WO2016103628A1 - Decentralized power supply system and power supply control method - Google Patents

Decentralized power supply system and power supply control method Download PDF

Info

Publication number
WO2016103628A1
WO2016103628A1 PCT/JP2015/006238 JP2015006238W WO2016103628A1 WO 2016103628 A1 WO2016103628 A1 WO 2016103628A1 JP 2015006238 W JP2015006238 W JP 2015006238W WO 2016103628 A1 WO2016103628 A1 WO 2016103628A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
inverter
power supply
amount
frequency
Prior art date
Application number
PCT/JP2015/006238
Other languages
French (fr)
Japanese (ja)
Inventor
仁 吉澤
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2016103628A1 publication Critical patent/WO2016103628A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers

Definitions

  • the present invention relates to a distributed power supply system and the like provided with multiple power supplies.
  • Patent Document 1 describes an operation control method of distributed power supply equipment.
  • an AC voltage source is formed by voltage control operation of the reference inverter.
  • an alternating current source synchronized with the alternating voltage source is formed.
  • parallel synchronous operation is performed in the distributed power supply equipment.
  • each of the plurality of power supplies supplies power to the load such that the power supply and demand balances independently of the other power supplies.
  • the plurality of power supplies can supply power to the load as a whole without excess or deficiency.
  • the power supply and demand balances in a state where one power source outputs a large amount of power and the other power source outputs little power unintentionally. As a result, the amount of power output may not be properly shared.
  • the plurality of power sources can appropriately share the amount of power by communicating with each other.
  • the installation location of the power supply may be limited according to the distance that can be communicated by the communication line. In addition, when communication is lost, power supply becomes difficult.
  • an object of the present invention is to provide a distributed power supply system and the like capable of appropriately sharing the output amount of power to a plurality of power sources.
  • a distributed power supply system includes a first power source and a second power source, and the first power source and the second power source are connected to a load.
  • a first inverter connected to a power line, the first power supply generating an AC voltage, and outputting a first power defined by the AC voltage to the power line; and a stored power for the first inverter
  • the second power supply detects the AC voltage through the power line, and the second power defined by the first AC current synchronized with the AC voltage is the power line.
  • the first inverter changing the frequency of the AC voltage according to the change of the first power output amount which is the output amount of the first power
  • the second inverter According to the change of Changing the second power output quantity is the output of the second power.
  • an alternating voltage is generated in a first power supply connected to a power line to which a load is connected, and the first power defined by the alternating voltage is used as the first power supply.
  • the second power supply connected to the power line to detect the AC voltage through the power line, and the second power defined by the AC current synchronized with the AC voltage from the second power supply.
  • the second power output amount which is the output amount of the second power, is changed according to the change of the frequency.
  • the distributed power supply system and the like can appropriately share the output amount of power with respect to a plurality of power supplies.
  • FIG. 1 is a block diagram showing the configuration of a distributed power supply system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing the configuration of a plurality of inverters in the embodiment of the present invention.
  • FIG. 3 is a schematic view showing an example of a power supply state from the inverter to the load.
  • FIG. 4 is a schematic view showing an example (first example) of the power supply state from the two inverters to the load.
  • FIG. 5 is a schematic view showing an example (second example) of the power supply state from the two inverters to the load.
  • FIG. 6 is a schematic view showing an example (third example) of power supply states from two inverters to a load.
  • FIG. 1 is a block diagram showing the configuration of a distributed power supply system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing the configuration of a plurality of inverters in the embodiment of the present invention.
  • FIG. 3 is a schematic view showing an example of
  • FIG. 7 is a graph showing an example (first example) of the inverter characteristic according to the embodiment of the present invention.
  • FIG. 8 is a graph showing an example (second example) of the inverter characteristic according to the embodiment of the present invention.
  • FIG. 9 is a graph showing an example (third example) of the inverter characteristic according to the embodiment of the present invention.
  • FIG. 10 is a graph showing an example (fourth example) of the inverter characteristic according to the embodiment of the present invention.
  • FIG. 11 is a graph showing an example (fifth example) of the inverter characteristic according to the embodiment of the present invention.
  • FIG. 12 is a graph showing an example (sixth example) of the inverter characteristic according to the embodiment of the present invention.
  • FIG. 13 is a graph showing an example (seventh example) of the inverter characteristic according to the embodiment of the present invention.
  • FIG. 14 is a flowchart showing the operation of the distributed power supply system according to an embodiment of the present invention.
  • power defined by voltage or current may be expressed as power configured by voltage or current, or may be expressed as power including voltage or current.
  • Embodiment shows the configuration of the distributed power supply system including a plurality of power supplies and the operation thereof. First, the configuration of the distributed power supply system will be described using FIGS. 1 and 2.
  • FIG. 1 is a block diagram showing the configuration of the distributed power supply system according to the present embodiment.
  • the distributed power supply system 100 shown in FIG. 1 is a system for supplying power to the load 300, and comprises power supplies 110, 120, 130 operating in parallel.
  • the power supply 110 is a power supply that supplies power to the load 300, and includes an inverter 111 and a power storage device 112.
  • the power supply 120 is a power supply that supplies power to the load 300, and includes an inverter 121 and a power storage device 122.
  • the power supply 130 is a power supply that supplies power to the load 300, and includes an inverter 131.
  • the power storage devices 112 and 122 are optional components, respectively, and may not be included in the distributed power supply system 100.
  • the power source 110, the power source 120, and the power source 130 may be expressed as a first power source, a second power source, and a third power source, respectively.
  • the inverter 111, the inverter 121, and the inverter 131 may be expressed as a first inverter, a second inverter, and a third inverter, respectively.
  • the power storage device 112 and the power storage device 122 may be expressed as a first power storage device and a second power storage device, respectively.
  • the generators 210, 220, 230 and the load 300 are electrically connected to the distributed power supply system 100.
  • the generator 210, the power storage device 112, and the inverter 111 are connected to one another via the power line 211.
  • the generator 220, the power storage device 122, and the inverter 121 are mutually connected via the power line 221.
  • the generator 230 and the inverter 131 are connected to each other through the power line 231.
  • the inverters 111, 121, 131 and the load 300 are connected to each other through the power line 301.
  • Each of the generators 210, 220, and 230 is a generator that generates direct current power, and is, for example, a solar cell or a fuel cell.
  • the generator 210 supplies the generated DC power to one or both of the inverter 111 and the power storage device 112 through the power line 211.
  • the generator 220 supplies the generated DC power to one or both of the inverter 121 and the power storage device 122 via the power line 221.
  • the generator 230 supplies the generated DC power to the inverter 131 via the power line 231.
  • the generator 210 may be included in the distributed power supply system 100 or may be included in the power supply 110.
  • the generator 220 may be included in the distributed power supply system 100 or may be included in the power supply 120.
  • the generator 230 may be included in the distributed power supply system 100 or may be included in the power supply 130.
  • each of the generators 210, 220, 230 is a generator utilizing natural energy such as a solar cell or a fuel cell
  • a distributed power supply system comprising power supplies 110, 120, 130 operating in parallel. The effect obtained by 100 is great.
  • the inverters 111, 121, and 131 are inverters for converting direct current power into alternating current power.
  • the inverter 111 obtains DC power from the generator 210 and / or the power storage device 112 via the power line 211.
  • the inverter 121 obtains DC power from the generator 220 and / or the power storage device 122 via the power line 221.
  • the inverter 131 obtains DC power from the generator 230 via the power line 231.
  • the inverters 111, 121, and 131 respectively generate AC power from DC power and output the generated AC power.
  • the output AC power is supplied to the load 300 via the power line 301.
  • the inverter 111 is an inverter (voltage control inverter) that performs voltage control.
  • the inverter 111 generates an AC voltage having a predetermined magnitude as a reference voltage.
  • the inverter 111 generates an alternating voltage of 200 (Vrms) as a reference voltage.
  • the inverter 111 outputs AC power defined by the AC voltage generated as the reference voltage. That is, the inverter 111 outputs the generated AC voltage as AC power.
  • the frequency of the AC power output from the inverter 111 changes in accordance with the change of the output amount of the AC power output from the inverter 111. That is, the inverter 111 changes the frequency of the AC power in accordance with the change in the output amount of the AC power.
  • the inverter 111 outputs AC power so that power can be supplied to the load 300 without excess or deficiency. At that time, the inverter 111 determines the frequency in accordance with the output amount of the AC power output from the inverter 111. Then, the inverter 111 changes the frequency of the AC power output from the inverter 111 to the determined frequency.
  • AC power is basically defined by AC voltage and AC current. Further, since the frequency of the alternating current defining the alternating current power is basically the same as the frequency of the alternating current voltage defining the alternating current power, the frequency of the alternating current and the frequency of the alternating voltage are the frequencies of the alternating current power It may be expressed as
  • the output amount in the present embodiment may be an output amount of active power.
  • Inverter 111 outputs power including reactive power to maintain the voltage on power line 301. That is, the power output from the inverter 111 includes active power and reactive power.
  • the active power output from the inverter 111 is expressed as P1
  • the reactive power output from the inverter 111 is expressed as Q1.
  • the electric power which inverter 111 outputs is expressed as P1 + jQ1.
  • j represents an imaginary unit.
  • the inverters 121 and 131 are inverters (current control inverters) that perform current control.
  • the inverters 121 and 131 each output AC power defined by AC current synchronized with AC voltage by superimposing AC current with a power factor of 1 (100%) on AC voltage generated as a reference voltage. . That is, the inverters 121 and 131 output an alternating current synchronized with the alternating voltage as alternating current power.
  • the inverters 121 and 131 perform synchronous control of alternating voltage. Therefore, the AC voltage defining the AC power output from the inverters 121 and 131 is equal to the AC voltage defining the AC power output from the inverter 111.
  • the power factor at the time of superimposing alternating current is not limited to 1 (100%), and may be a predetermined power factor or more. For example, the power factor at the time of superimposing alternating current may be 0.9 (90%) or more.
  • the output amount of the AC power output from the inverter 121 changes according to the change of the frequency of the AC power output from the inverter 121. That is, the inverter 121 changes the output amount of AC power in accordance with the change of the frequency of AC power.
  • the inverter 121 determines the output amount of the AC power output from the inverter 121 according to the frequency of the AC power output from the inverter 111. Then, the inverter 121 outputs AC power with the determined output amount.
  • inverter 121 detects an alternating voltage on power line 301. Then, the inverter 121 determines the output amount according to the frequency of the detected AC voltage. Then, the inverter 121 outputs AC power defined by the AC current synchronized with the detected AC voltage. At this time, the inverter 121 outputs AC power with an output amount determined according to the frequency. That is, the inverter 121 superimposes alternating current on alternating voltage so that an output amount determined according to the frequency can be obtained.
  • the inverter 131 also operates in the same manner as the inverter 121. Further, as described above, the output amount may be an output amount of active power.
  • the inverters 121 and 131 each superimpose an alternating current on the alternating voltage with a power factor of 1 (100%), and therefore output active power without outputting reactive power.
  • the active power output from the inverter 121 is expressed as P2
  • the active power output from the inverter 131 is expressed as P3.
  • Each of the power storage devices 112 and 122 is a device for storing power, and is, for example, a storage battery (secondary battery).
  • the power storage devices 112, 122 may each be capacitors.
  • the power storage device 112 stores the power supplied from the generator 210 and supplies the stored power to the inverter 111.
  • the power storage device 122 also stores the power supplied from the generator 220 and supplies the stored power to the inverter 121.
  • a charger for charging the power storage device 112 or the power storage device 122 may be included in the distributed power supply system 100.
  • a charger for charging the power storage device 112 may be installed on the power line 211.
  • a charger for charging the power storage device 122 may be installed on the power line 221.
  • such a charger may be included in the power storage device 122.
  • the power supplies 110 and 120 can stably supply power to the load 300 by including the power storage devices 112 and 122.
  • the power supply 110 can operate continuously as a voltage source by providing the power storage device 112.
  • the load 300 is an apparatus or facility that uses (consumes) power, and is, for example, a home appliance, a home facility, or a factory facility.
  • the load 300 may include a plurality of devices or a plurality of facilities.
  • the load 300 may be a plurality of devices or a plurality of facilities in a non-electrified area where power is not supplied from a large-scale power plant. That is, the distributed power supply system 100 may supply power to such a non-electrified area load 300.
  • the load 300 is supplied with P + jQ power.
  • P indicates active power
  • Q indicates reactive power.
  • reactive power is not used, and active power is used.
  • Each of the power lines 211, 221, 231, and 301 is a passage through which power is transmitted.
  • Each of the power lines 211, 221, 231, and 301 is not limited to one physical cable, but may be a power line including coupling of a plurality of conductors or a power network.
  • each of the power lines 211, 221, 301 is a power line having a branch.
  • each of the power lines 211, 221, 231, and 301 is not limited to wired. The technology of contactless power transfer may be applied to the power lines 211, 221, 231, and 301.
  • each of the power supplies 110, 120 and 130 may be optional components and not included in the distributed power supply system 100.
  • FIG. 2 is a block diagram showing the configuration of inverters 111, 121, 131 shown in FIG.
  • the inverter 111 is an inverter that performs voltage control and operates as a voltage source.
  • the inverter 111 includes a control unit 115, a storage unit 116, and a detection unit 117.
  • Each component in the inverter 111 is, for example, an electrical circuit.
  • the control unit 115 controls the operation of the inverter 111. For example, the control unit 115 generates an alternating voltage and outputs power specified by the alternating voltage.
  • the storage unit 116 stores information. For example, the storage unit 116 stores the relationship between the output amount and the frequency.
  • the detection unit 117 detects the power state of the power line 301.
  • the detection unit 117 detects the voltage and current of the power line 301.
  • the detection unit 117 may detect the output amount of the power output from the inverter 111.
  • the detection unit 117 may detect the state of charge (SOC) of the power storage device 112 by communication with the power storage device 112 or the like.
  • the inverter 111 may separately include a power state detection unit that detects the power state of the power line 301 and a charge state detection unit that detects the charge state of the power storage device 112.
  • control unit 115 derives the output amount of the AC power output from the inverter 111 based on the detection result of the detection unit 117. Then, the control unit 115 determines the frequency according to the derived output amount. At this time, the control unit 115 refers to the relationship stored in the storage unit 116, and determines the frequency by specifying the frequency associated with the output amount. Then, control unit 115 generates an AC voltage having the determined frequency, and outputs AC power defined by the generated AC voltage.
  • the inverter 111 generates a reference voltage and outputs AC power defined by the reference voltage.
  • the inverter 111 also outputs AC power including active power and reactive power.
  • the inverter 111 changes the frequency of alternating current power according to the output amount of alternating current power.
  • the control unit 115 may change the frequency of the AC power output from the inverter 111 according to the output amount of AC power output from the inverter 111, as in the so-called feedback control. Further, regardless of the information in the storage unit 116, the frequency of the AC power may be changed according to the change in the output amount of the AC power by the circuit of the control unit 115.
  • the inverter 121 is an inverter that performs current control, and superimposes a current on a reference voltage.
  • the inverter 121 includes a control unit 125, a storage unit 126, and a detection unit 127. Similar to the components in the inverter 111, each component in the inverter 121 is, for example, an electrical circuit.
  • Control unit 125 controls the operation of inverter 121. For example, the control unit 125 outputs the power defined by the alternating current synchronized with the alternating voltage.
  • the storage unit 126 stores information. For example, the storage unit 126 stores the relationship between the output amount and the frequency.
  • Detection unit 127 detects the power state of power line 301.
  • the detection unit 127 detects the voltage and current of the power line 301. More specifically, detection unit 127 detects the frequency of the AC voltage on power line 301. Furthermore, the detection unit 127 may detect the charge state of the power storage device 122 by communication with the power storage device 122 or the like.
  • the inverter 121 may separately include a power state detection unit that detects the power state of the power line 301 and a charge state detection unit that detects the charge state of the power storage device 122.
  • control unit 125 derives the frequency, phase, and amplitude of the AC voltage that is the reference voltage based on the detection result of the detection unit 127. And control part 125 determines the amount of output of exchange electric power which inverter 121 outputs according to a frequency of exchange voltage. At this time, the control unit 125 refers to the relationship stored in the storage unit 126, and determines the output amount by specifying the output amount associated with the frequency.
  • control unit 125 generates an alternating current synchronized with the alternating voltage based on the frequency and phase of the alternating voltage, and outputs alternating current power defined by the generated alternating current. At this time, the control unit 125 outputs AC power having the determined output amount. That is, the control unit 125 superimposes the alternating current on the alternating voltage so that the alternating current power having the determined output amount can be obtained.
  • the inverter 121 superimposes alternating current on the reference voltage with a power factor of 1 (100%). That is, the inverter 121 outputs active power without outputting reactive power. Moreover, the inverter 121 changes the output amount of alternating current power according to the frequency of alternating current power.
  • Control part 125 may change the amount of output of exchange electric power which inverter 121 outputs according to a frequency of exchange electric power outputted from inverter 121 like so-called feedback control. Further, regardless of the information of the storage unit 126, the output amount of the AC power may be changed according to the change of the frequency of the AC power by the circuit of the control unit 125.
  • the inverter 131 is an inverter that performs current control, and superimposes a current on a reference voltage.
  • the inverter 131 includes a control unit 135, a storage unit 136, and a detection unit 137. Similar to the components of the inverter 121, each component of the inverter 131 is, for example, an electrical circuit.
  • each component in inverter 131 operates in the same manner as the corresponding component in inverter 121.
  • the detection unit 137 does not detect the charge state of the power storage device.
  • each of the inverters 111, 121, and 131 in FIG. 2 is an example, and may be changed as appropriate.
  • the inverters 111, 121, and 131 operate in parallel, and use frequencies to appropriately share the amount of output of power. If such a configuration is not used, it is difficult to appropriately share the amount of power output. The difficulty in sharing will be described below with reference to FIGS. 3 to 6.
  • FIG. 3 is a schematic view showing an example of a power supply state from the inverter to the load.
  • the inverter 401 and the load 500 which perform voltage control are shown by FIG.
  • the inverter 401 and the load 500 are connected to each other via a power line.
  • the reference voltage is 200 (Vrms), and the inverter 401 generates an AC voltage of 200 (Vrms).
  • the load 500 has a resistance of 20 ( ⁇ ).
  • the inverter 401 since one inverter 401 supplies power to the load 500, it is not necessary to share the output amount of power.
  • the inverter 401 can supply appropriate power to the load 500 without sharing the output amount of power.
  • FIGS. 4 to 6 is a schematic view showing an example of a state of power supply from two inverters to a load.
  • Each of FIGS. 4 to 6 shows an inverter 401 that performs voltage control, an inverter 402 that performs current control, and a load 500.
  • the inverter 401, the inverter 402, and the load 500 are connected to one another via a power line.
  • the reference voltage is 200 (Vrms)
  • the inverter 401 generates an AC voltage of 200 (Vrms).
  • the load 500 has a resistance of 20 ( ⁇ ).
  • the inverter 402 superimposes a current on the reference voltage.
  • the inverter 402 operates in conjunction with the inverter 401 which generates an alternating voltage as a reference voltage.
  • the inverter 401 and the inverter 402 output a current of 10 (A) in total. That is, the inverter 401 and the inverter 402 output a total of 2 (kW) of power (active power). Thereby, appropriate power is supplied to the load 500.
  • the output amount of power output from the inverter 401 and the output amount of power output from the inverter 402 are not uniquely identified.
  • the magnitude of the current from the inverter 401 is 10 (A), and the magnitude of the current from the inverter 402 is 0 (A). That is, the output amount of power from the inverter 401 is 2 (kW), and the output amount of power from the inverter 402 is 0 (kW).
  • the magnitude of the current from the inverter 401 is 0 (A), and the magnitude of the current from the inverter 402 is 10 (A). That is, the output amount of power from the inverter 401 is 0 (kW), and the output amount of power from the inverter 402 is 2 (kW).
  • the magnitude of the current from the inverter 401 is -10 (A), and the magnitude of the current from the inverter 402 is 20 (A). That is, the output amount of power from the inverter 401 is ⁇ 2 (kW), and the output amount of power from the inverter 402 is 4 (kW).
  • the inverters 111, 121, and 131 shown in FIG. 1 and FIG. 2 appropriately share the output amount of power using frequencies.
  • FIGS. 7 to 13 a plurality of examples regarding the characteristics (inverter characteristics) of the inverters 111, 121, 131 will be described.
  • FIG. 7 is a graph showing an example of the characteristic of the inverter 111 shown in FIG. Specifically, a thick line 601 in FIG. 7 indicates the characteristics of the inverter 111.
  • the inverter 111 has a characteristic that the frequency of the AC power is smaller as the output amount of the AC power (active power) is larger. That is, the inverter 111 lowers the frequency when the amount of output increases. Conversely, the inverter 111 raises the frequency when the amount of output decreases.
  • F indicates a frequency and P indicates an output amount.
  • F 0 indicates a reference frequency which is a frequency when the output amount is zero.
  • F L indicates the minimum value in the frequency change range, and
  • F H indicates the maximum value in the frequency change range.
  • P G indicates the maximum value in the change range of the output amount, and
  • P S indicates the minimum value in the change range of the output amount.
  • Equation 3 the relationship between the frequency and the amount of output is expressed by Equation 3.
  • the inverter 111 can derive the frequency from the output amount using Equation 3.
  • FIG. 8 is a graph showing an example of the common characteristic of the inverters 121 and 131 shown in FIG. Specifically, a thick line 602 in FIG. 8 indicates the common characteristic of the inverters 121 and 131.
  • the inverters 121 and 131 have the characteristic that the output amount of the AC power (active power) is larger as the frequency of the AC power is smaller. That is, the inverters 121 and 131 increase the output amount when the frequency decreases. Conversely, when the frequency rises, the inverters 121 and 131 reduce the amount of output.
  • Equations 1 to 3 Since the characteristics shown in FIG. 8 are similar to the characteristics shown in FIG. 7, they are expressed in the same manner as Equations 1 to 3. By transforming Equations 1 to 3, Equations 4 to 6 which are equations for deriving the output amount from the frequency can be obtained.
  • the inverters 121 and 131 having the characteristics shown in FIG. 8 can derive the output amount from the frequency using Equation 6.
  • the inverters 111, 121, 131 operate as follows according to the characteristics shown in FIGS. 7 and 8.
  • the output amount of the power output from the inverter 111 increases from 0 (kW).
  • the frequency of the power output from the inverter 111 decreases from 50 (Hz).
  • the output amount of the power output from the inverters 121 and 131 increases from 0 (kW).
  • the frequency decreases to 48.75 (Hz).
  • the output amount of the power output from each of the inverters 121 and 131 increases to 1 (kW). That is, when the frequency is 48.75 (Hz), the output amount of the power output from each of the inverters 111, 121, and 131 is 1 (kW).
  • the usage amount of the power of the load 300 and the output amount of the power output from the inverters 111, 121, 131 are balanced. Then, the entire output amount is appropriately shared to the inverters 111, 121, and 131.
  • the characteristics shown in FIGS. 7 and 8 are examples of the characteristics of the inverters 111, 121, 131, and the characteristics of the inverters 111, 121, 131 may be changed as appropriate.
  • the ratio of the variation of the output to the variation of the frequency in FIG. 7 (the slope of the variation of the frequency relative to the variation of the output), and the variation of the output and the variation of the frequency in FIG.
  • the ratios slopes of the amount of change of frequency to the amount of change of output amount
  • the ratio between the change amount of the output amount in the inverter 111 and the change amount of the frequency, and the ratio between the change amount of the output amount in the inverters 121 and 131 and the change amount of the frequency may be different from each other.
  • inverters 121 and 131 may have the characteristics shown in FIG. 9 instead of the characteristics shown in FIG.
  • FIG. 9 is a graph showing an example of common characteristics of the inverters 121 and 131 shown in FIG. Specifically, a thick line 603 in FIG. 9 indicates the common characteristic of the inverters 121 and 131.
  • the ratio of the change of the output amount to the change of the frequency is smaller than that of the example of FIG. Therefore, the output amount of each of the inverters 121 and 131 is smaller than the output amount of the inverter 111.
  • the power consumption of the load 300 and the inverter 111 at a frequency of 48.125 (Hz) according to the characteristics shown in FIG. 7 and FIG.
  • the amount of output of power from 121 and 131 is balanced. Specifically, at a frequency of 48.125 (Hz), the amount of output from the inverter 111 is 1.5 (kW), and the amount of output from each of the inverters 121 and 131 is 0.75 (kW) .
  • the characteristics of the inverters 121 and 131 are changed such that the amount of output of each of the inverters 121 and 131 is smaller than the amount of output of the inverter 111.
  • the characteristics of the inverters 121 and 131 may be changed such that the output amount of each of the inverters 121 and 131 is larger than the output amount of the inverter 111.
  • the characteristic of the inverter 111 may be changed such that the output amount of the inverter 111 is smaller than the output amount of each of the inverters 121 and 131. Also, the characteristic of the inverter 111 may be changed such that the output amount of the inverter 111 is larger than the output amount of each of the inverters 121 and 131.
  • the characteristics of the inverter 121 and the characteristics of the inverter 131 may be changed to be different from each other.
  • FIG. 10 is a graph showing an example of the characteristics of the inverters 121 and 131 shown in FIG. Specifically, a thick line 604 in FIG. 10 indicates the characteristics of the inverter 121. A thick line 605 in FIG. 10 indicates the characteristics of the inverter 131. At a frequency of 50 (Hz) or more, the characteristics of the inverter 121 and the characteristics of the inverter 131 match each other.
  • the rate of change of the output amount to the change of frequency in the inverter 121 is smaller than the rate of change of the output amount to the change of frequency in the inverter 131. Therefore, the output amount of the inverter 121 is smaller than the output amount of the inverter 131.
  • the power consumption of the load 300 and the inverter 111 at a frequency of 48.75 (Hz) according to the characteristics shown in FIG. 7 and FIG.
  • the amount of output of power from 121 and 131 is balanced. Specifically, at a frequency of 48.75 (Hz), the output amount of the inverter 111 is 1 (kW), the output amount of the inverter 121 is 0.5 (kW), and the output amount of the inverter 131 is 1 .5 (kW).
  • the example of FIG. 10 may be applied such that the power supply 130 is preferentially used. Thereby, charging and discharging of the power storage device 122 may be suppressed, and the progress of the deterioration of the power storage device 122 may be suppressed.
  • the inverter 111 since the inverter 111 is included in the power supply 110 including the power storage device 112, the characteristics of the inverter 111 may vary according to the charging state of the power storage device 112.
  • FIG. 11 is a graph showing an example of the characteristic of the inverter 111 shown in FIG. In FIG. 11, a thick line 601 indicating the characteristic shown in FIG. 7 is shown.
  • the inverter 111 changes the ratio of the change of the frequency to the change of the output amount in accordance with the state of charge. Specifically, the inverter 111 changes the ratio of the change of the frequency to the change of the output amount according to the charge state so that the output amount of the inverter 111 becomes smaller as the charge state becomes lower.
  • the characteristic of the inverter 111 fluctuates from the characteristic indicated by the thick line 601 to the characteristic indicated by the alternate long and short dash line 606. That is, when the state of charge is low, the characteristic fluctuates such that the rate of decrease in frequency with respect to the increase in output amount becomes large. As a result, the amount of output from the inverters 121 and 131 increases. Therefore, the lower the charge state, the smaller the output amount of the inverter 111.
  • the inverter 111 may change the characteristics so that the rate of decrease in frequency with respect to the increase in output amount is small. Further, the inverter 111 may change the characteristics in multiple stages according to the degree of charge state.
  • the inverter 121 since the inverter 121 is included in the power supply 120 including the power storage device 122, the characteristics of the inverter 121 may vary according to the charging state of the power storage device 122.
  • FIG. 12 is a graph showing an example of the characteristic of the inverter 121 shown in FIG. FIG. 12 shows a bold line 602 indicating the characteristics shown in FIG.
  • the inverter 121 changes the ratio of the change of the output amount to the change of the frequency according to the charge state.
  • the inverter 121 changes the ratio of the change of the output amount to the change of the frequency according to the charge state so that the output amount of the inverter 121 becomes smaller as the charge state becomes lower.
  • the characteristic of the inverter 121 fluctuates from the characteristic indicated by the thick line 602 to the characteristic indicated by the alternate long and short dash line 607. That is, when the state of charge is low, the characteristic fluctuates such that the rate of increase of the output amount with respect to the decrease in frequency decreases. As a result, the amount of output from the inverter 121 is reduced. Therefore, the lower the charge state, the smaller the output amount of the inverter 121.
  • the inverter 121 may change the characteristics so that the rate of increase of the output amount with respect to the decrease in frequency is large. Further, the inverter 121 may change the characteristics in multiple stages according to the degree of charge state.
  • the inverter 121 may be a bidirectional inverter. For example, when the state of charge is low, the inverter 121 may acquire AC power from the power line 301, convert the acquired AC power into DC power, and supply the DC power to the power storage device 122. In this case, the power supply 120 is treated as a load.
  • FIG. 13 is a graph showing an example of the characteristics of the inverters 121 and 131 shown in FIG.
  • FIG. 13 shows a bold line 602 indicating the characteristic shown in FIG.
  • the power consumption of the load 300 and the inverter 111 at a frequency of 48.75 (Hz) according to the characteristics shown in FIG. 7 and FIG.
  • the amount of output of power from 121 and 131 is balanced.
  • the output amount of each of the inverters 111, 121, and 131 is 1 (kW).
  • inverter 121 stops the output of AC power to power line 301, and converts AC power obtained from power line 301 into DC power. Thus, DC power is generated from AC power. Then, the inverter 121 outputs the generated DC power to the power line 221 to charge the power storage device 122.
  • the inverter 121 uses 1 (kW) of power to charge the power storage device 122.
  • the output amount of the inverter 121 is treated as ⁇ 1 (kW).
  • the power supply 120 is treated as a load.
  • the inverter 111 increases the amount of output as the load increases. Furthermore, the inverter 111 reduces the frequency as the amount of output increases. The inverter 131 increases the amount of output as the frequency decreases.
  • the usage of the power of the load 300 and the power supply 120 and the output of the power from the inverters 111 and 131 are balanced.
  • the output amount of each of the inverters 111 and 131 is 2 (kW).
  • the alternate long and short dash line 608 in FIG. 13 represents the change in the output amount of the inverter 121 during charging and the frequency during charging. Thereafter, when the charge state recovers, the inverter 121 again outputs power with an output amount according to the frequency. Then, again, at the frequency of 48.75 (Hz), the usage amount of the power of the load 300 and the output amount of the power from the inverters 111, 121, 131 are balanced.
  • the power supply 120 can switch between an operation of outputting power according to the frequency and an operation of using power as a load.
  • the output amount and the frequency have a proportional relationship. Specifically, a large output amount is associated with a low frequency, and a small output amount is associated with a high frequency. This relationship may be reversed. That is, a large output amount may be associated with a high frequency, and a small output amount may be associated with a low frequency. Also, a large output amount may be associated with the reference frequency. Further, the output amount and the frequency may be associated with each other in a relationship different from the proportional relationship.
  • FIG. 14 is a flowchart showing the characteristic operation of the distributed power supply system 100 shown in FIG.
  • inverter 111 generates an AC voltage and outputs the first power defined by the AC voltage to power line 301.
  • the inverter 111 changes the frequency of the AC voltage according to the change of the first power output amount which is the output amount of the first power (S101).
  • the inverter 121 detects an alternating voltage via the power line 301, and outputs a second power defined by the alternating current synchronized with the alternating voltage to the power line 301. At this time, the inverter 121 changes the second power output amount, which is the output amount of the second power, according to the change of the frequency (S102).
  • the inverter 131 also operates in the same manner as the inverter 121.
  • the distributed power supply system 100 can appropriately share the output amount of power with respect to the power supplies 110, 120, and 130.
  • the present invention is not limited to the embodiment.
  • the present invention also includes embodiments obtained by applying variations that will occur to those skilled in the art with respect to the embodiment, and other embodiments realized by arbitrarily combining a plurality of components in the embodiment.
  • another component may perform the processing that a particular component performs. Further, the order of executing the processing may be changed, or a plurality of processing may be executed in parallel.
  • the present invention can be realized not only as a distributed power supply system but also as a power supply control method including steps (processes) performed by each component constituting the distributed power supply system.
  • a distributed power supply system 100 includes a power supply 110 and a power supply 120.
  • the power supply 110 and the power supply 120 are connected to the power line 301 to which the load 300 is connected.
  • the power supply 110 also includes an inverter 111 and a power storage device 112.
  • the inverter 111 generates an AC voltage and outputs the first power defined by the AC voltage to the power line 301.
  • the power storage device 112 supplies the stored power to the inverter 111.
  • the power supply 120 includes an inverter 121.
  • the inverter 121 detects an AC voltage through the power line 301, and outputs, to the power line 301, a second power defined by a first AC current synchronized with the AC voltage.
  • the inverter 111 changes the frequency of the AC voltage according to the change of the first power output amount which is the output amount of the first power.
  • the inverter 121 changes the second power output amount, which is the output amount of the second power, according to the change of the frequency.
  • the distributed power supply system 100 can appropriately share the output amount of power with respect to the power supplies 110 and 120.
  • the ratio of the change amount of the first power output amount to the change amount of the frequency and the ratio of the change amount of the second power output amount to the change amount of the frequency are , May be equal to each other.
  • the distributed power supply system 100 can share the output amount of power equally to the power supply 110 operating as a voltage source and the power supply 120 different from the power supply 110.
  • the ratio of the change amount of the first power output amount to the change amount of the frequency and the ratio of the change amount of the second power output amount to the change amount of the frequency are , May be different from each other.
  • the distributed power supply system 100 can output power by giving priority to one of the power supply 110 operating as a voltage source and the power supply 120 different from the power supply 110.
  • the distributed power supply system 100 of the first example, the second example or the third example may include the power supply 130 connected to the power line 301.
  • the power supply 130 may include an inverter 131.
  • the inverter 131 may detect an alternating voltage via the power line 301, and may output, to the power line 301, the third power defined by the second alternating current synchronized with the alternating voltage.
  • the inverter 131 may change the third power output amount, which is the output amount of the third power, according to the change of the frequency.
  • the ratio between the change amount of the second power output amount and the change amount of the frequency, and the ratio between the change amount of the third power output amount and the change amount of the frequency may be equal to each other.
  • the distributed power supply system 100 can share the output amount of power equally to the two power supplies 120 and 130 different from the power supply 110 operating as a voltage source.
  • the distributed power supply system 100 of the first example, the second example or the third example may include the power supply 130 connected to the power line 301.
  • the power supply 130 may include an inverter 131.
  • the inverter 131 may detect an alternating voltage via the power line 301, and may output, to the power line 301, the third power defined by the second alternating current synchronized with the alternating voltage.
  • the inverter 131 may change the third power output amount, which is the output amount of the third power, according to the change of the frequency.
  • the ratio between the change amount of the second power output amount and the change amount of the frequency and the ratio between the change amount of the third power output amount and the change amount of the frequency may be different from each other.
  • the distributed power supply system 100 can output power by giving priority to one of the two power supplies 120 and 130 different from the power supply 110 operating as a voltage source.
  • the ratio between the change amount of the first power output amount and the change amount of the frequency may change according to the state of charge of the power storage device 112.
  • the distributed power supply system 100 can adjust the amount of output from the power supply 110 according to the charge state of the power storage device 112 included in the power supply 110 operating as a voltage source.
  • the power supply 120 may include the power storage device 122. Then, the power storage device 122 may supply the stored power to the inverter 121. Then, the ratio between the change amount of the second power output amount and the change amount of the frequency may change according to the charge state of the power storage device 122.
  • the distributed power supply system 100 can adjust the amount of output from the power source 120 according to the charging state of the power storage device 122 included in the power source 120 different from the power source 110 operating as a voltage source.
  • the power supply 120 may include a power storage device 122.
  • the power storage device 122 may supply the stored power to the inverter 121.
  • inverter 121 may be a bidirectional inverter. Then, when the state of charge of power storage device 122 is lower than the predetermined state of charge, inverter 121 may obtain power from power line 301 and cause power storage device 122 to be charged without outputting the second power. .
  • the distributed power supply system 100 can charge the power storage device 122 according to the charge state of the power storage device 122 included in the power supply 120 different from the power supply 110 operating as a voltage source.
  • an alternating voltage is generated in the power supply 110 connected to the power line 301 to which the load 300 is connected, and the first power defined by the alternating voltage is transferred from the power supply 110 to the power line 301 It is output (S101). Then, the AC voltage is detected through the power line 301 in the power source 120 connected to the power line 301, and the second power defined by the AC current synchronized with the AC voltage is output from the power source 120 to the power line 301 (S102).
  • the frequency of the AC voltage changes according to the change of the first power output amount which is the output amount of the first power.
  • the second power output amount which is the output amount of the second power, changes in accordance with the change of the frequency.
  • the amount of power output is properly shared with the power supplies 110 and 120.

Abstract

A decentralized power supply system (100) is provided with a first power supply (110) and a second power supply (120), the first power supply (110) and the second power supply (120) are connected to a power line (301) to which a load (300) is connected, the first power supply (110) is provided with a first inverter (111), which generates an alternating current voltage, and which outputs, to the power line (301), first power specified by the alternating current voltage, and a power storage device (112) that supplies stored power to the first inverter (111), the second power supply (120) is provided with a second inverter (121), which detects an alternating current voltage via the power line (301), and which outputs, to the power line (301), second power specified by an alternating current synchronized with the alternating current voltage. The first inverter (111) changes, corresponding to a change of an output quantity of the first power, the frequency of the alternating current voltage, and the second inverter (121) changes, corresponding to the frequency change, the output quantity of the second power.

Description

分散型電力供給システムおよび電力供給制御方法Distributed power supply system and power supply control method
 本発明は、複数の電源を備える分散型電力供給システム等に関する。 The present invention relates to a distributed power supply system and the like provided with multiple power supplies.
 従来、電力供給量の増強のため、複数の電源から電力を供給する分散型電力供給システムが検討されている。 Conventionally, in order to increase the amount of power supply, a distributed power supply system which supplies power from a plurality of power sources has been considered.
 例えば、特許文献1には、分散型電源設備の運転制御方法が記載されている。この運転制御方法では、基準のインバータの電圧制御運転により、交流電圧源が形成される。そして、残りのインバータの電流制御運転により、交流電圧源に同期した交流電流源が形成される。これにより、分散型電源設備において並列同期運転が行われる。 For example, Patent Document 1 describes an operation control method of distributed power supply equipment. In this operation control method, an AC voltage source is formed by voltage control operation of the reference inverter. Then, by the current control operation of the remaining inverters, an alternating current source synchronized with the alternating voltage source is formed. Thereby, parallel synchronous operation is performed in the distributed power supply equipment.
特開平11-89096号公報Japanese Patent Application Laid-Open No. 11-89096
 しかしながら、複数の電源に対して電力の出力量を適切に分担することは、容易ではない。 However, it is not easy to properly share the amount of power output to multiple power supplies.
 例えば、複数の電源のそれぞれは、他の電源から独立して、電力需給が釣り合うように、電力を負荷に供給する。これにより、複数の電源は、全体として負荷に対して過不足なく電力を供給することができる。しかし、意図せず、1つの電源が大量に電力を出力し、他の電源がほとんど電力を出力していない状態で、電力需給が釣り合う場合がある。これにより、電力の出力量が適切に分担されない場合がある。 For example, each of the plurality of power supplies supplies power to the load such that the power supply and demand balances independently of the other power supplies. Thus, the plurality of power supplies can supply power to the load as a whole without excess or deficiency. However, there is a case where the power supply and demand balances in a state where one power source outputs a large amount of power and the other power source outputs little power unintentionally. As a result, the amount of power output may not be properly shared.
 また、例えば、複数の電源は、互いに通信を行うことで、電力量を適切に分担することができる。しかし、この場合、電源間で通信を行うための設備および機構の準備に費用および時間がかかる可能性がある。また、通信線で通信可能な距離などに従って、電源の設置場所が制限される可能性がある。また、通信が途絶えた場合、電力供給が困難になる。 Also, for example, the plurality of power sources can appropriately share the amount of power by communicating with each other. However, in this case, it may be expensive and time consuming to prepare equipment and mechanisms to communicate between the power supplies. In addition, the installation location of the power supply may be limited according to the distance that can be communicated by the communication line. In addition, when communication is lost, power supply becomes difficult.
 そこで、本発明は、複数の電源に対して、電力の出力量を適切に分担することができる分散型電力供給システム等を提供することを目的とする。 Therefore, an object of the present invention is to provide a distributed power supply system and the like capable of appropriately sharing the output amount of power to a plurality of power sources.
 上記目的を達成するために、本発明の一態様に係る分散型電力供給システムは、第1電源と、第2電源とを備え、前記第1電源および前記第2電源は、負荷が接続される電力線に接続され、前記第1電源は、交流電圧を生成し、前記交流電圧で規定される第1電力を前記電力線へ出力する第1インバータと、前記第1インバータに対して、貯蔵された電力を供給する第1電力貯蔵装置とを備え、前記第2電源は、前記電力線を介して前記交流電圧を検出し、前記交流電圧に同期した第1交流電流で規定される第2電力を前記電力線へ出力する第2インバータを備え、前記第1インバータは、前記第1電力の出力量である第1電力出力量の変化に従って、前記交流電圧の周波数を変化させ、前記第2インバータは、前記周波数の変化に従って、前記第2電力の出力量である第2電力出力量を変化させる。 In order to achieve the above object, a distributed power supply system according to an aspect of the present invention includes a first power source and a second power source, and the first power source and the second power source are connected to a load. A first inverter connected to a power line, the first power supply generating an AC voltage, and outputting a first power defined by the AC voltage to the power line; and a stored power for the first inverter And the second power supply detects the AC voltage through the power line, and the second power defined by the first AC current synchronized with the AC voltage is the power line. To the second inverter, the first inverter changing the frequency of the AC voltage according to the change of the first power output amount which is the output amount of the first power, and the second inverter According to the change of Changing the second power output quantity is the output of the second power.
 また、本発明の一態様に係る電力供給制御方法は、負荷が接続された電力線に接続された第1電源において交流電圧を生成し、前記交流電圧で規定される第1電力を前記第1電源から前記電力線へ出力し、前記電力線に接続された第2電源において前記電力線を介して前記交流電圧を検出し、前記交流電圧に同期した交流電流で規定される第2電力を前記第2電源から前記電力線へ出力し、前記第1電力を出力する際、前記第1電力の出力量である第1電力出力量の変化に従って、前記交流電圧の周波数を変化させ、前記第2電力を出力する際、前記周波数の変化に従って、前記第2電力の出力量である第2電力出力量を変化させる。 In the power supply control method according to one aspect of the present invention, an alternating voltage is generated in a first power supply connected to a power line to which a load is connected, and the first power defined by the alternating voltage is used as the first power supply. From the second power supply connected to the power line to detect the AC voltage through the power line, and the second power defined by the AC current synchronized with the AC voltage from the second power supply When changing the frequency of the AC voltage according to the change of the first power output amount which is the output amount of the first power when outputting to the power line and outputting the first power, and outputting the second power The second power output amount, which is the output amount of the second power, is changed according to the change of the frequency.
 本発明の一態様に係る分散型電力供給システム等は、複数の電源に対して、電力の出力量を適切に分担することができる。 The distributed power supply system and the like according to one aspect of the present invention can appropriately share the output amount of power with respect to a plurality of power supplies.
図1は、本発明の実施の形態における分散型電力供給システムの構成を示すブロック図である。FIG. 1 is a block diagram showing the configuration of a distributed power supply system according to an embodiment of the present invention. 図2は、本発明の実施の形態における複数のインバータの構成を示すブロック図である。FIG. 2 is a block diagram showing the configuration of a plurality of inverters in the embodiment of the present invention. 図3は、インバータから負荷への電力供給状態の一例を示す模式図である。FIG. 3 is a schematic view showing an example of a power supply state from the inverter to the load. 図4は、2つのインバータから負荷への電力供給状態の一例(第1例)を示す模式図である。FIG. 4 is a schematic view showing an example (first example) of the power supply state from the two inverters to the load. 図5は、2つのインバータから負荷への電力供給状態の一例(第2例)を示す模式図である。FIG. 5 is a schematic view showing an example (second example) of the power supply state from the two inverters to the load. 図6は、2つのインバータから負荷への電力供給状態の一例(第3例)を示す模式図である。FIG. 6 is a schematic view showing an example (third example) of power supply states from two inverters to a load. 図7は、本発明の実施の形態におけるインバータ特性の一例(第1例)を示すグラフである。FIG. 7 is a graph showing an example (first example) of the inverter characteristic according to the embodiment of the present invention. 図8は、本発明の実施の形態におけるインバータ特性の一例(第2例)を示すグラフである。FIG. 8 is a graph showing an example (second example) of the inverter characteristic according to the embodiment of the present invention. 図9は、本発明の実施の形態におけるインバータ特性の一例(第3例)を示すグラフである。FIG. 9 is a graph showing an example (third example) of the inverter characteristic according to the embodiment of the present invention. 図10は、本発明の実施の形態におけるインバータ特性の一例(第4例)を示すグラフである。FIG. 10 is a graph showing an example (fourth example) of the inverter characteristic according to the embodiment of the present invention. 図11は、本発明の実施の形態におけるインバータ特性の一例(第5例)を示すグラフである。FIG. 11 is a graph showing an example (fifth example) of the inverter characteristic according to the embodiment of the present invention. 図12は、本発明の実施の形態におけるインバータ特性の一例(第6例)を示すグラフである。FIG. 12 is a graph showing an example (sixth example) of the inverter characteristic according to the embodiment of the present invention. 図13は、本発明の実施の形態におけるインバータ特性の一例(第7例)を示すグラフである。FIG. 13 is a graph showing an example (seventh example) of the inverter characteristic according to the embodiment of the present invention. 図14は、本発明の実施の形態における分散型電力供給システムの動作を示すフローチャートである。FIG. 14 is a flowchart showing the operation of the distributed power supply system according to an embodiment of the present invention.
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示す。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置および接続形態、動作の順序等は、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素は、任意の構成要素として説明される。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The embodiments described below all show comprehensive or specific examples. Numerical values, shapes, materials, components, arrangement positions and connection forms of components, order of operations, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. In addition, among the components in the following embodiments, components that are not described in the independent claim indicating the highest concept are described as arbitrary components.
 また、以下の説明における第1、第2および第3などの序数は、適宜、付け替えられてもよい。また、以下の説明において、電圧または電流で規定される電力は、電圧または電流で構成される電力と表現されてもよいし、電圧または電流を含む電力と表現されてもよい。 Also, the first, second and third ordinal numbers in the following description may be replaced as appropriate. Also, in the following description, power defined by voltage or current may be expressed as power configured by voltage or current, or may be expressed as power including voltage or current.
 (実施の形態)
 本実施の形態は、複数の電源を備える分散型電力供給システムの構成、および、その動作を示す。まず、図1および図2を用いて、分散型電力供給システムの構成を説明する。
Embodiment
The present embodiment shows the configuration of the distributed power supply system including a plurality of power supplies and the operation thereof. First, the configuration of the distributed power supply system will be described using FIGS. 1 and 2.
 図1は、本実施の形態における分散型電力供給システムの構成を示すブロック図である。図1に示された分散型電力供給システム100は、負荷300に電力を供給するシステムであり、並列に動作する電源110、120、130を備える。 FIG. 1 is a block diagram showing the configuration of the distributed power supply system according to the present embodiment. The distributed power supply system 100 shown in FIG. 1 is a system for supplying power to the load 300, and comprises power supplies 110, 120, 130 operating in parallel.
 電源110は、負荷300に電力を供給する電源であり、インバータ111および電力貯蔵装置112を備える。電源120は、負荷300に電力を供給する電源であり、インバータ121および電力貯蔵装置122を備える。電源130は、負荷300に電力を供給する電源であり、インバータ131を備える。電力貯蔵装置112、122は、それぞれ、任意の構成要素であって、分散型電力供給システム100に含まれなくてもよい。 The power supply 110 is a power supply that supplies power to the load 300, and includes an inverter 111 and a power storage device 112. The power supply 120 is a power supply that supplies power to the load 300, and includes an inverter 121 and a power storage device 122. The power supply 130 is a power supply that supplies power to the load 300, and includes an inverter 131. The power storage devices 112 and 122 are optional components, respectively, and may not be included in the distributed power supply system 100.
 電源110、電源120および電源130は、それぞれ、第1電源、第2電源および第3電源と表現されてもよい。インバータ111、インバータ121およびインバータ131は、それぞれ、第1インバータ、第2インバータおよび第3インバータと表現されてもよい。電力貯蔵装置112および電力貯蔵装置122は、それぞれ、第1電力貯蔵装置および第2電力貯蔵装置と表現されてもよい。 The power source 110, the power source 120, and the power source 130 may be expressed as a first power source, a second power source, and a third power source, respectively. The inverter 111, the inverter 121, and the inverter 131 may be expressed as a first inverter, a second inverter, and a third inverter, respectively. The power storage device 112 and the power storage device 122 may be expressed as a first power storage device and a second power storage device, respectively.
 また、発電機210、220、230、および、負荷300が、分散型電力供給システム100に電気的に接続される。 In addition, the generators 210, 220, 230 and the load 300 are electrically connected to the distributed power supply system 100.
 具体的には、電力線211を介して、発電機210、電力貯蔵装置112およびインバータ111が、互いに接続される。また、電力線221を介して、発電機220、電力貯蔵装置122およびインバータ121が、互いに接続される。また、電力線231を介して、発電機230およびインバータ131が、互いに接続される。また、電力線301を介して、インバータ111、121、131、および、負荷300が、互いに接続される。 Specifically, the generator 210, the power storage device 112, and the inverter 111 are connected to one another via the power line 211. Moreover, the generator 220, the power storage device 122, and the inverter 121 are mutually connected via the power line 221. Further, the generator 230 and the inverter 131 are connected to each other through the power line 231. Further, the inverters 111, 121, 131 and the load 300 are connected to each other through the power line 301.
 発電機210、220、230は、それぞれ、直流電力を生成する発電機であり、例えば、太陽電池または燃料電池等である。具体的には、発電機210は、生成された直流電力をインバータ111および電力貯蔵装置112の一方または両方に電力線211を介して供給する。同様に、発電機220は、生成された直流電力をインバータ121および電力貯蔵装置122の一方または両方に電力線221を介して供給する。発電機230は、生成された直流電力をインバータ131に電力線231を介して供給する。 Each of the generators 210, 220, and 230 is a generator that generates direct current power, and is, for example, a solar cell or a fuel cell. Specifically, the generator 210 supplies the generated DC power to one or both of the inverter 111 and the power storage device 112 through the power line 211. Similarly, the generator 220 supplies the generated DC power to one or both of the inverter 121 and the power storage device 122 via the power line 221. The generator 230 supplies the generated DC power to the inverter 131 via the power line 231.
 発電機210は、分散型電力供給システム100に含まれてもよいし、電源110に含まれてもよい。また、発電機220は、分散型電力供給システム100に含まれてもよいし、電源120に含まれてもよい。また、発電機230は、分散型電力供給システム100に含まれてもよいし、電源130に含まれてもよい。 The generator 210 may be included in the distributed power supply system 100 or may be included in the power supply 110. In addition, the generator 220 may be included in the distributed power supply system 100 or may be included in the power supply 120. In addition, the generator 230 may be included in the distributed power supply system 100 or may be included in the power supply 130.
 なお、発電機210、220、230のそれぞれが、太陽電池または燃料電池等のように自然エネルギーを利用する発電機である場合、並列に動作する電源110、120、130を備える分散型電力供給システム100によって得られる効果は大きい。 When each of the generators 210, 220, 230 is a generator utilizing natural energy such as a solar cell or a fuel cell, a distributed power supply system comprising power supplies 110, 120, 130 operating in parallel. The effect obtained by 100 is great.
 インバータ111、121、131は、それぞれ、直流電力を交流電力に変換するインバータである。 The inverters 111, 121, and 131 are inverters for converting direct current power into alternating current power.
 例えば、インバータ111は、発電機210および電力貯蔵装置112の両方または一方から電力線211を介して直流電力を取得する。インバータ121は、発電機220および電力貯蔵装置122の両方または一方から電力線221を介して直流電力を取得する。インバータ131は、発電機230から電力線231を介して直流電力を取得する。 For example, the inverter 111 obtains DC power from the generator 210 and / or the power storage device 112 via the power line 211. The inverter 121 obtains DC power from the generator 220 and / or the power storage device 122 via the power line 221. The inverter 131 obtains DC power from the generator 230 via the power line 231.
 そして、インバータ111、121、131は、それぞれ、直流電力から交流電力を生成し、生成された交流電力を出力する。出力された交流電力は、電力線301を介して、負荷300に供給される。 Then, the inverters 111, 121, and 131 respectively generate AC power from DC power and output the generated AC power. The output AC power is supplied to the load 300 via the power line 301.
 特に、インバータ111は、電圧制御を行うインバータ(電圧制御インバータ)である。インバータ111は、所定の大きさを有する交流電圧を基準電圧として生成する。例えば、インバータ111は、200(Vrms)の交流電圧を基準電圧として生成する。そして、インバータ111は、基準電圧として生成された交流電圧で規定される交流電力を出力する。すなわち、インバータ111は、生成された交流電圧を交流電力として出力する。 In particular, the inverter 111 is an inverter (voltage control inverter) that performs voltage control. The inverter 111 generates an AC voltage having a predetermined magnitude as a reference voltage. For example, the inverter 111 generates an alternating voltage of 200 (Vrms) as a reference voltage. Then, the inverter 111 outputs AC power defined by the AC voltage generated as the reference voltage. That is, the inverter 111 outputs the generated AC voltage as AC power.
 また、インバータ111から出力される交流電力の周波数は、インバータ111から出力される交流電力の出力量の変化に従って変化する。すなわち、インバータ111は、交流電力の出力量の変化に従って、交流電力の周波数を変化させる。 Further, the frequency of the AC power output from the inverter 111 changes in accordance with the change of the output amount of the AC power output from the inverter 111. That is, the inverter 111 changes the frequency of the AC power in accordance with the change in the output amount of the AC power.
 例えば、インバータ111は、電力線301の電力状態に従って、負荷300に電力が過不足なく供給されるように、交流電力を出力する。その際、インバータ111は、インバータ111が出力する交流電力の出力量に従って周波数を決定する。そして、インバータ111は、決定された周波数に、インバータ111が出力する交流電力の周波数を変化させる。 For example, according to the power state of the power line 301, the inverter 111 outputs AC power so that power can be supplied to the load 300 without excess or deficiency. At that time, the inverter 111 determines the frequency in accordance with the output amount of the AC power output from the inverter 111. Then, the inverter 111 changes the frequency of the AC power output from the inverter 111 to the determined frequency.
 なお、交流電力は、基本的に、交流電圧および交流電流で規定される。また、交流電力を規定する交流電流の周波数は、基本的に、その交流電力を規定する交流電圧の周波数と同じであるため、交流電流の周波数、および、交流電圧の周波数は、交流電力の周波数と表現される場合がある。 AC power is basically defined by AC voltage and AC current. Further, since the frequency of the alternating current defining the alternating current power is basically the same as the frequency of the alternating current voltage defining the alternating current power, the frequency of the alternating current and the frequency of the alternating voltage are the frequencies of the alternating current power It may be expressed as
 また、本実施の形態における出力量は、有効電力の出力量でもよい。インバータ111は、電力線301における電圧を維持するため、無効電力を含む電力を出力する。すなわち、インバータ111が出力する電力は、有効電力と無効電力とを含む。図1において、インバータ111が出力する有効電力は、P1と表現され、インバータ111が出力する無効電力は、Q1と表現される。そして、インバータ111が出力する電力は、P1+jQ1と表現される。ここで、jは、虚数単位を示す。 Further, the output amount in the present embodiment may be an output amount of active power. Inverter 111 outputs power including reactive power to maintain the voltage on power line 301. That is, the power output from the inverter 111 includes active power and reactive power. In FIG. 1, the active power output from the inverter 111 is expressed as P1, and the reactive power output from the inverter 111 is expressed as Q1. And the electric power which inverter 111 outputs is expressed as P1 + jQ1. Here, j represents an imaginary unit.
 また、インバータ121、131は、それぞれ、電流制御を行うインバータ(電流制御インバータ)である。インバータ121、131は、それぞれ、基準電圧として生成された交流電圧に1(100%)の力率で交流電流を重畳することにより、交流電圧に同期した交流電流で規定される交流電力を出力する。すなわち、インバータ121、131は、交流電圧に同期した交流電流を交流電力として出力する。 The inverters 121 and 131 are inverters (current control inverters) that perform current control. The inverters 121 and 131 each output AC power defined by AC current synchronized with AC voltage by superimposing AC current with a power factor of 1 (100%) on AC voltage generated as a reference voltage. . That is, the inverters 121 and 131 output an alternating current synchronized with the alternating voltage as alternating current power.
 なお、インバータ121、131は、交流電圧の同期制御を行う。したがって、インバータ121、131から出力される交流電力を規定する交流電圧は、インバータ111から出力される交流電力を規定する交流電圧に等しい。また、交流電流を重畳する際の力率は、1(100%)に限らず、所定の力率以上でもよい。例えば、交流電流を重畳する際の力率は、0.9(90%)以上でもよい。 The inverters 121 and 131 perform synchronous control of alternating voltage. Therefore, the AC voltage defining the AC power output from the inverters 121 and 131 is equal to the AC voltage defining the AC power output from the inverter 111. Moreover, the power factor at the time of superimposing alternating current is not limited to 1 (100%), and may be a predetermined power factor or more. For example, the power factor at the time of superimposing alternating current may be 0.9 (90%) or more.
 また、インバータ121から出力される交流電力の出力量は、インバータ121から出力される交流電力の周波数の変化に従って変化する。すなわち、インバータ121は、交流電力の周波数の変化に従って、交流電力の出力量を変化させる。 Further, the output amount of the AC power output from the inverter 121 changes according to the change of the frequency of the AC power output from the inverter 121. That is, the inverter 121 changes the output amount of AC power in accordance with the change of the frequency of AC power.
 例えば、インバータ121は、インバータ111が出力する交流電力の周波数に従って、インバータ121が出力する交流電力の出力量を決定する。そして、インバータ121は、決定された出力量で、交流電力を出力する。 For example, the inverter 121 determines the output amount of the AC power output from the inverter 121 according to the frequency of the AC power output from the inverter 111. Then, the inverter 121 outputs AC power with the determined output amount.
 具体的には、インバータ121は、電力線301における交流電圧を検出する。そして、インバータ121は、検出された交流電圧の周波数に従って、出力量を決定する。そして、インバータ121は、検出された交流電圧に同期した交流電流で規定される交流電力を出力する。その際、インバータ121は、周波数に従って決定された出力量で交流電力を出力する。すなわち、インバータ121は、周波数に従って決定された出力量が得られるように、交流電圧に交流電流を重畳する。 Specifically, inverter 121 detects an alternating voltage on power line 301. Then, the inverter 121 determines the output amount according to the frequency of the detected AC voltage. Then, the inverter 121 outputs AC power defined by the AC current synchronized with the detected AC voltage. At this time, the inverter 121 outputs AC power with an output amount determined according to the frequency. That is, the inverter 121 superimposes alternating current on alternating voltage so that an output amount determined according to the frequency can be obtained.
 インバータ131も、インバータ121と同様に動作する。また、上記の通り、出力量は、有効電力の出力量でもよい。インバータ121、131は、それぞれ、交流電圧に1(100%)の力率で交流電流を重畳するため、無効電力を出力せずに、有効電力を出力する。図1において、インバータ121が出力する有効電力は、P2と表現され、インバータ131が出力する有効電力は、P3と表現される。 The inverter 131 also operates in the same manner as the inverter 121. Further, as described above, the output amount may be an output amount of active power. The inverters 121 and 131 each superimpose an alternating current on the alternating voltage with a power factor of 1 (100%), and therefore output active power without outputting reactive power. In FIG. 1, the active power output from the inverter 121 is expressed as P2, and the active power output from the inverter 131 is expressed as P3.
 電力貯蔵装置112、122は、それぞれ、電力を貯蔵するための装置であり、例えば、蓄電池(二次電池)である。電力貯蔵装置112、122は、それぞれ、キャパシタでもよい。例えば、電力貯蔵装置112は、発電機210から供給された電力を貯蔵し、貯蔵された電力をインバータ111に供給する。また、電力貯蔵装置122は、発電機220から供給された電力を貯蔵し、貯蔵された電力をインバータ121に供給する。 Each of the power storage devices 112 and 122 is a device for storing power, and is, for example, a storage battery (secondary battery). The power storage devices 112, 122 may each be capacitors. For example, the power storage device 112 stores the power supplied from the generator 210 and supplies the stored power to the inverter 111. The power storage device 122 also stores the power supplied from the generator 220 and supplies the stored power to the inverter 121.
 電力貯蔵装置112または電力貯蔵装置122を充電させる充電器が分散型電力供給システム100に含まれてもよい。例えば、電力貯蔵装置112を充電させるための充電器が、電力線211に設置されてもよい。あるいは、このような充電器は、電力貯蔵装置112に含まれていてもよい。同様に、電力貯蔵装置122を充電させるための充電器が、電力線221に設置されてもよい。あるいは、このような充電器は、電力貯蔵装置122に含まれていてもよい。 A charger for charging the power storage device 112 or the power storage device 122 may be included in the distributed power supply system 100. For example, a charger for charging the power storage device 112 may be installed on the power line 211. Alternatively, such a charger may be included in the power storage device 112. Similarly, a charger for charging the power storage device 122 may be installed on the power line 221. Alternatively, such a charger may be included in the power storage device 122.
 電源110、120は、電力貯蔵装置112、122を備えることにより、負荷300に対して、安定して電力を供給することができる。特に、電源110は、電力貯蔵装置112を備えることにより、継続して電圧源として動作することができる。 The power supplies 110 and 120 can stably supply power to the load 300 by including the power storage devices 112 and 122. In particular, the power supply 110 can operate continuously as a voltage source by providing the power storage device 112.
 負荷300は、電力を使用(消費)する機器または設備等であり、例えば、家電機器、住宅設備または工場設備である。負荷300には、複数の機器または複数の設備等が含まれてもよい。特に、負荷300は、大規模な発電所から電力が供給されていない無電化地域における複数の機器または複数の設備等でもよい。すなわち、分散型電力供給システム100は、このような無電化地域の負荷300に、電力を供給してもよい。 The load 300 is an apparatus or facility that uses (consumes) power, and is, for example, a home appliance, a home facility, or a factory facility. The load 300 may include a plurality of devices or a plurality of facilities. In particular, the load 300 may be a plurality of devices or a plurality of facilities in a non-electrified area where power is not supplied from a large-scale power plant. That is, the distributed power supply system 100 may supply power to such a non-electrified area load 300.
 図1では、負荷300に、P+jQの電力が供給される。Pは、有効電力を示し、Qは、無効電力を示す。Pは、電源110、120、130からの有効電力の合計に等しい。したがって、P=P1+P2+P3が成立する。Qは、電源110からの無効電力に等しい。したがって、Q=Q1が成立する。負荷300において、無効電力は使用されず、有効電力が使用される。 In FIG. 1, the load 300 is supplied with P + jQ power. P indicates active power, and Q indicates reactive power. P is equal to the sum of the active powers from the power supplies 110, 120, 130. Therefore, P = P1 + P2 + P3 is established. Q is equal to reactive power from the power supply 110. Therefore, Q = Q1 is established. In the load 300, reactive power is not used, and active power is used.
 電力線211、221、231、301のそれぞれは、電力が送信される通路である。電力線211、221、231、301のそれぞれは、物理的な1つのケーブルに限られず、複数の導体の結合を含む電力線でもよいし、電力網でもよい。特に、電力線211、221、301のそれぞれは、分岐を有する電力線である。また、電力線211、221、231、301のそれぞれは、有線に限られない。電力線211、221、231、301に関して、非接触電力伝送の技術が適用されてもよい。 Each of the power lines 211, 221, 231, and 301 is a passage through which power is transmitted. Each of the power lines 211, 221, 231, and 301 is not limited to one physical cable, but may be a power line including coupling of a plurality of conductors or a power network. In particular, each of the power lines 211, 221, 301 is a power line having a branch. Moreover, each of the power lines 211, 221, 231, and 301 is not limited to wired. The technology of contactless power transfer may be applied to the power lines 211, 221, 231, and 301.
 なお、図1には、3つの電源110、120、130が示されているが、電源の数は3つでなくてもよい。電源の数は、2つでもよいし、4つ以上でもよい。特に、電源120、130のそれぞれは、任意の構成要素であって、分散型電力供給システム100に含まれなくてもよい。 Although three power supplies 110, 120 and 130 are shown in FIG. 1, the number of power supplies may not be three. The number of power supplies may be two or four or more. In particular, each of the power supplies 120, 130 may be optional components and not included in the distributed power supply system 100.
 図2は、図1に示されたインバータ111、121、131の構成を示すブロック図である。インバータ111は、電圧制御を行うインバータであり、電圧源として動作する。具体的には、インバータ111は、制御部115、記憶部116および検出部117を備える。インバータ111における各構成要素は、例えば、電気的な回路である。 FIG. 2 is a block diagram showing the configuration of inverters 111, 121, 131 shown in FIG. The inverter 111 is an inverter that performs voltage control and operates as a voltage source. Specifically, the inverter 111 includes a control unit 115, a storage unit 116, and a detection unit 117. Each component in the inverter 111 is, for example, an electrical circuit.
 制御部115は、インバータ111の動作を制御する。例えば、制御部115は、交流電圧を生成し、交流電圧で規定される電力を出力する。記憶部116は、情報を記憶する。例えば、記憶部116は、出力量と周波数との関係を記憶する。検出部117は、電力線301の電力状態を検出する。 The control unit 115 controls the operation of the inverter 111. For example, the control unit 115 generates an alternating voltage and outputs power specified by the alternating voltage. The storage unit 116 stores information. For example, the storage unit 116 stores the relationship between the output amount and the frequency. The detection unit 117 detects the power state of the power line 301.
 例えば、検出部117は、電力線301の電圧および電流を検出する。また、検出部117は、インバータ111から出力された電力の出力量を検出してもよい。さらに、検出部117は、電力貯蔵装置112との通信などによって、電力貯蔵装置112の充電状態(SOC:State Of Charge)を検出してもよい。インバータ111は、電力線301の電力状態を検出する電力状態検出部と、電力貯蔵装置112の充電状態を検出する充電状態検出部とを別々に備えてもよい。 For example, the detection unit 117 detects the voltage and current of the power line 301. In addition, the detection unit 117 may detect the output amount of the power output from the inverter 111. Furthermore, the detection unit 117 may detect the state of charge (SOC) of the power storage device 112 by communication with the power storage device 112 or the like. The inverter 111 may separately include a power state detection unit that detects the power state of the power line 301 and a charge state detection unit that detects the charge state of the power storage device 112.
 また、例えば、制御部115は、検出部117における検出結果に基づいて、インバータ111が出力する交流電力の出力量を導出する。そして、制御部115は、導出された出力量に従って、周波数を決定する。その際、制御部115は、記憶部116に記憶された関係を参照し、出力量に対応付けられた周波数を特定することにより、周波数を決定する。そして、制御部115は、決定された周波数を有する交流電圧を生成し、生成された交流電圧で規定される交流電力を出力する。 Also, for example, the control unit 115 derives the output amount of the AC power output from the inverter 111 based on the detection result of the detection unit 117. Then, the control unit 115 determines the frequency according to the derived output amount. At this time, the control unit 115 refers to the relationship stored in the storage unit 116, and determines the frequency by specifying the frequency associated with the output amount. Then, control unit 115 generates an AC voltage having the determined frequency, and outputs AC power defined by the generated AC voltage.
 これにより、インバータ111は、基準電圧を生成し、基準電圧で規定される交流電力を出力する。また、インバータ111は、有効電力と無効電力とを含む交流電力を出力する。また、インバータ111は、交流電力の出力量に従って、交流電力の周波数を変化させる。 Thus, the inverter 111 generates a reference voltage and outputs AC power defined by the reference voltage. The inverter 111 also outputs AC power including active power and reactive power. Moreover, the inverter 111 changes the frequency of alternating current power according to the output amount of alternating current power.
 なお、制御部115は、いわゆるフィードバック制御のように、インバータ111から出力された交流電力の出力量に従って、インバータ111が出力する交流電力の周波数を変化させてもよい。また、記憶部116の情報によらず、制御部115の回路により、交流電力の周波数は、交流電力の出力量の変化に従って変化してもよい。 The control unit 115 may change the frequency of the AC power output from the inverter 111 according to the output amount of AC power output from the inverter 111, as in the so-called feedback control. Further, regardless of the information in the storage unit 116, the frequency of the AC power may be changed according to the change in the output amount of the AC power by the circuit of the control unit 115.
 インバータ121は、電流制御を行うインバータであり、基準電圧に対して電流を重畳する。インバータ121は、制御部125、記憶部126および検出部127を備える。インバータ111における構成要素と同様、インバータ121における各構成要素は、例えば、電気的な回路である。 The inverter 121 is an inverter that performs current control, and superimposes a current on a reference voltage. The inverter 121 includes a control unit 125, a storage unit 126, and a detection unit 127. Similar to the components in the inverter 111, each component in the inverter 121 is, for example, an electrical circuit.
 制御部125は、インバータ121の動作を制御する。例えば、制御部125は、交流電圧に同期した交流電流で規定される電力を出力する。記憶部126は、情報を記憶する。例えば、記憶部126は、出力量と周波数との関係を記憶する。検出部127は、電力線301の電力状態を検出する。 Control unit 125 controls the operation of inverter 121. For example, the control unit 125 outputs the power defined by the alternating current synchronized with the alternating voltage. The storage unit 126 stores information. For example, the storage unit 126 stores the relationship between the output amount and the frequency. Detection unit 127 detects the power state of power line 301.
 例えば、検出部127は、電力線301の電圧および電流を検出する。より具体的には、検出部127は、電力線301における交流電圧の周波数を検出する。さらに、検出部127は、電力貯蔵装置122との通信などによって、電力貯蔵装置122の充電状態を検出してもよい。インバータ121は、電力線301の電力状態を検出する電力状態検出部と、電力貯蔵装置122の充電状態を検出する充電状態検出部とを別々に備えてもよい。 For example, the detection unit 127 detects the voltage and current of the power line 301. More specifically, detection unit 127 detects the frequency of the AC voltage on power line 301. Furthermore, the detection unit 127 may detect the charge state of the power storage device 122 by communication with the power storage device 122 or the like. The inverter 121 may separately include a power state detection unit that detects the power state of the power line 301 and a charge state detection unit that detects the charge state of the power storage device 122.
 また、例えば、制御部125は、検出部127における検出結果に基づいて、基準電圧である交流電圧の周波数、位相および振幅を導出する。そして、制御部125は、交流電圧の周波数に従って、インバータ121が出力する交流電力の出力量を決定する。その際、制御部125は、記憶部126に記憶された関係を参照し、周波数に対応付けられた出力量を特定することにより、出力量を決定する。 Also, for example, the control unit 125 derives the frequency, phase, and amplitude of the AC voltage that is the reference voltage based on the detection result of the detection unit 127. And control part 125 determines the amount of output of exchange electric power which inverter 121 outputs according to a frequency of exchange voltage. At this time, the control unit 125 refers to the relationship stored in the storage unit 126, and determines the output amount by specifying the output amount associated with the frequency.
 また、制御部125は、交流電圧の周波数および位相に基づいて、交流電圧に同期した交流電流を生成し、生成された交流電流で規定される交流電力を出力する。その際、制御部125は、決定された出力量を有する交流電力を出力する。すなわち、制御部125は、決定された出力量を有する交流電力が得られるように、交流電圧に交流電流を重畳する。 In addition, the control unit 125 generates an alternating current synchronized with the alternating voltage based on the frequency and phase of the alternating voltage, and outputs alternating current power defined by the generated alternating current. At this time, the control unit 125 outputs AC power having the determined output amount. That is, the control unit 125 superimposes the alternating current on the alternating voltage so that the alternating current power having the determined output amount can be obtained.
 これにより、インバータ121は、基準電圧に1(100%)の力率で交流電流を重畳させる。すなわち、インバータ121は、無効電力を出力せずに、有効電力を出力する。また、インバータ121は、交流電力の周波数に従って、交流電力の出力量を変化させる。 Thereby, the inverter 121 superimposes alternating current on the reference voltage with a power factor of 1 (100%). That is, the inverter 121 outputs active power without outputting reactive power. Moreover, the inverter 121 changes the output amount of alternating current power according to the frequency of alternating current power.
 なお、制御部125は、いわゆるフィードバック制御のように、インバータ121から出力された交流電力の周波数に従って、インバータ121が出力する交流電力の出力量を変化させてもよい。また、記憶部126の情報によらず、制御部125の回路により、交流電力の出力量は、交流電力の周波数の変化に従って変化してもよい。 Control part 125 may change the amount of output of exchange electric power which inverter 121 outputs according to a frequency of exchange electric power outputted from inverter 121 like so-called feedback control. Further, regardless of the information of the storage unit 126, the output amount of the AC power may be changed according to the change of the frequency of the AC power by the circuit of the control unit 125.
 インバータ131は、電流制御を行うインバータであり、基準電圧に対して電流を重畳する。インバータ131は、制御部135、記憶部136および検出部137を備える。インバータ121における構成要素と同様、インバータ131における各構成要素は、例えば、電気的な回路である。 The inverter 131 is an inverter that performs current control, and superimposes a current on a reference voltage. The inverter 131 includes a control unit 135, a storage unit 136, and a detection unit 137. Similar to the components of the inverter 121, each component of the inverter 131 is, for example, an electrical circuit.
 また、インバータ131における各構成要素は、インバータ121において対応する構成要素と同様に動作する。ただし、図1の例において、電源130に電力貯蔵装置が含まれていないため、検出部137は、電力貯蔵装置の充電状態を検出しない。 Also, each component in inverter 131 operates in the same manner as the corresponding component in inverter 121. However, in the example of FIG. 1, since the power storage device is not included in the power supply 130, the detection unit 137 does not detect the charge state of the power storage device.
 図2におけるインバータ111、121、131のそれぞれの構成は、一例であり、適宜変更されてもよい。 The configuration of each of the inverters 111, 121, and 131 in FIG. 2 is an example, and may be changed as appropriate.
 図1および図2に示された構成において、インバータ111、121、131は、並列運転し、周波数を用いて、電力の出力量を適切に分担する。このような構成が用いられない場合、電力の出力量を適切に分担することは困難である。以下、図3~図6を用いて、分担が困難であることを説明する。 In the configuration shown in FIGS. 1 and 2, the inverters 111, 121, and 131 operate in parallel, and use frequencies to appropriately share the amount of output of power. If such a configuration is not used, it is difficult to appropriately share the amount of power output. The difficulty in sharing will be described below with reference to FIGS. 3 to 6.
 図3は、インバータから負荷への電力供給状態の一例を示す模式図である。図3には、電圧制御を行うインバータ401と負荷500とが示されている。インバータ401と負荷500とは、電力線を介して互いに接続されている。また、基準電圧は、200(Vrms)であり、インバータ401は、200(Vrms)の交流電圧を生成する。負荷500は、20(Ω)の抵抗を有する。 FIG. 3 is a schematic view showing an example of a power supply state from the inverter to the load. The inverter 401 and the load 500 which perform voltage control are shown by FIG. The inverter 401 and the load 500 are connected to each other via a power line. The reference voltage is 200 (Vrms), and the inverter 401 generates an AC voltage of 200 (Vrms). The load 500 has a resistance of 20 (Ω).
 この場合、インバータ401は、200(Vrms)/20(Ω)=10(A)の電流で規定される電力を出力する。すなわち、インバータ401は、10(A)×200(Vrms)=2(kW)の電力(有効電力)を出力する。 In this case, the inverter 401 outputs power defined by the current of 200 (Vrms) / 20 (Ω) = 10 (A). That is, the inverter 401 outputs power (active power) of 10 (A) × 200 (Vrms) = 2 (kW).
 図3の例では、1つのインバータ401が負荷500に電力を供給するため、電力の出力量を分担しなくてもよい。インバータ401は、電力の出力量を分担することなく、負荷500に対して適切な電力を供給することができる。 In the example of FIG. 3, since one inverter 401 supplies power to the load 500, it is not necessary to share the output amount of power. The inverter 401 can supply appropriate power to the load 500 without sharing the output amount of power.
 図4~図6のそれぞれは、2つのインバータから負荷への電力供給状態の一例を示す模式図である。図4~図6のそれぞれには、電圧制御を行うインバータ401と、電流制御を行うインバータ402と、負荷500とが示されている。インバータ401とインバータ402と負荷500とは、電力線を介して互いに接続されている。 Each of FIGS. 4 to 6 is a schematic view showing an example of a state of power supply from two inverters to a load. Each of FIGS. 4 to 6 shows an inverter 401 that performs voltage control, an inverter 402 that performs current control, and a load 500. The inverter 401, the inverter 402, and the load 500 are connected to one another via a power line.
 また、図3の例と同様に、基準電圧は、200(Vrms)であり、インバータ401は、200(Vrms)の交流電圧を生成する。負荷500は、20(Ω)の抵抗を有する。 Further, as in the example of FIG. 3, the reference voltage is 200 (Vrms), and the inverter 401 generates an AC voltage of 200 (Vrms). The load 500 has a resistance of 20 (Ω).
 インバータ402は、基準電圧に電流を重畳させる。したがって、インバータ402は、交流電圧を基準電圧として生成するインバータ401と一緒に動作する。 The inverter 402 superimposes a current on the reference voltage. Thus, the inverter 402 operates in conjunction with the inverter 401 which generates an alternating voltage as a reference voltage.
 この場合、インバータ401とインバータ402とが、合計で10(A)の電流を出力する。すなわち、インバータ401とインバータ402とが、合計で2(kW)の電力(有効電力)を出力する。これにより、負荷500に対して適切な電力が供給される。しかし、インバータ401が出力する電力の出力量、および、インバータ402が出力する電力の出力量は、唯一に特定されない。 In this case, the inverter 401 and the inverter 402 output a current of 10 (A) in total. That is, the inverter 401 and the inverter 402 output a total of 2 (kW) of power (active power). Thereby, appropriate power is supplied to the load 500. However, the output amount of power output from the inverter 401 and the output amount of power output from the inverter 402 are not uniquely identified.
 例えば、図4の例では、インバータ401からの電流の大きさが10(A)であり、インバータ402からの電流の大きさが0(A)である。つまり、インバータ401からの電力の出力量が2(kW)であり、インバータ402からの電力の出力量が0(kW)である。 For example, in the example of FIG. 4, the magnitude of the current from the inverter 401 is 10 (A), and the magnitude of the current from the inverter 402 is 0 (A). That is, the output amount of power from the inverter 401 is 2 (kW), and the output amount of power from the inverter 402 is 0 (kW).
 また、図5の例では、インバータ401からの電流の大きさが0(A)であり、インバータ402からの電流の大きさが10(A)である。つまり、インバータ401からの電力の出力量が0(kW)であり、インバータ402からの電力の出力量が2(kW)である。 Further, in the example of FIG. 5, the magnitude of the current from the inverter 401 is 0 (A), and the magnitude of the current from the inverter 402 is 10 (A). That is, the output amount of power from the inverter 401 is 0 (kW), and the output amount of power from the inverter 402 is 2 (kW).
 また、図6の例では、インバータ401からの電流の大きさが-10(A)であり、インバータ402からの電流の大きさが20(A)である。つまり、インバータ401からの電力の出力量が-2(kW)であり、インバータ402からの電力の出力量が4(kW)である。 Further, in the example of FIG. 6, the magnitude of the current from the inverter 401 is -10 (A), and the magnitude of the current from the inverter 402 is 20 (A). That is, the output amount of power from the inverter 401 is −2 (kW), and the output amount of power from the inverter 402 is 4 (kW).
 図4~図6のいずれの場合においても、負荷500に対して過不足なく電力が供給される。しかし、いずれの場合においても、インバータ401、402の出力量に偏りが生じている。このように、インバータ401、402のそれぞれが、負荷500に対して釣り合いの取れた電力を供給しようとする場合、これらの応答性能に応じて、これらの出力量に偏りが生じる可能性がある。すなわち、複数のインバータが電力の出力量を適切に分担することは、容易ではない。 Power is supplied to the load 500 without excess or deficiency in any case of FIGS. However, in either case, the output amounts of the inverters 401 and 402 are biased. As described above, when each of the inverters 401 and 402 tries to supply balanced power to the load 500, a deviation may occur in the amount of these outputs according to their response performance. That is, it is not easy for the plurality of inverters to appropriately share the output amount of power.
 そこで、図1および図2に示されたインバータ111、121、131は、周波数を用いて、電力の出力量を適切に分担する。次に、図7~図13を用いて、インバータ111、121、131の特性(インバータ特性)に関する複数の例を説明する。 Therefore, the inverters 111, 121, and 131 shown in FIG. 1 and FIG. 2 appropriately share the output amount of power using frequencies. Next, with reference to FIGS. 7 to 13, a plurality of examples regarding the characteristics (inverter characteristics) of the inverters 111, 121, 131 will be described.
 図7は、図1に示されたインバータ111の特性の一例を示すグラフである。具体的には、図7の太線601が、インバータ111の特性を示す。図7の例において、インバータ111は、交流電力(有効電力)の出力量が大きいほど交流電力の周波数が小さいという特性を有する。つまり、インバータ111は、出力量が増加した場合、周波数を下げる。逆に、インバータ111は、出力量が減少した場合、周波数を上げる。例えば、図7に示された特性は、式1によって表現される。 FIG. 7 is a graph showing an example of the characteristic of the inverter 111 shown in FIG. Specifically, a thick line 601 in FIG. 7 indicates the characteristics of the inverter 111. In the example of FIG. 7, the inverter 111 has a characteristic that the frequency of the AC power is smaller as the output amount of the AC power (active power) is larger. That is, the inverter 111 lowers the frequency when the amount of output increases. Conversely, the inverter 111 raises the frequency when the amount of output decreases. For example, the characteristic shown in FIG.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、Fは、周波数を示し、Pは、出力量を示す。Fは、出力量が0である場合における周波数である基準周波数を示す。Fは、周波数の変化範囲における最小値を示し、Fは、周波数の変化範囲における最大値を示す。Pは、出力量の変化範囲における最大値を示し、Pは、出力量の変化範囲における最小値を示す。 Here, F indicates a frequency and P indicates an output amount. F 0 indicates a reference frequency which is a frequency when the output amount is zero. F L indicates the minimum value in the frequency change range, and F H indicates the maximum value in the frequency change range. P G indicates the maximum value in the change range of the output amount, and P S indicates the minimum value in the change range of the output amount.
 特に、図7の例では、F=F、P=0である。したがって、図7に示された特性は、さらに、式2によって表現される。 In particular, in the example of FIG. 7, F H = F 0 and P S = 0. Therefore, the characteristic shown in FIG. 7 is further expressed by Equation 2.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 具体的には、F=50.0(Hz)、F=47.5(Hz)、P=2(kW)である。したがって、周波数と出力量との関係は式3によって表現される。インバータ111は、式3を用いて、出力量から周波数を導出することができる。 Specifically, F 0 = 50.0 (Hz), F L = 47.5 (Hz), P G = 2 (kW). Therefore, the relationship between the frequency and the amount of output is expressed by Equation 3. The inverter 111 can derive the frequency from the output amount using Equation 3.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 図8は、図1に示されたインバータ121、131の共通の特性の一例を示すグラフである。具体的には、図8の太線602が、インバータ121、131の共通の特性を示す。図8の例において、インバータ121、131は、交流電力の周波数が小さいほど交流電力(有効電力)の出力量が大きいという特性を有する。つまり、インバータ121、131は、周波数が下がった場合、出力量を増加させる。逆に、インバータ121、131は、周波数が上がった場合、出力量を減少させる。 FIG. 8 is a graph showing an example of the common characteristic of the inverters 121 and 131 shown in FIG. Specifically, a thick line 602 in FIG. 8 indicates the common characteristic of the inverters 121 and 131. In the example of FIG. 8, the inverters 121 and 131 have the characteristic that the output amount of the AC power (active power) is larger as the frequency of the AC power is smaller. That is, the inverters 121 and 131 increase the output amount when the frequency decreases. Conversely, when the frequency rises, the inverters 121 and 131 reduce the amount of output.
 図8に示された特性は、図7に示された特性と同様であるため、式1~式3と同様に表現される。式1~3を変形することにより、周波数から出力量を導出するための式である式4~6が得られる。 Since the characteristics shown in FIG. 8 are similar to the characteristics shown in FIG. 7, they are expressed in the same manner as Equations 1 to 3. By transforming Equations 1 to 3, Equations 4 to 6 which are equations for deriving the output amount from the frequency can be obtained.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 特に、図8に示された特性を有するインバータ121、131は、式6を用いて、周波数から出力量を導出することができる。 In particular, the inverters 121 and 131 having the characteristics shown in FIG. 8 can derive the output amount from the frequency using Equation 6.
 例えば、負荷300が3(kW)の電力を使用する場合、インバータ111、121、131は、図7および図8に示された特性に従って、以下のように動作する。 For example, when the load 300 uses power of 3 (kW), the inverters 111, 121, 131 operate as follows according to the characteristics shown in FIGS. 7 and 8.
 まず、負荷300に対して電力を供給するため、インバータ111から出力される電力の出力量が0(kW)から増加する。出力量の増加に従って、インバータ111から出力される電力の周波数が50(Hz)から低下する。周波数の低下に従って、インバータ121、131から出力される電力の出力量が0(kW)から増加する。 First, in order to supply power to the load 300, the output amount of the power output from the inverter 111 increases from 0 (kW). As the amount of output increases, the frequency of the power output from the inverter 111 decreases from 50 (Hz). As the frequency decreases, the output amount of the power output from the inverters 121 and 131 increases from 0 (kW).
 インバータ111から出力される電力の出力量が1(kW)に増加した場合、周波数が48.75(Hz)に低下する。そして、周波数が48.75(Hz)に低下した場合、インバータ121、131のそれぞれから出力される電力の出力量が1(kW)に増加する。すなわち、周波数が48.75(Hz)である場合、インバータ111、121、131のそれぞれから出力される電力の出力量は1(kW)である。 When the output amount of the power output from the inverter 111 increases to 1 (kW), the frequency decreases to 48.75 (Hz). When the frequency decreases to 48.75 (Hz), the output amount of the power output from each of the inverters 121 and 131 increases to 1 (kW). That is, when the frequency is 48.75 (Hz), the output amount of the power output from each of the inverters 111, 121, and 131 is 1 (kW).
 これにより、負荷300の電力の使用量と、インバータ111、121、131から出力される電力の出力量とが釣り合う。そして、全体の出力量が、インバータ111、121、131に対して適切に分担される。 Thereby, the usage amount of the power of the load 300 and the output amount of the power output from the inverters 111, 121, 131 are balanced. Then, the entire output amount is appropriately shared to the inverters 111, 121, and 131.
 図7および図8において示された特性は、インバータ111、121、131の特性の一例であり、インバータ111、121、131の特性は、適宜変更されてもよい。 The characteristics shown in FIGS. 7 and 8 are examples of the characteristics of the inverters 111, 121, 131, and the characteristics of the inverters 111, 121, 131 may be changed as appropriate.
 例えば、図7における出力量の変化量と周波数の変化量との比(出力量の変化量に対する周波数の変化量の傾き)、および、図8における出力量の変化量と周波数の変化量との比(出力量の変化量に対する周波数の変化量の傾き)は、互いに等しい。しかし、インバータ111における出力量の変化量と周波数の変化量との比、および、インバータ121、131における出力量の変化量と周波数の変化量との比は、互いに異なっていてもよい。 For example, the ratio of the variation of the output to the variation of the frequency in FIG. 7 (the slope of the variation of the frequency relative to the variation of the output), and the variation of the output and the variation of the frequency in FIG. The ratios (slopes of the amount of change of frequency to the amount of change of output amount) are equal to one another. However, the ratio between the change amount of the output amount in the inverter 111 and the change amount of the frequency, and the ratio between the change amount of the output amount in the inverters 121 and 131 and the change amount of the frequency may be different from each other.
 具体的には、インバータ121、131は、図8に示された特性の代わりに図9に示される特性を有してもよい。 Specifically, inverters 121 and 131 may have the characteristics shown in FIG. 9 instead of the characteristics shown in FIG.
 図9は、図1に示されたインバータ121、131の共通の特性の一例を示すグラフである。具体的には、図9の太線603が、インバータ121、131の共通の特性を示す。図9の例では、周波数の変化に対する出力量の変化の割合が図7の例よりも小さい。したがって、インバータ121、131のそれぞれの出力量は、インバータ111の出力量よりも小さい。 FIG. 9 is a graph showing an example of common characteristics of the inverters 121 and 131 shown in FIG. Specifically, a thick line 603 in FIG. 9 indicates the common characteristic of the inverters 121 and 131. In the example of FIG. 9, the ratio of the change of the output amount to the change of the frequency is smaller than that of the example of FIG. Therefore, the output amount of each of the inverters 121 and 131 is smaller than the output amount of the inverter 111.
 例えば、負荷300が3(kW)の電力を使用する場合、図7および図9に示された特性に従って、48.125(Hz)の周波数において、負荷300の電力の使用量と、インバータ111、121、131からの電力の出力量とが釣り合う。具体的には、48.125(Hz)の周波数において、インバータ111からの出力量は1.5(kW)であり、インバータ121、131のそれぞれからの出力量は0.75(kW)である。 For example, when the load 300 uses a power of 3 (kW), the power consumption of the load 300 and the inverter 111 at a frequency of 48.125 (Hz) according to the characteristics shown in FIG. 7 and FIG. The amount of output of power from 121 and 131 is balanced. Specifically, at a frequency of 48.125 (Hz), the amount of output from the inverter 111 is 1.5 (kW), and the amount of output from each of the inverters 121 and 131 is 0.75 (kW) .
 図9の例では、インバータ121、131のそれぞれの出力量が、インバータ111の出力量よりも小さくなるように、インバータ121、131の特性が変更されている。しかし、インバータ121、131のそれぞれの出力量が、インバータ111の出力量よりも大きくなるように、インバータ121、131の特性が変更されてもよい。 In the example of FIG. 9, the characteristics of the inverters 121 and 131 are changed such that the amount of output of each of the inverters 121 and 131 is smaller than the amount of output of the inverter 111. However, the characteristics of the inverters 121 and 131 may be changed such that the output amount of each of the inverters 121 and 131 is larger than the output amount of the inverter 111.
 また、インバータ111の出力量が、インバータ121、131のそれぞれの出力量よりも小さくなるように、インバータ111の特性が変更されてもよい。また、インバータ111の出力量が、インバータ121、131のそれぞれの出力量よりも大きくなるように、インバータ111の特性が変更されてもよい。 Also, the characteristic of the inverter 111 may be changed such that the output amount of the inverter 111 is smaller than the output amount of each of the inverters 121 and 131. Also, the characteristic of the inverter 111 may be changed such that the output amount of the inverter 111 is larger than the output amount of each of the inverters 121 and 131.
 また、インバータ121の特性と、インバータ131の特性とが、互いに異なるように、変更されてもよい。 Also, the characteristics of the inverter 121 and the characteristics of the inverter 131 may be changed to be different from each other.
 図10は、図1に示されたインバータ121、131の特性の一例を示すグラフである。具体的には、図10の太線604が、インバータ121の特性を示す。また、図10の太線605が、インバータ131の特性を示す。なお、50(Hz)以上の周波数では、インバータ121の特性と、インバータ131の特性とは、互いに一致している。 FIG. 10 is a graph showing an example of the characteristics of the inverters 121 and 131 shown in FIG. Specifically, a thick line 604 in FIG. 10 indicates the characteristics of the inverter 121. A thick line 605 in FIG. 10 indicates the characteristics of the inverter 131. At a frequency of 50 (Hz) or more, the characteristics of the inverter 121 and the characteristics of the inverter 131 match each other.
 インバータ121における周波数の変化に対する出力量の変化の割合は、インバータ131における周波数の変化に対する出力量の変化の割合よりも小さい。したがって、インバータ121の出力量は、インバータ131の出力量よりも小さい。 The rate of change of the output amount to the change of frequency in the inverter 121 is smaller than the rate of change of the output amount to the change of frequency in the inverter 131. Therefore, the output amount of the inverter 121 is smaller than the output amount of the inverter 131.
 例えば、負荷300が3(kW)の電力を使用する場合、図7および図10に示された特性に従って、48.75(Hz)の周波数において、負荷300の電力の使用量と、インバータ111、121、131からの電力の出力量とが釣り合う。具体的には、48.75(Hz)の周波数において、インバータ111の出力量は1(kW)であり、インバータ121の出力量は0.5(kW)であり、インバータ131の出力量は1.5(kW)である。 For example, when the load 300 uses power of 3 (kW), the power consumption of the load 300 and the inverter 111 at a frequency of 48.75 (Hz) according to the characteristics shown in FIG. 7 and FIG. The amount of output of power from 121 and 131 is balanced. Specifically, at a frequency of 48.75 (Hz), the output amount of the inverter 111 is 1 (kW), the output amount of the inverter 121 is 0.5 (kW), and the output amount of the inverter 131 is 1 .5 (kW).
 電源120よりも電源130を用いた方が電力貯蔵装置122の充放電が抑制される。したがって、電源130が優先的に用いられるように、図10の例が適用されてもよい。これにより、電力貯蔵装置122の充放電が抑制され、電力貯蔵装置122の劣化の進行が抑制される可能性がある。 When the power source 130 is used rather than the power source 120, charging and discharging of the power storage device 122 are suppressed. Thus, the example of FIG. 10 may be applied such that the power supply 130 is preferentially used. Thereby, charging and discharging of the power storage device 122 may be suppressed, and the progress of the deterioration of the power storage device 122 may be suppressed.
 また、インバータ111は、電力貯蔵装置112を含む電源110に含まれるため、インバータ111の特性は、電力貯蔵装置112の充電状態に従って、変動してもよい。 In addition, since the inverter 111 is included in the power supply 110 including the power storage device 112, the characteristics of the inverter 111 may vary according to the charging state of the power storage device 112.
 図11は、図1に示されたインバータ111の特性の一例を示すグラフである。図11には、図7に示された特性を示す太線601が示されている。例えば、インバータ111は、出力量の変化に対する周波数の変化の割合を充電状態に従って変化させる。具体的には、インバータ111は、充電状態が低いほどインバータ111の出力量が小さくなるように、出力量の変化に対する周波数の変化の割合を充電状態に従って変化させる。 FIG. 11 is a graph showing an example of the characteristic of the inverter 111 shown in FIG. In FIG. 11, a thick line 601 indicating the characteristic shown in FIG. 7 is shown. For example, the inverter 111 changes the ratio of the change of the frequency to the change of the output amount in accordance with the state of charge. Specifically, the inverter 111 changes the ratio of the change of the frequency to the change of the output amount according to the charge state so that the output amount of the inverter 111 becomes smaller as the charge state becomes lower.
 図11の例では、充電状態が低い場合、太線601に示される特性から一点鎖線606に示される特性に、インバータ111の特性が変動する。つまり、充電状態が低い場合、出力量の増加に対する周波数の低下率が大きくなるように、特性が変動する。これにより、インバータ121、131からの出力量が増加する。したがって、充電状態が低いほどインバータ111の出力量が小さくなる。 In the example of FIG. 11, when the state of charge is low, the characteristic of the inverter 111 fluctuates from the characteristic indicated by the thick line 601 to the characteristic indicated by the alternate long and short dash line 606. That is, when the state of charge is low, the characteristic fluctuates such that the rate of decrease in frequency with respect to the increase in output amount becomes large. As a result, the amount of output from the inverters 121 and 131 increases. Therefore, the lower the charge state, the smaller the output amount of the inverter 111.
 インバータ111は、充電状態が高い場合、出力量の増加に対する周波数の低下率が小さくなるように、特性を変動させてもよい。また、インバータ111は、充電状態の度合いに応じて、多段階に特性を変動させてもよい。 When the state of charge is high, the inverter 111 may change the characteristics so that the rate of decrease in frequency with respect to the increase in output amount is small. Further, the inverter 111 may change the characteristics in multiple stages according to the degree of charge state.
 また、インバータ121は、電力貯蔵装置122を含む電源120に含まれるため、インバータ121の特性は、電力貯蔵装置122の充電状態に従って、変動してもよい。 In addition, since the inverter 121 is included in the power supply 120 including the power storage device 122, the characteristics of the inverter 121 may vary according to the charging state of the power storage device 122.
 図12は、図1に示されたインバータ121の特性の一例を示すグラフである。図12には、図8に示された特性を示す太線602が示されている。例えば、インバータ121は、周波数の変化に対する出力量の変化の割合を充電状態に従って変化させる。具体的には、インバータ121は、充電状態が低いほどインバータ121の出力量が小さくなるように、周波数の変化に対する出力量の変化の割合を充電状態に従って変化させる。 FIG. 12 is a graph showing an example of the characteristic of the inverter 121 shown in FIG. FIG. 12 shows a bold line 602 indicating the characteristics shown in FIG. For example, the inverter 121 changes the ratio of the change of the output amount to the change of the frequency according to the charge state. Specifically, the inverter 121 changes the ratio of the change of the output amount to the change of the frequency according to the charge state so that the output amount of the inverter 121 becomes smaller as the charge state becomes lower.
 図12の例では、充電状態が低い場合、太線602に示される特性から一点鎖線607に示される特性に、インバータ121の特性が変動する。つまり、充電状態が低い場合、周波数の低下に対する出力量の増加率が小さくなるように、特性が変動する。これにより、インバータ121からの出力量が減少する。したがって、充電状態が低いほどインバータ121の出力量が小さくなる。 In the example of FIG. 12, when the state of charge is low, the characteristic of the inverter 121 fluctuates from the characteristic indicated by the thick line 602 to the characteristic indicated by the alternate long and short dash line 607. That is, when the state of charge is low, the characteristic fluctuates such that the rate of increase of the output amount with respect to the decrease in frequency decreases. As a result, the amount of output from the inverter 121 is reduced. Therefore, the lower the charge state, the smaller the output amount of the inverter 121.
 インバータ121は、充電状態が高い場合、周波数の低下に対する出力量の増加率が大きくなるように、特性を変動させてもよい。また、インバータ121は、充電状態の度合いに応じて、多段階に特性を変動させてもよい。 When the state of charge is high, the inverter 121 may change the characteristics so that the rate of increase of the output amount with respect to the decrease in frequency is large. Further, the inverter 121 may change the characteristics in multiple stages according to the degree of charge state.
 インバータ121は、双方向インバータでもよい。例えば、インバータ121は、充電状態が低い場合、電力線301から交流電力を取得し、取得された交流電力を直流電力に変換し、電力貯蔵装置122に直流電力を供給してもよい。この場合、電源120は、負荷として扱われる。 The inverter 121 may be a bidirectional inverter. For example, when the state of charge is low, the inverter 121 may acquire AC power from the power line 301, convert the acquired AC power into DC power, and supply the DC power to the power storage device 122. In this case, the power supply 120 is treated as a load.
 図13は、図1に示されたインバータ121、131の特性の一例を示すグラフである。図13には、図8に示された特性を示す太線602が示されている。 FIG. 13 is a graph showing an example of the characteristics of the inverters 121 and 131 shown in FIG. FIG. 13 shows a bold line 602 indicating the characteristic shown in FIG.
 例えば、負荷300が3(kW)の電力を使用する場合、図7および図13に示された特性に従って、48.75(Hz)の周波数において、負荷300の電力の使用量と、インバータ111、121、131からの電力の出力量とが釣り合う。具体的には、48.75(Hz)の周波数において、インバータ111、121、131のそれぞれの出力量は1(kW)である。 For example, when the load 300 uses a power of 3 (kW), the power consumption of the load 300 and the inverter 111 at a frequency of 48.75 (Hz) according to the characteristics shown in FIG. 7 and FIG. The amount of output of power from 121 and 131 is balanced. Specifically, at a frequency of 48.75 (Hz), the output amount of each of the inverters 111, 121, and 131 is 1 (kW).
 その後、電力貯蔵装置122の充電状態が所定の充電状態よりも低くなった場合、インバータ121は、電力線301への交流電力の出力を停止し、電力線301から得られる交流電力を直流電力に変換することにより、交流電力から直流電力を生成する。そして、インバータ121は、生成された直流電力を電力線221に出力し、電力貯蔵装置122に充電させる。 Thereafter, when the state of charge of power storage device 122 becomes lower than the predetermined state of charge, inverter 121 stops the output of AC power to power line 301, and converts AC power obtained from power line 301 into DC power. Thus, DC power is generated from AC power. Then, the inverter 121 outputs the generated DC power to the power line 221 to charge the power storage device 122.
 例えば、インバータ121は、電力貯蔵装置122に充電させるため、1(kW)の電力を使用する。この場合、インバータ121の出力量は、-1(kW)として扱われる。また、電源120は、負荷として扱われる。 For example, the inverter 121 uses 1 (kW) of power to charge the power storage device 122. In this case, the output amount of the inverter 121 is treated as −1 (kW). Also, the power supply 120 is treated as a load.
 インバータ111は、負荷の増加に従って、出力量を増加させる。さらに、インバータ111は、出力量の増加に従って、周波数を低下させる。インバータ131は、周波数の低下に従って、出力量を増加させる。 The inverter 111 increases the amount of output as the load increases. Furthermore, the inverter 111 reduces the frequency as the amount of output increases. The inverter 131 increases the amount of output as the frequency decreases.
 その結果、47.5(Hz)の周波数において、負荷300および電源120の電力の使用量と、インバータ111、131からの電力の出力量とが釣り合う。具体的には、47.5(Hz)の周波数において、インバータ111、131のそれぞれの出力量は2(kW)である。 As a result, at the frequency of 47.5 (Hz), the usage of the power of the load 300 and the power supply 120 and the output of the power from the inverters 111 and 131 are balanced. Specifically, at a frequency of 47.5 (Hz), the output amount of each of the inverters 111 and 131 is 2 (kW).
 図13の一点鎖線608は、充電時のインバータ121の出力量、および、充電時の周波数の変化を表す。その後、充電状態が回復した際、インバータ121は、再び、周波数に従った出力量で電力を出力する。そして、再び、48.75(Hz)の周波数において、負荷300の電力の使用量と、インバータ111、121、131からの電力の出力量とが釣り合う。 The alternate long and short dash line 608 in FIG. 13 represents the change in the output amount of the inverter 121 during charging and the frequency during charging. Thereafter, when the charge state recovers, the inverter 121 again outputs power with an output amount according to the frequency. Then, again, at the frequency of 48.75 (Hz), the usage amount of the power of the load 300 and the output amount of the power from the inverters 111, 121, 131 are balanced.
 これにより、電源120は、周波数に従って電力を出力する動作と、負荷として電力を使用する動作とを切り替えることができる。 Thus, the power supply 120 can switch between an operation of outputting power according to the frequency and an operation of using power as a load.
 なお、図7および図8等の例において、出力量と周波数とは比例関係を有している。具体的には、大きい出力量と低い周波数とが対応付けられ、小さい出力量と高い周波数とが対応付けられている。この関係は、逆でもよい。つまり、大きい出力量と高い周波数とが対応付けられ、小さい出力量と低い周波数とが対応付けられてもよい。また、基準周波数に大きい出力量が対応付けられてもよい。また、出力量と周波数とが比例関係とは異なる関係で対応付けられてもよい。 In the examples of FIGS. 7 and 8, the output amount and the frequency have a proportional relationship. Specifically, a large output amount is associated with a low frequency, and a small output amount is associated with a high frequency. This relationship may be reversed. That is, a large output amount may be associated with a high frequency, and a small output amount may be associated with a low frequency. Also, a large output amount may be associated with the reference frequency. Further, the output amount and the frequency may be associated with each other in a relationship different from the proportional relationship.
 次に、フローチャートを用いて、図1に示された分散型電力供給システム100の特徴的な動作を説明する。 Next, a characteristic operation of the distributed power supply system 100 shown in FIG. 1 will be described using a flowchart.
 図14は、図1に示された分散型電力供給システム100の特徴的な動作を示すフローチャートである。まず、インバータ111は、交流電圧を生成し、交流電圧で規定される第1電力を電力線301へ出力する。その際、インバータ111は、第1電力の出力量である第1電力出力量の変化に従って、交流電圧の周波数を変化させる(S101)。 FIG. 14 is a flowchart showing the characteristic operation of the distributed power supply system 100 shown in FIG. First, inverter 111 generates an AC voltage and outputs the first power defined by the AC voltage to power line 301. At that time, the inverter 111 changes the frequency of the AC voltage according to the change of the first power output amount which is the output amount of the first power (S101).
 次に、インバータ121は、電力線301を介して交流電圧を検出し、交流電圧に同期した交流電流で規定される第2電力を電力線301へ出力する。その際、インバータ121は、周波数の変化に従って、第2電力の出力量である第2電力出力量を変化させる(S102)。インバータ131も、インバータ121と同様に動作する。 Next, the inverter 121 detects an alternating voltage via the power line 301, and outputs a second power defined by the alternating current synchronized with the alternating voltage to the power line 301. At this time, the inverter 121 changes the second power output amount, which is the output amount of the second power, according to the change of the frequency (S102). The inverter 131 also operates in the same manner as the inverter 121.
 これにより、分散型電力供給システム100は、電源110、120、130に対して、電力の出力量を適切に分担することができる。 Thereby, the distributed power supply system 100 can appropriately share the output amount of power with respect to the power supplies 110, 120, and 130.
 以上、本発明に係る分散型電力供給システムについて、実施の形態に基づいて説明したが、本発明は、実施の形態に限定されない。実施の形態に対して当業者が思いつく変形を施して得られる形態、および、実施の形態における複数の構成要素を任意に組み合わせて実現される別の形態も本発明に含まれる。 Although the distributed power supply system according to the present invention has been described above based on the embodiment, the present invention is not limited to the embodiment. The present invention also includes embodiments obtained by applying variations that will occur to those skilled in the art with respect to the embodiment, and other embodiments realized by arbitrarily combining a plurality of components in the embodiment.
 例えば、特定の構成要素が実行する処理を別の構成要素が実行してもよい。また、処理を実行する順番が変更されてもよいし、複数の処理が並行して実行されてもよい。 For example, another component may perform the processing that a particular component performs. Further, the order of executing the processing may be changed, or a plurality of processing may be executed in parallel.
 また、本発明は、分散型電力供給システムとして実現できるだけでなく、分散型電力供給システムを構成する各構成要素が行うステップ(処理)を含む電力供給制御方法として実現できる。 Moreover, the present invention can be realized not only as a distributed power supply system but also as a power supply control method including steps (processes) performed by each component constituting the distributed power supply system.
 最後に、分散型電力供給システム100の基本的な構成例、および、複数の変形例等を示す。これらは、適宜、組み合わされてもよい。 Finally, a basic configuration example of the distributed power supply system 100, a plurality of modified examples, and the like will be shown. These may be combined as appropriate.
 (第1例)
 本発明の一態様に係る分散型電力供給システム100は、電源110と、電源120とを備える。電源110および電源120は、負荷300が接続される電力線301に接続される。
(First example)
A distributed power supply system 100 according to an aspect of the present invention includes a power supply 110 and a power supply 120. The power supply 110 and the power supply 120 are connected to the power line 301 to which the load 300 is connected.
 また、電源110は、インバータ111と電力貯蔵装置112とを備える。インバータ111は、交流電圧を生成し、交流電圧で規定される第1電力を電力線301へ出力する。電力貯蔵装置112は、インバータ111に対して、貯蔵された電力を供給する。電源120は、インバータ121を備える。インバータ121は、電力線301を介して交流電圧を検出し、交流電圧に同期した第1交流電流で規定される第2電力を電力線301へ出力する。 The power supply 110 also includes an inverter 111 and a power storage device 112. The inverter 111 generates an AC voltage and outputs the first power defined by the AC voltage to the power line 301. The power storage device 112 supplies the stored power to the inverter 111. The power supply 120 includes an inverter 121. The inverter 121 detects an AC voltage through the power line 301, and outputs, to the power line 301, a second power defined by a first AC current synchronized with the AC voltage.
 また、インバータ111は、第1電力の出力量である第1電力出力量の変化に従って、交流電圧の周波数を変化させる。インバータ121は、周波数の変化に従って、第2電力の出力量である第2電力出力量を変化させる。 Further, the inverter 111 changes the frequency of the AC voltage according to the change of the first power output amount which is the output amount of the first power. The inverter 121 changes the second power output amount, which is the output amount of the second power, according to the change of the frequency.
 これにより、分散型電力供給システム100は、電源110、120に対して、電力の出力量を適切に分担することができる。 Thereby, the distributed power supply system 100 can appropriately share the output amount of power with respect to the power supplies 110 and 120.
 (第2例)
 例えば、第1例の分散型電力供給システム100において、第1電力出力量の変化量と周波数の変化量との比、および、第2電力出力量の変化量と周波数の変化量との比は、互いに等しくてもよい。
(Second example)
For example, in the distributed power supply system 100 according to the first example, the ratio of the change amount of the first power output amount to the change amount of the frequency and the ratio of the change amount of the second power output amount to the change amount of the frequency are , May be equal to each other.
 これにより、分散型電力供給システム100は、電圧源として動作する電源110、および、電源110とは異なる電源120に対して、電力の出力量を均等に分担させることができる。 As a result, the distributed power supply system 100 can share the output amount of power equally to the power supply 110 operating as a voltage source and the power supply 120 different from the power supply 110.
 (第3例)
 例えば、第1例の分散型電力供給システム100において、第1電力出力量の変化量と周波数の変化量との比、および、第2電力出力量の変化量と周波数の変化量との比は、互いに異なってもよい。
(Third example)
For example, in the distributed power supply system 100 according to the first example, the ratio of the change amount of the first power output amount to the change amount of the frequency and the ratio of the change amount of the second power output amount to the change amount of the frequency are , May be different from each other.
 これにより、分散型電力供給システム100は、電圧源として動作する電源110、および、電源110とは異なる電源120のうち、一方を優先させて電力を出力させることができる。 Thus, the distributed power supply system 100 can output power by giving priority to one of the power supply 110 operating as a voltage source and the power supply 120 different from the power supply 110.
 (第4例)
 例えば、第1例、第2例または第3例の分散型電力供給システム100は、電力線301に接続される電源130を備えてもよい。そして、電源130は、インバータ131を備えてもよい。そして、インバータ131は、電力線301を介して交流電圧を検出し、交流電圧に同期した第2交流電流で規定される第3電力を電力線301へ出力してもよい。そして、インバータ131は、周波数の変化に従って、第3電力の出力量である第3電力出力量を変化させてもよい。
(4th example)
For example, the distributed power supply system 100 of the first example, the second example or the third example may include the power supply 130 connected to the power line 301. The power supply 130 may include an inverter 131. Then, the inverter 131 may detect an alternating voltage via the power line 301, and may output, to the power line 301, the third power defined by the second alternating current synchronized with the alternating voltage. Then, the inverter 131 may change the third power output amount, which is the output amount of the third power, according to the change of the frequency.
 そして、第2電力出力量の変化量と周波数の変化量との比、および、第3電力出力量の変化量と周波数の変化量との比は、互いに等しくてもよい。 The ratio between the change amount of the second power output amount and the change amount of the frequency, and the ratio between the change amount of the third power output amount and the change amount of the frequency may be equal to each other.
 これにより、分散型電力供給システム100は、電圧源として動作する電源110とは異なる2つの電源120、130に対して、電力の出力量を均等に分担させることができる。 As a result, the distributed power supply system 100 can share the output amount of power equally to the two power supplies 120 and 130 different from the power supply 110 operating as a voltage source.
 (第5例)
 例えば、第1例、第2例または第3例の分散型電力供給システム100は、電力線301に接続される電源130を備えてもよい。そして、電源130は、インバータ131を備えてもよい。そして、インバータ131は、電力線301を介して交流電圧を検出し、交流電圧に同期した第2交流電流で規定される第3電力を電力線301へ出力してもよい。そして、インバータ131は、周波数の変化に従って、第3電力の出力量である第3電力出力量を変化させてもよい。
(5th example)
For example, the distributed power supply system 100 of the first example, the second example or the third example may include the power supply 130 connected to the power line 301. The power supply 130 may include an inverter 131. Then, the inverter 131 may detect an alternating voltage via the power line 301, and may output, to the power line 301, the third power defined by the second alternating current synchronized with the alternating voltage. Then, the inverter 131 may change the third power output amount, which is the output amount of the third power, according to the change of the frequency.
 そして、第2電力出力量の変化量と周波数の変化量との比、および、第3電力出力量の変化量と周波数の変化量との比は、互いに異なってもよい。 The ratio between the change amount of the second power output amount and the change amount of the frequency and the ratio between the change amount of the third power output amount and the change amount of the frequency may be different from each other.
 これにより、分散型電力供給システム100は、電圧源として動作する電源110とは異なる2つの電源120、130のうち、一方を優先させて電力を出力させることができる。 Thus, the distributed power supply system 100 can output power by giving priority to one of the two power supplies 120 and 130 different from the power supply 110 operating as a voltage source.
 (第6例)
 例えば、第1例の分散型電力供給システム100において、第1電力出力量の変化量と周波数の変化量との比は、電力貯蔵装置112の充電状態に従って変動してもよい。
(6th example)
For example, in the distributed power supply system 100 according to the first example, the ratio between the change amount of the first power output amount and the change amount of the frequency may change according to the state of charge of the power storage device 112.
 これにより、分散型電力供給システム100は、電圧源として動作する電源110に含まれる電力貯蔵装置112の充電状態に従って、電源110からの出力量を調整することができる。 Thereby, the distributed power supply system 100 can adjust the amount of output from the power supply 110 according to the charge state of the power storage device 112 included in the power supply 110 operating as a voltage source.
 (第7例)
 例えば、第1例または第6例の分散型電力供給システム100において、電源120は、電力貯蔵装置122を備えてもよい。そして、電力貯蔵装置122は、インバータ121に対して、貯蔵された電力を供給してもよい。そして、第2電力出力量の変化量と周波数の変化量との比は、電力貯蔵装置122の充電状態に従って変動してもよい。
(7th example)
For example, in the distributed power supply system 100 of the first example or the sixth example, the power supply 120 may include the power storage device 122. Then, the power storage device 122 may supply the stored power to the inverter 121. Then, the ratio between the change amount of the second power output amount and the change amount of the frequency may change according to the charge state of the power storage device 122.
 これにより、分散型電力供給システム100は、電圧源として動作する電源110とは異なる電源120に含まれる電力貯蔵装置122の充電状態に従って、電源120からの出力量を調整することができる。 Thus, the distributed power supply system 100 can adjust the amount of output from the power source 120 according to the charging state of the power storage device 122 included in the power source 120 different from the power source 110 operating as a voltage source.
 (第8例)
 例えば、第1例の分散型電力供給システム100において、電源120は、電力貯蔵装置122を備えてもよい。電力貯蔵装置122は、インバータ121に対して、貯蔵された電力を供給してもよい。そして、インバータ121は、双方向インバータであってもよい。そして、インバータ121は、電力貯蔵装置122の充電状態が所定の充電状態よりも低い場合、第2電力を出力せずに、電力線301から電力を取得し、電力貯蔵装置122に充電させてもよい。
(Eighth example)
For example, in the first example distributed power supply system 100, the power supply 120 may include a power storage device 122. The power storage device 122 may supply the stored power to the inverter 121. And inverter 121 may be a bidirectional inverter. Then, when the state of charge of power storage device 122 is lower than the predetermined state of charge, inverter 121 may obtain power from power line 301 and cause power storage device 122 to be charged without outputting the second power. .
 これにより、分散型電力供給システム100は、電圧源として動作する電源110とは異なる電源120に含まれる電力貯蔵装置122の充電状態に従って、電力貯蔵装置122に充電させることができる。 Thereby, the distributed power supply system 100 can charge the power storage device 122 according to the charge state of the power storage device 122 included in the power supply 120 different from the power supply 110 operating as a voltage source.
 (第9例)
 本発明の一態様に係る電力供給制御方法では、負荷300が接続された電力線301に接続された電源110において交流電圧が生成され、交流電圧で規定される第1電力が電源110から電力線301へ出力される(S101)。そして、電力線301に接続された電源120において電力線301を介して交流電圧が検出され、交流電圧に同期した交流電流で規定される第2電力が電源120から電力線301へ出力される(S102)。
(The 9th example)
In the power supply control method according to one aspect of the present invention, an alternating voltage is generated in the power supply 110 connected to the power line 301 to which the load 300 is connected, and the first power defined by the alternating voltage is transferred from the power supply 110 to the power line 301 It is output (S101). Then, the AC voltage is detected through the power line 301 in the power source 120 connected to the power line 301, and the second power defined by the AC current synchronized with the AC voltage is output from the power source 120 to the power line 301 (S102).
 第1電力が出力される際、第1電力の出力量である第1電力出力量の変化に従って、交流電圧の周波数が変化する。第2電力が出力される際、周波数の変化に従って、第2電力の出力量である第2電力出力量が変化する。 When the first power is output, the frequency of the AC voltage changes according to the change of the first power output amount which is the output amount of the first power. When the second power is output, the second power output amount, which is the output amount of the second power, changes in accordance with the change of the frequency.
 これにより、電源110、120に対して、電力の出力量が適切に分担される。 As a result, the amount of power output is properly shared with the power supplies 110 and 120.
  100 分散型電力供給システム
  110、120、130 電源
  111、121、131 インバータ
  112、122 電力貯蔵装置
  300 負荷
  301 電力線
DESCRIPTION OF SYMBOLS 100 Distributed power supply system 110, 120, 130 Power supply 111, 121, 131 Inverter 112, 122 Power storage apparatus 300 Load 301 Power line

Claims (9)

  1.  第1電源と、
     第2電源とを備え、
     前記第1電源および前記第2電源は、負荷が接続される電力線に接続され、
     前記第1電源は、
     交流電圧を生成し、前記交流電圧で規定される第1電力を前記電力線へ出力する第1インバータと、
     前記第1インバータに対して、貯蔵された電力を供給する第1電力貯蔵装置とを備え、
     前記第2電源は、前記電力線を介して前記交流電圧を検出し、前記交流電圧に同期した第1交流電流で規定される第2電力を前記電力線へ出力する第2インバータを備え、
     前記第1インバータは、前記第1電力の出力量である第1電力出力量の変化に従って、前記交流電圧の周波数を変化させ、
     前記第2インバータは、前記周波数の変化に従って、前記第2電力の出力量である第2電力出力量を変化させる
     分散型電力供給システム。
    The first power supply,
    Equipped with a second power supply,
    The first power supply and the second power supply are connected to a power line to which a load is connected,
    The first power supply is
    A first inverter generating an alternating voltage and outputting a first power defined by the alternating voltage to the power line;
    A first power storage device for supplying stored power to the first inverter;
    The second power supply includes a second inverter that detects the alternating voltage via the power line and outputs a second power defined by a first alternating current synchronized with the alternating voltage to the power line.
    The first inverter changes the frequency of the AC voltage according to a change of a first power output amount which is an output amount of the first power,
    A distributed power supply system, wherein the second inverter changes a second power output amount, which is an output amount of the second power, according to a change in the frequency.
  2.  前記第1電力出力量の変化量と前記周波数の変化量との比、および、前記第2電力出力量の変化量と前記周波数の変化量との比は、互いに等しい
     請求項1に記載の分散型電力供給システム。
    The dispersion according to claim 1, wherein a ratio of a change amount of the first power output amount to a change amount of the frequency, and a ratio of a change amount of the second power output amount to a change amount of the frequency are equal to each other. Power supply system.
  3.  前記第1電力出力量の変化量と前記周波数の変化量との比、および、前記第2電力出力量の変化量と前記周波数の変化量との比は、互いに異なる
     請求項1に記載の分散型電力供給システム。
    The dispersion according to claim 1, wherein the ratio between the change amount of the first power output amount and the change amount of the frequency, and the ratio between the change amount of the second power output amount and the change amount of the frequency are different from each other. Power supply system.
  4.  前記分散型電力供給システムは、さらに、前記電力線に接続される第3電源を備え、
     前記第3電源は、前記電力線を介して前記交流電圧を検出し、前記交流電圧に同期した第2交流電流で規定される第3電力を前記電力線へ出力する第3インバータを備え、
     前記第3インバータは、前記周波数の変化に従って、前記第3電力の出力量である第3電力出力量を変化させ、
     前記第2電力出力量の変化量と前記周波数の変化量との比、および、前記第3電力出力量の変化量と前記周波数の変化量との比は、互いに等しい
     請求項1~3のいずれか1項に記載の分散型電力供給システム。
    The distributed power supply system further comprises a third power supply connected to the power line,
    The third power supply includes a third inverter that detects the alternating voltage via the power line and outputs a third power defined by a second alternating current synchronized with the alternating voltage to the power line.
    The third inverter changes a third power output amount, which is an output amount of the third power, according to the change of the frequency.
    The ratio of the change amount of the second power output amount to the change amount of the frequency, and the ratio of the change amount of the third power output amount to the change amount of the frequency are equal to each other. Distributed power supply system according to any one of the preceding claims.
  5.  前記分散型電力供給システムは、さらに、前記電力線に接続される第3電源を備え、
     前記第3電源は、前記電力線を介して前記交流電圧を検出し、前記交流電圧に同期した第2交流電流で規定される第3電力を前記電力線へ出力する第3インバータを備え、
     前記第3インバータは、前記周波数の変化に従って、前記第3電力の出力量である第3電力出力量を変化させ、
     前記第2電力出力量の変化量と前記周波数の変化量との比、および、前記第3電力出力量の変化量と前記周波数の変化量との比は、互いに異なる
     請求項1~3のいずれか1項に記載の分散型電力供給システム。
    The distributed power supply system further comprises a third power supply connected to the power line,
    The third power supply includes a third inverter that detects the alternating voltage via the power line and outputs a third power defined by a second alternating current synchronized with the alternating voltage to the power line.
    The third inverter changes a third power output amount, which is an output amount of the third power, according to the change of the frequency.
    The ratio of the change amount of the second power output amount to the change amount of the frequency, and the ratio of the change amount of the third power output amount to the change amount of the frequency are different from each other. Distributed power supply system according to any one of the preceding claims.
  6.  前記第1電力出力量の変化量と前記周波数の変化量との比は、前記第1電力貯蔵装置の充電状態に従って変動する
     請求項1に記載の分散型電力供給システム。
    The distributed power supply system according to claim 1, wherein a ratio of the amount of change of the first power output amount to the amount of change of the frequency fluctuates according to a state of charge of the first power storage device.
  7.  前記第2電源は、さらに、前記第2インバータに対して、貯蔵された電力を供給する第2電力貯蔵装置を備え、
     前記第2電力出力量の変化量と前記周波数の変化量との比は、前記第2電力貯蔵装置の充電状態に従って変動する
     請求項1または6に記載の分散型電力供給システム。
    The second power supply further includes a second power storage device for supplying stored power to the second inverter,
    The distributed power supply system according to claim 1 or 6, wherein a ratio of a change amount of the second power output amount to a change amount of the frequency fluctuates according to a charge state of the second power storage device.
  8.  前記第2電源は、さらに、前記第2インバータに対して、貯蔵された電力を供給する第2電力貯蔵装置を備え、
     前記第2インバータは、双方向インバータであり、
     前記第2インバータは、前記第2電力貯蔵装置の充電状態が所定の充電状態よりも低い場合、前記第2電力を出力せずに、前記電力線から電力を取得し、前記第2電力貯蔵装置に充電させる
     請求項1に記載の分散型電力供給システム。
    The second power supply further includes a second power storage device for supplying stored power to the second inverter,
    The second inverter is a bidirectional inverter,
    The second inverter acquires power from the power line without outputting the second power when the state of charge of the second power storage device is lower than a predetermined state of charge, and the second power storage device is used as the second power storage device. The distributed power supply system according to claim 1, wherein the system is charged.
  9.  負荷が接続された電力線に接続された第1電源において交流電圧を生成し、前記交流電圧で規定される第1電力を前記第1電源から前記電力線へ出力し、
     前記電力線に接続された第2電源において前記電力線を介して前記交流電圧を検出し、前記交流電圧に同期した交流電流で規定される第2電力を前記第2電源から前記電力線へ出力し、
     前記第1電力を出力する際、前記第1電力の出力量である第1電力出力量の変化に従って、前記交流電圧の周波数を変化させ、
     前記第2電力を出力する際、前記周波数の変化に従って、前記第2電力の出力量である第2電力出力量を変化させる
     電力供給制御方法。
    An alternating voltage is generated in a first power supply connected to a power line to which a load is connected, and a first power defined by the alternating voltage is output from the first power supply to the power line,
    The second power supply connected to the power line detects the alternating voltage via the power line, and outputs a second power defined by the alternating current synchronized with the alternating voltage from the second power supply to the power line,
    When outputting the first power, the frequency of the alternating voltage is changed according to a change of the first power output amount which is an output amount of the first power,
    A second power output amount which is an output amount of the second power according to a change of the frequency when the second power is output.
PCT/JP2015/006238 2014-12-25 2015-12-15 Decentralized power supply system and power supply control method WO2016103628A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-263321 2014-12-25
JP2014263321A JP2016123243A (en) 2014-12-25 2014-12-25 Dispersion type power supply system and power supply control method

Publications (1)

Publication Number Publication Date
WO2016103628A1 true WO2016103628A1 (en) 2016-06-30

Family

ID=56149694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/006238 WO2016103628A1 (en) 2014-12-25 2015-12-15 Decentralized power supply system and power supply control method

Country Status (2)

Country Link
JP (1) JP2016123243A (en)
WO (1) WO2016103628A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6877640B2 (en) 2018-05-15 2021-05-26 三菱電機株式会社 Power converter and power conversion system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009290939A (en) * 2008-05-27 2009-12-10 Fuji Electric Systems Co Ltd Generator system and method of controlling generator system
JP2009291054A (en) * 2008-05-30 2009-12-10 Fuji Electric Systems Co Ltd Method of controlling power generator system, and power generator system
JP2012050167A (en) * 2010-08-24 2012-03-08 Sharp Corp Dc power supply system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009290939A (en) * 2008-05-27 2009-12-10 Fuji Electric Systems Co Ltd Generator system and method of controlling generator system
JP2009291054A (en) * 2008-05-30 2009-12-10 Fuji Electric Systems Co Ltd Method of controlling power generator system, and power generator system
JP2012050167A (en) * 2010-08-24 2012-03-08 Sharp Corp Dc power supply system

Also Published As

Publication number Publication date
JP2016123243A (en) 2016-07-07

Similar Documents

Publication Publication Date Title
Ding et al. Control of hybrid AC/DC microgrid under islanding operational conditions
Peyghami et al. Decentralized load sharing in a low-voltage direct current microgrid with an adaptive droop approach based on a superimposed frequency
Milczarek et al. Reactive power management in islanded microgrid—Proportional power sharing in hierarchical droop control
Arif et al. Microgrid architecture, control, and operation
Sreekumar et al. Adaptive power management strategy for effective volt–ampere utilization of a photovoltaic generation unit in standalone microgrids
JP6700102B2 (en) Power converter
WO2016121273A1 (en) Power control device, power control method, and power control system
Yuvaraja et al. Fuzzy based analysis of inverter fed micro grid in islanding operation
US10284115B2 (en) Inverter system
Ram Prabhakar et al. Power management based current control technique for photovoltaic-battery assisted wind–hydro hybrid system
Niu et al. Autonomous micro-grid operation by employing weak droop control and PQ control
EP3218981B1 (en) Power controller and power control method
US20110206953A1 (en) Method for controlling sodium-sulfur battery
Panda et al. A novel dc bus‐signaling based power management strategy for dc microgrid
JP2014128121A (en) Distributed power supply system
WO2016103628A1 (en) Decentralized power supply system and power supply control method
Bendib et al. Droop controller based primary control scheme for parallel-connected single-phase inverters in islanded AC microgrid
Josep et al. Hierarchical control of power plants with microgrid operation
Frack et al. Control-strategy design for frequency control in autonomous smart microgrids
JP2014042418A (en) Emergency power supply method
Talapur et al. Hybrid control technique for load sharing and seamless transition in microgrid mode of operation
Arafat et al. Hybrid droop and current control for seamless transition mode of microgrids
Nutkani et al. Power flow control of interlinked hybrid microgrids
Verma et al. Step-less voltage regulation on radial feeder with OLTC transformer-DVR hybrid
Panda et al. A flexible power management strategy for pv-battery based interconnected dc microgrid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15872202

Country of ref document: EP

Kind code of ref document: A1