WO2016103857A1 - Organic electroluminescent device and lighting device - Google Patents

Organic electroluminescent device and lighting device Download PDF

Info

Publication number
WO2016103857A1
WO2016103857A1 PCT/JP2015/078899 JP2015078899W WO2016103857A1 WO 2016103857 A1 WO2016103857 A1 WO 2016103857A1 JP 2015078899 W JP2015078899 W JP 2015078899W WO 2016103857 A1 WO2016103857 A1 WO 2016103857A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
moisture
organic
moisture absorption
electrode
Prior art date
Application number
PCT/JP2015/078899
Other languages
French (fr)
Japanese (ja)
Inventor
山田 泰美
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2016103857A1 publication Critical patent/WO2016103857A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity

Definitions

  • the present invention relates to an organic electroluminescence device and the like.
  • organic electroluminescence is referred to as “organic EL”.
  • organic EL organic electroluminescence
  • an organic EL device having a support substrate and an organic EL element provided on the support substrate is known.
  • the organic EL element includes a first electrode, a second electrode, and an organic layer provided between the two electrodes.
  • Patent Document 1 discloses an organic EL element provided on a support substrate and including an organic layer, a moisture absorption film provided on the organic EL element, and a moisture absorption film.
  • An organic EL device having a gas barrier film provided is disclosed.
  • Patent Document 1 states that in such an organic EL device, the moisture absorption film covers the surface and side surfaces of the organic EL element, and further, the gas barrier film covers the surface and side surfaces of the moisture absorption film, so that moisture can be easily blocked. ing.
  • the organic EL device having the above structure cannot sufficiently prevent moisture that has permeated through the support substrate or moisture that has passed through the interface between the support substrate and the gas barrier film from entering the organic layer.
  • Such an organic EL device has a problem that the emission lifetime is relatively short because water vapor cannot be sufficiently prevented from entering the organic layer.
  • An object of the present invention is to provide an organic EL device and an illuminating device having a long light emission lifetime by effectively preventing moisture from entering the organic layer.
  • the organic EL device of the present invention includes a support substrate, a first moisture absorption layer, an organic EL element having an organic layer, a second moisture absorption layer, and a moisture barrier layer in this order.
  • a layer is provided beyond the end of the first hygroscopic layer and the end of the second hygroscopic layer.
  • the first hygroscopic layer is provided beyond the end of the organic layer in a plan view.
  • the second moisture absorption layer is provided beyond the end of the organic layer in a plan view.
  • the second moisture absorption layer covers the surface side and end surface side of the organic layer, and the moisture barrier layer covers the surface side and end surface side of the second moisture absorption layer.
  • the first hygroscopic layer and the second hygroscopic layer are in direct contact with each other where the organic EL element partially has a terminal and does not have the terminal. .
  • the first moisture absorption layer and the second moisture absorption layer each independently contain a boron compound or a sulfide compound.
  • the present invention provides a lighting device.
  • the lighting device of the present invention includes any one of the organic EL devices.
  • the organic EL device of the present invention moisture can be prevented from entering the inside by the moisture-proof layer, and further, the slightly penetrated moisture is absorbed by the first and second moisture-absorbing layers, so that moisture penetrates into the organic layer. Can be effectively prevented.
  • the organic EL element is hardly deteriorated in moisture, and can emit light stably for a relatively long period of time.
  • FIG. 1 is a plan view of an organic EL device according to a first embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view taken along line II-II in FIG. 1 and omitting the central portion.
  • FIG. 3 is an enlarged sectional view taken along line III-III in FIG. 1.
  • the top view of the organic electroluminescent apparatus which concerns on 2nd Embodiment.
  • FIG. 5 is an enlarged cross-sectional view taken along line VV in FIG. 4 and omitting the central portion.
  • FIG. 5 is an enlarged cross-sectional view taken along line VI-VI in FIG. 4.
  • FIG. 10 is an enlarged cross-sectional view taken along line XX in FIG. 9.
  • FIG. 10 is an enlarged cross-sectional view taken along line XI-XI in FIG. 9.
  • the surface indicates a plate-like organic EL device or one surface of each layer
  • the back surface indicates a surface opposite to the surface.
  • the end surface refers to a surface extending in the thickness direction of the organic EL device or each layer.
  • Each layer is a generic name for members (such as a support substrate, a first moisture absorption layer, an organic EL element, a second moisture absorption layer, and a moisture proof layer) constituting the organic EL device.
  • the term “first” and “second” may be added to the beginning of the term. The first and the like are added only to distinguish the term, and the order and superiority or inferiority thereof are added. It has no special meaning.
  • the expression “PPP to QQQ” means “PPP or more and QQQ or less”.
  • FIG. 1 is a plan view of the organic EL device according to the first embodiment viewed from the surface side.
  • the organic EL device is a top emission type
  • the surface indicates a surface from which light is emitted.
  • the organic EL device is a bottom emission type, the surface is opposite to the surface from which light is emitted. Refers to the side surface.
  • the organic EL device of the present invention may be any of a top emission type, a bottom emission type, or a dual emission type.
  • 2 is an enlarged view of a cross section of the organic EL device of FIG. 1 cut along a line parallel to the first direction at a portion having no terminal
  • FIG. 3 shows the organic EL device of FIG. It is the figure which expanded the cross section cut
  • the organic EL device 1 includes a support substrate 2, a first moisture absorption layer 41, an organic EL element 3 having an organic layer 33, a second moisture absorption layer 42, and a moisture barrier layer 5. Have in order.
  • the moisture-proof layer 5 is provided beyond the end portions 41e and 42e of the first moisture-absorbing layer 41 and the second moisture-absorbing layer 42 in a plan view.
  • the organic EL device 1 may be rigid so that it cannot be bent, but preferably has flexibility that allows bending.
  • the organic EL element 3 has terminals 31a and 32a partially exposed to the outside. In FIG. 1, in order to illustrate the terminals 31a and 32a exposed to the outside in an easy-to-understand manner, innumerable dots are added to the portions for convenience.
  • the support substrate 2, the first moisture absorption layer 41, the organic EL element 3 having the organic layer 33, the second moisture absorption layer 42 and the moisture barrier layer 5 are laminated in this order.
  • Each layer 2, 41, 33, 42, 5 such as the support substrate may be laminated in direct contact with each other on the condition that they are arranged in this order in the thickness direction. Or you may laminate
  • the plan perspective means conceptually seeing a target member in the direction of the line of sight with the line of sight perpendicular to the surface of the organic EL device.
  • the end portions 41 e and 42 e of the first moisture absorption layer 41 and the second moisture absorption layer 42 coincide with each other in the thickness direction when seen in a plan view.
  • the first hygroscopic layer 41 and the second hygroscopic layer 42 are formed in a desired shape (in the illustrated example, a substantially rectangular shape in plan view) having the same area in plan perspective. That is, the first moisture absorption layer 41 and the second moisture absorption layer 42 have the same shape and the same size and overlap in the thickness direction. Therefore, when viewed through, the end portion 41e of the first moisture absorption layer 41 and the end portion 42e of the second moisture absorption layer 42 coincide with each other.
  • the first hygroscopic layer 41 and the second hygroscopic layer 42 are provided beyond the end 33e of the organic layer 33 in a plan view.
  • the first moisture absorption layer 41 and the second moisture absorption layer 42 each have a larger area than the organic layer 33.
  • the shape of the organic layer 33 is not particularly limited and can be formed in a desired shape. In the illustrated example, the organic layer 33 is formed in a substantially rectangular shape in plan view.
  • the end portion 41e of the first moisture absorption layer 41 is located outside the end portion 33e of the organic layer 33 in a plan view
  • the end portion 42e of the second moisture absorption layer 42 is an organic layer in the plan view. It is located outside the end 33 e of 33.
  • the organic layer 33 is formed inside the first moisture absorption layer 41 and the second moisture absorption layer 42. Accordingly, the first hygroscopic layer 41 is laminated so as to cover the entire back surface side of the organic layer 33 and the second hygroscopic layer 42 is laminated so as to cover the entire surface side of the organic layer 33 in plan perspective. Has been.
  • the moisture-proof layer 5 is provided beyond the end portion 41e of the first moisture-absorbing layer 41 and the end portion 42e of the second moisture-absorbing layer 42 in plan perspective. Specifically, the moisture-proof layer 5 has a larger area than the first moisture-absorbing layer 41 and the second moisture-absorbing layer 42.
  • the shape of the moisture-proof layer 5 is not particularly limited and can be formed in a desired shape. In the illustrated example, the moisture-proof layer 5 is formed in a rectangular shape in plan view.
  • the end portion 5e of the moisture-proof layer 5 is located outside the end portion 41e of the first moisture-absorbing layer 41 and outside the end portion 42e of the second moisture-absorbing layer 42 in a plan view. In other words, the first moisture absorption layer 41 and the second moisture absorption layer 42 are formed inside the moisture barrier layer 5.
  • the moisture-proof layer 5 is laminated so as to cover the entire surface side of the first moisture-absorbing layer 41 and the second moisture-absorbing layer 42 in plan perspective.
  • the end portion 41e of the first moisture absorption layer 41 means a contour line of the first moisture absorption layer 41 in plan perspective, and is an end of the second moisture absorption layer 42, the organic layer 33, the moisture proof layer 5, and the like.
  • the parts mean their contour lines in the plan perspective.
  • the organic EL device 1 includes a support substrate 2, a first moisture absorption layer 41 provided on the support substrate 2, an organic EL element 3 provided on the first moisture absorption layer 41, and The second moisture absorption layer 42 provided on the organic EL element 3 and the moisture barrier layer 5 provided on the second moisture absorption layer 42 are laminated.
  • the first moisture absorption layer 41 is provided in the plane of the support substrate 2.
  • the support substrate 2 is sufficiently larger than the first moisture absorption layer 41, and therefore the end 2 e of the support substrate 2 extends outward from the end 41 e of the first moisture absorption layer 41.
  • the organic EL element 3 includes a first electrode 31 having a terminal 31a, a second electrode 32 having a terminal 32a, and an organic layer 33 provided between the electrodes 31 and 32.
  • the terminal 31a is an anode or cathode terminal, and the terminal 32a is a terminal of the opposite polarity.
  • the terminal 31a is an anode (+), and the terminal 32a is a cathode ( ⁇ ).
  • the 1st electrode 31 is laminated
  • the terminal 31 a of the first electrode 31 is laminated in a state of being in direct contact with the surface of the support substrate 2.
  • the organic layer 33 is laminated in a state of being in direct contact with the surface of the first electrode 31.
  • the 2nd electrode 32 is laminated
  • the terminal 32 a of the second electrode 32 is laminated in a state of being in direct contact with the surface of the support substrate 2.
  • the 2nd moisture absorption layer 42 is laminated in the state where it touched directly on the surface of the 2nd electrode 32 except terminal 32a.
  • the first hygroscopic layer 41 and the second hygroscopic layer 42 are provided beyond the end portion 33e of the organic layer 33, respectively.
  • the end portion 41e of the first moisture absorption layer 41 and the end portion 42e of the second moisture absorption layer 42 extend beyond the end portion 33e of the organic layer 33, respectively.
  • the second moisture absorbing layer 42 covers the surface side of the organic layer 33 and also covers the end surface side of the organic layer 33. For this reason, the back surface side of the organic layer 33 is covered with the first moisture absorption layer 41, and the surface side and the end surface side of the organic layer 33 are covered with the second moisture absorption layer 42.
  • the 1st moisture absorption layer 41 and the 2nd moisture absorption layer 42 are contact
  • a portion where the first hygroscopic layer 41 and the second hygroscopic layer 42 are in close contact with each other and the layers 41 and 42 are joined is denoted by reference numeral 49.
  • the joint portion 49 is an interface between the first moisture absorption layer 41 and the second moisture absorption layer 42.
  • the first hygroscopic layer 41 and the second hygroscopic layer 42 are formed of the same material, the interface can hardly be confirmed. In this case, the first hygroscopic layer 41 and the second hygroscopic layer 42 are bonded to each other.
  • the part 49 is integrated. Moreover, as shown in FIG. 3, in the location which has the terminals 31a and 32a, the 1st moisture absorption layer 41 and the 2nd moisture absorption layer 42 are closely_contact
  • the moisture-proof layer 5 is laminated in a state of being in direct contact with the surface of the second moisture-absorbing layer 42 except for the terminals 31a and 32a. As described above, the moisture-proof layer 5 is provided beyond the end portion 41 e of the first moisture-absorbing layer 41 and the end portion 42 e of the second moisture-absorbing layer 42. The end portion 5 e of the moisture-proof layer 5 extends beyond the end portion 41 e of the first moisture-absorbing layer 41 and the end portion 42 e of the second moisture-absorbing layer 42. Further, the moisture-proof layer 5 covers the surface side of the second moisture-absorbing layer 42 and also covers the end surface side of the second moisture-absorbing layer 42. As shown in FIG.
  • the moisture-proof layer 5 also covers the end surface of the first moisture-absorbing layer 41 and is in direct contact with the surface of the support substrate 2 at locations where the terminals 31 a and 32 a are not provided. As shown in FIG. 3, the moisture-proof layer 5 that is in close contact with the end face of the second moisture-absorbing layer 42 is in close contact with the bases of the terminals 31a and 32a at the locations having the terminals 31a and 32a.
  • the terminal 31a of the first electrode 31 is disposed on one side in the second direction of the organic EL device, and the terminal 32a of the second electrode 32 is disposed on the opposite side in the second direction.
  • the terminal 31a of the first electrode 31 and the terminal 32a of the second electrode 32 are each extended in the first direction of the organic EL device.
  • the first direction is any one direction of the organic EL device
  • the second direction is a direction orthogonal to the first direction in the plane of the organic EL device.
  • the terminal 31a is a part of the first electrode 31 that is exposed to the outside.
  • the terminal 32a is a part of the second electrode 32 and is an electrode part exposed to the outside.
  • the terminal 31 a of the first electrode 31 and the terminal 32 a of the second electrode 32 are exposed to the outside without being covered with the moisture-proof layer 5.
  • an insulating layer (not shown) is provided on the surface of the support substrate 2 in order to prevent an electrical short circuit.
  • the organic layer 33 of the organic EL element 3 includes a light emitting layer, and has various functional layers such as a hole transport layer and an electron transport layer as necessary. The layer configuration of the organic layer 33 will be described later.
  • the organic layer 33 emits light when a power source is connected to the terminals 31a and 32a of the first electrode 31 and the second electrode 32 and energized.
  • the first and second moisture absorbing layers 41 and 42 are layers that absorb moisture.
  • the moisture-proof layer 5 is a layer for preventing moisture (water vapor) and the like from entering the organic EL element 3.
  • the organic EL device of the present invention is not limited to the first embodiment, and can be appropriately changed in design within the range intended by the present invention.
  • other embodiments of the present invention will be described. In the description, configurations and effects different from those of the first embodiment will be mainly described, and configurations similar to those of the first embodiment will be described. In some cases, the term or reference is used as it is, and the description of the configuration is omitted.
  • the organic EL device 1 according to the second embodiment is similar to the first embodiment in that the support substrate 2, the first hygroscopic layer 41, the organic EL element 3 having the organic layer 33, and the first 2 moisture-absorbing layer 42 and moisture-proof layer 5 are provided in this order.
  • the moisture-proof layer 5 is provided beyond the end portions 41e and 42e of the first moisture-absorbing layer 41 and the second moisture-absorbing layer 42 in a plan view, and the first moisture-absorbing layer 41 and the second moisture-absorbing layer 42 are organic
  • the layer 33 is provided beyond the end 33e.
  • the second electrode 32 includes a second main electrode 321 that is stacked on the surface of the organic layer 33 and supplies electric charges to the organic layer 33, and a second sub electrode 322 having a terminal 32a. Yes.
  • the first electrode 31 is stacked on the surface of the first moisture absorption layer 41.
  • the first electrode 31 has two terminals 31a and 31a.
  • One terminal 31a is arranged on one side in the first direction of the organic EL device 1, and the other terminal 31a is on the opposite side in the first direction. It is arranged.
  • the organic layer 33 is laminated in a state of being in direct contact with the surface of the first electrode 31 except for the terminal 31a.
  • the second sub-electrode 322 is separated from the first electrode 31 and is laminated across the surface of the support substrate 2 and the surface of the first moisture absorption layer 41 on one side in the second direction.
  • the second sub-electrode 322 has two terminals 32a and 32a, one terminal 32a being disposed on one side in the first direction of the organic EL device 1, and the other terminal 32a being opposite to the first direction. It is arranged.
  • the second main electrode 321 is stacked across the surface of the organic layer 33 and the surface of the second sub electrode 322. The charge supplied from the terminal 32 a is supplied from the second sub electrode 322 to the organic layer 33 through the second main electrode 321.
  • the 1st moisture absorption layer 41 and the 2nd moisture absorption layer 42 are contact
  • the first hygroscopic layer 41 and the second hygroscopic layer 42 are integrated at the joint portion 49.
  • the first hygroscopic layer 41 and the second hygroscopic layer 42 are in close contact with each other through the terminals 31 a and 32 a where the terminals 31 a and 32 a are provided. Therefore, also in this embodiment, the periphery of the organic layer 33 is surrounded by the first moisture absorption layer 41 and the second moisture absorption layer 42.
  • the moisture-proof layer 5 is laminated in a state of being in direct contact with the surface of the second moisture-absorbing layer 42 except for the terminals 31a and 32a.
  • the moisture-proof layer 5 covers the surface side of the second moisture-absorbing layer 42 and also covers the end surface side of the second moisture-absorbing layer 42.
  • the moisture-proof layer 5 is also covered with the end surface of the first moisture-absorbing layer 41 in a portion where the terminals 31 a and 32 a are not provided, and is directly adhered to the surface of the support substrate 2.
  • FIG. 8 is a diagram schematically showing the arrangement of each layer when the organic EL device according to the second embodiment is seen through on a plane.
  • the outline of the first electrode 31 is indicated by a one-dot chain line
  • the outline of the second electrode 32 is indicated by a two-dot chain line
  • the outlines of the first and second moisture absorption layers 41 and 42 are indicated by a broken line
  • the outline of the organic layer 33 is indicated by a small broken line
  • the outline of the moisture-proof layer 5 is indicated by a solid line.
  • the organic EL device 1 according to the third embodiment is similar to the first embodiment in that the support substrate 2, the first hygroscopic layer 41, the organic EL element 3 having the organic layer 33, and the first 2 moisture-absorbing layer 42 and moisture-proof layer 5 are provided in this order.
  • the moisture-proof layer 5 is provided beyond the end portions 41e and 42e of the first moisture-absorbing layer 41 and the second moisture-absorbing layer 42 in a plan view, and the first moisture-absorbing layer 41 and the second moisture-absorbing layer 42 are organic
  • the layer 33 is provided beyond the end 33e.
  • the 1st electrode 31 which has the terminal 31a is provided in multiple places.
  • the second electrode 32 includes a plurality of second main electrodes 321 stacked on the surface of the organic layer 33 and supplying electric charges to the organic layer 33, and a plurality of second sub-electrodes 322 having terminals 32a. ing.
  • a plurality of light emitting regions are independently formed.
  • the first electrode 31 is independently provided at a plurality of locations (for example, 4 locations). Each first electrode 31 is laminated on the surface of the first hygroscopic layer 41. Each first electrode 31 has one terminal 31a. The terminals 31a of the two first electrodes 31 are disposed on one side in the first direction of the organic EL device 1, and the terminals 31a of the other two first electrodes 31 are disposed on the opposite side in the first direction.
  • the organic layer 33 is laminated in a state of being in direct contact with the surface of each first electrode 31 except for the terminal 31a.
  • the second electrode 32 includes, for example, two first main electrodes 321 and two second sub electrodes 322.
  • One second sub-electrode 322 is stacked on the surface of the support substrate 2 on one side in the second direction, apart from the first electrode 31. Another second sub-electrode 322 is stacked on the surface of the support substrate 2 on the opposite side in the second direction away from the first electrode 31.
  • Each second sub-electrode 322 has two terminals 32a and 32a, one terminal 32a being disposed on one side in the first direction of the organic EL device 1, and the other terminal 32a being in the first direction. It is arranged on the opposite side.
  • the two second main electrodes 321 extend in the second direction in a state of being separated from each other.
  • the two second main electrodes 321 are stacked across the surface of the organic layer 33 and the surfaces of the two second sub-electrodes 322 with a space between the two electrodes 321.
  • the electric charges supplied from the terminals 32 a are supplied from the second sub-electrodes 322 to the organic layer 33 through the second main electrodes 321.
  • the first hygroscopic layer 41 and the second hygroscopic layer 42 are in direct contact with each other at locations where the terminals 31a and 32a are not provided. Further, as shown in FIG. 10, in the portion having the terminal 31a, the first moisture absorbing layer 41 and the second moisture absorbing layer 42 are in close contact with each other via the terminal 31a.
  • the moisture-proof layer 5 is laminated in a state of being in direct contact with the surface of the second moisture-absorbing layer 42 except for the terminals 31a and 32a.
  • the moisture-proof layer 5 covers the surface side of the second moisture-absorbing layer 42 and also covers the end surface side of the second moisture-absorbing layer 42.
  • FIG. 12 is a diagram schematically showing the arrangement of each layer when the organic EL device of the third embodiment is seen through.
  • the outline of the first electrode 31 is indicated by a one-dot chain line
  • the outline of the second electrode 32 is indicated by a two-dot chain line
  • the outlines of the first and second moisture absorption layers 41 and 42 are indicated by a broken line
  • the outline of the organic layer 33 is indicated by a small broken line
  • the outline of the moisture-proof layer 5 is indicated by a solid line.
  • the end portion 41e of the first moisture absorption layer 41 and the end portion 42e of the second moisture absorption layer 42 are coincident (that is, the first moisture absorption layer 41 and the second moisture absorption layer 42 are One of the first hygroscopic layer 41 and the second hygroscopic layer 42 may be larger than the other.
  • the first hygroscopic layer 41 may be formed such that the end portion 41 e of the first hygroscopic layer 41 extends outward from the end portion 42 e of the second hygroscopic layer 42, or the second hygroscopic layer 42
  • the 2nd moisture absorption layer 42 may be formed so that end 42e may extend outside from edge 41e of the 1st moisture absorption layer 41 (not shown).
  • the first hygroscopic layer 41 and the second hygroscopic layer 42 are both provided beyond the end 33e of the organic layer 33 in a plan view. At least one of the end 41e and the end 42e of the second moisture absorption layer 42 is disposed so as to coincide with the end 33e of the organic layer 33 or on the inner side of the end 33e of the organic layer 33 in a plan view. May be.
  • the end portion 41 e of the first hygroscopic layer 41 is disposed on the inner side than the end portion 33 e of the organic layer 33.
  • the first hygroscopic layer 41 enters inside the end portion 33e of the organic layer 33 in a plan view. Even in this case, since the moisture-proof layer 5 is formed beyond the end portions 41e and 42e of the first and second moisture-absorbing layers 41 and 42 in a plan view, the end surfaces of the first and second moisture-absorbing layers 41 and 42 are formed. Can prevent moisture from entering.
  • the organic layer 33 is the first and second layers. Since it is enclosed with the 2nd moisture absorption layers 41 and 42, it is preferable.
  • a moisture-proof layer 51 separate from the moisture-proof layer 5 provided on the second moisture-absorbing layer 42 may be laminated on the surface of the support substrate 2.
  • the moisture-proof layer 51 (referred to as the second moisture-proof layer 51) is provided on the back surface side of the first moisture-absorbing layer 41, and is preferably provided with a size that can be joined to the moisture-proof layer 5 as shown in the drawing. Is provided on the entire surface of the support substrate 2.
  • the support substrate is a sheet-like material, preferably a flexible sheet-like material.
  • the support substrate may be transparent or opaque. However, when configuring a bottom emission type organic EL device, a transparent support substrate is used. When configuring a top emission type organic EL device, either a transparent support substrate or an opaque support substrate may be used.
  • the transparent means colorless and transparent or colored and transparent. Examples of the transparent index include a total light transmittance of 70% or more, preferably 80% or more. However, the total light transmittance is measured by a measuring method based on JIS K7105 (plastic optical property test method).
  • the support substrate can be appropriately selected from, for example, a metal sheet, a resin sheet, a glass sheet, a ceramic sheet, and the like.
  • a sheet includes what is generally called a film.
  • the said metal sheet is not specifically limited,
  • the flexible thin plate which consists of stainless steel, copper, titanium, aluminum, an alloy, etc. is mentioned.
  • the thickness of the metal sheet is, for example, 10 ⁇ m to 100 ⁇ m.
  • the resin sheet is not particularly limited, and examples thereof include polyester resins such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polybutylene terephthalate (PBT); polyethylene (PE), polypropylene (PP), and polymethylpentene.
  • polyester resins such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polybutylene terephthalate (PBT); polyethylene (PE), polypropylene (PP), and polymethylpentene.
  • PMP ethylene-propylene copolymer, ethylene-vinyl acetate copolymer (EVA) and other olefin resins containing ⁇ -olefin as a monomer component
  • PVC polyvinyl chloride
  • PC polycarbonate
  • PPS Polyphenylene sulfide
  • amide resins such as polyamide (nylon), wholly aromatic polyamide (aramid); polyimide resins; flexible synthetic resin sheets made of polyether ether ketone (PEEK), etc.
  • the thickness of the resin sheet is not particularly limited, but is, for example, 10 ⁇ m to 200 ⁇ m.
  • a known gas barrier layer may be laminated on at least one surface of the resin sheet.
  • the support substrate is preferably excellent in heat dissipation. Note that when a conductive substrate (such as a metal sheet) is used as the support substrate, an insulating layer is provided on the surface of the support substrate in order to insulate the facing electrode. In addition, when an insulating layer is provided in a support substrate, it is preferable that a 1st moisture absorption layer is provided on the surface of the insulating layer.
  • the first and second moisture absorbing layers include a material having a property of absorbing moisture.
  • the material having the property of absorbing moisture include boron compounds; sulfide compounds; alkali metal or alkaline earth metal oxides, fluorides, sulfates, halides, phosphates or perchlorates; alkali metals or A resin in which particles of an oxide of an alkaline earth metal are dispersed; and the like.
  • the first hygroscopic layer and the second hygroscopic layer each independently include one or more selected from the above materials, and preferably include at least one of a boron compound and a sulfide compound.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2011-020335.
  • the boron compound is a compound in which boron atoms are contained in the molecule, and a moisture-absorbing layer can be formed by a vacuum deposition method, and therefore a boron-containing inorganic compound is preferable.
  • the boron-containing inorganic compound include boron oxide, boron oxyacid, boron bromide, and the like.
  • An example of the boron oxide is boron oxide (B 2 O 3 ).
  • the boron oxygen acid is an oxygen acid having a boron atom as a central atom or a salt thereof.
  • oxygen acid of boron include orthoboric acid, metaboric acid, hypoboric acid, tetraboric acid, pentaboric acid, and sodium salts, potassium salts and ammonium salts thereof.
  • bromide of boron include boron tribromide (BBr 3 ).
  • boron oxide is preferable because of its excellent hygroscopicity. Further, since boron oxide is excellent in transparency, it is suitable as a material for forming a moisture absorption layer in a top emission type organic EL device.
  • the sulfur compound is a compound containing a sulfur atom in the molecule, and a sulfur-containing inorganic compound is preferable because a moisture absorption layer can be formed by a vacuum deposition method.
  • the sulfur-containing inorganic compound include sulfides of alkali metals or alkaline earth metals; sulfides of metals other than alkali metals and alkaline earth metals; nonmetal sulfides.
  • the sulfide include carbon sulfide and zinc sulfide.
  • Examples of the alkali metal include lithium, sodium, and potassium, and examples of the alkaline earth metal include magnesium, calcium, and barium.
  • Examples of the alkali metal oxide include lithium oxide, sodium oxide, and potassium oxide.
  • Examples of the alkaline earth metal oxide include magnesium oxide, calcium oxide, and barium oxide.
  • Examples of the alkali metal or alkaline earth metal fluoride include lithium fluoride, calcium fluoride, magnesium fluoride, and sodium fluoride.
  • Examples of the alkali metal or alkaline earth metal sulfate include lithium sulfate, sodium sulfate, and calcium sulfate.
  • Examples of the alkali metal or alkaline earth metal halide include calcium chloride, magnesium chloride, and calcium bromide.
  • Examples of the alkali metal or alkaline earth metal phosphate include calcium phosphate.
  • Examples of the alkali metal or alkaline earth metal perchlorate include barium perchlorate and magnesium perchlorate.
  • an oxide of an alkali metal or alkaline earth metal is used as a forming material
  • a method such as vacuum deposition as a source It is conceivable to form a hygroscopic layer by a method such as vacuum deposition as a source.
  • the former method is difficult, and the latter method may cause deterioration of the organic EL element due to the presence of oxygen gas.
  • a resin in which particles of an alkali metal or alkaline earth metal oxide are dispersed is used as a forming material, a moisture absorption layer cannot be formed by a vacuum deposition method.
  • a moisture absorption layer can be easily formed by vacuum deposition using the boron compound and the sulfide compound as an evaporation source, and deterioration of the organic EL element hardly occurs when the moisture absorption layer is formed.
  • a boron compound or a sulfide compound as a material for forming the first and second moisture absorption layers. Therefore, it is preferable that the first moisture absorption layer and the second moisture absorption layer each independently contain a boron compound or a sulfide compound.
  • the first hygroscopic property is excellent, it is more preferable that the first hygroscopic layer and the second hygroscopic layer contain a boron compound.
  • the 1st moisture absorption layer and the 2nd moisture absorption layer may be formed from the same material, or may be formed from a different material.
  • the first moisture absorption layer and the second moisture absorption layer are formed of the same material.
  • the hygroscopic layer and the second hygroscopic layer contain a boron compound
  • the hygroscopic layer substantially contains only (a) a boron compound having a hygroscopic property, and (b) a boron compound having a hygroscopic property and a hygroscopic property.
  • a boron compound having a hygroscopic property and another compound not having a hygroscopic property examples include other compounds having hygroscopicity.
  • Hygroscopicity refers to the property that a substance chemically absorbs moisture from its surroundings. Further, in the present specification, “substantially containing only A” means that a minute amount of components (components other than A) that are unavoidably included is allowed and a significant amount of contamination is excluded. Meaning.
  • the first and second moisture absorption layers include a boron compound and another compound, the amount of the boron compound is not particularly limited.
  • the amount of the boron compound is 50% of the entire moisture absorption layer. It is at least mass% and less than 100 mass%, preferably 60 mass% to 99 mass%, more preferably 80 mass% to 99 mass%.
  • the thicknesses of the first and second hygroscopic layers are not particularly limited, and are each independently, for example, 5 nm to 500 nm, and preferably 30 nm to 200 nm.
  • the moisture-proof layer is not particularly limited as long as it includes a material having a property of blocking moisture (moisture-proof property). Since the moisture-proof property is excellent, the material for forming the moisture-proof layer is preferably a nitrogen compound.
  • the nitrogen compound is a compound containing nitrogen atoms in the molecule, and a moisture-proof layer can be formed by a vacuum deposition method, and therefore a nitrogen-containing inorganic compound is preferable.
  • the nitrogen-containing inorganic compound include metal or metalloid nitride, metal or metalloid oxynitride, metal or metalloid carbonitride, metal or metalloid oxycarbonitride, and the like.
  • Examples of the metal include alkali metals and alkaline earth metals as exemplified above, and other metals.
  • Examples of metals other than alkali metals and alkaline earth metals include titanium, aluminum, zinc, gallium, and indium.
  • the metalloid refers to a substance that exhibits an intermediate property between metal and nonmetal. Examples of the metalloid include silicon, germanium, arsenic, antimony, tellurium, polonium, and astatine.
  • the moisture-proof layer preferably includes at least one selected from metal or metalloid nitrides, oxynitrides, carbonitrides, and oxycarbonitrides, and more preferably silicon nitride, oxynitride, carbonization It contains at least one selected from nitrides and oxycarbonitrides.
  • silicon nitride, oxynitride, carbonitride, and oxycarbonitride include silicon nitride, silicon oxynitride, silicon carbonitride, and silicon oxycarbonitride.
  • the moisture-proof layer may substantially contain only the nitrogen compound having the moisture-proof property, and may contain other compounds in addition to the nitrogen compound.
  • the moisture-proof layer is formed only from the nitrogen compound having the moisture-proof property and substantially contains only the nitrogen compound.
  • the amount of the nitrogen compound is not particularly limited, for example, the amount of the nitrogen compound is 50% by mass or more and less than 100% by mass with respect to the entire moisture-proof layer, The amount is preferably 60% by mass to 99% by mass, and more preferably 80% by mass to 99% by mass.
  • the thickness of the moisture-proof layer is not particularly limited, and is, for example, 50 nm to 2000 nm, preferably 100 nm to 1000 nm.
  • the first electrode may be either an anode or a cathode.
  • the first electrode is an anode.
  • the material for forming the first electrode is not particularly limited.
  • ITO indium tin oxide
  • ITSO indium tin oxide containing silicon oxide
  • aluminum gold
  • platinum nickel
  • tungsten Alloy
  • a transparent first electrode is used.
  • the thickness of the first electrode is not particularly limited, but is usually 0.01 ⁇ m to 1.0 ⁇ m.
  • the organic layer has a laminated structure composed of at least two layers.
  • As the structure of the organic layer for example, (A) a structure including three layers of a hole transport layer, a light emitting layer and an electron transport layer, (B) three layers of a hole transport layer, a light emitting layer and an electron injection layer are included.
  • the light emitting layer also serves as the electron transport layer.
  • the organic layer (D) the light emitting layer also serves as the hole transport layer.
  • the organic layer used in the present invention may have any of the structures (A) to (D).
  • the organic layer having the structure (A) when the first electrode is an anode will be described.
  • the hole transport layer is provided on the surface of the first electrode.
  • any functional layer other than these may be interposed between the first electrode and the hole transport layer on condition that the luminous efficiency of the organic EL element is not lowered.
  • the hole injection layer may be provided on the surface of the first electrode, and the hole transport layer may be provided on the surface of the hole injection layer.
  • the hole injection layer is a layer having a function of assisting injection of holes from the anode layer to the hole transport layer.
  • the material for forming the hole transport layer is not particularly limited as long as the material has a hole transport function.
  • aromatic amine compounds such as 4,4 ′, 4 ′′ -tris (carbazol-9-yl) -triphenylamine (abbreviation: TcTa); 1,3-bis (N— Carbazole derivatives such as carbazolyl) benzene; N, N′-bis (naphthalen-1-yl) -N, N′-bis (phenyl) benzidine (abbreviation: NPB), N, N′-bis (naphthalen-1-yl) ) -N, N′-bis (phenyl) -2,2′-dimethylbenzidine (abbreviation: ⁇ -NPD), N, N′-bis (naphthalen-1-yl) -N, N′-bis (phenyl) -9,9'-spirobifluorene (abbreviation: Spiro-NP
  • the material for forming the hole transport layer may be one kind or a combination of two or more kinds.
  • the hole transport layer may be two layers. It may be a multilayer structure of the above.
  • the thickness of the hole transport layer is not particularly limited, but is preferably 1 nm to 500 nm from the viewpoint of lowering the driving voltage.
  • the light emitting layer is provided on the surface of the hole transport layer.
  • the material for forming the light emitting layer is not particularly limited as long as it is a light emitting material.
  • a material for forming the light emitting layer for example, a low molecular light emitting material such as a low molecular fluorescent light emitting material or a low molecular phosphorescent light emitting material can be used.
  • low-molecular light-emitting material examples include aromatic dimethylidene compounds such as 4,4′-bis (2,2′-diphenylvinyl) -biphenyl (abbreviation: DPVBi); 5-methyl-2- [2- [4- Oxadiazole compounds such as (5-methyl-2-benzoxazolyl) phenyl] vinyl] benzoxazole; 3- (4-biphenylyl) -4-phenyl-5-tert-butylphenyl-1,2,4 A triazole derivative such as triazole; a styrylbenzene compound such as 1,4-bis (2-methylstyryl) benzene; a benzoquinone derivative; a naphthoquinone derivative; an anthraquinone derivative; a fluorenone derivative; an azomethine zinc complex, tris (8-quinolinolato) aluminum (Alq) 3 ) organometallic complexes such as;
  • a host material doped with a light emitting dopant material may be used as a material for forming the light emitting layer.
  • the host material for example, the above-described low-molecular light-emitting material can be used.
  • Examples of the dopant material include styryl derivatives; perylene derivatives; tris (2-phenylpyridinato) iridium (III) (Ir (ppy) 3 ), tris (1-phenylisoquinoline) iridium (III) (Ir (piq 3 ), phosphorescent metal complexes such as organic iridium complexes such as bis (1-phenylisoquinoline) (acetylacetonato) iridium (III) (abbreviation: Ir (piq) 2 (acac)); it can.
  • the material for forming the light emitting layer may include the above-described material for forming the hole transport layer, the material for forming the electron transport layer described later, and various additives.
  • the thickness of the light emitting layer is not particularly limited, but is preferably 2 nm to 500 nm, for example.
  • the electron transport layer is provided on the surface of the light emitting layer.
  • any functional layer other than these may be interposed between the second electrode and the electron transport layer on condition that the luminous efficiency of the organic EL element is not lowered.
  • the electron injection layer may be provided on the surface of the electron transport layer, and the second electrode may be provided on the surface of the electron injection layer.
  • the electron injection layer is a layer having a function of assisting injection of electrons from the second electrode to the electron transport layer.
  • the material for forming the electron transport layer is not particularly limited as long as the material has an electron transport function.
  • Examples of the material for forming the electron transport layer include tris (8-quinolinolato) aluminum (abbreviation: Alq 3 ), bis (2-methyl-8-quinolinolato) (4-phenylphenolato) aluminum (abbreviation: BAlq), and the like.
  • the material for forming the electron transport layer is 1 A single species or a combination of two or more species may be used, and the electron transport layer may have a multilayer structure of two or more layers.
  • the thickness of the electron transport layer is not particularly limited, but is preferably 1 nm to 500 nm from the viewpoint of lowering the driving voltage.
  • the second electrode may be either a cathode or an anode.
  • the second electrode is a cathode.
  • the material for forming the second electrode is not particularly limited, but a transparent second electrode is used in the case of forming a top emission type organic EL element.
  • a material for forming the transparent and conductive second electrode indium tin oxide (ITO); indium tin oxide containing silicon oxide (ITSO); zinc oxide to which a conductive metal such as aluminum is added (ZnO: Al) ); Magnesium-silver alloy.
  • the thickness of the second electrode is not particularly limited, but is usually 0.01 ⁇ m to 1.0 ⁇ m.
  • the organic EL device of the present invention can be used as a light emitting panel such as a lighting device or a display device by combining one or a plurality thereof.
  • the second moisture absorption layer since the second moisture absorption layer is provided on the back side of the organic layer, the second moisture absorption layer absorbs the moisture that has passed through the support substrate. Furthermore, since the moisture-proof layer is provided beyond the end of the first moisture-absorbing layer and the end of the second moisture-absorbing layer, it is difficult for moisture to enter from the end surfaces of the first and second moisture-absorbing layers.
  • the organic EL device of the present invention it is effective that the second moisture-absorbing layer is included and that the moisture-proof layer is larger than the first and second moisture-absorbing layers so that moisture penetrates into the organic layer. Can be prevented.
  • the first moisture absorption layer and the second moisture absorption layer are directly in close contact with each other, it is possible to more effectively prevent moisture from entering the organic layer.
  • Such an organic EL device continues to emit light stably for a long period of time.
  • a plurality of the organic EL devices of the present invention can be continuously produced by a roll-to-roll method, or can be produced individually.
  • the individual manufacturing method is also called a batch method.
  • a method for continuously producing a plurality of organic EL devices by a roll-to-roll method will be described.
  • the roll-to-roll organic EL device manufacturing method includes a feeding step of feeding out a flexible strip-shaped support substrate, a first moisture-absorbing layer forming step of forming a first moisture-absorbing layer on the strip-shaped support substrate, An element formation step of forming a plurality of organic EL elements on the first moisture absorption layer, a second moisture absorption layer formation step of forming a second moisture absorption layer on the organic EL element, and a moisture barrier layer on the second moisture absorption layer A moisture-proof layer forming step to be formed; and a winding step of winding the belt-like laminate having the belt-like support substrate, the first moisture-absorbing layer, the organic EL element, the second moisture-absorbing layer, and the moisture-proof layer into a roll shape.
  • the organic EL device of the present invention can also form a series of layers from the first moisture absorbing layer to the moisture-proof layer by vacuum deposition.
  • the feeding process is a process of feeding a belt-like support substrate wound around a roll to the production line.
  • the belt-like support substrate is an elongated rectangular flexible sheet.
  • the length (length in the longitudinal direction) of the belt-like support substrate is not particularly limited, but is, for example, 10 m to 1000 m, and the width (length in the short direction) is not particularly limited, but is, for example, 10 mm to 300 mm.
  • First moisture absorbing layer forming step The extended support substrate is washed in a washing tank as necessary, and then dried. After washing and drying, a first moisture absorbing layer is formed on the surface of the support substrate.
  • the first hygroscopic layer can be formed by attaching a hygroscopic material such as a boron compound to a desired region on the surface of the support substrate.
  • a hygroscopic material such as a boron compound
  • the method for forming the first moisture absorption layer an optimum method can be adopted depending on the material to be formed. For example, vacuum evaporation methods such as resistance heating evaporation and electron beam evaporation, sputtering methods, thermal CVD, photo CVD, plasma CVD, MOCVD, atomic layer deposition (ALD), etc. are mentioned.
  • the first moisture absorption layer is formed using a vacuum deposition method.
  • a first electrode is formed on a support substrate on which the first moisture absorption layer is formed.
  • a method for forming the first electrode an optimum method can be adopted depending on the forming material, and examples thereof include a sputtering method, a vacuum deposition method, and an ink jet method.
  • a vacuum deposition method is used.
  • An organic layer is formed on the surface of the first electrode except for the terminal. On the surface of the first electrode, for example, an organic layer can be formed by sequentially forming a hole transport layer, a light emitting layer, an electron transport layer, and the like.
  • an optimum method can be adopted depending on the material to be formed, and examples thereof include a sputtering method, a vacuum deposition method, an ink jet method, and a coating method. Usually, these are formed by vacuum deposition. Subsequently, a second electrode is formed on the surface of the organic layer. The second electrode is formed so as not to overlap the terminal of the first electrode.
  • an optimum method can be adopted depending on the forming material, and examples thereof include a sputtering method, a vacuum deposition method, and an ink jet method.
  • the interval between the plurality of organic EL elements is not particularly limited and can be set as appropriate. For example, the interval is 0.5 mm to 5 mm.
  • a second hygroscopic layer is formed by adhering a hygroscopic material such as a boron compound to the surface of the organic EL element excluding the two electrode terminals.
  • a hygroscopic material such as a boron compound
  • an optimum method can be adopted depending on the material to be formed.
  • vacuum evaporation methods such as resistance heating evaporation and electron beam evaporation, sputtering methods, thermal CVD, photo CVD, plasma CVD, MOCVD, atomic layer deposition (ALD), etc. are mentioned.
  • a 2nd moisture absorption layer is formed using a vacuum evaporation method.
  • the moisture-proof layer is formed by attaching the moisture-proof material to the surface of the second moisture-absorbing layer except for the terminals.
  • a method for forming the moisture-proof layer an optimum method can be adopted depending on the forming material, and examples thereof include physical vapor deposition and chemical vapor deposition. Among these, it is preferable to form the moisture-proof layer using a vacuum deposition method, particularly a plasma vacuum deposition method.
  • the plasma is not particularly limited, and for example, arc discharge plasma, glow discharge plasma, or the like can be used. Unlike glow discharge plasma, arc discharge plasma has a very high electron density. For this reason, it is preferable to use arc discharge plasma as the plasma.
  • the arc discharge plasma generation source for example, a pressure gradient plasma gun, a direct current discharge plasma generator, a high frequency discharge plasma generator, or the like can be used. Among these, since it is possible to stably generate high-density plasma, it is preferable to use a pressure gradient plasma gun as a plasma source.
  • a plasma deposition apparatus for forming the moisture-proof layer, a conventionally known apparatus can be used.
  • a plasma deposition apparatus includes a chamber capable of maintaining the inside in a vacuum, a transfer device that continuously feeds a belt-like support substrate, a plasma source that generates plasma, a deposition source that contains a material, and the chamber A reaction gas supply device for supplying a reaction gas therein; a discharge gas supply device for supplying a discharge gas into the chamber; and a vacuum pump for evacuating the chamber.
  • the vapor deposition source is usually installed at the bottom of the chamber so as to face the transported support substrate.
  • the plasma can be used, but resistance heating or an electron beam may be used.
  • the deposition source may be, for example, a metal or metalloid, or these Nitride, oxynitride, carbonitride, or oxycarbonitride.
  • a metal or metalloid when put in the vapor deposition source, a metal or metalloid can be obtained by using a nitrogen-containing gas, a nitrogen-oxygen-containing gas, a nitrogen-hydrocarbon-containing gas, or a nitrogen-oxygen-hydrocarbon-containing gas as a reaction gas.
  • a moisture-proof layer made of nitride or the like can be formed.
  • Examples of the nitrogen-containing gas include nitrogen (N 2 ), ammonia (NH 3 ), and nitric oxide (NO).
  • Examples of the nitrogen-oxygen-containing gas include nitrogen monoxide (NO), dinitrogen monoxide (N 2 O), or a mixed gas of nitrogen (N 2 ) and oxygen (O 2 ).
  • Examples of the nitrogen hydrocarbon-containing gas include a mixed gas of the nitrogen-containing gas and the hydrocarbon-containing gas.
  • Examples of the hydrocarbon-containing gas include methane (CH 4 ), ethane (C 2 H 6 ), propane (C 3 H 8 ), butane (C 4 H 10 ), ethylene (C 2 H 4 ), acetylene (C 2 H 2 ) and the like.
  • Examples of the nitrogen-oxygen hydrocarbon-containing gas include the nitrogen-containing gas, a mixed gas of an oxygen-containing gas and a hydrocarbon-containing gas, or a mixed gas of a nitrogen-oxygen-containing gas and a hydrocarbon-containing gas.
  • the inside of the chamber is kept in a vacuum state by operating the vacuum pump.
  • the pressure in the chamber is in the range of 0.01 Pa to 0.5 Pa, preferably 0.02 Pa to 0.15 Pa.
  • a plasma is generated by introducing a discharge gas from a discharge gas supply device to a plasma generation source.
  • the moisture-proof layer can be formed on the moisture-absorbing layer by introducing the reaction gas from the reaction gas supply device into the chamber and evaporating the material from the vapor deposition source.
  • the introduction of the reaction gas and the generation of the plasma may be performed at the same time, or the plasma may be generated after the introduction of the reaction gas, or the reaction gas may be introduced after the generation of the plasma. Also good.
  • the surface of the moisture absorption layer can be activated before the material for forming the moisture barrier layer is attached, it is preferable to introduce a reactive gas after the generation of plasma.
  • the deposition rate can be set as appropriate, and is, for example, 10 to 300 nm / min.
  • the winding process is a roll of a band-shaped laminate (a first moisture-absorbing layer, an organic EL element, a second moisture-absorbing layer, and a moisture-proof layer laminated on a band-shaped support substrate) obtained through the above-described steps. This is a winding process.
  • a long object in which a plurality of organic EL devices are connected by a roll-to-roll method can be obtained.
  • FIG. 15 is a plan view showing the long object 10. By cutting the long object 10 at a position indicated by a white arrow in FIG. 15, individual organic EL devices as shown in FIG. 1 can be obtained.
  • FIG. 15 illustrates a long object when the organic EL device of the first embodiment is manufactured by the roll-to-roll method, but the organic EL device of the second or third embodiment is similarly rolled. It can be manufactured by a two-roll method.
  • Example 1 A first hygroscopic layer was formed by vacuum-depositing B 2 O 3 (boron oxide) at a thickness of 20 nm (deposition rate: 1 nm / second) in a predetermined range on the surface of a commercially available glass substrate. An anode was formed on the surface of the first moisture absorption layer by vacuum-depositing aluminum with a thickness of 150 nm. Next, ⁇ -NPD (N, N′-bis (naphthalen-1-yl) -N, N′-bis (phenyl) -2,2′-dimethylbenzidine) is applied to the surface of the anode (excluding terminals). Was vacuum-deposited at a thickness of 60 nm to form a hole transport layer.
  • B 2 O 3 boron oxide
  • Alq 3 Tris (8-quinolinolato) aluminum
  • An electron injection layer was formed on the surface of the light emitting layer by vacuum deposition of lithium fluoride with a thickness of 1 nm.
  • a cathode was formed on the surface of the electron injection layer by vacuum-depositing ITO (indium tin oxide) at a thickness of 100 nm.
  • the organic layer including the light emitting layer was formed inside the end of the first hygroscopic layer.
  • a second moisture absorbing layer was formed on the surface of the cathode (excluding the terminal) by vacuum-depositing B 2 O 3 (boron oxide) with a thickness of 20 nm (deposition rate: 1 nm / second).
  • the 2nd moisture absorption layer was formed so that the edge part of an organic layer might be exceeded.
  • a moisture barrier layer was formed on the surface of the second moisture absorbing layer by plasma-depositing SiON (silicon oxynitride) with a thickness of 300 nm.
  • the moisture-proof layer was formed so as to extend over the end portions of the first and second moisture-absorbing layers and cover the end surfaces of the first and second moisture-absorbing layers. However, the moisture-proof layer was not formed on the terminal.
  • the plasma deposition was performed at a deposition rate of 1 nm / second using a pressure gradient plasma gun as a plasma source, using silicon particles as a deposition source, and a mixed gas of oxygen and nitrogen as a reaction gas.
  • a top emission type organic EL device as shown in FIGS. 1 to 3 was produced.
  • the first and second moisture absorption layers extend outside the organic layer, and the moisture barrier layer is more than the first and second moisture absorption layers. Also extends outward.
  • the second moisture absorption layer covers and adheres to the surface and end surface of the organic layer, and the moisture barrier layer covers and adheres to the end surface of the first moisture absorption layer and the surface and end surface of the second moisture absorption layer.
  • the 1st moisture absorption layer and the 2nd moisture absorption layer are joined.
  • Moisture-proof layer 300 nm thick SiON Second hygroscopic layer: B 2 O 3 with a thickness of 20 nm
  • Cathode ITO with a thickness of 100 nm
  • Electron injection layer LiF with a thickness of 1 nm
  • Light emitting layer Alq 3 with a thickness of 40 nm
  • Hole transport layer ⁇ -NPD with a thickness of 60 nm
  • Anode Al with a thickness of 150 nm
  • First hygroscopic layer B 2 O 3 with a thickness of 20 nm
  • Substrate Glass substrate
  • Comparative Example 1 An organic EL device was produced in the same manner as in Example 1 except that the first hygroscopic layer was not formed. The configuration of the organic EL device produced in Comparative Example 1 is shown in FIG.
  • Example 2 An organic EL device was produced in the same manner as in Example 1 except that the first moisture absorption layer was formed on the entire surface of the substrate and the first moisture absorption layer was formed beyond the end of the moisture barrier layer. As shown in FIG. 17, the organic EL device manufactured in Comparative Example 2 does not cover the moisture-proof layer on a part of the surface and the end surface of the first moisture-absorbing layer.
  • Comparative Example 3 An organic EL device was produced in the same manner as in Example 1 except that the moisture-proof layer was formed only on the surface of the second moisture-absorbing layer. As shown in FIG. 17, the organic EL device manufactured in Comparative Example 3 does not cover the moisture-proof layer on the end surfaces of the first and second moisture-absorbing layers.
  • Example 1 As is clear from Table 1, the organic EL device of Example 1 emitted light for a relatively long time.
  • the organic EL devices of Comparative Examples 1 to 3 had an extremely short light emission lifetime as compared with Example 1.
  • the organic EL device of the present invention can be used as, for example, a lighting device or a display device.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

An organic electroluminescent device 1 has, in the following order, a supporting substrate 2, a first moisture absorbing layer 41, an organic electroluminescent element 3 having an organic layer 33, a second moisture absorbing layer 42, and a moisture-proof layer 5. In a perspective plan view, the moisture-proof layer 5 is provided such that the moisture-proof layer extends beyond an end portion 41e of the first moisture absorbing layer 41, and an end portion 42e of the second moisture absorbing layer 42.

Description

有機エレクトロルミネッセンス装置及び照明装置Organic electroluminescence device and lighting device
 本発明は、有機エレクトロルミネッセンス装置などに関する。 The present invention relates to an organic electroluminescence device and the like.
 以下、有機エレクトロルミネッセンスを「有機EL」と記す。
 従来、支持基板と、前記支持基板上に設けられた有機EL素子と、を有する有機EL装置が知られている。前記有機EL素子は、第1電極と、第2電極と、前記両電極の間に設けられた有機層と、を有する。
Hereinafter, organic electroluminescence is referred to as “organic EL”.
Conventionally, an organic EL device having a support substrate and an organic EL element provided on the support substrate is known. The organic EL element includes a first electrode, a second electrode, and an organic layer provided between the two electrodes.
 前記有機EL素子は、水分によって劣化し易い。有機EL素子の水分劣化を防止するため、例えば、特許文献1には、支持基板に設けられ且つ有機層を含む有機EL素子と、有機EL素子上に設けられた吸湿膜と、吸湿膜上に設けられたガスバリア膜と、を有する有機EL装置が開示されている。
 かかる有機EL装置は、吸湿膜が有機EL素子の表面及び側面に被さり、さらに、ガスバリア膜が前記吸湿膜の表面及び側面に被さっているので、水分を遮断し易い旨が特許文献1に述べられている。
The organic EL element is easily deteriorated by moisture. In order to prevent moisture deterioration of the organic EL element, for example, Patent Document 1 discloses an organic EL element provided on a support substrate and including an organic layer, a moisture absorption film provided on the organic EL element, and a moisture absorption film. An organic EL device having a gas barrier film provided is disclosed.
Patent Document 1 states that in such an organic EL device, the moisture absorption film covers the surface and side surfaces of the organic EL element, and further, the gas barrier film covers the surface and side surfaces of the moisture absorption film, so that moisture can be easily blocked. ing.
 しかしながら、前記構造の有機EL装置は、支持基板を透過した水分或いは支持基板とガスバリア膜との界面を通過した水分が有機層に侵入することを十分に防止できない。かかる有機EL装置は、有機層への水蒸気の侵入を十分に防止できないため、発光寿命が比較的短いという問題点を有している。 However, the organic EL device having the above structure cannot sufficiently prevent moisture that has permeated through the support substrate or moisture that has passed through the interface between the support substrate and the gas barrier film from entering the organic layer. Such an organic EL device has a problem that the emission lifetime is relatively short because water vapor cannot be sufficiently prevented from entering the organic layer.
特開2011-020335号公報JP 2011-020335 A
 本発明の目的は、有機層への水分の侵入を効果的に防止して、発光寿命の長い有機EL装置及び照明装置を提供することである。 An object of the present invention is to provide an organic EL device and an illuminating device having a long light emission lifetime by effectively preventing moisture from entering the organic layer.
 本発明の有機EL装置は、支持基板と、第1吸湿層と、有機層を有する有機EL素子と、第2吸湿層と、防湿層と、をこの順で有し、平面透視において、前記防湿層が、前記第1吸湿層の端部及び第2吸湿層の端部を越えて設けられている。 The organic EL device of the present invention includes a support substrate, a first moisture absorption layer, an organic EL element having an organic layer, a second moisture absorption layer, and a moisture barrier layer in this order. A layer is provided beyond the end of the first hygroscopic layer and the end of the second hygroscopic layer.
 本発明の好ましい有機EL装置は、前記第1吸湿層が、平面透視において、前記有機層の端部を越えて設けられている。
 本発明の好ましい有機EL装置は、前記第2吸湿層が、平面透視において、前記有機層の端部を越えて設けられている。
 本発明の好ましい有機EL装置は、前記第2吸湿層が、前記有機層の表面側及び端面側に被さり、前記防湿層が、前記第2吸湿層の表面側及び端面側に被さっている。
 本発明の好ましい有機EL装置は、前記有機EL素子が、端子を部分的に有し、前記端子を有さない箇所において、前記第1吸湿層と第2吸湿層が直接的に密着されている。
 本発明の好ましい有機EL装置は、前記第1吸湿層及び第2吸湿層が、それぞれ独立して、ホウ素化合物又は硫化化合物を含む。
In a preferred organic EL device of the present invention, the first hygroscopic layer is provided beyond the end of the organic layer in a plan view.
In a preferred organic EL device of the present invention, the second moisture absorption layer is provided beyond the end of the organic layer in a plan view.
In a preferred organic EL device of the present invention, the second moisture absorption layer covers the surface side and end surface side of the organic layer, and the moisture barrier layer covers the surface side and end surface side of the second moisture absorption layer.
In a preferred organic EL device according to the present invention, the first hygroscopic layer and the second hygroscopic layer are in direct contact with each other where the organic EL element partially has a terminal and does not have the terminal. .
In a preferred organic EL device of the present invention, the first moisture absorption layer and the second moisture absorption layer each independently contain a boron compound or a sulfide compound.
 本発明の別の局面によれば、本発明は照明装置を提供する。
 本発明の照明装置は、前記いずれかの有機EL装置を有する。
According to another aspect of the present invention, the present invention provides a lighting device.
The lighting device of the present invention includes any one of the organic EL devices.
 本発明の有機EL装置は、防湿層によって内部に水分が侵入することを防止でき、さらに、僅かに侵入した水分も第1及び第2吸湿層に吸収されるので、水分が有機層に侵入することを効果的に防止できる。かかる有機EL装置は、有機EL素子が水分劣化し難く、比較的長期間安定的に発光し得る。 In the organic EL device of the present invention, moisture can be prevented from entering the inside by the moisture-proof layer, and further, the slightly penetrated moisture is absorbed by the first and second moisture-absorbing layers, so that moisture penetrates into the organic layer. Can be effectively prevented. In such an organic EL device, the organic EL element is hardly deteriorated in moisture, and can emit light stably for a relatively long period of time.
本発明の第1実施形態に係る有機EL装置の平面図。1 is a plan view of an organic EL device according to a first embodiment of the present invention. 図1のII-II線で切断し且つ中央部を省略した拡大断面図。FIG. 2 is an enlarged cross-sectional view taken along line II-II in FIG. 1 and omitting the central portion. 図1のIII-III線で切断した拡大断面図。FIG. 3 is an enlarged sectional view taken along line III-III in FIG. 1. 第2実施形態に係る有機EL装置の平面図。The top view of the organic electroluminescent apparatus which concerns on 2nd Embodiment. 図4のV-V線で切断し且つ中央部を省略した拡大断面図。FIG. 5 is an enlarged cross-sectional view taken along line VV in FIG. 4 and omitting the central portion. 図4のVI-VI線で切断した拡大断面図。FIG. 5 is an enlarged cross-sectional view taken along line VI-VI in FIG. 4. 図4のVII-VII線で切断した拡大断面図。The expanded sectional view cut | disconnected by the VII-VII line of FIG. 同有機EL装置を平面透視したときの、第1吸湿層、第1電極、有機層、第2電極、第2吸湿層及び防湿層のそれぞれの端部を表す模式図。The schematic diagram showing each edge part of a 1st moisture absorption layer, a 1st electrode, an organic layer, a 2nd electrode, a 2nd moisture absorption layer, and a moisture-proof layer when the organic EL device is seen through in plane. 第3実施形態に係る有機EL装置の平面図。The top view of the organic electroluminescent apparatus concerning 3rd Embodiment. 図9のX-X線で切断した拡大断面図。FIG. 10 is an enlarged cross-sectional view taken along line XX in FIG. 9. 図9のXI-XI線で切断した拡大断面図。FIG. 10 is an enlarged cross-sectional view taken along line XI-XI in FIG. 9. 同有機EL装置を平面透視したときの、第1吸湿層、第1電極、有機層、第2電極、第2吸湿層及び防湿層のそれぞれの端部を表す模式図。The schematic diagram showing each edge part of a 1st moisture absorption layer, a 1st electrode, an organic layer, a 2nd electrode, a 2nd moisture absorption layer, and a moisture-proof layer when the organic EL device is seen through in plane. 第5実施形態の有機EL装置を、端子を有しない箇所で切断した拡大断面図。The expanded sectional view which cut | disconnected the organic electroluminescent apparatus of 5th Embodiment in the location which does not have a terminal. 第6実施形態の有機EL装置を、端子を有しない箇所で切断した拡大断面図。The expanded sectional view which cut | disconnected the organic electroluminescent apparatus of 6th Embodiment in the location which does not have a terminal. 有機EL装置が連続的に繋がった長尺物の平面図。The top view of the elongate thing to which the organic EL apparatus was connected continuously. 実施例1及び比較例1で作製した有機EL装置のそれぞれを、端子を有しない箇所で切断した参考拡大断面図。The reference expanded sectional view which cut | disconnected each of the organic electroluminescent apparatus produced in Example 1 and Comparative Example 1 in the location which does not have a terminal. 比較例2及び比較例3で作製した有機EL装置のそれぞれを、端子を有しない箇所で切断した参考拡大断面図。The reference expanded sectional view which cut | disconnected each of the organic EL apparatus produced by the comparative example 2 and the comparative example 3 in the location which does not have a terminal.
 以下、本発明について、図面を参照しつつ説明する。ただし、各図に表された厚み及び長さなどの寸法は、実際のものとは異なっていることに留意されたい。
 本明細書において、表面は、板状の有機EL装置又は各層の一方の面を指し、裏面は、表面とは反対側の面を指す。端面は、有機EL装置又は各層の厚み方向に延在する面を指す。各層は、有機EL装置を構成する部材(支持基板、第1吸湿層、有機EL素子、第2吸湿層、防湿層など)の総称である。本明細書において、用語の頭に、「第1」、「第2」を付す場合があるが、この第1などは、用語を区別するためだけに付加されたものであり、その順序や優劣などの特別な意味を持たない。本明細書において、「PPP~QQQ」という表記は、「PPP以上QQQ以下」を意味する。
The present invention will be described below with reference to the drawings. However, it should be noted that dimensions such as thickness and length shown in each figure are different from actual ones.
In this specification, the surface indicates a plate-like organic EL device or one surface of each layer, and the back surface indicates a surface opposite to the surface. The end surface refers to a surface extending in the thickness direction of the organic EL device or each layer. Each layer is a generic name for members (such as a support substrate, a first moisture absorption layer, an organic EL element, a second moisture absorption layer, and a moisture proof layer) constituting the organic EL device. In this specification, the term “first” and “second” may be added to the beginning of the term. The first and the like are added only to distinguish the term, and the order and superiority or inferiority thereof are added. It has no special meaning. In this specification, the expression “PPP to QQQ” means “PPP or more and QQQ or less”.
[第1実施形態の有機EL装置の構成]
 図1は、第1実施形態の有機EL装置を表面側から見た平面図である。有機EL装置がトップエミッション型である場合には、その表面は、光が出射する面を指し、有機EL装置がボトムエミッション型である場合には、その表面は、光が出射する面とは反対側の面を指す。なお、本発明の有機EL装置は、トップエミッション型、ボトムエミッション型、又は、両面発光型の何れでもよい。
 図2は、図1の有機EL装置を、端子を有さない箇所にて第1方向と平行な線で切断した断面を拡大した図であり、図3は、図1の有機EL装置を、端子を有する箇所にて第2方向と平行な線で切断した断面を拡大した図である。なお、図2において、断面構造に変化がない中間部を省略している。
[Configuration of Organic EL Device of First Embodiment]
FIG. 1 is a plan view of the organic EL device according to the first embodiment viewed from the surface side. When the organic EL device is a top emission type, the surface indicates a surface from which light is emitted. When the organic EL device is a bottom emission type, the surface is opposite to the surface from which light is emitted. Refers to the side surface. The organic EL device of the present invention may be any of a top emission type, a bottom emission type, or a dual emission type.
2 is an enlarged view of a cross section of the organic EL device of FIG. 1 cut along a line parallel to the first direction at a portion having no terminal, and FIG. 3 shows the organic EL device of FIG. It is the figure which expanded the cross section cut | disconnected by the line | wire parallel to a 2nd direction in the location which has a terminal. In FIG. 2, an intermediate portion where the cross-sectional structure does not change is omitted.
 図1乃至図3において、有機EL装置1は、支持基板2と、第1吸湿層41と、有機層33を有する有機EL素子3と、第2吸湿層42と、防湿層5と、をこの順で有する。前記防湿層5は、平面透視において、前記第1吸湿層41及び第2吸湿層42の端部41e,42eをそれぞれ越えて設けられている。有機EL装置1は、湾曲させることができないほどの剛性を有するものでもよいが、好ましくは、湾曲させることができるフレキシブル性を有する。有機EL素子3は、部分的に外部に露出した端子31a,32aを有する。なお、図1において、外部に露出した端子31a,32aを判り易く図示するため、便宜上、その部分に無数のドットを付加している。
 前記支持基板2、第1吸湿層41、有機層33を有する有機EL素子3、第2吸湿層42及び防湿層5は、この順で積層されている。厚み方向にこの順で並んでいることを条件として、前記支持基板などの各層2,41,33,42,5は、それぞれ直接的に密着した状態で積層されていてもよく、或いは、各層間又は前記各層から任意に選ばれる2層間に任意の機能層が介在した状態で積層されていてもよい。
 また、本明細書において、平面透視とは、概念上、有機EL装置の表面に対して視線を垂直にして、その視線の方向にある対象部材を透視することをいう。
1 to 3, the organic EL device 1 includes a support substrate 2, a first moisture absorption layer 41, an organic EL element 3 having an organic layer 33, a second moisture absorption layer 42, and a moisture barrier layer 5. Have in order. The moisture-proof layer 5 is provided beyond the end portions 41e and 42e of the first moisture-absorbing layer 41 and the second moisture-absorbing layer 42 in a plan view. The organic EL device 1 may be rigid so that it cannot be bent, but preferably has flexibility that allows bending. The organic EL element 3 has terminals 31a and 32a partially exposed to the outside. In FIG. 1, in order to illustrate the terminals 31a and 32a exposed to the outside in an easy-to-understand manner, innumerable dots are added to the portions for convenience.
The support substrate 2, the first moisture absorption layer 41, the organic EL element 3 having the organic layer 33, the second moisture absorption layer 42 and the moisture barrier layer 5 are laminated in this order. Each layer 2, 41, 33, 42, 5 such as the support substrate may be laminated in direct contact with each other on the condition that they are arranged in this order in the thickness direction. Or you may laminate | stack in the state in which the arbitrary functional layers intervened between two layers arbitrarily chosen from the said each layer.
Further, in the present specification, the plan perspective means conceptually seeing a target member in the direction of the line of sight with the line of sight perpendicular to the surface of the organic EL device.
 図1乃至図3に示すように、平面透視において、前記第1吸湿層41及び第2吸湿層42は、それらの端部41e,42eが厚み方向において一致している。詳しくは、前記第1吸湿層41及び第2吸湿層42は、平面透視において、同じ面積の所望形状(図示例では、平面視略矩形状)に形成されている。すなわち、前記第1吸湿層41及び第2吸湿層42は、同形同大で且つ厚み方向に重なっている。従って、平面透視したときに、前記第1吸湿層41の端部41eと第2吸湿層42の端部42eは一致している。 As shown in FIG. 1 to FIG. 3, the end portions 41 e and 42 e of the first moisture absorption layer 41 and the second moisture absorption layer 42 coincide with each other in the thickness direction when seen in a plan view. Specifically, the first hygroscopic layer 41 and the second hygroscopic layer 42 are formed in a desired shape (in the illustrated example, a substantially rectangular shape in plan view) having the same area in plan perspective. That is, the first moisture absorption layer 41 and the second moisture absorption layer 42 have the same shape and the same size and overlap in the thickness direction. Therefore, when viewed through, the end portion 41e of the first moisture absorption layer 41 and the end portion 42e of the second moisture absorption layer 42 coincide with each other.
 前記第1吸湿層41及び第2吸湿層42は、平面透視において、前記有機層33の端部33eを越えて設けられている。詳しくは、前記第1吸湿層41及び第2吸湿層42は、それぞれ有機層33よりも面積が大きい。なお、前記有機層33の形状は、特に限定されず、所望形状に形成でき、図示例では、平面視略矩形状に形成されている。前記第1吸湿層41の端部41eは、平面透視において、有機層33の端部33eよりも外側に位置しており、前記第2吸湿層42の端部42eは、平面透視において、有機層33の端部33eよりも外側に位置している。換言すると、有機層33は、第1吸湿層41及び第2吸湿層42の内側に形成されている。従って、平面透視において、第1吸湿層41は、有機層33の裏面側の全体を覆うように積層され、且つ、第2吸湿層42は、有機層33の表面側の全体を覆うように積層されている。 The first hygroscopic layer 41 and the second hygroscopic layer 42 are provided beyond the end 33e of the organic layer 33 in a plan view. Specifically, the first moisture absorption layer 41 and the second moisture absorption layer 42 each have a larger area than the organic layer 33. The shape of the organic layer 33 is not particularly limited and can be formed in a desired shape. In the illustrated example, the organic layer 33 is formed in a substantially rectangular shape in plan view. The end portion 41e of the first moisture absorption layer 41 is located outside the end portion 33e of the organic layer 33 in a plan view, and the end portion 42e of the second moisture absorption layer 42 is an organic layer in the plan view. It is located outside the end 33 e of 33. In other words, the organic layer 33 is formed inside the first moisture absorption layer 41 and the second moisture absorption layer 42. Accordingly, the first hygroscopic layer 41 is laminated so as to cover the entire back surface side of the organic layer 33 and the second hygroscopic layer 42 is laminated so as to cover the entire surface side of the organic layer 33 in plan perspective. Has been.
 前記防湿層5は、平面透視において、前記第1吸湿層41の端部41e及び第2吸湿層42の端部42eを越えて設けられている。詳しくは、前記防湿層5は、第1吸湿層41及び第2吸湿層42よりも面積が大きい。なお、前記防湿層5の形状は、特に限定されず、所望形状に形成でき、図示例では、平面視矩形状に形成されている。前記防湿層5の端部5eは、平面透視において、第1吸湿層41の端部41eよりも外側に位置し且つ第2吸湿層42の端部42eよりも外側に位置している。換言すると、第1吸湿層41及び第2吸湿層42は、防湿層5の内側に形成されている。従って、平面透視において、防湿層5は、第1吸湿層41及び第2吸湿層42の表面側の全体を覆うように積層されている。
 なお、本明細書において、第1吸湿層41の端部41eは、平面透視において、第1吸湿層41の輪郭線を意味し、第2吸湿層42、有機層33及び防湿層5などの端部も同様に、平面透視において、それらの輪郭線を意味する。
The moisture-proof layer 5 is provided beyond the end portion 41e of the first moisture-absorbing layer 41 and the end portion 42e of the second moisture-absorbing layer 42 in plan perspective. Specifically, the moisture-proof layer 5 has a larger area than the first moisture-absorbing layer 41 and the second moisture-absorbing layer 42. The shape of the moisture-proof layer 5 is not particularly limited and can be formed in a desired shape. In the illustrated example, the moisture-proof layer 5 is formed in a rectangular shape in plan view. The end portion 5e of the moisture-proof layer 5 is located outside the end portion 41e of the first moisture-absorbing layer 41 and outside the end portion 42e of the second moisture-absorbing layer 42 in a plan view. In other words, the first moisture absorption layer 41 and the second moisture absorption layer 42 are formed inside the moisture barrier layer 5. Therefore, the moisture-proof layer 5 is laminated so as to cover the entire surface side of the first moisture-absorbing layer 41 and the second moisture-absorbing layer 42 in plan perspective.
In the present specification, the end portion 41e of the first moisture absorption layer 41 means a contour line of the first moisture absorption layer 41 in plan perspective, and is an end of the second moisture absorption layer 42, the organic layer 33, the moisture proof layer 5, and the like. Similarly, the parts mean their contour lines in the plan perspective.
 図2及び図3において、有機EL装置1は、支持基板2と、支持基板2上に設けられた第1吸湿層41と、前記第1吸湿層41上に設けられた有機EL素子3と、前記有機EL素子3の上に設けられた第2吸湿層42と、前記第2吸湿層42の上に設けられた防湿層5と、が積層された構造からなる。
 前記第1吸湿層41は、支持基板2の面内に設けられている。支持基板2は、第1吸湿層41よりも十分に大きく、従って、支持基板2の端部2eは、第1吸湿層41の端部41eよりも外側に延在している。
2 and 3, the organic EL device 1 includes a support substrate 2, a first moisture absorption layer 41 provided on the support substrate 2, an organic EL element 3 provided on the first moisture absorption layer 41, and The second moisture absorption layer 42 provided on the organic EL element 3 and the moisture barrier layer 5 provided on the second moisture absorption layer 42 are laminated.
The first moisture absorption layer 41 is provided in the plane of the support substrate 2. The support substrate 2 is sufficiently larger than the first moisture absorption layer 41, and therefore the end 2 e of the support substrate 2 extends outward from the end 41 e of the first moisture absorption layer 41.
 前記有機EL素子3は、端子31aを有する第1電極31と、端子32aを有する第2電極32と、前記両電極31,32の間に設けられた有機層33と、を有する。端子31aは、陽極又は陰極の端子であり、端子32aは、その反対極の端子である。例えば、端子31aは、陽極(+)であり、端子32aは、陰極(-)である。
 第1電極31は、端子31aを除いて、第1吸湿層41の表面に直接的に密着した状態で積層されている。第1電極31の端子31aは、支持基板2の表面に直接的に密着した状態で積層されている。有機層33は、その第1電極31の表面に直接的に密着した状態で積層されている。第2電極32は、端子32aを除いて、有機層33の表面に直接的に密着した状態で積層されている。第2電極32の端子32aは、支持基板2の表面に直接的に密着した状態で積層されている。第2吸湿層42は、端子32aを除く第2電極32の表面に直接的に密着した状態で積層されている。上述のように、第1吸湿層41及び第2吸湿層42は、それぞれ有機層33の端部33eを越えて設けられている。それ故、第1吸湿層41の端部41e及び第2吸湿層42の端部42eは、それぞれ有機層33の端部33eを越えて延在している。そして、第2吸湿層42は、有機層33の表面側に被さっていると共に有機層33の端面側にも被さっている。このため、有機層33の裏面側は、第1吸湿層41に覆われ、有機層33の表面側及び端面側は、第2吸湿層42に覆われている。
The organic EL element 3 includes a first electrode 31 having a terminal 31a, a second electrode 32 having a terminal 32a, and an organic layer 33 provided between the electrodes 31 and 32. The terminal 31a is an anode or cathode terminal, and the terminal 32a is a terminal of the opposite polarity. For example, the terminal 31a is an anode (+), and the terminal 32a is a cathode (−).
The 1st electrode 31 is laminated | stacked in the state which contact | adhered directly to the surface of the 1st moisture absorption layer 41 except the terminal 31a. The terminal 31 a of the first electrode 31 is laminated in a state of being in direct contact with the surface of the support substrate 2. The organic layer 33 is laminated in a state of being in direct contact with the surface of the first electrode 31. The 2nd electrode 32 is laminated | stacked in the state which contact | adhered directly to the surface of the organic layer 33 except the terminal 32a. The terminal 32 a of the second electrode 32 is laminated in a state of being in direct contact with the surface of the support substrate 2. The 2nd moisture absorption layer 42 is laminated in the state where it touched directly on the surface of the 2nd electrode 32 except terminal 32a. As described above, the first hygroscopic layer 41 and the second hygroscopic layer 42 are provided beyond the end portion 33e of the organic layer 33, respectively. Therefore, the end portion 41e of the first moisture absorption layer 41 and the end portion 42e of the second moisture absorption layer 42 extend beyond the end portion 33e of the organic layer 33, respectively. The second moisture absorbing layer 42 covers the surface side of the organic layer 33 and also covers the end surface side of the organic layer 33. For this reason, the back surface side of the organic layer 33 is covered with the first moisture absorption layer 41, and the surface side and the end surface side of the organic layer 33 are covered with the second moisture absorption layer 42.
 図2に示すように、端子31a,32aを有さない箇所においては、第1吸湿層41と第2吸湿層42は、直接的に密着されている。第1吸湿層41と第2吸湿層42が密着し且つ両層41,42が接合された部分を、符号49で示す。この接合部分49は、第1吸湿層41と第2吸湿層42の界面である。ただし、第1吸湿層41と第2吸湿層42が同一材料で形成されている場合には、前記界面は殆ど確認できず、その場合、第1吸湿層41と第2吸湿層42は、接合部分49にて一体化している。
 また、図3に示すように、端子31a,32aを有する箇所においては、第1吸湿層41と第2吸湿層42は、端子31a,32aを介して密着されている。従って、有機層33の周囲は、第1吸湿層41及び第2吸湿層42によって囲まれている。有機層33は、吸湿層(第1吸湿層41及び第2吸湿層42)の内部に封入されているとも言える。
As shown in FIG. 2, the 1st moisture absorption layer 41 and the 2nd moisture absorption layer 42 are contact | adhered directly in the location which does not have the terminals 31a and 32a. A portion where the first hygroscopic layer 41 and the second hygroscopic layer 42 are in close contact with each other and the layers 41 and 42 are joined is denoted by reference numeral 49. The joint portion 49 is an interface between the first moisture absorption layer 41 and the second moisture absorption layer 42. However, when the first hygroscopic layer 41 and the second hygroscopic layer 42 are formed of the same material, the interface can hardly be confirmed. In this case, the first hygroscopic layer 41 and the second hygroscopic layer 42 are bonded to each other. The part 49 is integrated.
Moreover, as shown in FIG. 3, in the location which has the terminals 31a and 32a, the 1st moisture absorption layer 41 and the 2nd moisture absorption layer 42 are closely_contact | adhered via the terminals 31a and 32a. Therefore, the periphery of the organic layer 33 is surrounded by the first moisture absorption layer 41 and the second moisture absorption layer 42. It can also be said that the organic layer 33 is enclosed in the hygroscopic layer (the first hygroscopic layer 41 and the second hygroscopic layer 42).
 防湿層5は、端子31a,32aを除いて、第2吸湿層42の表面に直接的に密着した状態で積層されている。上述のように、防湿層5は、第1吸湿層41の端部41e及び第2吸湿層42の端部42eを越えて設けられている。防湿層5の端部5eは、第1吸湿層41の端部41e及び第2吸湿層42の端部42eを越えて延在している。そして、防湿層5は、第2吸湿層42の表面側に被さっていると共に第2吸湿層42の端面側にも被さっている。図2に示すように、端子31a,32aを有さない箇所においては、防湿層5は、第1吸湿層41の端面にも被さり、支持基板2の表面に直接的に密着されている。図3に示すように、端子31a,32aを有する箇所においては、第2吸湿層42の端面に密着した防湿層5は、端子31a,32aの基部に密着されている。 The moisture-proof layer 5 is laminated in a state of being in direct contact with the surface of the second moisture-absorbing layer 42 except for the terminals 31a and 32a. As described above, the moisture-proof layer 5 is provided beyond the end portion 41 e of the first moisture-absorbing layer 41 and the end portion 42 e of the second moisture-absorbing layer 42. The end portion 5 e of the moisture-proof layer 5 extends beyond the end portion 41 e of the first moisture-absorbing layer 41 and the end portion 42 e of the second moisture-absorbing layer 42. Further, the moisture-proof layer 5 covers the surface side of the second moisture-absorbing layer 42 and also covers the end surface side of the second moisture-absorbing layer 42. As shown in FIG. 2, the moisture-proof layer 5 also covers the end surface of the first moisture-absorbing layer 41 and is in direct contact with the surface of the support substrate 2 at locations where the terminals 31 a and 32 a are not provided. As shown in FIG. 3, the moisture-proof layer 5 that is in close contact with the end face of the second moisture-absorbing layer 42 is in close contact with the bases of the terminals 31a and 32a at the locations having the terminals 31a and 32a.
 前記第1電極31の端子31aは、例えば、有機EL装置の第2方向一方側に配設され、且つ、第2電極32の端子32aは、第2方向反対側に配設されている。図示例では、第1電極31の端子31a及び第2電極32の端子32aは、それぞれ有機EL装置の第1方向に延在されている。前記第1方向は、有機EL装置の任意の1つの方向であり、前記第2方向は、有機EL装置の面内において前記第1方向と直交する方向である。
 前記端子31aは、第1電極31の一部分であって、外部に露出した電極部分である。前記端子32aは、第2電極32の一部分であって、外部に露出した電極部分である。第1電極31の端子31a及び第2電極32の端子32aは、防湿層5にて被覆されずに外部に露出している。
 なお、支持基板2が導電性を有する場合には、電気的な短絡を防止するため、支持基板2の表面上に絶縁層(図示せず)が設けられる。
For example, the terminal 31a of the first electrode 31 is disposed on one side in the second direction of the organic EL device, and the terminal 32a of the second electrode 32 is disposed on the opposite side in the second direction. In the illustrated example, the terminal 31a of the first electrode 31 and the terminal 32a of the second electrode 32 are each extended in the first direction of the organic EL device. The first direction is any one direction of the organic EL device, and the second direction is a direction orthogonal to the first direction in the plane of the organic EL device.
The terminal 31a is a part of the first electrode 31 that is exposed to the outside. The terminal 32a is a part of the second electrode 32 and is an electrode part exposed to the outside. The terminal 31 a of the first electrode 31 and the terminal 32 a of the second electrode 32 are exposed to the outside without being covered with the moisture-proof layer 5.
In addition, when the support substrate 2 has conductivity, an insulating layer (not shown) is provided on the surface of the support substrate 2 in order to prevent an electrical short circuit.
 前記有機EL素子3の有機層33は、発光層を含み、必要に応じて、正孔輸送層及び電子輸送層などの各種機能層を有する。有機層33の層構成は、後述する。
 前記第1電極31及び第2電極32の各端子31a,32aに電源を接続して通電することにより、有機層33が発光する。
 前記第1及び第2吸湿層41,42は、水分を吸収する層である。
 前記防湿層5は、有機EL素子3に、水分(水蒸気)などが侵入することを防止するための層である。
The organic layer 33 of the organic EL element 3 includes a light emitting layer, and has various functional layers such as a hole transport layer and an electron transport layer as necessary. The layer configuration of the organic layer 33 will be described later.
The organic layer 33 emits light when a power source is connected to the terminals 31a and 32a of the first electrode 31 and the second electrode 32 and energized.
The first and second moisture absorbing layers 41 and 42 are layers that absorb moisture.
The moisture-proof layer 5 is a layer for preventing moisture (water vapor) and the like from entering the organic EL element 3.
 なお、本発明の有機EL装置は、上記第1実施形態に限られず、本発明の意図する範囲で適宜設計変更できる。以下、本発明の他の実施形態を説明するが、その説明に於いて、主として上記第1実施形態と異なる構成及び効果について説明し、上記第1実施形態と同様の構成などについては、(それを説明したものとして)用語又は符号をそのまま援用し、その構成の説明を省略する場合がある。 Note that the organic EL device of the present invention is not limited to the first embodiment, and can be appropriately changed in design within the range intended by the present invention. Hereinafter, other embodiments of the present invention will be described. In the description, configurations and effects different from those of the first embodiment will be mainly described, and configurations similar to those of the first embodiment will be described. In some cases, the term or reference is used as it is, and the description of the configuration is omitted.
[第2実施形態の有機EL装置の構成]
 図4乃至図7において、第2実施形態の有機EL装置1は、第1実施形態と同様に、支持基板2と、第1吸湿層41と、有機層33を有する有機EL素子3と、第2吸湿層42と、防湿層5と、をこの順で有する。前記防湿層5は、平面透視において、前記第1吸湿層41及び第2吸湿層42の端部41e,42eを越えて設けられており、第1吸湿層41及び第2吸湿層42は、有機層33の端部33eを越えて設けられている。
 本実施形態では、第2電極32が、有機層33の表面に積層され且つ有機層33に電荷を供給する第2主電極321と、端子32aを有する第2副電極322と、から構成されている。
[Configuration of Organic EL Device of Second Embodiment]
4 to 7, the organic EL device 1 according to the second embodiment is similar to the first embodiment in that the support substrate 2, the first hygroscopic layer 41, the organic EL element 3 having the organic layer 33, and the first 2 moisture-absorbing layer 42 and moisture-proof layer 5 are provided in this order. The moisture-proof layer 5 is provided beyond the end portions 41e and 42e of the first moisture-absorbing layer 41 and the second moisture-absorbing layer 42 in a plan view, and the first moisture-absorbing layer 41 and the second moisture-absorbing layer 42 are organic The layer 33 is provided beyond the end 33e.
In the present embodiment, the second electrode 32 includes a second main electrode 321 that is stacked on the surface of the organic layer 33 and supplies electric charges to the organic layer 33, and a second sub electrode 322 having a terminal 32a. Yes.
 具体的には、第1電極31は、第1吸湿層41の表面に積層されている。第1電極31は、2つの端子31a,31aを有し、その1つの端子31aは、有機EL装置1の第1方向一方側に配設され、もう1つの端子31aは第1方向反対側に配設されている。有機層33は、端子31aを除いて、その第1電極31の表面に直接的に密着した状態で積層されている。
 他方、第2副電極322は、第1電極31と離反して、第2方向一方側において、支持基板2の表面及び第1吸湿層41の表面に跨がって積層されている。第2副電極322は、2つの端子32a,32aを有し、その1つの端子32aは、有機EL装置1の第1方向一方側に配設され、もう1つの端子32aは第1方向反対側に配設されている。また、第2主電極321は、有機層33の表面及び第2副電極322の表面に跨がって積層されている。前記端子32aから供給される電荷は、第2副電極322から第2主電極321を通り、有機層33に供給される。
Specifically, the first electrode 31 is stacked on the surface of the first moisture absorption layer 41. The first electrode 31 has two terminals 31a and 31a. One terminal 31a is arranged on one side in the first direction of the organic EL device 1, and the other terminal 31a is on the opposite side in the first direction. It is arranged. The organic layer 33 is laminated in a state of being in direct contact with the surface of the first electrode 31 except for the terminal 31a.
On the other hand, the second sub-electrode 322 is separated from the first electrode 31 and is laminated across the surface of the support substrate 2 and the surface of the first moisture absorption layer 41 on one side in the second direction. The second sub-electrode 322 has two terminals 32a and 32a, one terminal 32a being disposed on one side in the first direction of the organic EL device 1, and the other terminal 32a being opposite to the first direction. It is arranged. The second main electrode 321 is stacked across the surface of the organic layer 33 and the surface of the second sub electrode 322. The charge supplied from the terminal 32 a is supplied from the second sub electrode 322 to the organic layer 33 through the second main electrode 321.
 図6及び図7に示すように、端子31a,32aを有さない箇所においては、第1吸湿層41と第2吸湿層42は、直接的に密着されている。第1吸湿層41と第2吸湿層42は、接合部分49にて一体化されている。
 また、図5に示すように、端子31a,32aを有する箇所においては、第1吸湿層41と第2吸湿層42は、端子31a,32aを介して密着されている。従って、本実施形態においても、有機層33の周囲は、第1吸湿層41及び第2吸湿層42によって囲まれている。
 防湿層5は、端子31a,32aを除いて、第2吸湿層42の表面に直接的に密着した状態で積層されている。防湿層5は、第2吸湿層42の表面側に被さっていると共に第2吸湿層42の端面側にも被さっている。図6及び図7に示すように、端子31a,32aを有さない箇所においては、防湿層5は、第1吸湿層41の端面にも被さり、支持基板2の表面に直接的に密着されている。
 図8は、第2実施形態の有機EL装置を平面透視したときの、各層の配置を模式的に示した図である。各層を容易に区別するため、第1電極31の輪郭を一点鎖線で示し、第2電極32の輪郭を二点鎖線で示し、第1及び第2吸湿層41,42の輪郭を破線で示し、有機層33の輪郭を小さい破線で示し、防湿層5の輪郭を実線で示している。
As shown in FIG.6 and FIG.7, the 1st moisture absorption layer 41 and the 2nd moisture absorption layer 42 are contact | adhered directly in the location which does not have the terminals 31a and 32a. The first hygroscopic layer 41 and the second hygroscopic layer 42 are integrated at the joint portion 49.
In addition, as shown in FIG. 5, the first hygroscopic layer 41 and the second hygroscopic layer 42 are in close contact with each other through the terminals 31 a and 32 a where the terminals 31 a and 32 a are provided. Therefore, also in this embodiment, the periphery of the organic layer 33 is surrounded by the first moisture absorption layer 41 and the second moisture absorption layer 42.
The moisture-proof layer 5 is laminated in a state of being in direct contact with the surface of the second moisture-absorbing layer 42 except for the terminals 31a and 32a. The moisture-proof layer 5 covers the surface side of the second moisture-absorbing layer 42 and also covers the end surface side of the second moisture-absorbing layer 42. As shown in FIGS. 6 and 7, the moisture-proof layer 5 is also covered with the end surface of the first moisture-absorbing layer 41 in a portion where the terminals 31 a and 32 a are not provided, and is directly adhered to the surface of the support substrate 2. Yes.
FIG. 8 is a diagram schematically showing the arrangement of each layer when the organic EL device according to the second embodiment is seen through on a plane. In order to easily distinguish each layer, the outline of the first electrode 31 is indicated by a one-dot chain line, the outline of the second electrode 32 is indicated by a two-dot chain line, and the outlines of the first and second moisture absorption layers 41 and 42 are indicated by a broken line, The outline of the organic layer 33 is indicated by a small broken line, and the outline of the moisture-proof layer 5 is indicated by a solid line.
[第3実施形態の有機EL装置の構成]
 図9乃至図11において、第3実施形態の有機EL装置1は、第1実施形態と同様に、支持基板2と、第1吸湿層41と、有機層33を有する有機EL素子3と、第2吸湿層42と、防湿層5と、をこの順で有する。前記防湿層5は、平面透視において、前記第1吸湿層41及び第2吸湿層42の端部41e,42eを越えて設けられており、第1吸湿層41及び第2吸湿層42は、有機層33の端部33eを越えて設けられている。
 本実施形態では、端子31aを有する第1電極31が複数箇所に設けられている。さらに、第2電極32が、有機層33の表面に積層され且つ有機層33に電荷を供給する複数の第2主電極321と、端子32aを有する複数の第2副電極322と、から構成されている。本実施形態の有機EL装置1は、複数の発光領域が独立して形成される。
[Configuration of Organic EL Device of Third Embodiment]
9 to 11, the organic EL device 1 according to the third embodiment is similar to the first embodiment in that the support substrate 2, the first hygroscopic layer 41, the organic EL element 3 having the organic layer 33, and the first 2 moisture-absorbing layer 42 and moisture-proof layer 5 are provided in this order. The moisture-proof layer 5 is provided beyond the end portions 41e and 42e of the first moisture-absorbing layer 41 and the second moisture-absorbing layer 42 in a plan view, and the first moisture-absorbing layer 41 and the second moisture-absorbing layer 42 are organic The layer 33 is provided beyond the end 33e.
In this embodiment, the 1st electrode 31 which has the terminal 31a is provided in multiple places. Further, the second electrode 32 includes a plurality of second main electrodes 321 stacked on the surface of the organic layer 33 and supplying electric charges to the organic layer 33, and a plurality of second sub-electrodes 322 having terminals 32a. ing. In the organic EL device 1 of the present embodiment, a plurality of light emitting regions are independently formed.
 具体的には、第1電極31は、独立して複数箇所(例えば4箇所)に設けられている。各第1電極31は、第1吸湿層41の表面に積層されている。各第1電極31は、1つの端子31aを有する。2つの第1電極31の端子31aは、有機EL装置1の第1方向一方側に配設され、もう2つの第1電極31の端子31aは、第1方向反対側に配設されている。有機層33は、端子31aを除いて、各第1電極31の表面に直接的に密着した状態で積層されている。
 他方、第2電極32は、例えば、2つの第1主電極321と、2つの第2副電極322と、から構成されている。1つの第2副電極322は、第1電極31と離反して、第2方向一方側において、支持基板2の表面に積層されている。もう1つの第2副電極322は、第1電極31と離反して、第2方向反対側において、支持基板2の表面に積層されている。各第2副電極322は、それぞれ2つの端子32a,32aを有し、その1つの端子32aは、有機EL装置1の第1方向一方側に配設され、もう1つの端子32aは第1方向反対側に配設されている。また、2つの第2主電極321は、互いに離反した状態で、第2方向に延設されている。2つの第2主電極321は、両電極321の間に間隔を有した状態で、有機層33の表面及び2つの第2副電極322の表面に跨がって積層されている。前記各端子32aから供給される電荷は、各第2副電極322から各第2主電極321を通り、有機層33に供給される。
 本実施形態の有機EL装置1は、有機層33のうち、4つの第1電極31と2つの第2主電極が重なっている4つの領域が発光する。
Specifically, the first electrode 31 is independently provided at a plurality of locations (for example, 4 locations). Each first electrode 31 is laminated on the surface of the first hygroscopic layer 41. Each first electrode 31 has one terminal 31a. The terminals 31a of the two first electrodes 31 are disposed on one side in the first direction of the organic EL device 1, and the terminals 31a of the other two first electrodes 31 are disposed on the opposite side in the first direction. The organic layer 33 is laminated in a state of being in direct contact with the surface of each first electrode 31 except for the terminal 31a.
On the other hand, the second electrode 32 includes, for example, two first main electrodes 321 and two second sub electrodes 322. One second sub-electrode 322 is stacked on the surface of the support substrate 2 on one side in the second direction, apart from the first electrode 31. Another second sub-electrode 322 is stacked on the surface of the support substrate 2 on the opposite side in the second direction away from the first electrode 31. Each second sub-electrode 322 has two terminals 32a and 32a, one terminal 32a being disposed on one side in the first direction of the organic EL device 1, and the other terminal 32a being in the first direction. It is arranged on the opposite side. The two second main electrodes 321 extend in the second direction in a state of being separated from each other. The two second main electrodes 321 are stacked across the surface of the organic layer 33 and the surfaces of the two second sub-electrodes 322 with a space between the two electrodes 321. The electric charges supplied from the terminals 32 a are supplied from the second sub-electrodes 322 to the organic layer 33 through the second main electrodes 321.
In the organic EL device 1 of the present embodiment, four regions of the organic layer 33 where the four first electrodes 31 and the two second main electrodes overlap each other emit light.
 なお、本実施形態においても、端子31a,32aを有さない箇所においては、第1吸湿層41と第2吸湿層42は、直接的に密着されている。また、図10に示すように、端子31aを有する箇所においては、第1吸湿層41と第2吸湿層42は、端子31aを介して密着されている。
 防湿層5は、端子31a,32aを除いて、第2吸湿層42の表面に直接的に密着した状態で積層されている。防湿層5は、第2吸湿層42の表面側に被さっていると共に第2吸湿層42の端面側にも被さっている。
 図12は、第3実施形態の有機EL装置を平面透視したときの、各層の配置を模式的に示した図である。各層を容易に区別するため、第1電極31の輪郭を一点鎖線で示し、第2電極32の輪郭を二点鎖線で示し、第1及び第2吸湿層41,42の輪郭を破線で示し、有機層33の輪郭を小さい破線で示し、防湿層5の輪郭を実線で示している。
In the present embodiment as well, the first hygroscopic layer 41 and the second hygroscopic layer 42 are in direct contact with each other at locations where the terminals 31a and 32a are not provided. Further, as shown in FIG. 10, in the portion having the terminal 31a, the first moisture absorbing layer 41 and the second moisture absorbing layer 42 are in close contact with each other via the terminal 31a.
The moisture-proof layer 5 is laminated in a state of being in direct contact with the surface of the second moisture-absorbing layer 42 except for the terminals 31a and 32a. The moisture-proof layer 5 covers the surface side of the second moisture-absorbing layer 42 and also covers the end surface side of the second moisture-absorbing layer 42.
FIG. 12 is a diagram schematically showing the arrangement of each layer when the organic EL device of the third embodiment is seen through. In order to easily distinguish each layer, the outline of the first electrode 31 is indicated by a one-dot chain line, the outline of the second electrode 32 is indicated by a two-dot chain line, and the outlines of the first and second moisture absorption layers 41 and 42 are indicated by a broken line, The outline of the organic layer 33 is indicated by a small broken line, and the outline of the moisture-proof layer 5 is indicated by a solid line.
[第4実施形態の有機EL装置の構成]
 上記第1乃至第3実施形態では、第1吸湿層41の端部41eと第2吸湿層42の端部42eは一致しているが(即ち、第1吸湿層41と第2吸湿層42は同形同大で且つ平面透視で重なっているが)、第1吸湿層41及び第2吸湿層42のうち何れか一方が他方に対して大きくてもよい。
 例えば、第1吸湿層41の端部41eが第2吸湿層42の端部42eから外側に延在するように第1吸湿層41が形成されていてもよく、或いは、第2吸湿層42の端部42eが第1吸湿層41の端部41eから外側に延在するように第2吸湿層42が形成されていてもよい(図示せず)。
[Configuration of Organic EL Device of Fourth Embodiment]
In the first to third embodiments, the end portion 41e of the first moisture absorption layer 41 and the end portion 42e of the second moisture absorption layer 42 are coincident (that is, the first moisture absorption layer 41 and the second moisture absorption layer 42 are One of the first hygroscopic layer 41 and the second hygroscopic layer 42 may be larger than the other.
For example, the first hygroscopic layer 41 may be formed such that the end portion 41 e of the first hygroscopic layer 41 extends outward from the end portion 42 e of the second hygroscopic layer 42, or the second hygroscopic layer 42 The 2nd moisture absorption layer 42 may be formed so that end 42e may extend outside from edge 41e of the 1st moisture absorption layer 41 (not shown).
[第5実施形態の有機EL装置の構成]
 上記第1乃至第3実施形態では、第1吸湿層41及び第2吸湿層42が、平面透視において、何れも有機層33の端部33eを越えて設けられているが、第1吸湿層41の端部41e及び第2吸湿層42の端部42eのうち少なくとも何れか一方が、平面透視において、有機層33の端部33eと一致して又は有機層33の端部33eよりも内側に配置されていてもよい。
 例えば、図13に示す例では、第1吸湿層41の端部41eは、有機層33の端部33eよりも内側に配置されている。かかる第1吸湿層41は、平面透視において、有機層33の端部33eよりも内側に入り込んでいる。この場合でも、防湿層5が、平面透視において、第1及び第2吸湿層41,42の端部41e,42eを越えて形成されているので、第1及び第2吸湿層41,42の端面から水分が侵入することを防止できる。
 もっとも、上記実施形態のように、第1吸湿層41及び第2吸湿層42の何れも有機層33の端部33eを越えて設けられている有機EL装置1は、有機層33が第1及び第2吸湿層41,42にて封入されるので好ましい。
[Configuration of Organic EL Device of Fifth Embodiment]
In the first to third embodiments, the first hygroscopic layer 41 and the second hygroscopic layer 42 are both provided beyond the end 33e of the organic layer 33 in a plan view. At least one of the end 41e and the end 42e of the second moisture absorption layer 42 is disposed so as to coincide with the end 33e of the organic layer 33 or on the inner side of the end 33e of the organic layer 33 in a plan view. May be.
For example, in the example illustrated in FIG. 13, the end portion 41 e of the first hygroscopic layer 41 is disposed on the inner side than the end portion 33 e of the organic layer 33. The first hygroscopic layer 41 enters inside the end portion 33e of the organic layer 33 in a plan view. Even in this case, since the moisture-proof layer 5 is formed beyond the end portions 41e and 42e of the first and second moisture-absorbing layers 41 and 42 in a plan view, the end surfaces of the first and second moisture-absorbing layers 41 and 42 are formed. Can prevent moisture from entering.
However, as in the above-described embodiment, in the organic EL device 1 in which both the first hygroscopic layer 41 and the second hygroscopic layer 42 are provided beyond the end portion 33e of the organic layer 33, the organic layer 33 is the first and second layers. Since it is enclosed with the 2nd moisture absorption layers 41 and 42, it is preferable.
[第6実施形態の有機EL装置の構成]
 また、図14に示すように、支持基板2の表面に、第2吸湿層42に設けた防湿層5とは別個の防湿層51を積層してもよい。この防湿層51(第2防湿層51という)は、第1吸湿層41の裏面側に設けられ、好ましくは、図示したように、防湿層5と接合できる程度の大きさで設けられ、より好ましくは、支持基板2の表面全体に設けられる。このように防湿層5と第2防湿層51を接合させることにより、水分の侵入を効果的に防止できる。
 なお、図13及び図14の有機EL装置は、第1実施形態の構成のものを例示しているが、第2又は第3実施形態の構成に置き換えてもよい。
[Configuration of Organic EL Device of Sixth Embodiment]
Further, as shown in FIG. 14, a moisture-proof layer 51 separate from the moisture-proof layer 5 provided on the second moisture-absorbing layer 42 may be laminated on the surface of the support substrate 2. The moisture-proof layer 51 (referred to as the second moisture-proof layer 51) is provided on the back surface side of the first moisture-absorbing layer 41, and is preferably provided with a size that can be joined to the moisture-proof layer 5 as shown in the drawing. Is provided on the entire surface of the support substrate 2. By joining the moisture-proof layer 5 and the second moisture-proof layer 51 in this way, moisture can be effectively prevented from entering.
Note that the organic EL devices of FIGS. 13 and 14 exemplify the configuration of the first embodiment, but may be replaced with the configuration of the second or third embodiment.
[支持基板]
 前記支持基板は、シート状物であり、好ましくは、フレキシブルなシート状物である。
 前記支持基板は、透明又は不透明の何れでもよい。ただし、ボトムエミッション型の有機EL装置を構成する場合には、透明な支持基板が用いられる。トップエミッション型の有機EL装置を構成する場合には、透明な支持基板又は不透明の支持基板の何れを用いてもよい。なお、前記透明は、無色透明又は有色透明を意味する。前記透明の指標としては、例えば、全光線透過率70%以上、好ましくは80%以上が例示できる。ただし、前記全光線透過率は、JIS K7105(プラスチックの光学的特性試験方法)に準拠した測定法によって測定される。
[Support substrate]
The support substrate is a sheet-like material, preferably a flexible sheet-like material.
The support substrate may be transparent or opaque. However, when configuring a bottom emission type organic EL device, a transparent support substrate is used. When configuring a top emission type organic EL device, either a transparent support substrate or an opaque support substrate may be used. The transparent means colorless and transparent or colored and transparent. Examples of the transparent index include a total light transmittance of 70% or more, preferably 80% or more. However, the total light transmittance is measured by a measuring method based on JIS K7105 (plastic optical property test method).
 本発明において、支持基板は、水蒸気や酸素などの侵入を防止できるガスバリア性に優れている基板を用いることが好ましい。例えば、支持基板は、例えば、金属シート、樹脂シート、ガラスシート、セラミックシートなどから適宜選択して用いることができる。なお、本明細書において、シートとは、一般にフィルムと呼ばれるものを含む。前記金属シートは、特に限定されないが、例えば、ステンレス、銅、チタン、アルミニウム、合金などからなるフレキシブルな薄板が挙げられる。前記金属シートの厚みは、例えば、10μm~100μmである。前記樹脂シートは、特に限定されないが、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)等のポリエステル系樹脂;ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体(EVA)等のα-オレフィンをモノマー成分とするオレフィン系樹脂;ポリ塩化ビニル(PVC);酢酸ビニル系樹脂;ポリカーボネート(PC);ポリフェニレンスルフィド(PPS);ポリアミド(ナイロン)、全芳香族ポリアミド(アラミド)等のアミド系樹脂;ポリイミド系樹脂;ポリエーテルエーテルケトン(PEEK)などからなるフレキシブルな合成樹脂シートが挙げられる。前記樹脂シートの厚みは、特に限定されないが、例えば、10μm~200μmである。良好なガスバリア性を付与できることから、前記樹脂シートの少なくとも一方面に公知のガスバリア層が積層されていてもよい。
 また、駆動時に有機EL装置の温度上昇を防止するため、前記支持基板は、放熱性に優れていることが好ましい。なお、支持基板として、導電性基板(金属シートなど)を用いる場合には、対面する電極に対して絶縁するため、前記支持基板の表面に絶縁層が設けられる。なお、支持基板に絶縁層が設けられる場合、第1吸湿層は、その絶縁層の表面上に設けられることが好ましい。
In the present invention, it is preferable to use a substrate having excellent gas barrier properties that can prevent entry of water vapor, oxygen, or the like as the support substrate. For example, the support substrate can be appropriately selected from, for example, a metal sheet, a resin sheet, a glass sheet, a ceramic sheet, and the like. In addition, in this specification, a sheet includes what is generally called a film. Although the said metal sheet is not specifically limited, For example, the flexible thin plate which consists of stainless steel, copper, titanium, aluminum, an alloy, etc. is mentioned. The thickness of the metal sheet is, for example, 10 μm to 100 μm. The resin sheet is not particularly limited, and examples thereof include polyester resins such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polybutylene terephthalate (PBT); polyethylene (PE), polypropylene (PP), and polymethylpentene. (PMP), ethylene-propylene copolymer, ethylene-vinyl acetate copolymer (EVA) and other olefin resins containing α-olefin as a monomer component; polyvinyl chloride (PVC); vinyl acetate resin; polycarbonate (PC ); Polyphenylene sulfide (PPS); amide resins such as polyamide (nylon), wholly aromatic polyamide (aramid); polyimide resins; flexible synthetic resin sheets made of polyether ether ketone (PEEK), etc. The thickness of the resin sheet is not particularly limited, but is, for example, 10 μm to 200 μm. Since a good gas barrier property can be imparted, a known gas barrier layer may be laminated on at least one surface of the resin sheet.
Moreover, in order to prevent the temperature rise of the organic EL device during driving, the support substrate is preferably excellent in heat dissipation. Note that when a conductive substrate (such as a metal sheet) is used as the support substrate, an insulating layer is provided on the surface of the support substrate in order to insulate the facing electrode. In addition, when an insulating layer is provided in a support substrate, it is preferable that a 1st moisture absorption layer is provided on the surface of the insulating layer.
[第1及び第2吸湿層]
 第1及び第2吸湿層は、水分を吸収する性質を有する材料を含む。前記水分を吸収する性質を有する材料としては、ホウ素化合物;硫化化合物;アルカリ金属又はアルカリ土類金属の酸化物、フッ化物、硫酸塩、ハロゲン化物、リン酸塩又は過塩素酸塩;アルカリ金属又はアルカリ土類金属の酸化物の粒子を分散させた樹脂;などが挙げられる。第1吸湿層及び第2吸湿層は、それぞれ独立して、前記材料から選ばれる1種又は2種以上を含み、好ましくは、ホウ素化合物又は硫化化合物の少なくとも何れか一方を含む。なお、アルカリ金属又はアルカリ土類金属の酸化物の粒子を分散させた樹脂からなる吸湿層については、特許文献1(特開2011-020335号)に開示されているので、詳しくはそれを参照されたい。
 前記ホウ素化合物は、その分子中にホウ素原子が含まれている化合物であり、真空蒸着法にて吸湿層を形成できることから、含ホウ素無機化合物が好ましい。前記含ホウ素無機化合物としては、例えば、ホウ素の酸化物、ホウ素の酸素酸、ホウ素の臭化物などが挙げられる。前記ホウ素の酸化物としては、酸化ホウ素(B)が挙げられる。前記ホウ素の酸素酸は、ホウ素原子を中心原子とする酸素酸又はその塩である。ホウ素の酸素酸としては、例えば、オルトホウ酸、メタホウ酸、次ホウ酸、四ホウ酸、五ホウ酸、及びそれらのナトリウム塩、カリウム塩、アンモニウム塩などが挙げられる。前記ホウ素の臭化物としては、三臭化ホウ素(BBr)が挙げられる。これらの中では、吸湿性に優れていることから、酸化ホウ素が好ましい。また、酸化ホウ素は、透明性にも優れているので、トップエミッション型の有機EL装置の吸湿層の形成材料として好適である。
 前記硫化化合物は、その分子中に硫黄原子が含まれている化合物であり、真空蒸着法にて吸湿層を形成できることから、含硫黄無機化合物が好ましい。前記含硫黄無機化合物としては、例えば、アルカリ金属又はアルカリ土類金属の硫化物;アルカリ金属及びアルカリ土類金属以外の金属の硫化物;非金属の硫化物;などが挙げられる。前記硫化物としては、硫化炭素、硫化亜鉛などが挙げられる。
[First and second moisture absorbing layers]
The first and second moisture absorbing layers include a material having a property of absorbing moisture. Examples of the material having the property of absorbing moisture include boron compounds; sulfide compounds; alkali metal or alkaline earth metal oxides, fluorides, sulfates, halides, phosphates or perchlorates; alkali metals or A resin in which particles of an oxide of an alkaline earth metal are dispersed; and the like. The first hygroscopic layer and the second hygroscopic layer each independently include one or more selected from the above materials, and preferably include at least one of a boron compound and a sulfide compound. Note that a moisture absorption layer made of a resin in which particles of an oxide of an alkali metal or an alkaline earth metal are dispersed is disclosed in Patent Document 1 (Japanese Patent Application Laid-Open No. 2011-020335). I want.
The boron compound is a compound in which boron atoms are contained in the molecule, and a moisture-absorbing layer can be formed by a vacuum deposition method, and therefore a boron-containing inorganic compound is preferable. Examples of the boron-containing inorganic compound include boron oxide, boron oxyacid, boron bromide, and the like. An example of the boron oxide is boron oxide (B 2 O 3 ). The boron oxygen acid is an oxygen acid having a boron atom as a central atom or a salt thereof. Examples of the oxygen acid of boron include orthoboric acid, metaboric acid, hypoboric acid, tetraboric acid, pentaboric acid, and sodium salts, potassium salts and ammonium salts thereof. Examples of the bromide of boron include boron tribromide (BBr 3 ). Among these, boron oxide is preferable because of its excellent hygroscopicity. Further, since boron oxide is excellent in transparency, it is suitable as a material for forming a moisture absorption layer in a top emission type organic EL device.
The sulfur compound is a compound containing a sulfur atom in the molecule, and a sulfur-containing inorganic compound is preferable because a moisture absorption layer can be formed by a vacuum deposition method. Examples of the sulfur-containing inorganic compound include sulfides of alkali metals or alkaline earth metals; sulfides of metals other than alkali metals and alkaline earth metals; nonmetal sulfides. Examples of the sulfide include carbon sulfide and zinc sulfide.
 前記アルカリ金属としては、リチウム、ナトリウム、カリウムなどが挙げられ、アルカリ土類金属としては、マグネシウム、カルシウム、バリウムなどが挙げられる。前記アルカリ金属の酸化物としては、酸化リチウム、酸化ナトリウム、酸化カリウムなどが挙げられ、アルカリ土類金属の酸化物としては、酸化マグネシウム、酸化カルシウム、酸化バリウムなどが挙げられる。前記アルカリ金属又はアルカリ土類金属のフッ化物としては、フッ化リチウム、フッ化カルシウム、フッ化マグネシウム、フッ化ナトリウムなどが挙げられる。前記アルカリ金属又はアルカリ土類金属の硫酸塩としては、硫酸リチウム、硫酸ナトリウム、硫酸カルシウムなどが挙げられる。前記アルカリ金属又はアルカリ土類金属のハロゲン化物としては、塩化カルシウム、塩化マグネシウム、臭化カルシウムなどが挙げられる。前記アルカリ金属又はアルカリ土類金属のリン酸塩としては、リン酸カルシウムなどが挙げられる。前記アルカリ金属又はアルカリ土類金属の過塩素酸塩としては、過塩素酸バリウム、過塩素酸マグネシウムなどが挙げられる。 Examples of the alkali metal include lithium, sodium, and potassium, and examples of the alkaline earth metal include magnesium, calcium, and barium. Examples of the alkali metal oxide include lithium oxide, sodium oxide, and potassium oxide. Examples of the alkaline earth metal oxide include magnesium oxide, calcium oxide, and barium oxide. Examples of the alkali metal or alkaline earth metal fluoride include lithium fluoride, calcium fluoride, magnesium fluoride, and sodium fluoride. Examples of the alkali metal or alkaline earth metal sulfate include lithium sulfate, sodium sulfate, and calcium sulfate. Examples of the alkali metal or alkaline earth metal halide include calcium chloride, magnesium chloride, and calcium bromide. Examples of the alkali metal or alkaline earth metal phosphate include calcium phosphate. Examples of the alkali metal or alkaline earth metal perchlorate include barium perchlorate and magnesium perchlorate.
 アルカリ金属又はアルカリ土類金属の酸化物を形成材料として用いた場合には、例えば、その酸化物を蒸着源として真空蒸着する方法、或いは、酸素ガス導入下でアルカリ金属又はアルカリ土類金属を蒸着源として真空蒸着する方法などによって、吸湿層を形成することが考えられる。しかし、前者の方法は困難であり、後者の方法は、酸素ガスの存在により、有機EL素子が劣化するおそれがある。また、アルカリ金属又はアルカリ土類金属の酸化物の粒子を分散させた樹脂を形成材料として用いた場合には、真空蒸着法によって吸湿層を形成することができない。この点、ホウ素化合物及び硫化化合物を用いた場合には、ホウ素化合物及び硫化化合物を蒸着源として真空蒸着して吸湿層を容易に形成でき、吸湿層の形成時に有機EL素子の劣化も生じ難い。このような理由から、第1及び第2吸湿層の形成材料としては、ホウ素化合物又は硫化化合物を用いることが好ましい。従って、第1吸湿層及び第2吸湿層は、それぞれ独立して、ホウ素化合物又は硫化化合物を含むことが好ましい。特に、吸湿性に優れていることから、第1吸湿層及び第2吸湿層は、ホウ素化合物を含むことがより好ましい。 When an oxide of an alkali metal or alkaline earth metal is used as a forming material, for example, a vacuum deposition method using the oxide as a deposition source, or an alkali metal or alkaline earth metal is deposited under introduction of oxygen gas It is conceivable to form a hygroscopic layer by a method such as vacuum deposition as a source. However, the former method is difficult, and the latter method may cause deterioration of the organic EL element due to the presence of oxygen gas. In addition, when a resin in which particles of an alkali metal or alkaline earth metal oxide are dispersed is used as a forming material, a moisture absorption layer cannot be formed by a vacuum deposition method. In this regard, when a boron compound and a sulfide compound are used, a moisture absorption layer can be easily formed by vacuum deposition using the boron compound and the sulfide compound as an evaporation source, and deterioration of the organic EL element hardly occurs when the moisture absorption layer is formed. For these reasons, it is preferable to use a boron compound or a sulfide compound as a material for forming the first and second moisture absorption layers. Therefore, it is preferable that the first moisture absorption layer and the second moisture absorption layer each independently contain a boron compound or a sulfide compound. In particular, since the hygroscopic property is excellent, it is more preferable that the first hygroscopic layer and the second hygroscopic layer contain a boron compound.
 第1吸湿層及び第2吸湿層は、同一材料から形成されていてもよく、或いは、異なる材料から形成されていてもよい。好ましくは、第1吸湿層及び第2吸湿層は、同一材料で形成される。
 第1吸湿層及び第2吸湿層がホウ素化合物を含む場合、それらの吸湿層は、(a)吸湿性を有するホウ素化合物のみを実質的に含む、(b)吸湿性を有するホウ素化合物と吸湿性を有する他の化合物を含む、(c)吸湿性を有するホウ素化合物と吸湿性を有さない他の化合物を含む、(d)吸湿性を有するホウ素化合物と吸湿性を有さない他の化合物と吸湿性を有する他の化合物を含む、場合などが挙げられる。なお、吸湿性とは、物質がその周りから化学的に水分を吸収する性質を言う。また、本明細書で「Aのみを実質的に含む」とは、不可避的に含まれる程度の微量の成分(A以外の成分)の混入は許容され、有意な量の混入は除外されるという意味である。
 第1及び第2吸湿層がホウ素化合物と他の化合物を含む場合、ホウ素化合物の量は、特に限定されないが、例えば、ホウ素化合物の量は、それぞれ独立して、吸湿層全体に対して、50質量%以上100質量%未満であり、好ましくは60質量%~99質量%であり、より好ましくは、80質量%~99質量%である。
 第1及び第2吸湿層の厚みは特に限定されず、それぞれ独立して、例えば、5nm~500nmであり、好ましくは、30nm~200nmである。
The 1st moisture absorption layer and the 2nd moisture absorption layer may be formed from the same material, or may be formed from a different material. Preferably, the first moisture absorption layer and the second moisture absorption layer are formed of the same material.
When the first hygroscopic layer and the second hygroscopic layer contain a boron compound, the hygroscopic layer substantially contains only (a) a boron compound having a hygroscopic property, and (b) a boron compound having a hygroscopic property and a hygroscopic property. (C) a boron compound having a hygroscopic property and another compound not having a hygroscopic property, (d) a boron compound having a hygroscopic property and another compound having no hygroscopic property, Examples include other compounds having hygroscopicity. Hygroscopicity refers to the property that a substance chemically absorbs moisture from its surroundings. Further, in the present specification, “substantially containing only A” means that a minute amount of components (components other than A) that are unavoidably included is allowed and a significant amount of contamination is excluded. Meaning.
When the first and second moisture absorption layers include a boron compound and another compound, the amount of the boron compound is not particularly limited. For example, the amount of the boron compound is 50% of the entire moisture absorption layer. It is at least mass% and less than 100 mass%, preferably 60 mass% to 99 mass%, more preferably 80 mass% to 99 mass%.
The thicknesses of the first and second hygroscopic layers are not particularly limited, and are each independently, for example, 5 nm to 500 nm, and preferably 30 nm to 200 nm.
[防湿層]
 防湿層は、水分を遮断する性質(防湿性)を有する材料を含むことを条件として、特に限定されない。防湿性に優れていることから、防湿層の形成材料は、窒素化合物が好ましい。
 前記窒素化合物は、その分子中に窒素原子が含まれている化合物であり、真空蒸着法にて防湿層を形成できることから、含窒素無機化合物が好ましい。
 前記含窒素無機化合物としては、金属又は半金属の窒化物、金属又は半金属の酸化窒化物、金属又は半金属の炭化窒化物、金属又は半金属の酸化炭化窒化物などが挙げられる。前記金属としては、上記に例示したようなアルカリ金属、アルカリ土類金属の他、これら以外の金属が挙げられる。アルカリ金属及びアルカリ土類金属以外の金属としては、チタン、アルミニウム、亜鉛、ガリウム、インジウムなどが挙げられる。前記半金属は、金属と非金属の中間の性質を示す物質をいう。前記半金属としては、ケイ素、ゲルマニウム、ヒ素、アンチモン、テルル、ポロニウム、アスタチンなどが挙げられる。防湿層は、好ましくは、金属又は半金属の窒化物、酸化窒化物、炭化窒化物及び酸化炭化窒化物から選ばれる少なくとも1種を含み、より好ましくは、ケイ素の窒化物、酸化窒化物、炭化窒化物及び酸化炭化窒化物から選ばれる少なくとも1種を含む。ケイ素の窒化物、酸化窒化物、炭化窒化物及び酸化炭化窒化物は、それぞれ窒化ケイ素、酸化窒化ケイ素、炭化窒化ケイ素、酸化炭化窒化ケイ素などが挙げられる。
 防湿層は、前記防湿性を有する窒素化合物のみを実質的に含む場合でもよく、前記窒素化合物以外に、他の化合物を含んでいてもよい。好ましくは、防湿層は、前記防湿性を有する窒素化合物のみから形成され、実質的に窒素化合物のみを含む。
 防湿層が窒素化合物と他の化合物を含む場合、窒素化合物の量は、特に限定されないが、例えば、窒素化合物の量は、防湿層全体に対して、50質量%以上100質量%未満であり、好ましくは60質量%~99質量%であり、より好ましくは、80質量%~99質量%である。
 防湿層の厚みは特に限定されず、例えば、50nm~2000nmであり、好ましくは、100nm~1000nmである。
[Dampproof layer]
The moisture-proof layer is not particularly limited as long as it includes a material having a property of blocking moisture (moisture-proof property). Since the moisture-proof property is excellent, the material for forming the moisture-proof layer is preferably a nitrogen compound.
The nitrogen compound is a compound containing nitrogen atoms in the molecule, and a moisture-proof layer can be formed by a vacuum deposition method, and therefore a nitrogen-containing inorganic compound is preferable.
Examples of the nitrogen-containing inorganic compound include metal or metalloid nitride, metal or metalloid oxynitride, metal or metalloid carbonitride, metal or metalloid oxycarbonitride, and the like. Examples of the metal include alkali metals and alkaline earth metals as exemplified above, and other metals. Examples of metals other than alkali metals and alkaline earth metals include titanium, aluminum, zinc, gallium, and indium. The metalloid refers to a substance that exhibits an intermediate property between metal and nonmetal. Examples of the metalloid include silicon, germanium, arsenic, antimony, tellurium, polonium, and astatine. The moisture-proof layer preferably includes at least one selected from metal or metalloid nitrides, oxynitrides, carbonitrides, and oxycarbonitrides, and more preferably silicon nitride, oxynitride, carbonization It contains at least one selected from nitrides and oxycarbonitrides. Examples of silicon nitride, oxynitride, carbonitride, and oxycarbonitride include silicon nitride, silicon oxynitride, silicon carbonitride, and silicon oxycarbonitride.
The moisture-proof layer may substantially contain only the nitrogen compound having the moisture-proof property, and may contain other compounds in addition to the nitrogen compound. Preferably, the moisture-proof layer is formed only from the nitrogen compound having the moisture-proof property and substantially contains only the nitrogen compound.
When the moisture-proof layer contains a nitrogen compound and other compounds, the amount of the nitrogen compound is not particularly limited, for example, the amount of the nitrogen compound is 50% by mass or more and less than 100% by mass with respect to the entire moisture-proof layer, The amount is preferably 60% by mass to 99% by mass, and more preferably 80% by mass to 99% by mass.
The thickness of the moisture-proof layer is not particularly limited, and is, for example, 50 nm to 2000 nm, preferably 100 nm to 1000 nm.
[第1電極、有機層及び第2電極を有する有機EL素子]
 前記第1電極は、陽極又は陰極のいずれでもよい。例えば、第1電極は陽極である。
 前記第1電極(陽極)の形成材料は、特に限定されないが、例えば、インジウム錫酸化物(ITO);酸化珪素を含むインジウム錫酸化物(ITSO);アルミニウム;金;白金;ニッケル;タングステン;銅;合金;などが挙げられる。ボトムエミッション型の有機EL装置を構成する場合には、透明な第1電極が用いられる。
 第1電極の厚みは、特に限定されないが、通常、0.01μm~1.0μmである。
[Organic EL device having first electrode, organic layer and second electrode]
The first electrode may be either an anode or a cathode. For example, the first electrode is an anode.
The material for forming the first electrode (anode) is not particularly limited. For example, indium tin oxide (ITO); indium tin oxide containing silicon oxide (ITSO); aluminum; gold; platinum; nickel; tungsten; Alloy; and the like. In the case of constituting a bottom emission type organic EL device, a transparent first electrode is used.
The thickness of the first electrode is not particularly limited, but is usually 0.01 μm to 1.0 μm.
 有機層は、少なくとも2つの層からなる積層構造である。有機層の構造としては、例えば、(A)正孔輸送層、発光層及び電子輸送層の3つの層を含む構造、(B)正孔輸送層、発光層及び電子注入層の3つの層を含む構造、(C)正孔輸送層及び発光層の2つの層を含む構造、(D)発光層及び電子輸送層の2つの層を含む構造、などが挙げられる。
 前記(B)及び(C)の有機層は、発光層が電子輸送層を兼用している。前記(D)の有機層は、発光層が正孔輸送層を兼用している。
 本発明に用いられる有機層は、前記(A)~(D)の何れの構造であってもよい。
 以下、第1電極が陽極である場合の、前記(A)の構造を有する有機層について説明する。
The organic layer has a laminated structure composed of at least two layers. As the structure of the organic layer, for example, (A) a structure including three layers of a hole transport layer, a light emitting layer and an electron transport layer, (B) three layers of a hole transport layer, a light emitting layer and an electron injection layer are included. A structure including two layers of (C) a hole transport layer and a light-emitting layer, (D) a structure including two layers of a light-emitting layer and an electron transport layer, and the like.
In the organic layers (B) and (C), the light emitting layer also serves as the electron transport layer. In the organic layer (D), the light emitting layer also serves as the hole transport layer.
The organic layer used in the present invention may have any of the structures (A) to (D).
Hereinafter, the organic layer having the structure (A) when the first electrode is an anode will be described.
 正孔輸送層は、第1電極の表面に設けられる。もっとも、有機EL素子の発光効率を低下させないことを条件として、第1電極と正孔輸送層の間にこれら以外の任意の機能層が介在されていてもよい。
 例えば、正孔注入層が、第1電極の表面に設けられ、その正孔注入層の表面に正孔輸送層が設けられていてもよい。正孔注入層は、陽極層から正孔輸送層へ正孔の注入を補助する機能を有する層である。
The hole transport layer is provided on the surface of the first electrode. However, any functional layer other than these may be interposed between the first electrode and the hole transport layer on condition that the luminous efficiency of the organic EL element is not lowered.
For example, the hole injection layer may be provided on the surface of the first electrode, and the hole transport layer may be provided on the surface of the hole injection layer. The hole injection layer is a layer having a function of assisting injection of holes from the anode layer to the hole transport layer.
 正孔輸送層の形成材料は、正孔輸送機能を有する材料であれば特に限定されない。正孔輸送層の形成材料としては、4,4’,4”-トリス(カルバゾール-9-イル)-トリフェニルアミン(略称:TcTa)などの芳香族アミン化合物;1,3-ビス(N-カルバゾリル)ベンゼンなどのカルバゾール誘導体;N,N’-ビス(ナフタレン-1-イル)-N,N’-ビス(フェニル)ベンジジン(略称:NPB)、N,N’-ビス(ナフタレン-1-イル)-N,N’-ビス(フェニル)-2,2’-ジメチルベンジジン(略称:α-NPD)、N,N’-ビス(ナフタレン-1-イル)-N,N’-ビス(フェニル)-9,9’-スピロビフルオレン(略称:Spiro-NPB)などのスピロ化合物;高分子化合物;などが挙げられる。正孔輸送層の形成材料は、1種単独で又は2種以上を併用してもよい。また、正孔輸送層は、2層以上の多層構造であってもよい。
 正孔輸送層の厚みは、特に限定されないが、駆動電圧を下げるという観点から、1nm~500nmが好ましい。
The material for forming the hole transport layer is not particularly limited as long as the material has a hole transport function. As a material for forming the hole transport layer, aromatic amine compounds such as 4,4 ′, 4 ″ -tris (carbazol-9-yl) -triphenylamine (abbreviation: TcTa); 1,3-bis (N— Carbazole derivatives such as carbazolyl) benzene; N, N′-bis (naphthalen-1-yl) -N, N′-bis (phenyl) benzidine (abbreviation: NPB), N, N′-bis (naphthalen-1-yl) ) -N, N′-bis (phenyl) -2,2′-dimethylbenzidine (abbreviation: α-NPD), N, N′-bis (naphthalen-1-yl) -N, N′-bis (phenyl) -9,9'-spirobifluorene (abbreviation: Spiro-NPB) and other spiro compounds, polymer compounds, etc. The material for forming the hole transport layer may be one kind or a combination of two or more kinds. In addition, the hole transport layer may be two layers. It may be a multilayer structure of the above.
The thickness of the hole transport layer is not particularly limited, but is preferably 1 nm to 500 nm from the viewpoint of lowering the driving voltage.
 発光層は、正孔輸送層の表面に設けられる。
 発光層の形成材料は、発光性を有する材料であれば特に限定されない。発光層の形成材料としては、例えば、低分子蛍光発光材料、低分子燐光発光材料などの低分子発光材料を用いることができる。
The light emitting layer is provided on the surface of the hole transport layer.
The material for forming the light emitting layer is not particularly limited as long as it is a light emitting material. As a material for forming the light emitting layer, for example, a low molecular light emitting material such as a low molecular fluorescent light emitting material or a low molecular phosphorescent light emitting material can be used.
 低分子発光材料としては、例えば、4,4’-ビス(2,2’-ジフェニルビニル)-ビフェニル(略称:DPVBi)などの芳香族ジメチリデン化合物;5-メチル-2-[2-[4-(5-メチル-2-ベンゾオキサゾリル)フェニル]ビニル]ベンゾオキサゾールなどのオキサジアゾール化合物;3-(4-ビフェニルイル)-4-フェニル-5-t-ブチルフェニル-1,2,4-トリアゾールなどのトリアゾール誘導体;1,4-ビス(2-メチルスチリル)ベンゼンなどのスチリルベンゼン化合物;ベンゾキノン誘導体;ナフトキノン誘導体;アントラキノン誘導体;フルオレノン誘導体;アゾメチン亜鉛錯体、トリス(8-キノリノラト)アルミニウム(Alq)などの有機金属錯体;などが挙げられる。 Examples of the low-molecular light-emitting material include aromatic dimethylidene compounds such as 4,4′-bis (2,2′-diphenylvinyl) -biphenyl (abbreviation: DPVBi); 5-methyl-2- [2- [4- Oxadiazole compounds such as (5-methyl-2-benzoxazolyl) phenyl] vinyl] benzoxazole; 3- (4-biphenylyl) -4-phenyl-5-tert-butylphenyl-1,2,4 A triazole derivative such as triazole; a styrylbenzene compound such as 1,4-bis (2-methylstyryl) benzene; a benzoquinone derivative; a naphthoquinone derivative; an anthraquinone derivative; a fluorenone derivative; an azomethine zinc complex, tris (8-quinolinolato) aluminum (Alq) 3 ) organometallic complexes such as;
 また、発光層の形成材料として、ホスト材料中に発光性のドーパント材料をドープしたものを用いてもよい。
 前記ホスト材料としては、例えば、上述の低分子発光材料を用いることができ、これ以外に、1,3,5-トリ(9H-カルバゾール-9-イル)ベンゼン(略称:TCP)、1,3-ビス(カルバゾール-9-イル)ベンゼン(略称:mCP)、2,6-ビス(N-カルバゾリル)ピリジン、9,9-ジ(4-ジカルバゾール-ベンジル)フルオレン(略称:CPF)、4,4’-ビス(カルバゾール-9-イル)-9,9-ジメチル-フルオレン(略称:DMFL-CBP)などのカルバゾール誘導体などを用いることができる。
Further, as a material for forming the light emitting layer, a host material doped with a light emitting dopant material may be used.
As the host material, for example, the above-described low-molecular light-emitting material can be used. In addition, 1,3,5-tri (9H-carbazol-9-yl) benzene (abbreviation: TCP), 1,3 -Bis (carbazol-9-yl) benzene (abbreviation: mCP), 2,6-bis (N-carbazolyl) pyridine, 9,9-di (4-dicarbazol-benzyl) fluorene (abbreviation: CPF), 4, A carbazole derivative such as 4′-bis (carbazol-9-yl) -9,9-dimethyl-fluorene (abbreviation: DMFL-CBP) can be used.
 前記ドーパント材料としては、例えば、スチリル誘導体;ペリレン誘導体;トリス(2-フェニルピリジナト)イリジウム(III)(Ir(ppy))、トリス(1-フェニルイソキノリン)イリジウム(III)(Ir(piq))、ビス(1-フェニルイソキノリン)(アセチルアセトナト)イリジウム(III)(略称:Ir(piq)(acac))などの有機イリジウム錯体などの燐光発光性金属錯体;などを用いることができる。
 さらに、発光層の形成材料には、上述の正孔輸送層の形成材料、後述の電子輸送層の形成材料、各種添加剤などが含まれていてもよい。
 発光層の厚みは、特に限定されないが、例えば、2nm~500nmが好ましい。
Examples of the dopant material include styryl derivatives; perylene derivatives; tris (2-phenylpyridinato) iridium (III) (Ir (ppy) 3 ), tris (1-phenylisoquinoline) iridium (III) (Ir (piq 3 ), phosphorescent metal complexes such as organic iridium complexes such as bis (1-phenylisoquinoline) (acetylacetonato) iridium (III) (abbreviation: Ir (piq) 2 (acac)); it can.
Furthermore, the material for forming the light emitting layer may include the above-described material for forming the hole transport layer, the material for forming the electron transport layer described later, and various additives.
The thickness of the light emitting layer is not particularly limited, but is preferably 2 nm to 500 nm, for example.
 電子輸送層は、発光層の表面に設けられる。もっとも、有機EL素子の発光効率を低下させないことを条件として、第2電極と電子輸送層の間にこれら以外の任意の機能層が介在されていてもよい。
 例えば、電子注入層が、電子輸送層の表面に設けられ、電子注入層の表面に、第2電極が設けられていてもよい。電子注入層は、前記第2電極から電子輸送層へ電子の注入を補助する機能を有する層である。
The electron transport layer is provided on the surface of the light emitting layer. However, any functional layer other than these may be interposed between the second electrode and the electron transport layer on condition that the luminous efficiency of the organic EL element is not lowered.
For example, the electron injection layer may be provided on the surface of the electron transport layer, and the second electrode may be provided on the surface of the electron injection layer. The electron injection layer is a layer having a function of assisting injection of electrons from the second electrode to the electron transport layer.
 電子輸送層の形成材料は、電子輸送機能を有する材料であれば特に限定されない。電子輸送層の形成材料としては、例えば、トリス(8-キノリノラト)アルミニウム(略称:Alq)、ビス(2-メチル-8-キノリノラト)(4-フェニルフェノラト)アルミニウム(略称:BAlq)などの金属錯体;2,7-ビス[2-(2,2’-ビピリジン-6-イル)-1,3,4-オキサジアゾ-5-イル]-9,9-ジメチルフルオレン(略称:Bpy-FOXD)、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(略称:PBD)、1,3-ビス[5-(p-tert-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(略称:OXD-7)、2,2’,2”-(1,3,5-ベンゼントリイル)トリス(1-フェニル-1H-ベンズイミダゾール)(略称:TPBi)などの複素芳香族化合物;ポリ(ピリジン-2,5-ジイル)(略称:PPy)などの高分子化合物;などが挙げられる。電子輸送層の形成材料は、1種単独で又は2種以上を併用してもよい。また、電子輸送層は、2層以上の多層構造であってもよい。
 電子輸送層の厚みは、特に限定されないが、駆動電圧を下げるという観点から、1nm~500nmが好ましい。
The material for forming the electron transport layer is not particularly limited as long as the material has an electron transport function. Examples of the material for forming the electron transport layer include tris (8-quinolinolato) aluminum (abbreviation: Alq 3 ), bis (2-methyl-8-quinolinolato) (4-phenylphenolato) aluminum (abbreviation: BAlq), and the like. Metal complex; 2,7-bis [2- (2,2′-bipyridin-6-yl) -1,3,4-oxadiazo-5-yl] -9,9-dimethylfluorene (abbreviation: Bpy-FOXD) 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole (abbreviation: PBD), 1,3-bis [5- (p-tert-butylphenyl) ) -1,3,4-oxadiazol-2-yl] benzene (abbreviation: OXD-7), 2,2 ′, 2 ″-(1,3,5-benzenetriyl) tris (1-phenyl- 1H-Benz Imida A heteroaromatic compound such as poly (pyridine-2,5-diyl) (abbreviation: PPy), etc. The material for forming the electron transport layer is 1 A single species or a combination of two or more species may be used, and the electron transport layer may have a multilayer structure of two or more layers.
The thickness of the electron transport layer is not particularly limited, but is preferably 1 nm to 500 nm from the viewpoint of lowering the driving voltage.
 第2電極は、陰極又は陽極の何れでもよい。例えば、第2電極は陰極である。
 前記第2電極の形成材料は、特に限定されないが、トップエミッション型の有機EL素子を構成する場合には、透明な第2電極が用いられる。透明及び導電性を有する第2電極の形成材料としては、インジウム錫酸化物(ITO);酸化珪素を含むインジウム錫酸化物(ITSO);アルミニウムなどの導電性金属を添加した酸化亜鉛(ZnO:Al);マグネシウム-銀合金などが挙げられる。第2電極の厚みは、特に限定されないが、通常、0.01μm~1.0μmである。
The second electrode may be either a cathode or an anode. For example, the second electrode is a cathode.
The material for forming the second electrode is not particularly limited, but a transparent second electrode is used in the case of forming a top emission type organic EL element. As a material for forming the transparent and conductive second electrode, indium tin oxide (ITO); indium tin oxide containing silicon oxide (ITSO); zinc oxide to which a conductive metal such as aluminum is added (ZnO: Al) ); Magnesium-silver alloy. The thickness of the second electrode is not particularly limited, but is usually 0.01 μm to 1.0 μm.
[有機EL装置の用途及び効果]
 本発明の有機EL装置は、その1つ又は複数を組み合わせて、照明装置やディスプレイ装置などの発光パネルとして利用できる。
 本発明の有機EL装置は、有機層の裏面側に第2吸湿層が設けられているので、支持基板を透過した水分を第2吸湿層が吸収するようになる。さらに、防湿層が第1吸湿層の端部及び第2吸湿層の端部を越えて設けられているので、第1及び第2吸湿層の端面から水分が侵入し難くなる。本発明の有機EL装置は、前記第2吸湿層を有すること及び防湿層が第1及び第2吸湿層よりも大きいことが相乗的に作用して、有機層に水分が侵入することを効果的に防止できる。特に、第1吸湿層と第2吸湿層が直接的に密着して接合されていることにより、有機層への水分の侵入をより効果的に防止できる。かかる有機EL装置は、長期間安定的に発光し続ける。
[Uses and effects of organic EL devices]
The organic EL device of the present invention can be used as a light emitting panel such as a lighting device or a display device by combining one or a plurality thereof.
In the organic EL device of the present invention, since the second moisture absorption layer is provided on the back side of the organic layer, the second moisture absorption layer absorbs the moisture that has passed through the support substrate. Furthermore, since the moisture-proof layer is provided beyond the end of the first moisture-absorbing layer and the end of the second moisture-absorbing layer, it is difficult for moisture to enter from the end surfaces of the first and second moisture-absorbing layers. In the organic EL device of the present invention, it is effective that the second moisture-absorbing layer is included and that the moisture-proof layer is larger than the first and second moisture-absorbing layers so that moisture penetrates into the organic layer. Can be prevented. In particular, since the first moisture absorption layer and the second moisture absorption layer are directly in close contact with each other, it is possible to more effectively prevent moisture from entering the organic layer. Such an organic EL device continues to emit light stably for a long period of time.
[有機EL装置の製造方法]
 本発明の有機EL装置は、ロールツーロール方式にて複数連続的に製造することもできるし、或いは、個々に製造することもできる。前記個々に製造する方式は、バッチ方式とも呼ばれる。
 以下、ロールツーロール方式にて有機EL装置を複数連続的に製造する方法について説明する。
 ロールツーロール方式による有機EL装置の製造方法は、フレキシブルな帯状の支持基板を繰り出す繰出し工程と、前記帯状の支持基板上に第1吸湿層を形成する第1吸湿層形成工程、前記支持基板の第1吸湿層上に複数の有機EL素子を形成する素子形成工程と、前記有機EL素子上に第2吸湿層を形成する第2吸湿層形成工程と、前記第2吸湿層上に防湿層を形成する防湿層形成工程と、帯状の支持基板、第1吸湿層、有機EL素子、第2吸湿層及び防湿層を有する帯状の積層体をロール状に巻き取る巻取り工程と、を有する。本発明の有機EL装置は、第1吸湿層から防湿層までを真空蒸着法により一連に形成することも可能である。
[Method for Manufacturing Organic EL Device]
A plurality of the organic EL devices of the present invention can be continuously produced by a roll-to-roll method, or can be produced individually. The individual manufacturing method is also called a batch method.
Hereinafter, a method for continuously producing a plurality of organic EL devices by a roll-to-roll method will be described.
The roll-to-roll organic EL device manufacturing method includes a feeding step of feeding out a flexible strip-shaped support substrate, a first moisture-absorbing layer forming step of forming a first moisture-absorbing layer on the strip-shaped support substrate, An element formation step of forming a plurality of organic EL elements on the first moisture absorption layer, a second moisture absorption layer formation step of forming a second moisture absorption layer on the organic EL element, and a moisture barrier layer on the second moisture absorption layer A moisture-proof layer forming step to be formed; and a winding step of winding the belt-like laminate having the belt-like support substrate, the first moisture-absorbing layer, the organic EL element, the second moisture-absorbing layer, and the moisture-proof layer into a roll shape. The organic EL device of the present invention can also form a series of layers from the first moisture absorbing layer to the moisture-proof layer by vacuum deposition.
(繰出し工程)
 繰出し工程は、ロールに巻かれた帯状の支持基板を製造ラインに送り出す工程である。
 前記帯状の支持基板は、細長い長方形状のフレキシブルなシート状物である。前記帯状の支持基板の長さ(長手方向の長さ)は、特に限定されないが、例えば、10m~1000mであり、その幅(短手方向の長さ)も特に限定されないが、例えば、10mm~300mmである。
(Feeding process)
The feeding process is a process of feeding a belt-like support substrate wound around a roll to the production line.
The belt-like support substrate is an elongated rectangular flexible sheet. The length (length in the longitudinal direction) of the belt-like support substrate is not particularly limited, but is, for example, 10 m to 1000 m, and the width (length in the short direction) is not particularly limited, but is, for example, 10 mm to 300 mm.
(第1吸湿層形成工程)
 前記繰り出した支持基板を、必要に応じて洗浄槽にて洗浄した後、乾燥する。洗浄乾燥後、その支持基板の表面上に第1吸湿層を形成する。上述のようにホウ素化合物などの吸湿性を有する材料を、支持基板の表面の所望領域に付着させることにより、第1吸湿層を形成できる。
 第1吸湿層の形成方法は、その形成材料に応じて最適な方法を採用できるが、例えば、抵抗加熱蒸着や電子ビーム蒸着などの真空蒸着法、スパッタ法、熱CVD、光CVD、プラズマCVD、MOCVD、原子層堆積法(ALD)などが挙げられる。好ましくは、真空蒸着法を利用して第1吸湿層を形成する。
(First moisture absorbing layer forming step)
The extended support substrate is washed in a washing tank as necessary, and then dried. After washing and drying, a first moisture absorbing layer is formed on the surface of the support substrate. As described above, the first hygroscopic layer can be formed by attaching a hygroscopic material such as a boron compound to a desired region on the surface of the support substrate.
As the method for forming the first moisture absorption layer, an optimum method can be adopted depending on the material to be formed. For example, vacuum evaporation methods such as resistance heating evaporation and electron beam evaporation, sputtering methods, thermal CVD, photo CVD, plasma CVD, MOCVD, atomic layer deposition (ALD), etc. are mentioned. Preferably, the first moisture absorption layer is formed using a vacuum deposition method.
(素子形成工程)
 有機EL素子の形成工程は、従来と同様にして行われる。
 簡単に説明すると、前記第1吸湿層を形成した支持基板上に第1電極を形成する。
 第1電極の形成方法は、その形成材料に応じて最適な方法を採用できるが、スパッタ法、真空蒸着法、インクジェット法などが挙げられる。例えば、金属によって陽極を形成する場合には、真空蒸着法が用いられる。
 前記第1電極の表面上に、その端子を除いて、有機層を形成する。前記第1電極の表面に、例えば、正孔輸送層、発光層及び電子輸送層などを順に形成することによって、有機層を形成できる。正孔輸送層、発光層及び電子輸送層などの形成方法は、その形成材料に応じて最適な方法を採用できるが、例えば、スパッタ法、真空蒸着法、インクジェット法、コート法などが挙げられる。通常、これらは、真空蒸着法によって形成される。
 続いて、有機層の表面に、第2電極を形成する。第2電極は、第1電極の端子に重ならないように形成される。第2電極の形成方法は、その形成材料に応じて最適な方法を採用できるが、例えば、スパッタ法、真空蒸着法、インクジェット法などが挙げられる。
 前記複数の有機EL素子の間隔は、特に限定されず、適宜設定できる。例えば、前記間隔は、0.5mm~5mmである。
(Element formation process)
The formation process of the organic EL element is performed in the same manner as before.
Briefly, a first electrode is formed on a support substrate on which the first moisture absorption layer is formed.
As a method for forming the first electrode, an optimum method can be adopted depending on the forming material, and examples thereof include a sputtering method, a vacuum deposition method, and an ink jet method. For example, when the anode is formed of metal, a vacuum deposition method is used.
An organic layer is formed on the surface of the first electrode except for the terminal. On the surface of the first electrode, for example, an organic layer can be formed by sequentially forming a hole transport layer, a light emitting layer, an electron transport layer, and the like. As a method for forming the hole transport layer, the light emitting layer, the electron transport layer, and the like, an optimum method can be adopted depending on the material to be formed, and examples thereof include a sputtering method, a vacuum deposition method, an ink jet method, and a coating method. Usually, these are formed by vacuum deposition.
Subsequently, a second electrode is formed on the surface of the organic layer. The second electrode is formed so as not to overlap the terminal of the first electrode. As a method for forming the second electrode, an optimum method can be adopted depending on the forming material, and examples thereof include a sputtering method, a vacuum deposition method, and an ink jet method.
The interval between the plurality of organic EL elements is not particularly limited and can be set as appropriate. For example, the interval is 0.5 mm to 5 mm.
(第2吸湿層形成工程)
 上述のようにホウ素化合物などの吸湿性を有する材料を、2つの電極端子を除く有機EL素子の表面に付着させることにより、第2吸湿層を形成する。
 第2吸湿層の形成方法は、その形成材料に応じて最適な方法を採用できるが、例えば、抵抗加熱蒸着や電子ビーム蒸着などの真空蒸着法、スパッタ法、熱CVD、光CVD、プラズマCVD、MOCVD、原子層堆積法(ALD)などが挙げられる。好ましくは、真空蒸着法を利用して第2吸湿層を形成する。
(Second moisture absorbing layer forming step)
As described above, a second hygroscopic layer is formed by adhering a hygroscopic material such as a boron compound to the surface of the organic EL element excluding the two electrode terminals.
As the method for forming the second moisture absorption layer, an optimum method can be adopted depending on the material to be formed. For example, vacuum evaporation methods such as resistance heating evaporation and electron beam evaporation, sputtering methods, thermal CVD, photo CVD, plasma CVD, MOCVD, atomic layer deposition (ALD), etc. are mentioned. Preferably, a 2nd moisture absorption layer is formed using a vacuum evaporation method.
(防湿層形成工程)
 上述のように防湿性を有する材料を、端子を除いて第2吸湿層の表面に付着させることにより、防湿層を形成する。
 防湿層の形成方法は、その形成材料に応じて最適な方法を採用できるが、例えば、物理気相成長法又は化学気相成長法が挙げられる。これらの中でも、真空蒸着法、特にプラズマ真空蒸着法を利用して防湿層を形成することが好ましい。
(Dampproof layer forming process)
As described above, the moisture-proof layer is formed by attaching the moisture-proof material to the surface of the second moisture-absorbing layer except for the terminals.
As a method for forming the moisture-proof layer, an optimum method can be adopted depending on the forming material, and examples thereof include physical vapor deposition and chemical vapor deposition. Among these, it is preferable to form the moisture-proof layer using a vacuum deposition method, particularly a plasma vacuum deposition method.
 前記プラズマは、特に限定されず、例えば、アーク放電プラズマ、グロー放電プラズマなどを用いることができる。アーク放電プラズマは、グロー放電プラズマなどとは異なり、非常に高い電子密度となる。このことから、前記プラズマとしてはアーク放電プラズマを用いることが好ましい。アーク放電プラズマの発生源としては、例えば、圧力勾配型プラズマガン、直流放電プラズマ発生装置、高周波放電プラズマ発生装置などを利用できる。これらの中では、高密度なプラズマを安定的に発生させることが可能であることから、プラズマ源として圧力勾配型プラズマガンを用いることが好ましい。 The plasma is not particularly limited, and for example, arc discharge plasma, glow discharge plasma, or the like can be used. Unlike glow discharge plasma, arc discharge plasma has a very high electron density. For this reason, it is preferable to use arc discharge plasma as the plasma. As the arc discharge plasma generation source, for example, a pressure gradient plasma gun, a direct current discharge plasma generator, a high frequency discharge plasma generator, or the like can be used. Among these, since it is possible to stably generate high-density plasma, it is preferable to use a pressure gradient plasma gun as a plasma source.
 防湿層を形成するプラズマ蒸着装置は、従来公知のものを使用できる。
 簡単に説明すると、プラズマ蒸着装置は、内部を真空に保持できるチャンバーと、帯状の支持基板を連続的に送る搬送装置と、プラズマを発生するプラズマ源と、材料を入れた蒸着源と、前記チャンバー内に反応ガスを供給する反応ガス供給装置と、前記チャンバー内に放電ガスを供給する放電ガス供給装置と、前記チャンバー内を真空状態にする真空ポンプと、を有する。前記蒸着源は、搬送される支持基板と対向するように、通常、チャンバーの底部に設置される。前記蒸着源に入れられた材料を蒸発させる手段としては、前記プラズマを用いることができるが、抵抗加熱や電子ビームを用いてもよい。
 金属又は半金属の窒化物、酸化窒化物、炭化窒化物及び酸化炭化窒化物から選ばれる少なくとも1種を含む防湿層を形成する場合、前記蒸着源には、例えば、金属若しくは半金属、又はこれらの窒化物、酸化窒化物、炭化窒化物若しくは酸化炭化窒化物が入れられる。また、蒸着源に金属又は半金属を入れた場合には、反応ガスとして、窒素含有ガス、窒素酸素含有ガス、窒素炭化水素含有ガス又は窒素酸素炭化水素含有ガスを用いることにより、金属又は半金属窒化物などからなる防湿層を形成できる。前記窒素含有ガスとしては、窒素(N)、アンモニア(NH)又は一酸化窒素(NO)などが挙げられる。窒素酸素含有ガスとしては、一酸化窒素(NO)若しくは一酸化二窒素(NO)、又は、窒素(N)と酸素(O)の混合ガスなどが挙げられる。窒素炭化水素含有ガスとしては、前記窒素含有ガスと炭化水素含有ガスの混合ガスなどが挙げられる。前記炭化水素含有ガスとしては、メタン(CH)、エタン(C)、プロパン(C)、ブタン(C10)、エチレン(C)、アセチレン(C)などが挙げられる。窒素酸素炭化水素含有ガスとしては、前記窒素含有ガス、酸素含有ガス及び炭化水素含有ガスの混合ガス、又は、窒素酸素含有ガス及び炭化水素含有ガスの混合ガスなどが挙げられる。
As the plasma deposition apparatus for forming the moisture-proof layer, a conventionally known apparatus can be used.
Briefly, a plasma deposition apparatus includes a chamber capable of maintaining the inside in a vacuum, a transfer device that continuously feeds a belt-like support substrate, a plasma source that generates plasma, a deposition source that contains a material, and the chamber A reaction gas supply device for supplying a reaction gas therein; a discharge gas supply device for supplying a discharge gas into the chamber; and a vacuum pump for evacuating the chamber. The vapor deposition source is usually installed at the bottom of the chamber so as to face the transported support substrate. As the means for evaporating the material put in the vapor deposition source, the plasma can be used, but resistance heating or an electron beam may be used.
In the case of forming a moisture-proof layer containing at least one selected from a metal or metalloid nitride, oxynitride, carbonitride, and oxycarbonitride, the deposition source may be, for example, a metal or metalloid, or these Nitride, oxynitride, carbonitride, or oxycarbonitride. In addition, when a metal or metalloid is put in the vapor deposition source, a metal or metalloid can be obtained by using a nitrogen-containing gas, a nitrogen-oxygen-containing gas, a nitrogen-hydrocarbon-containing gas, or a nitrogen-oxygen-hydrocarbon-containing gas as a reaction gas. A moisture-proof layer made of nitride or the like can be formed. Examples of the nitrogen-containing gas include nitrogen (N 2 ), ammonia (NH 3 ), and nitric oxide (NO). Examples of the nitrogen-oxygen-containing gas include nitrogen monoxide (NO), dinitrogen monoxide (N 2 O), or a mixed gas of nitrogen (N 2 ) and oxygen (O 2 ). Examples of the nitrogen hydrocarbon-containing gas include a mixed gas of the nitrogen-containing gas and the hydrocarbon-containing gas. Examples of the hydrocarbon-containing gas include methane (CH 4 ), ethane (C 2 H 6 ), propane (C 3 H 8 ), butane (C 4 H 10 ), ethylene (C 2 H 4 ), acetylene (C 2 H 2 ) and the like. Examples of the nitrogen-oxygen hydrocarbon-containing gas include the nitrogen-containing gas, a mixed gas of an oxygen-containing gas and a hydrocarbon-containing gas, or a mixed gas of a nitrogen-oxygen-containing gas and a hydrocarbon-containing gas.
 真空ポンプを作動させることにより、チャンバーの内部を真空状態に保つ。チャンバー内の圧力は、0.01Pa~0.5Paの範囲内であり、好ましくは0.02Pa~0.15Paである。真空状態のチャンバー内において、プラズマ発生源に放電ガス供給装置から放電ガスを導入してプラズマを発生させる。さらに、チャンバー内に、反応ガス供給装置から反応ガスを導入すると共に、蒸着源から材料を蒸発させることにより、吸湿層上に防湿層を形成できる。
 前記反応ガスの導入と前記プラズマの発生は、同時に行ってもよいし、或いは、前記反応ガスの導入後に前記プラズマを発生させてもよいし、或いは、前記プラズマの発生後に反応ガスを導入してもよい。防湿層の形成材料を付着させる前に吸湿層の表面を活性化できることから、プラズマの発生後に反応ガスを導入することが好ましい。
 前記蒸着速度は、適宜設定でき、例えば、10~300nm/分である。
The inside of the chamber is kept in a vacuum state by operating the vacuum pump. The pressure in the chamber is in the range of 0.01 Pa to 0.5 Pa, preferably 0.02 Pa to 0.15 Pa. In a vacuum chamber, a plasma is generated by introducing a discharge gas from a discharge gas supply device to a plasma generation source. Furthermore, the moisture-proof layer can be formed on the moisture-absorbing layer by introducing the reaction gas from the reaction gas supply device into the chamber and evaporating the material from the vapor deposition source.
The introduction of the reaction gas and the generation of the plasma may be performed at the same time, or the plasma may be generated after the introduction of the reaction gas, or the reaction gas may be introduced after the generation of the plasma. Also good. Since the surface of the moisture absorption layer can be activated before the material for forming the moisture barrier layer is attached, it is preferable to introduce a reactive gas after the generation of plasma.
The deposition rate can be set as appropriate, and is, for example, 10 to 300 nm / min.
(巻取り工程)
 巻取り工程は、前記各工程を経て得られた、帯状の積層体(帯状の支持基板上に第1吸湿層と有機EL素子と第2吸湿層と防湿層が積層されたもの)をロールに巻き取る工程である。
 このようにして、ロールツーロール方式にて複数の有機EL装置が繋がった長尺物を得ることができる。図15は、この長尺物10を示す平面図である。この長尺物10を、図15の白抜き矢印で示す箇所で切断することより、図1に示すような個々の有機EL装置を得ることができる。なお、図15では、ロールツーロール方式にて第1実施形態の有機EL装置を製造した場合の長尺物を例示しているが、第2又は第3実施形態の有機EL装置も同様にロールツーロール方式にて製造できる。
(Winding process)
The winding process is a roll of a band-shaped laminate (a first moisture-absorbing layer, an organic EL element, a second moisture-absorbing layer, and a moisture-proof layer laminated on a band-shaped support substrate) obtained through the above-described steps. This is a winding process.
In this manner, a long object in which a plurality of organic EL devices are connected by a roll-to-roll method can be obtained. FIG. 15 is a plan view showing the long object 10. By cutting the long object 10 at a position indicated by a white arrow in FIG. 15, individual organic EL devices as shown in FIG. 1 can be obtained. FIG. 15 illustrates a long object when the organic EL device of the first embodiment is manufactured by the roll-to-roll method, but the organic EL device of the second or third embodiment is similarly rolled. It can be manufactured by a two-roll method.
 以下、実施例及び比較例を示して本発明をさらに説明する。ただし、本発明は、下記実施例のみに限定されない。 Hereinafter, the present invention will be further described with reference to examples and comparative examples. However, the present invention is not limited to the following examples.
[実施例1]
 市販のガラス基板の表面の所定範囲に、B(酸化ホウ素)を厚み20nmで真空蒸着(蒸着速度:1nm/秒)することにより、第1吸湿層を形成した。
 この第1吸湿層の表面に、アルミニウムを厚み150nmで真空蒸着することにより、陽極を形成した。次に、前記陽極の表面(端子を除く)に、α-NPD(N,N’-ビス(ナフタレン-1-イル)-N,N’-ビス(フェニル)-2,2’-ジメチルベンジジン)を厚み60nmで真空蒸着することにより、正孔輸送層を形成した。この正孔輸送層の表面に、Alq(トリス(8-キノリノラト)アルミニウム)を厚み40nmで真空蒸着することにより、発光層を形成した。この発光層の表面に、フッ化リチウムを厚み1nmで真空蒸着することにより、電子注入層を形成した。この電子注入層の表面に、ITO(インジウム錫酸化物)を厚み100nmで真空蒸着することにより、陰極を形成した。発光層を含む有機層は、第1吸湿層の端部よりも内側に形成した。
 この陰極の表面(端子を除く)に、B(酸化ホウ素)を厚み20nmで真空蒸着(蒸着速度:1nm/秒)することにより、第2吸湿層を形成した。第2吸湿層は、有機層の端部を越えるように形成した。
 この第2吸湿層の表面に、SiON(酸化窒化ケイ素)を厚み300nmでプラズマ蒸着することにより、防湿層を形成した。防湿層は、第1及び第2吸湿層の端部を越え且つその第1及び第2吸湿層の端面に被さるように形成した。ただし、防湿層は、端子には形成しなかった。
 前記プラズマ蒸着は、プラズマ源として圧力勾配型プラズマガンを用い、蒸着源としてケイ素粒子を用い、反応ガスとして酸素及び窒素の混合ガスを用い、蒸着速度1nm/秒で行った。
 このようにして図1乃至図3に示すようなトップエミッション型の有機EL装置を作製した。
[Example 1]
A first hygroscopic layer was formed by vacuum-depositing B 2 O 3 (boron oxide) at a thickness of 20 nm (deposition rate: 1 nm / second) in a predetermined range on the surface of a commercially available glass substrate.
An anode was formed on the surface of the first moisture absorption layer by vacuum-depositing aluminum with a thickness of 150 nm. Next, α-NPD (N, N′-bis (naphthalen-1-yl) -N, N′-bis (phenyl) -2,2′-dimethylbenzidine) is applied to the surface of the anode (excluding terminals). Was vacuum-deposited at a thickness of 60 nm to form a hole transport layer. On the surface of this hole transport layer, Alq 3 (Tris (8-quinolinolato) aluminum) was vacuum-deposited with a thickness of 40 nm to form a light emitting layer. An electron injection layer was formed on the surface of the light emitting layer by vacuum deposition of lithium fluoride with a thickness of 1 nm. A cathode was formed on the surface of the electron injection layer by vacuum-depositing ITO (indium tin oxide) at a thickness of 100 nm. The organic layer including the light emitting layer was formed inside the end of the first hygroscopic layer.
A second moisture absorbing layer was formed on the surface of the cathode (excluding the terminal) by vacuum-depositing B 2 O 3 (boron oxide) with a thickness of 20 nm (deposition rate: 1 nm / second). The 2nd moisture absorption layer was formed so that the edge part of an organic layer might be exceeded.
A moisture barrier layer was formed on the surface of the second moisture absorbing layer by plasma-depositing SiON (silicon oxynitride) with a thickness of 300 nm. The moisture-proof layer was formed so as to extend over the end portions of the first and second moisture-absorbing layers and cover the end surfaces of the first and second moisture-absorbing layers. However, the moisture-proof layer was not formed on the terminal.
The plasma deposition was performed at a deposition rate of 1 nm / second using a pressure gradient plasma gun as a plasma source, using silicon particles as a deposition source, and a mixed gas of oxygen and nitrogen as a reaction gas.
Thus, a top emission type organic EL device as shown in FIGS. 1 to 3 was produced.
 実施例1で作製した有機EL装置を説明すると、図16を参照して、第1及び第2吸湿層が有機層よりも外側に延在し、防湿層が前記第1及び第2吸湿層よりも外側に延在している。前記第2吸湿層は、有機層の表面及び端面に被さり且つ密着し、前記防湿層は、第1吸湿層の端面並びに第2吸湿層の表面及び端面に被さり且つ密着している。また、第1吸湿層と第2吸湿層は接合している。 The organic EL device produced in Example 1 will be described. Referring to FIG. 16, the first and second moisture absorption layers extend outside the organic layer, and the moisture barrier layer is more than the first and second moisture absorption layers. Also extends outward. The second moisture absorption layer covers and adheres to the surface and end surface of the organic layer, and the moisture barrier layer covers and adheres to the end surface of the first moisture absorption layer and the surface and end surface of the second moisture absorption layer. Moreover, the 1st moisture absorption layer and the 2nd moisture absorption layer are joined.
(実施例1の有機EL装置の構成)
防湿層:厚み300nmのSiON
第2吸湿層:厚み20nmのB
陰極:厚み100nmのITO
電子注入層:厚み1nmのLiF
発光層:厚み40nmのAlq
正孔輸送層:厚み60nmのα-NPD
陽極:厚み150nmのAl
第1吸湿層:厚み20nmのB
基板:ガラス基板
(Configuration of Organic EL Device of Example 1)
Moisture-proof layer: 300 nm thick SiON
Second hygroscopic layer: B 2 O 3 with a thickness of 20 nm
Cathode: ITO with a thickness of 100 nm
Electron injection layer: LiF with a thickness of 1 nm
Light emitting layer: Alq 3 with a thickness of 40 nm
Hole transport layer: α-NPD with a thickness of 60 nm
Anode: Al with a thickness of 150 nm
First hygroscopic layer: B 2 O 3 with a thickness of 20 nm
Substrate: Glass substrate
[比較例1]
 第1吸湿層を形成しなかったこと以外は、実施例1と同様にして、有機EL装置を作製した。比較例1で作製した有機EL装置の構成を図16に示す。
[Comparative Example 1]
An organic EL device was produced in the same manner as in Example 1 except that the first hygroscopic layer was not formed. The configuration of the organic EL device produced in Comparative Example 1 is shown in FIG.
[比較例2]
 第1吸湿層を基板の表面全体に形成して、第1吸湿層を防湿層の端部を越えて形成したこと以外は、実施例1と同様にして、有機EL装置を作製した。
 比較例2で作製した有機EL装置は、図17に示すように、第1吸湿層の表面の一部及び端面には、防湿層が被さっていない。
[Comparative Example 2]
An organic EL device was produced in the same manner as in Example 1 except that the first moisture absorption layer was formed on the entire surface of the substrate and the first moisture absorption layer was formed beyond the end of the moisture barrier layer.
As shown in FIG. 17, the organic EL device manufactured in Comparative Example 2 does not cover the moisture-proof layer on a part of the surface and the end surface of the first moisture-absorbing layer.
[比較例3]
 防湿層を第2吸湿層の表面のみに形成したこと以外は、実施例1と同様にして、有機EL装置を作製した。
 比較例3で作製した有機EL装置は、図17に示すように、第1及び第2吸湿層の端面には、防湿層が被さっていない。
[Comparative Example 3]
An organic EL device was produced in the same manner as in Example 1 except that the moisture-proof layer was formed only on the surface of the second moisture-absorbing layer.
As shown in FIG. 17, the organic EL device manufactured in Comparative Example 3 does not cover the moisture-proof layer on the end surfaces of the first and second moisture-absorbing layers.
[有機EL装置の発光寿命の計測]
 実施例及び比較例の有機EL装置のそれぞれを、実験用回路に組み込み、それを60℃、90%RH下に保管し、電圧を印加して長時間連続的に発光させた。そして、その発光初期の輝度を100%としたとき、輝度が70%になるまでの時間を計測した。
 その結果を、表1に示す。
[Measurement of emission lifetime of organic EL devices]
Each of the organic EL devices of Examples and Comparative Examples was incorporated in an experimental circuit, stored at 60 ° C. and 90% RH, and applied with voltage to continuously emit light for a long time. Then, when the luminance at the initial light emission was 100%, the time until the luminance became 70% was measured.
The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例1の有機EL装置は、比較的長時間発光した。比較例1乃至3の有機EL装置は、実施例1に比して、極端に発光寿命が短かった。 As is clear from Table 1, the organic EL device of Example 1 emitted light for a relatively long time. The organic EL devices of Comparative Examples 1 to 3 had an extremely short light emission lifetime as compared with Example 1.
 本発明の有機EL装置は、例えば、照明装置、ディスプレイ装置などとして利用できる。 The organic EL device of the present invention can be used as, for example, a lighting device or a display device.
 1 有機EL装置
 2 支持基板
 3 有機EL素子
 33 有機層
 33e 有機層の端部
 41 第1吸湿層
 41e 第1吸湿層の端部
 42 第2吸湿層
 42e 第2吸湿層の端部
 5 防湿層
 5e 防湿層の端部
DESCRIPTION OF SYMBOLS 1 Organic EL apparatus 2 Support substrate 3 Organic EL element 33 Organic layer 33e End part of organic layer 41 First moisture absorption layer 41e End part of first moisture absorption layer 42 Second moisture absorption layer 42e End part of second moisture absorption layer 5 Moisture prevention layer 5e Edge of moisture barrier

Claims (7)

  1.  支持基板と、第1吸湿層と、有機層を有する有機エレクトロルミネッセンス素子と、第2吸湿層と、防湿層と、をこの順で有し、平面透視において、前記防湿層が、前記第1吸湿層の端部及び第2吸湿層の端部を越えて設けられている、有機エレクトロルミネッセンス装置。 A supporting substrate, a first moisture absorption layer, an organic electroluminescence element having an organic layer, a second moisture absorption layer, and a moisture barrier layer are provided in this order. The organic electroluminescent device provided beyond the edge part of a layer and the edge part of a 2nd moisture absorption layer.
  2.  前記第1吸湿層が、平面透視において、前記有機層の端部を越えて設けられている、請求項1に記載の有機エレクトロルミネッセンス装置。 The organic electroluminescence device according to claim 1, wherein the first hygroscopic layer is provided beyond the end of the organic layer in a plan view.
  3.  前記第2吸湿層が、平面透視において、前記有機層の端部を越えて設けられている、請求項1または2に記載の有機エレクトロルミネッセンス装置。 The organic electroluminescence device according to claim 1 or 2, wherein the second moisture absorption layer is provided beyond the end of the organic layer in a plan view.
  4.  前記第2吸湿層が、前記有機層の表面側及び端面側に被さり、前記防湿層が、前記第2吸湿層の表面側及び端面側に被さっている、請求項1乃至3のいずれか一項に記載の有機エレクトロルミネッセンス装置。 The said 2nd moisture absorption layer has covered the surface side and end surface side of the said organic layer, and the said moisture-proof layer has covered the surface side and end surface side of the said 2nd moisture absorption layer. The organic electroluminescent device according to 1.
  5.  前記有機エレクトロルミネッセンス素子が、端子を部分的に有し、
     前記端子を有さない箇所において、前記第1吸湿層と第2吸湿層が直接的に密着されている、請求項1乃至4のいずれか一項に記載の有機エレクトロルミネッセンス装置。
    The organic electroluminescence element partially has a terminal,
    5. The organic electroluminescence device according to claim 1, wherein the first hygroscopic layer and the second hygroscopic layer are in direct contact with each other at a portion not having the terminal.
  6.  前記第1吸湿層及び第2吸湿層が、それぞれ独立して、ホウ素化合物又は硫化化合物を含む、請求項1乃至5のいずれか一項に記載の有機エレクトロルミネッセンス装置。 The organic electroluminescence device according to any one of claims 1 to 5, wherein each of the first moisture absorption layer and the second moisture absorption layer independently contains a boron compound or a sulfide compound.
  7.  請求項1乃至6のいずれか一項に記載の有機エレクトロルミネッセンス装置を有する照明装置。 A lighting device comprising the organic electroluminescence device according to any one of claims 1 to 6.
PCT/JP2015/078899 2014-12-22 2015-10-13 Organic electroluminescent device and lighting device WO2016103857A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-258531 2014-12-22
JP2014258531A JP2016119231A (en) 2014-12-22 2014-12-22 Organic electroluminescent device and illumination device

Publications (1)

Publication Number Publication Date
WO2016103857A1 true WO2016103857A1 (en) 2016-06-30

Family

ID=56149894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078899 WO2016103857A1 (en) 2014-12-22 2015-10-13 Organic electroluminescent device and lighting device

Country Status (3)

Country Link
JP (1) JP2016119231A (en)
TW (1) TW201624790A (en)
WO (1) WO2016103857A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110556285A (en) * 2018-05-30 2019-12-10 双叶电子工业株式会社 Method for manufacturing polymer substrate and method for manufacturing electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04192291A (en) * 1990-11-27 1992-07-10 Hitachi Chem Co Ltd Organic distribution type el panel
JP2007042616A (en) * 2005-06-29 2007-02-15 Asahi Kasei Corp Light emitting element, display device and manufacturing method thereof
JP2011020335A (en) * 2009-07-15 2011-02-03 Dainippon Printing Co Ltd Gas barrier sheet, method for producing gas-barrier sheet, seal, and apparatus
JP2011517011A (en) * 2008-02-15 2011-05-26 ネーデルランツ オルガニサティー フォール トゥーゲパストナトゥールヴェテンシャッペリーク オンデルズーク テーエンオー Enclosed electronic device and manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04192291A (en) * 1990-11-27 1992-07-10 Hitachi Chem Co Ltd Organic distribution type el panel
JP2007042616A (en) * 2005-06-29 2007-02-15 Asahi Kasei Corp Light emitting element, display device and manufacturing method thereof
JP2011517011A (en) * 2008-02-15 2011-05-26 ネーデルランツ オルガニサティー フォール トゥーゲパストナトゥールヴェテンシャッペリーク オンデルズーク テーエンオー Enclosed electronic device and manufacturing method
JP2011020335A (en) * 2009-07-15 2011-02-03 Dainippon Printing Co Ltd Gas barrier sheet, method for producing gas-barrier sheet, seal, and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110556285A (en) * 2018-05-30 2019-12-10 双叶电子工业株式会社 Method for manufacturing polymer substrate and method for manufacturing electronic device

Also Published As

Publication number Publication date
JP2016119231A (en) 2016-06-30
TW201624790A (en) 2016-07-01

Similar Documents

Publication Publication Date Title
WO2015107755A1 (en) Organic electroluminescent device and method for manufacturing organic electroluminescent device
WO2012132842A1 (en) Organic electroluminescent element
WO2012128078A1 (en) Organic electroluminescent element and lighting device
WO2014069144A1 (en) Organic electroluminescence light emission device and method for manufacturing same
KR20100108507A (en) Organic el element having cathode buffer layer
WO2012114616A1 (en) Organic el device
JP4227158B2 (en) Organic electroluminescence device
US20240027051A1 (en) Organic Light Emitting Display Device and Lighting Apparatus for Vehicles Using the Same
WO2012073650A1 (en) Organic el device
JP2009283787A (en) Organic el element
JP6020339B2 (en) Plasma CVD film forming mask and plasma CVD film forming method
US20140319482A1 (en) Light-emitting component and method for producing a light-emitting component
WO2016103857A1 (en) Organic electroluminescent device and lighting device
WO2015107754A1 (en) Organic electroluminescent device
JP2005293992A (en) Manufacturing method of organic electroluminescent element
JP2016197578A (en) Protective film forming method and protective film forming device
WO2015005084A1 (en) Organic electroluminescent device
JP2015018746A (en) Organic electroluminescent device
JP2015018745A (en) Organic electroluminescent device
JP2010108652A (en) Manufacturing method of organic electroluminescent element
JP2016197579A (en) Protective film forming method
JP2017041359A (en) Organic electroluminescent device
KR20130013344A (en) Light emitting device
JP2017027817A (en) Organic electroluminescence device
WO2017130600A1 (en) Light-emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872426

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15872426

Country of ref document: EP

Kind code of ref document: A1