lithium ions move from a negative electrode formed using a carbon material to a positive electrode.
Table 1 shows the initial discharge capacity and the initial charge / discharge efficiency obtained above.
[低温環境試験]
 上述の通り作製した、フルセル型リチウムイオン二次電池を用い、以下の通りに測定を行った。
 測定温度を25℃とし、充電時の電流密度を25mA/gとして定電流充電を行い、電位が4.2Vに達した時点から、4.2Vを保持して定電圧充電を行い、電流密度が2.5mA/gに達するまで充電し、次いで、放電時の電流密度を25mA/gとして定電流放電を行い、電位が2.5Vに達するまで放電した。さらに同様の条件で充電および放電を行い合計5サイクルの充放電を実施してエージング処理を行った。
 エージング処理後、各リチウムイオン二次電池を、25℃の温度環境下、0.2Cの定電流で4.2Vまで充電し、その後、4.2Vの定電圧で電流値が0.02Cに減衰するまで充電した。次に、0.2Cの定電流で放電を行い、SOC(State of Charge)50%となるよう調整し、25℃で1時間放置した。続いて、各フルセル型リチウムイオン二次電池を-20℃の温度環境下で1時間放置し、下記「低温環境充放電処理」を3サイクル行った。
 即ち、低温環境放電処理は、フルセル型リチウムイオン二次電池を-20℃の温度環境下に設置し、所定の電流値で10秒間充電した際の電圧を測定し、次いで10分間放置した後、所定の電流値で10秒間だけ放電した際の電圧を測定し、その後10分間放置するものである。上記所定の電流値とは、具体的には、1サイクル目から3サイクル目まで、順に、1/3C、0.5C、1Cである。上記低温環境放電処理において、上限電圧を4.2V、下限電圧を2.5Vとした。
 尚、ここで「1C」は1時間で放電が終了する電流密度を意味する。
[Low temperature environment test]
Using the full cell type lithium ion secondary battery produced as described above, the measurement was performed as follows.
Constant current charging is performed at a measurement temperature of 25 ° C. and a current density during charging of 25 mA / g. When the potential reaches 4.2 V, constant voltage charging is performed while holding 4.2 V, and the current density is The battery was charged until it reached 2.5 mA / g, and then a constant current discharge was performed with the current density at the time of discharge being 25 mA / g, and the battery was discharged until the potential reached 2.5 V. Furthermore, the battery was charged and discharged under the same conditions, and a total of 5 cycles of charging and discharging were performed to perform an aging treatment.
After the aging treatment, each lithium ion secondary battery is charged to 4.2 V at a constant current of 0.2 C in a temperature environment of 25 ° C., and then the current value is attenuated to 0.02 C at a constant voltage of 4.2 V. Charged until Next, the battery was discharged at a constant current of 0.2 C, adjusted to 50% SOC (State of Charge), and left at 25 ° C. for 1 hour. Subsequently, each full cell type lithium ion secondary battery was allowed to stand for 1 hour in a temperature environment of −20 ° C., and the following “low temperature environment charge / discharge treatment” was performed for 3 cycles.
That is, the low temperature environmental discharge treatment is performed by placing a full-cell type lithium ion secondary battery in a temperature environment of −20 ° C., measuring a voltage when charged at a predetermined current value for 10 seconds, and then allowing to stand for 10 minutes. The voltage when discharged for 10 seconds at a predetermined current value is measured, and then left for 10 minutes. Specifically, the predetermined current value is 1 / 3C, 0.5C, and 1C in order from the first cycle to the third cycle. In the low-temperature environmental discharge treatment, the upper limit voltage was 4.2 V and the lower limit voltage was 2.5 V.
Here, “1C” means a current density at which discharge is completed in one hour.
 上記低温環境放電処理に関し、横軸に電流値、縦軸に10秒間充電または放電した後の電圧をプロットし、その近似直線の傾きの絶対値から電池内の充電時および放電時の直流抵抗(DC-IR)を求めた。DC-IRが低いことは電気抵抗が小さく出力特性が良好であることを意味する。 Regarding the low temperature environmental discharge treatment, the horizontal axis represents the current value, the vertical axis represents the voltage after charging or discharging for 10 seconds, and the DC resistance during charging and discharging in the battery from the absolute value of the slope of the approximate straight line ( DC-IR) was determined. A low DC-IR means that the electrical resistance is small and the output characteristics are good.
 表1に示すとおり、いずれの実施例も、単位体積当たりの表面積が本発明で特定する所定の範囲を満たすことが確認された。これに対し、いずれの比較例も、単位体積当たりの表面積が上記所定の範囲を外れていることが確認された。
 実施例はいずれも、25℃における初回充放電効率は84%以上と高い値を示し、また-20℃における充電時および放電時のDC-IRが低い傾向にあった。
 たとえば、実施例1、2と、実施例1、2と同材料を用いてなる比較例1、2と、を対比した場合、表面積の違いにより、低温環境下における充放電時のDC-IRに有意に差異が生じていた。即ち、実施例1、2は、比較例1、2に比べて、表面積が大きく、充放電時におけるDC-IRが低かった。同様の傾向が、実施例3、4および比較例3から6、ならびに実施例5および比較例7においても確認された。
 以上の結果から、各実施例は、表面積が所定範囲に含まれることによって低温環境下における抵抗値の低下が低減し、25℃において示される良好な充放電効率が低温環境下でも有意に反映されることが示唆された。
As shown in Table 1, it was confirmed that in all Examples, the surface area per unit volume satisfied the predetermined range specified in the present invention. On the other hand, in any of the comparative examples, it was confirmed that the surface area per unit volume is out of the predetermined range.
In all the examples, the initial charge / discharge efficiency at 25 ° C. showed a high value of 84% or more, and the DC-IR during charging and discharging at −20 ° C. tended to be low.
For example, when Examples 1 and 2 are compared with Comparative Examples 1 and 2 using the same material as Examples 1 and 2, the DC-IR during charging and discharging in a low temperature environment is different due to the difference in surface area. There was a significant difference. That is, Examples 1 and 2 had a larger surface area and lower DC-IR during charging / discharging than Comparative Examples 1 and 2. The same tendency was confirmed in Examples 3 and 4 and Comparative Examples 3 to 6, and Example 5 and Comparative Example 7.
From the above results, in each example, the decrease in the resistance value in the low temperature environment is reduced by including the surface area within the predetermined range, and the good charge / discharge efficiency shown at 25 ° C. is significantly reflected even in the low temperature environment. It was suggested that
 また実施例の平均2乗半径はいずれも、本発明の特定する所定の範囲に含まれていた。 In addition, all of the mean square radii of the examples were included in the predetermined range specified by the present invention.
 また実施例1から4は、真比重が、本発明の特定する所定の範囲に含まれており、期待される初回放電容量が示された。 Also, in Examples 1 to 4, the true specific gravity was included in the predetermined range specified by the present invention, and the expected initial discharge capacity was shown.
[規則26に基づく補充 15.01.2016] 
Figure WO-DOC-TABLE-1
 
[Supplement under rule 26 15.01.2016]
Figure WO-DOC-TABLE-1
 上記実施形態は、以下の技術思想を包含するものである。
(1)個数基準における粒子径分布から求めた単位体積当たりの表面積が、10000cm-1以上16000cm-1以下の範囲である炭素粒子を含むことを特徴とする二次電池負極用炭素材。
(2)前記炭素粒子は、前記粒子径分布から求めた平均2乗半径が、1μm以上4μm以下の範囲である上記(1)に記載の二次電池負極用炭素材。
(3)前記炭素粒子は、真比重が、1.5g/cm以上1.7g/cm以下の範囲である上記(1)または(2)に記載の二次電池負極用炭素材。
(4)前記炭素粒子は、線源としてCuKα線を用いたX線回折法により求められる(002)面の平均面間隔d002が0.340nm以上であるハードカーボンを含む上記(1)から(3)のいずれか一項に記載の二次電池負極用炭素材。
(5)前記炭素粒子は、前記ハードカーボンを90質量%以上含む上記(4)に記載の二次電池負極用炭素材。
(6)前記炭素粒子が、前記ハードカーボンおよび黒鉛を含む上記(4)または(5)に記載の二次電池負極用炭素材。
(7)上記(1)から(6)のいずれか一項に記載の二次電池負極用炭素材を含有することを特徴とする二次電池負極用活物質。
(8)上記(7)に記載の二次電池負極用活物質を含む二次電池負極用活物質層と、前記二次電池負極用活物質層が積層された負極用集電体と、を有することを特徴とする二次電池負極。
(9)上記(8)に記載された二次電池負極と、電解層と、二次電池正極と、を備えることを特徴とする二次電池。
The above embodiment includes the following technical idea.
(1) A carbon material for a secondary battery negative electrode, comprising carbon particles having a surface area per unit volume determined from a particle size distribution on a number basis in a range of 10,000 cm −1 to 16000 cm −1 .
(2) The carbon material for a secondary battery negative electrode according to (1), wherein the carbon particles have an average square radius determined from the particle size distribution in a range of 1 μm 2 to 4 μm 2 .
(3) The carbon material for a secondary battery negative electrode according to (1) or (2), wherein the carbon particles have a true specific gravity in a range of 1.5 g / cm 3 or more and 1.7 g / cm 3 or less.
(4) From the above (1) to (4), the carbon particles include hard carbon having an average interplanar spacing d 002 of (002) planes of 0.340 nm or more determined by an X-ray diffraction method using CuKα rays as a radiation source. The carbon material for secondary battery negative electrode as described in any one of 3).
(5) The carbon material according to (4), wherein the carbon particles include 90% by mass or more of the hard carbon.
(6) The carbon material for a secondary battery negative electrode according to (4) or (5), wherein the carbon particles include the hard carbon and graphite.
(7) A secondary battery negative electrode active material comprising the carbon material for a secondary battery negative electrode according to any one of (1) to (6) above.
(8) A secondary battery negative electrode active material layer comprising the secondary battery negative electrode active material described in (7) above, and a negative electrode current collector in which the secondary battery negative electrode active material layer is laminated. A secondary battery negative electrode comprising:
(9) A secondary battery comprising the secondary battery negative electrode described in (8) above, an electrolytic layer, and a secondary battery positive electrode.
10・・・負極
12・・・負極用活物質層
14・・・負極集電体
20・・・正極
22・・・正極活物質層
24・・・正極集電体
30・・・セパレータ
40・・・電解層
100・・・リチウムイオン二次電池
DESCRIPTION OF SYMBOLS 10 ... Negative electrode 12 ... Active material layer 14 for negative electrodes ... Negative electrode collector 20 ... Positive electrode 22 ... Positive electrode active material layer 24 ... Positive electrode collector 30 ... Separator 40- ..Electrolytic layer 100 ... lithium ion secondary battery

Claims (9)

  1.  個数基準における粒子径分布から求めた単位体積当たりの表面積が、10000cm-1以上16000cm-1以下の範囲である炭素粒子を含むことを特徴とする二次電池負極用炭素材。 A carbon material for a secondary battery negative electrode, comprising carbon particles having a surface area per unit volume determined from a particle size distribution on a number basis within a range of 10,000 cm -1 to 16000 cm -1 .
  2.  前記炭素粒子は、前記粒子径分布から求めた平均2乗半径が、1μm以上4μm以下の範囲である請求項1に記載の二次電池負極用炭素材。 2. The carbon material for a secondary battery negative electrode according to claim 1, wherein the carbon particles have an average square radius determined from the particle size distribution in a range of 1 μm 2 to 4 μm 2 .
  3.  前記炭素粒子は、真比重が、1.5g/cm以上1.7g/cm以下の範囲である請求項1または2に記載の二次電池負極用炭素材。 3. The carbon material for a secondary battery negative electrode according to claim 1, wherein the carbon particles have a true specific gravity in a range of 1.5 g / cm 3 or more and 1.7 g / cm 3 or less.
  4.  前記炭素粒子は、線源としてCuKα線を用いたX線回折法により求められる(002)面の平均面間隔d002が0.340nm以上であるハードカーボンを含む請求項1から3のいずれか一項に記載の二次電池負極用炭素材。 4. The carbon particle according to claim 1, wherein the carbon particles include hard carbon having an average interplanar spacing d 002 of (002) plane of 0.340 nm or more obtained by an X-ray diffraction method using CuKα rays as a radiation source. Carbon material for secondary battery negative electrode as described in claim | item.
  5.  前記炭素粒子は、前記ハードカーボンを90質量%以上含む請求項4に記載の二次電池負極用炭素材。 The carbon material for a secondary battery negative electrode according to claim 4, wherein the carbon particles include 90% by mass or more of the hard carbon.
  6.  前記炭素粒子が、前記ハードカーボンおよび黒鉛を含む請求項4または5に記載の二次電池負極用炭素材。 The carbon material for a secondary battery negative electrode according to claim 4 or 5, wherein the carbon particles include the hard carbon and graphite.
  7.  請求項1から6のいずれか一項に記載の二次電池負極用炭素材を含有することを特徴とする二次電池負極用活物質。 An active material for a secondary battery negative electrode comprising the carbon material for a secondary battery negative electrode according to any one of claims 1 to 6.
  8.  請求項7に記載の二次電池負極用活物質を含む二次電池負極用活物質層と、前記二次電池負極用活物質層が積層された負極用集電体と、を有することを特徴とする二次電池負極。 A secondary battery negative electrode active material layer comprising the secondary battery negative electrode active material according to claim 7 and a negative electrode current collector in which the secondary battery negative electrode active material layer is laminated. Secondary battery negative electrode.
  9.  請求項8に記載された二次電池負極と、電解層と、二次電池正極と、を備えることを特徴とする二次電池。 A secondary battery comprising the secondary battery negative electrode according to claim 8, an electrolytic layer, and a secondary battery positive electrode.
PCT/JP2015/085798 2014-12-24 2015-12-22 Carbon material for secondary cell negative electrode, active substance for secondary cell negative electrode, secondary cell negative electrode, and secondary cell WO2016104489A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-260833 2014-12-24
JP2014260833 2014-12-24
JP2015052628A JP2016122641A (en) 2014-12-24 2015-03-16 Carbon material for secondary battery negative electrode, active material for secondary battery negative electrode, secondary battery negative electrode, and secondary battery
JP2015-052628 2015-03-16

Publications (1)

Publication Number Publication Date
WO2016104489A1 true WO2016104489A1 (en) 2016-06-30

Family

ID=56150507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085798 WO2016104489A1 (en) 2014-12-24 2015-12-22 Carbon material for secondary cell negative electrode, active substance for secondary cell negative electrode, secondary cell negative electrode, and secondary cell

Country Status (1)

Country Link
WO (1) WO2016104489A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019160400A (en) * 2018-03-07 2019-09-19 マクセルホールディングス株式会社 Negative electrode for electrochemical element and lithium ion secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270159A (en) * 2001-03-09 2002-09-20 Sony Corp Battery
JP2012074297A (en) * 2010-09-29 2012-04-12 Mitsubishi Chemicals Corp Multilayer structural carbon material for nonaqueous secondary battery, negative electrode material using the same, and nonaqueous secondary battery
WO2014046077A1 (en) * 2012-09-18 2014-03-27 株式会社クレハ Binder for nonaqueous electrolyte secondary cell, binder solution for nonaqueous electrolyte secondary cell, anode mixture for nonaqueous electrolyte secondary cell, and uses thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270159A (en) * 2001-03-09 2002-09-20 Sony Corp Battery
JP2012074297A (en) * 2010-09-29 2012-04-12 Mitsubishi Chemicals Corp Multilayer structural carbon material for nonaqueous secondary battery, negative electrode material using the same, and nonaqueous secondary battery
WO2014046077A1 (en) * 2012-09-18 2014-03-27 株式会社クレハ Binder for nonaqueous electrolyte secondary cell, binder solution for nonaqueous electrolyte secondary cell, anode mixture for nonaqueous electrolyte secondary cell, and uses thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019160400A (en) * 2018-03-07 2019-09-19 マクセルホールディングス株式会社 Negative electrode for electrochemical element and lithium ion secondary battery
JP7187156B2 (en) 2018-03-07 2022-12-12 マクセル株式会社 Negative electrodes for electrochemical devices and lithium ion secondary batteries

Similar Documents

Publication Publication Date Title
KR101461220B1 (en) Negative active material for rechargeable lithium battery, method of preparing the same, and negative electrode and rechargeable lithium battery including the same
KR101661050B1 (en) Composite graphite material, method for producing same, negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
KR102124948B1 (en) Anode active material comprising mixed graphite, negative electrode comprising thereof and lithium secondary battery using the negative electrode
JP6508870B2 (en) Composite active material for lithium secondary battery and method of manufacturing the same
EP3471177B1 (en) Negative electrode active material and negative electrode including the same
JP2004210634A (en) COMPOSITE GRAPHITE PARTICLE, ITS PRODUCTION METHOD, Li ION SECONDARY BATTERY CATHODE MATERIAL, Li ION SECONDARY BATTERY CATHODE AND Li ION SECONDARY BATTERY
JP2022550820A (en) Spherical carbon-based negative electrode active material, manufacturing method thereof, negative electrode containing same, and lithium secondary battery
JP5472514B1 (en) Negative electrode material, negative electrode active material, negative electrode and alkali metal ion battery
TW201607114A (en) Carbonaceous material for negative electrode of non-aqueous electrolyte secondary battery
WO2019031543A1 (en) Negative electrode active material for secondary battery, and secondary battery
US20210184217A1 (en) Negative electrode material for nonaqueous secondary batteries, negative electrode for nonaqueous secondary batteries, and nonaqueous secondary battery
JP2016149340A (en) Composite active material for lithium secondary battery, manufacturing method for the same and lithium secondary battery
JP2016164861A (en) Modified phenolic hydroxyl group-containing resin for secondary battery negative electrode, carbon material for secondary battery negative electrode, secondary battery negative electrode active substance, second battery negative electrode, and secondary battery
JP5604217B2 (en) Method for producing lithium vanadium phosphate carbon composite
JP2016181348A (en) Carbonaceous material for nonaqueous electrolyte secondary battery negative electrode, and manufacturing method thereof
JP2016197586A (en) Resin composition for secondary battery negative electrode, method of manufacturing carbon material for secondary battery negative electrode, carbon material for secondary battery negative electrode, active material for secondary battery negative electrode, secondary battery negative electrode and secondary battery
JP2016164862A (en) Carbon material for secondary battery negative electrode, active material for secondary battery negative electrode, secondary battery negative electrode, and secondary battery
JP6447013B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2016104489A1 (en) Carbon material for secondary cell negative electrode, active substance for secondary cell negative electrode, secondary cell negative electrode, and secondary cell
JP5297565B1 (en) Negative electrode material, negative electrode active material, negative electrode and alkali metal ion battery
WO2017110796A1 (en) Carbon material for secondary battery negative electrodes, active material for secondary battery negative electrodes, secondary battery negative electrode and secondary battery
WO2016031854A1 (en) Secondary battery negative electrode resin composition, method for producing secondary battery negative electrode carbon material, secondary battery negative electrode carbon material, modified phenolic hydroxyl group for use in secondary battery negative electrode, secondary battery negative electrode active material, secondary battery negative electrode, and secondary battery
JP2017091784A (en) Carbon material for secondary battery negative electrode, active material for secondary battery negative electrode, secondary battery negative electrode, and method of manufacturing secondary battery
JP2016136452A (en) Carbon material for sodium ion secondary battery, active material for sodium ion secondary battery negative electrode, sodium ion secondary negative electrode, sodium ion secondary battery, resin composition for sodium ion secondary battery negative electrode, and method of manufacturing carbon material for sodium ion secondary battery negative electrode
JP2016122641A (en) Carbon material for secondary battery negative electrode, active material for secondary battery negative electrode, secondary battery negative electrode, and secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15873057

Country of ref document: EP

Kind code of ref document: A1