WO2016103878A1 - Endoscope - Google Patents

Endoscope Download PDF

Info

Publication number
WO2016103878A1
WO2016103878A1 PCT/JP2015/079608 JP2015079608W WO2016103878A1 WO 2016103878 A1 WO2016103878 A1 WO 2016103878A1 JP 2015079608 W JP2015079608 W JP 2015079608W WO 2016103878 A1 WO2016103878 A1 WO 2016103878A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
unit
endoscope
progressive
interlace
Prior art date
Application number
PCT/JP2015/079608
Other languages
French (fr)
Japanese (ja)
Inventor
秀範 橋本
文行 大河
泰憲 松井
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to CN201590000853.3U priority Critical patent/CN207785129U/en
Publication of WO2016103878A1 publication Critical patent/WO2016103878A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast

Definitions

  • the present invention relates to an endoscope that can output an imaging signal from an imaging unit as a progressive video signal.
  • endoscopes equipped with an image sensor have been widely used in the medical field and the industrial field.
  • There is also a known technique for constituting an endoscope system which is detachably connected to an endoscope and performs various signal processing related to the endoscope by a signal processing device called a video processor.
  • An endoscope in this type of endoscope system includes an endoscope that scans and outputs an imaging signal from an imaging unit by an interlace method, and an endoscope that scans and outputs the imaging signal by a progressive method.
  • a mirror is known, and a video processor that can handle any of these systems is conventionally known in Japanese Patent Application Laid-Open No. 2002-209836.
  • the endoscope system described in Japanese Patent Application Laid-Open No. 2002-209836 includes an interlace video signal processing unit and a progressive signal in a video processor (camera control unit) to which the endoscope is connected. Both processing units are provided, and a processing system is selected in accordance with the identification result of the type of endoscope (interlace method or progressive method) to be connected.
  • the image processing signal is changed by switching the signal processing system provided in the video processor according to the type of endoscope to be connected. It corresponds to an endoscope that scans and outputs an image using an interlace method, and an endoscope that scans and outputs an image signal using a progressive method.
  • the present invention has been made in view of the above points, and even an endoscope that scans an image pickup signal from an image pickup unit by a progressive method can be adapted to a video processor equipped only with an interlace signal processing circuit.
  • An object of the present invention is to provide an endoscope.
  • the endoscope includes a pixel portion configured by a plurality of pixels that photoelectrically convert light to generate a pixel signal, and a Bayer array primary color filter provided on the pixels,
  • a reading unit that reads out the imaging signal from the imaging unit and outputs it as a progressive video signal
  • the reading unit A conversion unit that converts the processing format of the read video signal into a processing format that can be processed by a separate signal processing device connected to a subsequent stage, and the video signal whose processing format has been converted by the conversion unit And an output unit that outputs the signal to the signal processing device.
  • FIG. 1 is a diagram showing a configuration of an endoscope and an interlace-compatible video processor according to a first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a configuration of an interlace signal processing unit in the endoscope according to the first embodiment of the present invention.
  • FIG. 3 is a diagram illustrating an example of a pixel arrangement in the CMOS image sensor of the endoscope according to the first embodiment of the present invention.
  • FIG. 4 is a diagram showing an example of a pixel array of a CCD in a conventional endoscope connectable to an interlace-compatible video processor connected to the endoscope according to the first embodiment of the present invention.
  • FIG. 1 is a diagram showing a configuration of an endoscope and an interlace-compatible video processor according to a first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a configuration of an interlace signal processing unit in the endoscope according to the first embodiment of the present invention.
  • FIG. 3 is a diagram illustrating an example
  • FIG. 5 is a diagram showing another example of a CCD pixel array in a conventional endoscope connectable to an interlace-compatible video processor connected to the endoscope of the first embodiment of the present invention.
  • FIG. 6 is a diagram showing a connection relationship between the endoscope according to the first embodiment of the present invention, a conventional endoscope, and an interlace-compatible video processor.
  • FIG. 7 illustrates the effects of intermittent pixel correction and P / I conversion when converting from a Bayer pixel array to a three-plate CCD pixel array in the interlace signal processing unit of the endoscope according to the first embodiment of the present invention. To do.
  • FIG. 1 is a diagram showing another example of a CCD pixel array in a conventional endoscope connectable to an interlace-compatible video processor connected to the endoscope of the first embodiment of the present invention.
  • FIG. 6 is a diagram showing a connection relationship between the endoscope according to the first embodiment of the present invention, a conventional endoscope, and an interlace
  • FIG. 8 illustrates the effects of intermittent pixel correction and P / I conversion when converting from a Bayer pixel array to a three-plate CCD pixel array in the interlace signal processing unit of the endoscope according to the first embodiment of the present invention.
  • FIG. 9 illustrates the effects of intermittent pixel correction and P / I conversion when converting from a Bayer pixel array to a three-plate CCD pixel array in the interlace signal processing unit of the endoscope according to the first embodiment of the present invention.
  • FIG. 10 illustrates the operation of intermittent pixel correction and P / I conversion when the interlace signal processing unit in the endoscope according to the first embodiment of the present invention converts from a Bayer pixel array to a two-plate CCD pixel array.
  • FIG. 11 is a diagram illustrating a connection relationship between the endoscope, the interlace-compatible video processor, and the progressive-compatible video processor according to the first embodiment of the present invention.
  • FIG. 12 is a diagram showing a configuration when the endoscope according to the first embodiment of the present invention is connected to an interlace-compatible video processor.
  • FIG. 13 is a diagram showing a configuration when the endoscope according to the first embodiment of the present invention is connected to a progressive video processor.
  • FIG. 14 is a flowchart showing an operation of signal processing selection processing in the endoscope according to the first embodiment of the present invention.
  • FIG. 15 is a diagram showing a configuration when an endoscope according to a second embodiment of the present invention is connected to an interlace-compatible video processor.
  • FIG. 16 is a diagram showing a configuration when an endoscope according to a second embodiment of the present invention is connected to a progressive video processor.
  • FIG. 17 is a flowchart showing an operation of signal processing selection processing in the endoscope according to the second embodiment of the present invention.
  • FIG. 18 is a diagram showing a configuration when an endoscope according to a third embodiment of the present invention is connected to an interlace-compatible video processor.
  • FIG. 19 is a diagram showing a configuration when an endoscope according to a third embodiment of the present invention is connected to a progressive video processor.
  • FIG. 20 is a diagram showing a configuration when an endoscope according to a fourth embodiment of the present invention is connected to an interlace-compatible video processor.
  • FIG. 21 is a diagram showing a configuration when an endoscope according to a fourth embodiment of the present invention is connected to a progressive video processor.
  • an endoscope 1 As shown in FIG. 1, an endoscope 1 according to a first embodiment of the present invention is provided at the distal end of an insertion portion to be inserted into a subject, picks up an optical image of the subject, and performs a predetermined digital imaging signal To the CMOS image sensor 11 (hereinafter referred to as the CMOS sensor 11), the cable 40 connected to the CMOS sensor 11 for transmitting the digital imaging signal, and the video processor 3 as a signal processing device for performing predetermined video signal processing. And a connector unit 20 to be connected.
  • the CMOS image sensor 11 hereinafter referred to as the CMOS sensor 11
  • the cable 40 connected to the CMOS sensor 11 for transmitting the digital imaging signal
  • the video processor 3 as a signal processing device for performing predetermined video signal processing.
  • a connector unit 20 to be connected.
  • the CMOS sensor 11 receives a clock and synchronization signals HD and VD generated by a video processor 3 to be described later, and generates a pulse for processing various signals, and an optical image of the subject.
  • a predetermined analog imaging signal is generated and the imaging unit 12 (PD 12) having a primary color filter in a Bayer array, and a predetermined signal processing is performed on the imaging unit 12 and the digital imaging signal is converted and output
  • the CMOS sensor 11 is an image sensor having R (red), G (green), and B (blue) Bayer filters, and scans and outputs an image pickup signal by a progressive method. It has become.
  • the imaging unit 12 is provided on the plurality of pixels, a pixel unit including a plurality of pixels that captures an optical image of a subject based on a predetermined pulse from the timing generator 15 and generates a predetermined analog imaging signal.
  • a primary color filter hereinafter referred to as a Bayer filter having a Bayer arrangement.
  • the AFE circuit 13 performs A / D conversion on the CDS circuit that performs a predetermined correlated double sampling process on the analog imaging signal from the imaging unit 12 and the analog imaging signal that has been subjected to the correlated double sampling process. And an output A / D conversion circuit.
  • the cable 40 transmits a predetermined clock and the synchronization signals HD and VD from the video processor 3 to the CMOS sensor 11, and the digital image signal of the serial signal converted in parallel / serial in the P / S circuit 14 in the subsequent stage. To transmit.
  • a circuit for performing predetermined signal processing on the digital imaging signal is configured in the connector unit 20 by an FPGA (hereinafter referred to as FPGA 21).
  • the FPGA 21 receives the clock and the synchronization signals HD and VD generated in the video processor 3 and outputs them to the timing generator 15 in the CMOS sensor 11 and generates predetermined processing pulses in each circuit in the FPGA 21.
  • the progressive signal processing unit 25 is also connected to the S / P conversion circuit 23.
  • the FPGA 21 further includes a signal path switching unit 26 that switches output signal paths between the interlace signal processing unit 24 and the progressive signal processing unit 25, and an output signal from the signal path switching unit 26.
  • P / S circuit 27 that performs parallel / serial conversion and outputs the signal to the processor, and a processor that switches the signal path in the signal path switching unit 26 according to the type (ID) of the processor connected to the endoscope 1 And a detection circuit 28.
  • a processor (interlace compatible video) corresponding to an endoscope (interlace scanning type endoscope) that scans and outputs an image pickup signal from a CCD sensor by an interlace method.
  • an endoscope interlace scanning type endoscope
  • the interlace scanning endoscope described above adopts a so-called three-plate type or two-plate type CCD sensor as an image sensor.
  • a three-plate type sensor having R, G, and B filters in each sensor as shown in FIG.
  • An endoscope having a two-plate sensor provided with R / B and G filters in each sensor as shown in FIG. 5 is known.
  • the video processor assumed to be connected to the endoscope 1 (progressive scanning type endoscope having the CMOS sensor 11) of the present embodiment employs the above-described CCD 111 as shown in FIG.
  • FIG. 1 shows a state in which the video processor 3 (interlace-compatible video processor) is connected to the endoscope 1 of the present embodiment.
  • the video processor 3 receives a clock synchronization signal generation circuit 31 that generates a predetermined clock and synchronization signals HD and VD, and a serial signal from the P / S circuit 27 in the connected endoscope 1.
  • An S / P conversion circuit 32 that performs serial / parallel conversion and a parallel signal (the signal is an interlace signal) from the S / P conversion circuit 32 are input, and predetermined image processing is performed.
  • An interlaced image processing circuit 33 that outputs to an external monitor and a processor ID information unit 34 for transmitting the ID information of the video processor 3 to the processor detection circuit 28 in the endoscope 1 are provided.
  • the processor ID information unit 34 may transmit predetermined ID information to the processor detection circuit 28 under the control of a CPU (not shown) included in the video processor 3, or the endoscope 1 may be a video.
  • a known means for informing the endoscope 1 of the type (corresponding to ID) of the video processor 3 by means of an electrical or mechanical determination means when connected to the processor 3 may be adopted.
  • the video processor 3 performs image processing on an endoscope employing an interlaced three-plate or two-plate CCD sensor
  • the interlaced image processing circuit in the video processor 3 is used.
  • Reference numeral 33 denotes a known function for processing interlaced video signals from these three-plate or two-plate CCD sensors.
  • the endoscope 1 employs an image sensor including an RGB Bayer color filter as the CMOS sensor 11 and scans an imaging signal by a progressive method. It is designed to output.
  • FIG. 1 a Bayer pixel array of the CMOS sensor 11 in the endoscope 1 of the present embodiment is shown in FIG.
  • the endoscope according to the present invention includes a Bayer array filter and employs an image sensor that reads out and outputs an image signal by progressive scanning. Even if an image signal as it is, that is, an image signal based on a progressive signal is transmitted to the above-described interlace-compatible video processor without using the configuration, appropriate image processing cannot be performed in the interlace-compatible video processor.
  • the present invention is a progressive scanning type endoscope, and even when connected to an interlace-compatible video processor, specially devised interlace signal processing so that proper image signal processing can be performed in the processor.
  • a portion 24 is provided.
  • FIG. 2 is a diagram illustrating a configuration of an interlace signal processing unit in the endoscope according to the first embodiment of the present invention.
  • the interlace signal processing unit 24 is a video signal of the S / P conversion circuit 23 obtained by serial / parallel conversion of the serial signal from the P / S circuit 14 in the CMOS sensor 11 (in this state, a progressive signal).
  • a progressive / interlace conversion unit 52 that converts the progressive signal corrected by the intermittent pixel correction unit 51 into an interlace signal, and processing in the video processor 3
  • a format conversion unit 53 that performs format conversion of a predetermined video signal in accordance with the form.
  • the conversion processing in the format conversion unit 53 is, for example, processing such as output rate, synchronization signal superposition, and the like.
  • processing such as output rate, synchronization signal superposition, and the like.
  • the video signal is in a state suitable for image processing in the interlaced image processing circuit 33 in the video processor 3.
  • FIG. 7 shows a state of intermittent pixel correction relating to G (green) pixels in the Bayer pixel array
  • the right side view of FIG. 7 shows progressive correction of the G (green) pixel group after pixel correction.
  • a state in which interlace conversion (P / I conversion) is performed is shown.
  • FIG. 8 shows a state of intermittent pixel correction related to the B (blue) pixel in the Bayer pixel array
  • the right side view of FIG. 8 shows the pixel corrected B (blue) pixel group. Is shown as progressive interlace conversion (P / I conversion).
  • FIG. 9 shows the state of intermittent pixel correction related to the R (red) pixel in the Bayer pixel array
  • the right diagram of FIG. 9 shows the pixel corrected R (red) pixel.
  • a state in which a group is subjected to progressive interlace conversion (P / I conversion) is shown.
  • the intermittent pixel correction unit 51 corrects the intermittent pixels with the surrounding pixel information for each R, G, B in the Bayer pixel array.
  • the progressive / interlace conversion unit 52 performs, for each color in which the intermittent pixel is corrected by the intermittent pixel correction unit 51, the left side view of FIG. 7 ⁇ the right side view of FIG. 7, and the left side view of FIG. As shown in the left side diagram of FIG. 9 and the right side of FIG. 9, the progressive signal is converted to the interlaced signal by line addition.
  • the “2 ⁇ n ⁇ 1” line (n is an integer of 1 or more, the same applies hereinafter) and the “2 ⁇ n” line are added to the interlace 1st field.
  • “2 ⁇ n ⁇ 1” line signal is used, and “2 ⁇ n” line and “2 ⁇ (n + 1) -1” line are added to the signal of even frame, and “2 ⁇ n” of 2nd field of interlace is added.
  • Line signal Note that such line addition contributes to improvement in sensitivity.
  • FIG. 10 is a diagram for explaining the operation of intermittent pixel correction and P / I conversion when converting from a Bayer pixel array to a two-plate CCD pixel array in the interlace signal processing unit in the endoscope of the first embodiment.
  • the left side view of FIG. 10 shows the state of intermittent pixel correction related to the B (blue) and R (red) pixels in the Bayer pixel array, and the right side view of FIG. A state in which progressive interlace conversion (P / I conversion) is performed on a pixel group of blue and red (red) is shown.
  • the progressive interlace conversion unit 52 replaces the G (green) pixel whose intermittent pixel has been corrected by the intermittent pixel correction unit 51 with the left side diagram of FIG. 7, the progressive signal is converted into the interlace signal by line addition.
  • B (blue) and R (red) are also converted from a progressive signal to an interlace signal by line addition, as shown in the left diagram of FIG. 10 ⁇ the right diagram of FIG.
  • the progressive scan type endoscope is connected to the interlace-compatible video processor.
  • appropriate image signal processing can be performed in the processor.
  • the progressive signal processing unit 25 passes through the imaging signal (progressive signal) scanned by the progressive method as it is and sends it to the subsequent signal path switching unit 26. ing.
  • the endoscope 1 of the present embodiment can be connected to a progressive video processor capable of processing an original progressive signal in addition to the video processor 3 which is an interlace compatible video processor.
  • FIG. 11 is a diagram showing a connection relationship between the endoscope, the interlace-compatible video processor, and the progressive-compatible video processor of the present embodiment.
  • the video processor 3A includes a CMOS sensor 11 and includes a signal processing circuit (not shown) corresponding to the endoscope 1 that scans and outputs an imaging signal by a progressive method.
  • FIG. 12 is a diagram showing a configuration when the endoscope according to the first embodiment of the present invention is connected to an interlace-compatible video processor
  • FIG. 13 is an endoscope according to the first embodiment of the present invention. It is a figure which shows the structure at the time of being connected to the progressive corresponding
  • FIG. 14 is a flowchart showing the operation of the signal processing selection process in the endoscope according to the first embodiment of the present invention.
  • the processor detection circuit 28 obtains predetermined ID information from the processor ID information section 34 in the connected video processor (step S1). .
  • the processor detection circuit 28 determines whether the connected processor is the interlace-compatible video processor 3 or the progressive-compatible video processor 3A based on the obtained ID information (step S2).
  • the processor detection circuit 28 performs interlace signal processing (step S3).
  • step S3 the processor detection circuit 28 controls the signal path switching unit 26 so that the imaging signal output from the P / S circuit 27 passes through the interlace signal processing unit 24. Switching (see FIG. 12).
  • the P / S circuit 27 receives the signal from the video processor 3. An interlace video signal suitable for the interlace image processing circuit 33 is transmitted.
  • the video processor 3 performs normal interlace image processing. Can do.
  • the processor detection circuit 28 performs progressive signal processing (step S4).
  • step S 4 the processor detection circuit 28 controls the signal path switching unit 26 to change the signal path so that the imaging signal output from the P / S circuit 27 passes through the progressive signal processing unit 25. Switching (see FIG. 13).
  • the progressive signal processing unit 25 passes through the imaging signal as it is and sends it to the subsequent signal path switching unit 26. Therefore, the progressive video processor Even in 3A, appropriate signal processing can be performed.
  • an endoscope that scans an imaging signal from an imaging unit by a progressive method can be adapted to a video processor equipped only with an interlace signal processing circuit. It is possible to provide an endoscope.
  • FIG. 15 is a diagram showing a configuration when an endoscope according to the second embodiment of the present invention is connected to an interlace-compatible video processor
  • FIG. 16 is an endoscope according to the second embodiment of the present invention. It is a figure which shows the structure at the time of being connected to the progressive corresponding
  • FIG. 17 is a flowchart showing the operation of the signal processing selection process in the endoscope according to the second embodiment of the present invention.
  • the basic configuration of the endoscope of the second embodiment is the same as that of the first embodiment, and only a part of the configuration within the FPGA 21 in the connector unit 20 is different. Accordingly, only the differences from the first embodiment will be described here, and descriptions of common parts will be omitted.
  • the FPGA 21 includes the processor detection circuit 28 that switches the signal path in the signal path switching unit 26 according to the type of the processor connected to the endoscope 1 (see FIG. 1).
  • a switching instruction unit 28 a that sends a switching instruction signal for switching the signal path in the signal path switching unit 26 is provided instead of the processor detection circuit 28. It is characterized by that.
  • the switching instruction unit 28a sends the switching instruction signal to the signal path switching unit 26 by an operation (not shown) or the like (for example, setting by a user).
  • This switching instruction signal is an instruction signal for switching between a first signal path through which the digital imaging signal passes through the interlace signal processing section 24 and a second signal path through which the progressive signal processing section 25 passes. It is.
  • the signal path switching unit 26 switches between the first signal path and the second signal path in response to a switching instruction signal from the switching instruction unit 28a. .
  • the type of processor connected to the endoscope 1 (interlace-compatible video processor 3B; see FIG. 15) or progressive-compatible video processor 3C; see FIG. In 1, the above-described signal path switching can be performed without detection.
  • the switching instruction in the switching instruction unit 28a is the interlace-compatible video processor 3B, or Based on whether the video processor is a progressive video processor 3C (step S12), the signal path switching unit 26 switches between the first signal path and the second signal path.
  • the switching instruction indicates the interlace compatible video processor 3B in step S12
  • the first signal path through the interlace signal processing unit 24 is selected (step S13).
  • the switching instruction indicates the progressive-compatible video processor 3C
  • the second signal path through the progressive signal processing unit 25 is selected (step S14).
  • an interlace signal processing circuit is detected without detecting the type of a connected processor. It is possible to provide an endoscope that can be adapted to a video processor equipped only with a video processor.
  • the FPGA 21 is disposed in the connector unit 20.
  • the present invention is not limited thereto, and may be disposed in an operation unit or the like in the endoscope 1.
  • CMOS image sensor is assumed as the imaging element of the endoscope 1, but is not limited to a CMOS image sensor, and a solid-state imaging element capable of outputting an imaging signal from an imaging unit as a progressive video signal.
  • the present invention can also be applied to an endoscope that employs.
  • FIG. 18 is a diagram showing a configuration when an endoscope according to the third embodiment of the present invention is connected to an interlace-compatible video processor
  • FIG. 19 is an endoscope according to the third embodiment of the present invention. It is a figure which shows the structure at the time of being connected to the progressive corresponding
  • the basic configuration of the endoscope of the third embodiment is the same as that of the first and second embodiments, and only a part of the configuration within the FPGA 21 in the connector unit 20 is different. is there. Accordingly, only the differences from the first and second embodiments will be described here, and descriptions of common parts will be omitted.
  • the FPGA 21 includes a switching instruction unit 28a that transmits a switching instruction signal for switching a signal path in the signal path switching unit 26.
  • the FPGA 21 includes the switching instruction unit 28a.
  • the interlace-compatible video processor 3B and the progressive-compatible video processor 3C identify the type of endoscope to be connected, and communicate the identification information to the endoscope.
  • the endoscope according to the third embodiment is connected to the FPGA 21 with the interlace-compatible video processor 3B or the progressive-compatible video processor 3C, the endoscope is connected to the endoscope from the control communication unit 35 described above.
  • a control communication unit 29 for receiving identification information related to the mirror is formed.
  • the control communication unit 29 is connected to the switching instruction unit 28a, and transmits the received identification information to the switching instruction unit 28a.
  • the switching instruction unit 28 a sends a switching instruction signal to the signal path switching unit 26 according to the identification information transmitted from the control communication unit 29.
  • the switching instruction signal sent from the switching instruction unit 28a includes the first signal path through which the digital imaging signal passes through the interlace signal processing unit 24 and the progressive signal processing unit 25. This is an instruction signal for switching the second signal path passing through.
  • the signal path switching unit 26 switches between the first signal path and the second signal path in response to a switching instruction signal from the switching instruction unit 28a.
  • the video processor 3B or the video processor 3C includes the control communication unit 35, the control communication unit 29, The type of the connected endoscope 1 is detected and identified by the above communication or by a predetermined detection method.
  • the video processor 3B or the video processor 3C transmits identification information based on the above-described identification result from the control communication unit 35 on the video processor side to the control communication unit 29 on the endoscope side.
  • the control communication unit 29 transmits the received identification information to the switching instruction unit 28a, and a predetermined switching instruction signal is sent to the signal path switching unit 26 from the switching instruction unit 28a that has received the identification information.
  • the signal path switching unit 26 switches between the first signal path and the second signal path in accordance with a switching instruction signal from the switching instruction unit 28a.
  • the switching instruction indicates the interlace-compatible video processor 3B
  • the first signal path via the interlace signal processor 24 is selected (see FIG. 18)
  • the switching instruction indicates the progressive-compatible video processor 3C.
  • the second signal path through the progressive signal processing unit 25 is selected (see FIG. 19).
  • an endoscope that scans an imaging signal from an imaging unit by a progressive method can be adapted to a video processor equipped only with an interlace signal processing circuit. It is possible to provide an endoscope.
  • FIG. 20 is a diagram showing a configuration when an endoscope according to the fourth embodiment of the present invention is connected to an interlace-compatible video processor
  • FIG. 21 shows an endoscope according to the 34th embodiment of the present invention. It is a figure which shows the structure at the time of being connected to the progressive corresponding
  • the basic configuration of the endoscope of the fourth embodiment is the same as that of the first and second embodiments, and only a part of the configuration within the FPGA 21 in the connector unit 20 is different. is there. Accordingly, only the differences from the first and second embodiments will be described here, and descriptions of common parts will be omitted.
  • the FPGA 21 includes a switching instruction unit 28a that transmits a switching instruction signal for switching a signal path in the signal path switching unit 26.
  • the FPGA 21 includes the switching instruction unit 28a.
  • the interlace-compatible video processor 3B and the progressive-compatible video processor 3C include a scope detection unit 71 that receives the scope ID information from the connected endoscope and detects the type of the scope.
  • a scope ID information unit 61 for storing ID information unique to the endoscope is formed in the FPGA 21, and a signal for detecting the type of the connected video processor is detected.
  • a specification detector 62 is formed.
  • the signal specification detection unit 62 When the interlace-compatible video processor 3B or the progressive-compatible video processor 3C is connected to the endoscope 1, the signal specification detection unit 62 outputs an image pickup element (output from the clock synchronization signal generation unit 31 in these video processors ( In this embodiment, a clock signal for driving the CMOS sensor 11) and a synchronization signal (HD, VD) are received, and the type of the video processor is detected from the specification of the signal.
  • the signal specification detection unit 62 is connected to the switching instruction unit 28a, and transmits the detected video processor type information (identification information) to the switching instruction unit 28a.
  • the switching instruction unit 28a sends a switching instruction signal to the signal path switching unit 26 in accordance with the identification information transmitted from the signal specification detection unit 62.
  • the switching instruction signal transmitted from the switching instruction unit 28a includes the first signal path through which the digital imaging signal passes through the interlace signal processing unit 24, and An instruction signal for switching between the second signal path passing through the progressive signal processing unit 25, and the signal path switching unit 26 is configured to change the first signal path according to the switching instruction signal from the switching instruction unit 28a. A signal path and the second signal path are switched.
  • the video processor 3B or the video processor 3C is first connected in the scope detection unit 71.
  • the type of the endoscope 1 is detected based on the ID information stored in the scope ID information unit 61 in the endoscope 1.
  • the video processor 3B or the video processor 3C determines the imaging element in the endoscope 1 (the CMOS sensor 11 in the endoscope 1 of the present embodiment) according to the ID information of the endoscope 1 detected by the scope detection unit 71. ) Is output from the clock synchronization signal generation unit 31 (clock signal, synchronization signal HD, VD).
  • the endoscope 1 receives the signal (clock signal, synchronization signal HD, VD) output from the clock synchronization signal generation unit 31 in the signal specification detection unit 62 formed in the FPGA 21, and The type of video processor is detected from the specification.
  • the signal specification detection unit 62 transmits the detected video processor type information (identification information) to the switching instruction unit 28 a, and the switching instruction unit 28 a responds to the identification information transmitted from the signal specification detection unit 62.
  • a switching instruction signal is sent to the signal path switching unit 26.
  • the signal path switching unit 26 switches between the first signal path and the second signal path in response to the switching instruction signal from the switching instruction unit 28a. Switch.
  • the switching instruction indicates the interlace-compatible video processor 3B
  • the first signal path via the interlace signal processing unit 24 is selected (see FIG. 20)
  • the switching instruction indicates the progressive-compatible video processor 3C.
  • the second signal path through the progressive signal processor 25 is selected (see FIG. 21).
  • an endoscope that scans an imaging signal from an imaging unit by a progressive method can be adapted to a video processor equipped only with an interlace signal processing circuit. It is possible to provide an endoscope.
  • the FPGA 21 is disposed in the connector unit 20.
  • the present invention is not limited thereto, and may be disposed in an operation unit or the like in the endoscope 1.
  • CMOS image sensor is assumed as the imaging element of the endoscope 1, but is not limited to a CMOS image sensor, and a solid-state imaging element capable of outputting an imaging signal from an imaging unit as a progressive video signal.
  • the present invention can also be applied to an endoscope that employs.
  • the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage.
  • various aspects of the invention can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment.
  • constituent elements over different embodiments may be appropriately combined.

Abstract

The endoscope (1) comprises a CMOS image sensor (11) which has a Bayer pattern primary color filter, progressively scans an imaging signal, and outputs the signal as a video signal. The endoscope (1) is provided with a signal processing unit (24) for an interlaced format, capable of converting a progressive signal from the CMOS image sensor (11) to an interlaced signal compatible with an interlaced image processing circuit (33) of a video processor (3) compatible with an interlaced format, and outputting the interlaced signal.

Description

内視鏡Endoscope
 本発明は、撮像部からの撮像信号をプログレッシブ方式の映像信号として出力可能な内視鏡に関する。 The present invention relates to an endoscope that can output an imaging signal from an imaging unit as a progressive video signal.
 従来、医療用分野及び工業用分野において撮像素子を備えた内視鏡が広く用いられている。また、内視鏡に着脱自在に接続され、内視鏡に係る各種信号処理をビデオプロセッサと称する信号処理装置により担い、内視鏡システムを構成する技術も知られるところにある。 Conventionally, endoscopes equipped with an image sensor have been widely used in the medical field and the industrial field. There is also a known technique for constituting an endoscope system, which is detachably connected to an endoscope and performs various signal processing related to the endoscope by a signal processing device called a video processor.
 また、この種の内視鏡システムにおける内視鏡としては、撮像部からの撮像信号をインターレース方式により走査して出力する内視鏡と、当該撮像信号をプログレッシブ方式により走査して出力する内視鏡とが知られており、また、これらのいずれの方式にも対応可能なビデオプロセッサも、日本国特開2002-209836号公報等において、従来、知られるところにある。 An endoscope in this type of endoscope system includes an endoscope that scans and outputs an imaging signal from an imaging unit by an interlace method, and an endoscope that scans and outputs the imaging signal by a progressive method. A mirror is known, and a video processor that can handle any of these systems is conventionally known in Japanese Patent Application Laid-Open No. 2002-209836.
 このように、上述した日本国特開2002-209836号公報に記載の内視鏡システムは、内視鏡が接続されるビデオプロセッサ(カメラコントロールユニット)の内部に、インターレース映像信号処理部とプログレッシブ信号処理部の双方を設け、接続される内視鏡の種類(インターレース方式かプログレッシブ方式か)の識別結果に応じた処理系を選択するものである。 As described above, the endoscope system described in Japanese Patent Application Laid-Open No. 2002-209836 includes an interlace video signal processing unit and a progressive signal in a video processor (camera control unit) to which the endoscope is connected. Both processing units are provided, and a processing system is selected in accordance with the identification result of the type of endoscope (interlace method or progressive method) to be connected.
 すなわち、上述した日本国特開2002-209836号公報に記載の内視鏡システムは、ビデオプロセッサに設けられた信号処理系を、接続される内視鏡の種類に応じて切り替えることで撮像信号をインターレース方式により走査して出力する内視鏡にも、撮像信号をプログレッシブ方式により走査して出力する内視鏡にも対応させるものである。 That is, in the endoscope system described in Japanese Patent Laid-Open No. 2002-209836 described above, the image processing signal is changed by switching the signal processing system provided in the video processor according to the type of endoscope to be connected. It corresponds to an endoscope that scans and outputs an image using an interlace method, and an endoscope that scans and outputs an image signal using a progressive method.
 しかしながら、例えばビデオプロセッサとして、インターレース方式とプログレッシブ方式との一方のみに対応させるビデオプロセッサを想定した場合には、当該ビデオプロセッサは、他方の出力方式を具備する内視鏡に対応できないという問題が生じることとなる。 However, for example, when a video processor that supports only one of the interlace method and the progressive method is assumed as the video processor, there arises a problem that the video processor cannot support an endoscope having the other output method. It will be.
 特に、インターレース信号処理回路のみを搭載するビデオプロセッサに、撮像部からの撮像信号をプログレッシブ方式により走査する内視鏡を接続しようとしても、信号処理部の相違から接続することは困難であった。 In particular, even if an endoscope that scans an image signal from an image capturing unit by a progressive method is connected to a video processor that includes only an interlace signal processing circuit, it is difficult to connect due to the difference in the signal processing unit.
 本発明は上述した点に鑑みてなされたもので、撮像部からの撮像信号をプログレッシブ方式により走査する内視鏡であっても、インターレース信号処理回路のみを搭載するビデオプロセッサに適合することを可能とする内視鏡を提供することを目的とする。 The present invention has been made in view of the above points, and even an endoscope that scans an image pickup signal from an image pickup unit by a progressive method can be adapted to a video processor equipped only with an interlace signal processing circuit. An object of the present invention is to provide an endoscope.
 本発明の一態様の内視鏡は、光を光電変換して画素信号を生成する複数の画素により構成された画素部と前記画素上に設けられたベイヤ配列の原色カラーフィルタとを有し、当該複数の画素によって生成される画素信号で構成される撮像信号を生成する撮像部と、前記撮像部から、前記撮像信号を読み出してプログレッシブ方式の映像信号として出力する読み出し部と、前記読み出し部において読み出された前記映像信号の処理形式を、後段に接続される別体の信号処理装置において処理可能な処理形式に変換する変換部と、前記変換部で前記処理形式が変換された前記映像信号を、前記信号処理装置に出力する出力部と、を具備する。 The endoscope according to one aspect of the present invention includes a pixel portion configured by a plurality of pixels that photoelectrically convert light to generate a pixel signal, and a Bayer array primary color filter provided on the pixels, In the imaging unit that generates an imaging signal composed of pixel signals generated by the plurality of pixels, a reading unit that reads out the imaging signal from the imaging unit and outputs it as a progressive video signal, and the reading unit A conversion unit that converts the processing format of the read video signal into a processing format that can be processed by a separate signal processing device connected to a subsequent stage, and the video signal whose processing format has been converted by the conversion unit And an output unit that outputs the signal to the signal processing device.
図1は、本発明の第1の実施形態の内視鏡およびインターレース対応ビデオプロセッサの構成を示す図。FIG. 1 is a diagram showing a configuration of an endoscope and an interlace-compatible video processor according to a first embodiment of the present invention. 図2は、本発明の第1の実施形態の内視鏡におけるインターレース用信号処理部の構成を示した図。FIG. 2 is a diagram illustrating a configuration of an interlace signal processing unit in the endoscope according to the first embodiment of the present invention. 図3は、本発明の第1の実施形態の内視鏡のCMOSイメージセンサにおける画素配列の一例を示した図。FIG. 3 is a diagram illustrating an example of a pixel arrangement in the CMOS image sensor of the endoscope according to the first embodiment of the present invention. 図4は、本発明の第1の実施形態の内視鏡に接続するインターレース対応ビデオプロセッサに接続可能な従来の内視鏡におけるCCDの画素配列の一例を示した図。FIG. 4 is a diagram showing an example of a pixel array of a CCD in a conventional endoscope connectable to an interlace-compatible video processor connected to the endoscope according to the first embodiment of the present invention. 図5は、本発明の第1の実施形態の内視鏡に接続するインターレース対応ビデオプロセッサに接続可能な従来の内視鏡におけるCCDの画素配列の他の例を示した図。FIG. 5 is a diagram showing another example of a CCD pixel array in a conventional endoscope connectable to an interlace-compatible video processor connected to the endoscope of the first embodiment of the present invention. 図6は、本発明の第1の実施形態の内視鏡、従来の内視鏡およびインターレース対応ビデオプロセッサの接続関係を示した図。FIG. 6 is a diagram showing a connection relationship between the endoscope according to the first embodiment of the present invention, a conventional endoscope, and an interlace-compatible video processor. 図7は、本発明の第1の実施形態の内視鏡におけるインターレース用信号処理部において、ベイヤ画素配列から3板式CCD画素配列へ変換する場合における間欠画素補正およびP/I変換の作用を説明する図。FIG. 7 illustrates the effects of intermittent pixel correction and P / I conversion when converting from a Bayer pixel array to a three-plate CCD pixel array in the interlace signal processing unit of the endoscope according to the first embodiment of the present invention. To do. 図8は、本発明の第1の実施形態の内視鏡におけるインターレース用信号処理部において、ベイヤ画素配列から3板式CCD画素配列へ変換する場合における間欠画素補正およびP/I変換の作用を説明する図。FIG. 8 illustrates the effects of intermittent pixel correction and P / I conversion when converting from a Bayer pixel array to a three-plate CCD pixel array in the interlace signal processing unit of the endoscope according to the first embodiment of the present invention. To do. 図9は、本発明の第1の実施形態の内視鏡におけるインターレース用信号処理部において、ベイヤ画素配列から3板式CCD画素配列へ変換する場合における間欠画素補正およびP/I変換の作用を説明する図。FIG. 9 illustrates the effects of intermittent pixel correction and P / I conversion when converting from a Bayer pixel array to a three-plate CCD pixel array in the interlace signal processing unit of the endoscope according to the first embodiment of the present invention. To do. 図10は、本発明の第1の実施形態の内視鏡におけるインターレース用信号処理部においてベイヤ画素配列から2板式CCD画素配列へ変換する場合における間欠画素補正およびP/I変換の作用を説明する図。FIG. 10 illustrates the operation of intermittent pixel correction and P / I conversion when the interlace signal processing unit in the endoscope according to the first embodiment of the present invention converts from a Bayer pixel array to a two-plate CCD pixel array. Figure. 図11は、本発明の第1の実施形態の内視鏡、インターレース対応ビデオプロセッサおよびプログレッシブ対応ビデオプロセッサとの接続関係を示した図。FIG. 11 is a diagram illustrating a connection relationship between the endoscope, the interlace-compatible video processor, and the progressive-compatible video processor according to the first embodiment of the present invention. 図12は、本発明の第1の実施形態の内視鏡がインターレース対応ビデオプロセッサに接続された際の構成を示す図。FIG. 12 is a diagram showing a configuration when the endoscope according to the first embodiment of the present invention is connected to an interlace-compatible video processor. 図13は、本発明の第1の実施形態の内視鏡がプログレッシブ対応ビデオプロセッサに接続された際の構成を示す図。FIG. 13 is a diagram showing a configuration when the endoscope according to the first embodiment of the present invention is connected to a progressive video processor. 図14は、本発明の第1の実施形態の内視鏡における信号処理選択処理の作用を示したフローチャート。FIG. 14 is a flowchart showing an operation of signal processing selection processing in the endoscope according to the first embodiment of the present invention. 図15は、本発明の第2の実施形態の内視鏡がインターレース対応ビデオプロセッサに接続された際の構成を示す図。FIG. 15 is a diagram showing a configuration when an endoscope according to a second embodiment of the present invention is connected to an interlace-compatible video processor. 図16は、本発明の第2の実施形態の内視鏡がプログレッシブ対応ビデオプロセッサに接続された際の構成を示す図。FIG. 16 is a diagram showing a configuration when an endoscope according to a second embodiment of the present invention is connected to a progressive video processor. 図17は、本発明の第2の実施形態の内視鏡における信号処理選択処理の作用を示したフローチャート。FIG. 17 is a flowchart showing an operation of signal processing selection processing in the endoscope according to the second embodiment of the present invention. 図18は、本発明の第3の実施形態の内視鏡がインターレース対応ビデオプロセッサに接続された際の構成を示す図。FIG. 18 is a diagram showing a configuration when an endoscope according to a third embodiment of the present invention is connected to an interlace-compatible video processor. 図19は、本発明の第3の実施形態の内視鏡がプログレッシブ対応ビデオプロセッサに接続された際の構成を示す図。FIG. 19 is a diagram showing a configuration when an endoscope according to a third embodiment of the present invention is connected to a progressive video processor. 図20は、本発明の第4の実施形態の内視鏡がインターレース対応ビデオプロセッサに接続された際の構成を示す図。FIG. 20 is a diagram showing a configuration when an endoscope according to a fourth embodiment of the present invention is connected to an interlace-compatible video processor. 図21は、本発明の第4の実施形態の内視鏡がプログレッシブ対応ビデオプロセッサに接続された際の構成を示す図。FIG. 21 is a diagram showing a configuration when an endoscope according to a fourth embodiment of the present invention is connected to a progressive video processor.
 以下、図面を参照して本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (第1の実施形態)
 図1に示すように本発明の第1の実施形態である内視鏡1は、被検体に挿入される挿入部の先端に設けられ、被検体の光学像を撮像して所定のデジタル撮像信号を出力するCMOSイメージセンサ11(以下、CMOSセンサ11)と、前記CMOSセンサ11に接続され前記デジタル撮像信号を伝送するケーブル40と、所定の映像信号処理を行う信号処理装置としてのビデオプロセッサ3に接続されるコネクタ部20と、を備える。
(First embodiment)
As shown in FIG. 1, an endoscope 1 according to a first embodiment of the present invention is provided at the distal end of an insertion portion to be inserted into a subject, picks up an optical image of the subject, and performs a predetermined digital imaging signal To the CMOS image sensor 11 (hereinafter referred to as the CMOS sensor 11), the cable 40 connected to the CMOS sensor 11 for transmitting the digital imaging signal, and the video processor 3 as a signal processing device for performing predetermined video signal processing. And a connector unit 20 to be connected.
 前記CMOSセンサ11は、後述するビデオプロセッサ3において生成されたクロックおよび同期信号HD,VDを受けて各種信号の処理のパルスを発生するタイミングジェネレータ(TG)15と、被検体の光学像を撮像して所定のアナログ撮像信号を生成すると共にベイヤ配列の原色カラーフィルタを有する撮像部12(PD12)と、当該撮像部12に対して所定の信号処理を施すと共にデジタル撮像信号に変換して出力するA/D変換部を備えるAFE回路13と、当該AFE回路13からのデジタル撮像信号をパラレル/シリアル変換して後段に出力するP/S回路14と、を有して構成される。 The CMOS sensor 11 receives a clock and synchronization signals HD and VD generated by a video processor 3 to be described later, and generates a pulse for processing various signals, and an optical image of the subject. A predetermined analog imaging signal is generated and the imaging unit 12 (PD 12) having a primary color filter in a Bayer array, and a predetermined signal processing is performed on the imaging unit 12 and the digital imaging signal is converted and output A And an AFE circuit 13 including a / D conversion unit, and a P / S circuit 14 that performs parallel / serial conversion on the digital imaging signal from the AFE circuit 13 and outputs the converted signal to the subsequent stage.
 本実施形態においては、前記CMOSセンサ11は、R(レッド)、G(グリーン)、B(ブルー)のベイヤフィルタを備えたイメージセンサであり、撮像信号をプログレッシブ方式により走査して出力するようになっている。 In the present embodiment, the CMOS sensor 11 is an image sensor having R (red), G (green), and B (blue) Bayer filters, and scans and outputs an image pickup signal by a progressive method. It has become.
 前記撮像部12は、前記タイミングジェネレータ15からの所定パルスに基づいて被検体の光学像を撮像して所定のアナログ撮像信号を生成する複数の画素からなる画素部と、前記複数の画素上に設けられたベイヤ配列の原色カラーフィルタ(以下、ベイヤフィルタ)と、を有する。 The imaging unit 12 is provided on the plurality of pixels, a pixel unit including a plurality of pixels that captures an optical image of a subject based on a predetermined pulse from the timing generator 15 and generates a predetermined analog imaging signal. A primary color filter (hereinafter referred to as a Bayer filter) having a Bayer arrangement.
 前記AFE回路13は、撮像部12からのアナログ撮像信号に対して所定の相関2重サンプリング処理を施すCDS回路と、この相関2重サンプリング処理が施されたアナログ撮像信号をA/D変換して出力するA/D変換回路とを備えて構成される。 The AFE circuit 13 performs A / D conversion on the CDS circuit that performs a predetermined correlated double sampling process on the analog imaging signal from the imaging unit 12 and the analog imaging signal that has been subjected to the correlated double sampling process. And an output A / D conversion circuit.
 前記ケーブル40は、ビデオプロセッサ3からの所定のクロックおよび同期信号HD,VDをCMOSセンサ11に伝送すると共に、P/S回路14においてパラレル/シリアル変換されたシリアル信号の前記デジタル撮像信号を後段に伝送する。 The cable 40 transmits a predetermined clock and the synchronization signals HD and VD from the video processor 3 to the CMOS sensor 11, and the digital image signal of the serial signal converted in parallel / serial in the P / S circuit 14 in the subsequent stage. To transmit.
 本実施形態においては、前記コネクタ部20の内部に、前記デジタル撮像信号に対して所定の信号処理を施すための回路をFPGA(以下、FPGA21)にて構成する。 In the present embodiment, a circuit for performing predetermined signal processing on the digital imaging signal is configured in the connector unit 20 by an FPGA (hereinafter referred to as FPGA 21).
 前記FPGA21は、ビデオプロセッサ3において生成された前記クロックおよび同期信号HD,VDを受けてCMOSセンサ11における前記タイミングジェネレータ15に向けて出力すると共に、FPGA21内の各回路に所定の処理パルスを発生するタイミングジェネレータ22と、CMOSセンサ11から出力された前記シリアル信号のデジタル撮像信号をシリアル/パラレル変換するS/P変換回路23と、S/P変換回路23に接続されたインターレース用信号処理部24と、同じくS/P変換回路23に接続されたプログレッシブ用信号処理部25と、を具備する。 The FPGA 21 receives the clock and the synchronization signals HD and VD generated in the video processor 3 and outputs them to the timing generator 15 in the CMOS sensor 11 and generates predetermined processing pulses in each circuit in the FPGA 21. A timing generator 22, an S / P conversion circuit 23 for serial / parallel conversion of the digital imaging signal of the serial signal output from the CMOS sensor 11, and an interlace signal processing unit 24 connected to the S / P conversion circuit 23; The progressive signal processing unit 25 is also connected to the S / P conversion circuit 23.
 図1に戻って前記FPGA21は、さらに、前記インターレース用信号処理部24と前記プログレッシブ用信号処理部25との出力信号経路を切り替える信号経路切替部26と、当該信号経路切替部26からの出力信号をパラレル/シリアル変換してプロセッサに向けて出力するP/S回路27と、当該内視鏡1に接続されたプロセッサの種別(ID)に応じて前記信号経路切替部26における信号経路を切り替えるプロセッサ検知回路28と、を備える。 Returning to FIG. 1, the FPGA 21 further includes a signal path switching unit 26 that switches output signal paths between the interlace signal processing unit 24 and the progressive signal processing unit 25, and an output signal from the signal path switching unit 26. P / S circuit 27 that performs parallel / serial conversion and outputs the signal to the processor, and a processor that switches the signal path in the signal path switching unit 26 according to the type (ID) of the processor connected to the endoscope 1 And a detection circuit 28.
 ここで、本実施形態の内視鏡1が接続するビデオプロセッサについて説明する。 Here, a video processor to which the endoscope 1 of the present embodiment is connected will be described.
 本実施形態の内視鏡1が接続するビデオプロセッサとしては、CCDセンサからの撮像信号をインターレース方式により走査して出力する内視鏡(インターレース走査方式内視鏡)に対応するプロセッサ(インターレース対応ビデオプロセッサ)を想定する。 As a video processor to which the endoscope 1 of the present embodiment is connected, a processor (interlace compatible video) corresponding to an endoscope (interlace scanning type endoscope) that scans and outputs an image pickup signal from a CCD sensor by an interlace method. Processor).
 ここで、上述したインターレース走査方式内視鏡は、撮像素子としていわゆる3板式または2板式のCCDセンサを採用するものとする。そして、この、インターレース方式の3板式または2板式のCCDセンサを採用する内視鏡としては、たとえば、図4に示す如き各センサにR,G,Bの各フィルタを備える3板式センサ、あるいは、図5に示す如き各センサにR/B,Gの各フィルタを備える2板式センサを備える内視鏡が知られている。 Here, the interlace scanning endoscope described above adopts a so-called three-plate type or two-plate type CCD sensor as an image sensor. As an endoscope that employs this interlaced three-plate type or two-plate type CCD sensor, for example, a three-plate type sensor having R, G, and B filters in each sensor as shown in FIG. An endoscope having a two-plate sensor provided with R / B and G filters in each sensor as shown in FIG. 5 is known.
 換言すれば、本実施形態の内視鏡1(CMOSセンサ11を備えたプログレッシブ走査方式内視鏡)が接続されるものとして想定したビデオプロセッサは、図6に示すように、上述したCCD111を採用する内視鏡(インターレース走査方式内視鏡)101に対応するインターレース対応ビデオプロセッサ3である。 In other words, the video processor assumed to be connected to the endoscope 1 (progressive scanning type endoscope having the CMOS sensor 11) of the present embodiment employs the above-described CCD 111 as shown in FIG. This is an interlace-compatible video processor 3 corresponding to an endoscope (interlace scanning type endoscope) 101.
 図1は、本実施形態の内視鏡1に当該ビデオプロセッサ3(インターレース対応ビデオプロセッサ)が接続された状態を示している。 FIG. 1 shows a state in which the video processor 3 (interlace-compatible video processor) is connected to the endoscope 1 of the present embodiment.
 図1に示すように前記ビデオプロセッサ3は、所定のクロックおよび同期信号HD,VDを生成するクロック同期信号生成回路31と、接続された内視鏡1におけるP/S回路27からのシリアル信号を入力し、シリアル/パラレル変換するS/P変換回路32と、当該S/P変換回路32からのパラレル信号(係る信号は、インターレース信号となっている)を入力し、所定の画像処理を行って外部のモニタに出力するインターレース画像処理回路33と、当該ビデオプロセッサ3のID情報を内視鏡1における前記プロセッサ検知回路28に伝達するためのプロセッサID情報部34と、を備えている。 As shown in FIG. 1, the video processor 3 receives a clock synchronization signal generation circuit 31 that generates a predetermined clock and synchronization signals HD and VD, and a serial signal from the P / S circuit 27 in the connected endoscope 1. An S / P conversion circuit 32 that performs serial / parallel conversion and a parallel signal (the signal is an interlace signal) from the S / P conversion circuit 32 are input, and predetermined image processing is performed. An interlaced image processing circuit 33 that outputs to an external monitor and a processor ID information unit 34 for transmitting the ID information of the video processor 3 to the processor detection circuit 28 in the endoscope 1 are provided.
 なお、前記プロセッサID情報部34は、ビデオプロセッサ3が有する図示しないCPUの制御の下、所定のID情報をプロセッサ検知回路28に伝達するようにしても良いし、または、内視鏡1がビデオプロセッサ3に接続された際に、電気的もしくは機械的な判定手段により当該ビデオプロセッサ3の種別(IDに相当)を内視鏡1に知らしめる公知の手段を採用しても良い。 The processor ID information unit 34 may transmit predetermined ID information to the processor detection circuit 28 under the control of a CPU (not shown) included in the video processor 3, or the endoscope 1 may be a video. A known means for informing the endoscope 1 of the type (corresponding to ID) of the video processor 3 by means of an electrical or mechanical determination means when connected to the processor 3 may be adopted.
 ここで、上述したように当該ビデオプロセッサ3がインターレース方式の3板式または2板式のCCDセンサを採用する内視鏡に対する画像処理を行うものであることから、前記ビデオプロセッサ3における前記インターレース画像処理回路33は、これら3板式または2板式のCCDセンサからインターレース映像信号を処理する公知の機能を果たすようになっている。 Here, as described above, since the video processor 3 performs image processing on an endoscope employing an interlaced three-plate or two-plate CCD sensor, the interlaced image processing circuit in the video processor 3 is used. Reference numeral 33 denotes a known function for processing interlaced video signals from these three-plate or two-plate CCD sensors.
 一方で、上述したように、本実施形態の内視鏡1は、CMOSセンサ11として、RGBベイヤ(Bayer)配列のカラーフィルタを備えたイメージセンサを採用し、撮像信号をプログレッシブ方式により走査して出力するようになっている。 On the other hand, as described above, the endoscope 1 according to the present embodiment employs an image sensor including an RGB Bayer color filter as the CMOS sensor 11 and scans an imaging signal by a progressive method. It is designed to output.
 ここで、本実施形態の内視鏡1におけるCMOSセンサ11のベイヤ画素配列を図3に示す。 Here, a Bayer pixel array of the CMOS sensor 11 in the endoscope 1 of the present embodiment is shown in FIG.
 このように、本願発明に係る内視鏡(プログレッシブ走査方式内視鏡)は、ベイヤ配列フィルタを備え、プログレッシブ走査により画像信号を読み出して出力するイメージセンサを採用したので、後述する本実施形態の構成を用いずにそのままの画像信号、すなわちプログレッシブ信号による画像信号を上述したインターレース対応ビデオプロセッサに伝送したとしても、係るインターレース対応ビデオプロセッサにおいて適切な画像処理を行うことができない。 As described above, the endoscope according to the present invention (progressive scanning type endoscope) includes a Bayer array filter and employs an image sensor that reads out and outputs an image signal by progressive scanning. Even if an image signal as it is, that is, an image signal based on a progressive signal is transmitted to the above-described interlace-compatible video processor without using the configuration, appropriate image processing cannot be performed in the interlace-compatible video processor.
 本願発明は係る事情に鑑み、プログレッシブ走査方式内視鏡でありながら、インターレース対応ビデオプロセッサに接続した場合でも当該プロセッサにおいて適正な画像信号処理を行い得るよう、特別に工夫を凝らしたインターレース用信号処理部24を備えることを特徴とする。 In view of such circumstances, the present invention is a progressive scanning type endoscope, and even when connected to an interlace-compatible video processor, specially devised interlace signal processing so that proper image signal processing can be performed in the processor. A portion 24 is provided.
 次に、前記インターレース用信号処理部24およびプログレッシブ用信号処理部25について説明する。 Next, the interlace signal processing unit 24 and the progressive signal processing unit 25 will be described.
 図2は、本発明の第1の実施形態の内視鏡におけるインターレース用信号処理部の構成を示した図である。 FIG. 2 is a diagram illustrating a configuration of an interlace signal processing unit in the endoscope according to the first embodiment of the present invention.
 図2に示すように、インターレース用信号処理部24は、CMOSセンサ11における前記P/S回路14からのシリアル信号をシリアル/パラレル変換したS/P変換回路23の映像信号(この状態ではプログレッシブ信号)を入力して、所定の画素補正を施す間欠画素補正部51と、間欠画素補正部51によって画素補正されたプログレッシブ信号をインターレース信号に変換するプログレッシブ・インターレース変換部52と、ビデオプロセッサ3における処理形態に合わせた所定の映像信号のフォーマット変換を行うフォーマット変換部53と、を備えて構成される。 As shown in FIG. 2, the interlace signal processing unit 24 is a video signal of the S / P conversion circuit 23 obtained by serial / parallel conversion of the serial signal from the P / S circuit 14 in the CMOS sensor 11 (in this state, a progressive signal). ) To perform predetermined pixel correction, a progressive / interlace conversion unit 52 that converts the progressive signal corrected by the intermittent pixel correction unit 51 into an interlace signal, and processing in the video processor 3 And a format conversion unit 53 that performs format conversion of a predetermined video signal in accordance with the form.
 なお、このフォーマット変換部53における変換処理とは、たとえば、出力レート、同期信号重畳等の処理であり、前記制御部51、プログレッシブ・インターレース変換部52およびフォーマット変換部53を経て出力されるインターレース用映像信号は、ビデオプロセッサ3における前記インターレース画像処理回路33での画像処理に適した状態となっている。 The conversion processing in the format conversion unit 53 is, for example, processing such as output rate, synchronization signal superposition, and the like. For interlace output that is output through the control unit 51, progressive / interlace conversion unit 52, and format conversion unit 53. The video signal is in a state suitable for image processing in the interlaced image processing circuit 33 in the video processor 3.
 次に、前記間欠画素補正部51における画素補正およびプログレッシブ・インターレース変換部52におけるプログレッシブ・インターレース変換(P/I変換)について説明する。 Next, pixel correction in the intermittent pixel correction unit 51 and progressive / interlace conversion (P / I conversion) in the progressive / interlace conversion unit 52 will be described.
 <ベイヤ画素配列から3板式CCD画素配列への変換>
 まず、ビデオプロセッサ3における前記インターレース画像処理回路33が、3板式CCDに対応した画像処理を行うものである場合の例を、図7~図9を参照して説明する。
<Conversion from Bayer pixel array to 3-plate CCD pixel array>
First, an example in which the interlaced image processing circuit 33 in the video processor 3 performs image processing corresponding to a three-plate CCD will be described with reference to FIGS.
 図7~図9は、本第1の実施形態の内視鏡におけるインターレース用信号処理部において、ベイヤ画素配列から3板式CCD画素配列へ変換する場合における間欠画素補正およびP/I変換の作用を説明する図である。 7 to 9 show the effects of intermittent pixel correction and P / I conversion in the case of converting from a Bayer pixel array to a three-plate CCD pixel array in the interlace signal processing unit in the endoscope of the first embodiment. It is a figure explaining.
 また図7の左側図は、ベイヤ画素配列におけるG(グリーン)の画素に係る間欠画素補正の様子を示しており、図7の右側図は、画素補正されたG(グリーン)の画素群をプログレッシブ・インターレース変換(P/I変換)する様子を示している。 Further, the left side view of FIG. 7 shows a state of intermittent pixel correction relating to G (green) pixels in the Bayer pixel array, and the right side view of FIG. 7 shows progressive correction of the G (green) pixel group after pixel correction. A state in which interlace conversion (P / I conversion) is performed is shown.
 同様に、図8の左側図は、ベイヤ画素配列におけるB(ブルー)の画素に係る間欠画素補正の様子を示しており、図8の右側図は、画素補正されたB(ブルー)の画素群をプログレッシブ・インターレース変換(P/I変換)する様子を示している。 Similarly, the left side view of FIG. 8 shows a state of intermittent pixel correction related to the B (blue) pixel in the Bayer pixel array, and the right side view of FIG. 8 shows the pixel corrected B (blue) pixel group. Is shown as progressive interlace conversion (P / I conversion).
 さらに同様に、図9の左側図は、ベイヤ画素配列におけるR(レッド)の画素に係る間欠画素補正の様子を示しており、図9の右側図は、画素補正されたR(レッド)の画素群をプログレッシブ・インターレース変換(P/I変換)する様子を示している。 Similarly, the left diagram of FIG. 9 shows the state of intermittent pixel correction related to the R (red) pixel in the Bayer pixel array, and the right diagram of FIG. 9 shows the pixel corrected R (red) pixel. A state in which a group is subjected to progressive interlace conversion (P / I conversion) is shown.
 図7、図8、図9に示すように、間欠画素補正部51は、ベイヤ画素配列おける各R,G,B毎に、間欠画素を周辺の画素情報で補正する。 As shown in FIG. 7, FIG. 8, and FIG. 9, the intermittent pixel correction unit 51 corrects the intermittent pixels with the surrounding pixel information for each R, G, B in the Bayer pixel array.
 ここで、画素がG(グリーン)の場合は、図7に示すように、常に隣接4画素の加算平均値で補正する。一方、画素がB(ブルー)またはR(レッド)の場合は、図8、図9に示すように、2段階の補正を行う。 Here, when the pixel is G (green), as shown in FIG. 7, it is always corrected by the addition average value of the four adjacent pixels. On the other hand, when the pixel is B (blue) or R (red), two-stage correction is performed as shown in FIGS.
 すなわち、まず、隣接4画素がセンサ読み取りデータとなる間欠画素をそれぞれ4画素の加算平均値で補正し(図8、図9参照)、次に、隣接2画素がセンサ読み取りデータとなる間欠画素を、それらの2画素と先に補正した隣接する2つの間欠画素の加算平均値で補正する(図8、図9参照)。B(ブルー)およびR(レッド)については、これにより隣接する上下2画素からの補正に比べて精度良く補正することができる。 That is, first, intermittent pixels whose adjacent four pixels are sensor reading data are corrected by the addition average value of the four pixels (see FIGS. 8 and 9), and then the intermittent pixels whose adjacent two pixels are sensor reading data are corrected. Then, the correction is performed with the average value of these two pixels and two adjacent intermittent pixels corrected in advance (see FIGS. 8 and 9). Thus, B (blue) and R (red) can be corrected with higher accuracy than correction from two adjacent upper and lower pixels.
 次に、プログレッシブ・インターレース変換部52は、前記間欠画素補正部51によって間欠画素が補正された各色毎に、図7の左側図→図7の右側図、図8の左側図→図8の右側図、図9の左側図→図9の右側図に示すように、ライン加算によりプログレッシブ信号からインターレース信号に変換する。 Next, the progressive / interlace conversion unit 52 performs, for each color in which the intermittent pixel is corrected by the intermittent pixel correction unit 51, the left side view of FIG. 7 → the right side view of FIG. 7, and the left side view of FIG. As shown in the left side diagram of FIG. 9 and the right side of FIG. 9, the progressive signal is converted to the interlaced signal by line addition.
 具体的には、プログレッシブ信号の奇数フレームの信号のうち、“2×n-1”ライン(nは1以上の整数、以下同じ)と“2×n”ラインを加算してインターレースの1stフィールドの“2×n-1”ラインの信号とし、偶数フレームの信号のうち、“2×n”ラインと“2×(n+1)-1”ラインを加算してインターレースの2ndフィールドの“2×n”ラインの信号とする。なお、このようなライン加算をすることにより、感度向上に寄与することとなる。 Specifically, among the odd frame signals of the progressive signal, the “2 × n−1” line (n is an integer of 1 or more, the same applies hereinafter) and the “2 × n” line are added to the interlace 1st field. “2 × n−1” line signal is used, and “2 × n” line and “2 × (n + 1) -1” line are added to the signal of even frame, and “2 × n” of 2nd field of interlace is added. Line signal. Note that such line addition contributes to improvement in sensitivity.
 <ベイヤ画素配列から2板式CCD画素配列への変換>
 次に、ビデオプロセッサ3における前記インターレース画像処理回路33が、2板式CCDに対応した画像処理を行うものである場合の例を、図10を参照して説明する。
<Conversion from Bayer pixel array to 2-plate CCD pixel array>
Next, an example in which the interlaced image processing circuit 33 in the video processor 3 performs image processing corresponding to a two-plate CCD will be described with reference to FIG.
 図10は、本第1の実施形態の内視鏡におけるインターレース用信号処理部において、ベイヤ画素配列から2板式CCD画素配列へ変換する場合における間欠画素補正およびP/I変換の作用を説明する図であり、図10の左側図は、ベイヤ画素配列におけるB(ブルー)およびR(レッド)の画素に係る間欠画素補正の様子を示しており、図10の右側図は、画素補正されたB(ブルー)およびR(レッド)の画素群をプログレッシブ・インターレース変換(P/I変換)する様子を示している。 FIG. 10 is a diagram for explaining the operation of intermittent pixel correction and P / I conversion when converting from a Bayer pixel array to a two-plate CCD pixel array in the interlace signal processing unit in the endoscope of the first embodiment. The left side view of FIG. 10 shows the state of intermittent pixel correction related to the B (blue) and R (red) pixels in the Bayer pixel array, and the right side view of FIG. A state in which progressive interlace conversion (P / I conversion) is performed on a pixel group of blue and red (red) is shown.
 このベイヤ画素配列から2板式CCD画素配列へ変換する場合においては、画素がG(グリーン)の場合は、上述した3板式CCD画素配列へ変換する場合と同様に、図7に示すように、常に隣接4画素の加算平均値で補正する。 When converting from this Bayer pixel array to a two-plate CCD pixel array, if the pixel is G (green), as shown in FIG. Correction is performed using an average value of four adjacent pixels.
 一方、画素がB(ブルー)およびR(レッド)の場合は、図10に示すように、上下2画素で補正する。 On the other hand, when the pixels are B (blue) and R (red), correction is performed with two upper and lower pixels as shown in FIG.
 次に、プログレッシブ・インターレース変換部52は、G(グリーン)画素については、前記間欠画素補正部51によって間欠画素が補正されたG(グリーン)画素を、上記同様に、図7の左側図→図7の右側図に示すように、ライン加算によりプログレッシブ信号からインターレース信号に変換する。 Next, for the G (green) pixel, the progressive interlace conversion unit 52 replaces the G (green) pixel whose intermittent pixel has been corrected by the intermittent pixel correction unit 51 with the left side diagram of FIG. 7, the progressive signal is converted into the interlace signal by line addition.
 一方、B(ブルー)およびR(レッド)についても、図10の左側図→図10の右側図に示すように、ライン加算によりプログレッシブ信号からインターレース信号に変換する。 On the other hand, B (blue) and R (red) are also converted from a progressive signal to an interlace signal by line addition, as shown in the left diagram of FIG. 10 → the right diagram of FIG.
 このように、本実施形態の内視鏡1によると、上述した如き構成をなすインターレース用信号処理部24を備えることで、プログレッシブ走査方式内視鏡でありながら、インターレース対応ビデオプロセッサに接続した場合でも当該プロセッサにおいて適正な画像信号処理を行うことができる。 As described above, according to the endoscope 1 of the present embodiment, when the interlace signal processing unit 24 having the above-described configuration is provided, the progressive scan type endoscope is connected to the interlace-compatible video processor. However, appropriate image signal processing can be performed in the processor.
 図1に戻って、プログレッシブ用信号処理部25は、本実施形態においては、プログレッシブ方式により走査された撮像信号(プログレッシブ信号)をそのままスルーして後段の信号経路切替部26に送出するようになっている。 Returning to FIG. 1, in this embodiment, the progressive signal processing unit 25 passes through the imaging signal (progressive signal) scanned by the progressive method as it is and sends it to the subsequent signal path switching unit 26. ing.
 ところで、本実施形態の内視鏡1は、上述したインターレース対応ビデオプロセッサであるビデオプロセッサ3の他に、本来のプログレッシブ信号を処理可能なプログレッシブ対応ビデオプロセッサにも接続可能である。 Incidentally, the endoscope 1 of the present embodiment can be connected to a progressive video processor capable of processing an original progressive signal in addition to the video processor 3 which is an interlace compatible video processor.
 図11は本実施形態の内視鏡、インターレース対応ビデオプロセッサおよびプログレッシブ対応ビデオプロセッサとの接続関係を示した図である。 FIG. 11 is a diagram showing a connection relationship between the endoscope, the interlace-compatible video processor, and the progressive-compatible video processor of the present embodiment.
 図11に示すように、ビデオプロセッサ3Aは、CMOSセンサ11を搭載し、撮像信号をプログレッシブ方式により走査して出力する内視鏡1に対応した図示しない信号処理回路を備える。 As shown in FIG. 11, the video processor 3A includes a CMOS sensor 11 and includes a signal processing circuit (not shown) corresponding to the endoscope 1 that scans and outputs an imaging signal by a progressive method.
 次に、本実施形態の内視鏡1がインターレース対応ビデオプロセッサ3またはプログレッシブ対応ビデオプロセッサ3Aに接続された際の作用についてそれぞれ説明する。 Next, the operation when the endoscope 1 of the present embodiment is connected to the interlace-compatible video processor 3 or the progressive-compatible video processor 3A will be described.
 図12は、本発明の第1の実施形態の内視鏡がインターレース対応ビデオプロセッサに接続された際の構成を示す図であり、図13は、本発明の第1の実施形態の内視鏡がプログレッシブ対応ビデオプロセッサに接続せれた際の構成を示す図である。さらに、図14は、本発明の第1の実施形態の内視鏡における信号処理選択処理の作用を示したフローチャートである。 FIG. 12 is a diagram showing a configuration when the endoscope according to the first embodiment of the present invention is connected to an interlace-compatible video processor, and FIG. 13 is an endoscope according to the first embodiment of the present invention. It is a figure which shows the structure at the time of being connected to the progressive corresponding | compatible video processor. Furthermore, FIG. 14 is a flowchart showing the operation of the signal processing selection process in the endoscope according to the first embodiment of the present invention.
 図14示すように、まず内視鏡1が所定のビデオプロセッサに接続されると、プロセッサ検知回路28は接続されたビデオプロセッサにおけるプロセッサID情報部34から所定のID情報を入手する(ステップS1)。 As shown in FIG. 14, when the endoscope 1 is first connected to a predetermined video processor, the processor detection circuit 28 obtains predetermined ID information from the processor ID information section 34 in the connected video processor (step S1). .
 この後、プロセッサ検知回路28は、入手したID情報に基づいて接続されたプロセッサが、インターレース対応ビデオプロセッサ3であるか、またはプログレッシブ対応ビデオプロセッサ3Aであるかを判定する(ステップS2)。 Thereafter, the processor detection circuit 28 determines whether the connected processor is the interlace-compatible video processor 3 or the progressive-compatible video processor 3A based on the obtained ID information (step S2).
 そして、接続されたプロセッサがインターレース対応ビデオプロセッサ3である場合は、プロセッサ検知回路28は、インターレース用信号処理を行う(ステップS3)。 If the connected processor is the interlace compatible video processor 3, the processor detection circuit 28 performs interlace signal processing (step S3).
 すなわち、ステップS3においてプロセッサ検知回路28は、前記信号経路切替部26を制御して前記P/S回路27から出力される撮像信号が、前記インターレース用信号処理部24を経由するように信号経路を切り替える(図12参照)。 That is, in step S3, the processor detection circuit 28 controls the signal path switching unit 26 so that the imaging signal output from the P / S circuit 27 passes through the interlace signal processing unit 24. Switching (see FIG. 12).
 ここで、上述したように、前記P/S回路27から出力される撮像信号がインターレース用信号処理部24を経由するように選択された場合は、P/S回路27からは、ビデオプロセッサ3におけるインターレース画像処理回路33に適合したインターレース用映像信号が送出される。 Here, as described above, when the imaging signal output from the P / S circuit 27 is selected so as to pass through the interlace signal processing unit 24, the P / S circuit 27 receives the signal from the video processor 3. An interlace video signal suitable for the interlace image processing circuit 33 is transmitted.
 これにより、このインターレース用映像信号を入力したインターレース画像処理回路33において、(接続されたのがプログレッシブ走査方式内視鏡1であっても)、ビデオプロセッサ3としては通常のインターレース画像処理を行うことができる。 Thus, in the interlace image processing circuit 33 to which the interlace video signal is input (even if the progressive scan system endoscope 1 is connected), the video processor 3 performs normal interlace image processing. Can do.
 一方、接続されたプロセッサがプログレッシブ対応ビデオプロセッサ3Aである場合は、プロセッサ検知回路28は、プログレッシブ用信号処理を行う(ステップS4)。 On the other hand, when the connected processor is the progressive compatible video processor 3A, the processor detection circuit 28 performs progressive signal processing (step S4).
 すなわち、ステップS4においてプロセッサ検知回路28は、前記信号経路切替部26を制御して前記P/S回路27から出力される撮像信号が、前記プログレッシブ用信号処理部25を経由するように信号経路を切り替える(図13参照)。 That is, in step S 4, the processor detection circuit 28 controls the signal path switching unit 26 to change the signal path so that the imaging signal output from the P / S circuit 27 passes through the progressive signal processing unit 25. Switching (see FIG. 13).
 ここで、上述したように、プログレッシブ用信号処理部25は、本実施形態においては、撮像信号をそのままスルーして後段の信号経路切替部26に送出するようになっているため、プログレッシブ対応ビデオプロセッサ3Aにおいても、適正な信号処理を行うことができる。 Here, as described above, in the present embodiment, the progressive signal processing unit 25 passes through the imaging signal as it is and sends it to the subsequent signal path switching unit 26. Therefore, the progressive video processor Even in 3A, appropriate signal processing can be performed.
 以上説明したように本第1の実施形態によると、撮像部からの撮像信号をプログレッシブ方式により走査する内視鏡であっても、インターレース信号処理回路のみを搭載するビデオプロセッサに適合することを可能とする内視鏡を提供することができる。 As described above, according to the first embodiment, even an endoscope that scans an imaging signal from an imaging unit by a progressive method can be adapted to a video processor equipped only with an interlace signal processing circuit. It is possible to provide an endoscope.
 (第2の実施形態)
 次に、本発明の第2の実施形態について説明する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described.
 図15は、本発明の第2の実施形態の内視鏡がインターレース対応ビデオプロセッサに接続された際の構成を示す図であり、図16は、本発明の第2の実施形態の内視鏡がプログレッシブ対応ビデオプロセッサに接続せれた際の構成を示す図である。さらに、図17は、本発明の第2の実施形態の内視鏡における信号処理選択処理の作用を示したフローチャートである。 FIG. 15 is a diagram showing a configuration when an endoscope according to the second embodiment of the present invention is connected to an interlace-compatible video processor, and FIG. 16 is an endoscope according to the second embodiment of the present invention. It is a figure which shows the structure at the time of being connected to the progressive corresponding | compatible video processor. Further, FIG. 17 is a flowchart showing the operation of the signal processing selection process in the endoscope according to the second embodiment of the present invention.
 本第2の実施形態の内視鏡は、その基本的な構成は第1の実施形態と同様であり、前記コネクタ部20におけるFPGA21内の一部の構成のみを異にするものである。したがって、ここでは第1の実施形態との差異のみの説明にとどめ、共通する部分の説明については省略する。 The basic configuration of the endoscope of the second embodiment is the same as that of the first embodiment, and only a part of the configuration within the FPGA 21 in the connector unit 20 is different. Accordingly, only the differences from the first embodiment will be described here, and descriptions of common parts will be omitted.
 上述した第1の実施形態においては、前記FPGA21は、内視鏡1に接続されたプロセッサの種別に応じて信号経路切替部26における信号経路を切り替えるプロセッサ検知回路28を備えるが(図1参照)、第2の実施形態においては、図15、図16に示すように、当該プロセッサ検知回路28に代えて、信号経路切替部26における信号経路を切り替える切替指示信号を送出する切替指示部28aを備えることを特徴とする。 In the first embodiment described above, the FPGA 21 includes the processor detection circuit 28 that switches the signal path in the signal path switching unit 26 according to the type of the processor connected to the endoscope 1 (see FIG. 1). In the second embodiment, as shown in FIGS. 15 and 16, a switching instruction unit 28 a that sends a switching instruction signal for switching the signal path in the signal path switching unit 26 is provided instead of the processor detection circuit 28. It is characterized by that.
 この切替指示部28aは、図示しない操作等(例えば、ユーザーによる設定)により前記切替指示信号を信号経路切替部26に送出する。この切替指示信号は、前記デジタル撮像信号が前記インターレース用信号処理部24を通過する第1の信号経路と、前記プログレッシブ用信号処理部25を通過する第2の信号経路とを切り替えるための指示信号である。 The switching instruction unit 28a sends the switching instruction signal to the signal path switching unit 26 by an operation (not shown) or the like (for example, setting by a user). This switching instruction signal is an instruction signal for switching between a first signal path through which the digital imaging signal passes through the interlace signal processing section 24 and a second signal path through which the progressive signal processing section 25 passes. It is.
 また、本第2の実施形態において信号経路切替部26は、切替指示部28aからの切替指示信号に応じて、前記第1の信号経路と前記第2の信号経路とを切り替えるようになっている。 In the second embodiment, the signal path switching unit 26 switches between the first signal path and the second signal path in response to a switching instruction signal from the switching instruction unit 28a. .
 このように本第2の実施形態においては、内視鏡1に接続されるプロセッサの種別(インターレース対応ビデオプロセッサ3B;図15参照)またはプログレッシブ対応ビデオプロセッサ3C;図16参照))を内視鏡1においては検知することなく、上述した信号経路の切替を行うことができる。 As described above, in the second embodiment, the type of processor connected to the endoscope 1 (interlace-compatible video processor 3B; see FIG. 15) or progressive-compatible video processor 3C; see FIG. In 1, the above-described signal path switching can be performed without detection.
 次に、本実施形態の内視鏡1がインターレース対応ビデオプロセッサ3Bまたはプログレッシブ対応ビデオプロセッサ3Cに接続された際の作用について図17を参照してそれぞれ説明する。 Next, the operation when the endoscope 1 of the present embodiment is connected to the interlace compatible video processor 3B or the progressive compatible video processor 3C will be described with reference to FIG.
 図17に示すように、内視鏡1における切替指示部28aから前記切替指示信号が送出されると(ステップS11)、当該切替指示部28aにおける切替指示がインターレース対応ビデオプロセッサ3Bであるか、またはプログレッシブ対応ビデオプロセッサ3Cであるかに基づいて(ステップS12)、信号経路切替部26は前記第1の信号経路と前記第2の信号経路とを切り替える。 As shown in FIG. 17, when the switching instruction signal is sent from the switching instruction unit 28a in the endoscope 1 (step S11), the switching instruction in the switching instruction unit 28a is the interlace-compatible video processor 3B, or Based on whether the video processor is a progressive video processor 3C (step S12), the signal path switching unit 26 switches between the first signal path and the second signal path.
 すなわち、ステップS12において、切替指示が前記インターレース対応ビデオプロセッサ3Bを示す場合は、前記インターレース用信号処理部24を介する第1の信号経路を選択する(ステップS13)。 That is, when the switching instruction indicates the interlace compatible video processor 3B in step S12, the first signal path through the interlace signal processing unit 24 is selected (step S13).
 一方、切替指示が前記プログレッシブ対応ビデオプロセッサ3Cを示す場合は、前記プログレッシブ用信号処理部25を介する第2の信号経路を選択する(ステップS14)。 On the other hand, when the switching instruction indicates the progressive-compatible video processor 3C, the second signal path through the progressive signal processing unit 25 is selected (step S14).
 以上説明したように本第2の実施形態によると、撮像部からの撮像信号をプログレッシブ方式により走査する内視鏡であっても、接続されるプロセッサの種別検知をすることなく、インターレース信号処理回路のみを搭載するビデオプロセッサに適合することを可能とする内視鏡を提供することができる。 As described above, according to the second embodiment, even in an endoscope that scans an image pickup signal from an image pickup unit by a progressive method, an interlace signal processing circuit is detected without detecting the type of a connected processor. It is possible to provide an endoscope that can be adapted to a video processor equipped only with a video processor.
 なお、上述した実施形態においては、前記FPGA21はコネクタ部20に配設するものとしたが、これに限らず、内視鏡1における操作部等に配設されてもよい。 In the above-described embodiment, the FPGA 21 is disposed in the connector unit 20. However, the present invention is not limited thereto, and may be disposed in an operation unit or the like in the endoscope 1.
 また、本実施形態においては、内視鏡1の撮像素子としてCMOSイメージセンサを想定したが、CMOSイメージセンサに限らず、撮像部からの撮像信号をプログレッシブ方式の映像信号として出力可能な固体撮像素子を採用する内視鏡にも適用することができる。 In the present embodiment, a CMOS image sensor is assumed as the imaging element of the endoscope 1, but is not limited to a CMOS image sensor, and a solid-state imaging element capable of outputting an imaging signal from an imaging unit as a progressive video signal. The present invention can also be applied to an endoscope that employs.
 (第3の実施形態)
 次に、本発明の第3の実施形態について説明する。
(Third embodiment)
Next, a third embodiment of the present invention will be described.
 図18は、本発明の第3の実施形態の内視鏡がインターレース対応ビデオプロセッサに接続された際の構成を示す図であり、図19は、本発明の第3の実施形態の内視鏡がプログレッシブ対応ビデオプロセッサに接続せれた際の構成を示す図である。 FIG. 18 is a diagram showing a configuration when an endoscope according to the third embodiment of the present invention is connected to an interlace-compatible video processor, and FIG. 19 is an endoscope according to the third embodiment of the present invention. It is a figure which shows the structure at the time of being connected to the progressive corresponding | compatible video processor.
 本第3の実施形態の内視鏡は、その基本的な構成は第1、第2の実施形態と同様であり、前記コネクタ部20におけるFPGA21内の一部の構成のみを異にするものである。したがって、ここでは第1、第2の実施形態との差異のみの説明にとどめ、共通する部分の説明については省略する。 The basic configuration of the endoscope of the third embodiment is the same as that of the first and second embodiments, and only a part of the configuration within the FPGA 21 in the connector unit 20 is different. is there. Accordingly, only the differences from the first and second embodiments will be described here, and descriptions of common parts will be omitted.
 上述した第2の実施形態においては、前記FPGA21は、信号経路切替部26における信号経路を切り替える切替指示信号を送出する切替指示部28aを備えることを特徴とする。 In the second embodiment described above, the FPGA 21 includes a switching instruction unit 28a that transmits a switching instruction signal for switching a signal path in the signal path switching unit 26.
 図18および図19に示すように、本第3の実施形態の内視鏡においても、前記FPGA21は前記切替指示部28aを備える。 As shown in FIGS. 18 and 19, also in the endoscope of the third embodiment, the FPGA 21 includes the switching instruction unit 28a.
 また、第3の実施形態において、インターレース対応ビデオプロセッサ3Bおよびプログレッシブ対応ビデオプロセッサ3Cは、接続する内視鏡の種別を識別し、当該内視鏡に対して当該識別情報を通信する制御通信部35を有する。 In the third embodiment, the interlace-compatible video processor 3B and the progressive-compatible video processor 3C identify the type of endoscope to be connected, and communicate the identification information to the endoscope. Have
 一方、第3実施形態の内視鏡は、前記FPGA21に、前記インターレース対応ビデオプロセッサ3Bまたはプログレッシブ対応ビデオプロセッサ3Cに接続した際に、これらビデオプロセッサにおける前記制御通信部35から、上述した当該内視鏡に係る識別情報を受信する制御通信部29が形成されるようになっている。 On the other hand, when the endoscope according to the third embodiment is connected to the FPGA 21 with the interlace-compatible video processor 3B or the progressive-compatible video processor 3C, the endoscope is connected to the endoscope from the control communication unit 35 described above. A control communication unit 29 for receiving identification information related to the mirror is formed.
 前記制御通信部29は、前記切替指示部28aに接続され、受信した前記識別情報を当該切替指示部28aに伝達するようになっている。 The control communication unit 29 is connected to the switching instruction unit 28a, and transmits the received identification information to the switching instruction unit 28a.
 また、第3の実施形態において前記切替指示部28aは、制御通信部29から伝達された前記識別情報に応じて切替指示信号を信号経路切替部26に送出する。 In the third embodiment, the switching instruction unit 28 a sends a switching instruction signal to the signal path switching unit 26 according to the identification information transmitted from the control communication unit 29.
 第3の実施形態においても切替指示部28aから送出される前記切替指示信号は、前記デジタル撮像信号が前記インターレース用信号処理部24を通過する第1の信号経路と、前記プログレッシブ用信号処理部25を通過する第2の信号経路とを切り替えるための指示信号である。 Also in the third embodiment, the switching instruction signal sent from the switching instruction unit 28a includes the first signal path through which the digital imaging signal passes through the interlace signal processing unit 24 and the progressive signal processing unit 25. This is an instruction signal for switching the second signal path passing through.
 そして、前記信号経路切替部26は、切替指示部28aからの切替指示信号に応じて、前記第1の信号経路と前記第2の信号経路とを切り替えるようになっている。 The signal path switching unit 26 switches between the first signal path and the second signal path in response to a switching instruction signal from the switching instruction unit 28a.
 次に、本第3の実施形態の内視鏡がインターレース対応ビデオプロセッサ3Bまたはプログレッシブ対応ビデオプロセッサ3Cに接続された際の作用について説明する。 Next, the operation when the endoscope of the third embodiment is connected to the interlace compatible video processor 3B or the progressive compatible video processor 3C will be described.
 内視鏡1が図18、図19に示すインターレース対応ビデオプロセッサ3Bまたはプログレッシブ対応ビデオプロセッサ3Cに接続されると、当該ビデオプロセッサ3Bまたはビデオプロセッサ3Cは、前記制御通信部35と制御通信部29との通信により、または、所定の検知方法により、接続された内視鏡1の種別を検知して識別する。 When the endoscope 1 is connected to the interlace-compatible video processor 3B or the progressive-compatible video processor 3C shown in FIGS. 18 and 19, the video processor 3B or the video processor 3C includes the control communication unit 35, the control communication unit 29, The type of the connected endoscope 1 is detected and identified by the above communication or by a predetermined detection method.
 その後、ビデオプロセッサ3Bまたはビデオプロセッサ3Cは、上述した識別結果に基づく識別情報を当該ビデオプロセッサ側における前記制御通信部35から内視鏡側の制御通信部29に対して送信する。 Thereafter, the video processor 3B or the video processor 3C transmits identification information based on the above-described identification result from the control communication unit 35 on the video processor side to the control communication unit 29 on the endoscope side.
 そして、前記制御通信部29は、受信した識別情報を切替指示部28aに伝達し、当該識別情報を受けた切替指示部28aから所定の切替指示信号が信号経路切替部26に送出される。 The control communication unit 29 transmits the received identification information to the switching instruction unit 28a, and a predetermined switching instruction signal is sent to the signal path switching unit 26 from the switching instruction unit 28a that has received the identification information.
 その後、前記信号経路切替部26は、切替指示部28aからの切替指示信号に応じて、前記第1の信号経路と前記第2の信号経路とを切り替える。 Thereafter, the signal path switching unit 26 switches between the first signal path and the second signal path in accordance with a switching instruction signal from the switching instruction unit 28a.
 すなわち、切替指示が前記インターレース対応ビデオプロセッサ3Bを示す場合は、前記インターレース用信号処理部24を介する第1の信号経路を選択し(図18参照)、一方、切替指示が前記プログレッシブ対応ビデオプロセッサ3Cを示す場合は、前記プログレッシブ用信号処理部25を介する第2の信号経路を選択する(図19参照)。 That is, when the switching instruction indicates the interlace-compatible video processor 3B, the first signal path via the interlace signal processor 24 is selected (see FIG. 18), while the switching instruction indicates the progressive-compatible video processor 3C. Is selected, the second signal path through the progressive signal processing unit 25 is selected (see FIG. 19).
 以上説明したように本第3の実施形態によると、撮像部からの撮像信号をプログレッシブ方式により走査する内視鏡であっても、インターレース信号処理回路のみを搭載するビデオプロセッサに適合することを可能とする内視鏡を提供することができる。 As described above, according to the third embodiment, even an endoscope that scans an imaging signal from an imaging unit by a progressive method can be adapted to a video processor equipped only with an interlace signal processing circuit. It is possible to provide an endoscope.
 (第4の実施形態)
 次に、本発明の第4の実施形態について説明する。
(Fourth embodiment)
Next, a fourth embodiment of the present invention will be described.
 図20は、本発明の第4の実施形態の内視鏡がインターレース対応ビデオプロセッサに接続された際の構成を示す図であり、図21は、本発明の第34実施形態の内視鏡がプログレッシブ対応ビデオプロセッサに接続せれた際の構成を示す図である。 FIG. 20 is a diagram showing a configuration when an endoscope according to the fourth embodiment of the present invention is connected to an interlace-compatible video processor, and FIG. 21 shows an endoscope according to the 34th embodiment of the present invention. It is a figure which shows the structure at the time of being connected to the progressive corresponding | compatible video processor.
 本第4の実施形態の内視鏡は、その基本的な構成は第1、第2の実施形態と同様であり、前記コネクタ部20におけるFPGA21内の一部の構成のみを異にするものである。したがって、ここでは第1、第2の実施形態との差異のみの説明にとどめ、共通する部分の説明については省略する。 The basic configuration of the endoscope of the fourth embodiment is the same as that of the first and second embodiments, and only a part of the configuration within the FPGA 21 in the connector unit 20 is different. is there. Accordingly, only the differences from the first and second embodiments will be described here, and descriptions of common parts will be omitted.
 上述した第2の実施形態においては、前記FPGA21は、信号経路切替部26における信号経路を切り替える切替指示信号を送出する切替指示部28aを備えることを特徴とする。 In the second embodiment described above, the FPGA 21 includes a switching instruction unit 28a that transmits a switching instruction signal for switching a signal path in the signal path switching unit 26.
 図20および図21に示すように、本第4の実施形態の内視鏡においても、前記FPGA21は前記切替指示部28aを備える。 20 and 21, also in the endoscope of the fourth embodiment, the FPGA 21 includes the switching instruction unit 28a.
 また、第4の実施形態において、インターレース対応ビデオプロセッサ3Bおよびプログレッシブ対応ビデオプロセッサ3Cは、接続する内視鏡からのスコープID情報を受けてスコープの種別を検知するスコープ検知部71を備える。 In the fourth embodiment, the interlace-compatible video processor 3B and the progressive-compatible video processor 3C include a scope detection unit 71 that receives the scope ID information from the connected endoscope and detects the type of the scope.
 一方、第4実施形態の内視鏡1は、前記FPGA21に、当該内視鏡固有のID情報を格納するスコープID情報部61が形成されると共に、接続されたビデオプロセッサの種別を検知する信号仕様検知部62が形成されるようになっている。 On the other hand, in the endoscope 1 according to the fourth embodiment, a scope ID information unit 61 for storing ID information unique to the endoscope is formed in the FPGA 21, and a signal for detecting the type of the connected video processor is detected. A specification detector 62 is formed.
 この信号仕様検知部62は、当該内視鏡1に前記インターレース対応ビデオプロセッサ3Bまたはプログレッシブ対応ビデオプロセッサ3Cが接続された際に、これらビデオプロセッサにおけるクロック同期信号生成部31から出力される撮像素子(本実施形態においてはCMOSセンサ11)を駆動するためのクロック信号、同期信号(HD,VD)を受信して当該信号の仕様からビデオプロセッサの種別を検知するようになっている。 When the interlace-compatible video processor 3B or the progressive-compatible video processor 3C is connected to the endoscope 1, the signal specification detection unit 62 outputs an image pickup element (output from the clock synchronization signal generation unit 31 in these video processors ( In this embodiment, a clock signal for driving the CMOS sensor 11) and a synchronization signal (HD, VD) are received, and the type of the video processor is detected from the specification of the signal.
 また信号仕様検知部62は、前記切替指示部28aに接続され、検知したビデオプロセッサの種別情報(識別情報)を当該切替指示部28aに伝達するようになっている。 The signal specification detection unit 62 is connected to the switching instruction unit 28a, and transmits the detected video processor type information (identification information) to the switching instruction unit 28a.
 第4の実施形態において前記切替指示部28aは、信号仕様検知部62から伝達された前記識別情報に応じて切替指示信号を信号経路切替部26に送出する。 In the fourth embodiment, the switching instruction unit 28a sends a switching instruction signal to the signal path switching unit 26 in accordance with the identification information transmitted from the signal specification detection unit 62.
 そして、第4の実施形態においても、上記同様に、切替指示部28aから送出される前記切替指示信号は、前記デジタル撮像信号が前記インターレース用信号処理部24を通過する第1の信号経路と、前記プログレッシブ用信号処理部25を通過する第2の信号経路とを切り替えるための指示信号であり、前記信号経路切替部26は、切替指示部28aからの切替指示信号に応じて、前記第1の信号経路と前記第2の信号経路とを切り替えるようになっている。 Also in the fourth embodiment, similarly to the above, the switching instruction signal transmitted from the switching instruction unit 28a includes the first signal path through which the digital imaging signal passes through the interlace signal processing unit 24, and An instruction signal for switching between the second signal path passing through the progressive signal processing unit 25, and the signal path switching unit 26 is configured to change the first signal path according to the switching instruction signal from the switching instruction unit 28a. A signal path and the second signal path are switched.
 次に、本第4の実施形態の内視鏡がインターレース対応ビデオプロセッサ3Bまたはプログレッシブ対応ビデオプロセッサ3Cに接続された際の作用について説明する。 Next, the operation when the endoscope of the fourth embodiment is connected to the interlace compatible video processor 3B or the progressive compatible video processor 3C will be described.
 内視鏡1が図20、図21に示すインターレース対応ビデオプロセッサ3Bまたはプログレッシブ対応ビデオプロセッサ3Cに接続されると、当該ビデオプロセッサ3Bまたはビデオプロセッサ3Cは、まず、スコープ検知部71において、接続した内視鏡1における前記スコープID情報部61に格納されたID情報に基づいて当該内視鏡1の種別を検知する。 When the endoscope 1 is connected to the interlace-compatible video processor 3B or the progressive-compatible video processor 3C shown in FIGS. 20 and 21, the video processor 3B or the video processor 3C is first connected in the scope detection unit 71. The type of the endoscope 1 is detected based on the ID information stored in the scope ID information unit 61 in the endoscope 1.
 その後、ビデオプロセッサ3Bまたはビデオプロセッサ3Cは、スコープ検知部71において検知した内視鏡1のID情報に応じて、内視鏡1における撮像素子(本実施形態の内視鏡1においてはCMOSセンサ11)を駆動するための信号(クロック信号、同期信号HD,VD)をクロック同期信号生成部31から出力する。 Thereafter, the video processor 3B or the video processor 3C determines the imaging element in the endoscope 1 (the CMOS sensor 11 in the endoscope 1 of the present embodiment) according to the ID information of the endoscope 1 detected by the scope detection unit 71. ) Is output from the clock synchronization signal generation unit 31 (clock signal, synchronization signal HD, VD).
 一方、内視鏡1は、FPGA21に形成した前記信号仕様検知部62において、前記クロック同期信号生成部31から出力された前記信号(クロック信号、同期信号HD,VD)を受信し、当該信号の仕様からビデオプロセッサの種別を検知する。 On the other hand, the endoscope 1 receives the signal (clock signal, synchronization signal HD, VD) output from the clock synchronization signal generation unit 31 in the signal specification detection unit 62 formed in the FPGA 21, and The type of video processor is detected from the specification.
 その後信号仕様検知部62は、検知したビデオプロセッサの種別情報(識別情報)を切替指示部28aに伝達し、前記切替指示部28aは、信号仕様検知部62から伝達された前記識別情報に応じて切替指示信号を信号経路切替部26に送出する。 Thereafter, the signal specification detection unit 62 transmits the detected video processor type information (identification information) to the switching instruction unit 28 a, and the switching instruction unit 28 a responds to the identification information transmitted from the signal specification detection unit 62. A switching instruction signal is sent to the signal path switching unit 26.
 そして、第4の実施形態においても、上記同様に、前記信号経路切替部26は、切替指示部28aからの切替指示信号に応じて、前記第1の信号経路と前記第2の信号経路とを切り替える。 Also in the fourth embodiment, similarly to the above, the signal path switching unit 26 switches between the first signal path and the second signal path in response to the switching instruction signal from the switching instruction unit 28a. Switch.
 すなわち、切替指示が前記インターレース対応ビデオプロセッサ3Bを示す場合は、前記インターレース用信号処理部24を介する第1の信号経路を選択し(図20参照)、一方、切替指示が前記プログレッシブ対応ビデオプロセッサ3Cを示す場合は、前記プログレッシブ用信号処理部25を介する第2の信号経路を選択する(図21参照)。 That is, when the switching instruction indicates the interlace-compatible video processor 3B, the first signal path via the interlace signal processing unit 24 is selected (see FIG. 20), while the switching instruction indicates the progressive-compatible video processor 3C. Is selected, the second signal path through the progressive signal processor 25 is selected (see FIG. 21).
 以上説明したように本第4の実施形態によると、撮像部からの撮像信号をプログレッシブ方式により走査する内視鏡であっても、インターレース信号処理回路のみを搭載するビデオプロセッサに適合することを可能とする内視鏡を提供することができる。 As described above, according to the fourth embodiment, even an endoscope that scans an imaging signal from an imaging unit by a progressive method can be adapted to a video processor equipped only with an interlace signal processing circuit. It is possible to provide an endoscope.
 なお、上述した実施形態においては、前記FPGA21はコネクタ部20に配設するものとしたが、これに限らず、内視鏡1における操作部等に配設されてもよい。 In the above-described embodiment, the FPGA 21 is disposed in the connector unit 20. However, the present invention is not limited thereto, and may be disposed in an operation unit or the like in the endoscope 1.
 また、本実施形態においては、内視鏡1の撮像素子としてCMOSイメージセンサを想定したが、CMOSイメージセンサに限らず、撮像部からの撮像信号をプログレッシブ方式の映像信号として出力可能な固体撮像素子を採用する内視鏡にも適用することができる。 In the present embodiment, a CMOS image sensor is assumed as the imaging element of the endoscope 1, but is not limited to a CMOS image sensor, and a solid-state imaging element capable of outputting an imaging signal from an imaging unit as a progressive video signal. The present invention can also be applied to an endoscope that employs.
 なお、本発明は、上述した実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化することができる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明の態様を形成することができる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに異なる実施形態にわたる構成要素を適宜組み合わせても良い。 Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various aspects of the invention can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.
 本出願は、2014年12月26日に日本国に出願された特願2014-265540号を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲、図面に引用されたものとする。 This application is filed on the basis of the priority claim of Japanese Patent Application No. 2014-265540 filed in Japan on December 26, 2014, and the above disclosure is disclosed in the present specification, claims, It shall be cited in the drawing.

Claims (9)

  1.  光を光電変換して画素信号を生成する複数の画素により構成された画素部と前記画素上に設けられたベイヤ配列の原色カラーフィルタとを有し、当該複数の画素によって生成される画素信号で構成される撮像信号を生成する撮像部と、
     前記撮像部から、前記撮像信号を読み出してプログレッシブ方式の映像信号として出力する読み出し部と、
     前記読み出し部において読み出された前記映像信号の処理形式を、後段に接続される別体の信号処理装置において処理可能な処理形式に変換する変換部と、
     前記変換部で前記処理形式が変換された前記映像信号を、前記信号処理装置に出力する出力部と、
     を具備することを特徴とする内視鏡。
    A pixel signal generated by a plurality of pixels having a pixel portion composed of a plurality of pixels that photoelectrically convert light to generate a pixel signal and a Bayer array primary color filter provided on the pixels. An imaging unit for generating a configured imaging signal;
    A readout unit that reads out the imaging signal from the imaging unit and outputs it as a progressive video signal;
    A conversion unit that converts the processing format of the video signal read by the reading unit into a processing format that can be processed by a separate signal processing device connected to a subsequent stage;
    An output unit that outputs the video signal whose processing format has been converted by the conversion unit to the signal processing device;
    An endoscope comprising:
  2.  前記変換部は、前記読み出し部において読み出された前記プログレッシブ方式の映像信号を、後段に接続される別体の信号処理装置において処理可能なインターレース方式の処理形式に変換する
     ことを特徴とする請求項1に記載の内視鏡。
    The conversion unit converts the progressive video signal read by the reading unit into an interlaced processing format that can be processed by a separate signal processing device connected to a subsequent stage. The endoscope according to Item 1.
  3.  前記変換部は、前記読み出し部において読み出された前記プログレッシブ方式の映像信号に対して所定の画素補正を施す間欠画素補正部を備える
     ことを特徴とする請求項2に記載の内視鏡。
    The endoscope according to claim 2, wherein the conversion unit includes an intermittent pixel correction unit that performs predetermined pixel correction on the progressive video signal read by the reading unit.
  4.  前記変換部は、前記間欠画素補正部によって間欠画素が補正された各色毎にライン加算により前記プログレッシブ方式の映像信号からインターレース方式の映像信号に変換し出力するプログレッシブ・インターレース変換部を備える
     ことを特徴とする請求項3に記載の内視鏡。
    The conversion unit includes a progressive interlace conversion unit that converts the progressive video signal into an interlace video signal by line addition for each color in which the intermittent pixel is corrected by the intermittent pixel correction unit, and outputs the interlace video signal. The endoscope according to claim 3.
  5.  前記変換部は、前記プログレッシブ・インターレース変換部から出力される前記インターレース方式の映像信号に対して、当該変換部の後段に接続される別体の前記信号処理装置における処理形態に合わせた所定の映像信号のフォーマット変換を行うフォーマット変換部を備える
     ことを特徴とする請求項4に記載の内視鏡。
    The conversion unit, for the interlaced video signal output from the progressive interlace conversion unit, a predetermined video in accordance with a processing form in a separate signal processing device connected to a subsequent stage of the conversion unit The endoscope according to claim 4, further comprising a format conversion unit that performs signal format conversion.
  6.  前記間欠画素補正部は、前記撮像部における前記ベイヤ配列の原色カラーフィルタにおけるRGBフィルタ毎に間欠画素を周辺の画素情報で補正する
     ことを特徴とする請求項3に記載の内視鏡。
    The endoscope according to claim 3, wherein the intermittent pixel correction unit corrects intermittent pixels with peripheral pixel information for each of RGB filters in the primary color filter of the Bayer array in the imaging unit.
  7.  前記後段に接続される別体の信号処理装置として、インターレース方式の映像信号のみを処理可能なインターレース画像処理部を備える第1のビデオプロセッサと、プログレッシブ方式の映像信号を処理可能な第2のビデオプロセッサと、を接続可能とする映像信号出力部と、
     前記読み出し部において読み出された前記プログレッシブ方式の映像信号を、前記変換部を介してインターレース方式の映像信号に変換せしめる第1の信号経路と、前記プログレッシブ方式の映像信号を、前記変換部を介すことなく当該プログレッシブ方式の映像信号の状態にて出力せしめる第2の信号経路と、を切り替える信号経路切替部と、
     を具備することを特徴とする請求項2に記載の内視鏡。
    As a separate signal processing apparatus connected to the subsequent stage, a first video processor including an interlaced image processing unit capable of processing only an interlaced video signal and a second video capable of processing a progressive video signal A video signal output unit capable of connecting a processor;
    A first signal path for converting the progressive video signal read by the reading unit into an interlace video signal via the conversion unit, and the progressive video signal via the conversion unit. A signal path switching unit that switches between the second signal path that is output in the state of the progressive video signal without the
    The endoscope according to claim 2, further comprising:
  8.  前記映像信号出力部に接続されている前記別体の信号処理装置が、前記第1のビデオプロセッサであるか、または、前記第2のビデオプロセッサであるかを識別可能な識別部をさらに具備し、
     前記信号経路切替部は、前記識別部の識別結果に応じて、前記第1の信号経路と前記第2の信号経路とを切り替える
     ことを特徴とする請求項7に記載の内視鏡。
    The image processing apparatus further includes an identification unit capable of identifying whether the separate signal processing device connected to the video signal output unit is the first video processor or the second video processor. ,
    The endoscope according to claim 7, wherein the signal path switching unit switches between the first signal path and the second signal path according to an identification result of the identification unit.
  9.  前記第1の信号経路と前記第2の信号経路とを切り替えるための切替指示信号を出力する切替指示部をさらに具備し、
     前記信号経路切替部は、前記切替指示部から出力される前記切替指示信号に応じて、前記第1の信号経路と前記第2の信号経路とを切り替える
     ことを特徴とする請求項7に記載の内視鏡。
    A switching instruction unit that outputs a switching instruction signal for switching between the first signal path and the second signal path;
    The signal path switching unit switches between the first signal path and the second signal path in accordance with the switching instruction signal output from the switching instruction unit. Endoscope.
PCT/JP2015/079608 2014-12-26 2015-10-20 Endoscope WO2016103878A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201590000853.3U CN207785129U (en) 2014-12-26 2015-10-20 Endoscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-265540 2014-12-26
JP2014265540 2014-12-26

Publications (1)

Publication Number Publication Date
WO2016103878A1 true WO2016103878A1 (en) 2016-06-30

Family

ID=56149915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079608 WO2016103878A1 (en) 2014-12-26 2015-10-20 Endoscope

Country Status (2)

Country Link
CN (1) CN207785129U (en)
WO (1) WO2016103878A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020044637A1 (en) * 2018-08-28 2020-03-05 オリンパス株式会社 Endoscope, driving method, and program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002209836A (en) * 2001-01-16 2002-07-30 Olympus Optical Co Ltd Image processor
JP2002253496A (en) * 2001-03-05 2002-09-10 Asahi Optical Co Ltd Electronic endoscope and video signal processor for the same
JP2009188840A (en) * 2008-02-07 2009-08-20 Ricoh Co Ltd Progressive-to-interlace conversion method, image processing apparatus, and imaging apparatus
JP2010119081A (en) * 2008-10-15 2010-05-27 Ricoh Co Ltd Moving image processing apparatus and video camera apparatus using the same
JP2013094269A (en) * 2011-10-28 2013-05-20 Fujifilm Corp Endoscope apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002209836A (en) * 2001-01-16 2002-07-30 Olympus Optical Co Ltd Image processor
JP2002253496A (en) * 2001-03-05 2002-09-10 Asahi Optical Co Ltd Electronic endoscope and video signal processor for the same
JP2009188840A (en) * 2008-02-07 2009-08-20 Ricoh Co Ltd Progressive-to-interlace conversion method, image processing apparatus, and imaging apparatus
JP2010119081A (en) * 2008-10-15 2010-05-27 Ricoh Co Ltd Moving image processing apparatus and video camera apparatus using the same
JP2013094269A (en) * 2011-10-28 2013-05-20 Fujifilm Corp Endoscope apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020044637A1 (en) * 2018-08-28 2020-03-05 オリンパス株式会社 Endoscope, driving method, and program
US11877046B2 (en) 2018-08-28 2024-01-16 Olympus Corporation Endoscope, driving method, and endoscope system

Also Published As

Publication number Publication date
CN207785129U (en) 2018-08-31

Similar Documents

Publication Publication Date Title
JP3041099B2 (en) Electronic endoscope device
JP6138406B1 (en) Imaging device, endoscope and endoscope system
JP2011216948A (en) Camera system, video processing apparatus, and camera apparatus
KR20060045419A (en) Image-capturing apparatus
US9876974B2 (en) Endoscope
JP6164836B2 (en) Endoscope
JP2013244250A (en) Electronic endoscope device and method for correcting imaged image of the same
US20090021622A1 (en) Solid-state imaging apparatus
WO2017017972A1 (en) Image data transmission system
WO2016103878A1 (en) Endoscope
JP5362954B2 (en) Image processor
JP2018074311A (en) Imaging apparatus and driving method of imaging apparatus
JP6650969B2 (en) Endoscope system
JP2013062713A (en) Imaging apparatus and imaging system
JP5450296B2 (en) Endoscope system
JP5927371B1 (en) Endoscope
JP5624804B2 (en) Read control device, read control method, program, imaging device, and solid-state imaging device
JP6370604B2 (en) Endoscope system
JP2014099794A (en) Imaging device and signal processing device
WO2016088422A1 (en) Endoscope
JP4206738B2 (en) Imaging apparatus and method
JP4329336B2 (en) Imaging apparatus and imaging method
JP2011055543A (en) Head separated camera apparatus and digital video signal transmitting method
JP6589071B2 (en) Imaging device, endoscope and endoscope system
JP4554920B2 (en) Electronic endoscope device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15872447

Country of ref document: EP

Kind code of ref document: A1