WO2016103631A1 - デジタル信号処理装置、それを用いたデジタル光受信機、およびデジタル信号処理方法 - Google Patents

デジタル信号処理装置、それを用いたデジタル光受信機、およびデジタル信号処理方法 Download PDF

Info

Publication number
WO2016103631A1
WO2016103631A1 PCT/JP2015/006245 JP2015006245W WO2016103631A1 WO 2016103631 A1 WO2016103631 A1 WO 2016103631A1 JP 2015006245 W JP2015006245 W JP 2015006245W WO 2016103631 A1 WO2016103631 A1 WO 2016103631A1
Authority
WO
WIPO (PCT)
Prior art keywords
digital signal
equalization
unit
coefficient
speed
Prior art date
Application number
PCT/JP2015/006245
Other languages
English (en)
French (fr)
Inventor
和佳子 安田
栄実 野口
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2016565899A priority Critical patent/JP6720877B2/ja
Priority to US15/534,120 priority patent/US10171177B2/en
Publication of WO2016103631A1 publication Critical patent/WO2016103631A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/697Arrangements for reducing noise and distortion
    • H04B10/6971Arrangements for reducing noise and distortion using equalisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • H04B10/6161Compensation of chromatic dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • H04B10/6162Compensation of polarization related effects, e.g., PMD, PDL
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03878Line equalisers; line build-out devices
    • H04L25/03885Line equalisers; line build-out devices adaptive
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03433Arrangements for removing intersymbol interference characterised by equaliser structure
    • H04L2025/03439Fixed structures
    • H04L2025/03445Time domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03433Arrangements for removing intersymbol interference characterised by equaliser structure
    • H04L2025/03439Fixed structures
    • H04L2025/03522Frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • H04L25/03019Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception
    • H04L25/03038Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception with a non-recursive structure

Definitions

  • the present invention relates to a digital signal processing device, a digital optical receiver using the same, and a digital signal processing method, and in particular, a digital signal processing device used in a coherent optical communication system, a digital optical receiver using the digital signal processing device, and a digital
  • the present invention relates to a signal processing method.
  • a QPSK (Quadrature Phase Shift Keying) method is used as a modulation method.
  • the polarization multiplexed QPSK signal is received by a combination of a coherent optical front end and a digital signal processing device.
  • FIG. 9 shows a general configuration of a digital coherent optical receiver (see, for example, Patent Document 1).
  • the related digital coherent optical receiver 600 includes an optical front end 610, an analog / digital (A / D) converter 620, and a signal processing LSI 630.
  • the signal processing LSI 630 includes a dispersion compensation unit 631, a polarization separation unit 632, and a carrier reproduction unit 633.
  • the polarization multiplexed QPSK modulated signal light is converted into electric signals XI, XQ, YI, YQ which are orthogonal components of polarization and phase in the optical front end 610. These electrical signals are converted into digital signals by the A / D converter 620 and then demodulated in the signal processing LSI 630.
  • the dispersion compensation unit 631 included in the signal processing LSI 630 compensates for waveform distortion caused by chromatic dispersion received while the QPSK signal propagates through the optical fiber transmission line.
  • the polarization separation unit 632 separates the polarization multiplexed signal by controlling the filter coefficient of the adaptive equalization filter using an algorithm such as CMA (Constant Modulus Algorithm).
  • the carrier reproducing unit 633 compensates for the phase difference and frequency difference between the signal light and the local light, and reproduces the carrier signal.
  • the dispersion compensator 631 needs to be provided with a filter operation circuit of several hundred to several thousand taps in order to compensate for a dispersion amount ranging from several thousand to several hundreds of thousands ps / nm (picosecond per nanometer).
  • the chromatic dispersion generated in the optical transmission line has a small fluctuation width with time.
  • the dispersion compensation unit 631 is implemented by a frequency domain equalization (FDE) circuit with high circuit efficiency by large-scale filter calculation, although the control of the filter coefficient is fixed.
  • FDE frequency domain equalization
  • the polarization separation unit 632 needs an adaptive equalization circuit capable of adaptively controlling the filter coefficient in order to follow the polarization fluctuation that fluctuates at several kHz. Further, since the polarization mode dispersion generated in the optical transmission line is about several tens of ps, even a filter operation circuit with a few taps can be used sufficiently. Accordingly, the polarization separation unit 632 is realized by a time domain equalization (TDE) circuit that can adaptively control the filter coefficient.
  • TDE time domain equalization
  • the circuit scale becomes enormous if an attempt is made to sufficiently secure the compensation performance of the TDE circuit while maintaining high-speed control. For this reason, the tap length of the TDE circuit is made shorter than necessary, the oversampling rate of the TDE circuit is made slower than that of the FDE circuit, or the calculation accuracy of the TDE circuit is set lower than that of the FDE circuit. As a result, a high-speed TDE circuit is realized. In this case, the FDE circuit performs relatively high-performance fixed equalization, and the TDE circuit performs relatively low-performance adaptive equalization.
  • waveform distortion due to the chromatic dispersion that the optical signal undergoes in the optical transmission line has small temporal variation, it is possible to calculate the compensation coefficient by calculating back from the transfer function of the optical transmission line.
  • Waveform distortion On the other hand, the distortion due to the imperfection of the characteristics of the optical front end and the A / D converter is a static waveform distortion that is unknown because there is no easy observation method, although the temporal variation is small.
  • Waveform distortion due to polarization fluctuation or polarization mode dispersion that an optical signal receives in an optical transmission line is dynamic waveform distortion because it fluctuates with time and is difficult to observe.
  • the signal in which these three types of distortion are mixed is first subjected to high-performance fixed equalization processing in the FDE circuit to compensate for known static waveform distortion. At this time, unknown static waveform distortion and dynamic waveform distortion remain without being compensated. Next, the signal in which the two types of remaining distortion are mixed is subjected to low-performance adaptive equalization processing in the TDE circuit, and dynamic waveform distortion is compensated. At this time, since the TDE circuit performs adaptive equalization, unknown static waveform distortion can be compensated simultaneously. As described above, the above three kinds of distortion can be compensated by the FDE circuit and the TDE circuit.
  • An object of the present invention is to provide a digital signal processing apparatus, a digital optical receiver using the same, and a digital signal processing method that solve the above-described problems.
  • the digital signal processing apparatus is based on an adaptive equalization coefficient based on a fixed equalization unit that performs distortion compensation processing based on a fixed equalization coefficient on an input digital signal, and an equalization digital signal output from the fixed equalization means.
  • Adaptive equalization means for performing adaptive distortion compensation processing, low-speed signal generation means for generating a low-speed digital signal by intermittently extracting either the input digital signal or the equalized digital signal, and distortion compensation for the low-speed digital signal
  • Low-speed equalization coefficient calculation means for calculating a low-speed equalization coefficient used for processing, and fixed equalization coefficient calculation means for calculating a fixed equalization coefficient using at least a predetermined coefficient among the low-speed equalization coefficient and the predetermined coefficient.
  • the digital signal processing method of the present invention generates an equalized digital signal by subjecting an input digital signal to distortion compensation processing based on a fixed equalization coefficient, and generates a low-speed digital signal by intermittently extracting the equalized digital signal.
  • the waveform distortion is extracted from the low-speed digital signal.
  • the digital signal processing apparatus the digital optical receiver using the digital signal processing apparatus, and the digital signal processing method of the present invention
  • different types of waveform distortion can be compensated for by high-performance equalization processing, respectively.
  • a demodulated signal with high quality can be obtained.
  • FIG. 1 is a block diagram illustrating a configuration of a digital signal processing device according to a first embodiment of the present invention. It is a block diagram which shows the structure of the digital optical receiver which concerns on the 1st Embodiment of this invention. It is a block diagram which shows the structure of the optical front end part with which the digital optical receiver which concerns on the 1st Embodiment of this invention is provided. It is a block diagram which shows the structure of the FDE part with which the digital optical receiver which concerns on the 1st Embodiment of this invention is provided. It is a block diagram which shows the structure of the digital optical receiver which concerns on the 2nd Embodiment of this invention.
  • FIG. 1 is a block diagram showing a configuration of a digital signal processing apparatus 100 according to the first embodiment of the present invention.
  • the digital signal processing apparatus 100 includes a fixed equalization unit 110 as a fixed equalization unit, an adaptive equalization unit 120 as an adaptive equalization unit, a low speed signal generation unit 130 as a low speed signal generation unit, and a low speed equalization coefficient calculation unit 140. , And fixed equalization coefficient calculation means 150.
  • the fixed equalization unit 110 performs distortion compensation processing based on the fixed equalization coefficient on the input digital signal.
  • the adaptive equalization unit 120 performs adaptive distortion compensation processing based on the adaptive equalization coefficient on the equalized digital signal output from the fixed equalization unit 110.
  • the low speed signal generation unit 130 generates a low speed digital signal by intermittently taking out either the input digital signal or the equalized digital signal.
  • the low speed equalization coefficient calculation means 140 calculates a low speed equalization coefficient used for distortion compensation processing of the low speed digital signal. Then, the fixed equalization coefficient calculating means 150 calculates a fixed equalization coefficient using at least a predetermined coefficient among the low speed equalization coefficient and the predetermined coefficient.
  • the fixed equalization unit 110, the adaptive equalization unit 120, and the low-speed signal generation unit 130 constitute the high-speed signal processing unit 101. Further, the low speed equalization coefficient calculation means 140 and the fixed equalization coefficient calculation means 150 constitute the low speed signal processing unit 102.
  • the unknown static waveform distortion of the input signal is compensated by the fixed equalization unit 110 instead of the adaptive equalization unit 120.
  • the fixed equalization unit 110 instead of the adaptive equalization unit 120.
  • the low-speed signal processing unit 102 that can be realized with a small circuit configuration, a higher-performance high-speed signal processing unit 101 can be realized.
  • the low-speed signal generation unit 130 may be configured to generate a low-speed digital signal from the equalized digital signal output from the fixed equalization unit 110.
  • the low speed equalization coefficient calculating unit 140 may include a static waveform distortion extraction unit 141 as a waveform distortion extraction unit and a low speed coefficient calculation unit 142 as an equalization coefficient calculation unit.
  • the static waveform distortion extraction unit 141 extracts waveform distortion from the low-speed digital signal.
  • the low speed coefficient calculation unit 142 determines a low speed equalization coefficient so as to compensate for the waveform distortion.
  • the fixed equalization coefficient calculation means 150 can be configured to include a predetermined coefficient holding unit 151 as a predetermined coefficient holding means for holding a predetermined coefficient in advance, and a calculation unit 152 as a calculation means.
  • the calculation unit 152 calculates a fixed equalization coefficient by performing a calculation process on at least the predetermined coefficient among the low speed equalization coefficient and the predetermined coefficient.
  • the input digital signal input to the digital signal processing apparatus 100 includes known static waveform distortion, unknown static waveform distortion, and dynamic waveform distortion.
  • the input digital signal input to the high-speed signal processing unit 101 is input to the fixed equalization unit 110 and equalized based on the fixed equalization coefficient calculated by the fixed equalization coefficient calculation unit 150, and a known static waveform distortion is generated. Compensated.
  • the output signal from the fixed equalization unit 110 is input to the adaptive equalization unit 120 in a state including unknown static waveform distortion and dynamic waveform distortion.
  • the adaptive equalization unit 120 prioritizes high-speed control, the equalization performance is set lower than that of the fixed equalization unit 110. For this reason, the compensation performance when the unknown static waveform distortion and the dynamic waveform distortion are equalized by the adaptive equalization unit 120 is lower than that by the fixed equalization unit 110.
  • the digital signal processing apparatus 100 of the present embodiment is configured to input the equalized digital signal compensated for the known static waveform distortion output from the fixed equalization unit 110 to the low-speed signal generation unit 130.
  • the low-speed signal generation unit 130 generates the low-speed digital signal by intermittently extracting the digital signal including the remaining two types of distortion. Information about dynamic waveform distortion is lost in low-speed digital signals. Therefore, the low-speed digital signal is input to the static waveform distortion extraction unit 141 of the low-speed signal processing unit 102 in a state including only information regarding unknown static waveform distortion.
  • the static waveform distortion extraction unit 141 extracts unknown static waveform distortion from the low-speed digital signal. Then, the low speed coefficient calculation unit 142 calculates a distortion compensation coefficient (low speed equalization coefficient) for compensating for the waveform distortion.
  • the distortion compensation coefficient calculated by the low-speed coefficient calculation unit 142 and the distortion compensation coefficient (predetermined coefficient) set in the predetermined coefficient holding unit 151 are multiplied by the calculation unit 152, and a fixed equalization unit of the high-speed signal processing unit 101 is obtained. 110 is fed back.
  • the input digital signal input to the high-speed signal processing unit 101 is input to the fixed equalization unit 110, based on information obtained from the predetermined coefficient holding unit 151 and the low-speed coefficient calculation unit 142, etc. It becomes. At this time, the known static waveform distortion and the unknown static waveform distortion are compensated. On the other hand, the adaptive equalization unit 120 compensates for the remaining dynamic waveform distortion.
  • the digital signal processing apparatus 100 of the present embodiment it is possible to compensate for the unknown static waveform distortion of the input signal by the fixed equalization unit 110 instead of the adaptive equalization unit 120. .
  • the low-speed signal processing unit 102 that can be realized with a small circuit configuration, a higher-performance high-speed signal processing unit 101 can be realized.
  • FIG. 2 shows a configuration of a digital optical receiver 1100 using the digital signal processing apparatus 100 according to the present embodiment.
  • the same components as those of the digital signal processing apparatus 100 shown in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.
  • the digital optical receiver 1100 includes an optical front end unit 1110 and an analog / digital conversion unit (A / D) 1120 in addition to the configuration of the digital signal processing apparatus 100 shown in FIG.
  • the fixed equalization unit 110 included in the digital signal processing apparatus 100 is configured to include FDE units 111 and 112 which are frequency domain equalizers that perform equalization in the frequency domain.
  • the adaptive equalization unit 120 includes a TDE unit 121 which is a time domain equalizer that performs equalization in the time domain.
  • the digital optical receiver 1100 receives signal light that has been distorted in the optical transmission path, for example, DP-QPSK (dual-polarization quadrature phase shifting keying) signal light.
  • the optical front end unit 1110 synthesizes the input DP-QPSK signal light and LO (Local oscillator) light, converts them into electrical signals, and outputs 4-channel electrical signals XI, XQ, YI, and YQ.
  • FIG. 3 shows an example of the configuration of the optical front end unit 1110.
  • the optical front end unit 1110 can have a general configuration including a polarization diversity 90 ° hybrid and a photoelectric conversion (O / E conversion) unit as shown in FIG.
  • the four types of electrical signals XI, XQ, YI, and YQ output from the optical front end unit 1110 are respectively input to an analog / digital conversion unit (A / D) 1120 and converted into digital signals xi, xq, yi, and yq.
  • the digital signals xi, xq, yi, and yq are optical front end unit 1110 and analog / digital conversion unit in addition to distortion caused by chromatic dispersion, polarization fluctuation, and polarization mode dispersion that the signal light receives in the optical transmission line. It also includes distortion due to device imperfections received at 1120.
  • Digital signals xi and xq are input to the FDE unit 111, and yi and yq are input to the FDE unit 112, respectively, and equalization processing is performed based on predetermined coefficients held in advance by the predetermined coefficient holding unit 151.
  • FIG. 4 shows an example of the configuration of the FDE unit 111 (112).
  • the FDE unit 111 (112) includes a discrete Fourier transform unit 113, a multiplier 114, and an inverse discrete Fourier transform unit 115.
  • An input signal to the FDE unit 111 (112) is input to a discrete Fourier transform (DFT) unit 113 and subjected to a discrete Fourier transform process. If the discrete Fourier transform size of the discrete Fourier transform unit 113 is N, the output of the discrete Fourier transform unit 113 is converted into N frequency domain signals. Thereafter, the result multiplied by the filter coefficient via the multiplier 114 is input to an inverse discrete Fourier transform (inverse DFT: IDFT) unit 115 and is inversely transformed into a time domain signal.
  • DFT discrete Fourier transform
  • the discrete Fourier transform size N is generally an integer that is a power of 2.
  • fast Fourier transform (FFT) etc. can be used as an algorithm for performing discrete Fourier transform (DFT). Therefore, in order to perform high-performance waveform equalization, the circuit scale is generally larger than the time domain equalization in which the circuit scale is proportional to the size N even when the size N proportional to the accuracy is increased.
  • FDE frequency domain equalization
  • the FDE circuit is suitable for equalizing distortion with a small time variation and an obvious compensation coefficient.
  • the FDE units 111 and 112 can perform high-performance fixed equalization with respect to known static distortion.
  • the FDE units 111 and 112 compensate for chromatic dispersion with which the compensation coefficient can be easily calculated and the time variation is small.
  • the TDE unit 121 includes, for example, a butterfly-type FIR (finite impulse response) filter, and the filter coefficient is updated using the calculation result of the high-speed coefficient calculation unit 122.
  • the adaptive equalization algorithm for example, a CMA (constant modulus algorithm) or a DD (decision directed) algorithm can be used.
  • CMA constant modulus algorithm
  • DD DD (decision directed) algorithm
  • CMA is often used from the viewpoint of mounting. Since CMA is an adaptive equalization algorithm, it can follow dynamic waveform distortion. Further, since CMA is a blind equalization algorithm, it can be equalized even if the factor of waveform distortion to be compensated is unknown regardless of whether it is dynamic or static.
  • the TDE unit 121 attempts to ensure sufficient compensation performance while maintaining high-speed control, the circuit scale becomes enormous. For this reason, the tap length of the TDE unit 121 is made shorter than necessary, or the oversampling rate of the TDE unit 121 is made slower than that in the FDE unit 111. Further, the high-speed TDE unit 121 is realized by setting the calculation accuracy of the TDE unit 121 lower than that of the FDE unit 111 or the like. That is, the TDE unit 121 (time domain equalizer) is set to have a lower equalization performance than the FDE units 111 and 112 (frequency domain equalizer).
  • the TDE unit 121 can perform low-performance adaptive equalization with respect to unknown distortion.
  • static distortion caused by device imperfections in the optical front-end unit 1110 and the analog / digital conversion unit (A / D) 1120 for which the compensation coefficient cannot be easily calculated is calculated as TDE.
  • the unit 121 compensates with low equalization performance.
  • the TDE unit 121 also compensates for dynamic distortion due to polarization fluctuations and polarization mode dispersion.
  • the digital signal equalized in the frequency domain in the FDE units 111 and 112 is also input to the low-speed signal generation unit 130.
  • the low-speed signal generation unit 130 generates a low-speed digital signal by intermittently extracting a digital signal including two kinds of distortion. Information about dynamic waveform distortion is lost in low-speed digital signals. Therefore, the low-speed digital signal is input to the static waveform distortion extraction unit 141 in a state including only information related to static waveform distortion other than chromatic dispersion.
  • the static waveform distortion extraction unit 141 extracts static waveform distortion other than chromatic dispersion from the low-speed digital signal.
  • the low speed coefficient calculation unit 142 calculates a distortion compensation coefficient (low speed equalization coefficient) for compensating for the waveform distortion.
  • the distortion compensation coefficient calculated by the low speed coefficient calculation unit 142 and the dispersion compensation coefficient (predetermined coefficient) set in the predetermined coefficient holding unit 151 are multiplied by the calculation unit 152 and fed back to the FDE units 111 and 112.
  • the input digital signals input to the FDE units 111 and 112 are subjected to equalization processing based on information acquired from the predetermined coefficient holding unit 151 and the low-speed coefficient calculation unit 142. Therefore, static waveform distortion due to chromatic dispersion and static waveform distortion due to other than chromatic dispersion are compensated.
  • the TDE unit 121 compensates for dynamic distortion such as polarization fluctuation and polarization mode dispersion.
  • unknown static waveform distortion due to other than chromatic dispersion of the input signal is fixed instead of the adaptive equalization unit (TDE unit 121). Compensation can be performed by the equalization units (FDE units 111 and 112). That is, by using a low-speed signal processing unit that can be realized with a small circuit configuration, a higher-performance high-speed signal processing unit can be realized.
  • an input digital signal is subjected to distortion compensation processing based on a fixed equalization coefficient to generate an equalized digital signal.
  • a low speed digital signal is generated by intermittently extracting the equalized digital signal.
  • waveform distortion is extracted from this low-speed digital signal.
  • a low speed equalization coefficient is determined so as to compensate for the waveform distortion, and a fixed equalization coefficient is calculated by performing arithmetic processing on the low speed equalization coefficient and a predetermined coefficient held in advance.
  • the digital optical receiver 1100 using the digital signal processing apparatus 100, and the digital signal processing method different types of waveform distortion are compensated for by high-performance equalization processing, respectively. It becomes possible to do. As a result, a demodulated signal with high signal quality can be obtained.
  • FIG. 5 shows a configuration of a digital optical receiver 1200 according to the second embodiment of the present invention.
  • the same components as those of the digital optical receiver 1100 according to the first embodiment shown in FIG. 2 are denoted by the same reference numerals, and the description thereof is omitted.
  • a static waveform distortion extraction unit as a waveform distortion extraction unit includes a filter unit 241 (filter unit) that performs a filter process based on a filter coefficient.
  • the configuration was provided.
  • the low-speed coefficient calculation unit 142 as the equalization coefficient calculation unit updates the filter coefficient of the filter unit 241 in accordance with the output signal of the filter unit 241.
  • the digital optical receiver 1200 receives signal light that has been distorted in the optical transmission line, for example, DP-QPSK (dual-polarization quadrature phase shifting keying) signal light.
  • the optical front end unit 1110 synthesizes the input DP-QPSK signal light and LO (Local oscillator) light, converts them into electrical signals, and outputs 4-channel electrical signals XI, XQ, YI, and YQ.
  • the four types of electrical signals XI, XQ, YI, and YQ output from the optical front end unit 1110 are respectively input to an analog / digital conversion unit (A / D) 1120 and converted into digital signals xi, xq, yi, and yq.
  • the digital signals xi, xq, yi, and yq are optical front end unit 1110 and analog / digital conversion unit in addition to distortion caused by chromatic dispersion, polarization fluctuation, and polarization mode dispersion that the signal light receives in the optical transmission line. It also includes distortion due to device imperfections received at 1120.
  • Digital signals xi and xq are input to the FDE unit 111, and yi and yq are input to the FDE unit 112, respectively, and equalization processing is performed based on predetermined coefficients held in advance by the predetermined coefficient holding unit 151.
  • the FDE units 111 and 112 can perform high-performance fixed equalization with respect to a known static strain.
  • the FDE units 111 and 112 compensate for chromatic dispersion with which the compensation coefficient can be easily calculated and the time variation is small.
  • the TDE unit 121 includes, for example, a butterfly FIR (finite impulse response) filter. If the TDE unit 121 attempts to ensure sufficient compensation performance while maintaining high-speed control, the circuit scale becomes enormous. For this reason, the tap length of the TDE unit 121 is made shorter than necessary, or the oversampling rate of the TDE unit 121 is made slower than that in the FDE unit 111. Further, the high-speed TDE unit 121 is realized by setting the calculation accuracy of the TDE unit 121 lower than that of the FDE unit 111 or the like.
  • a butterfly FIR finite impulse response
  • the TDE unit 121 can perform low-performance adaptive equalization with respect to unknown distortion.
  • static distortion caused by device imperfections in the optical front-end unit 1110 and the analog / digital conversion unit (A / D) 1120 for which the compensation coefficient cannot be easily calculated is calculated as TDE.
  • the unit 121 compensates with low equalization performance.
  • the TDE unit 121 also compensates for dynamic distortion due to polarization fluctuations and polarization mode dispersion.
  • the digital signal equalized in the frequency domain in the FDE units 111 and 112 is also input to the low-speed signal generation unit 130.
  • the low-speed signal generation unit 130 generates a low-speed digital signal by intermittently extracting a digital signal including two kinds of distortion. Information about dynamic waveform distortion is lost in low-speed digital signals. Therefore, the low-speed digital signal is input to the filter unit 241 in a state including only information related to static waveform distortion other than chromatic dispersion.
  • the filter unit 241 includes, for example, a butterfly FIR filter.
  • the filter configuration of the filter unit 241, the number of filter taps, the type of filter coefficient, and the like can be selected according to the nature of the distortion to be compensated.
  • the filter unit 241 processes a low-speed signal, it is possible to secure a tap length necessary for exhibiting sufficient performance without being restricted by a circuit scale. Also, the oversampling rate can be processed at the same rate as the FDE units 111 and 112. Furthermore, it is possible to ensure the calculation accuracy required for exhibiting sufficient performance. Thus, the filter unit 241 can perform high-performance waveform equalization.
  • the filter coefficient at this time is updated by the calculation result by the low-speed coefficient calculation unit 142 using, for example, the CMA algorithm.
  • the filter unit 241 extracts static waveform distortion other than chromatic dispersion from the low-speed digital signal.
  • the low speed coefficient calculation unit 142 calculates a distortion compensation coefficient (low speed equalization coefficient) for compensating for the waveform distortion.
  • the distortion compensation coefficient calculated by the low speed coefficient calculation unit 142 and the dispersion compensation coefficient (predetermined coefficient) set in the predetermined coefficient holding unit 151 are multiplied by the calculation unit 152 and fed back to the FDE units 111 and 112.
  • the input digital signals input to the FDE units 111 and 112 are subjected to equalization processing based on information acquired from the predetermined coefficient holding unit 151 and the low-speed coefficient calculation unit 142. Therefore, static waveform distortion due to chromatic dispersion and static waveform distortion due to other than chromatic dispersion are compensated.
  • the TDE unit 121 compensates for dynamic distortion such as polarization fluctuation and polarization mode dispersion.
  • unknown static waveform distortion due to other than the chromatic dispersion of the input signal is fixed instead of the adaptive equalization unit (TDE unit 121). Compensation can be performed by the equalization units (FDE units 111 and 112). That is, by using a low-speed signal processing unit that can be realized with a small circuit configuration, a higher-performance high-speed signal processing unit can be realized.
  • FIG. 6 shows the configuration of a digital optical receiver 1300 according to the third embodiment of the present invention.
  • the same components as those of the digital optical receiver 1200 according to the second embodiment shown in FIG. 5 are denoted by the same reference numerals, and the description thereof is omitted.
  • a carrier reproduction unit (carrier signal reproduction unit) 351 that reproduces a carrier signal from an output signal output from a filter unit 241 as a waveform distortion extraction unit. 352 is further provided.
  • the low speed coefficient calculating part 142 as an equalization coefficient calculating means was set as the structure which calculates a low speed equalization coefficient based on this carrier signal.
  • the digital optical receiver 1300 receives signal light that has been distorted in the optical transmission line, such as DP-QPSK (dual-polarization quadrature phase shifting keying) signal light.
  • the optical front end unit 1110 synthesizes the input DP-QPSK signal light and LO (Local oscillator) light, converts them into electrical signals, and outputs 4-channel electrical signals XI, XQ, YI, and YQ.
  • the four types of electrical signals XI, XQ, YI, and YQ output from the optical front end unit 1110 are respectively input to an analog / digital conversion unit (A / D) 1120 and converted into digital signals xi, xq, yi, and yq.
  • the digital signals xi, xq, yi, and yq are optical front end unit 1110 and analog / digital conversion unit in addition to distortion caused by chromatic dispersion, polarization fluctuation, and polarization mode dispersion that the signal light receives in the optical transmission line. It also includes distortion due to device imperfections received at 1120.
  • Digital signals xi and xq are input to the FDE unit 111, and yi and yq are input to the FDE unit 112, respectively, and equalization processing is performed based on predetermined coefficients held in advance by the predetermined coefficient holding unit 151.
  • the FDE units 111 and 112 can perform high-performance fixed equalization with respect to a known static strain.
  • the FDE units 111 and 112 compensate for chromatic dispersion with which the compensation coefficient can be easily calculated and the time variation is small.
  • the signals equalized in the frequency domain by the FDE units 111 and 112 are input to the TDE unit 121 and subjected to time domain equalization as shown in FIG.
  • the TDE unit 121 includes, for example, a butterfly FIR (finite impulse response) filter. If the TDE unit 121 attempts to ensure sufficient compensation performance while maintaining high-speed control, the circuit scale becomes enormous. For this reason, the tap length of the TDE unit 121 is made shorter than necessary, or the oversampling rate of the TDE unit 121 is made slower than that in the FDE unit 111. Further, the high-speed TDE unit 121 is realized by setting the calculation accuracy of the TDE unit 121 lower than that of the FDE unit 111 or the like.
  • a butterfly FIR finite impulse response
  • the TDE unit 121 can perform low-performance adaptive equalization with respect to unknown distortion.
  • static distortion caused by device imperfections in the optical front-end unit 1110 and the analog / digital conversion unit (A / D) 1120 for which the compensation coefficient cannot be easily calculated is calculated as TDE.
  • the unit 121 compensates with low equalization performance.
  • the TDE unit 121 also compensates for dynamic distortion due to polarization fluctuations and polarization mode dispersion.
  • the digital signal equalized in the frequency domain in the FDE units 111 and 112 is also input to the low-speed signal generation unit 130.
  • the low-speed signal generation unit 130 generates a low-speed digital signal by intermittently extracting a digital signal including two kinds of distortion. Information about dynamic waveform distortion is lost in low-speed digital signals. Therefore, the low-speed digital signal is input to the filter unit 241 in a state including only information related to static waveform distortion other than chromatic dispersion.
  • the filter unit 241 includes, for example, a butterfly FIR filter.
  • the filter configuration of the filter unit 241, the number of filter taps, the type of filter coefficient, and the like can be selected according to the nature of the distortion to be compensated.
  • the filter unit 241 processes a low-speed signal, it is possible to secure a tap length necessary for exhibiting sufficient performance without being restricted by a circuit scale. Also, the oversampling rate can be processed at the same rate as the FDE units 111 and 112. Furthermore, it is possible to ensure the calculation accuracy required for exhibiting sufficient performance. Thus, the filter unit 241 can perform high-performance waveform equalization.
  • the filter coefficient at this time is updated by the calculation result by the low-speed coefficient calculation unit 142 using, for example, the CMA algorithm.
  • the digital optical receiver 1300 since the digital optical receiver 1300 according to the present embodiment includes the carrier reproducing units 351 and 352 for reproducing the carrier signal, the DD algorithm can be used.
  • the DD algorithm is difficult to implement in high-speed signal processing due to a feedback loop delay, but can be implemented in low-speed signal processing.
  • the DD algorithm is configured to determine the symbol position of the carrier signal completely demodulated using the outputs of the carrier reproducing units 351 and 352 and then feed back the result to the low-speed coefficient calculating unit 142. Therefore, the equalization performance of the filter unit 241 can be further improved as compared with the CMA method in which the signal before symbol determination is fed back and controlled.
  • the distortion compensation coefficient calculated by the low speed coefficient calculation unit 142 and the dispersion compensation coefficient (predetermined coefficient) set in the predetermined coefficient holding unit 151 are multiplied by the calculation unit 152 and fed back to the FDE units 111 and 112.
  • the input digital signals input to the FDE units 111 and 112 are subjected to equalization processing based on information acquired from the predetermined coefficient holding unit 151 and the low-speed coefficient calculation unit 142. Therefore, static waveform distortion due to chromatic dispersion and static waveform distortion due to other than chromatic dispersion are compensated.
  • the TDE unit 121 compensates for dynamic distortion such as polarization fluctuation and polarization mode dispersion.
  • unknown static waveform distortion due to other than chromatic dispersion of the input signal is fixed instead of the adaptive equalization unit (TDE unit 121). Compensation can be performed by the equalization units (FDE units 111 and 112). That is, by using a low-speed signal processing unit that can be realized with a small circuit configuration, a higher-performance high-speed signal processing unit can be realized.
  • FIG. 7 shows the configuration of a digital optical receiver 1400 according to the fourth embodiment of the present invention.
  • the same components as those of the digital optical receiver 1300 according to the third embodiment shown in FIG. 6 are denoted by the same reference numerals, and the description thereof is omitted.
  • the digital optical receiver 1400 of this embodiment includes a signal quality comparison unit as a signal quality comparison unit in addition to the configuration of the digital optical receiver 1300 of the third embodiment shown in FIG. 451 and a switch unit 452 as signal selection means.
  • the signal quality comparison unit 451 compares the signal quality of the carrier signal reproduced by the carrier reproduction units 351 and 352 and the adaptive equalization digital signal output from the TDE unit 121 (adaptive equalization unit). To do. Then, the switch unit 452 (signal selection means) is controlled based on the comparison result. The switch unit 452 (signal selection unit) selects whether or not to supply the low speed equalization coefficient to the calculation unit 152 (calculation unit).
  • the digital optical receiver 1400 receives signal light distorted in the optical transmission line, for example, DP-QPSK (dual-polarization quadrature phase shifting keying) signal light.
  • the optical front end unit 1110 synthesizes the input DP-QPSK signal light and LO (Local oscillator) light, converts them into electrical signals, and outputs 4-channel electrical signals XI, XQ, YI, and YQ.
  • the four types of electrical signals XI, XQ, YI, and YQ output from the optical front end unit 1110 are respectively input to an analog / digital conversion unit (A / D) 1120 and converted into digital signals xi, xq, yi, and yq.
  • the digital signals xi, xq, yi, and yq are optical front end unit 1110 and analog / digital conversion unit in addition to distortion caused by chromatic dispersion, polarization fluctuation, and polarization mode dispersion that the signal light receives in the optical transmission line. It also includes distortion due to device imperfections received at 1120.
  • Digital signals xi and xq are input to the FDE unit 111, and yi and yq are input to the FDE unit 112, respectively, and equalization processing is performed based on predetermined coefficients held in advance by the predetermined coefficient holding unit 151.
  • the FDE units 111 and 112 can perform high-performance fixed equalization with respect to a known static strain.
  • the FDE units 111 and 112 compensate for chromatic dispersion with which the compensation coefficient can be easily calculated and the time variation is small.
  • Signals equalized in the frequency domain by the FDE units 111 and 112 are input to the TDE unit 121 as shown in FIG. 7, and are subjected to time domain equalization.
  • the TDE unit 121 includes, for example, a butterfly FIR (finite impulse response) filter. If the TDE unit 121 attempts to ensure sufficient compensation performance while maintaining high-speed control, the circuit scale becomes enormous. For this reason, the tap length of the TDE unit 121 is made shorter than necessary, or the oversampling rate of the TDE unit 121 is made slower than that in the FDE unit 111. Further, the high-speed TDE unit 121 is realized by setting the calculation accuracy of the TDE unit 121 lower than that of the FDE unit 111 or the like.
  • a butterfly FIR finite impulse response
  • the TDE unit 121 can perform low-performance adaptive equalization with respect to unknown distortion.
  • static distortion caused by device imperfections in the optical front-end unit 1110 and the analog / digital conversion unit (A / D) 1120 for which the compensation coefficient cannot be easily calculated is calculated as TDE.
  • the unit 121 compensates with low equalization performance.
  • the TDE unit 121 also compensates for dynamic distortion due to polarization fluctuations and polarization mode dispersion.
  • the digital signal equalized in the frequency domain in the FDE units 111 and 112 is also input to the low-speed signal generation unit 130.
  • the low-speed signal generation unit 130 generates a low-speed digital signal by intermittently extracting a digital signal including two kinds of distortion. Information about dynamic waveform distortion is lost in low-speed digital signals. Therefore, the low-speed digital signal is input to the filter unit 241 in a state including only information related to static waveform distortion other than chromatic dispersion.
  • the filter unit 241 includes, for example, a butterfly FIR filter.
  • the filter configuration of the filter unit 241, the number of filter taps, the type of filter coefficient, and the like can be selected according to the nature of the distortion to be compensated.
  • the filter unit 241 processes a low-speed signal, it is possible to secure a tap length necessary for exhibiting sufficient performance without being restricted by a circuit scale. Also, the oversampling rate can be processed at the same rate as the FDE units 111 and 112. Furthermore, it is possible to ensure the calculation accuracy required for exhibiting sufficient performance. Thus, the filter unit 241 can perform high-performance waveform equalization.
  • the filter coefficient at this time is updated by the calculation result by the low-speed coefficient calculation unit 142 using, for example, the CMA algorithm.
  • the digital optical receiver 1400 of the present embodiment includes the carrier reproducing units 351 and 352 for reproducing the carrier signal
  • the DD algorithm can be used.
  • the DD algorithm is difficult to implement in high-speed signal processing due to a feedback loop delay, but can be implemented in low-speed signal processing.
  • the DD algorithm is configured to determine the symbol position of the carrier signal completely demodulated using the outputs of the carrier reproducing units 351 and 352 and then feed back the result to the low-speed coefficient calculating unit 142. Therefore, the equalization performance of the filter unit 241 can be further improved as compared with the CMA method in which the signal before symbol determination is fed back and controlled.
  • the distortion compensation coefficient calculated by the low-speed coefficient calculation unit 142 is based on the low-speed digital signal intermittently extracted by the low-speed signal generation unit 130. Therefore, the distortion compensation coefficient is not necessarily effective for all continuous input digital signals input to the FDE units 111 and 112.
  • the signal quality comparison unit 451 compares the quality of the signal equalized by the filter unit 241 with the quality of the signal equalized by the TDE unit 121. It is said. When the quality of the signal equalized by the filter unit 241 is higher, the signal quality comparison unit 451 is configured to control the switch unit 452 to be conductive. In this case, the distortion compensation coefficient calculated by the low speed coefficient calculation unit 142 and the dispersion compensation coefficient (predetermined coefficient) set in the predetermined coefficient holding unit 151 are multiplied by the calculation unit 152 and fed back to the FDE units 111 and 112. .
  • the FDE unit so that the signal quality of the adaptive equalization digital signal output from the TDE unit 121 (adaptive equalization means) is better.
  • the fixed equalization coefficient 111 (fixed equalization means) can be updated. At this time, for example, a bit error rate or an error vector amplitude (EVM) can be used as the signal quality.
  • EVM error vector amplitude
  • the input digital signals input to the FDE units 111 and 112 are subjected to equalization processing based on information acquired from the predetermined coefficient holding unit 151 and the low speed coefficient calculation unit 142. Therefore, static waveform distortion due to chromatic dispersion and static waveform distortion due to other than chromatic dispersion are compensated.
  • the TDE unit 121 compensates for dynamic distortion such as polarization fluctuation and polarization mode dispersion.
  • unknown static waveform distortion due to other than chromatic dispersion of the input signal is fixed instead of the adaptive equalization unit (TDE unit 121). Compensation can be performed by the equalization units (FDE units 111 and 112). That is, by using a low-speed signal processing unit that can be realized with a small circuit configuration, a higher-performance high-speed signal processing unit can be realized.
  • FIG. 8 shows the configuration of a digital signal processing apparatus 200 according to the fifth embodiment of the present invention.
  • the digital signal processing apparatus 200 includes a fixed equalization unit 110 as a fixed equalization unit, an adaptive equalization unit 120 as an adaptive equalization unit, a low speed signal generation unit 130 as a low speed signal generation unit, and a low speed equalization coefficient calculation unit 140. , And fixed equalization coefficient calculation means 150.
  • the fixed equalization unit 110 performs distortion compensation processing based on the fixed equalization coefficient on the input digital signal.
  • the adaptive equalization unit 120 performs adaptive distortion compensation processing based on the adaptive equalization coefficient on the equalized digital signal output from the fixed equalization unit 110.
  • the low speed signal generation unit 130 generates a low speed digital signal by intermittently taking out either the input digital signal or the equalized digital signal.
  • the low speed equalization coefficient calculating means 140 calculates a low speed equalization coefficient used for distortion compensation processing of the low speed digital signal.
  • the fixed equalization coefficient calculating means 150 calculates a fixed equalization coefficient using at least a predetermined coefficient among the low speed equalization coefficient and the predetermined coefficient.
  • the configuration so far is the same as the configuration of the digital signal processing apparatus 100 according to the first embodiment.
  • the digital signal processing apparatus 200 according to the present embodiment has a configuration in which the low-speed signal generation unit 130 is arranged in front of the fixed equalization unit 110.
  • the low-speed signal generation unit 130 further includes a low-speed fixed equalization unit 560 as a low-speed fixed equalization unit that performs distortion compensation processing based on a fixed equalization coefficient on the low-speed digital signal generated from the input digital signal.
  • the low speed equalization coefficient calculation unit 140 calculates an equalization coefficient used for distortion compensation processing of the low speed equalization digital signal output from the low speed fixed equalization unit 560 as a low speed equalization coefficient.
  • the fixed equalization unit 110, the adaptive equalization unit 120, and the low speed signal generation unit 130 constitute a high speed signal processing unit 201. Further, the low speed equalization coefficient calculation means 140, the fixed equalization coefficient calculation means 150, and the low speed fixed equalization section 560 constitute the low speed signal processing section 202.
  • the low speed equalization coefficient calculation means 140 includes a static waveform distortion extraction section 141 as a waveform distortion extraction means and a low speed coefficient calculation section 142 as an equalization coefficient calculation means. It can be.
  • the static waveform distortion extraction unit 141 extracts waveform distortion from the low speed equalized digital signal.
  • the low speed coefficient calculation unit 142 determines a low speed equalization coefficient so as to compensate for the waveform distortion.
  • the fixed equalization coefficient calculation means 150 can be configured to include a predetermined coefficient holding unit 151 as a predetermined coefficient holding means for holding a predetermined coefficient in advance, and a calculation unit 152 as a calculation means.
  • the calculation unit 152 calculates a fixed equalization coefficient by performing a calculation process on at least the predetermined coefficient among the low speed equalization coefficient and the predetermined coefficient.
  • the input digital signal input to the digital signal processing device 200 includes known static waveform distortion, unknown static waveform distortion, and dynamic waveform distortion.
  • the input digital signal input to the high-speed signal processing unit 201 is input to the fixed equalization unit 110 and equalized based on the fixed equalization coefficient calculated by the fixed equalization coefficient calculation unit 150, and a known static waveform distortion is generated. Compensated.
  • the output signal from the fixed equalization unit 110 is input to the adaptive equalization unit 120 in a state including unknown static waveform distortion and dynamic waveform distortion.
  • the adaptive equalization unit 120 prioritizes high-speed control, the equalization performance is set lower than that of the fixed equalization unit 110. For this reason, the compensation performance when the unknown static waveform distortion and the dynamic waveform distortion are equalized by the adaptive equalization unit 120 is lower than that by the fixed equalization unit 110.
  • the input digital signal input to the fixed equalization unit 110 is also input to the low speed signal generation unit 130.
  • the low-speed signal generation unit 130 is configured to generate a low-speed digital signal by intermittently extracting the digital signal including the above-described three types of distortion. Information about dynamic waveform distortion is lost in low-speed digital signals. For this reason, the low-speed digital signal is input to the low-speed signal processing unit 202 in a state including information on known static waveform distortion and unknown static waveform distortion.
  • the low-speed digital signal input to the low-speed signal processing unit 202 is input to the low-speed fixed equalization unit 560, equalized based on the fixed equalization coefficient calculated by the fixed equalization coefficient calculation unit 150, and known static waveform distortion. Is compensated.
  • the low speed equalization digital signal output from the low speed fixed equalization unit 560 is input to the static waveform distortion extraction unit 141 while including an unknown static waveform distortion.
  • the static waveform distortion extraction unit 141 extracts an unknown static waveform distortion from the low speed equalized digital signal.
  • the low speed coefficient calculation unit 142 calculates a distortion compensation coefficient (low speed equalization coefficient) for compensating for the waveform distortion.
  • the distortion compensation coefficient calculated by the low-speed coefficient calculation unit 142 and the distortion compensation coefficient (predetermined coefficient) set in the predetermined coefficient holding unit 151 are multiplied by the calculation unit 152, and a fixed equalization unit of the high-speed signal processing unit 201 is obtained. 110 is fed back.
  • the input digital signal input to the high-speed signal processing unit 101 is input to the fixed equalization unit 110, based on information obtained from the predetermined coefficient holding unit 151 and the low-speed coefficient calculation unit 142, etc. It becomes. At this time, the known static waveform distortion and the unknown static waveform distortion are compensated. On the other hand, the adaptive equalization unit 120 compensates for the remaining dynamic waveform distortion.
  • the digital signal processing device 200 of the present embodiment it is possible to compensate for unknown static waveform distortion of the input digital signal by the fixed equalization unit 110 instead of the adaptive equalization unit 120. Become. That is, by using the low-speed signal processing unit 202 that can be realized with a small circuit configuration, a higher-performance high-speed signal processing unit 201 can be realized.
  • an input digital signal is subjected to distortion compensation processing based on a fixed equalization coefficient to generate an equalized digital signal.
  • a low-speed digital signal is generated by intermittently extracting the input digital signal.
  • the low speed digital signal is subjected to distortion compensation processing based on a fixed equalization coefficient to generate a low speed equalized digital signal.
  • waveform distortion is extracted from the low speed equalized digital signal.
  • a low speed equalization coefficient is determined so as to compensate for the waveform distortion, and a fixed equalization coefficient is calculated by performing arithmetic processing on the low speed equalization coefficient and a predetermined coefficient held in advance.
  • (Appendix 1) Fixed equalization means for applying distortion compensation processing based on a fixed equalization coefficient to an input digital signal, and adaptive distortion based on an adaptive equalization coefficient to an equalized digital signal output from the fixed equalization means Adaptive equalization means for performing compensation processing, low-speed signal generation means for generating a low-speed digital signal by intermittently extracting either the input digital signal or the equalized digital signal, and distortion compensation processing for the low-speed digital signal Low-speed equalization coefficient calculation means for calculating a low-speed equalization coefficient used in the above; fixed equalization coefficient calculation means for calculating the fixed equalization coefficient using at least the predetermined coefficient among the low-speed equalization coefficient and a predetermined coefficient; A digital signal processing apparatus.
  • the fixed equalization means includes a frequency domain equalizer that performs equalization in the frequency domain
  • the adaptive equalization means includes a time domain equalizer that performs equalization in the time domain, and the time
  • the digital signal processing apparatus according to supplementary note 1, wherein the domain equalizer is set to have a lower equalization performance than the frequency domain equalizer.
  • the low-speed signal generation unit generates the low-speed digital signal from the equalized digital signal, and the low-speed equalization coefficient calculation unit extracts a waveform distortion from the low-speed digital signal;
  • Equalization coefficient calculation means for determining the low speed equalization coefficient so as to compensate for the waveform distortion is provided, the fixed equalization coefficient calculation means includes a predetermined coefficient holding means for holding the predetermined coefficient in advance, and the low speed equalization
  • the digital signal processing apparatus according to appendix 1 or 2, further comprising: an arithmetic unit that performs arithmetic processing on at least the predetermined coefficient of the coefficient and the predetermined coefficient to calculate the fixed equalization coefficient.
  • the waveform distortion extracting means includes filter means for performing filter processing based on a filter coefficient, and the equalization coefficient calculating means updates the filter coefficient in accordance with an output signal of the filter means.
  • the equalization coefficient calculating means calculates the said low speed equalization coefficient based on the said carrier signal.
  • the signal selection means for selecting whether or not to supply the low speed equalization coefficient to the calculation means, and the signal quality of the adaptive equalization digital signal output from the carrier signal and the adaptive equalization means are compared.
  • the digital signal processing apparatus according to appendix 5, further comprising: a signal quality comparison unit that controls the signal selection unit based on the comparison result.
  • the low-speed signal generation means is disposed in a stage preceding the fixed equalization means, and further includes low-speed fixed equalization means for performing distortion compensation processing based on the fixed equalization coefficient for the low-speed digital signal,
  • the digital low-speed equalization coefficient calculating unit calculates the equalization coefficient used for the distortion compensation processing of the low-speed equalization digital signal output from the low-speed fixed equalization unit as the low-speed equalization coefficient.
  • the digital signal processing device according to any one of supplementary notes 1 to 7, an optical front end unit that synthesizes input signal light with local oscillation light and converts it into an electrical signal, and the optical front end unit
  • a digital optical receiver comprising: an analog / digital conversion unit that converts an electrical signal output from the digital signal into a digital signal to generate the input digital signal and outputs the input digital signal to the digital signal processing device.
  • a distortion compensation process based on a fixed equalization coefficient is performed on an input digital signal to generate an equalized digital signal, and a low-speed digital signal is generated by intermittently extracting the equalized digital signal, and the low-speed digital signal is generated.
  • a digital signal processing method for extracting waveform distortion from a digital signal is
  • the low-speed equalization coefficient is determined so as to compensate for the waveform distortion, and the fixed equalization coefficient is calculated by performing arithmetic processing on the low-speed equalization coefficient and a predetermined coefficient held in advance. Digital signal processing method.
  • a distortion compensation process based on a fixed equalization coefficient is performed on an input digital signal to generate an equalized digital signal, and a low-speed digital signal is generated by intermittently extracting the input digital signal, and the low-speed digital signal
  • the low-speed equalization coefficient is determined so as to compensate for the waveform distortion, and the fixed equalization coefficient is calculated by performing arithmetic processing on the low-speed equalization coefficient and a predetermined coefficient held in advance. Digital signal processing method.
  • Digital optical receiver 1110 Optical front end unit 1120 Analog / digital conversion unit (A / D) 100, 200 Digital signal processing apparatus 101, 201 High-speed signal processing unit 102, 202 Low-speed signal processing unit 110 Fixed equalization unit 111, 112 FDE unit 113 Discrete Fourier transform unit 114 Multiplier 115 Inverse discrete Fourier transform unit 120 Adaptive equalization unit 121 TDE unit 122 High-speed coefficient calculation unit 130 Low-speed signal generation unit 140 Low-speed equalization coefficient calculation unit 141 Static waveform distortion extraction unit 142 Low-speed coefficient calculation unit 150 Fixed equalization coefficient calculation unit 151 Predetermined coefficient holding unit 152 Calculation unit 241 Filter unit 351, 352 Carrier regeneration unit 451 Signal quality comparison unit 452 Switch unit 560 Low-speed fixed equalization unit 600 Related digital coherent optical receiver 610 Optical front end 620 Analog / digital (A / D) converter 630 Signal processing LSI 631 Dispersion compensation unit 632 Polarization separation unit 633

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Optical Communication System (AREA)

Abstract

 デジタル光受信機においては、種類の異なる波形歪をそれぞれ高性能な等化処理によって補償することが困難なため、信号品質が高い復調信号を得るのが困難であるため、本発明のデジタル信号処理装置は、入力デジタル信号に、固定等化係数に基づく歪補償処理を施す固定等化手段と、固定等化手段が出力する等化デジタル信号に、適応等化係数に基づく適応的な歪補償処理を施す適応等化手段と、入力デジタル信号および等化デジタル信号のいずれかを間歇的に取り出すことにより低速デジタル信号を生成する低速信号生成手段と、低速デジタル信号の歪補償処理に用いる低速等化係数を算出する低速等化係数算出手段と、低速等化係数と所定係数のうち少なくとも所定係数を用いて固定等化係数を算出する固定等化係数算出手段、とを有する。

Description

デジタル信号処理装置、それを用いたデジタル光受信機、およびデジタル信号処理方法
 本発明は、デジタル信号処理装置、それを用いたデジタル光受信機、およびデジタル信号処理方法に関し、特に、コヒーレント光通信システムに用いられるデジタル信号処理装置、それを用いたデジタル光受信機、およびデジタル信号処理方法に関する。
 インターネットの普及に伴い、通信は現代社会におけるインフラの一部となっている。ユーザ一人当たりが取り扱うデータ量は年々増加しており、ネットワークトラフィックも増え続けている。ネットワークインフラの中でも特に基幹通信を担う光ファイバ伝送路では、1チャネル当たりの容量が100Gb/s(ギガビット毎秒)の光伝送システムが実用化されている。今後は、100Gb/sの光伝送システムの長距離化および400Gb/sの光伝送システムなどへのさらなる大容量化が望まれている。
 100Gb/sの光伝送システムにおいては、変調方式としてQPSK(Quadrature Phase Shift Keying)方式が用いられている。偏波多重されたQPSK信号はコヒーレント光フロントエンドとデジタル信号処理装置との組み合わせによって受信される。
 デジタルコヒーレント光受信機の一般的な構成を図9に示す(例えば、特許文献1参照)。関連するデジタルコヒーレント光受信機600は、光フロントエンド610、アナログ/デジタル(A/D)変換器620、および信号処理LSI630から構成される。信号処理LSI630は、分散補償部631、偏波分離部632、およびキャリア再生部633から構成される。
 偏波多重QPSK変調された信号光は、光フロントエンド610において偏波および位相の直交成分である電気信号XI、XQ、YI、YQに変換される。これらの電気信号はA/D変換器620によりデジタル信号に変換された後に、信号処理LSI630において復調処理が施される。信号処理LSI630が備える分散補償部631は、QPSK信号が光ファイバ伝送路を伝搬する間に受けた波長分散による波形歪みを補償する。偏波分離部632は、適応等化フィルタのフィルタ係数をCMA(Constant Modulus Algorithm)などのアルゴリズムを用いて制御することによって、偏波多重信号を分離する。キャリア再生部633は、信号光と局所光の位相差および周波数差を補償し、キャリア信号を再生する。
 分散補償部631は、数千から数十万ps/nm(ピコ秒毎ナノメートル)におよぶ分散量を補償するために、数百から数千タップのフィルタ演算回路を備える必要がある。一方、光伝送路で生じる波長分散は時間による変動幅は小さい。これらのことから、分散補償部631は、フィルタ係数の制御は固定的であるが、大規模なフィルタ演算により回路効率が良い周波数領域等化(Frequency Domain Equalization:FDE)回路で実現されている。
 偏波分離部632には、数kHzで変動する偏波変動に追従するため、適応的にフィルタ係数の制御を行うことができる適応等化回路が必要である。また、光伝送路で生じる偏波モード分散は数十ps程度であることから、少数タップのフィルタ演算回路であっても十分に使用することができる。これらのことから、偏波分離部632は、フィルタ係数の制御を適応的に行うことができる時間領域等化(Time Domain Equalization:TDE)回路により実現されている。
特開2011-009956号公報
 上述した関連するデジタルコヒーレント光受信機600が備える信号処理LSI630においては、高速な制御を維持したままTDE回路の補償性能を十分に確保しようとすると、回路規模が膨大になってしまう。このため、TDE回路のタップ長を必要な数より短くしたり、TDE回路のオーバーサンプリングレートをFDE回路におけるものよりも遅くしたり、またはTDE回路の演算精度をFDE回路のものより低く設定したりするなどして、高速なTDE回路を実現している。この場合、FDE回路は相対的に高性能な固定等化を行い、TDE回路は相対的に低性能な適応等化を行うことになる。
 ところで、光信号が光伝送路において受ける波長分散による波形歪は、時間的な変動が小さく、光伝送路の伝達関数から逆算して補償係数を算出することが可能であるため、既知の静的波形歪みである。それに対して、光フロントエンドやA/D変換器の特性の不完全性に起因する歪は、時間的な変動は小さいが、容易に観測する手法がないため未知の静的波形歪みである。また、光信号が光伝送路において受ける偏波変動や偏波モード分散による波形歪は、時間的に変動し、観測も困難なことから動的波形歪である。
 これらの3種の歪みが混合した信号は、まず初めにFDE回路において高性能な固定等化処理が施され、既知の静的波形歪みが補償される。このとき、未知の静的波形歪みと動的波形歪みは補償されずに残留する。次に、残留した2種の歪みが混合した信号は、TDE回路で低性能な適応等化処理が施され、動的波形歪が補償される。このとき、TDE回路は適応等化を行うため、未知の静的波形歪みも同時に補償することができる。このように、上述した3種の歪みはFDE回路とTDE回路で補償することが可能である。
 しかし、未知の静的波形歪みは時間的変動が小さいにもかかわらず、歪み補償係数を算出することが困難である。そのため、上述したように高性能な固定等化処理によって補償することができず、低性能な適応等化処理により補償することになる。その結果、全ての波形歪みを高性能な固定等化処理によって補償する場合と比較して、復調した信号の信号品質が劣化するという問題があった。
 このように、デジタル光受信機においては、種類の異なる波形歪をそれぞれ高性能な等化処理によって補償することが困難なため、信号品質が高い復調信号を得るのが困難である、という問題があった。
 本発明の目的は、上述した課題を解決するデジタル信号処理装置、それを用いたデジタル光受信機、およびデジタル信号処理方法を提供することにある。
 本発明のデジタル信号処理装置は、入力デジタル信号に、固定等化係数に基づく歪補償処理を施す固定等化手段と、固定等化手段が出力する等化デジタル信号に、適応等化係数に基づく適応的な歪補償処理を施す適応等化手段と、入力デジタル信号および等化デジタル信号のいずれかを間歇的に取り出すことにより低速デジタル信号を生成する低速信号生成手段と、低速デジタル信号の歪補償処理に用いる低速等化係数を算出する低速等化係数算出手段と、低速等化係数と所定係数のうち少なくとも所定係数を用いて固定等化係数を算出する固定等化係数算出手段、とを有する。
 本発明のデジタル信号処理方法は、入力デジタル信号に、固定等化係数に基づく歪補償処理を施して等化デジタル信号を生成し、等化デジタル信号を間歇的に取り出すことにより低速デジタル信号を生成し、低速デジタル信号から波形歪を抽出する。
 本発明のデジタル信号処理装置、それを用いたデジタル光受信機、およびデジタル信号処理方法によれば、種類の異なる波形歪をそれぞれ高性能な等化処理によって補償することが可能になるので、信号品質が高い復調信号を得ることができる。
本発明の第1の実施形態に係るデジタル信号処理装置の構成を示すブロック図である。 本発明の第1の実施形態に係るデジタル光受信機の構成を示すブロック図である。 本発明の第1の実施形態に係るデジタル光受信機が備える光フロントエンド部の構成を示すブロック図である。 本発明の第1の実施形態に係るデジタル光受信機が備えるFDE部の構成を示すブロック図である。 本発明の第2の実施形態に係るデジタル光受信機の構成を示すブロック図である。 本発明の第3の実施形態に係るデジタル光受信機の構成を示すブロック図である。 本発明の第4の実施形態に係るデジタル光受信機の構成を示すブロック図である。 本発明の第5の実施形態に係るデジタル信号処理装置の構成を示すブロック図である。 関連するデジタルコヒーレント光受信機の構成を示すブロック図である。
 以下に、図面を参照しながら、本発明の実施形態について説明する。なお、図面中の矢印の向きは、一例を示すものであり、ブロック間の信号の向きを限定するものではない。
 〔第1の実施形態〕
 図1は、本発明の第1の実施形態に係るデジタル信号処理装置100の構成を示すブロック図である。デジタル信号処理装置100は、固定等化手段としての固定等化部110、適応等化手段としての適応等化部120、低速信号生成手段としての低速信号生成部130、低速等化係数算出手段140、および固定等化係数算出手段150を有する。
 固定等化部110は、入力デジタル信号に、固定等化係数に基づく歪補償処理を施す。適応等化部120は、固定等化部110が出力する等化デジタル信号に、適応等化係数に基づく適応的な歪補償処理を施す。低速信号生成部130は、入力デジタル信号および等化デジタル信号のいずれかを間歇的に取り出すことにより低速デジタル信号を生成する。
 また、低速等化係数算出手段140は、低速デジタル信号の歪補償処理に用いる低速等化係数を算出する。そして、固定等化係数算出手段150は、この低速等化係数と所定係数のうち少なくとも所定係数を用いて固定等化係数を算出する。
 デジタル信号処理装置100において、固定等化部110、適応等化部120、および低速信号生成部130が高速信号処理部101を構成している。また、低速等化係数算出手段140と固定等化係数算出手段150が低速信号処理部102を構成している。
 このような構成としたことにより、本実施形態のデジタル信号処理装置100によれば、入力信号が有する未知の静的波形歪みを、適応等化部120ではなく固定等化部110によって補償することが可能になる。すなわち、小規模な回路構成で実現可能な低速信号処理部102を用いることにより、より高性能な高速信号処理部101を実現することが可能になる。
 ここで、低速信号生成部130は図1に示すように、固定等化部110が出力する等化デジタル信号から低速デジタル信号を生成する構成とすることができる。また、低速等化係数算出手段140は、波形歪抽出手段としての静的波形歪み抽出部141と、等化係数演算手段としての低速係数演算部142を備えた構成とすることができる。静的波形歪み抽出部141は低速デジタル信号から波形歪を抽出する。低速係数演算部142は、この波形歪を補償するように低速等化係数を決定する。
 さらに、固定等化係数算出手段150は、所定係数をあらかじめ保持する所定係数保持手段としての所定係数保持部151と、演算手段としての演算部152を備えた構成とすることができる。ここで演算部152は、低速等化係数と所定係数のうち少なくとも所定係数に演算処理を施して固定等化係数を算出する。
 次に、本実施形態によるデジタル信号処理装置100の動作について説明する。
 デジタル信号処理装置100に入力される入力デジタル信号は、既知の静的波形歪み、未知の静的波形歪み、および動的波形歪みを含んでいる。高速信号処理部101に入力された入力デジタル信号は固定等化部110に入力され、固定等化係数算出手段150が算出する固定等化係数に基づいて等化され、既知の静的波形歪みが補償される。固定等化部110からの出力信号は、未知の静的波形歪みと動的波形歪みを含んだ状態のままで適応等化部120に入力される。
 適応等化部120は高速な制御を優先するため、固定等化部110と比較して等化性能が低く設定されている。このため、適応等化部120によって未知の静的波形歪みと動的波形歪みを等化する場合の補償性能は、固定等化部110による場合よりも低くなる。
 そこで、本実施形態のデジタル信号処理装置100においては、固定等化部110が出力する既知の静的波形歪みが補償された等化デジタル信号を低速信号生成部130にも入力する構成とした。そして、低速信号生成部130が、残りの2種の歪みを含むデジタル信号を間歇的に取り出すことにより低速デジタル信号を生成する構成とした。低速デジタル信号では動的波形歪みに関する情報は失われている。そのため、低速デジタル信号は未知の静的波形歪みに関する情報のみを含んだ状態で、低速信号処理部102の静的波形歪み抽出部141に入力される。
 静的波形歪み抽出部141は低速デジタル信号から未知の静的波形歪みを抽出する。そして、低速係数演算部142が、この波形歪を補償するための歪み補償係数(低速等化係数)を算出する。低速係数演算部142で算出された歪み補償係数と、所定係数保持部151に設定されている歪み補償係数(所定係数)は、演算部152で掛け合わされ、高速信号処理部101の固定等化部110にフィードバックされる。
 このような構成としたことにより、高速信号処理部101に入力された入力デジタル信号は固定等化部110に入力され、所定係数保持部151および低速係数演算部142から得られる情報に基づいて等化される。このとき、既知の静的波形歪みと、未知の静的波形歪みが補償される。一方、適応等化部120は残りの動的波形歪みを補償する。
 上述したように、本実施形態のデジタル信号処理装置100によれば、入力信号が有する未知の静的波形歪みを、適応等化部120ではなく固定等化部110によって補償することが可能になる。すなわち、小規模な回路構成で実現可能な低速信号処理部102を用いることにより、より高性能な高速信号処理部101を実現することが可能になる。
 図2に、本実施形態によるデジタル信号処理装置100を用いたデジタル光受信機1100の構成を示す。ここで、図1に示したデジタル信号処理装置100の構成要素と同一の構成要素には同一の符号を付し、その説明は省略する。
 図2に示すように、デジタル光受信機1100は、図1に示したデジタル信号処理装置100の構成に加えて、光フロントエンド部1110およびアナログ/デジタル変換部(A/D)1120を有する。
 ここで、デジタル信号処理装置100が備える固定等化部110は、周波数領域で等化を行う周波数領域等化器(Frequency Domain Equalization)であるFDE部111、112を備えた構成とした。また、適応等化部120は、時間領域で等化を行う時間領域等化器(Time Domain Equalization)であるTDE部121を備えた構成とした。
 次に、本実施形態によるデジタル光受信機1100の動作について説明する。
 デジタル光受信機1100には、光伝送路で歪みを受けた信号光、例えばDP-QPSK(dual-polarization quadrature phase shift keying)信号光が入力される。光フロントエンド部1110は入力されたDP-QPSK信号光とLO(Local oscillator:局部発振器)光を合成し、電気信号に変換して4チャンネルの電気信号XI、XQ、YI、YQを出力する。
 図3に、光フロントエンド部1110の構成の一例を示す。光フロントエンド部1110は、同図に示すように偏波ダイバーシティ90°ハイブリッドと光電変換(O/E変換)部を備えた一般的な構成とすることができる。
 光フロントエンド部1110が出力する4種の電気信号XI、XQ、YI、YQは、それぞれアナログ/デジタル変換部(A/D)1120に入力され、デジタル信号xi、xq、yi、yqに変換される。デジタル信号xi、xq、yi、yqは、信号光が光伝送路中で受けた波長分散、偏波変動、および偏波モード分散による歪みに加えて、光フロントエンド部1110やアナログ/デジタル変換部1120で受けたデバイスの不完全性による歪みも含んでいる。
 デジタル信号xiおよびxqはFDE部111に、yiおよびyqはFDE部112にそれぞれ入力され、所定係数保持部151があらかじめ保持している所定係数に基づいて等化処理を施される。
 図4に、FDE部111(112)の構成の一例を示す。FDE部111(112)は、離散フーリエ変換部113、乗算器114、および逆離散フーリエ変換部115を備える。
 FDE部111(112)への入力信号は離散フーリエ変換(discrete Fourier transform:DFT)部113に入力され離散フーリエ変換処理が施される。ここで離散フーリエ変換部113の離散フーリエ変換サイズをN個とすると、離散フーリエ変換部113の出力はN個の周波数領域信号に変換される。その後、乗算器114を介してフィルタ係数と乗算された結果が逆離散フーリエ変換(inverse DFT:IDFT)部115に入力され、時間領域信号に逆変換される。
 離散フーリエ変換サイズNは、一般には2のべき乗の整数である。その場合には、離散フーリエ変換(DFT)を実行するためのアルゴリズムとして、高速フーリエ変換(fast Fourier transform:FFT)などを用いることができる。したがって、高性能な波形等化を行うために、一般的には精度に比例するサイズNを増大させた場合であっても、回路規模がサイズNに比例する時間領域等化よりも回路規模が小さく、低消費電力な周波数領域等化(FDE)回路を得ることができる。
 一方、大規模なFDE回路は入力された信号に乗算するフィルタ係数を適応的に制御することが困難である。そのため、FDE回路は時間変動が小さく、補償係数が自明な歪みを等化するのに適している。
 このように、FDE部111、112は、既知の静的歪みに対して高性能な固定等化を行うことができる。本実施形態によるデジタル光受信機1100では、FDE部111、112が、補償係数を容易に算出可能であって時間変動が小さい波長分散を補償している。
 FDE部111、112で周波数領域等化された信号は、図2に示すように、TDE部121に入力され時間領域等化が行われる。
 TDE部121は図2に示したように、例えばバタフライ型のFIR(finite impulse response:有限インパルス応答)フィルタから構成され、そのフィルタ係数は高速係数演算部122の演算結果を用いて更新される。適応等化アルゴリズムとしては、例えばCMA(constant modulus algorithm)やDD(decision directed)アルゴリズムを用いることが可能である。ここで高速信号処理装置などにおいて高速な適応等化処理が求められる場合には、実装上の観点からCMAが用いられる場合が多い。CMAは適応等化アルゴリズムであることから、動的な波形歪に対して追従することが可能である。さらに、CMAはブラインド等化アルゴリズムであるため、動的であるか静的であるかにかかわらず、補償する波形歪の要因が不明であっても等化することができる。
 一方、TDE部121において、高速な制御を維持したまま十分な補償性能を確保しようとすると、回路規模が膨大になってしまう。このため、TDE部121のタップ長を必要な数より短くしたり、TDE部121のオーバーサンプリングレートをFDE部111におけるものよりも遅くしたりしている。また、TDE部121の演算精度をFDE部111のものより低く設定したりするなどして、高速なTDE部121を実現している。すなわち、TDE部121(時間領域等化器)は、FDE部111、112(周波数領域等化器)よりも等化性能が低く設定されている。
 このように、TDE部121は未知の歪みに対して低性能な適応等化を行うことができる。本実施形態によるデジタル光受信機1100では、補償係数を容易に算出できない光フロントエンド部1110やアナログ/デジタル変換部(A/D)1120におけるデバイスの不完全性に起因する静的歪みを、TDE部121が低い等化性能で補償している。また、偏波変動や偏波モード分散による動的歪みもTDE部121が補償している。
 一方、FDE部111、112において周波数領域等化されたデジタル信号は低速信号生成部130にも入力される。低速信号生成部130は2種の歪みを含むデジタル信号を間歇的に取り出すことにより低速デジタル信号を生成する。低速デジタル信号においては動的波形歪みに関する情報が失われている。そのため、低速デジタル信号は、波長分散以外の静的波形歪みに関する情報だけを含んだ状態で静的波形歪み抽出部141に入力される。
 静的波形歪み抽出部141は低速デジタル信号から波長分散以外の静的波形歪みを抽出する。低速係数演算部142は、この波形歪を補償するための歪み補償係数(低速等化係数)を算出する。低速係数演算部142で算出された歪み補償係数と所定係数保持部151に設定されている分散補償係数(所定係数)は演算部152で掛け合わされ、FDE部111、112にフィードバックされる。
 このとき、FDE部111、112に入力された入力デジタル信号は、所定係数保持部151および低速係数演算部142から取得した情報に基づいて等化処理が施される。そのため、波長分散による静的波形歪みおよび波長分散以外による静的波形歪みが補償される。そしてTDE部121は、偏波変動や偏波モード分散のような動的歪みを補償する。
 このような構成としたことにより、本実施形態のデジタル光受信機1100によれば、入力信号が有する波長分散以外による未知の静的波形歪みを、適応等化部(TDE部121)ではなく固定等化部(FDE部111、112)によって補償することが可能になる。すなわち、小規模な回路構成で実現可能な低速信号処理部を用いることにより、より高性能な高速信号処理部を実現することが可能になる。
 次に、本実施形態によるデジタル信号処理方法について説明する。
 本実施形態のデジタル信号処理方法では、まず、入力デジタル信号に、固定等化係数に基づく歪補償処理を施して等化デジタル信号を生成する。この等化デジタル信号を間歇的に取り出すことにより低速デジタル信号を生成する。そして、この低速デジタル信号から波形歪を抽出する。このような構成とすることにより、入力デジタル信号に含まれる未知の静的波形歪みをモニタすることが可能になる。
 続いて、この波形歪を補償するように低速等化係数を決定し、この低速等化係数とあらかじめ保持した所定係数に演算処理を施して固定等化係数を算出する。ここで算出した固定等化係数を用いて上述した歪補償処理を施すことによって、入力デジタル信号に含まれる既知の静的波形歪みのみならず、未知の静的波形歪みをも高い等化性能で補償することが可能になる。
 以上説明したように、本実施形態のデジタル信号処理装置100、それを用いたデジタル光受信機1100、およびデジタル信号処理方法によれば、種類の異なる波形歪をそれぞれ高性能な等化処理によって補償することが可能になる。その結果、信号品質が高い復調信号を得ることができる。
 〔第2の実施形態〕
 次に、本発明の第2の実施形態について説明する。
 図5に、本発明の第2の実施形態に係るデジタル光受信機1200の構成を示す。ここで、図2に示した第1の実施形態によるデジタル光受信機1100の構成要素と同一の構成要素には同一の符号を付し、その説明は省略する。
 図5に示すように、本実施形態のデジタル光受信機1200においては、波形歪抽出手段としての静的波形歪み抽出部が、フィルタ係数に基づいてフィルタ処理を行うフィルタ部241(フィルタ手段)を備えた構成とした。そして、等化係数演算手段としての低速係数演算部142が、フィルタ部241の出力信号に応じてフィルタ部241のフィルタ係数を更新する構成とした。
 次に、本実施形態によるデジタル光受信機1200の動作について説明する。
 デジタル光受信機1200には、光伝送路で歪みを受けた信号光、例えばDP-QPSK(dual-polarization quadrature phase shift keying)信号光が入力される。光フロントエンド部1110は入力されたDP-QPSK信号光とLO(Local oscillator:局部発振器)光を合成し、電気信号に変換して4チャンネルの電気信号XI、XQ、YI、YQを出力する。
 光フロントエンド部1110が出力する4種の電気信号XI、XQ、YI、YQは、それぞれアナログ/デジタル変換部(A/D)1120に入力され、デジタル信号xi、xq、yi、yqに変換される。デジタル信号xi、xq、yi、yqは、信号光が光伝送路中で受けた波長分散、偏波変動、および偏波モード分散による歪みに加えて、光フロントエンド部1110やアナログ/デジタル変換部1120で受けたデバイスの不完全性による歪みも含んでいる。
 デジタル信号xiおよびxqはFDE部111に、yiおよびyqはFDE部112にそれぞれ入力され、所定係数保持部151があらかじめ保持している所定係数に基づいて等化処理を施される。
 FDE部111、112は、既知の静的歪みに対して高性能な固定等化を行うことができる。本実施形態によるデジタル光受信機1200では、FDE部111、112が、補償係数を容易に算出可能であって時間変動が小さい波長分散を補償している。
 FDE部111、112で周波数領域等化された信号は、図5に示すように、TDE部121に入力され時間領域等化が行われる。
 TDE部121は図2に示したように、例えばバタフライ型のFIR(finite impulse response:有限インパルス応答)フィルタから構成される。TDE部121において、高速な制御を維持したまま十分な補償性能を確保しようとすると、回路規模が膨大になってしまう。このため、TDE部121のタップ長を必要な数より短くしたり、TDE部121のオーバーサンプリングレートをFDE部111におけるものよりも遅くしたりしている。また、TDE部121の演算精度をFDE部111のものより低く設定したりするなどして、高速なTDE部121を実現している。
 このように、TDE部121は未知の歪みに対して低性能な適応等化を行うことができる。本実施形態によるデジタル光受信機1200では、補償係数を容易に算出できない光フロントエンド部1110やアナログ/デジタル変換部(A/D)1120におけるデバイスの不完全性に起因する静的歪みを、TDE部121が低い等化性能で補償している。また、偏波変動や偏波モード分散による動的歪みもTDE部121が補償している。
 一方、FDE部111、112において周波数領域等化されたデジタル信号は低速信号生成部130にも入力される。低速信号生成部130は2種の歪みを含むデジタル信号を間歇的に取り出すことにより低速デジタル信号を生成する。低速デジタル信号においては動的波形歪みに関する情報が失われている。そのため、低速デジタル信号は、波長分散以外の静的波形歪みに関する情報だけを含んだ状態でフィルタ部241に入力される。
 ここでフィルタ部241は、例えばバタフライ型FIRフィルタから構成される。なお、補償する対象となる歪みの性質に応じて、フィルタ部241のフィルタ構成、フィルタタップ数、およびフィルタ係数の種類などを選択することができる。
 フィルタ部241は低速信号を処理するため、回路規模の制約を受けることなく、十分な性能を発揮するのに必要となるタップ長を確保することができる。また、オーバーサンプリングレートに関しても、FDE部111、112と同じレートで処理することが可能である。さらに、十分な性能を発揮するために求められる演算精度を確保することもできる。このように、フィルタ部241は高性能な波形等化が可能である。このときのフィルタ係数は、例えばCMAアルゴリズムを用いた低速係数演算部142による演算結果によって更新される。
 フィルタ部241は低速デジタル信号から波長分散以外の静的波形歪みを抽出する。低速係数演算部142は、この波形歪を補償するための歪み補償係数(低速等化係数)を算出する。低速係数演算部142で算出された歪み補償係数と所定係数保持部151に設定されている分散補償係数(所定係数)は演算部152で掛け合わされ、FDE部111、112にフィードバックされる。
 このとき、FDE部111、112に入力された入力デジタル信号は、所定係数保持部151および低速係数演算部142から取得した情報に基づいて等化処理が施される。そのため、波長分散による静的波形歪みおよび波長分散以外による静的波形歪みが補償される。そしてTDE部121は、偏波変動や偏波モード分散のような動的歪みを補償する。
 このような構成としたことにより、本実施形態のデジタル光受信機1200によれば、入力信号が有する波長分散以外による未知の静的波形歪みを、適応等化部(TDE部121)ではなく固定等化部(FDE部111、112)によって補償することが可能になる。すなわち、小規模な回路構成で実現可能な低速信号処理部を用いることにより、より高性能な高速信号処理部を実現することが可能になる。
 以上説明したように、本実施形態のデジタル光受信機1200によれば、種類の異なる波形歪をそれぞれ高性能な等化処理によって補償することが可能になる。その結果、信号品質が高い復調信号を得ることができる。
 〔第3の実施形態〕
 次に、本発明の第3の実施形態について説明する。
 図6に、本発明の第3の実施形態に係るデジタル光受信機1300の構成を示す。ここで、図5に示した第2の実施形態によるデジタル光受信機1200の構成要素と同一の構成要素には同一の符号を付し、その説明は省略する。
 図6に示すように、本実施形態のデジタル光受信機1300においては、波形歪抽出手段としてのフィルタ部241が出力する出力信号からキャリア信号を再生するキャリア再生部(キャリア信号再生手段)351、352をさらに備えた構成とした。そして、等化係数演算手段としての低速係数演算部142が、このキャリア信号に基づいて低速等化係数を算出する構成とした。
 次に、本実施形態によるデジタル光受信機1300の動作について説明する。
 デジタル光受信機1300には、光伝送路で歪みを受けた信号光、例えばDP-QPSK(dual-polarization quadrature phase shift keying)信号光が入力される。光フロントエンド部1110は入力されたDP-QPSK信号光とLO(Local oscillator:局部発振器)光を合成し、電気信号に変換して4チャンネルの電気信号XI、XQ、YI、YQを出力する。
 光フロントエンド部1110が出力する4種の電気信号XI、XQ、YI、YQは、それぞれアナログ/デジタル変換部(A/D)1120に入力され、デジタル信号xi、xq、yi、yqに変換される。デジタル信号xi、xq、yi、yqは、信号光が光伝送路中で受けた波長分散、偏波変動、および偏波モード分散による歪みに加えて、光フロントエンド部1110やアナログ/デジタル変換部1120で受けたデバイスの不完全性による歪みも含んでいる。
 デジタル信号xiおよびxqはFDE部111に、yiおよびyqはFDE部112にそれぞれ入力され、所定係数保持部151があらかじめ保持している所定係数に基づいて等化処理を施される。
 FDE部111、112は、既知の静的歪みに対して高性能な固定等化を行うことができる。本実施形態によるデジタル光受信機1300では、FDE部111、112が、補償係数を容易に算出可能であって時間変動が小さい波長分散を補償している。
 FDE部111、112で周波数領域等化された信号は、図6に示すように、TDE部121に入力され時間領域等化が行われる。
 TDE部121は図2に示したように、例えばバタフライ型のFIR(finite impulse response:有限インパルス応答)フィルタから構成される。TDE部121において、高速な制御を維持したまま十分な補償性能を確保しようとすると、回路規模が膨大になってしまう。このため、TDE部121のタップ長を必要な数より短くしたり、TDE部121のオーバーサンプリングレートをFDE部111におけるものよりも遅くしたりしている。また、TDE部121の演算精度をFDE部111のものより低く設定したりするなどして、高速なTDE部121を実現している。
 このように、TDE部121は未知の歪みに対して低性能な適応等化を行うことができる。本実施形態によるデジタル光受信機1300では、補償係数を容易に算出できない光フロントエンド部1110やアナログ/デジタル変換部(A/D)1120におけるデバイスの不完全性に起因する静的歪みを、TDE部121が低い等化性能で補償している。また、偏波変動や偏波モード分散による動的歪みもTDE部121が補償している。
 一方、FDE部111、112において周波数領域等化されたデジタル信号は低速信号生成部130にも入力される。低速信号生成部130は2種の歪みを含むデジタル信号を間歇的に取り出すことにより低速デジタル信号を生成する。低速デジタル信号においては動的波形歪みに関する情報が失われている。そのため、低速デジタル信号は、波長分散以外の静的波形歪みに関する情報だけを含んだ状態でフィルタ部241に入力される。
 ここでフィルタ部241は、例えばバタフライ型FIRフィルタから構成される。なお、補償する対象となる歪みの性質に応じて、フィルタ部241のフィルタ構成、フィルタタップ数、およびフィルタ係数の種類などを選択することができる。
 フィルタ部241は低速信号を処理するため、回路規模の制約を受けることなく、十分な性能を発揮するのに必要となるタップ長を確保することができる。また、オーバーサンプリングレートに関しても、FDE部111、112と同じレートで処理することが可能である。さらに、十分な性能を発揮するために求められる演算精度を確保することもできる。このように、フィルタ部241は高性能な波形等化が可能である。このときのフィルタ係数は、例えばCMAアルゴリズムを用いた低速係数演算部142による演算結果によって更新される。
 ここで、本実施形態のデジタル光受信機1300においては、キャリア信号を再生するキャリア再生部351、352を備えた構成としているので、DDアルゴリズムを用いることができる。DDアルゴリズムは、高速信号処理ではフィードバックループ遅延が問題となって実装困難であるが、低速信号処理においては実装することが可能である。また、DDアルゴリズムでは、キャリア再生部351、352の出力を用いて完全に復調されたキャリア信号のシンボル位置を判定してから、その結果を低速係数演算部142にフィードバックする構成となる。そのため、シンボル判定前の信号をフィードバックして制御するCMA方式よりもフィルタ部241の等化性能をさらに向上させることできる。
 低速係数演算部142で算出された歪み補償係数と所定係数保持部151に設定されている分散補償係数(所定係数)は演算部152で掛け合わされ、FDE部111、112にフィードバックされる。
 このとき、FDE部111、112に入力された入力デジタル信号は、所定係数保持部151および低速係数演算部142から取得した情報に基づいて等化処理が施される。そのため、波長分散による静的波形歪みおよび波長分散以外による静的波形歪みが補償される。そしてTDE部121は、偏波変動や偏波モード分散のような動的歪みを補償する。
 このような構成としたことにより、本実施形態のデジタル光受信機1300によれば、入力信号が有する波長分散以外による未知の静的波形歪みを、適応等化部(TDE部121)ではなく固定等化部(FDE部111、112)によって補償することが可能になる。すなわち、小規模な回路構成で実現可能な低速信号処理部を用いることにより、より高性能な高速信号処理部を実現することが可能になる。
 以上説明したように、本実施形態のデジタル光受信機1300によれば、種類の異なる波形歪をそれぞれ高性能な等化処理によって補償することが可能になる。その結果、信号品質が高い復調信号を得ることができる。
 〔第4の実施形態〕
 次に、本発明の第4の実施形態について説明する。
 図7に、本発明の第4の実施形態に係るデジタル光受信機1400の構成を示す。ここで、図6に示した第3の実施形態によるデジタル光受信機1300の構成要素と同一の構成要素には同一の符号を付し、その説明は省略する。
 図7に示すように、本実施形態のデジタル光受信機1400は、図6に示した第3の実施形態のデジタル光受信機1300の構成に加えて、信号品質比較手段としての信号品質比較部451と信号選択手段としてのスイッチ部452をさらに備えた構成とした。
 ここで、信号品質比較部451(信号品質比較手段)は、キャリア再生部351、352が再生したキャリア信号とTDE部121(適応等化手段)が出力する適応等化デジタル信号の信号品質を比較する。そして、比較した結果に基づいてスイッチ部452(信号選択手段)を制御する。スイッチ部452(信号選択手段)は、低速等化係数を演算部152(演算手段)に供給するか否かを選択する。
 次に、本実施形態によるデジタル光受信機1400の動作について説明する。
 デジタル光受信機1400には、光伝送路で歪みを受けた信号光、例えばDP-QPSK(dual-polarization quadrature phase shift keying)信号光が入力される。光フロントエンド部1110は入力されたDP-QPSK信号光とLO(Local oscillator:局部発振器)光を合成し、電気信号に変換して4チャンネルの電気信号XI、XQ、YI、YQを出力する。
 光フロントエンド部1110が出力する4種の電気信号XI、XQ、YI、YQは、それぞれアナログ/デジタル変換部(A/D)1120に入力され、デジタル信号xi、xq、yi、yqに変換される。デジタル信号xi、xq、yi、yqは、信号光が光伝送路中で受けた波長分散、偏波変動、および偏波モード分散による歪みに加えて、光フロントエンド部1110やアナログ/デジタル変換部1120で受けたデバイスの不完全性による歪みも含んでいる。
 デジタル信号xiおよびxqはFDE部111に、yiおよびyqはFDE部112にそれぞれ入力され、所定係数保持部151があらかじめ保持している所定係数に基づいて等化処理を施される。
 FDE部111、112は、既知の静的歪みに対して高性能な固定等化を行うことができる。本実施形態によるデジタル光受信機1400では、FDE部111、112が、補償係数を容易に算出可能であって時間変動が小さい波長分散を補償している。
 FDE部111、112で周波数領域等化された信号は、図7に示すように、TDE部121に入力され時間領域等化が行われる。
 TDE部121は図2に示したように、例えばバタフライ型のFIR(finite impulse response:有限インパルス応答)フィルタから構成される。TDE部121において、高速な制御を維持したまま十分な補償性能を確保しようとすると、回路規模が膨大になってしまう。このため、TDE部121のタップ長を必要な数より短くしたり、TDE部121のオーバーサンプリングレートをFDE部111におけるものよりも遅くしたりしている。また、TDE部121の演算精度をFDE部111のものより低く設定したりするなどして、高速なTDE部121を実現している。
 このように、TDE部121は未知の歪みに対して低性能な適応等化を行うことができる。本実施形態によるデジタル光受信機1400では、補償係数を容易に算出できない光フロントエンド部1110やアナログ/デジタル変換部(A/D)1120におけるデバイスの不完全性に起因する静的歪みを、TDE部121が低い等化性能で補償している。また、偏波変動や偏波モード分散による動的歪みもTDE部121が補償している。
 一方、FDE部111、112において周波数領域等化されたデジタル信号は低速信号生成部130にも入力される。低速信号生成部130は2種の歪みを含むデジタル信号を間歇的に取り出すことにより低速デジタル信号を生成する。低速デジタル信号においては動的波形歪みに関する情報が失われている。そのため、低速デジタル信号は、波長分散以外の静的波形歪みに関する情報だけを含んだ状態でフィルタ部241に入力される。
 ここでフィルタ部241は、例えばバタフライ型FIRフィルタから構成される。なお、補償する対象となる歪みの性質に応じて、フィルタ部241のフィルタ構成、フィルタタップ数、およびフィルタ係数の種類などを選択することができる。
 フィルタ部241は低速信号を処理するため、回路規模の制約を受けることなく、十分な性能を発揮するのに必要となるタップ長を確保することができる。また、オーバーサンプリングレートに関しても、FDE部111、112と同じレートで処理することが可能である。さらに、十分な性能を発揮するために求められる演算精度を確保することもできる。このように、フィルタ部241は高性能な波形等化が可能である。このときのフィルタ係数は、例えばCMAアルゴリズムを用いた低速係数演算部142による演算結果によって更新される。
 ここで、本実施形態のデジタル光受信機1400においては、キャリア信号を再生するキャリア再生部351、352を備えた構成としているので、DDアルゴリズムを用いることができる。DDアルゴリズムは、高速信号処理ではフィードバックループ遅延が問題となって実装困難であるが、低速信号処理においては実装することが可能である。また、DDアルゴリズムでは、キャリア再生部351、352の出力を用いて完全に復調されたキャリア信号のシンボル位置を判定してから、その結果を低速係数演算部142にフィードバックする構成となる。そのため、シンボル判定前の信号をフィードバックして制御するCMA方式よりもフィルタ部241の等化性能をさらに向上させることできる。
 ところで、低速係数算出部142で算出された歪み補償係数は、低速信号生成部130が間歇的に取り出した低速デジタル信号に基づいている。そのため、FDE部111、112に入力される連続的な入力デジタル信号のすべてに対して効果のある歪み補償係数であるとは限らない。
 ここで、本実施形態のデジタル光受信機1400においては、信号品質比較部451が、フィルタ部241によって等化された信号の品質と、TDE部121によって等化された信号の品質を比較する構成としている。そして、フィルタ部241によって等化された信号の品質が上回る場合は、信号品質比較部451はスイッチ部452が導通するように制御する構成とした。この場合、低速係数演算部142で算出された歪み補償係数と所定係数保持部151に設定されている分散補償係数(所定係数)は演算部152で掛け合わされ、FDE部111、112にフィードバックされる。
 このような構成としたことにより、本実施形態のデジタル光受信機1400では、TDE部121(適応等化手段)が出力する適応等化デジタル信号の信号品質の方が良好となるようにFDE部111(固定等化手段)の固定等化係数を更新することが可能になる。このとき、信号品質として例えば、ビットエラーレートやエラーベクトル振幅(Error Vector Magnitude:EVM)などを用いることができる。
 FDE部111、112に入力された入力デジタル信号は、所定係数保持部151および低速係数演算部142から取得した情報に基づいて等化処理が施される。そのため、波長分散による静的波形歪みおよび波長分散以外による静的波形歪みが補償される。そしてTDE部121は、偏波変動や偏波モード分散のような動的歪みを補償する。
 このような構成としたことにより、本実施形態のデジタル光受信機1400によれば、入力信号が有する波長分散以外による未知の静的波形歪みを、適応等化部(TDE部121)ではなく固定等化部(FDE部111、112)によって補償することが可能になる。すなわち、小規模な回路構成で実現可能な低速信号処理部を用いることにより、より高性能な高速信号処理部を実現することが可能になる。
 以上説明したように、本実施形態のデジタル光受信機1400によれば、種類の異なる波形歪をそれぞれ高性能な等化処理によって補償することが可能になる。その結果、信号品質が高い復調信号を得ることができる。
 〔第5の実施形態〕
 次に、本発明の第5の実施形態について説明する。
 図8に、本発明の第5の実施形態に係るデジタル信号処理装置200の構成を示す。デジタル信号処理装置200は、固定等化手段としての固定等化部110、適応等化手段としての適応等化部120、低速信号生成手段としての低速信号生成部130、低速等化係数算出手段140、および固定等化係数算出手段150を有する。
 固定等化部110は、入力デジタル信号に、固定等化係数に基づく歪補償処理を施す。適応等化部120は、固定等化部110が出力する等化デジタル信号に、適応等化係数に基づく適応的な歪補償処理を施す。低速信号生成部130は、入力デジタル信号および等化デジタル信号のいずれかを間歇的に取り出すことにより低速デジタル信号を生成する。また、低速等化係数算出手段140は、低速デジタル信号の歪補償処理に用いる低速等化係数を算出する。そして、固定等化係数算出手段150は、この低速等化係数と所定係数のうち少なくとも所定係数を用いて固定等化係数を算出する。
 ここまでの構成は、第1の実施形態によるデジタル信号処理装置100の構成と同様である。本実施形態のデジタル信号処理装置200は、低速信号生成部130が固定等化部110の前段に配置している構成とした。そして、低速信号生成部130が入力デジタル信号から生成する低速デジタル信号に固定等化係数に基づく歪補償処理を施す低速固定等化手段としての低速固定等化部560をさらに備えた構成とした。ここで、低速等化係数算出手段140は、低速固定等化部560が出力する低速等化デジタル信号の歪補償処理に用いる等化係数を、低速等化係数として算出する。
 デジタル信号処理装置200において、固定等化部110、適応等化部120、および低速信号生成部130が高速信号処理部201を構成している。また、低速等化係数算出手段140、固定等化係数算出手段150、および低速固定等化部560が低速信号処理部202を構成している。
 ここで、図8に示すように、低速等化係数算出手段140は、波形歪抽出手段としての静的波形歪み抽出部141と、等化係数演算手段としての低速係数演算部142を備えた構成とすることができる。このとき、静的波形歪み抽出部141は低速等化デジタル信号から波形歪を抽出する。低速係数演算部142は、この波形歪を補償するように低速等化係数を決定する。
 さらに、固定等化係数算出手段150は、所定係数をあらかじめ保持する所定係数保持手段としての所定係数保持部151と、演算手段としての演算部152を備えた構成とすることができる。ここで演算部152は、低速等化係数と所定係数のうち少なくとも所定係数に演算処理を施して固定等化係数を算出する。
 次に、本実施形態によるデジタル信号処理装置200の動作について説明する。
 デジタル信号処理装置200に入力される入力デジタル信号は、既知の静的波形歪み、未知の静的波形歪み、および動的波形歪みを含んでいる。高速信号処理部201に入力された入力デジタル信号は固定等化部110に入力され、固定等化係数算出手段150が算出する固定等化係数に基づいて等化され、既知の静的波形歪みが補償される。固定等化部110からの出力信号は、未知の静的波形歪みと動的波形歪みを含んだ状態のままで適応等化部120に入力される。
 適応等化部120は高速な制御を優先するため、固定等化部110と比較して等化性能が低く設定されている。このため、適応等化部120によって未知の静的波形歪みと動的波形歪みを等化する場合の補償性能は、固定等化部110による場合よりも低くなる。
 そこで、本実施形態のデジタル信号処理装置200においては、固定等化部110に入力される入力デジタル信号を低速信号生成部130にも入力する構成とした。そして、低速信号生成部130が、上述した3種の歪みを含むデジタル信号を間歇的に取り出すことにより低速デジタル信号を生成する構成とした。低速デジタル信号では動的波形歪みに関する情報は失われている。そのため、低速デジタル信号は既知の静的波形歪みと未知の静的波形歪みに関する情報を含んだ状態で、低速信号処理部202に入力される。
 低速信号処理部202に入力された低速デジタル信号は低速固定等化部560に入力され、固定等化係数算出手段150が算出する固定等化係数に基づいて等化され、既知の静的波形歪みが補償される。低速固定等化部560が出力する低速等化デジタル信号は未知の静的波形歪みを含んだ状態のままで、静的波形歪み抽出部141に入力される。静的波形歪み抽出部141は低速等化デジタル信号から未知の静的波形歪みを抽出する。そして、低速係数演算部142が、この波形歪を補償するための歪み補償係数(低速等化係数)を算出する。低速係数演算部142で算出された歪み補償係数と、所定係数保持部151に設定されている歪み補償係数(所定係数)は、演算部152で掛け合わされ、高速信号処理部201の固定等化部110にフィードバックされる。
 このような構成としたことにより、高速信号処理部101に入力された入力デジタル信号は固定等化部110に入力され、所定係数保持部151および低速係数演算部142から得られる情報に基づいて等化される。このとき、既知の静的波形歪みと、未知の静的波形歪みが補償される。一方、適応等化部120は残りの動的波形歪みを補償する。
 上述したように、本実施形態のデジタル信号処理装置200によれば、入力デジタル信号が有する未知の静的波形歪みを、適応等化部120ではなく固定等化部110によって補償することが可能になる。すなわち、小規模な回路構成で実現可能な低速信号処理部202を用いることにより、より高性能な高速信号処理部201を実現することが可能になる。
 次に、本実施形態によるデジタル信号処理方法について説明する。
 本実施形態のデジタル信号処理方法では、まず、入力デジタル信号に、固定等化係数に基づく歪補償処理を施して等化デジタル信号を生成する。また、入力デジタル信号を間歇的に取り出すことにより低速デジタル信号を生成する。この低速デジタル信号に固定等化係数に基づく歪補償処理を施して低速等化デジタル信号を生成する。そして、この低速等化デジタル信号から波形歪を抽出する。このような構成とすることにより、入力デジタル信号に含まれる未知の静的波形歪みをモニタすることが可能になる。
 続いて、この波形歪を補償するように低速等化係数を決定し、この低速等化係数とあらかじめ保持した所定係数に演算処理を施して固定等化係数を算出する。ここで算出した固定等化係数を用いて上述した歪補償処理を施すことによって、入力デジタル信号に含まれる既知の静的波形歪みのみならず、未知の静的波形歪みをも高い等化性能で補償することが可能になる。
 以上説明したように、本実施形態のデジタル信号処理装置200およびデジタル信号処理方法によれば、種類の異なる波形歪をそれぞれ高性能な等化処理によって補償することが可能になる。その結果、信号品質が高い復調信号を得ることができる。
 以上、上述した実施形態を模範的な例として本発明を説明した。しかしながら、本発明は、上述した実施形態には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。
 この出願は、2014年12月22日に出願された日本出願特願2014-259002を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
 (付記1)入力デジタル信号に、固定等化係数に基づく歪補償処理を施す固定等化手段と、前記固定等化手段が出力する等化デジタル信号に、適応等化係数に基づく適応的な歪補償処理を施す適応等化手段と、前記入力デジタル信号および前記等化デジタル信号のいずれかを間歇的に取り出すことにより低速デジタル信号を生成する低速信号生成手段と、 前記低速デジタル信号の歪補償処理に用いる低速等化係数を算出する低速等化係数算出手段と、前記低速等化係数と所定係数のうち少なくとも前記所定係数を用いて前記固定等化係数を算出する固定等化係数算出手段、とを有するデジタル信号処理装置。
 (付記2)前記固定等化手段は、周波数領域で等化を行う周波数領域等化器を備え、前記適応等化手段は、時間領域で等化を行う時間領域等化器を備え、前記時間領域等化器は、前記周波数領域等化器よりも等化性能が低く設定されている付記1に記載したデジタル信号処理装置。
 (付記3)前記低速信号生成手段は、前記等化デジタル信号から前記低速デジタル信号を生成し、前記低速等化係数算出手段は、前記低速デジタル信号から波形歪を抽出する波形歪抽出手段と、前記波形歪を補償するように前記低速等化係数を決定する等化係数演算手段を備え、前記固定等化係数算出手段は、前記所定係数をあらかじめ保持する所定係数保持手段と、前記低速等化係数と前記所定係数のうち少なくとも前記所定係数に演算処理を施して前記固定等化係数を算出する演算手段を備える付記1または2に記載したデジタル信号処理装置。
 (付記4)前記波形歪抽出手段は、フィルタ係数に基づいてフィルタ処理を行うフィルタ手段を備え、前記等化係数演算手段は、前記フィルタ手段の出力信号に応じて前記フィルタ係数を更新する付記3に記載したデジタル信号処理装置。
 (付記5)前記波形歪抽出手段が出力する出力信号からキャリア信号を再生するキャリア信号再生手段をさらに備え、前記等化係数演算手段は、前記キャリア信号に基づいて前記低速等化係数を算出する付記3または4に記載したデジタル信号処理装置。
 (付記6)前記低速等化係数を前記演算手段に供給するか否かを選択する信号選択手段と、前記キャリア信号と前記適応等化手段が出力する適応等化デジタル信号の信号品質を比較し、比較した結果に基づいて前記信号選択手段を制御する信号品質比較手段、とをさらに備える付記5に記載したデジタル信号処理装置。
 (付記7)前記低速信号生成手段は、前記固定等化手段の前段に配置しており、前記低速デジタル信号に前記固定等化係数に基づく歪補償処理を施す低速固定等化手段をさらに備え、前記低速等化係数算出手段は、前記低速固定等化手段が出力する低速等化デジタル信号の歪補償処理に用いる等化係数を、前記低速等化係数として算出する付記1または2に記載したデジタル信号処理装置。
 (付記8)付記1から7のいずれか一項に記載したデジタル信号処理装置と、入力された信号光を局部発振光と合成し電気信号に変換する光フロントエンド部と、前記光フロントエンド部が出力する電気信号をデジタル信号に変換して前記入力デジタル信号を生成し、前記入力デジタル信号を前記デジタル信号処理装置に出力するアナログ/デジタル変換部、とを有するデジタル光受信機。
 (付記9)入力デジタル信号に、固定等化係数に基づく歪補償処理を施して等化デジタル信号を生成し、前記等化デジタル信号を間歇的に取り出すことにより低速デジタル信号を生成し、前記低速デジタル信号から波形歪を抽出するデジタル信号処理方法。
 (付記10)前記波形歪を補償するように低速等化係数を決定し、前記低速等化係数とあらかじめ保持した所定係数に演算処理を施して前記固定等化係数を算出する付記9に記載したデジタル信号処理方法。
 (付記11)入力デジタル信号に、固定等化係数に基づく歪補償処理を施して等化デジタル信号を生成し、前記入力デジタル信号を間歇的に取り出すことにより低速デジタル信号を生成し、前記低速デジタル信号に前記固定等化係数に基づく歪補償処理を施して低速等化デジタル信号を生成し、前記低速等化デジタル信号から波形歪を抽出するデジタル信号処理方法。
 (付記12)前記波形歪を補償するように低速等化係数を決定し、前記低速等化係数とあらかじめ保持した所定係数に演算処理を施して前記固定等化係数を算出する付記11に記載したデジタル信号処理方法。
 1100、1200、1300、1400  デジタル光受信機
 1110  光フロントエンド部
 1120  アナログ/デジタル変換部(A/D)
 100、200  デジタル信号処理装置
 101、201  高速信号処理部
 102、202  低速信号処理部
 110  固定等化部
 111、112  FDE部
 113  離散フーリエ変換部
 114  乗算器
 115  逆離散フーリエ変換部
 120  適応等化部
 121  TDE部
 122  高速係数演算部
 130  低速信号生成部
 140  低速等化係数算出手段
 141  静的波形歪み抽出部
 142  低速係数演算部
 150  固定等化係数算出手段
 151  所定係数保持部
 152  演算部
 241  フィルタ部
 351、352  キャリア再生部
 451  信号品質比較部
 452  スイッチ部
 560  低速固定等化部
 600  関連するデジタルコヒーレント光受信機
 610  光フロントエンド
 620  アナログ/デジタル(A/D)変換器
 630  信号処理LSI
 631  分散補償部
 632  偏波分離部
 633  キャリア再生部

Claims (10)

  1. 入力デジタル信号に、固定等化係数に基づく歪補償処理を施す固定等化手段と、
     前記固定等化手段が出力する等化デジタル信号に、適応等化係数に基づく適応的な歪補償処理を施す適応等化手段と、
     前記入力デジタル信号および前記等化デジタル信号のいずれかを間歇的に取り出すことにより低速デジタル信号を生成する低速信号生成手段と、
     前記低速デジタル信号の歪補償処理に用いる低速等化係数を算出する低速等化係数算出手段と、
     前記低速等化係数と所定係数のうち少なくとも前記所定係数を用いて前記固定等化係数を算出する固定等化係数算出手段、とを有する
     デジタル信号処理装置。
  2. 請求項1に記載したデジタル信号処理装置において、
     前記固定等化手段は、周波数領域で等化を行う周波数領域等化手段を備え、
     前記適応等化手段は、時間領域で等化を行う時間領域等化手段を備え、
     前記時間領域等化手段は、前記周波数領域等化手段よりも等化性能が低く設定されている
     デジタル信号処理装置。
  3. 請求項1または2に記載したデジタル信号処理装置において、
     前記低速信号生成手段は、前記等化デジタル信号から前記低速デジタル信号を生成し、
     前記低速等化係数算出手段は、前記低速デジタル信号から波形歪を抽出する波形歪抽出手段と、前記波形歪を補償するように前記低速等化係数を決定する等化係数演算手段を備え、
     前記固定等化係数算出手段は、前記所定係数をあらかじめ保持する所定係数保持手段と、前記低速等化係数と前記所定係数のうち少なくとも前記所定係数に演算処理を施して前記固定等化係数を算出する演算手段を備える
     デジタル信号処理装置。
  4. 請求項3に記載したデジタル信号処理装置において、
     前記波形歪抽出手段は、フィルタ係数に基づいてフィルタ処理を行うフィルタ手段を備え、
     前記等化係数演算手段は、前記フィルタ手段の出力信号に応じて前記フィルタ係数を更新する
     デジタル信号処理装置。
  5. 請求項3または4に記載したデジタル信号処理装置において、
     前記波形歪抽出手段が出力する出力信号からキャリア信号を再生するキャリア信号再生手段をさらに備え、
     前記等化係数演算手段は、前記キャリア信号に基づいて前記低速等化係数を算出する
     デジタル信号処理装置。
  6. 請求項5に記載したデジタル信号処理装置において、
     前記低速等化係数を前記演算手段に供給するか否かを選択する信号選択手段と、
     前記キャリア信号と前記適応等化手段が出力する適応等化デジタル信号の信号品質を比較し、比較した結果に基づいて前記信号選択手段を制御する信号品質比較手段、とをさらに備える
     デジタル信号処理装置。
  7. 請求項1または2に記載したデジタル信号処理装置において、
     前記低速信号生成手段は、前記固定等化手段の前段に配置しており、
     前記低速デジタル信号に前記固定等化係数に基づく歪補償処理を施す低速固定等化手段をさらに備え、
     前記低速等化係数算出手段は、前記低速固定等化手段が出力する低速等化デジタル信号の歪補償処理に用いる等化係数を、前記低速等化係数として算出する
     デジタル信号処理装置。
  8. 請求項1から7のいずれか一項に記載したデジタル信号処理装置と、
     入力された信号光を局部発振光と合成し電気信号に変換する光フロントエンド手段と、
     前記光フロントエンド手段が出力する電気信号をデジタル信号に変換して前記入力デジタル信号を生成し、前記入力デジタル信号を前記デジタル信号処理装置に出力するアナログ/デジタル変換手段、とを有する
     デジタル光受信機。
  9. 入力デジタル信号に、固定等化係数に基づく歪補償処理を施して等化デジタル信号を生成し、
     前記等化デジタル信号を間歇的に取り出すことにより低速デジタル信号を生成し、
     前記低速デジタル信号から波形歪を抽出する
     デジタル信号処理方法。
  10. 請求項9に記載したデジタル信号処理方法において、
     前記波形歪を補償するように低速等化係数を決定し、
     前記低速等化係数とあらかじめ保持した所定係数に演算処理を施して前記固定等化係数を算出する
     デジタル信号処理方法。
PCT/JP2015/006245 2014-12-22 2015-12-15 デジタル信号処理装置、それを用いたデジタル光受信機、およびデジタル信号処理方法 WO2016103631A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016565899A JP6720877B2 (ja) 2014-12-22 2015-12-15 デジタル信号処理装置、それを用いたデジタル光受信機、およびデジタル信号処理方法
US15/534,120 US10171177B2 (en) 2014-12-22 2015-12-15 Digital signal processor, digital optical receiver using the same, and digital signal processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014259002 2014-12-22
JP2014-259002 2014-12-22

Publications (1)

Publication Number Publication Date
WO2016103631A1 true WO2016103631A1 (ja) 2016-06-30

Family

ID=56149697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/006245 WO2016103631A1 (ja) 2014-12-22 2015-12-15 デジタル信号処理装置、それを用いたデジタル光受信機、およびデジタル信号処理方法

Country Status (3)

Country Link
US (1) US10171177B2 (ja)
JP (1) JP6720877B2 (ja)
WO (1) WO2016103631A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019047399A (ja) * 2017-09-05 2019-03-22 日本電信電話株式会社 光受信器及び周波数ずれ量補償方法
US11967996B2 (en) 2019-12-20 2024-04-23 Huawei Technologies Co., Ltd. Frequency domain equalization method, equalizer, optical receiver, and system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107171745B (zh) * 2017-03-24 2023-04-07 厦门优迅高速芯片有限公司 一种用于dp-qpsk接收机的高速adc的测试系统和方法
US11476947B2 (en) * 2019-05-24 2022-10-18 Google Llc Low power coherent receiver for short-reach optical communication
EP4007187B1 (en) * 2019-08-26 2024-03-06 Mitsubishi Electric Corporation Receiver
CN112713941A (zh) * 2019-10-24 2021-04-27 富士通株式会社 静态均衡器系数的确定装置及方法
US11233574B2 (en) * 2019-11-05 2022-01-25 Maxim Integrated Products, Inc. Analog coherent signal processing systems and methods

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013127467A1 (en) * 2012-03-02 2013-09-06 Telefonaktiebolaget L M Ericsson (Publ) Chromatic dispersion processing apparatus and method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5175747A (en) * 1989-10-31 1992-12-29 Mitsubishi Denki Kabushiki Kaisha Equalizer
JP3272273B2 (ja) * 1997-07-07 2002-04-08 松下電器産業株式会社 間欠受信装置
US8548110B2 (en) * 2007-01-09 2013-10-01 Rambus Inc. Receiver with clock recovery circuit and adaptive sample and equalizer timing
JP5444877B2 (ja) 2009-06-24 2014-03-19 富士通株式会社 デジタルコヒーレント受信器

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013127467A1 (en) * 2012-03-02 2013-09-06 Telefonaktiebolaget L M Ericsson (Publ) Chromatic dispersion processing apparatus and method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CORSNINI, RAFFAELE ET AL.: "Blind Adaptive Chromatic Dispersion Compensation and Estimation for DSP-Based Coherent Optical Systems", JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 31, no. 13, 7 May 2013 (2013-05-07), pages 2131 - 2139, XP011511435, DOI: doi:10.1109/JLT.2013.2262211 *
MAEDA, WAKAKO ET AL.: "Hardware-efficient polarization demultiplexing for QAM signals based on dual stage decision-directed algorithm", 2012 OPTICAL FIBER COMMUNICATION CONFERENCE AND EXPOSITION AND THE NATIONAL FIBER OPTIC ENGINEERS CONFERENCE(OFC/NFOEC, 4 March 2012 (2012-03-04), pages 1 - 3 *
MAEDA, WAKAKO ET AL.: "Optical-electrical hybrid backpropagation for hardware-efficient digital coherent receiver with nonlinear compensation", 2014 OPTOELECTRONICS AND COMMUNICATION CONFERENCE AND AUSTRALIAN CONFERENCE ON OPTICAL FIBRE TECHNOLOGY, 6 July 2014 (2014-07-06), pages 899 - 900 *
PASKOV, MILEN ET AL.: "Blind adaptive equalization of chromatic dispersion for PDM-QPSK", 2014 OPTOELECTRONICS AND COMMUNICATION CONFERENCE AND AUSTRALIAN CONFERENCE ON OPTICAL FIBRE TECHNOLOGY, 6 July 2014 (2014-07-06), pages 947 - 949 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019047399A (ja) * 2017-09-05 2019-03-22 日本電信電話株式会社 光受信器及び周波数ずれ量補償方法
US11967996B2 (en) 2019-12-20 2024-04-23 Huawei Technologies Co., Ltd. Frequency domain equalization method, equalizer, optical receiver, and system

Also Published As

Publication number Publication date
US10171177B2 (en) 2019-01-01
JP6720877B2 (ja) 2020-07-08
JPWO2016103631A1 (ja) 2017-09-28
US20170338895A1 (en) 2017-11-23

Similar Documents

Publication Publication Date Title
WO2016103631A1 (ja) デジタル信号処理装置、それを用いたデジタル光受信機、およびデジタル信号処理方法
US8260156B2 (en) Adaptive crossing frequency domain equalization (FDE) in digital PolMux coherent systems
JP4968415B2 (ja) デジタルフィルタ装置、デジタルフィルタリング方法及びデジタルフィルタ装置の制御プログラム
JP6057975B2 (ja) 光伝送システムの電子非線形性補償
EP2922221B1 (en) Techniques for blind equalization of high-order quadrature amplitude modulation signals
JP2010057016A (ja) 光受信機の電力供給制御方法、並びに、デジタル信号処理回路および光受信機
EP2399353B1 (en) Equaliser for an optical transmission system
US11750298B2 (en) Frequency deviation compensation scheme and frequency deviation compensation method
US8666251B2 (en) Electronic dispersion compensation system and method
CN107534484B (zh) 光接收装置及光接收方法
JP5523591B2 (ja) 光受信器、非線形等化回路及びデジタル信号処理回路
Zhu et al. Frequency-domain blind equalization for long-haul coherent pol-mux 16-QAM system with CD prediction and dual-mode adaptive algorithm
Tao et al. Volterra series based blind equalization for nonlinear distortions in short reach optical CAP system
Song et al. Low-complexity FPGA implementation of 106.24 Gbps DP-QPSK coherent optical receiver with fractional oversampling rate based on one FIR filter for resampling, retiming and equalizing
JP6380403B2 (ja) 搬送波周波数偏差推定装置および搬送波周波数偏差推定方法
JP2016025518A (ja) 光受信器、送受信装置、光通信システムおよび波形歪補償方法
Hamja et al. DSP aided chromatic dispersion reckoning in single carrier high speed coherent optical communications
Ma et al. A novel high precision adaptive equalizer in digital coherent optical receivers
Yu et al. Quasi-linear Coherent Optical Transmission System and Digital Signal Processing
WO2010149714A2 (en) Electronic dispersion compensation system and method
Zhu et al. Frequency domain multi-modulus blind equalization for coherent 16 QAM polarization-multiplexed system
Li et al. Independent component analysis based modified constant modulus algorithm in coherent optical receiver
Panhwar et al. PU-CMA-QAM based MIMO equalization for digital PMD compensation in PDM-16-QAM receivers
Pinto et al. Real-time digital signal processing for coherent optical systems
EP1416652A1 (en) Adaptive electrical transversal filter with unipolar taps

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872205

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016565899

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15872205

Country of ref document: EP

Kind code of ref document: A1