WO2016104068A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
WO2016104068A1
WO2016104068A1 PCT/JP2015/083697 JP2015083697W WO2016104068A1 WO 2016104068 A1 WO2016104068 A1 WO 2016104068A1 JP 2015083697 W JP2015083697 W JP 2015083697W WO 2016104068 A1 WO2016104068 A1 WO 2016104068A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
header tank
diversion
refrigerant
heat exchanger
Prior art date
Application number
PCT/JP2015/083697
Other languages
French (fr)
Japanese (ja)
Inventor
浩隆 門
金子 智
祐介 飯野
Original Assignee
サンデンホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデンホールディングス株式会社 filed Critical サンデンホールディングス株式会社
Priority to CN201580070698.7A priority Critical patent/CN107110620A/en
Priority to DE112015005788.9T priority patent/DE112015005788T5/en
Publication of WO2016104068A1 publication Critical patent/WO2016104068A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0085Evaporators

Definitions

  • the present invention relates to a heat exchanger, and more particularly to a heat exchanger suitable as an evaporator used in a refrigerant circuit of a vehicle air conditioner.
  • Patent Documents 1 and 2 disclose heat exchangers formed by overlapping two or three heat exchange modules in which a refrigerant flows in the ventilation direction.
  • Each heat exchange module includes a pair of upper and lower header tanks that are spaced apart from each other, and a plurality of tubes that extend in parallel between the upper and lower header tanks and both ends communicate with each other inside the upper and lower header tanks, The plurality of tubes form a core that performs heat exchange between the refrigerant and the ventilation.
  • Each of the conventional heat exchangers has a core that divides the core into a tube group (hereinafter referred to as a path) composed of a plurality of tubes, divides the refrigerant in the header tank, and distributes the divided refrigerant.
  • a path a tube group
  • the heat exchange module By configuring the heat exchange module with the diversion module, the temperature of the air blown out through the heat exchanger is made uniform.
  • each of the conventional heat exchangers described above has special considerations regarding the detailed path allocation configuration of the shunt module, the path allocation configuration of the heat exchange modules other than the shunt module, and the arrangement of the heat exchange modules including the shunt module in the ventilation direction.
  • there is still a problem in order to reduce the variation in the temperature of the blown air in the heat exchanger and achieve a more uniform blown air temperature.
  • This invention is made
  • the place made into the objective is to provide the heat exchanger which can implement
  • the heat exchanger of the present invention is a heat exchanger formed by stacking two or more heat exchange modules in which the refrigerant flows in the ventilation direction, and each heat exchange module is spaced apart vertically.
  • Each of the heat exchange modules is divided into a plurality of paths, the refrigerant is divided in a header tank, and a branch module having a branch core portion through which the divided refrigerant flows, and And a merging module that circulates the refrigerant that has flowed through the diverting core unit in the header tank and distributes it to the core, and the diverting module is positioned leeward in the ventilation direction than the merging module. It is.
  • the shunt core portion is positioned at a position that is symmetrical with respect to the center in the longitudinal direction of the upper and lower header tanks.
  • the merge module is formed in one pass that does not divide the core.
  • each heat exchange module includes three or more modules including a diversion and merging module, and a pre-division module that is positioned downstream of the diversion module and flows before the diversion of the refrigerant that circulates through the diversion module. The module before diversion is formed by one pass that does not divide the core.
  • a refrigerant inlet pipe and an outlet pipe for the heat exchanger are further provided, and both the inlet pipe and the outlet pipe are connected to either one of the upper and lower header tanks.
  • each heat exchange module is stacked in an odd number in the ventilation direction.
  • the upper and lower header tanks form an upper header tank coupling body and a lower header tank coupling body by front and rear header tanks arranged in the ventilation direction, and at least one of the upper and lower header tank coupling bodies is disposed inside the front and rear header tanks.
  • a partition plate that communicates with each other and forms a refrigerant flow path between the heat exchange modules, and a partition plate that divides the header tank by at least one of the left and right sides of the communication portion, and divides the core into a plurality of parts to flow the refrigerant.
  • the diversion and merging module is formed by arranging the communication part and the partition plate.
  • the diversion core part in the diversion module is classified into an ascending path flowing from the lower header tank to the upper header tank and a descending path flowing from the upper header tank to the lower header tank, and the ascending path is
  • the ascending path in the diversion module has a larger number than the descending path.
  • the descending path in the diversion module has a larger number than the ascending path.
  • the diversion core part in the diversion module is classified into an ascending path flowing from the lower header tank to the upper header tank and a descending path flowing from the upper header tank to the lower header tank, and the ascending path is
  • the number of ascending paths in the diversion module is one.
  • the descending path is communicated with the header tank of the merging module via the one communicating portion, the number of descending paths in the diversion module is one.
  • the blown air temperature can be further uniformized.
  • FIG. 3 is an enlarged view of a region S shown in FIG. 2.
  • FIG. 3 is a perspective view in which a part of the lower header tank coupling body shown in FIG. 2 is enlarged from below. It is the side view seen from the ventilation direction of the communicating member shown in FIG.
  • It is a schematic diagram which shows the pass division of the heat exchanger which concerns on 1st Embodiment of this invention for every (a) pre-division module, (b) diversion module, and (c) merge module from the downwind. It is the photograph which looked at the blowing air temperature made uniform by the pass division structure of FIG.
  • FIG. 1 shows a perspective view of the heat exchanger 1
  • FIG. 2 shows a front view of the heat exchanger 1.
  • the heat exchanger 1 forms, for example, a refrigeration cycle of a vehicle air conditioner, is incorporated in a refrigerant circuit in which high-pressure carbon dioxide refrigerant circulates, and is used as an evaporator during operation of the vehicle air conditioner.
  • the heat exchanger 1 has three heats of an upwind (front side) module 2A, a central module 2B, and a downwind (rear side) module 2C in order from the upwind of the ventilation A indicated by the arrows.
  • the exchange module 2 is formed so as to overlap in the ventilation direction X.
  • Ventilation A is vehicle interior air (inside air) or vehicle interior air (outside air).
  • FIG. 3 is an enlarged view of the region S in FIG.
  • each heat exchange module 2 includes a pair of upper header tank 4 and lower header tank 6 that are spaced apart from each other in the vertical direction, and the upper and lower header tanks 4, 6 are parallel to each other.
  • a plurality of flat tubes 8 that extend and have both ends communicating with the inside of the upper and lower header tanks 4 and 6 are provided.
  • the upper and lower header tanks 4 and 6 are formed in a cylindrical shape (round pipe shape) having the same diameter.
  • each tube 8 Both ends of each tube 8 are joined to the upper and lower header tanks 4 and 6 by brazing, and corrugated fins 10 are arranged between the tubes 8. Each fin 10 is joined to the flat surface of the tube 8 which opposes by brazing, and the ventilation flow path of the ventilation A in the heat exchange module 2 is formed.
  • the heat exchange module 2 has tubes 8 and fins 10 arranged alternately in the horizontal direction to form a core 12 that performs heat exchange between the refrigerant and the ventilation A. That is, the windward module 12A, the central module 2B, and the leeward module 2C are formed with the windward core 12A, the central core 12B, and the leeward core 12C, respectively. The left and right side surfaces of these cores 12 are each covered and protected by a single side plate 14.
  • the open ends of the upper header tanks 4 ⁇ / b> A, 4 ⁇ / b> B, 4 ⁇ / b> C adjacent to the ventilation direction X of the different heat exchange modules 2 are integrated with each other.
  • the upper header tank connecting body 4U is formed by closing the lid member 16 and connecting the upper header tanks 4A, 4B, 4C.
  • a refrigerant inlet pipe 18 and an outlet pipe 20 are connected to one of the lid members 16.
  • the inlet pipe 18 communicates with the leeward upper header tank 4C, and the outlet pipe 20 communicates with the leeward upper header tank 4A.
  • the opening ends of the lower header tanks 6A, 6B, and 6C on the windward (front side), center, and leeward (rear side) adjacent to each other in the ventilation direction X of the different heat exchange modules 2 are respectively closed with an integral lid member 22.
  • a lower header tank connecting body 6L connecting the lower header tanks 6A, 6B, 6C is formed.
  • FIG. 4 is a perspective view in which a part of the lower header tank coupling body 6L is enlarged from below.
  • a communication member (communication portion) 24 is disposed between the lower header tanks 6A, 6B, 6C along the longitudinal direction Y of the lower header tank coupling body 6L.
  • the communication member 24 communicates with the inside of each of the lower header tanks (front and rear header tanks) 6 before and after the communication member 24, and the refrigerant flow path from the leeward core 12C to the central core 12B and from the central core 12B to the windward core 12A. Is forming.
  • FIG. 5 is a side view of the communication member 24 viewed from the ventilation direction X.
  • the communication member 24 includes a long plate portion 24 a extending in the longitudinal direction Y, and a communication tube 24 b protruding in pairs from both side surfaces of the long plate portion 24 a with the long plate portion 24 a interposed therebetween. ing.
  • a plurality of communication pipes 24b are arranged along the longitudinal direction Y.
  • a partition plate 26 is provided in the lower header tank 6B at a position that becomes a boundary between different communication members 24.
  • the partition plate 26 is inserted into an insertion hole (not shown) formed on the bottom surface of the lower header tank 6B, and joined to the lower header tank 6B by brazing from the outside of the lower header tank 6B.
  • the partition plate 26 is disposed in order to partition the inside of the lower header tank 6 with at least one of the left and right sides of the communication member 24 and to divide the core 12 into a plurality of paths and to flow the refrigerant.
  • the communication member 24 and the partition plate 26 are appropriately disposed in the lower header tank connecting body 6L, whereby the counter flow type refrigerant longitudinal flow in which each core 12 is divided and the refrigerant is sequentially flowed is converted into the heat exchanger 1. Can be realized. Thus, efficient heat exchange can be performed between the ventilation A that is passed through each core 12 and the refrigerant that flows through each of the cores 12 that are divided by pass.
  • the variation in the temperature of the air blown through the heat exchanger 1 is reduced by considering the path split configuration of the heat exchange module 2 and the arrangement of the heat exchange modules 2 in the ventilation direction X.
  • the air temperature can be made even more uniform.
  • the path allocation configuration of each embodiment applied to the heat exchanger 1 will be described.
  • Drawing 6 is a mimetic diagram showing the pass division of heat exchanger 1 concerning a 1st embodiment of the present invention.
  • the heat exchange module 2 of the present embodiment includes, from the leeward, three heat exchange modules 2 including (a) the pre-division module 28, (b) the diversion module 30, and (c) the merge module 32. It is configured.
  • the pre-split module 28 is the leeward (rear) module 2C, and is positioned leeward in the ventilation direction X with respect to the shunt module 30.
  • the pre-division module 28 includes a leeward core 12C and upper and lower header tanks 4C and 6C.
  • the leeward core 12C is formed in one pass that is not divided.
  • a communication member 24A communicates with the center in the longitudinal direction of the lower header tank 6C, and an inlet pipe 18 is connected to the upper header tank 4C.
  • the refrigerant that has flowed into the upper header tank 4C from the inlet pipe 18 flows down the leeward core 12C, flows into the lower header tank 6C, and flows into the diversion module 30 via the communication member 24A provided in the lower header tank 6C.
  • the diversion module 30 is the central module 2 ⁇ / b> B and is positioned leeward in the ventilation direction X from the merging module 32.
  • the diversion module 30 has a central core 12B and upper and lower header tanks 4B and 6B.
  • the central core 12B is divided into three paths, a central rising path that communicates with the central space in the lower header tank 6B, and a left and right downward path that communicates with the left and right spaces, respectively.
  • a portion 38 is formed.
  • Each of the diversion core portions 38 is positioned at a position that is symmetrical with respect to the center in the longitudinal direction of the upper and lower header tanks 4B and 6B.
  • the communication member 24A described above is communicated with the central space in the lower header tank 6B, and the communication members 24B and 24B forming the refrigerant flow paths toward the merge module 32 are respectively provided in the left and right spaces in the lower header tank 6B. It is communicated.
  • the confluence module 32 is the windward module 2A, and has the windward core 12A and the upper and lower header tanks 4A and 6A.
  • the windward core 12A is formed in one pass that is not divided.
  • the communication members 24B and 24B described above are communicated with the left and right sides of the lower header tank 6A in the longitudinal direction, respectively, and the outlet pipe 20 is connected to the upper header tank 4A.
  • the diversion core portion 38 which is the lowering path of the diversion module
  • the refrigerant that has flowed into the lower header tank 6A via the communication members 24B and 24B is merged in the lower header tank 6A and ascends the upwind core 12A.
  • the diversion module 30 is positioned leeward in the ventilation direction X with respect to the merging module 32 and positioned upstream of the merging module 32 in terms of refrigerant flow.
  • the refrigerant having a lower heat load flows than the refrigerant flowing through the merge module 32.
  • the refrigerant having a higher heat load flows through the merge module 32 as compared with the diversion module 30.
  • the heat exchanger 1 is obtained by ventilating the merge module 32, the diversion module 30, and the pre-division module 28 in this order and exchanging heat with the ventilation A in stages. It is possible to reduce the variation in the blown air temperature and to make the blown air temperature more uniform.
  • a high-temperature portion 40 that is substantially symmetric is formed on the top of the heat exchanger 1.
  • a low temperature portion 42 having no temperature unevenness is also formed in the lower portion of 1.
  • the difference between the maximum temperature and the minimum temperature of the blown air temperature is reduced from about 1/3 to about 1/4 of the conventional temperature.
  • each of the diversion core portions 38 is positioned at a symmetrical position with respect to the center in the longitudinal direction of the upper and lower header tanks 4B and 6B, the blown air temperature can be further uniformized. Specifically, by forming the diversion core portion 38 that becomes an ascending path in the central region of the central core 12B, and by forming the diversion core portion 38 that becomes a descending path in a region that occupies the same area across the ascent path, Heat exchange with the ventilation A in the diversion module 30 can be performed as much as possible without temperature unevenness.
  • the confluence module 32 in one pass without dividing it by the upwind core 12A, the pressure loss of the refrigerant immediately before flowing out of the heat exchanger 1 can be reduced as much as possible. Therefore, the heat exchanger 1 and the vehicle The thermal efficiency of the refrigerant circuit of the air conditioner for a vehicle can be further increased.
  • the pre-division module 28 is formed in one pass without dividing the leeward core 12C. Since the leeward core 12C is likely to affect the temperature of the finally blown-out air, the airflow temperature can be made more uniform by forming this in one pass. Further, by connecting the inlet pipe 18 and the outlet pipe 20 to the upper header tanks 4C and 4A, respectively, the space for installing the heat exchanger 1 can be saved.
  • both the inlet pipe 18 and the outlet pipe 20 are either one of the upper and lower header tanks. Can be reliably arranged.
  • the diversion core portion 38 in the diversion module 30 of this embodiment is classified into an ascending path flowing from the lower header tank 6B to the upper header tank 4B and a descending path flowing from the upper header tank 4B to the lower header tank 6B.
  • the number of descending paths (down arrow in FIG. 6B: 2) is larger than the number of up paths (up arrow in FIG. 6B: 1).
  • the number of descending paths is greater than the ascending path.
  • the refrigerant from the diversion module 30 can be circulated to the one-pass confluence module 32 by the two communication members 24B that are larger than the one communication member 24A. Therefore, compared with the case where the diversion and merging modules 30 and 32 are communicated with one communication member 24A, the refrigerant can flow through each tube 8 of the merging module 32 evenly. Can be made more uniform.
  • the number of the communication members 24 (24A, 24B) and the partition plates 26, and the number of the flow dividing core portions 38 constituting the flow dividing module 30, are compared with the case of the first embodiment (FIG. 6). And can be increased.
  • the communication member 24 (24 ⁇ / b> A, 24 ⁇ / b> B) and the partition plate 26 may be appropriately disposed, and the connection portion of the inlet pipe 18 may be changed so that the pre-division module 28 is not formed. it can.
  • the leeward module 2C is used as the diversion module 30
  • the central module 2B is used as the merging module 32
  • the one-path upwind module 2A having no path split on the upwind is formed as the post-merging module 44. May be.
  • the diversion core part 38 in the diversion module 30 has the number of rising paths (upward arrows in FIG. 9A: two). Is less than the number of descending paths (down arrow in FIG. 9A: one).
  • the ascending path of the ascending and descending paths communicates with the upper header tank 6B of the merging module 32 via the plurality of communicating members 24A as in the case of the present embodiment, the ascending path is more than the descending path.
  • the refrigerant from the diversion module 30 can be circulated to the one-pass merge module 32 by the two communication members 24A that are larger than the one communication member 24B. Therefore, compared with the case where the diversion and merging modules 30 and 32 are communicated with one communication member 24B, the refrigerant can flow through each tube 8 of the merging module 32 evenly. Can be made more uniform.
  • the number of the communication members 24 (24A, 24B) and the partition plates 26, and the number of the diversion core portions 38 constituting the diversion module 30 are compared with the case of the third embodiment (FIG. 9). And can be increased.
  • the inlet pipe 18 is a branched pipe branched into three, but even in this case, the temperature of the blown air of the heat exchanger 1 can be made uniform at least as compared with the prior art. .
  • a diversion core portion 38 that becomes a descending path is formed in the central region of the central core 12B, and the diversion core portion 38 that becomes an ascending path is formed. It is also possible to form it in a region that occupies substantially the same area of the central core 12B with the shunt core portion 38 serving as a downward path interposed therebetween.
  • the number of descending paths in the diversion module 30 is one and the number of ascent paths is two.
  • the rising path of the rising and lowering paths is communicated with the upper header tank 6A of the merge module 32 via one communication member 24B.
  • the increase in the refrigerant flow velocity due to the narrowing of the refrigerant flow area causes the increase in the refrigerant flow rate in the upper header tank 6A.
  • the refrigerant spreads in the lateral direction and becomes easy to flow, the refrigerant can flow evenly through the tubes 8 of the merge module 32 as compared with the case where the diversion and merge modules 30 and 32 are communicated by the two communication members 24A. Therefore, it is possible to make the blown air temperature of the heat exchanger 1 more uniform.
  • the number of the communication members 24 (24 ⁇ / b> A, 24 ⁇ / b> B, 24 ⁇ / b> C, 24 ⁇ / b> D), the number of the partition plates 26, the arrangement, and the connection location of the inlet pipe 18 are adjusted.
  • the leeward module 2C and the central module 2B can be used as the first diversion module 30A and the second diversion module 30B, respectively.
  • the one-pass pre-division module 28 is not formed, and the refrigerant flows in both the ascending path and the descending path from the first diversion module 30A toward the second diversion module 30B. Even in this case, the blown air temperature of the heat exchanger 1 can be made uniform at least as compared with the conventional case.
  • the number of communication members (24A, 24B, 24C, 24D) and partition plates 26 is changed, and as a result, the number of flow dividing core portions 38 constituting the first and second flow dividing modules 30A, 30B is changed to the first. It is possible to increase compared to the case of the seventh embodiment (FIG. 13).
  • the heat exchanger 1 of each of the above embodiments is formed by superimposing three heat exchange modules 2 in the ventilation direction X. However, if the heat exchanger 1 has at least one branching and merging module 30, 32 each, A heat exchanger in which two exchange modules 2 are stacked may be used, or may be applied to a heat exchanger in which four or more heat exchange modules 2 are stacked.
  • both the inlet pipe 18 and the outlet pipe 20 are connected to the upper header tank 4, but not limited to this, at least the inlet pipe 18 and the outlet pipe 20 are at least. Either one may be connected to the lower header tank 6. Even in this case, the blown air temperature of the heat exchanger 1 can be made uniform at least as compared with the conventional case.
  • coolant used for the heat exchanger 1 of each said embodiment is a carbon dioxide refrigerant

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

[Problem] To provide a heat exchanger configured so as to make the temperature of discharge air more uniform. [Solution] A heat exchanger (1) is formed by stacking two or more heat exchange modules (2) in the air flow direction (X), the two or more heat exchange modules (2) allowing a refrigerant to flow therethrough. Each of the heat exchange modules is provided with: a pair of upper and lower header tanks (4, 6) arranged so as to be vertically separated from each other; and a plurality of tubes (8) extending parallelly between the upper and lower header tanks and each having opposite ends connected to the insides, respectively, of the upper and lower header tanks. The plurality of tubes forms a core (12) for exchanging heat between the refrigerant and air flow. Each of the heat exchange modules at least includes: a flow dividing module (30) which partitions the core into a plurality of paths, divides, within the header tanks, the flow of the refrigerant, and has a divided-flow core section (38) through which the divided flows of the refrigerant flow; and a flow combining module (32) for combining, within the header tanks, the flows of the refrigerant, which have flowed through the divided-flow core section, and causing the combined flows of the refrigerant to flow to the core. The flow dividing module is located downwind of the flow combining module in the air flow direction.

Description

熱交換器Heat exchanger
 本発明は熱交換器に関し、特に車両用空調装置の冷媒回路に用いられる蒸発器として好適な熱交換器に関する。 The present invention relates to a heat exchanger, and more particularly to a heat exchanger suitable as an evaporator used in a refrigerant circuit of a vehicle air conditioner.
 特許文献1及び2には、冷媒が流通する熱交換モジュールを通風方向に2つ又は3つ重ねて形成された熱交換器が開示されている。各熱交換モジュールは、上下に離間して配設される一対の上下ヘッダタンクと、上下ヘッダタンク間を平行に延び、両端が上下ヘッダタンクの内部にそれぞれ連通される複数のチューブとを備え、これら複数のチューブは、冷媒と通風との熱交換を行うコアを形成している。 Patent Documents 1 and 2 disclose heat exchangers formed by overlapping two or three heat exchange modules in which a refrigerant flows in the ventilation direction. Each heat exchange module includes a pair of upper and lower header tanks that are spaced apart from each other, and a plurality of tubes that extend in parallel between the upper and lower header tanks and both ends communicate with each other inside the upper and lower header tanks, The plurality of tubes form a core that performs heat exchange between the refrigerant and the ventilation.
特開平6-194001号公報JP-A-6-194001 特開平8-233406号公報JP-A-8-233406
 上記従来の各熱交換器は、コアを複数のチューブからなるチューブ群(以下、パスと称する)に分割し、冷媒をヘッダタンクで分流させ、この分流された冷媒が流通する分流コア部を有する分流モジュールによって熱交換モジュール構成することにより、熱交換器を通風して吹き出される空気の吹出温度の均一化を図っている。
 しかし、上記従来の各熱交換器は、分流モジュールの詳細なパス割構成、分流モジュール以外の熱交換モジュールのパス割構成、ひいては通風方向における分流モジュールを含む各熱交換モジュールの配置について格別な配慮がなされていないため、熱交換器における吹出空気温度のバラツキを小さくし、吹出空気温度のさらなる均一化を実現するためには依然として課題が残されている。
Each of the conventional heat exchangers has a core that divides the core into a tube group (hereinafter referred to as a path) composed of a plurality of tubes, divides the refrigerant in the header tank, and distributes the divided refrigerant. By configuring the heat exchange module with the diversion module, the temperature of the air blown out through the heat exchanger is made uniform.
However, each of the conventional heat exchangers described above has special considerations regarding the detailed path allocation configuration of the shunt module, the path allocation configuration of the heat exchange modules other than the shunt module, and the arrangement of the heat exchange modules including the shunt module in the ventilation direction. However, there is still a problem in order to reduce the variation in the temperature of the blown air in the heat exchanger and achieve a more uniform blown air temperature.
 本発明はこのような課題に鑑みてなされたものであり、その目的とするところは、吹出空気温度のさらなる均一化を実現することができる熱交換器を提供することにある。 This invention is made | formed in view of such a subject, The place made into the objective is to provide the heat exchanger which can implement | achieve further equalization of blowing air temperature.
 上記目的を達成するため、本発明の熱交換器は、冷媒が流通する熱交換モジュールを通風方向に2つ以上重ねて形成された熱交換器であって、各熱交換モジュールは、上下に離間して配設される一対の上下ヘッダタンクと、上下ヘッダタンク間を平行に延び、両端が上下ヘッダタンクの内部にそれぞれ連通される複数のチューブとを備え、複数のチューブは、冷媒と通風との熱交換を行うコアを形成し、各熱交換モジュールには、コアを複数パスに分割し、冷媒をヘッダタンクで分流させ、該分流された冷媒が流通する分流コア部を有する分流モジュールと、分流コア部を流通した冷媒をヘッダタンクで合流させてコアに流通させる合流モジュールとが少なくとも含まれ、分流モジュールは、合流モジュールよりも通風方向の風下に位置付けられる。 In order to achieve the above object, the heat exchanger of the present invention is a heat exchanger formed by stacking two or more heat exchange modules in which the refrigerant flows in the ventilation direction, and each heat exchange module is spaced apart vertically. A pair of upper and lower header tanks, and a plurality of tubes extending in parallel between the upper and lower header tanks and having both ends communicating with the inside of the upper and lower header tanks, respectively. Each of the heat exchange modules is divided into a plurality of paths, the refrigerant is divided in a header tank, and a branch module having a branch core portion through which the divided refrigerant flows, and And a merging module that circulates the refrigerant that has flowed through the diverting core unit in the header tank and distributes it to the core, and the diverting module is positioned leeward in the ventilation direction than the merging module. It is.
 好ましくは、分流コア部は、上下ヘッダタンクの長手方向における中央を基準とした左右対称となる位置に位置付けられる。
 好ましくは、合流モジュールは、コアを分割しない1パスで形成される。
 好ましくは、各熱交換モジュールは、分流及び合流モジュールと、分流モジュールよりも通風方向の風下に位置付けられ、分流モジュールを流通する冷媒の分流前の冷媒が流通する分流前モジュールとを含む3つ以上の熱交換モジュールからなり、分流前モジュールは、コアを分割しない1パスで形成される。
Preferably, the shunt core portion is positioned at a position that is symmetrical with respect to the center in the longitudinal direction of the upper and lower header tanks.
Preferably, the merge module is formed in one pass that does not divide the core.
Preferably, each heat exchange module includes three or more modules including a diversion and merging module, and a pre-division module that is positioned downstream of the diversion module and flows before the diversion of the refrigerant that circulates through the diversion module. The module before diversion is formed by one pass that does not divide the core.
 好ましくは、熱交換器に対する冷媒の入口管と出口管とをさらに備え、入口管及び出口管は、双方とも上下ヘッダタンクのうちの何れか一方に接続される。
 好ましくは、各熱交換モジュールは、通風方向に奇数個重ねられる。
 好ましくは、上下ヘッダタンクは、通風方向に並ぶ前後のヘッダタンクによって上ヘッダタンク連結体及び下ヘッダタンク連結体を形成し、上下ヘッダタンク連結体の少なくとも何れか一方は、前後ヘッダタンクの内部にそれぞれ連通し、熱交換モジュール間に亘る冷媒の流路を形成する連通部と、連通部の左右の少なくとも何れか一方にてヘッダタンク内を仕切り、コアを複数に分割して冷媒を流す仕切板とを有し、分流及び合流モジュールは、連通部及び仕切板を配置することにより形成される。
Preferably, a refrigerant inlet pipe and an outlet pipe for the heat exchanger are further provided, and both the inlet pipe and the outlet pipe are connected to either one of the upper and lower header tanks.
Preferably, each heat exchange module is stacked in an odd number in the ventilation direction.
Preferably, the upper and lower header tanks form an upper header tank coupling body and a lower header tank coupling body by front and rear header tanks arranged in the ventilation direction, and at least one of the upper and lower header tank coupling bodies is disposed inside the front and rear header tanks. A partition plate that communicates with each other and forms a refrigerant flow path between the heat exchange modules, and a partition plate that divides the header tank by at least one of the left and right sides of the communication portion, and divides the core into a plurality of parts to flow the refrigerant. The diversion and merging module is formed by arranging the communication part and the partition plate.
 好ましくは、前記分流モジュールにおける前記分流コア部は、前記下ヘッダタンクから前記上ヘッダタンクに流れる上昇パスと、前記上ヘッダタンクから前記下ヘッダタンクに流れる下降パスとに分類され、前記上昇パスが前記合流モジュールの前記ヘッダタンクに複数の前記連通部を介して連通されるとき、前記分流モジュールにおける前記上昇パスは、前記下降パスよりも数が多い。一方、前記下降パスが前記合流モジュールの前記ヘッダタンクに複数の前記連通部を介して連通されるとき、前記分流モジュールにおける前記下降パスは、前記上昇パスよりも数が多い。 Preferably, the diversion core part in the diversion module is classified into an ascending path flowing from the lower header tank to the upper header tank and a descending path flowing from the upper header tank to the lower header tank, and the ascending path is When the header tank of the merging module communicates with the header tank via the plurality of communication portions, the ascending path in the diversion module has a larger number than the descending path. On the other hand, when the descending path communicates with the header tank of the merging module via the plurality of communicating portions, the descending path in the diversion module has a larger number than the ascending path.
 好ましくは、前記分流モジュールにおける前記分流コア部は、前記下ヘッダタンクから前記上ヘッダタンクに流れる上昇パスと、前記上ヘッダタンクから前記下ヘッダタンクに流れる下降パスとに分類され、前記上昇パスが前記合流モジュールの前記ヘッダタンクに1つの前記連通部を介して連通されるとき、前記分流モジュールにおける前記上昇パスの数は1つである。一方、記下降パスが前記合流モジュールの前記ヘッダタンクに1つの前記連通部を介して連通されるとき、前記分流モジュールにおける前記下降パスの数は1つである。 Preferably, the diversion core part in the diversion module is classified into an ascending path flowing from the lower header tank to the upper header tank and a descending path flowing from the upper header tank to the lower header tank, and the ascending path is When communicating with the header tank of the merging module via the one communicating portion, the number of ascending paths in the diversion module is one. On the other hand, when the descending path is communicated with the header tank of the merging module via the one communicating portion, the number of descending paths in the diversion module is one.
 本発明の熱交換器によれば、吹出空気温度のさらなる均一化を実現することができる。 According to the heat exchanger of the present invention, the blown air temperature can be further uniformized.
本発明の一実施形態に係る熱交換器の斜視図である。It is a perspective view of the heat exchanger which concerns on one Embodiment of this invention. 図1に示す熱交換器の正面図である。It is a front view of the heat exchanger shown in FIG. 図2に示す領域Sの拡大図である。FIG. 3 is an enlarged view of a region S shown in FIG. 2. 図2に示す下ヘッダタンク連結体の一部を下から拡大して見た透視図である。FIG. 3 is a perspective view in which a part of the lower header tank coupling body shown in FIG. 2 is enlarged from below. 図4に示す連通部材を通風方向から見た側面図である。It is the side view seen from the ventilation direction of the communicating member shown in FIG. 本発明の第1実施形態に係る熱交換器のパス割りを、風下から順に(a)分流前モジュール、(b)分流モジュール、(c)合流モジュール毎に示す模式図である。It is a schematic diagram which shows the pass division of the heat exchanger which concerns on 1st Embodiment of this invention for every (a) pre-division module, (b) diversion module, and (c) merge module from the downwind. 図6のパス割り構成により均一化された吹出空気温度を熱交換器の背面から見た写真である。It is the photograph which looked at the blowing air temperature made uniform by the pass division structure of FIG. 6 from the back surface of the heat exchanger. 本発明の第2実施形態に係る熱交換器のパス割りを、風下から順に(a)分流前モジュール、(b)分流モジュール、(c)合流モジュール毎に示す模式図である。It is a schematic diagram which shows the pass division of the heat exchanger which concerns on 2nd Embodiment of this invention for every (a) pre-division module, (b) diversion module, and (c) merge module from the downwind. 本発明の第3実施形態に係る熱交換器のパス割りを、風下から順に(a)分流モジュール、(b)合流モジュール、(c)合流後モジュール毎に示す模式図である。It is a schematic diagram which shows the pass division of the heat exchanger which concerns on 3rd Embodiment of this invention for every (a) diversion module, (b) confluence module, and (c) module after confluence from the downwind. 本発明の第4実施形態に係る熱交換器のパス割りを、風下から順に(a)分流モジュール、(b)合流モジュール、(c)合流後モジュール毎に示す模式図である。It is a mimetic diagram showing pass division of a heat exchanger concerning a 4th embodiment of the present invention for every (a) branch module, (b) merge module, and (c) post-merging module from the downwind. 本発明の第5実施形態に係る熱交換器のパス割りを、風下から順に(a)分流前モジュール、(b)分流モジュール、(c)合流モジュール毎に示す模式図である。It is a mimetic diagram showing pass division of a heat exchanger concerning a 5th embodiment of the present invention for every (a) pre-division module, (b) diversion module, and (c) merge module from the downwind. 本発明の第6実施形態に係る熱交換器のパス割りを、風下から順に(a)分流前モジュール、(b)分流モジュール、(c)合流モジュール毎に示す模式図である。It is a mimetic diagram showing pass division of a heat exchanger concerning a 6th embodiment of the present invention for every (a) pre-division module, (b) diversion module, and (c) merge module in order from the downwind. 本発明の第7実施形態に係る熱交換器のパス割りを、風下から順に(a)第1分流ジュール、(b)第2分流モジュール、(c)合流モジュール毎に示す模式図である。It is a mimetic diagram showing pass division of a heat exchanger concerning a 7th embodiment of the present invention for every (a) 1st diversion module, (b) 2nd diversion module, and (c) merge module in order from the downwind. 本発明の第8実施形態に係る熱交換器のパス割りを、風下から順に(a)第1分流ジュール、(b)第2分流モジュール、(c)合流モジュール毎に示す模式図である。It is a mimetic diagram showing pass division of a heat exchanger concerning an 8th embodiment of the present invention for every (a) 1st diversion module, (b) 2nd diversion module, and (c) merge module in order from the downwind.
 以下、本発明の一実施形態に係る熱交換器1について図面を参照して説明する。
 図1は熱交換器1の斜視図を示し、図2は熱交換器1の正面図を示す。熱交換器1は、例えば、車両用空調装置の冷凍サイクルを形成し、高圧の二酸化炭素冷媒が循環する冷媒回路に組み込まれ、車両用空調装置の運転時に蒸発器として使用される。
Hereinafter, the heat exchanger 1 which concerns on one Embodiment of this invention is demonstrated with reference to drawings.
FIG. 1 shows a perspective view of the heat exchanger 1, and FIG. 2 shows a front view of the heat exchanger 1. The heat exchanger 1 forms, for example, a refrigeration cycle of a vehicle air conditioner, is incorporated in a refrigerant circuit in which high-pressure carbon dioxide refrigerant circulates, and is used as an evaporator during operation of the vehicle air conditioner.
 図1及び図2に示すように、熱交換器1は、矢印で示す通風Aの風上から順に、風上(前側)モジュール2A、中央モジュール2B、風下(後側)モジュール2Cの3つの熱交換モジュール2を通風方向Xに重ねて形成されている。なお、通風Aは車室内空気(内気)又は車室外空気(外気)である。 As shown in FIG. 1 and FIG. 2, the heat exchanger 1 has three heats of an upwind (front side) module 2A, a central module 2B, and a downwind (rear side) module 2C in order from the upwind of the ventilation A indicated by the arrows. The exchange module 2 is formed so as to overlap in the ventilation direction X. Ventilation A is vehicle interior air (inside air) or vehicle interior air (outside air).
 図3は図2の領域Sを拡大した図である。図2及び図3に示すように、個々の熱交換モジュール2は、上下に離間して配設される一対の上ヘッダタンク4及び下ヘッダタンク6と、上下ヘッダタンク4,6間を平行に延び、両端が上下ヘッダタンク4,6の内部にそれぞれ連通される複数の扁平形状のチューブ8とを備えている。上下ヘッダタンク4,6は、同径の円筒形状(丸パイプ形状)に形成されている。 FIG. 3 is an enlarged view of the region S in FIG. As shown in FIGS. 2 and 3, each heat exchange module 2 includes a pair of upper header tank 4 and lower header tank 6 that are spaced apart from each other in the vertical direction, and the upper and lower header tanks 4, 6 are parallel to each other. A plurality of flat tubes 8 that extend and have both ends communicating with the inside of the upper and lower header tanks 4 and 6 are provided. The upper and lower header tanks 4 and 6 are formed in a cylindrical shape (round pipe shape) having the same diameter.
 各チューブ8の両端は上下ヘッダタンク4,6にろう付けにより接合され、各チューブ8間には波板形状のフィン10が配置されている。各フィン10は対向するチューブ8の扁平面にろう付けにより接合され、熱交換モジュール2における通風Aの通風流路を形成している。 Both ends of each tube 8 are joined to the upper and lower header tanks 4 and 6 by brazing, and corrugated fins 10 are arranged between the tubes 8. Each fin 10 is joined to the flat surface of the tube 8 which opposes by brazing, and the ventilation flow path of the ventilation A in the heat exchange module 2 is formed.
 熱交換モジュール2は、チューブ8とフィン10とを水平方向に交互に配列し、冷媒と通風Aとの熱交換を行うコア12を形成している。すなわち、風上モジュール2A、中央モジュール2B、風下モジュール2Cには、それぞれ風上コア12A、中央コア12B、風下コア12Cが形成されている。これらコア12の左右両側面は、それぞれ1枚のサイドプレート14で覆われて保護されている。 The heat exchange module 2 has tubes 8 and fins 10 arranged alternately in the horizontal direction to form a core 12 that performs heat exchange between the refrigerant and the ventilation A. That is, the windward module 12A, the central module 2B, and the leeward module 2C are formed with the windward core 12A, the central core 12B, and the leeward core 12C, respectively. The left and right side surfaces of these cores 12 are each covered and protected by a single side plate 14.
 図1に示すように、異なる熱交換モジュール2の通風方向Xに隣り合う風上(前側)、中央、風下(後側)の各上ヘッダタンク4A,4B,4Cの両開口端はそれぞれ一体の蓋部材16で塞がれ、これより各上ヘッダタンク4A,4B,4Cを連結した上ヘッダタンク連結体4Uが形成される。蓋部材16の一方には、冷媒の入口管18及び出口管20が接続されている。入口管18は風下の上ヘッダタンク4Cに連通され、出口管20は風上の上ヘッダタンク4Aに連通されている。 As shown in FIG. 1, the open ends of the upper header tanks 4 </ b> A, 4 </ b> B, 4 </ b> C adjacent to the ventilation direction X of the different heat exchange modules 2 are integrated with each other. The upper header tank connecting body 4U is formed by closing the lid member 16 and connecting the upper header tanks 4A, 4B, 4C. A refrigerant inlet pipe 18 and an outlet pipe 20 are connected to one of the lid members 16. The inlet pipe 18 communicates with the leeward upper header tank 4C, and the outlet pipe 20 communicates with the leeward upper header tank 4A.
 一方、異なる熱交換モジュール2の通風方向Xに隣り合う風上(前側)、中央、風下(後側)の各下ヘッダタンク6A,6B,6Cの両開口端はそれぞれ一体の蓋部材22で塞がれ、これより各下ヘッダタンク6A,6B,6Cを連結した下ヘッダタンク連結体6Lが形成される。上下ヘッダタンク連結体4U,6Lの形成に伴い、各コア12、ひいては各熱交換モジュール2の連結が行われる。 On the other hand, the opening ends of the lower header tanks 6A, 6B, and 6C on the windward (front side), center, and leeward (rear side) adjacent to each other in the ventilation direction X of the different heat exchange modules 2 are respectively closed with an integral lid member 22. As a result, a lower header tank connecting body 6L connecting the lower header tanks 6A, 6B, 6C is formed. With the formation of the upper and lower header tank connectors 4U and 6L, the cores 12, and thus the heat exchange modules 2 are connected.
 図4は、下ヘッダタンク連結体6Lの一部を下から拡大して見た透視図である。図4に示すように、各下ヘッダタンク6A,6B,6C間には、下ヘッダタンク連結体6Lの長手方向Yに沿って連通部材(連通部)24が配設されている。連通部材24は、連通部材24の前後の各下ヘッダタンク(前後ヘッダタンク)6の内部にそれぞれ連通し、風下コア12Cから中央コア12B、中央コア12Bから風上コア12Aに向かう冷媒の流路を形成している。 FIG. 4 is a perspective view in which a part of the lower header tank coupling body 6L is enlarged from below. As shown in FIG. 4, a communication member (communication portion) 24 is disposed between the lower header tanks 6A, 6B, 6C along the longitudinal direction Y of the lower header tank coupling body 6L. The communication member 24 communicates with the inside of each of the lower header tanks (front and rear header tanks) 6 before and after the communication member 24, and the refrigerant flow path from the leeward core 12C to the central core 12B and from the central core 12B to the windward core 12A. Is forming.
 図5は連通部材24を通風方向Xから見た側面図である。図5に示すように、連通部材24は長手方向Yに延びる長板部24aと、長板部24aの両側面から長板部24aを挟んで対となって突出される連通管24bとを備えている。連通管24bは長手方向Yに沿って複数配設されている。 FIG. 5 is a side view of the communication member 24 viewed from the ventilation direction X. As shown in FIG. 5, the communication member 24 includes a long plate portion 24 a extending in the longitudinal direction Y, and a communication tube 24 b protruding in pairs from both side surfaces of the long plate portion 24 a with the long plate portion 24 a interposed therebetween. ing. A plurality of communication pipes 24b are arranged along the longitudinal direction Y.
 また、図4に示すように、下ヘッダタンク6Bには、異なる各連通部材24の境界となる位置に仕切板26が内設されている。仕切板26は、下ヘッダタンク6Bの底面に形成された図示しない挿入孔に挿入され、下ヘッダタンク6Bの外側からろう付けにより下ヘッダタンク6Bに接合される。仕切板26は、連通部材24の左右の少なくとも何れか一方にて下ヘッダタンク6内を仕切り、コア12を複数にパス割りして冷媒を流すために配置されている。 Further, as shown in FIG. 4, a partition plate 26 is provided in the lower header tank 6B at a position that becomes a boundary between different communication members 24. The partition plate 26 is inserted into an insertion hole (not shown) formed on the bottom surface of the lower header tank 6B, and joined to the lower header tank 6B by brazing from the outside of the lower header tank 6B. The partition plate 26 is disposed in order to partition the inside of the lower header tank 6 with at least one of the left and right sides of the communication member 24 and to divide the core 12 into a plurality of paths and to flow the refrigerant.
 このように、下ヘッダタンク連結体6Lに連通部材24及び仕切板26を適宜配設することにより、各コア12をパス割りして冷媒を順次流すカウンタフロー型の冷媒縦流れを熱交換器1にて実現することができる。これより、各コア12に通風される通風Aとパス割りされた各コア12を流れる冷媒との間において効率的な熱交換が可能となる。 As described above, the communication member 24 and the partition plate 26 are appropriately disposed in the lower header tank connecting body 6L, whereby the counter flow type refrigerant longitudinal flow in which each core 12 is divided and the refrigerant is sequentially flowed is converted into the heat exchanger 1. Can be realized. Thus, efficient heat exchange can be performed between the ventilation A that is passed through each core 12 and the refrigerant that flows through each of the cores 12 that are divided by pass.
 さらに本実施形態では、熱交換モジュール2のパス割構成、ひいては通風方向Xにおける各熱交換モジュール2の配置を考慮することにより、熱交換器1に通風される空気の吹出空気温度のバラツキを小さくし、吹出空気温度のさらなる均一化を実現している。以下、熱交換器1に適用される各実施形態のパス割り構成について説明する。 Furthermore, in the present embodiment, the variation in the temperature of the air blown through the heat exchanger 1 is reduced by considering the path split configuration of the heat exchange module 2 and the arrangement of the heat exchange modules 2 in the ventilation direction X. In addition, the air temperature can be made even more uniform. Hereinafter, the path allocation configuration of each embodiment applied to the heat exchanger 1 will be described.
<第1実施形態>
 図6は、本発明の第1実施形態に係る熱交換器1のパス割りを示す模式図である。図6に示すように、本実施形態の熱交換モジュール2は、風下から順に、(a)分流前モジュール28、(b)分流モジュール30、(c)合流モジュール32の3つの熱交換モジュール2から構成されている。
<First Embodiment>
Drawing 6 is a mimetic diagram showing the pass division of heat exchanger 1 concerning a 1st embodiment of the present invention. As shown in FIG. 6, the heat exchange module 2 of the present embodiment includes, from the leeward, three heat exchange modules 2 including (a) the pre-division module 28, (b) the diversion module 30, and (c) the merge module 32. It is configured.
 分流前モジュール28は、風下(後側)モジュール2Cであって、分流モジュール30よりも通風方向Xの風下に位置付けられている。分流前モジュール28は、風下コア12Cと上下ヘッダタンク4C,6Cとを有している。風下コア12Cは分割されない1パスで形成されている。下ヘッダタンク6Cの長手方向中央には連通部材24Aが連通され、上ヘッダタンク4Cには入口管18が接続されている。入口管18から上ヘッダタンク4Cに流入された冷媒は、風下コア12Cを流下して下ヘッダタンク6Cに流入し、下ヘッダタンク6Cに設けられた連通部材24Aを介して分流モジュール30に流入される。すなわち、分流前モジュール28には、分流モジュール30を流通する冷媒の分流前の冷媒が流通する。 The pre-split module 28 is the leeward (rear) module 2C, and is positioned leeward in the ventilation direction X with respect to the shunt module 30. The pre-division module 28 includes a leeward core 12C and upper and lower header tanks 4C and 6C. The leeward core 12C is formed in one pass that is not divided. A communication member 24A communicates with the center in the longitudinal direction of the lower header tank 6C, and an inlet pipe 18 is connected to the upper header tank 4C. The refrigerant that has flowed into the upper header tank 4C from the inlet pipe 18 flows down the leeward core 12C, flows into the lower header tank 6C, and flows into the diversion module 30 via the communication member 24A provided in the lower header tank 6C. The That is, the refrigerant before diversion of the refrigerant flowing through the diversion module 30 flows through the pre-division module 28.
 分流モジュール30は、中央モジュール2Bであって、合流モジュール32よりも通風方向Xの風下に位置付けられている。分流モジュール30は、中央コア12Bと上下ヘッダタンク4B,6Bとを有している。下ヘッダタンク6B内には、その長手方向に2つの仕切板26が配置され、各仕切板26により下ヘッダタンク6B内に中央、左右の空間が区画される。 The diversion module 30 is the central module 2 </ b> B and is positioned leeward in the ventilation direction X from the merging module 32. The diversion module 30 has a central core 12B and upper and lower header tanks 4B and 6B. In the lower header tank 6B, two partition plates 26 are arranged in the longitudinal direction, and each partition plate 26 divides the center and left and right spaces in the lower header tank 6B.
 一方、中央コア12Bは、下ヘッダタンク6B内の中央空間に連通する中央の上昇パスと、左右空間にそれぞれ連通する左右の下降パスとの3つのパスに分割され、これらパスにより3つの分流コア部38が形成されている。
 各分流コア部38は、上下ヘッダタンク4B,6Bの長手方向における中央を基準とした左右対称となる位置に位置付けられている。
On the other hand, the central core 12B is divided into three paths, a central rising path that communicates with the central space in the lower header tank 6B, and a left and right downward path that communicates with the left and right spaces, respectively. A portion 38 is formed.
Each of the diversion core portions 38 is positioned at a position that is symmetrical with respect to the center in the longitudinal direction of the upper and lower header tanks 4B and 6B.
 また、下ヘッダタンク6B内の中央空間には前述した連通部材24Aが連通され、下ヘッダタンク6B内の左右空間には合流モジュール32に向かう冷媒の流路を形成する連通部材24B,24Bがそれぞれ連通されている。上ヘッダタンク4Bには、下ヘッダタンク6Bの中央空間から上昇パスである分流コア部38を上昇した冷媒が流入され、上ヘッダタンク4B内で左右に分流された冷媒が左右の下降パスである分流コア部38を流下し、それぞれ下ヘッダタンク6B内の左右空間に流入した後、各連通部材24B,24Bを介して合流モジュール32に流入される。 The communication member 24A described above is communicated with the central space in the lower header tank 6B, and the communication members 24B and 24B forming the refrigerant flow paths toward the merge module 32 are respectively provided in the left and right spaces in the lower header tank 6B. It is communicated. The refrigerant that has flowed up from the central space of the lower header tank 6B, which is a rising path, flows into the upper header tank 4B, and the refrigerant that has been divided into the left and right in the upper header tank 4B is the left and right downward paths. After flowing down the diversion core portion 38 and flowing into the left and right spaces in the lower header tank 6B, the flow flows into the merge module 32 via the communication members 24B and 24B.
 合流モジュール32は、風上モジュール2Aであって、風上コア12Aと上下ヘッダタンク4A,6Aとを有している。風上コア12Aは分割されない1パスで形成されている。下ヘッダタンク6Aの長手方向左右両側には前述した連通部材24B,24Bがそれぞれ連通され、上ヘッダタンク4Aには出口管20が接続されている。分流モジュールの下降パスである分流コア部38を流通した後、各連通部材24B,24Bを介して下ヘッダタンク6Aに流入した冷媒は、下ヘッダタンク6Aで合流されて風上コア12Aを上昇し、上ヘッダタンク4Aに流入されて出口管20から流出される。 The confluence module 32 is the windward module 2A, and has the windward core 12A and the upper and lower header tanks 4A and 6A. The windward core 12A is formed in one pass that is not divided. The communication members 24B and 24B described above are communicated with the left and right sides of the lower header tank 6A in the longitudinal direction, respectively, and the outlet pipe 20 is connected to the upper header tank 4A. After flowing through the diversion core portion 38, which is the lowering path of the diversion module, the refrigerant that has flowed into the lower header tank 6A via the communication members 24B and 24B is merged in the lower header tank 6A and ascends the upwind core 12A. , Flows into the upper header tank 4A and flows out from the outlet pipe 20.
 以上のように本実施形態の熱交換器1では、分流モジュール30を合流モジュール32よりも通風方向Xの風下に位置付け、冷媒流れでいうと合流モジュール32よりも上流に位置付けることにより、分流モジュール30には合流モジュール32を流通する冷媒に比して熱負荷の低い冷媒が流れる。一方、合流モジュール32には分流モジュール30に比して熱負荷の高い冷媒が流通する。 As described above, in the heat exchanger 1 of the present embodiment, the diversion module 30 is positioned leeward in the ventilation direction X with respect to the merging module 32 and positioned upstream of the merging module 32 in terms of refrigerant flow. The refrigerant having a lower heat load flows than the refrigerant flowing through the merge module 32. On the other hand, the refrigerant having a higher heat load flows through the merge module 32 as compared with the diversion module 30.
 すなわち、熱負荷の低い冷媒が流通する分流モジュール30において冷媒の分流が行われた後、熱負荷の高い冷媒が流通する合流モジュール32において冷媒の合流が行われる。このような熱交換モジュール2毎に異なる冷媒の特性を考慮し、合流モジュール32、分流モジュール30、分流前モジュール28の順に通風し、通風Aと段階的に熱交換させることにより、熱交換器1における吹出空気温度のバラツキを小さくし、吹出空気温度のさらなる均一化を実現することができる。 That is, after the refrigerant is diverted in the diversion module 30 in which the refrigerant having a low heat load circulates, the refrigerant is merged in the merge module 32 in which the refrigerant having a high heat load circulates. Considering the characteristics of the refrigerant different for each heat exchange module 2, the heat exchanger 1 is obtained by ventilating the merge module 32, the diversion module 30, and the pre-division module 28 in this order and exchanging heat with the ventilation A in stages. It is possible to reduce the variation in the blown air temperature and to make the blown air temperature more uniform.
 具体的には、図7の熱交換器1の背面から見た吹出空気温度から明らかなように、熱交換器1の上部には、ほぼ左右対称となる高温部40が形成され、熱交換器1の下部にも温度ムラの無い低温部42が形成されている。実際に、本実施形態の熱交換器1では、吹出空気温度の最大温度と最小温度との差が従来の1/3から1/4程度に小さくなることが実験により判明している。 Specifically, as is apparent from the blown air temperature seen from the back surface of the heat exchanger 1 in FIG. 7, a high-temperature portion 40 that is substantially symmetric is formed on the top of the heat exchanger 1. A low temperature portion 42 having no temperature unevenness is also formed in the lower portion of 1. Actually, in the heat exchanger 1 of the present embodiment, it has been experimentally found that the difference between the maximum temperature and the minimum temperature of the blown air temperature is reduced from about 1/3 to about 1/4 of the conventional temperature.
 また、各分流コア部38は、上下ヘッダタンク4B,6Bの長手方向における中央を基準とした左右対称となる位置に位置付けられているため、吹出空気温度のさらなる均一化を図ることができる。具体的には、上昇パスとなる分流コア部38を中央コア12Bの中央領域に形成し、下降パスとなる分流コア部38を上昇パスを挟んで同じ面積を占有する領域に形成することにより、分流モジュール30における通風Aとの熱交換を極力温度ムラ無く行わせることができる。 Further, since each of the diversion core portions 38 is positioned at a symmetrical position with respect to the center in the longitudinal direction of the upper and lower header tanks 4B and 6B, the blown air temperature can be further uniformized. Specifically, by forming the diversion core portion 38 that becomes an ascending path in the central region of the central core 12B, and by forming the diversion core portion 38 that becomes a descending path in a region that occupies the same area across the ascent path, Heat exchange with the ventilation A in the diversion module 30 can be performed as much as possible without temperature unevenness.
 また、合流モジュール32を風上コア12Aで分割しないで1パスで形成することにより、熱交換器1から流出する直前における冷媒の圧力損失を極力低減することができるため、熱交換器1ひいては車両用空調装置の冷媒回路の熱効率をさらに高めることができる。 Further, by forming the confluence module 32 in one pass without dividing it by the upwind core 12A, the pressure loss of the refrigerant immediately before flowing out of the heat exchanger 1 can be reduced as much as possible. Therefore, the heat exchanger 1 and the vehicle The thermal efficiency of the refrigerant circuit of the air conditioner for a vehicle can be further increased.
 また、分流前モジュール28は風下コア12Cを分割しないで1パスで形成されている。風下コア12Cは、最終的に吹き出される吹出空気の温度に影響し易いため、これを1パスに形成することにより、吹出空気温度のさらなる均一化を図ることができる。
 また、入口管18及び出口管20をそれぞれ上ヘッダタンク4C,4Aに接続することにより、熱交換器1の設置場所の省スペース化を図ることができる。
Further, the pre-division module 28 is formed in one pass without dividing the leeward core 12C. Since the leeward core 12C is likely to affect the temperature of the finally blown-out air, the airflow temperature can be made more uniform by forming this in one pass.
Further, by connecting the inlet pipe 18 and the outlet pipe 20 to the upper header tanks 4C and 4A, respectively, the space for installing the heat exchanger 1 can be saved.
 また、各熱交換モジュール2を通風方向に2個以上の奇数個(本実施形態の場合は3個)重ねることにより、入口管18及び出口管20を双方とも上下ヘッダタンクのうちの何れか一方に確実に配置可能である。
 また、本実施形態の分流モジュール30における分流コア部38は、下ヘッダタンク6Bから上ヘッダタンク4Bに流れる上昇パスと上ヘッダタンク4Bから下ヘッダタンク6Bに流れる下降パスとに分類され、上昇パスの数(図6(b)における上矢印:1つ)よりも下降パスの数(図6(b)における下矢印:2つ)が多い。
In addition, by stacking two or more odd numbers (three in this embodiment) in the ventilation direction of each heat exchange module 2, both the inlet pipe 18 and the outlet pipe 20 are either one of the upper and lower header tanks. Can be reliably arranged.
Further, the diversion core portion 38 in the diversion module 30 of this embodiment is classified into an ascending path flowing from the lower header tank 6B to the upper header tank 4B and a descending path flowing from the upper header tank 4B to the lower header tank 6B. The number of descending paths (down arrow in FIG. 6B: 2) is larger than the number of up paths (up arrow in FIG. 6B: 1).
 本実施形態の場合のように、上昇及び下降パスのうちの下降パスが合流モジュール32の下ヘッダタンク6Aに複数の連通部材24Bを介して連通されるとき、下降パスが上昇パスよりも数が多いことにより、分流モジュール30からの冷媒を1つの連通部材24Aよりも多い2つの連通部材24Bで1パスの合流モジュール32に流通させることができる。したがって、1つの連通部材24Aで分流及び合流モジュール30,32を連通させる場合に比して、合流モジュール32の各チューブ8にムラなく冷媒を流すことができるため、熱交換器1の吹出空気温度のさらなる均一化を図ることができる。 As in this embodiment, when the descending path of the ascending and descending paths is communicated with the lower header tank 6A of the merging module 32 via the plurality of communicating members 24B, the number of descending paths is greater than the ascending path. By being large, the refrigerant from the diversion module 30 can be circulated to the one-pass confluence module 32 by the two communication members 24B that are larger than the one communication member 24A. Therefore, compared with the case where the diversion and merging modules 30 and 32 are communicated with one communication member 24A, the refrigerant can flow through each tube 8 of the merging module 32 evenly. Can be made more uniform.
 以上で本発明の第1実施形態についての説明を終えるが、本発明は第1実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更ができるものである。具体的には、熱交換器1に以下に示す各実施形態のパス割りを行うことも可能である。 Although the description of the first embodiment of the present invention has been completed above, the present invention is not limited to the first embodiment, and various modifications can be made without departing from the spirit of the present invention. Specifically, it is possible to perform the pass allocation of each embodiment shown below on the heat exchanger 1.
<第2実施形態>
 例えば、図8に示すように、連通部材24(24A、24B)及び仕切板26の数、ひいては分流モジュール30を構成する分流コア部38の数を第1実施形態の場合(図6)に比して増大させることが可能である。
Second Embodiment
For example, as shown in FIG. 8, the number of the communication members 24 (24A, 24B) and the partition plates 26, and the number of the flow dividing core portions 38 constituting the flow dividing module 30, are compared with the case of the first embodiment (FIG. 6). And can be increased.
<第3実施形態>
 また、図9に示すように、連通部材24(24A、24B)及び仕切板26を適宜配置し、入口管18の接続箇所を変更することにより、分流前モジュール28を形成しない構成とすることもできる。この場合には、風下モジュール2Cを分流モジュール30として使用し、中央モジュール2Bを合流モジュール32として使用し、最も風上にパス割りの無い1パスの風上モジュール2Aを合流後モジュール44として形成しても良い。
<Third Embodiment>
Further, as shown in FIG. 9, the communication member 24 (24 </ b> A, 24 </ b> B) and the partition plate 26 may be appropriately disposed, and the connection portion of the inlet pipe 18 may be changed so that the pre-division module 28 is not formed. it can. In this case, the leeward module 2C is used as the diversion module 30, the central module 2B is used as the merging module 32, and the one-path upwind module 2A having no path split on the upwind is formed as the post-merging module 44. May be.
 また、本実施形態の場合には、第1実施形態の場合(図6)と異なり、分流モジュール30における分流コア部38は、上昇パスの数(図9(a)における上矢印:2つ)の方が下降パスの数(図9(a)における下矢印:1つ)よりも少ない。しかし、本実施形態の場合のように、上昇及び下降パスのうちの上昇パスが合流モジュール32の上ヘッダタンク6Bに複数の連通部材24Aを介して連通されるとき、上昇パスが下降パスよりも数が多いことにより、分流モジュール30からの冷媒を1つの連通部材24Bよりも多い2つの連通部材24Aで1パスの合流モジュール32に流通させることができる。したがって、1つの連通部材24Bで分流及び合流モジュール30,32を連通させる場合に比して、合流モジュール32の各チューブ8にムラなく冷媒を流すことができるため、熱交換器1の吹出空気温度のさらなる均一化を図ることができる。 Further, in the case of the present embodiment, unlike the case of the first embodiment (FIG. 6), the diversion core part 38 in the diversion module 30 has the number of rising paths (upward arrows in FIG. 9A: two). Is less than the number of descending paths (down arrow in FIG. 9A: one). However, when the ascending path of the ascending and descending paths communicates with the upper header tank 6B of the merging module 32 via the plurality of communicating members 24A as in the case of the present embodiment, the ascending path is more than the descending path. When the number is large, the refrigerant from the diversion module 30 can be circulated to the one-pass merge module 32 by the two communication members 24A that are larger than the one communication member 24B. Therefore, compared with the case where the diversion and merging modules 30 and 32 are communicated with one communication member 24B, the refrigerant can flow through each tube 8 of the merging module 32 evenly. Can be made more uniform.
<第4実施形態>
 また、図10に示すように、連通部材24(24A、24B)及び仕切板26の数、ひいては分流モジュール30を構成する分流コア部38の数を第3実施形態の場合(図9)に比して増大させることが可能である。この場合には、入口管18が3つに分岐された分岐管となるが、この場合であっても、少なくとも従来に比して熱交換器1の吹出空気温度の均一化を図ることはできる。
<Fourth embodiment>
Further, as shown in FIG. 10, the number of the communication members 24 (24A, 24B) and the partition plates 26, and the number of the diversion core portions 38 constituting the diversion module 30 are compared with the case of the third embodiment (FIG. 9). And can be increased. In this case, the inlet pipe 18 is a branched pipe branched into three, but even in this case, the temperature of the blown air of the heat exchanger 1 can be made uniform at least as compared with the prior art. .
<第5実施形態>
 また、図11に示すように、第1実施形態の場合(図6)と異なり、下降パスとなる分流コア部38を中央コア12Bの中央領域に形成し、上昇パスとなる分流コア部38を下降パスとなるとなる分流コア部38を挟んで中央コア12Bのほぼ同じ面積を占有する領域に形成することも可能である。
<Fifth Embodiment>
Further, as shown in FIG. 11, unlike the case of the first embodiment (FIG. 6), a diversion core portion 38 that becomes a descending path is formed in the central region of the central core 12B, and the diversion core portion 38 that becomes an ascending path is formed. It is also possible to form it in a region that occupies substantially the same area of the central core 12B with the shunt core portion 38 serving as a downward path interposed therebetween.
 また、本実施形態の場合、分流モジュール30における下降パスの数は1つであり、上昇パスの数は2つである。また、上昇及び下降パスのうちの上昇パスが合流モジュール32の上ヘッダタンク6Aに1つの連通部材24Bを介して連通されている。このように、1つの連通部材24Bに連通する分流モジュール30の下降パスの数が1つであることにより、冷媒の流路面積を狭くしたことによる冷媒流速の増加によって、上ヘッダタンク6A内で冷媒が横方向に拡がって流れ易くなることにより、2つの連通部材24Aで分流及び合流モジュール30,32を連通させる場合に比して、合流モジュール32の各チューブ8にムラなく冷媒を流すことができるため、熱交換器1の吹出空気温度のさらなる均一化を図ることができる。 In the present embodiment, the number of descending paths in the diversion module 30 is one and the number of ascent paths is two. The rising path of the rising and lowering paths is communicated with the upper header tank 6A of the merge module 32 via one communication member 24B. As described above, since the number of the descending paths of the diversion module 30 communicating with one communication member 24B is one, the increase in the refrigerant flow velocity due to the narrowing of the refrigerant flow area causes the increase in the refrigerant flow rate in the upper header tank 6A. Since the refrigerant spreads in the lateral direction and becomes easy to flow, the refrigerant can flow evenly through the tubes 8 of the merge module 32 as compared with the case where the diversion and merge modules 30 and 32 are communicated by the two communication members 24A. Therefore, it is possible to make the blown air temperature of the heat exchanger 1 more uniform.
<第6実施形態>
 また、図12に示すように、連通部材24(24A、24B)及び仕切板26の数、配置を変更し、ひいては分流モジュール30を構成する分流コア部38の数を第5実施形態の場合(図11)に比して増大させることが可能である。
<Sixth Embodiment>
In addition, as shown in FIG. 12, the number and arrangement of the communication members 24 (24A, 24B) and the partition plates 26 are changed, and as a result, the number of flow dividing core portions 38 constituting the flow dividing module 30 is changed to the case of the fifth embodiment ( It is possible to increase compared to FIG.
<第7実施形態>
 また、図13に示すように、連通部材24(24A、24B、24C、24D)及び仕切板26の数、配置、入口管18の接続箇所を調整し、ひいては分流モジュール30を構成する分流コア部38の数を調整することにより、風下モジュール2C及び中央モジュール2Bをそれぞれ第1分流モジュール30A、第2分流モジュール30Bとして使用することもできる。この場合には、1パスの分流前モジュール28は形成されず、第1分流モジュール30Aから第2分流モジュール30Bに向けて上昇パス及び下降パスの双方で冷媒が流れる。この場合であっても、少なくとも従来に比して熱交換器1の吹出空気温度の均一化を図ることはできる。
<Seventh embodiment>
Further, as shown in FIG. 13, the number of the communication members 24 (24 </ b> A, 24 </ b> B, 24 </ b> C, 24 </ b> D), the number of the partition plates 26, the arrangement, and the connection location of the inlet pipe 18 are adjusted. By adjusting the number 38, the leeward module 2C and the central module 2B can be used as the first diversion module 30A and the second diversion module 30B, respectively. In this case, the one-pass pre-division module 28 is not formed, and the refrigerant flows in both the ascending path and the descending path from the first diversion module 30A toward the second diversion module 30B. Even in this case, the blown air temperature of the heat exchanger 1 can be made uniform at least as compared with the conventional case.
<第8実施形態>
 図14に示すように、連通部材(24A、24B、24C、24D)及び仕切板26の数を変更し、ひいては第1及び第2分流モジュール30A,30Bを構成する分流コア部38の数を第7実施形態の場合(図13)に比して増大させることが可能である。
 さらに、上記各実施形態の熱交換器1は、熱交換モジュール2を通風方向Xに3つ重ねて形成されているが、少なくとも分流及び合流モジュール30,32を1つずつ有するのであれば、熱交換モジュール2を2つ重ねた熱交換器でも良いし、或いは熱交換モジュール2を4つ以上重ねた熱交換器にも適用可能である。
<Eighth Embodiment>
As shown in FIG. 14, the number of communication members (24A, 24B, 24C, 24D) and partition plates 26 is changed, and as a result, the number of flow dividing core portions 38 constituting the first and second flow dividing modules 30A, 30B is changed to the first. It is possible to increase compared to the case of the seventh embodiment (FIG. 13).
Furthermore, the heat exchanger 1 of each of the above embodiments is formed by superimposing three heat exchange modules 2 in the ventilation direction X. However, if the heat exchanger 1 has at least one branching and merging module 30, 32 each, A heat exchanger in which two exchange modules 2 are stacked may be used, or may be applied to a heat exchanger in which four or more heat exchange modules 2 are stacked.
 また、上記各実施形態の熱交換器1は、何れも入口管18及び出口管20が双方とも上ヘッダタンク4に接続されているが、これに限らず、入口管18及び出口管20の少なくとも何れか一方を下ヘッダタンク6に接続しても良い。この場合であっても、少なくとも従来に比して熱交換器1の吹出空気温度の均一化を図ることはできる。 In the heat exchanger 1 of each of the above embodiments, both the inlet pipe 18 and the outlet pipe 20 are connected to the upper header tank 4, but not limited to this, at least the inlet pipe 18 and the outlet pipe 20 are at least. Either one may be connected to the lower header tank 6. Even in this case, the blown air temperature of the heat exchanger 1 can be made uniform at least as compared with the conventional case.
 また、上記各実施形態の熱交換器1に用いられる冷媒は二酸化炭素冷媒であるが、他の冷媒を使用しても良いし、上下ヘッダタンク4,6の形状は丸パイプ形状に限定されないのは勿論である。 Moreover, although the refrigerant | coolant used for the heat exchanger 1 of each said embodiment is a carbon dioxide refrigerant | coolant, you may use another refrigerant | coolant and the shape of the upper and lower header tanks 4 and 6 is not limited to a round pipe shape. Of course.
  1  熱交換器
  2  熱交換モジュール
  4  上ヘッダタンク
 4A,4B、4C 上ヘッダタンク(前後ヘッダタンク)
 4U  上ヘッダタンク連結体
  6  下ヘッダタンク
 6A,6B、6C 下ヘッダタンク(前後ヘッダタンク)
 6L  下ヘッダタンク連結体
  8  チューブ
 12  コア
 18  入口管
 20  出口管
 24  連通部材(連通部)
 26  仕切板
 30  分流モジュール
 32  合流モジュール
 38  分流コア部
1 Heat exchanger 2 Heat exchange module 4 Upper header tank 4A, 4B, 4C Upper header tank (front and rear header tanks)
4U Upper header tank assembly 6 Lower header tank 6A, 6B, 6C Lower header tank (front and rear header tanks)
6L Lower header tank assembly 8 Tube 12 Core 18 Inlet pipe 20 Outlet pipe 24 Communication member (communication part)
26 Partition plate 30 Split module 32 Merge module 38 Split core

Claims (11)

  1.  冷媒が流通する熱交換モジュールを通風方向に2つ以上重ねて形成された熱交換器であって、
     前記各熱交換モジュールは、上下に離間して配設される一対の上下ヘッダタンクと、前記上下ヘッダタンク間を平行に延び、両端が前記上下ヘッダタンクの内部にそれぞれ連通される複数のチューブとを備え、
     前記複数のチューブは、前記冷媒と前記通風との熱交換を行うコアを形成し、
     前記各熱交換モジュールには、
     前記コアを複数パスに分割し、前記冷媒を前記ヘッダタンクで分流させ、該分流された前記冷媒が流通する分流コア部を有する分流モジュールと、
     前記分流コア部を流通した前記冷媒を前記ヘッダタンクで合流させて前記コアに流通させる合流モジュールとが少なくとも含まれ、
     前記分流モジュールは、前記合流モジュールよりも前記通風方向の風下に位置付けられる、熱交換器。
    A heat exchanger formed by stacking two or more heat exchange modules in which the refrigerant flows in the ventilation direction,
    Each of the heat exchange modules includes a pair of upper and lower header tanks that are spaced apart from each other, and a plurality of tubes that extend in parallel between the upper and lower header tanks and that have both ends communicating with the inside of the upper and lower header tanks. With
    The plurality of tubes form a core that performs heat exchange between the refrigerant and the ventilation,
    Each of the heat exchange modules includes
    Dividing the core into a plurality of paths, diverting the refrigerant in the header tank, and a diversion module having a diversion core portion through which the diverted refrigerant circulates;
    A merging module for merging the refrigerant that has circulated through the diversion core part in the header tank and circulated through the core;
    The said diversion module is a heat exchanger located in the lee of the said ventilation direction rather than the said confluence | merging module.
  2.  前記分流コア部は、前記上下ヘッダタンクの長手方向における中央を基準とした左右対称となる位置に位置付けられる、請求項1に記載の熱交換器。 The heat exchanger according to claim 1, wherein the diversion core part is positioned at a position that is symmetrical with respect to a center in a longitudinal direction of the upper and lower header tanks.
  3.  前記合流モジュールは、前記コアを分割しない1パスで形成される、請求項1又は2に記載の熱交換器。 The heat exchanger according to claim 1 or 2, wherein the merging module is formed by one pass that does not divide the core.
  4.  前記各熱交換モジュールは、
     前記分流及び前記合流モジュールと、
     前記分流モジュールよりも前記通風方向の風下に位置付けられ、前記分流モジュールを流通する冷媒の分流前の冷媒が流通する分流前モジュールとを含む3つ以上の前記熱交換モジュールからなり、
     前記分流前モジュールは、前記コアを分割しない1パスで形成される、請求項1から3の何れか一項に記載の熱交換器。
    Each of the heat exchange modules is
    The diversion and merging module;
    The three or more heat exchange modules including a pre-division module in which the refrigerant before the diversion of the refrigerant flowing through the diversion module is positioned leeward in the ventilation direction than the diversion module,
    The heat exchanger according to any one of claims 1 to 3, wherein the pre-division module is formed by one pass that does not divide the core.
  5.  前記熱交換器に対する前記冷媒の入口管と出口管とをさらに備え、
     前記入口管及び出口管は、双方とも前記上下ヘッダタンクのうちの何れか一方に接続される、請求項1から4の何れか一項に記載の熱交換器。
    Further comprising an inlet pipe and an outlet pipe for the refrigerant to the heat exchanger;
    The heat exchanger according to any one of claims 1 to 4, wherein the inlet pipe and the outlet pipe are both connected to one of the upper and lower header tanks.
  6.  前記各熱交換モジュールは、前記通風方向に奇数個重ねられる、請求項1から5の何れか一項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 5, wherein each of the heat exchange modules is stacked in an odd number in the ventilation direction.
  7.  前記上下ヘッダタンクは、前記通風方向に並ぶ前後の前記ヘッダタンクによって上ヘッダタンク連結体及び下ヘッダタンク連結体を形成し、
     前記上下ヘッダタンク連結体の少なくとも何れか一方は、前記前後ヘッダタンクの内部にそれぞれ連通し、前記熱交換モジュール間に亘る冷媒の流路を形成する連通部と、前記連通部の左右の少なくとも何れか一方にて前記ヘッダタンク内を仕切り、前記コアを複数に分割して冷媒を流す仕切板とを有し、
     前記分流及び前記合流モジュールは、前記前記連通部及び前記仕切板を配置することにより形成される、請求項1から6の何れか一項に記載の熱交換器。
    The upper and lower header tanks form an upper header tank coupling body and a lower header tank coupling body by the header tanks before and after being arranged in the ventilation direction,
    At least one of the upper and lower header tank connections communicates with the inside of the front and rear header tanks, and forms a refrigerant flow path between the heat exchange modules. At least one of the left and right sides of the communication part Partitioning the inside of the header tank at one side, and having a partition plate that divides the core into a plurality of parts and flows a refrigerant,
    The heat exchanger according to any one of claims 1 to 6, wherein the branch flow and the merge module are formed by arranging the communication portion and the partition plate.
  8.  前記分流モジュールにおける前記分流コア部は、前記下ヘッダタンクから前記上ヘッダタンクに流れる上昇パスと、前記上ヘッダタンクから前記下ヘッダタンクに流れる下降パスとに分類され、
     前記上昇パスが前記合流モジュールの前記ヘッダタンクに複数の前記連通部を介して連通されるとき、前記分流モジュールにおける前記上昇パスは、前記下降パスよりも数が多い、請求項7に記載の熱交換器。
    The diversion core part in the diversion module is classified into an ascending path flowing from the lower header tank to the upper header tank, and a descending path flowing from the upper header tank to the lower header tank,
    The heat according to claim 7, wherein when the rising path communicates with the header tank of the merging module via the plurality of communication portions, the rising path in the diversion module has a larger number than the descending path. Exchanger.
  9.  前記分流モジュールにおける前記分流コア部は、前記下ヘッダタンクから前記上ヘッダタンクに流れる上昇パスと、前記上ヘッダタンクから前記下ヘッダタンクに流れる下降パスとに分類され、
     前記下降パスが前記合流モジュールの前記ヘッダタンクに複数の前記連通部を介して連通されるとき、前記分流モジュールにおける前記下降パスは、前記上昇パスよりも数が多い、請求項7に記載の熱交換器。
    The diversion core part in the diversion module is classified into an ascending path flowing from the lower header tank to the upper header tank, and a descending path flowing from the upper header tank to the lower header tank,
    The heat according to claim 7, wherein when the descending path communicates with the header tank of the merging module via the plurality of communicating portions, the descending path in the diversion module has a larger number than the ascending path. Exchanger.
  10.  前記分流モジュールにおける前記分流コア部は、前記下ヘッダタンクから前記上ヘッダタンクに流れる上昇パスと、前記上ヘッダタンクから前記下ヘッダタンクに流れる下降パスとに分類され、
     前記上昇パスが前記合流モジュールの前記ヘッダタンクに1つの前記連通部を介して連通されるとき、前記分流モジュールにおける前記上昇パスの数は1つである、請求項7に記載の熱交換器。
    The diversion core part in the diversion module is classified into an ascending path flowing from the lower header tank to the upper header tank, and a descending path flowing from the upper header tank to the lower header tank,
    The heat exchanger according to claim 7, wherein when the rising path communicates with the header tank of the merging module via one communication portion, the number of the rising paths in the diversion module is one.
  11.  前記分流モジュールにおける前記分流コア部は、前記下ヘッダタンクから前記上ヘッダタンクに流れる上昇パスと、前記上ヘッダタンクから前記下ヘッダタンクに流れる下降パスとに分類され、
     前記下降パスが前記合流モジュールの前記ヘッダタンクに1つの前記連通部を介して連通されるとき、前記分流モジュールにおける前記下降パスの数は1つである、請求項7に記載の熱交換器。
    The diversion core part in the diversion module is classified into an ascending path flowing from the lower header tank to the upper header tank, and a descending path flowing from the upper header tank to the lower header tank,
    The heat exchanger according to claim 7, wherein when the descending path communicates with the header tank of the merging module via the one communication portion, the number of the descending paths in the diversion module is one.
PCT/JP2015/083697 2014-12-26 2015-12-01 Heat exchanger WO2016104068A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580070698.7A CN107110620A (en) 2014-12-26 2015-12-01 Heat exchanger
DE112015005788.9T DE112015005788T5 (en) 2014-12-26 2015-12-01 heat exchangers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-264204 2014-12-26
JP2014264204A JP6465651B2 (en) 2014-12-26 2014-12-26 Heat exchanger

Publications (1)

Publication Number Publication Date
WO2016104068A1 true WO2016104068A1 (en) 2016-06-30

Family

ID=56150100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083697 WO2016104068A1 (en) 2014-12-26 2015-12-01 Heat exchanger

Country Status (4)

Country Link
JP (1) JP6465651B2 (en)
CN (1) CN107110620A (en)
DE (1) DE112015005788T5 (en)
WO (1) WO2016104068A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107084452A (en) * 2017-06-06 2017-08-22 青岛易图令科技有限公司 Air-conditioner outdoor unit and air-conditioning
JP6750700B1 (en) 2019-03-20 2020-09-02 株式会社富士通ゼネラル Heat exchanger

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61252401A (en) * 1985-05-01 1986-11-10 三菱重工業株式会社 Exhaust gas boiler
JP2008267686A (en) * 2007-04-19 2008-11-06 Denso Corp Refrigerant evaporator
JP2010112695A (en) * 2008-10-07 2010-05-20 Showa Denko Kk Evaporator
JP2011027289A (en) * 2009-07-22 2011-02-10 Chugoku Electric Power Co Inc:The Repair method of heat exchanger
JP2015034670A (en) * 2013-08-09 2015-02-19 株式会社ケーヒン・サーマル・テクノロジー Evaporator
JP2015230129A (en) * 2014-06-05 2015-12-21 パナソニックIpマネジメント株式会社 Heat exchanger

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2273552A (en) * 1992-12-11 1994-06-22 Gen Motors Corp U-flow evaporators for vehicle air-conditioning systems
CN101520282B (en) * 2009-04-13 2010-08-25 三花丹佛斯(杭州)微通道换热器有限公司 Microchannel heat exchanger and heat exchanging system
CN103759473B (en) * 2013-12-10 2016-08-24 柳州五菱宝马利汽车空调有限公司 A kind of vehicle parallel flow evaporator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61252401A (en) * 1985-05-01 1986-11-10 三菱重工業株式会社 Exhaust gas boiler
JP2008267686A (en) * 2007-04-19 2008-11-06 Denso Corp Refrigerant evaporator
JP2010112695A (en) * 2008-10-07 2010-05-20 Showa Denko Kk Evaporator
JP2011027289A (en) * 2009-07-22 2011-02-10 Chugoku Electric Power Co Inc:The Repair method of heat exchanger
JP2015034670A (en) * 2013-08-09 2015-02-19 株式会社ケーヒン・サーマル・テクノロジー Evaporator
JP2015230129A (en) * 2014-06-05 2015-12-21 パナソニックIpマネジメント株式会社 Heat exchanger

Also Published As

Publication number Publication date
JP6465651B2 (en) 2019-02-06
CN107110620A (en) 2017-08-29
DE112015005788T5 (en) 2017-09-14
JP2016125671A (en) 2016-07-11

Similar Documents

Publication Publication Date Title
JP4281634B2 (en) Refrigerant evaporator
CN103983126A (en) Heat exchanger
JP4047891B2 (en) Heat exchanger
KR101354839B1 (en) Heat exchanger
JP5585543B2 (en) Vehicle cooling system
JP2005326135A (en) Heat exchanger
CN101644512A (en) Heat exchanger
JP2006250412A (en) Heat exchanger
JP5693346B2 (en) Evaporator
JP5875918B2 (en) Car interior heat exchanger and inter-header connection member of car interior heat exchanger
WO2014041771A1 (en) Heat exchanger
US9919584B2 (en) Evaporator
JP5759762B2 (en) Evaporator
CN105277040B (en) Heat exchanger
JP2008267764A (en) Evaporator
JP2002071283A (en) Heat exchanger
JP2012197974A5 (en)
WO2016104068A1 (en) Heat exchanger
US10126065B2 (en) Heat exchanger assembly having a refrigerant distribution control using selective tube port closures
JP4547205B2 (en) Evaporator
JP2018087646A5 (en)
JP2005321137A (en) Heat exchanger
JP5674376B2 (en) Evaporator
JP2007187435A (en) Heat exchanger
KR102196959B1 (en) Heat-exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872637

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015005788

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15872637

Country of ref document: EP

Kind code of ref document: A1