WO2016103868A1 - 色素増感光電変換素子 - Google Patents

色素増感光電変換素子 Download PDF

Info

Publication number
WO2016103868A1
WO2016103868A1 PCT/JP2015/079378 JP2015079378W WO2016103868A1 WO 2016103868 A1 WO2016103868 A1 WO 2016103868A1 JP 2015079378 W JP2015079378 W JP 2015079378W WO 2016103868 A1 WO2016103868 A1 WO 2016103868A1
Authority
WO
WIPO (PCT)
Prior art keywords
dye
photoelectric conversion
conversion element
sensitized photoelectric
iodide salt
Prior art date
Application number
PCT/JP2015/079378
Other languages
English (en)
French (fr)
Inventor
康晴 中井
正子 三好
倉谷 康浩
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2016103868A1 publication Critical patent/WO2016103868A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the present invention relates to a dye-sensitized photoelectric conversion element, and more particularly to a dye-sensitized photoelectric conversion element having a high open-circuit voltage including a porous film mainly composed of ZnO.
  • Dye-sensitized photoelectric conversion elements having an increased electromotive force by supporting a dye on a metal oxide porous film have been utilized for applications such as solar cells.
  • Patent Document 1 Japanese Patent Laid-Open No. 01-220380.
  • the porous film containing TiO 2 as a main component is formed, for example, by applying a TiO 2 paste on an electrode film formed on a substrate and baking it at a temperature of 450 to 500 ° C. Therefore, in a dye-sensitized photoelectric conversion element using a porous film containing TiO 2 as a main component, a plastic substrate that is weak at high temperatures cannot be used as a substrate.
  • the plastic substrate is excellent in processability and easily obtains the desired shape. Therefore, if the plastic substrate can be used, the design of the dye-sensitized photoelectric conversion element in terms of shape is more flexible than when a glass substrate is used. The degree is improved. Moreover, if the dye-sensitized photoelectric conversion element is used, the degree of freedom in designing a device such as a solar cell can be improved. However, since the dye-sensitized photoelectric conversion element using the TiO 2 porous film includes a high-temperature process in the manufacturing process as described above, a plastic substrate cannot be used.
  • Patent Document 2 Japanese Patent Laid-Open No. 2004-006235
  • Non-Patent Document 1 Abstracts of 2006 Annual Meeting of the Electrochemical Society of Japan (page 35 1B27)
  • ZnO is the main component at a low temperature process of 100 ° C.
  • a method for forming a porous film is disclosed. According to these methods, a dye-sensitized photoelectric conversion element using a plastic substrate can be realized.
  • the dye-sensitized photoelectric conversion element using the porous film mainly composed of ZnO has a problem that the open circuit voltage is low. That is, it is not possible to obtain an open circuit voltage of a predetermined height simply by forming a ZnO porous film, and it is necessary to improve the open circuit voltage by some method for practical use.
  • a wide gap oxide is deposited on the porous film and coated.
  • the open-circuit voltage is improved by suppressing loss due to reverse electron transfer from the electrode (loss of recombination of electrons to the electrolyte).
  • Non-Patent Document 1 since a wide gap oxide is formed by precipitation, it is difficult to stably coat the porous film. Further, since an additional step of forming a wide gap oxide is required, there is a problem in that the manufacturing is complicated, the cost is increased, and the productivity is poor.
  • the dye-sensitized photoelectric conversion element of the present invention includes a transparent support substrate and a transparent electrode formed on the support substrate.
  • a working electrode substrate comprising a film, a porous film mainly composed of ZnO carrying a dye formed on the electrode film, a support substrate, and an electrode film formed on the support substrate
  • a counter electrode substrate and an electrolyte containing iodine redox, and the working electrode substrate and the counter electrode substrate are electrolyzed with the porous film side of the working electrode substrate and the electrode film side of the counter electrode substrate inside. It was assumed that the electrolyte solution contained an iodide salt having a cation with a molecular weight of 125 g / mol or more.
  • a catalyst film having a catalytic function is further formed on the electrode film of the counter electrode substrate.
  • the main component of the catalyst film for example, Pt, PEDOT, carbon or the like can be used.
  • the molecular weight of the cation of the iodide salt is preferably 160 g / mol or less. In this case, in addition to a high open circuit voltage, a dye-sensitized photoelectric conversion element having a high fill factor can be obtained.
  • the electrolytic solution further includes at least one second iodide salt having a cation having a molecular weight of less than 150 g / mol.
  • the electrolytic solution in addition to a high open circuit voltage, a dye-sensitized photoelectric conversion element having a high fill factor can be obtained.
  • the molecular weight of the cation of the second iodide salt contained in the electrolytic solution is less than 140 g / mol. This is because the improvement of the fill factor becomes more certain.
  • the second iodide salt is preferably contained in the electrolytic solution in an amount of 0.14M or more. This is because the fill factor is sufficiently improved in this case.
  • the second iodide salt is preferably a nonmetallic iodide salt.
  • the fill factor is improved without lowering the open circuit voltage.
  • the second iodide salt is neither ZnI nor LiI. Also in this case, the fill factor is improved without reducing the open circuit voltage.
  • At least the support substrate of the working electrode substrate is preferably composed of a flexible resin film. In this case, the degree of freedom in designing the shape of the dye-sensitized photoelectric conversion element is improved.
  • the support substrate for the counter electrode substrate may also be formed of a flexible resin film. In this case, the degree of freedom in designing the shape of the dye-sensitized photoelectric conversion element is further improved.
  • the dye-sensitized photoelectric conversion element of the present invention has a sufficiently high open-circuit voltage because the electrolyte contains an iodide salt having a cationic molecular weight of 125 g / mol or more.
  • FIG. 2A to 2E are cross-sectional views showing steps performed in an example of a method for manufacturing the dye-sensitized photoelectric conversion element 100.
  • FIG. 3 (F) to (H) are cross-sectional views illustrating steps performed in an example of the method for manufacturing the dye-sensitized photoelectric conversion element 100, which are continued from FIG. 6 is a graph showing the relationship between the cation molecular weight of an iodide salt and the open circuit voltage of the dye-sensitized photoelectric conversion device produced in Experiment 1.
  • 6 is a graph showing the relationship between the cation molecular weight of iodide salt and the far factor of the dye-sensitized photoelectric conversion device prepared in Experiment 1. It is a graph which shows the relationship between the cation molecular weight of the 2nd iodide salt of the dye-sensitized photoelectric conversion element produced in Experiment 2, and an open circuit voltage. It is a graph which shows the relationship between the cation molecular weight of a 2nd iodide salt, and a far factor of the dye-sensitized photoelectric conversion element produced in Experiment.
  • FIG. 1 shows a dye-sensitized photoelectric conversion element 100 according to this embodiment.
  • FIG. 1 is a cross-sectional view showing the main part of the dye-sensitized photoelectric conversion element 100.
  • the dye-sensitized photoelectric conversion element 100 includes a working electrode substrate 10 and a counter electrode substrate 20.
  • the working electrode substrate 10 includes a non-conductive and transparent support substrate 1.
  • the support substrate 1 is made of, for example, a flexible resin film.
  • a transparent electrode film 2 is formed on the support substrate 1.
  • the electrode film 2 is made of, for example, indium tin oxide (hereinafter referred to as “ITO”).
  • a metal oxide porous film 3 mainly composed of ZnO is formed on the electrode film 2.
  • the pigment is supported on the porous film 3.
  • D102, D131, D149, or the like is used as the dye.
  • the counter substrate 20 includes a non-conductive support substrate 5.
  • the support substrate 5 does not have to be transparent, but in the present embodiment, a transparent flexible resin film is used for the support substrate 5 as well as the support substrate 1.
  • An electrode film 6 is formed on the support substrate 5.
  • the electrode film 6 need not be transparent, but in the present embodiment, transparent ITO is used for the electrode film 6 as well as the electrode film 2.
  • a catalyst film 7 is formed on the electrode film 6.
  • the catalyst film 7 is made of, for example, Pt, PEDOT, carbon, or the like.
  • the working electrode substrate 10 and the counter electrode substrate 20 are arranged such that the side of the working electrode substrate 10 on which the electrode film 2 and the porous film 3 are formed and the side of the counter electrode substrate 20 on which the electrode film 6 and the catalyst film 7 are formed are inward.
  • the electrolytic solution 30 is sealed in between, and then bonded to each other by the sealing material 40.
  • Electrolytic solution 30 contains iodine redox.
  • the electrolytic solution 30 is made of, for example, iodine and an iodide salt dissolved in an organic solvent such as propylene carbonate, acetonitrile, or gamma butyl lactone, or a solvent such as an ionic liquid.
  • An iodide salt having a cation with a molecular weight of 125 g / mol or more is used in order to increase the open circuit voltage.
  • the iodide salt having a cation having a molecular weight of 125 g / mol or more include methylpropyl imidazolium iodide (cation molecular weight: 125 g / mol), dimethylpropyl imidazolium iodide (cation molecular weight: 139 g / mol), and iodide. And tributylmethylphosphonium (cation molecular weight: 223 g / mol).
  • the iodide salt preferably has a cation molecular weight of 160 g / mol or less in order to increase the fill factor.
  • the fill factor can be increased by adding a second iodide salt having a cation molecular weight of less than 150 g / mol.
  • the second iodide salt is added in an amount of 0.14M or more. This is because the fill factor is sufficiently improved in this case.
  • the second iodide salt is preferably a nonmetallic iodide salt.
  • the fill factor is improved without lowering the open circuit voltage.
  • the second iodide salt is neither ZnI nor LiI. Also in this case, the fill factor is improved without reducing the open circuit voltage.
  • the 2nd iodide salt added may be 1 type and multiple types may be sufficient as it.
  • the electrolytic solution 30 contains an iodide salt, or an iodide salt and a second iodide salt.
  • sealing material 40 for example, an ultraviolet curable resin is used.
  • the dye-sensitized photoelectric conversion element 100 is porous with ZnO as a main component that passes through the support substrate 1 and the electrode film 2 of the working electrode substrate 10 and carries the dye.
  • ZnO as a main component that passes through the support substrate 1 and the electrode film 2 of the working electrode substrate 10 and carries the dye.
  • the light energy is absorbed by the dye supported on ZnO, and a voltage is generated between the electrode film 2 and the electrode film 6.
  • the dye-sensitized photoelectric conversion element 100 according to the present embodiment having the above-described configuration is manufactured through, for example, the steps shown in FIGS. 2 (A) to 3 (H).
  • a non-conductive and transparent support substrate 1 on which a transparent electrode film 2 is formed is commercially available.
  • a PET film on which an ITO electrode film is formed is prepared.
  • the sheet resistance of the ITO electrode film was 10 ⁇ / sq.
  • a ZnO paste is prepared. Specifically, first, a ZnO powder having an average particle diameter of 25 nm and excellent transparency (manufactured by Teika; product number: MZ-500) is prepared. Next, this ZnO powder is heated at 450 ° C. for 60 minutes in an air atmosphere. Next, 10 g of the obtained ZnO powder is put into 30 mL of ethanol and stirred for 10 minutes while cooling using a magnetic stirrer to obtain a ZnO paste.
  • a metal oxide porous film 3 mainly composed of ZnO is formed on the electrode film 2 formed on the support substrate 1.
  • a masking tape (not shown) having a thickness of about 100 ⁇ m is attached to a portion of the electrode film 2 where the porous film 3 is not formed.
  • the above-described ZnO paste is dropped on the portion of the electrode film 2 where the masking tape is not stretched.
  • the dropped ZnO paste is spread with a glass rod so as to become flat.
  • the support substrate 1 on which the ZnO paste is dropped on the electrode film 2 is heated in an atmosphere of 100 ° C. for 30 minutes to remove ethanol from the ZnO paste.
  • the support substrate 1 on which the ZnO paste is dropped on the electrode film 2 is immersed in warm water stabilized at 40 ° C. for 10 minutes, and then dried in an atmosphere at 100 ° C., whereby ZnO is deposited on the electrode film 2.
  • a support substrate 1 on which a porous film 3 containing as a main component is formed is obtained.
  • the metal oxide porous film 3 mainly composed of ZnO of the working electrode substrate 10 is formed by a low-temperature process of 100 ° C. or less.
  • the dye is supported on the porous film 3 containing ZnO as a main component.
  • the support substrate 1 on which the electrode film 2 and the porous film 3 are formed is immersed in an ethanol solution of 0.5 mM D149 in an atmosphere at 25 ° C. for 2 hours.
  • the support substrate 1 on which the electrode film 2 and the porous film 3 are formed is naturally dried, and the dye is supported on the porous film 3 mainly composed of ZnO.
  • the operation including the support substrate 1, the electrode film 2 formed on the support substrate 1, and the porous film 3 mainly composed of ZnO carrying the pigment formed on the electrode film 2 is provided.
  • the polar substrate 10 is completed.
  • the counter electrode substrate 20 is produced.
  • an ITO electrode film is formed on the surface in advance as a non-conductive support substrate 5 on which the electrode film 6 is formed in order to produce the counter electrode substrate 20.
  • a prepared PET film is prepared.
  • the same support substrate 1 and electrode film 2 of the working electrode substrate 10 were used for the support substrate 5 and the conductive film 6 of the counter electrode substrate 20.
  • the support substrate 5 and the conductive film 6 do not need to be transparent, but are transparent because they are the same as the support substrate 1 and the electrode film 2.
  • the sheet resistance of the ITO electrode film was 10 ⁇ / sq.
  • a catalyst film 7 is formed on the entire surface of the electrode film 6 formed on the support substrate 5. Specifically, for example, a 10 nm Pt film is formed by sputtering as the catalyst film 7.
  • the support substrate 5, the electrode film 6 formed on the support substrate 5, and the counter electrode substrate 20 including the catalyst film 7 formed on the electrode film 2 are completed.
  • an ultraviolet curing is applied as a sealing material 40 around the porous film 3 mainly composed of ZnO carrying a dye on the electrode film 2 of the working electrode substrate 10.
  • Apply resin The coating width is, for example, 1 mm.
  • an electrolytic solution 30 is dropped on the porous film 3 of the working electrode substrate 10.
  • the electrolytic solution 30 is made of, for example, a solution obtained by dissolving iodine and an iodide salt in propylene carbonate.
  • the working electrode substrate 10 and the counter electrode substrate 20 are connected to the electrode film 2 and the porous film 3 side of the working electrode substrate 10, and the electrode film 6 and the catalyst film of the counter electrode substrate 20. 7 side is set to the inner side, and the electrolyte 30 is sealed between them.
  • the portion where the porous film 3 is formed is shielded by the aluminum foil 50 and irradiated with ultraviolet rays for 5 minutes to cure the sealing material 40 made of ultraviolet curable resin.
  • the working electrode substrate 10 and the counter electrode substrate 20 are joined, and the dye-sensitized photoelectric conversion element 100 according to the present embodiment is completed.
  • the structure of the dye-sensitized photoelectric conversion element 100 according to the present embodiment and an example of the manufacturing method have been described above.
  • the dye-sensitized photoelectric conversion element of the present invention is not limited to the contents described above, and various modifications can be made in accordance with the spirit of the invention.
  • the dye-sensitized photoelectric conversion element 100 transparent materials are used as the support substrate 5 and the conductive film 6 of the counter electrode substrate 20, but it is not essential to be transparent. However, when it is not transparent, in the said manufacturing method, it is necessary to perform irradiation of the ultraviolet-ray (refer FIG.3 (H)) for hardening the sealing material 40 from the working-electrode board
  • the catalyst film 7 is formed on the electrode film 6 of the counter electrode substrate 20. However, if a material having a catalytic function is used for the electrode film 6, the catalyst film 7 may be omitted. it can.
  • Samples 1 to 5 are comparative examples, and samples 6 to 8 are examples.
  • Sample 1 according to the comparative example uses a glass substrate with a porous film mainly composed of TiO 2 (manufactured by Daisol; product number: MS001620) as the working electrode substrate, and the molecular weight of the electrolyte is less than 125 g / mol.
  • the same configuration as that of the dye-sensitized photoelectric conversion element 100 according to the above-described embodiment was used except that an iodide salt having a cation of 1 was added.
  • Samples 2 and 3 according to the comparative example are the dyes according to the above-described embodiments except that a glass substrate with a porous film (manufactured by Daisol Co., Ltd .; product number: MS001620) containing TiO 2 as a main component is used as a working electrode substrate
  • a glass substrate with a porous film manufactured by Daisol Co., Ltd .; product number: MS001620
  • TiO 2 TiO 2 as a main component
  • Samples 4 and 5 according to the comparative example have the same configuration as that of the dye-sensitized photoelectric conversion element 100 according to the above-described embodiment except that the electrolyte contains an iodide salt having a cation having a molecular weight of less than 125 g / mol. I made it.
  • Samples 6 to 8 according to the examples are different from each other in the iodide salt contained in the electrolytic solution, but each has the configuration of the dye-sensitized photoelectric conversion element 100 according to the above-described embodiment.
  • Table 1 shows the types of the dye-sensitized photoelectric conversion elements according to Samples 1 to 8, the types of working electrode metal oxides, the types of iodide salts contained in the electrolyte, and the molecular weights of iodide salts (g / mol) and the cation molecular weight (g / mol) of the iodide salt.
  • Each of the dye-sensitized photoelectric conversion elements according to Samples 1 to 8 was irradiated with light from a white LED light source (MDBL-CW100, 200 lx), and an open circuit voltage and a fill factor were measured.
  • a white LED light source MDBL-CW100, 200 lx
  • FIG. 4 shows the relationship between the cation molecular weight and the open-circuit voltage for each of the dye-sensitized photoelectric conversion elements according to Samples 1 to 8.
  • Samples 1 to 3 according to the comparative examples used TiO 2 as the working electrode oxide, all showed a high open circuit voltage of 0.50 V or more.
  • the dye-sensitized photoelectric conversion element using TiO2 as the working electrode oxide requires a high-temperature process as described in the background art section, it is not possible to use a plastic substrate that is vulnerable to high temperatures as the substrate. Have the problem.
  • the electrolyte solution contained an iodide salt having a cation with a molecular weight of 125 g / mol or more.
  • a high open circuit voltage of 50 V or higher was exhibited.
  • FIG. 5 shows the relationship between the cation molecular weight and the fill factor of each of the dye-sensitized photoelectric conversion elements according to Samples 1 to 8.
  • sample 8 according to the example showed a low fill factor of less than 0.70 because the molecular weight of the cation of the iodide salt contained in the electrolyte exceeded 160 g / mol.
  • the molecular weight of the iodide salt cation is preferably 160 g / mol or less from the viewpoint of the fill factor. I understood.
  • Example 2 In Experiment 2, in order to improve the far factor, a different second iodide salt was added to the electrolyte solution of the dye-sensitized photoelectric conversion element (iodide salt is tributylmethylphosphonium iodide) according to Sample 8 prepared in Experiment 1. Were added in an amount of 0.2 M, respectively, to prepare dye-sensitized photoelectric conversion elements according to Samples 8-1 to 8-5.
  • iodide salt is tributylmethylphosphonium iodide
  • dimethylpropylimidazolium iodide having a cation molecular weight of 139 g / mol was added as the second iodide salt.
  • Sample 8-5 was prepared for comparison.
  • 0.2 M of tributylmethylphosphonium iodide which is the same as the base iodide salt, was further added as the second iodide salt.
  • FIG. 6 shows the relationship between the cation molecular weight of the added second chloride salt and the open-circuit voltage of each of the dye-sensitized photoelectric conversion elements according to Samples 8-1 to 8-5.
  • Samples 8-1 to 8-5 to which the second iodide salt was added all showed a high open circuit voltage of 0.50 V or higher.
  • FIG. 7 shows the relationship between the cation molecular weight of the added second chloride salt and the fill factor of each of the dye-sensitized photoelectric conversion elements according to Samples 8-1 to 8-5.
  • the samples 8-1 to 8-4 to which the second iodide salt having a cation with a molecular weight of less than 150 g / mol was added all improved the fill factor to 0.70 or more.
  • Example 3 In Experiment 2, an additional 0.2M second iodide salt was included in the electrolyte. On the other hand, in Experiment 3, the amount of the second iodide salt added to the electrolytic solution was changed.
  • tributylmethylphosphonium iodide was used as the iodide salt
  • ethyl-methyl-pyrrolidinium iodide was used as the second iodide salt, as in Sample 2-2 in Experiment 2.
  • FIG. 8 shows the relationship between the additional amount of the second iodide salt and the fill factor.
  • the fill factor was 0.70 or more.
  • the sample used tributylmethylphosphonium iodide as an iodide salt.
  • the second iodide salt ethyl-methylpyrrolidinium iodide, ZnI, and LiI were used.
  • the additional amounts of the second iodide salt were 0.1M, 0.2M, and 0.3M, respectively.
  • FIG. 9 shows the relationship between the type and additional amount of the second iodide and the open circuit voltage.
  • the second iodide salt is non-metal iodide salt-ethyl-methylpyrrolidinium iodide
  • the additional amount is 0.1M, 0.2M, Even when the voltage was increased to 0.3M, a high open circuit voltage of 0.50 V or higher could be maintained.
  • ZnI or LiI is used as the second iodide salt, even if 0.1M is added, the open circuit voltage becomes less than 0.50V, and the additional amount is increased to 0.2M and 0.3M. As a result, the open-circuit voltage further decreased.
  • the second iodide salt is preferably a non-metal iodide salt in order to improve the fill factor without lowering the open circuit voltage.
  • the second iodide salt is preferably neither ZnI nor LiI in order to improve the fill factor without lowering the open circuit voltage.
  • Working electrode substrate 1 Support substrate 2: Electrode film 3: Porous film (porous film mainly composed of ZnO carrying a dye) 20: Counter electrode substrate 5: Support substrate 6: Electrode film 7: Catalyst film 30: Electrolytic solution 40: Sealing material

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 ZnOを主成分とする多孔質膜を備えた開放電圧が高い色素増感光電変換素子を提供する。 透明な支持基板1と、透明な電極膜2と、色素を担持したZnOを主成分とする多孔質膜3とを備えた作用極基板10と、支持基板5と、電極膜6とを備えた対極基板20と、ヨウ素レドックスを含む電解液30と、を備え、作用極基板10と対極基板20とが、間に電解液30を封入して対向して配置され、電解液30に、分子量が125g/mol以上のカチオンを有するヨウ化物塩が含まれたものとする。

Description

色素増感光電変換素子
 本発明は、色素増感光電変換素子に関し、さらに詳しくは、ZnOを主成分とする多孔質膜を備えた開放電圧が高い色素増感光電変換素子に関する。
 金属酸化物の多孔質膜に色素を担持させることにより、起電力を増加させた色素増感光電変換素子が、太陽電池等の用途に活用されている。
 従来の一般的な色素増感光電変換素子は、特許文献1(特開平01-220380号公報)に開示されているように、TiOを主成分とする多孔質膜を使用することが多かった。TiOを主成分とする多孔質膜は、たとえば、基板に形成された電極膜上に、TiOペーストが塗布され、450~500℃の温度で焼成されることにより形成される。そのため、TiOを主成分とする多孔質膜を用いた色素増感光電変換素子では、基板として、高温に弱いプラスチック基板を使用することができなかった。
 プラスチック基板は、加工性に優れ、所望の形状を得やすいため、プラスチック基板を使用することができれば、ガラス基板等を用いた場合に比べて、色素増感光電変換素子の形状面での設計自由度が向上する。また、その色素増感光電変換素子を使用すれば、太陽電池等の装置の設計自由度も向上する。しかしながら、TiO多孔質膜を用いた色素増感光電変換素子は、上述したように製造工程に高温プロセスを含むため、プラスチック基板を使用することができなかった。
 一方、低温プロセスで、ZnOを主成分とする多孔質膜を形成する技術が開発されている。たとえば、特許文献2(特開2004-006235号公報)や非特許文献1(2006年電気化学会秋季大会講演要旨集(35頁1B27))には、100℃以下の低温プロセスでZnOを主成分とする多孔質膜を形成する方法が開示されている。これらの方法によれば、プラスチック基板を使用した色素増感光電変換素子を実現することができる。
特開平01-220380号公報 特開2004-006235号公報
2006年電気化学会秋季大会講演要旨集(35頁1B27)
 しかしながら、ZnOを主成分とする多孔質膜を使用した色素増感光電変換素子には、開放電圧が低いという問題があった。すなわち、単にZnO多孔質膜を形成しただけでは所定の高さの開放電圧を得ることができず、実用化のためには、何らかの方法により開放電圧を向上させることが必要であった。
 たとえば、非特許文献1に開示されたZnOを主成分とする多孔質膜を使用した色素増感光電変換素子では、多孔質膜上にワイドギャップの酸化物を析出させてコーティングすることにより、ZnOからの逆電子移動による損失(電解質へ電子が再結合する損失)を抑制して開放電圧の向上をはかっている。   
 しかしながら、この非特許文献1に開示された方法は、ワイドギャップの酸化物を析出により形成しているため、多孔質膜を安定して被覆することが困難であった。また、ワイドギャップの酸化物を形成する工程が追加で必要になるため、製造が煩雑になるとともに、高コスト化をまねき、生産性が悪いという問題があった。
 本発明は上述した従来の問題を解決するためになされたものであり、その手段として本発明の色素増感光電変換素子は、透明な支持基板と、その支持基板上に形成された透明な電極膜と、その電極膜上に形成された色素を担持したZnOを主成分とする多孔質膜とを備えた作用極基板と、支持基板と、その支持基板上に形成された電極膜とを備えた対極基板と、ヨウ素レドックスを含む電解液と、を備え、作用極基板と対極基板とが、作用極基板の多孔質膜側と、対極基板の電極膜側とを内側にして、間に電解液を封入して対向して配置され、 電解液に、分子量が125g/mol以上のカチオンを有するヨウ化物塩が含まれたものとした。
 なお、対極基板の電極膜上に、さらに、触媒機能を有する触媒膜が形成されていることが好ましい。触媒膜の主成分としては、たとえば、Pt、PEDOT、カーボン等を用いることができる。
 また、ヨウ化物塩のカチオンの分子量が160g/mol以下であることが好ましい。この場合には、開放電圧が高いことに加えて、フィルファクター(Fill Factor)の高い色素増感光電変換素子を得ることができる。
 また、ヨウ化物塩のカチオンの分子量が160g/molより大きい場合には、電解液に、さらに、少なくとも1種類の、分子量が150g/mol未満のカチオンを有する第2のヨウ化物塩が含まれていることが好ましい。この場合にも、開放電圧が高いことに加えて、フィルファクターの高い色素増感光電変換素子を得ることができる。なお、電解液に含まれる第2のヨウ化物塩のカチオンの分子量は、140g/mol未満であることがより好ましい。フィルファクターの向上が、より確実になるからである。
 そして、第2のヨウ化物塩は、電解液に、0.14M以上含まれていることが好ましい。この場合には、フィルファクターが十分に向上するからである。
 また、第2のヨウ化物塩は、非金属ヨウ化物塩であることが好ましい。この場合には、開放電圧を低下させることなく、フィルファクターが向上するからである。
 また、第2のヨウ化物塩は、ZnIおよびLiIのいずれでもないことが好ましい。この場合にも、開放電圧を低下させることなく、フィルファクターが向上するからである。
 また、少なくとも作用極基板の支持基板は、可撓性を有する樹脂フィルムで構成することが好ましい。この場合には、色素増感光電変換素子の形状面での設計自由度が向上する。さらに、対極基板の支持基板も、可撓性を有する樹脂フィルムで構成しても良い。この場合には、色素増感光電変換素子の形状面での設計自由度がさらに向上する。
 本発明の色素増感光電変換素子は、電解液にカチオン分子量が125g/mol以上であるヨウ化物塩が含まれているため、開放電圧が十分に高い。
実施形態にかかる色素増感光電変換素子100の要部を示す断面図である。 図2(A)~(E)は、それぞれ、色素増感光電変換素子100の製造方法の一例において実施する工程を示す断面図である。 図2の続きであり、図3(F)~(H)は、それぞれ、色素増感光電変換素子100の製造方法の一例において実施する工程を示す断面図である。 実験1において作製した色素増感光電変換素子の、ヨウ化物塩のカチオン分子量と開放電圧との関係を示すグラフである。 実験1において作製した色素増感光電変換素子の、ヨウ化物塩のカチオン分子量とファルファクターとの関係を示すグラフである。 実験2において作製した色素増感光電変換素子の、第2のヨウ化物塩のカチオン分子量と開放電圧との関係を示すグラフである。 実験2において作製した色素増感光電変換素子の、第2のヨウ化物塩のカチオン分子量とファルファクターとの関係を示すグラフである。 実験3において作製した色素増感光電変換素子の、第2のヨウ化物塩の追加量とファルファクターとの関係を示すグラフである。 実験4において作製した色素増感光電変換素子の、第2のヨウ化物塩の種類および追加量と開放電圧との関係を示すグラフである。
 以下、図面とともに、本発明を実施するための形態について説明する。
 図1に、本実施形態にかかる色素増感光電変換素子100を示す。ただし、図1は、色素増感光電変換素子100の要部を示す断面図である。
 色素増感光電変換素子100は、作用極基板10と対極基板20とを備えている。
 作用極基板10は、非導電性で透明な支持基板1を備えている。支持基板1は、たとえば、可撓性を有する樹脂フィルムからなる。
 支持基板1の上には、透明な電極膜2が形成されている。電極膜2は、たとえば、酸化インジウムスズ(以下「ITO」という)からなる。
 電極膜2上には、ZnOを主成分とする金属酸化物の多孔質膜3が形成されている。
 多孔質膜3には、色素が担持されている。色素としては、たとえば、D102、D131、D149等が用いられる。
 対極基板20は、非導電性の支持基板5を備えている。支持基板5は、透明である必要はないが、本実施形態においては、支持基板1と同様に、支持基板5にも透明な可撓性を有する樹脂フィルムを用いている。
 支持基板5の上には、電極膜6が形成されている。電極膜6は、透明である必要はないが、本実施形態においては、電極膜2と同様に、電極膜6にも透明なITOを用いている。
 電極膜6上には、触媒膜7が形成されている。触媒膜7は、たとえば、Pt、PEDOT、カーボン等からなる。
 作用極基板10と対極基板20とは、作用極基板10の電極膜2および多孔質膜3が形成された側と、対極基板20の電極膜6および触媒膜7が形成された側を内側にして、間に電解液30を封入したうえで、封止材40によって対向して接合されている。
 電解液30は、ヨウ素レドックスを含む。電解液30は、具体的には、たとえば、炭酸プロピレン、アセトニトリル、ガンマブチルラクトン等の有機溶媒やイオン性液体等の溶媒に、ヨウ素と、ヨウ化物塩とを溶かしたものからなる。
 ヨウ化物塩には、開放電圧を高くするために、分子量が125g/mol以上のカチオンを有するものが用いられている。分子量が125g/mol以上のカチオンを有するヨウ化物塩としては、たとえば、ヨウ化メチルプロピルイミダゾリウム(カチオン分子量:125g/mol)、ヨウ化ジメチルプロピルイミダゾリウム(カチオン分子量:139g/mol)、ヨウ化トリブチルメチルホスホニウム(カチオン分子量:223g/mol)等がある。
 ヨウ化物塩は、フィルファクター(Fill Factor)を高くするためには、カチオン分子量が160g/mol以下であることが好ましい。
 しかしながら、ヨウ化物塩のカチオン分子量が160g/molより大きくても、カチオン分子量が150g/mol未満の第2のヨウ化物塩を追加することにより、フィルファクターを高くすることができる。
 この場合には、第2のヨウ化物塩は、0.14M以上追加されることが好ましい。この場合には、フィルファクターが十分に向上するからである。
 また、第2のヨウ化物塩は、非金属ヨウ化物塩であることが好ましい。この場合には、開放電圧を低下させることなく、フィルファクターが向上するからである。
 さらに、第2のヨウ化物塩は、ZnIおよびLiIのいずれでもないことが好ましい。この場合にも、開放電圧を低下させることなく、フィルファクターが向上するからである。
 なお、第2のヨウ化物塩を追加する場合、追加される第2のヨウ化物塩は、1種類であっても良いし、複数種類であっても良い。
 以上のように、電解液30には、ヨウ化物塩、または、ヨウ化物塩と第2のヨウ化物塩とが含まれている。
 封止材40には、たとえば、紫外線硬化樹脂が使用されている。
 以上の構成からなる、本実施形態にかかる色素増感光電変換素子100は、作用極基板10の支持基板1、電極膜2を透過して、色素が担持されたZnOを主成分とする多孔質膜3に光が入射すると、ZnOに担持された色素により光エネルギーが吸収され、電極膜2と電極膜6との間に電圧が発生する。
 以上の構成からなる、本実施形態にかかる色素増感光電変換素子100は、たとえば、図2(A)~図3(H)に示す工程を経て製造される。
 まず、図2(A)に示すように、作用極基板10を作製するために、透明な電極膜2が形成された非導電性で透明な支持基板1として、市販されている、予め表面にITO電極膜が形成されたPETフィルムを準備する。このITO電極膜のシート抵抗は、10Ω/sqであった。
 次に、図示しないが、ZnOペーストを作製する。具体的には、まず、平均粒径25nmで、透明性に優れたZnO粉末(テイカ社製;品番:MZ-500)を準備する。次に、このZnO粉末を、大気雰囲気中で、450℃にて60分間加熱する。次に、得られたZnO粉末10gを、エタノール30mLに投入し、マグネチックスターラを使用して冷却しながら10分間攪拌して、ZnOペーストを得る。
 次に、図2(B)に示すように、支持基板1に形成された電極膜2上に、ZnOを主成分とする金属酸化物の多孔質膜3を形成する。具体的には、まず、電極膜2上の多孔質膜3を形成しない部分に、厚み100μm程度のマスキングテープ(図示せず)を貼る。次に、電極膜2のマスキングテープが張られていない部分に、上述したZnOペーストを滴下する。次に、滴下されたZnOペーストを、ガラス棒で平坦になりよるように塗り広げる。次に、電極膜2からマスキングテープを剥離したうえで、電極膜2上にZnOペーストが滴下された支持基板1を、100℃の雰囲気で30分間加熱することにより、ZnOペーストからエタノールを除去する。次に、電極膜2上にZnOペーストが滴下された支持基板1を、40℃に安定化された温水に10分間浸漬した後、100℃の雰囲気で乾燥することにより、電極膜2上にZnOを主成分とする多孔質膜3が形成された支持基板1を得る。このように、本実施形態においては、作用極基板10のZnOを主成分とする金属酸化物の多孔質膜3が、100℃以下の低温プロセスにより形成される。
 続いて、ZnOを主成分とする多孔質膜3に、色素を担持させる。具体的には、まず、電極膜2および多孔質膜3が形成された支持基板1を、0.5mMのD149のエタノール溶液に、25℃の雰囲気で2時間浸漬する。次に、エタノールにより、余分な色素溶液を除去した後、電極膜2および多孔質膜3が形成された支持基板1を自然乾燥させて、ZnOを主成分とする多孔質膜3に色素を担持させる。
 以上の工程により、支持基板1と、支持基板1上に形成された電極膜2と、電極膜2上に形成された色素を担持したZnOを主成分とする多孔質膜3とを備えた作用極基板10が完成する。
 作用極基板10の作製と並行して、対極基板20を作製する。
 まず、図2(C)に示すように、対極基板20を作製するために、電極膜6が形成された非導電性の支持基板5として、市販されている、予め表面にITO電極膜が形成されたPETフィルムを準備する。本実施形態においては、対極基板20の支持基板5および導電膜6に、作用極基板10の支持基板1および電極膜2と同じものを使用した。支持基板5および導電膜6は、透明である必要はないが、支持基板1および電極膜2と同じものを使用しているため透明である。上述の通り、このITO電極膜のシート抵抗は、10Ω/sqであった。
 次に、図2(D)に示すように、支持基板5に形成された電極膜6上の全面に触媒膜7を形成する。具体的には、たとえば、触媒膜7として、スパッタリング法により10nmのPt膜を形成する。
 以上の工程により、支持基板5と、支持基板5上に形成された電極膜6と、電極膜2上に形成されたと触媒膜7とを備えた対極基板20が完成する。
 次に、図2(E)に示すように、作用極基板10の電極膜2上の、色素を担持したZnOを主成分とする多孔質膜3の周囲に、封止材40として、紫外線硬化樹脂を塗布する。塗布幅は、たとえば、1mmとする。
 次に、図3(F)に示すように、作用極基板10の多孔質膜3上に、電解液30を滴下する。電解液30は、上述したように、たとえば、炭酸プロピレンに、ヨウ素と、ヨウ化物塩とを溶かしたものからなる。
 次に、図3(G)に示すように、作用極基板10と対極基板20とを、作用極基板10の電極膜2および多孔質膜3側と、対極基板20の電極膜6および触媒膜7側とを内側にし、間に電解液30を封入たうえで、封止材40を介して対向して配置する。
 最後に、図3(H)に示すように、多孔質膜3が形成されている部分をアルミホイル50で遮光しながら、紫外線を5分間照射し、紫外線硬化樹脂からなる封止材40を硬化させることにより、作用極基板10と対極基板20とを接合させて、本実施形態にかかる色素増感光電変換素子100を完成させる。
 以上、本実施形態にかかる色素増感光電変換素子100の構造、および製造方法の一例について説明した。しかしながら、本発明の色素増感光電変換素子が上述した内容に限定されることはなく、発明の趣旨に沿って種々の変形を加えることができる。
 たとえば、色素増感光電変換素子100では、対極基板20の支持基板5および導電膜6として透明なものを使用したが、透明であることは必須ではない。ただし、透明でない場合は、上記製造方法において、封止材40を硬化させるための紫外線の照射(図3(H)参照)を、作用極基板10側からおこなう必要がある。
 また、色素増感光電変換素子100では、対極基板20の電極膜6上に触媒膜7を形成したが、電極膜6に触媒機能を有する材質を使用すれば、触媒膜7は省略することができる。
 [実験]
 本発明の有効性を確認するために、以下の実験を実施した。
 (実験1)
 試料1~8にかかる8種類の素増感光電変換素子を作製した。
 試料1~5は比較例であり、試料6~8は実施例である。
 比較例にかかる試料1は、作用極基板にTiOを主成分とする多孔質膜付ガラス基板(ダイソル社製;品番:MS001620)を使用したこと、および、電解液に分子量が125g/mol未満のカチオンを有するヨウ化物塩を含有させたこと以外は、上述した実施形態にかかる色素増感光電変換素子100と同じ構成にした。
 比較例にかかる試料2、3は、作用極基板にTiOを主成分とする多孔質膜付ガラス基板(ダイソル社製;品番:MS001620)を使用したこと以外は、上述した実施形態にかかる色素増感光電変換素子100と同じ構成にした。
 比較例にかかる試料4、5は、電解液に分子量が125g/mol未満のカチオンを有するヨウ化物塩を含有させたこと以外は、上述した実施形態にかかる色素増感光電変換素子100と同じ構成にした。
 実施例にかかる試料6~8は、相互に、電解液に含有させたヨウ化物塩が異なるが、それぞれ、上述した実施形態にかかる色素増感光電変換素子100の構成からなる。
 表1に、試料1~8にかかる色素増感光電変換素子、それぞれの、作用極金属酸化物の種類と、電解液に含有させたヨウ化物塩の種類と、ヨウ化物塩の分子量(g/mol)と、ヨウ化物塩のカチオン分子量(g/mol)とを示す。
Figure JPOXMLDOC01-appb-T000001
 試料1~8にかかる色素増感光電変換素子に対し、それぞれ、白色LED光源(MDBL-CW100、200lx)により光を照射し、開放電圧およびフィルファクター(Fill Factor)を測定した。
 図4に、試料1~8にかかる色素増感光電変換素子、それぞれの、カチオン分子量と開放電圧との関係を示す。
 比較例にかかる試料1~3は、作用極酸化物にTiOを用いたため、いずれも、0.50V以上の高い開放電圧を示した。しかしながら、作用極酸化物にTiO2を用いた色素増感光電変換素子は、背景技術の欄において説明した通り、製造に高温プロセスを要するため、基板に、高温に弱いプラスチック基板を使用することができないという問題を有している。
 比較例にかかる試料4、5は、作用極酸化物にZnOを用い、かつ、電解液に、分子量が125g/mol未満のカチオンを有するヨウ化物塩を含有させたため、いずれも、0.50Vに満たない低い開放電圧しか示さなかった。
 実施例にかかる試料6~8は、作用極酸化物にZnOを用いたにもかかわらず、電解液に、分子量が125g/mol以上のカチオンを有するヨウ化物塩を含有させたため、いずれも、0.50V以上の高い開放電圧を示した。
 以上の結果より、本発明によれば、ZnOを主成分とする多孔質膜を備えた、開放電圧が高い色素増感光電変換素子を得ることができることが分かった。
 次に、図5に試料1~8にかかる色素増感光電変換素子、それぞれの、カチオン分子量とフィルファクターとの関係を示す。
 比較例にかかる試料1~5、および実施例にかかる試料6、7は、いずれも、0.70以上の高いフィルファクターを示した。
 しかしながら、実施例にかかる試料8は、電解液に含有させたヨウ化物塩のカチオンの分子量が160g/molを超えたため、0.70に満たない低いフィルファクターを示した。図5のグラフが示すように、電解液に1種類のヨウ化物塩を含有させる場合には、フィルファクターの観点からは、ヨウ化物塩のカチオンの分子量が160g/mol以下であることが好ましいことが分かった。
 (実験2)
 実験2においては、ファルファクター改善のために、実験1で作製した試料8にかかる色素増感光電変換素子の電解液(ヨウ化物塩はヨウ化トリブチルメチルホスホニウム)に、異なる第2のヨウ化物塩を、それぞれ、0.2M、追加で含有させて、試料8-1~8-5にかかる色素増感光電変換素子とした。
 試料8-1には、第2のヨウ化物塩として、カチオン分子量が97g/molであるヨウ化ジメチルイミダゾリウムを追加した。
 試料8-2には、第2のヨウ化物塩として、カチオン分子量が114g/molであるヨウ化‐エチル‐メチルピロリジニウムを追加した。
 試料8-3には、第2のヨウ化物塩として、カチオン分子量が125g/molであるヨウ化メチルプロピルイミダゾリウムを追加した。
 試料8-4には、第2のヨウ化物塩として、カチオン分子量が139g/molであるヨウ化ジメチルプロピルイミダゾリウムを追加した。
 試料8-1~8-4に加えて、比較のために、試料8-5を作製した。試料8-5は、第2のヨウ化物塩として、ベースとなるヨウ化物塩と同じヨウ化トリブチルメチルホスホニウムを、さらに0.2M、追加した。
 図6に、試料8-1~8-5にかかる色素増感光電変換素子、それぞれの、追加した第2の塩化物塩のカチオン分子量と、開放電圧との関係を示す。
 第2のヨウ化物塩を追加した試料8-1~8-5は、いずれも、0.50V以上の高い開放電圧を示した。
 図7に、試料8-1~8-5にかかる色素増感光電変換素子、それぞれの、追加した第2の塩化物塩のカチオン分子量と、フィルファクターとの関係を示す。
 図7から分かるように、分子量が150g/mol未満のカチオンを有する第2のヨウ化物塩を追加した試料8-1~8-4は、いずれも、フィルファクターが0.70以上に改善した。
 これに対し、試料8-5は、当然のことながら、フィルファクターは改善しなかった。
 以上の結果より、フィルファクターを改善するためには、電解液に、分子量が150g/mol未満のカチオンを有する第2のヨウ化物塩を追加することが好ましいことが分かった。
 (実験3)
 実験2においては、電解液に0.2Mの第2のヨウ化物塩を追加で含有させた。これに対し、実験3においては、電解液に追加する第2のヨウ化物塩の量を変化させた。
 試料には、実験2における試料8-2と同様に、ヨウ化物塩としてヨウ化トリブチルメチルホスホニウム、第2のヨウ化物塩としてヨウ化‐エチル‐メチルピロリジニウムを用いた。
 図8に、第2のヨウ化物塩の追加量と、フィルファクターとの関係を示す。
 図8に示すように、第2のヨウ化物塩を0.14M以上追加した場合に、フィルファクターは0.70以上となった。
 この結果より、フィルファクターを改善するためには、電解液に、第2のヨウ化物塩を0.14M以上追加することが好ましいことが分かった。
 (実験4)
 実験4においては、フィルファクター改善のために電解液に追加する第2のヨウ化物塩の種類と、量とを変化させた。
 試料には、ヨウ化物塩としてヨウ化トリブチルメチルホスホニウムを用いた。第2のヨウ化物塩には、ヨウ化‐エチル‐メチルピロリジニウムと、ZnIと、LiIとを用いた。第2のヨウ化物塩の追加量は、それぞれにつき、0.1M、0.2M、0.3Mとした。
 図9に、第2のヨウ化物の種類および追加量と、開放電圧との関係を示す。
 図9から分かるように、第2のヨウ化物塩として、非金属ヨウ化物塩であるヨウ化‐エチル‐メチルピロリジニウムを用いた場合には、追加量を、0.1M、0.2M、0.3Mと増加させても、0.50V以上の高い開放電圧を維持できた。これに対し、第2のヨウ化物塩として、ZnIやLiIを用いた場合は、0.1M追加しただけでも開放電圧は0.50V未満となり、追加量を0.2M、0.3Mと増加させるに従い、さらに開放電圧が低下した。
 以上の結果より、開放電圧を低下させることなく、フィルファクターを改善するためには、第2のヨウ化物塩は、非金属ヨウ化物塩であることが好ましいことが分かった。また、開放電圧を低下させることなく、フィルファクターを改善するためには、第2のヨウ化物塩は、ZnIおよびLiIのいずれでもないことが好ましいことが分かった。
10:作用極基板
  1:支持基板
  2:電極膜
  3:多孔質膜(色素を担持したZnOを主成分とする多孔質膜)
20:対極基板
  5:支持基板
  6:電極膜
  7:触媒膜
30:電解液
40:封止材 

Claims (8)

  1.  透明な支持基板と、当該支持基板上に形成された透明な電極膜と、当該電極膜上に形成された色素を担持したZnOを主成分とする多孔質膜とを備えた作用極基板と、
     支持基板と、当該支持基板上に形成された電極膜とを備えた対極基板と、
     ヨウ素レドックスを含む電解液と、を備え、
     前記作用極基板と前記対極基板とが、前記作用極基板の前記多孔質膜側と、前記対極基板の前記電極膜側とを内側にして、間に前記電解液を封入して対向して配置された色素増感光電変換素子であって、
     前記電解液に、分子量が125g/mol以上のカチオンを有するヨウ化物塩が含まれている色素増感光電変換素子。
  2.  前記対極基板の前記電極膜上に、さらに、触媒機能を有する触媒膜が形成されている、請求項1に記載された色素増感光電変換素子。
  3.  前記ヨウ化物塩の有するカチオンの分子量が160g/mol以下である、請求項1または2に記載された色素増感光電変換素子。
  4.  前記ヨウ化物塩の有するカチオンの分子量が160g/molより大きい場合に、前記電解液に、さらに、少なくとも1種類の、分子量が150g/mol未満のカチオンを有する第2のヨウ化物塩が含まれている、請求項1または2に記載された色素増感光電変換素子。
  5.  前記電解液に、前記第2のヨウ化物塩が0.14M以上含まれている、請求項4に記載された色素増感光電変換素子。
  6.  前記第2のヨウ化物塩が非金属ヨウ化物塩である、請求項4または5に記載された色素増感光電変換素子。
  7.  前記第2のヨウ化物塩が、ZnIおよびLiIのいずれでもない、請求項4ないし6のいずれか1項に記載された色素増感光電変換素子。
  8.  少なくとも前記作用極基板の前記支持基板が、可撓性を有する樹脂フィルムからなる、請求項1ないし7のいずれか1項に記載された色素増感光電変換素子。 
PCT/JP2015/079378 2014-12-26 2015-10-16 色素増感光電変換素子 WO2016103868A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014264956 2014-12-26
JP2014-264956 2014-12-26

Publications (1)

Publication Number Publication Date
WO2016103868A1 true WO2016103868A1 (ja) 2016-06-30

Family

ID=56149905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079378 WO2016103868A1 (ja) 2014-12-26 2015-10-16 色素増感光電変換素子

Country Status (1)

Country Link
WO (1) WO2016103868A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008062181A (ja) * 2006-09-07 2008-03-21 Gifu Univ 酸化亜鉛多孔質電極の製造方法ならびに色素増感型太陽電池
JP2009152179A (ja) * 2007-11-29 2009-07-09 Tdk Corp 光電変換素子の製造方法および光電変換素子
JP2013093247A (ja) * 2011-10-26 2013-05-16 Kumamoto Prefecture 色素増感太陽電池の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008062181A (ja) * 2006-09-07 2008-03-21 Gifu Univ 酸化亜鉛多孔質電極の製造方法ならびに色素増感型太陽電池
JP2009152179A (ja) * 2007-11-29 2009-07-09 Tdk Corp 光電変換素子の製造方法および光電変換素子
JP2013093247A (ja) * 2011-10-26 2013-05-16 Kumamoto Prefecture 色素増感太陽電池の製造方法

Similar Documents

Publication Publication Date Title
Yamaguchi et al. Highly efficient plastic-substrate dye-sensitized solar cells with validated conversion efficiency of 7.6%
Kubo et al. Quasi-solid-state dye-sensitized TiO2 solar cells: effective charge transport in mesoporous space filled with gel electrolytes containing iodide and iodine
Hashmi et al. Review of materials and manufacturing options for large area flexible dye solar cells
US20120301992A1 (en) Electrolyte solution for dye sensitized solar cell, and dye sensitized solar cell using same
JP2005353588A (ja) 導電性金属基板を含む可撓性染料感応太陽電池
EP1981047A2 (en) Photoelectric conversion device
JP4963165B2 (ja) 色素増感型太陽電池及び色素増感型太陽電池モジュール
Lan et al. Durability test of PVP‐capped Pt nanoclusters counter electrode for highly efficiency dye‐sensitized solar cell
Kumar et al. Optimizing room temperature binder free TiO2 paste for high efficiency flexible polymer dye sensitized solar cells
US9039881B2 (en) Working electrode, method for fabricating the same and dye-sensitized solar cell containing the same
Deng et al. Efficiency improvement of quantum dot sensitized solar cells with inserting ZnS layer in the photoanode
Bavir et al. An investigation and simulation of the graphene performance in dye-sensitized solar cell
Bonomo et al. Limits on the use of cobalt sulfide as anode of p-type dye-sensitized solar cells
KR101054470B1 (ko) 염료감응 태양전지용 전해질 및 이를 이용한 염료감응 태양전지
Lee et al. Efficient, stable, and flexible dye-sensitized solar cells based on nanocomposite gel electrolytes
JP5160045B2 (ja) 光電変換素子
JP2007227260A (ja) 光電変換装置及び光発電装置
Kouhnavard et al. An Efficient Metal‐Free Hydrophilic Carbon as a Counter Electrode for Dye‐Sensitized Solar Cells
WO2016103868A1 (ja) 色素増感光電変換素子
JP5095148B2 (ja) 作用極用基板及び光電変換素子
Watson et al. Acid Treatment of Titania Pastes to Create Scattering Layers in Dye‐Sensitized Solar Cells
TW201639208A (zh) 光電轉換元件及光電轉換元件之製造方法
JP2010037138A (ja) 酸化チタン膜の形成方法および光電変換素子
WO2013015067A1 (ja) 光電変換装置、電子機器および建築物
JP2012156070A (ja) 色素増感太陽電池における光触媒膜の形成方法および色素増感太陽電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872437

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15872437

Country of ref document: EP

Kind code of ref document: A1