JP2005321137A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2005321137A
JP2005321137A JP2004138900A JP2004138900A JP2005321137A JP 2005321137 A JP2005321137 A JP 2005321137A JP 2004138900 A JP2004138900 A JP 2004138900A JP 2004138900 A JP2004138900 A JP 2004138900A JP 2005321137 A JP2005321137 A JP 2005321137A
Authority
JP
Japan
Prior art keywords
fluid passage
tubes
fluid
tube
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004138900A
Other languages
Japanese (ja)
Inventor
Tadahiro Sagawa
匡啓 佐川
Mitsugi Nakamura
貢 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004138900A priority Critical patent/JP2005321137A/en
Publication of JP2005321137A publication Critical patent/JP2005321137A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0214Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only longitudinal partitions
    • F28F9/0217Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only longitudinal partitions the partitions being separate elements attached to header boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0091Radiators
    • F28D2021/0096Radiators for space heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To actualize uniform temperature distribution on the whole surface of a core portion 2 even when hot water flows at an extremely low rate. <P>SOLUTION: A fluid passage in one upper side header tank 5 is formed in a double layer structure in the longitudinal direction of tubes 3, where a fluid inflow portion 7 and a fluid outflow portion 8 are provided in one outside fluid passage 5A and in the other inside fluid passage 5B, respectively. The tubes 3 are of two long and short types, and one long tube 3A communicates the outside fluid passage 5A with a turn-around fluid passage 6A in the other lower side header tank 6 and the other short tube 3B communicates the inside fluid passage 5B with the turn-around fluid passage 6A. The long tube 3A and the short tube 3B are approximately alternately arranged in the layering direction. The whole core portion 2 is divided into small blocks to wholly uniform a blow-off temperature even when a slight temperature gradient occurs in each U-turn portion. This actualizes uniform temperature distribution on the whole surface of the core portion 2 even when hot water flows at an extremely low rate. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、車両用空調装置のヒータコアに用いて好適な熱交換器に関するものであり、特にチューブとヘッダタンクとで構成される熱交換器にてコア部全面での温度均一を図ったものに関する。   The present invention relates to a heat exchanger suitable for use in a heater core of a vehicle air conditioner, and more particularly, to a heat exchanger configured with a tube and a header tank to achieve uniform temperature over the entire core portion. .

従来、欧州のカーメーカを中心に採用されているリヒート方式(空気を冷却除湿した後に加熱を行う)の車両空調システムでは、空気を加熱するヒータコアの吹き出し温度が、全面均一であることが望ましいとされている。この場合に使用されるヒータコアは、前後Uターン流れの熱交換器が採用されていることが多い。   Conventionally, in a vehicle air conditioning system of a reheat method (heating after cooling and dehumidifying air) adopted mainly by European carmakers, it is desirable that the blowing temperature of the heater core that heats the air be uniform over the entire surface. ing. The heater core used in this case often employs a front-rear U-turn flow heat exchanger.

この前後Uターン流れの熱交換器として、通風の前後方向にU字型流路を形成する扁平なチューブと、コルゲートフィンとを交互に複数積層してなるコア部と、扁平なチューブのU字型流路の両端に接続するタンク室を形成する2つのタンクと、このタンクの側面に設けた流体流入出部とを備えた前後Uターン方式のもの(例えば特許文献1に記載のヒータコア)が提案されている。   As a heat exchanger of this front-rear U-turn flow, a flat tube that forms a U-shaped channel in the front-rear direction of ventilation, a core portion that is formed by alternately laminating a plurality of corrugated fins, and a U-shaped flat tube A front and rear U-turn type (for example, a heater core described in Patent Document 1) provided with two tanks forming tank chambers connected to both ends of the mold flow path and a fluid inflow / outflow portion provided on the side surface of the tank. Proposed.

図5は、従来の一実施形態(特許文献1)における熱交換器1を示す正面図であり、図6は図5の熱交換器1における温水の流れを説明する斜視模式図である。温水が流通する複数本のチューブ3とコルゲートフィン4とを一方向に複数本交互に積層し、チューブ3の長手方向および積層方向と略直行する方向から流入してチューブ3の外を流通する空気とチューブ3の中を流れる温水との間で熱交換を行うコア部2を形成している。   FIG. 5 is a front view showing a heat exchanger 1 according to an embodiment of the prior art (Patent Document 1), and FIG. 6 is a schematic perspective view illustrating the flow of hot water in the heat exchanger 1 of FIG. A plurality of tubes 3 and corrugated fins 4 through which hot water circulates are alternately stacked in one direction, and air flows from outside the tubes 3 by flowing in from the direction substantially perpendicular to the longitudinal direction and the stacking direction of the tubes 3. The core part 2 which performs heat exchange between the hot water flowing through the tube 3 is formed.

また、チューブ3の積層方向に沿って形成されて複数本のチューブ3の長手方向両端に接続されて内部と連通し、チューブ3に温水を分配供給すると共に、チューブ3から流出する温水を集合回収する上下ヘッダタンク5・6を備えている。一方の上側ヘッダタンク5内のタンク部は、前後方向に二つに仕切られていると共に、一方の流入側タンク部5Aは更にセパレータ9にて中央部で仕切られ、両端側に流体流入部7A・7Bが設けられている。また、他方の流出側タンク部5Bには流体流出部8が設けられている。   The tubes 3 are formed along the stacking direction and connected to both ends of the tubes 3 in the longitudinal direction to communicate with the inside. The hot water is distributed and supplied to the tubes 3, and the hot water flowing out from the tubes 3 is collected and recovered. Upper and lower header tanks 5 and 6 are provided. The tank portion in one upper header tank 5 is partitioned into two in the front-rear direction, and one inflow side tank portion 5A is further partitioned at the center by a separator 9, and fluid inflow portions 7A are provided at both ends. -7B is provided. Further, a fluid outflow portion 8 is provided in the other outflow side tank portion 5B.

また、他方の下側ヘッダタンク6内の流体通路もセパレータ9にて中央部で仕切られて、左右の折り返しタンク部6Aを形成している。温水は、流入側タンク部5A両側面の流体流入部7A・7Bより流入し、流入側タンク部5Aに連通する複数の第1パスとなるチューブ3aを下降して下側ヘッダタンク6の折り返しタンク部6Aに至り、今度は複数の第2パスとなるチューブ3bを上昇して流出側タンク部5Bに集合し、流体流出部8から流出する流れとなっている。
特開2003−106788号公報
Further, the fluid passage in the other lower header tank 6 is also partitioned at the center by the separator 9 to form left and right folded tank portions 6A. The warm water flows in from the fluid inflow portions 7A and 7B on both side surfaces of the inflow side tank portion 5A, descends the tubes 3a serving as a plurality of first paths communicating with the inflow side tank portion 5A, and the folded tank of the lower header tank 6 It reaches the section 6A, and this time, the tubes 3b serving as a plurality of second passes are raised and gathered in the outflow side tank section 5B, and flow out from the fluid outflow section 8.
JP 2003-106788 A

上述したように、通常、全面均一の吹出温度が必要な場合には、上記したような前後Uターン方式の熱交換器が採用される。しかしながら、温水の低流量時には必ずしも均一の吹出温度にならない場合がある。図7は図6の温水流れにおけるコア部2での温度分布の一例を示す等温線図である。この図に示すように、リヒート方式での制御域では非常に温水の流量が低いために温度勾配が生じ易いという問題点がある。   As described above, the front-rear U-turn heat exchanger as described above is usually used when a uniform blowing temperature is required on the entire surface. However, when the flow rate of warm water is low, the temperature may not always be uniform. FIG. 7 is an isotherm diagram showing an example of the temperature distribution in the core 2 in the hot water flow of FIG. As shown in this figure, there is a problem that a temperature gradient is likely to occur because the flow rate of hot water is very low in the reheat control region.

これは、低流量時における流量分配の僅かなばらつきが、チューブに流れる温水量のばらつきとなり、吹出温度のばらつきに大きな影響を及ぼすためである。本発明は、この従来技術の問題点に鑑みて成されたものであり、その目的は、温水流れが極低流量でもコア部全面の温度分布が均一に得られる熱交換器を提供することにある。   This is because a slight variation in the flow rate distribution at a low flow rate results in a variation in the amount of hot water flowing through the tube, which greatly affects the variation in the blowing temperature. The present invention has been made in view of the problems of the prior art, and an object of the present invention is to provide a heat exchanger that can obtain a uniform temperature distribution over the entire core portion even when the hot water flow is extremely low. is there.

本発明は上記目的を達成するために、請求項1ないし請求項4に記載の技術的手段を採用する。すなわち、請求項1に記載の発明では、流体が流通する複数本のチューブ(3)を一方向に複数本積層し、チューブ(3)の長手方向および積層方向と略直行する方向から流入してチューブ(3)の外を流通する外部流体とチューブ(3)の中を流れる内部流体との間で熱交換を行うコア部(2)と、チューブ(3)の積層方向に沿って形成されて複数本のチューブ(3)の長手方向両端に接続されて内部と連通し、チューブ(3)に流体を分配供給すると共に、チューブ(3)から流出する流体を集合回収する第1・第2ヘッダタンク(5、6)とを備えた熱交換器において、
一方の第1ヘッダタンク(5)内の流体通路をチューブ(3)の長手方向に二層構造とし、一方の第1流体通路(5A)には流体流入部(7)、他方の第2流体通路(5B)には流体流出部(8)を設けると共に、チューブ(3)を長短二種類とし、一方の第1チューブ(3A)は第1流体通路(5A)と他方の第2ヘッダタンク(6)内の折り返し流体通路(6A)、他方の第2チューブ(3B)は折り返し流体通路(6A)と第2流体通路(5B)とを連通するように設け、更には第1チューブ(3A)と第2チューブ(3B)とを積層方向に略交互に配置したことを特徴としている。
In order to achieve the above object, the present invention employs technical means described in claims 1 to 4. That is, in the first aspect of the present invention, a plurality of tubes (3) through which a fluid flows are stacked in one direction, and the tubes (3) flow in from the longitudinal direction and the direction substantially perpendicular to the stacking direction. A core portion (2) that performs heat exchange between an external fluid that flows outside the tube (3) and an internal fluid that flows inside the tube (3), and is formed along the stacking direction of the tubes (3). First and second headers connected to both ends in the longitudinal direction of a plurality of tubes (3) to communicate with the inside, distribute and supply fluid to the tubes (3), and collect and collect fluids flowing out from the tubes (3) In a heat exchanger with tanks (5, 6),
The fluid passage in one of the first header tanks (5) has a two-layer structure in the longitudinal direction of the tube (3), the fluid inflow portion (7) and the other second fluid in the one first fluid passage (5A). The passage (5B) is provided with a fluid outflow portion (8), and the tube (3) is made into two types of long and short. One of the first tubes (3A) is composed of the first fluid passage (5A) and the other second header tank ( 6) The folded fluid passage (6A) and the other second tube (3B) are provided so as to communicate the folded fluid passage (6A) and the second fluid passage (5B), and further the first tube (3A). And the second tubes (3B) are arranged approximately alternately in the stacking direction.

これは、一方の第1ヘッダタンク(5)内の流体通路を二層構造すると共に、長い第1チューブ(3A)と短い第2チューブ(3B)とを組み合わせることにより、コア部(2)内に局所的な左右Uターンを構成し、これを多数並べることによってコア部(2)全面での吹き出し温度の均一化を図ったものである。すなわち、コア部(2)全体を小さいブロックに分割することで、各Uターン部分では若干の吹出温度の温度勾配が生じても、全体としては均一化されることを狙ったものである。   This is because the fluid passage in one of the first header tanks (5) has a two-layer structure, and by combining the long first tube (3A) and the short second tube (3B), the core portion (2) The local left and right U-turns are formed and a large number of these are arranged to make the blowing temperature uniform over the entire surface of the core part (2). That is, by dividing the entire core portion (2) into small blocks, even if a slight temperature gradient of the blowing temperature occurs in each U-turn portion, the entire core portion (2) is aimed to be uniformized.

この請求項1に記載の発明によれば、温水流れが極低流量でもコア部(2)全面での温度分布を均一にすることができる。また、本発明の構造は、前述した従来構造のように流入側タンク部をセパレータにて中央部で仕切って両端側から温水を流入させなくとも、温度分布の均一化が図れることから、セパレータなしで構成することができ、製造コストを低減できるうえ、タンク内部にセパレータを入れることによって起こる内部リークなどの問題もなくすことができる。   According to the first aspect of the present invention, the temperature distribution on the entire surface of the core portion (2) can be made uniform even when the hot water flow is extremely low. In addition, the structure of the present invention has no separator because the temperature distribution can be made uniform without partitioning the inflow side tank section at the center with a separator and flowing in warm water from both ends as in the conventional structure described above. The manufacturing cost can be reduced, and problems such as internal leakage caused by inserting a separator in the tank can be eliminated.

また、請求項2に記載の発明では、各流体通路(5A、5B、6A)を仕切り部材(9)にて積層方向の略中央で仕切ると共に、第1流体通路(5A)の積層方向両側に第1・第2流体流入部(7A、7B)を設け、第2流体通路(5B)の積層方向の略中央の仕切り位置に流体流出部(8)を設けたことを特徴としている。   In the invention according to claim 2, the fluid passages (5A, 5B, 6A) are partitioned by the partition member (9) at substantially the center in the stacking direction, and on both sides of the first fluid passage (5A) in the stacking direction. The first and second fluid inflow portions (7A, 7B) are provided, and the fluid outflow portion (8) is provided at a substantially central partition position in the stacking direction of the second fluid passage (5B).

この請求項2に記載の発明によれば、より左右での温度差をなくすことができる。または、左右独立温度コントロールの車両用空調装置に対応して左半分と右半分とで温水の流量を変えることにより、別々の吹き出し温度に調節することが可能となるうえ、左右別々の温度設定としてもその半面毎での温度均一化が図れることとなる。   According to the second aspect of the present invention, the temperature difference between the left and right can be eliminated. Alternatively, by adjusting the flow rate of hot water between the left and right halves corresponding to the vehicle air conditioner with independent left and right temperature control, it is possible to adjust to different blowout temperatures, and as separate temperature settings for the left and right Also, the temperature can be made uniform on each half.

また、請求項3に記載の発明では、積層方向の全域もしくは一部にて、両チューブ(3A、3B)の比率や配置を変えたことを特徴としている。この請求項3に記載の発明によれば、同じサイズのコア部(2)でも、両チューブ(3A、3B)の比率や配置を変えることによって吹き出し温度の分布を任意に可変することができる。   Further, the invention described in claim 3 is characterized in that the ratio and arrangement of both tubes (3A, 3B) are changed in the whole area or a part in the stacking direction. According to the third aspect of the present invention, the distribution of the blowing temperature can be arbitrarily varied by changing the ratio and arrangement of both the tubes (3A, 3B) even in the same-sized core portion (2).

例えば、温水が低流量の場合には、通常第1パスとなる第1チューブ(3A)の途中で熱交換が終了してしまう。そこで、チューブの配列を変えて第1パスとなる第1チューブ(3A)の比率を減らし、第2パスとなる第2チューブ(3B)の比率を増やすことで、両パスで均一に熱交換させることができるようになる。   For example, when the hot water has a low flow rate, the heat exchange ends in the middle of the first tube (3A) that is normally the first pass. Therefore, by changing the arrangement of the tubes to reduce the ratio of the first tube (3A) serving as the first path and increasing the ratio of the second tube (3B) serving as the second path, heat exchange is uniformly performed in both paths. Will be able to.

また、吹き出し温度を比較的高くしたい部分に第1パスとなる第1チューブ(3A)をかためて配置し、逆に吹き出し温度を比較的低くしたい部分に第2パスとなる第2チューブ(3B)をかためて配置することにより、意図したように温度勾配を生じさせることもできるようになる。   Further, the first tube (3A) serving as the first pass is disposed in a portion where the blowing temperature is desired to be relatively high, and conversely, the second tube (3B) serving as the second pass is located in the portion where the blowing temperature is desired to be relatively low. ), It is possible to generate a temperature gradient as intended.

また、請求項4に記載の発明では、両チューブ(3A、3B)列の一部に、大流量通路(10)を設けたことを特徴としている。この請求項4に記載の発明によれば、任意の部分に設けた大流量通路(10)を用いて、温水を直接下側の第2ヘッダタンク(6)へバイパスさせて流入させるようにすることにより、吹き出し温度の分布を任意に可変することができる。ちなみに、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。   Further, the invention according to claim 4 is characterized in that a large flow passage (10) is provided in a part of both the tubes (3A, 3B). According to the fourth aspect of the present invention, the hot water is directly bypassed into the second header tank (6) on the lower side using the large flow passage (10) provided in an arbitrary portion. As a result, the distribution of the blowing temperature can be arbitrarily varied. Incidentally, the reference numerals in parentheses of the above means are examples showing the correspondence with the specific means described in the embodiments described later.

(第1実施形態)
以下、本発明の実施の形態について図面を用いて詳細に説明する。図1は、本発明の第1実施形態における熱交換器1を示し、(a)は斜視模式図、(b)は(a)中A−A方向の部分断面図、(c)は(a)中B−B方向の断面図である。本実施形態の熱交換器1は、例えば車両用空調装置のヒータコアに用いられるもので、エンジンのウォータジャケットで温められたエンジン冷却水と車両の車室内へ吹き出される空気とを熱交換して空気を加熱するものである。
(First embodiment)
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1: shows the heat exchanger 1 in 1st Embodiment of this invention, (a) is a perspective schematic diagram, (b) is the fragmentary sectional view of the AA direction in (a), (c) is (a It is sectional drawing of a BB direction. The heat exchanger 1 of the present embodiment is used, for example, in a heater core of a vehicle air conditioner, and exchanges heat between engine cooling water heated by an engine water jacket and air blown into the vehicle interior of the vehicle. It heats the air.

この熱交換器1は、例えばアルミニウム合金などの金属材料によって所定の形状に形成されたもので、大別してエンジン冷却水と空気との熱交換を行うコア部2と、このコア部2の図示上の上下端部に接続された上側ヘッダタンク(第1ヘッダタンク)5・下側ヘッダタンク(第2ヘッダタンク)6とから構成されて、一体ろう付けにより製造される。   The heat exchanger 1 is formed in a predetermined shape using a metal material such as an aluminum alloy, for example. The heat exchanger 1 is roughly divided into a core portion 2 that performs heat exchange between engine coolant and air, and the core portion 2 is illustrated in the drawing. The upper header tank (first header tank) 5 and the lower header tank (second header tank) 6 connected to the upper and lower end portions of the upper and lower ends are manufactured by integral brazing.

本発明の特徴の1つとして、一方の上側ヘッダタンク5内の流体通路は、チューブ3の長手方向(図示上の上下方向)に二層構造としている。具体的には図1(b)の部分断面図に示すように、チューブ3の端部を差し込むチューブ挿入孔51aを開けたシートメタル51の上に、従来のタンク空間を形成する第1(内側)キャプセル52を乗せ、更にその上にもう1つのタンク空間を形成する第2(外側)キャプセル53を被せることで二層構造としている。   As one of the features of the present invention, the fluid passage in one upper header tank 5 has a two-layer structure in the longitudinal direction (vertical direction in the drawing) of the tube 3. Specifically, as shown in the partial cross-sectional view of FIG. 1B, a first (inner side) that forms a conventional tank space on a sheet metal 51 having a tube insertion hole 51a into which an end of the tube 3 is inserted. ) A two-layer structure is formed by placing a capsule 52 and covering a second (outer) capsule 53 that forms another tank space thereon.

そして、一方の外側流体通路(第1流体通路)5Aには流体流入部として入口パイプ7、他方の内側流体通路(第2流体通路)5Bには流体流出部として出口パイプ8を設けている。また、他方の下側ヘッダタンク6内は1つの折り返し流体通路6Aを形成しており、具体的には図示しないが、上側ヘッダタンク5のシートメタル51と第1キャプセル52と同様に、シートメタル61とキャプセル62とで構成している。尚、シートメタル51・61、キャプセル52・53・62には、片面および両面にろう材を被覆したアルミニウム合金材(クラッド材)が使用されている。   An inlet pipe 7 is provided as a fluid inflow portion in one outer fluid passage (first fluid passage) 5A, and an outlet pipe 8 is provided as a fluid outflow portion in the other inner fluid passage (second fluid passage) 5B. Further, in the other lower header tank 6, one folded fluid passage 6 </ b> A is formed. Although not specifically shown, like the sheet metal 51 and the first capsule 52 of the upper header tank 5, the sheet metal is formed. 61 and a capsule 62. The sheet metal 51, 61 and the capsules 52, 53, 62 are made of an aluminum alloy material (cladding material) coated with a brazing material on one side and both sides.

次に、コア部2は、チューブ3とコルゲートフィン4とを交互に複数積層して構成されている。複数のチューブ3は、内部を流れるエンジン冷却水と、隣設する2つのチューブ3間を通過する空気との熱交換を行う扁平な流路管で、コルゲートフィン4を介して両ヘッダタンク5・6の長手方向に積層されている。また、本発明の特徴の1つとして、チューブ3を長短の二種類としている。   Next, the core part 2 is configured by alternately stacking a plurality of tubes 3 and corrugated fins 4. The plurality of tubes 3 are flat flow channel tubes that exchange heat between the engine coolant flowing inside and the air passing between the two adjacent tubes 3. The header tanks 5. 6 are stacked in the longitudinal direction. Further, as one of the features of the present invention, the tube 3 is of two types, long and short.

そして、一方の長チューブ(第1チューブ)3Aは上側ヘッダタンク5内の外側流体通路5Aと下側ヘッダタンク6内の折り返し流体通路6Aとを連通するように設けられ、他方の短チューブ(第2チューブ)3Bはその折り返し流体通路(6A)と上側ヘッダタンク5内の内側流体通路5Bとを連通するように設けられている。よって前記した上側ヘッダタンク5の第1キャプセル52には長チューブ3Aの端部だけを差し込むチューブ挿入孔52aが開けられている。そして、本発明の特徴の1つとして、長チューブ3Aと短チューブ3Bとを積層方向に交互に配置している。   One long tube (first tube) 3A is provided to communicate the outer fluid passage 5A in the upper header tank 5 with the folded fluid passage 6A in the lower header tank 6, and the other short tube (first tube) 3A. 2 tube) 3B is provided so that the folded fluid passage (6A) and the inner fluid passage 5B in the upper header tank 5 communicate with each other. Therefore, a tube insertion hole 52a into which only the end of the long tube 3A is inserted is formed in the first capsule 52 of the upper header tank 5 described above. And as one of the characteristics of this invention, the long tube 3A and the short tube 3B are alternately arrange | positioned in the lamination direction.

複数のコルゲートフィン4は、隣設する2つのチューブ3間に挟まれた状態でチューブ3にろう付けなどの接合手段を用いて接合され、チューブ3内を流れるエンジン冷却水と、隣設する2つのチューブ3間を通過する空気との熱交換効率を向上させるものである。尚、本実施形態のコルゲートフィン4は、帯び状で極薄の板材(例えばアルミニウム合金などの金属板)を、波形形状に曲折して設けたものである。   The plurality of corrugated fins 4 are joined to the tubes 3 using joining means such as brazing while being sandwiched between the two adjacent tubes 3, and the engine cooling water flowing in the tubes 3 and the adjacent 2 The heat exchange efficiency with the air passing between the two tubes 3 is improved. In addition, the corrugated fin 4 of this embodiment is obtained by bending a band-like and extremely thin plate material (for example, a metal plate such as an aluminum alloy) into a corrugated shape.

次に、例えば車両用空調装置のヒータコアに用いられる熱交換器1の組み付け方法を図1に基づいて簡単に説明する。先ず、複数のチューブ3A・3Bの図示上下端部を、シートメタル51・61に多数形成された長円状のチューブ挿入孔51a・61a内に差し込み、隣設する2つのチューブ3A・3B間にコルゲートフィン4を仮組み付けして熱交換器1のコア部2を構成する。次に、図示上側のシートメタル51には第1キャプセル52と第2キャプセル53を、また、図示下側のシートメタル61にはキャプセル62を嵌め合わせる。   Next, for example, a method for assembling the heat exchanger 1 used in the heater core of the vehicle air conditioner will be briefly described with reference to FIG. First, the upper and lower ends of the plurality of tubes 3A and 3B are inserted into oval tube insertion holes 51a and 61a formed in a large number in the sheet metal 51 and 61, and between two adjacent tubes 3A and 3B. The core part 2 of the heat exchanger 1 is configured by temporarily assembling the corrugated fins 4. Next, the first capsule 52 and the second capsule 53 are fitted to the upper sheet metal 51 in the figure, and the capsule 62 is fitted to the lower sheet metal 61 in the figure.

更に、第1キャプセル52と第2キャプセル53に入口パイプおよび出口パイプの接続側部分を差し込む。これにより、コア部2の図示上下端部にヘッダタンク5・6を設置し、且つヘッダタンク5の両側面に2本の出入口パイプを接続した熱交換器1の仮組み付けが終了する。次に、この熱交換器1を炉中に入れてろう材の溶融温度以上の温度で加熱することにより、熱交換器1の各接合箇所がろう付けされて熱交換器1が製造される。   Furthermore, the connection side portions of the inlet pipe and the outlet pipe are inserted into the first capsule 52 and the second capsule 53. Thus, the temporary assembly of the heat exchanger 1 in which the header tanks 5 and 6 are installed at the upper and lower ends of the core portion 2 in the drawing and the two inlet / outlet pipes are connected to both side surfaces of the header tank 5 is completed. Next, the heat exchanger 1 is put in a furnace and heated at a temperature equal to or higher than the melting temperature of the brazing material, whereby each joint portion of the heat exchanger 1 is brazed and the heat exchanger 1 is manufactured.

次に、例えば車両用空調装置のヒータコアに用いられる熱交換器1での流体流れを図1に基づいて簡単に説明する。エンジンのウォータジャケットで暖められたエンジン冷却水は、上側ヘッダタンク5の側面に取り付けた入口パイプ7から上側ヘッダタンク5内の外側流体通路5A内に流入する。そして、その外側流体通路5Aに連通する複数の長チューブ3Aの上側端より流入して下側ヘッダタンク6の折り返し流体通路6Aに向かう(1パス目)。   Next, for example, the fluid flow in the heat exchanger 1 used in the heater core of the vehicle air conditioner will be briefly described with reference to FIG. The engine coolant warmed by the engine water jacket flows into the outer fluid passage 5 </ b> A in the upper header tank 5 from the inlet pipe 7 attached to the side surface of the upper header tank 5. And it flows in from the upper end of several long tube 3A connected to the outer fluid channel | path 5A, and goes to the return fluid channel | path 6A of the lower header tank 6 (1st path | pass).

次に、折り返し流体通路6Aから短チューブ3Bの下側端より流入して上側ヘッダタンク5の内側流体通路5Bに向かう(2パス目)。そして、内側流体通路5B内のチューブ3の両脇を流れ、上側ヘッダタンク5のもう一方の側面に取り付けた出口パイプ8から流出してエンジンのウォータジャケットへ向かう流れとなる。このように、複数のチューブ3A・3B内を流れる際に、エンジン冷却水は隣設する2つのチューブ3間を通過する空気と熱交換して空気を加熱する。これによって、車両の車室内は暖房される。   Next, it flows in from the lower end of the short tube 3B through the folded fluid passage 6A and heads toward the inner fluid passage 5B of the upper header tank 5 (second pass). Then, it flows on both sides of the tube 3 in the inner fluid passage 5B, flows out from the outlet pipe 8 attached to the other side surface of the upper header tank 5, and flows toward the water jacket of the engine. Thus, when flowing through the plurality of tubes 3A and 3B, the engine cooling water exchanges heat with the air passing between the two adjacent tubes 3 to heat the air. As a result, the passenger compartment of the vehicle is heated.

次に、本実施形態での特徴と、その効果について述べる。流体が流通する複数本のチューブ3を一方向に複数本積層し、チューブ3の長手方向および積層方向と略直行する方向から流入してチューブ3の外を流通する外部流体とチューブ3の中を流れる内部流体との間で熱交換を行うコア部2と、チューブ3の積層方向に沿って形成されて複数本のチューブ3の長手方向両端に接続されて内部と連通し、チューブ3に流体を分配供給すると共に、チューブ3から流出する流体を集合回収する上下ヘッダタンク5・6とを備えた熱交換器において、
一方の上側ヘッダタンク5内の流体通路をチューブ3の長手方向に二層構造とし、一方の外側流体通路5Aには入口パイプ7、他方の内側流体通路5Bには出口パイプ8を設けると共に、チューブ3を長短二種類とし、一方の長チューブ3Aは外側流体通路5Aと他方の下側ヘッダタンク6内の折り返し流体通路6A、他方の短チューブ3Bは折り返し流体通路6Aと内側流体通路5Bとを連通するように設け、更には長チューブ3Aと短チューブ3Bとを積層方向に略交互に配置している。
Next, features and effects of this embodiment will be described. A plurality of tubes 3 in which a fluid flows are stacked in one direction, and the inside of the tube 3 and the external fluid flowing from outside the tube 3 by flowing in from the direction substantially perpendicular to the longitudinal direction and the stacking direction of the tubes 3. The core 2 that exchanges heat with the flowing internal fluid and the tubes 3 are formed along the stacking direction of the tubes 3 and connected to both ends in the longitudinal direction of the plurality of tubes 3 to communicate with the inside. In a heat exchanger provided with upper and lower header tanks 5 and 6 for collecting and collecting fluid flowing out from the tube 3 while distributing and supplying,
The fluid passage in one upper header tank 5 has a two-layer structure in the longitudinal direction of the tube 3, and an inlet pipe 7 is provided in one outer fluid passage 5A and an outlet pipe 8 is provided in the other inner fluid passage 5B. The long tube 3A is connected to the outer fluid passage 5A and the folded fluid passage 6A in the other lower header tank 6, and the other short tube 3B is connected to the folded fluid passage 6A and the inner fluid passage 5B. Further, the long tubes 3A and the short tubes 3B are arranged substantially alternately in the stacking direction.

これは、一方の上側ヘッダタンク5内の流体通路を二層構造すると共に、長いチューブ3Aと短チューブ3Bとを組み合わせることにより、コア部2内に局所的な左右Uターンを構成し、これを多数並べることによってコア部2全面での吹き出し温度の均一化を図ったものである。すなわち、コア部2全体を小さいブロックに分割することで、各Uターン部分では若干の吹出温度の温度勾配が生じても、全体としては均一化されることを狙ったものである。   This is because the fluid passage in one upper header tank 5 has a two-layer structure, and by combining the long tube 3A and the short tube 3B, a local left and right U-turn is formed in the core portion 2, By arranging a large number, the blowout temperature is made uniform over the entire surface of the core part 2. That is, by dividing the entire core portion 2 into small blocks, even if a slight temperature gradient of the blowing temperature occurs in each U-turn portion, the entire core portion 2 is aimed to be uniformized.

これによれば、温水流れが極低流量でもコア部2全面での温度分布を均一にすることができる。また、本発明の構造は、前述した従来構造のように流入側タンク部をセパレータにて中央部で仕切って両端側から温水を流入させなくとも、温度分布の均一化が図れることから、セパレータなしで構成することができ、製造コストを低減できるうえ、タンク内部にセパレータを入れることによって起こる内部リークなどの問題もなくすことができる。   According to this, even if the hot water flow is an extremely low flow rate, the temperature distribution on the entire surface of the core portion 2 can be made uniform. In addition, the structure of the present invention has no separator because the temperature distribution can be made uniform without partitioning the inflow side tank section at the center with a separator and flowing in warm water from both ends as in the conventional structure described above. The manufacturing cost can be reduced, and problems such as internal leakage caused by inserting a separator in the tank can be eliminated.

(第2実施形態)
図2は、本発明の第2実施形態における熱交換器1を示す断面図である。上述の実施形態と異なるのは、各流体通路5A・5B・6Aをセパレータ(仕切り部材)9にて積層方向の略中央で仕切ると共に、外側流体通路5Aの積層方向両側に左側入口パイプ(第1流体流入部)7Aと、右側入口パイプ(第2流体流入部)7Bとを設け、内側流体通路5Bの積層方向の略中央の仕切り位置に出口パイプ8を設けた点である。
(Second Embodiment)
FIG. 2 is a cross-sectional view showing the heat exchanger 1 in the second embodiment of the present invention. The difference from the above-described embodiment is that each of the fluid passages 5A, 5B, and 6A is partitioned by a separator (partition member) 9 at a substantially center in the stacking direction, and the left inlet pipe (first (Fluid inflow portion) 7A and a right inlet pipe (second fluid inflow portion) 7B are provided, and an outlet pipe 8 is provided at a substantially central partition position in the stacking direction of the inner fluid passage 5B.

これによれば、より左右での温度差をなくすことができる。または、左右独立温度コントロールの車両用空調装置に対応して左半分と右半分とで温水の流量を変えることにより、別々の吹き出し温度に調節することが可能となるうえ、左右別々の温度設定としてもその半面毎での温度均一化が図れることとなる。尚、セパレータ9は、図2のように一体でなく、必要部分に分けて設ける構成であっても良い。   According to this, the temperature difference between left and right can be eliminated. Alternatively, by adjusting the flow rate of hot water between the left and right halves corresponding to the vehicle air conditioner with independent left and right temperature control, it is possible to adjust to different blowout temperatures, and as separate temperature settings for the left and right Also, the temperature can be made uniform on each half. Note that the separator 9 may not be integrated as shown in FIG.

(第3実施形態)
図3は、本発明の第3実施形態における熱交換器1を示す断面図である。上述の実施形態と異なるのは、積層方向の全域にて、両チューブ3A・3Bの比率を変えている点である。これによれば、同じサイズのコア部2でも、両チューブ3A・3Bの比率を変えることによって吹き出し温度の分布を任意に可変することができる。
(Third embodiment)
FIG. 3 is a cross-sectional view showing the heat exchanger 1 in the third embodiment of the present invention. The difference from the above-described embodiment is that the ratio of both tubes 3A and 3B is changed in the entire region in the stacking direction. According to this, even in the core part 2 having the same size, the distribution of the blowing temperature can be arbitrarily varied by changing the ratio of both the tubes 3A and 3B.

例えば、温水が低流量の場合には、通常第1パスとなる第1チューブ3Aの途中で熱交換が終了してしまう。そこで、図3に示す実施形態では、チューブの配列を変えて第1パスとなる長チューブ3Aの比率を減らし、第2パスとなる短チューブ3Bの比率を増やすことで、両パスで均一に熱交換させることができるようにしている。   For example, when the hot water has a low flow rate, the heat exchange ends in the middle of the first tube 3A that is normally the first pass. Therefore, in the embodiment shown in FIG. 3, by changing the arrangement of the tubes, the ratio of the long tubes 3A serving as the first path is reduced, and the ratio of the short tubes 3B serving as the second path is increased, so that the heat is uniformly distributed in both paths. It can be exchanged.

また、図示はしないが、吹き出し温度を比較的高くしたい部分に第1パスとなる長チューブ3Aをかためて配置し、逆に吹き出し温度を比較的低くしたい部分に第2パスとなる短チューブ3Bをかためて配置することにより、意図したように温度勾配を生じさせることもできるようになる。また、このような可変は積層方向の一部だけ実施しても良い。   Although not shown, the long tube 3A serving as the first pass is disposed at a portion where the blowing temperature is desired to be relatively high, and conversely, the short tube 3B serving as the second pass is disposed at a portion where the blowing temperature is desired to be relatively low. By arranging them in such a manner, a temperature gradient can be generated as intended. Such a variable may be performed only in a part in the stacking direction.

(第4実施形態)
図4は、本発明の第4実施形態における熱交換器1を示す断面図である。上述の実施形態と異なるのは、両チューブ3A・3B列の一部に、大流量通路10を設けている点である。これによれば、任意の部分に設けた大流量通路10を用いて、温水を直接下側ヘッダタンク6へバイパスさせて流入させるようにすることにより、吹き出し温度の分布を任意に可変することができる。
(Fourth embodiment)
FIG. 4 is a cross-sectional view showing the heat exchanger 1 in the fourth embodiment of the present invention. The difference from the above-described embodiment is that a large flow passage 10 is provided in a part of both the tubes 3A and 3B. According to this, the distribution of the blowing temperature can be arbitrarily varied by using the large flow passage 10 provided in an arbitrary portion and allowing the hot water to directly flow into the lower header tank 6 and flow in. it can.

(その他の実施形態)
上述の実施形態では、本発明を車両用空調装置のヒータコアに利用した例を説明したが、本発明は上記した実施形態に限定されるものではなく、本発明を車両用エンジン冷却装置のラジエータなど、他の用途の熱交換器に利用しても良い。また、上述の実施形態では、外側流体通路5Aを流入側として左右側から流入させ、内側流体通路5Bを流出側として中央部から流出させているが、内側流体通路5Bを流入側として外側流体通路5Aを流出側としても良いし、中央部から流入させて左右側に流出させる流し方としても良い。
(Other embodiments)
In the above-described embodiment, the example in which the present invention is used for the heater core of the vehicle air conditioner has been described. The heat exchanger may be used for other purposes. In the above-described embodiment, the outer fluid passage 5A is made to flow from the left and right sides as the inflow side, and the inner fluid passage 5B is made to flow out from the center portion as the outflow side. 5A may be used as the outflow side, or may be a flow method in which the flow is caused to flow in from the center and flow out to the left and right sides.

例えば、図2の実施形態において内側流体通路5Bを流入側として外側流体通路5Aを流出側とした場合、最初の流体の分配においてチューブ3が支障となることなどの課題を残すが、出口パイプ8が第2キャプセル53に付けるだけで簡単となるうえ、出口パイプ8の位置が仕切り位置でなくとも良くなる。また、流出側となる外側流体通路5Aは仕切り部を省くことができるため、セパレータ部を簡素にできるなどの効果もある。
For example, in the embodiment of FIG. 2, when the inner fluid passage 5B is the inflow side and the outer fluid passage 5A is the outflow side, problems such as the tube 3 becoming a problem in the initial fluid distribution remain, but the outlet pipe 8 Is simply attached to the second capsule 53, and the position of the outlet pipe 8 need not be the partition position. Further, since the outer fluid passage 5A on the outflow side can omit the partition portion, the separator portion can be simplified.

本発明の第1実施形態における熱交換器1を示し、(a)は斜視模式図、(b)は(a)中A−A方向の部分断面図、(c)は(a)中B−B方向の断面図である。The heat exchanger 1 in 1st Embodiment of this invention is shown, (a) is a perspective schematic diagram, (b) is the fragmentary sectional view of AA direction in (a), (c) is B- in (a). It is sectional drawing of a B direction. 本発明の第2実施形態における熱交換器1を示す断面図である。It is sectional drawing which shows the heat exchanger 1 in 2nd Embodiment of this invention. 本発明の第3実施形態における熱交換器1を示す断面図である。It is sectional drawing which shows the heat exchanger 1 in 3rd Embodiment of this invention. 本発明の第4実施形態における熱交換器1を示す断面図である。It is sectional drawing which shows the heat exchanger 1 in 4th Embodiment of this invention. 従来の一実施形態における熱交換器1を示す正面図である。It is a front view which shows the heat exchanger 1 in one conventional embodiment. 図5の熱交換器1における温水の流れを説明する斜視模式図である。It is a perspective schematic diagram explaining the flow of the warm water in the heat exchanger 1 of FIG. 図6の温水流れにおけるコア部2での温度分布の一例を示す等温線図である。It is an isotherm figure which shows an example of the temperature distribution in the core part 2 in the warm water flow of FIG.

符号の説明Explanation of symbols

2…コア部
3…チューブ
3A…長チューブ(第1チューブ)
3B…短チューブ(第2チューブ)
5…上側ヘッダタンク(第1ヘッダタンク)
5A…外側流体通路(第1流体通路)
5B…内側流体通路(第2流体通路)
6…下側ヘッダタンク(第2ヘッダタンク)
6A…折り返し流体通路
7…入口パイプ(流体流入部)
7A…左側入口パイプ(第1流体流入部)
7B…右側入口パイプ(第2流体流入部)
8…出口パイプ(流体流出部)
9…セパレータ(仕切り部材)
10…大流量通路
2 ... Core part 3 ... Tube 3A ... Long tube (first tube)
3B ... Short tube (second tube)
5. Upper header tank (first header tank)
5A: outer fluid passage (first fluid passage)
5B ... Inner fluid passage (second fluid passage)
6 ... Lower header tank (second header tank)
6A: Folded fluid passage 7: Inlet pipe (fluid inflow part)
7A ... Left inlet pipe (first fluid inflow part)
7B ... Right inlet pipe (second fluid inflow part)
8 ... Outlet pipe (fluid outflow part)
9 ... Separator (partition member)
10 ... Large flow passage

Claims (4)

流体が流通する複数本のチューブ(3)を一方向に複数本積層し、前記チューブ(3)の長手方向および積層方向と略直行する方向から流入して前記チューブ(3)の外を流通する外部流体と前記チューブ(3)の中を流れる内部流体との間で熱交換を行うコア部(2)と、
前記チューブ(3)の積層方向に沿って形成されて前記複数本のチューブ(3)の長手方向両端に接続されて内部と連通し、前記チューブ(3)に前記流体を分配供給すると共に、前記チューブ(3)から流出する前記流体を集合回収する第1・第2ヘッダタンク(5、6)とを備えた熱交換器において、
一方の前記第1ヘッダタンク(5)内の流体通路を前記チューブ(3)の長手方向に二層構造とし、一方の第1流体通路(5A)には流体流入部(7)、他方の第2流体通路(5B)には流体流出部(8)を設けると共に、
前記チューブ(3)を長短二種類とし、一方の第1チューブ(3A)は前記第1流体通路(5A)と他方の前記第2ヘッダタンク(6)内の折り返し流体通路(6A)、他方の第2チューブ(3B)は前記折り返し流体通路(6A)と前記第2流体通路(5B)とを連通するように設け、
更には前記第1チューブ(3A)と前記第2チューブ(3B)とを前記積層方向に略交互に配置したことを特徴とする熱交換器。
A plurality of tubes (3) through which a fluid flows are stacked in one direction, and flow from outside the tubes (3) by flowing in from the longitudinal direction of the tubes (3) and a direction substantially perpendicular to the stacking direction. A core (2) for exchanging heat between an external fluid and an internal fluid flowing in the tube (3);
The tube (3) is formed along the stacking direction, is connected to both ends in the longitudinal direction of the plurality of tubes (3) and communicates with the inside, distributes and supplies the fluid to the tube (3), and In the heat exchanger comprising first and second header tanks (5, 6) for collecting and collecting the fluid flowing out from the tube (3),
The fluid passage in one of the first header tanks (5) has a two-layer structure in the longitudinal direction of the tube (3), the fluid inflow portion (7) and the other first fluid passage (5A) A fluid outflow part (8) is provided in the two fluid passage (5B), and
The tube (3) is of two types, long and short. One of the first tubes (3A) is the first fluid passage (5A) and the other folded fluid passage (6A) in the second header tank (6), The second tube (3B) is provided to communicate the folded fluid passage (6A) and the second fluid passage (5B);
Further, the heat exchanger is characterized in that the first tubes (3A) and the second tubes (3B) are arranged substantially alternately in the stacking direction.
前記各流体通路(5A、5B、6A)を仕切り部材(9)にて前記積層方向の略中央で仕切ると共に、前記第1流体通路(5A)の前記積層方向両側に第1・第2流体流入部(7A、7B)を設け、前記第2流体通路(5B)の前記積層方向の略中央の前記仕切り位置に前記流体流出部(8)を設けたことを特徴とする請求項1に記載の熱交換器。   Each of the fluid passages (5A, 5B, 6A) is partitioned by a partition member (9) at substantially the center in the stacking direction, and the first and second fluids flow into both sides of the first fluid passage (5A) in the stacking direction. The part (7A, 7B) is provided, and the fluid outflow part (8) is provided at the partition position substantially at the center in the stacking direction of the second fluid passage (5B). Heat exchanger. 前記積層方向の全域もしくは一部にて、前記両チューブ(3A、3B)の比率や配置を変えたことを特徴とする請求項1または請求項2に記載の熱交換器。   The heat exchanger according to claim 1 or 2, wherein a ratio and an arrangement of the two tubes (3A, 3B) are changed in the whole area or a part in the stacking direction. 前記両チューブ(3A、3B)列の一部に、大流量通路(10)を設けたことを特徴とする請求項1または請求項2に記載の熱交換器。   The heat exchanger according to claim 1 or 2, wherein a large flow passage (10) is provided in a part of the row of both the tubes (3A, 3B).
JP2004138900A 2004-05-07 2004-05-07 Heat exchanger Pending JP2005321137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004138900A JP2005321137A (en) 2004-05-07 2004-05-07 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004138900A JP2005321137A (en) 2004-05-07 2004-05-07 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2005321137A true JP2005321137A (en) 2005-11-17

Family

ID=35468550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004138900A Pending JP2005321137A (en) 2004-05-07 2004-05-07 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2005321137A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013160954A1 (en) * 2012-04-26 2013-10-31 三菱電機株式会社 Heat exchanger, and refrigerating cycle device equipped with heat exchanger
KR101385230B1 (en) 2007-04-16 2014-04-14 한라비스테온공조 주식회사 Heat Exchanger
KR101564346B1 (en) * 2009-09-28 2015-10-29 한온시스템 주식회사 Cold reserving heat exchanger
JPWO2013161799A1 (en) * 2012-04-26 2015-12-24 三菱電機株式会社 Heat exchanger, refrigeration cycle apparatus and air conditioner equipped with this heat exchanger
DE102021118138A1 (en) 2021-07-14 2022-05-19 Audi Aktiengesellschaft Coolant cooler for a motor vehicle and corresponding motor vehicle
EP3982054A4 (en) * 2019-08-01 2022-08-10 Hangzhou Sanhua Research Institute Co., Ltd. Heat exchanger and heat exchange system
FR3126769A1 (en) * 2021-09-03 2023-03-10 Valeo Systemes Thermiques HEAT EXCHANGER FOR REFRIGERANT LOOP

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101385230B1 (en) 2007-04-16 2014-04-14 한라비스테온공조 주식회사 Heat Exchanger
KR101564346B1 (en) * 2009-09-28 2015-10-29 한온시스템 주식회사 Cold reserving heat exchanger
WO2013160954A1 (en) * 2012-04-26 2013-10-31 三菱電機株式会社 Heat exchanger, and refrigerating cycle device equipped with heat exchanger
WO2013161799A1 (en) * 2012-04-26 2013-10-31 三菱電機株式会社 Heat exchanger, and refrigerating cycle device equipped with heat exchanger
JPWO2013161799A1 (en) * 2012-04-26 2015-12-24 三菱電機株式会社 Heat exchanger, refrigeration cycle apparatus and air conditioner equipped with this heat exchanger
US9689619B2 (en) 2012-04-26 2017-06-27 Mitsubishi Electric Corporation Heat exchanger, refrigeration cycle apparatus including heat exchanger and air-conditioning apparatus
EP3982054A4 (en) * 2019-08-01 2022-08-10 Hangzhou Sanhua Research Institute Co., Ltd. Heat exchanger and heat exchange system
DE102021118138A1 (en) 2021-07-14 2022-05-19 Audi Aktiengesellschaft Coolant cooler for a motor vehicle and corresponding motor vehicle
FR3126769A1 (en) * 2021-09-03 2023-03-10 Valeo Systemes Thermiques HEAT EXCHANGER FOR REFRIGERANT LOOP

Similar Documents

Publication Publication Date Title
JP4281634B2 (en) Refrigerant evaporator
JP2737987B2 (en) Stacked evaporator
US20030188857A1 (en) Heat exchanger for exchanging heat between internal fluid and external fluid and manufacturing method thereof
JP2005326135A (en) Heat exchanger
JPH116693A (en) Heat-exchanger for air-conditioner in vehicle
JP2005299981A (en) Refrigerant evaporator
JP2007155268A (en) Heat exchanger and refrigerant evaporator
KR20120031226A (en) Heat exchanger
JP2006105581A (en) Laminated heat exchanger
JP5408951B2 (en) Refrigerant evaporator and air conditioner using the same
JP5852811B2 (en) Heat exchanger
JPH05312492A (en) Heat exchanger
JP2013044504A5 (en)
JP2012197974A5 (en)
JP2004037073A (en) Multilayer heat exchanger
JP2005321137A (en) Heat exchanger
JP4857074B2 (en) Plate type heat exchanger
JP6414504B2 (en) Heat exchanger
JP4026253B2 (en) Heat exchanger
JP2004316976A (en) Heat exchanger
JP2010107131A (en) Refrigerant evaporator
JP6465651B2 (en) Heat exchanger
JP4547205B2 (en) Evaporator
JP2512471Y2 (en) Vehicle heat exchanger
JP2000055573A (en) Refrigerant evaporator