WO2016103507A1 - Metal mesh substrate, and production method therefor - Google Patents
Metal mesh substrate, and production method therefor Download PDFInfo
- Publication number
- WO2016103507A1 WO2016103507A1 PCT/JP2014/084675 JP2014084675W WO2016103507A1 WO 2016103507 A1 WO2016103507 A1 WO 2016103507A1 JP 2014084675 W JP2014084675 W JP 2014084675W WO 2016103507 A1 WO2016103507 A1 WO 2016103507A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conductive polymer
- polymer layer
- metal mesh
- substrate
- metal
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 120
- 239000002184 metal Substances 0.000 title claims abstract description 120
- 239000000758 substrate Substances 0.000 title claims abstract description 111
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 229920001940 conductive polymer Polymers 0.000 claims abstract description 88
- 238000000034 method Methods 0.000 claims description 57
- 238000007747 plating Methods 0.000 claims description 24
- 238000012545 processing Methods 0.000 claims description 10
- 239000000049 pigment Substances 0.000 claims description 8
- 238000011161 development Methods 0.000 claims description 6
- 238000000059 patterning Methods 0.000 claims description 6
- 238000002310 reflectometry Methods 0.000 claims description 3
- 239000010408 film Substances 0.000 description 73
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 15
- -1 polyethylene terephthalate Polymers 0.000 description 15
- 239000000243 solution Substances 0.000 description 15
- 239000010949 copper Substances 0.000 description 13
- 229910052802 copper Inorganic materials 0.000 description 13
- 229920002120 photoresistant polymer Polymers 0.000 description 13
- 229920000128 polypyrrole Polymers 0.000 description 13
- 230000008569 process Effects 0.000 description 13
- 238000007772 electroless plating Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- 239000011230 binding agent Substances 0.000 description 10
- 239000010419 fine particle Substances 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 9
- 238000000576 coating method Methods 0.000 description 9
- 229920005989 resin Polymers 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- 239000002585 base Substances 0.000 description 7
- 239000000975 dye Substances 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 6
- 238000001312 dry etching Methods 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000005020 polyethylene terephthalate Substances 0.000 description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 239000011256 inorganic filler Substances 0.000 description 4
- 229910003475 inorganic filler Inorganic materials 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical compound C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229920000265 Polyparaphenylene Polymers 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000012670 alkaline solution Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- UORVGPXVDQYIDP-UHFFFAOYSA-N borane Chemical compound B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 description 2
- KBPLFHHGFOOTCA-UHFFFAOYSA-N caprylic alcohol Natural products CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 description 2
- 229940112669 cuprous oxide Drugs 0.000 description 2
- 150000001925 cycloalkenes Chemical class 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- HJOVHMDZYOCNQW-UHFFFAOYSA-N isophorone Chemical compound CC1=CC(=O)CC(C)(C)C1 HJOVHMDZYOCNQW-UHFFFAOYSA-N 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- QPJVMBTYPHYUOC-UHFFFAOYSA-N methyl benzoate Chemical compound COC(=O)C1=CC=CC=C1 QPJVMBTYPHYUOC-UHFFFAOYSA-N 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 229920000123 polythiophene Polymers 0.000 description 2
- 229930195734 saturated hydrocarbon Natural products 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000010301 surface-oxidation reaction Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 229920003026 Acene Polymers 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical group C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- 239000013032 Hydrocarbon resin Substances 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920002377 Polythiazyl Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 239000003849 aromatic solvent Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000001055 blue pigment Substances 0.000 description 1
- 229910000085 borane Inorganic materials 0.000 description 1
- VDTVZBCTOQDZSH-UHFFFAOYSA-N borane N-ethylethanamine Chemical compound B.CCNCC VDTVZBCTOQDZSH-UHFFFAOYSA-N 0.000 description 1
- WVMHLYQJPRXKLC-UHFFFAOYSA-N borane;n,n-dimethylmethanamine Chemical compound B.CN(C)C WVMHLYQJPRXKLC-UHFFFAOYSA-N 0.000 description 1
- 239000005385 borate glass Substances 0.000 description 1
- VEWFZHAHZPVQES-UHFFFAOYSA-N boron;n,n-diethylethanamine Chemical compound [B].CCN(CC)CC VEWFZHAHZPVQES-UHFFFAOYSA-N 0.000 description 1
- RJTANRZEWTUVMA-UHFFFAOYSA-N boron;n-methylmethanamine Chemical compound [B].CNC RJTANRZEWTUVMA-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000012461 cellulose resin Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- YPHMISFOHDHNIV-FSZOTQKASA-N cycloheximide Chemical compound C1[C@@H](C)C[C@H](C)C(=O)[C@@H]1[C@H](O)CC1CC(=O)NC(=O)C1 YPHMISFOHDHNIV-FSZOTQKASA-N 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 125000005678 ethenylene group Chemical group [H]C([*:1])=C([H])[*:2] 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000005383 fluoride glass Substances 0.000 description 1
- 239000003353 gold alloy Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 229920006270 hydrocarbon resin Polymers 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229940095102 methyl benzoate Drugs 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002052 molecular layer Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 150000002941 palladium compounds Chemical class 0.000 description 1
- 229920006287 phenoxy resin Polymers 0.000 description 1
- 239000013034 phenoxy resin Substances 0.000 description 1
- 239000005365 phosphate glass Substances 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002805 poly(2,2'-bithiophene-5,5'-diyl) polymer Polymers 0.000 description 1
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920000015 polydiacetylene Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920002098 polyfluorene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000001054 red pigment Substances 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- UGNWTBMOAKPKBL-UHFFFAOYSA-N tetrachloro-1,4-benzoquinone Chemical compound ClC1=C(Cl)C(=O)C(Cl)=C(Cl)C1=O UGNWTBMOAKPKBL-UHFFFAOYSA-N 0.000 description 1
- 230000003685 thermal hair damage Effects 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/10—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/14—Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
Definitions
- the present invention relates to a metal mesh substrate.
- the present invention also relates to a method for manufacturing a metal mesh substrate.
- the present invention relates to a metal mesh substrate useful as a touch panel substrate.
- the touch panel is an input device that enables an operation instruction and data input by detecting the position of a part touched by a finger, a pen, or the like.
- a position detection method a resistive film method, an infrared method, an ultrasonic method, an electromagnetic induction / coupling method, and the like are known in addition to the mainstream capacitive coupling method.
- the ITO film which is currently the mainstream touch panel material, is suitable for small display devices, it has a relatively high sheet resistance. For this reason, it cannot be used technically for medium- and large-sized touch panels, so in order to develop and popularize a new market for medium- and large-sized touch panels, we developed a cheaper base material and a touch panel with a more stable manufacturing process. There is a need to. Therefore, a metal mesh in which a sensor pattern used for a touch panel is formed of a highly conductive material such as copper or silver instead of an ITO film has been studied.
- Patent Document 1 JP 2010-95776 A (Patent Document 1) describes a technique for forming a patterned metal film on a substrate by an electroless plating method.
- a base coating for forming a metal film patterned by an electroless plating method on a substrate comprising conductive or reducing polymer fine particles, a binder, and an inorganic system
- a base coating material containing a filler and having a mass ratio of the conductive or reducing polymer fine particles to the binder in the range of 1:11 to 1:60 and having a viscosity of 50 cps or more is disclosed. And it discloses that the said base coating material is pattern-printed on a base material, and the metal film is chemically plated from the electroless-plating liquid to the formed coating film layer.
- an object of the present invention is to provide a metal mesh substrate that can improve the visibility of a display screen. Another object of the present invention is to provide a method for manufacturing such a metal mesh substrate.
- the present inventor has intensively studied to solve the above-mentioned problems.
- a metal mesh substrate manufactured by forming a conductive polymer layer having a low reflectance on a transparent substrate and forming a metal layer thereon is used as a touch panel.
- the reflected light from the metal layer is shielded by the conductive polymer layer and hardly passes through the transparent substrate, so that the visibility of the display screen is improved.
- the visibility of the display screen can be further improved.
- the present invention has been completed based on the above findings.
- the present invention is a metal mesh substrate having a metal mesh pattern on one or both sides of a transparent substrate, and the metal mesh pattern has a maximum reflectance of 20% or less in a wavelength region of 400 to 700 nm on the transparent substrate. It is a substrate formed of a laminate in which a certain conductive polymer layer and metal layer are sequentially laminated.
- the conductive polymer layer has a thickness of 0.1 to 1 ⁇ m.
- the metal layer has a thickness of 0.1 to 1 ⁇ m.
- the total thickness of the conductive polymer layer and the metal layer is 1.5 ⁇ m or less.
- the outer surface of the metal layer is blackened.
- the metal mesh pattern is formed with a line width of 5 ⁇ m or less.
- the metal mesh pattern forms a sensor pattern for a touch panel.
- the conductive polymer layer is black.
- a black dye and / or pigment is blended in the conductive polymer layer.
- a step 1 of forming a conductive polymer layer having a maximum reflectance of 20% or less in a wavelength region of 400 to 700 nm on one or both surfaces of a transparent substrate Step 2 of forming a resist film on the conductive polymer layer; Step 3 of patterning the resist film through exposure and development, Step 4 of removing the conductive polymer layer exposed by patterning the resist film; Step 5 of removing the resist film remaining on the conductive polymer layer; Forming a metal layer on the patterned conductive polymer layer; and Is a method for manufacturing a metal mesh substrate.
- the method further includes a step of blackening the outer surface of the metal plating layer.
- Step 1 a conductive polymer layer is formed on both surfaces of the transparent substrate, and in Step 2, the conductive material formed on both surfaces of the transparent substrate.
- a resist film is formed on each of the conductive polymer layers, and in step 3, the resist films on both sides are simultaneously exposed by a double-side exposure apparatus.
- Step 4 and Step 5 are performed in the same plasma processing apparatus.
- the visibility of a display screen on a touch panel using a metal mesh substrate can be improved. Since the touch panel using the metal mesh technology is easy to increase in size, it is expected to spread in the future. According to the present invention, for example, a touch panel having a diagonal length of 15 inches or more, and further a diagonal length of 50 inches. The present invention can also be applied to the touch panel described above.
- the metal mesh pattern is provided on one side or both sides of the transparent substrate.
- the metal mesh pattern is provided on both surfaces of the transparent substrate.
- the metal mesh pattern can be typically a sensor pattern for a touch panel.
- the material of the transparent substrate is not limited, but glass such as soda lime glass, silicate glass, barium glass, phosphate glass, borate glass, fluoride glass and quartz glass, polyethylene terephthalate (PET), Examples thereof include polyester resins such as polybutylene terephthalate (PBT) and polyethylene naphthalate (PEN), and resins such as cycloolefin resins, polycarbonate resins, polyimide resins, and cellulose resins. Among them, resins that can be produced as a flexible substrate and can be produced in a roll-to-roll method are preferable, and polyethylene terephthalate or cycloolefin resins are particularly preferable.
- the transparent resin substrate can generally be provided in the form of a film.
- the thickness of the transparent substrate is not limited, but is preferably 10 ⁇ m to 700 ⁇ m, more preferably 25 ⁇ m to 200 ⁇ m. If the thickness is within the above range, the transparent substrate can have durability and moderate flexibility when made of a resin film, so that a conductive polymer layer and a metal layer are roll-to-roll on it. It is possible to form a film with high productivity by the method.
- the metal mesh pattern is formed of a laminate in which a conductive polymer layer having a reflectance of 20% or less and a metal layer are sequentially laminated on a transparent substrate. .
- a conductive polymer layer having a reflectance of 20% or less and a metal layer are sequentially laminated on a transparent substrate.
- the reflectance of the conductive polymer layer is preferably in the range of 20 to 1%, more preferably in the range of 10 to 1%, still more preferably in the range of 7 to 1%, and still more preferably 5%. It is in the range of ⁇ 1%.
- the color of the conductive polymer layer is preferably black from the viewpoint of reducing the reflectance.
- the reflectance can be measured with a spectral reflectometer (for example, URE-50 manufactured by USHIO INC.) And refers to the maximum reflectance in visible light (wavelength 400 to 700 nm).
- the incident angle at the time of reflectance measurement is 30 °, and a 75 W xenon lamp is used.
- Examples of the polymer material constituting the conductive polymer layer include polyaniline, polythiophene, polypyrrole, polyphenylene, polyfluorene, polybithiophene, polyisothiophene, poly (3,4-ethylenedioxythiophene), polyisothione.
- Examples include thianaphthene, polyisonaphthothiophene, polyacetylene, polydiacetylene, polyparaphenylene vinylene, polyacene, polythiazyl, polyethylene vinylene, polyparaphenylene, polydodecylthiophene, polyphenylene vinylene, polythienylene vinylene, polyphenylene sulfide, and their derivatives. it can.
- a dopant may be used in combination for the purpose of increasing the electrical conductivity of the conductive polymer.
- dopants include halogens such as iodine and chlorine, Lewis acids such as BF 3 and PF 5 , proton acids such as nitric acid and sulfuric acid, transition metals, alkali metals, amino acids, nucleic acids, surfactants, dyes, chloranil, tetra Well-known things are illustrated, such as cyanoethylene and TCNQ.
- the sheet resistance value of the conductive polymer layer is preferably 10 7 ⁇ / ⁇ or less, more preferably 10 5 ⁇ / ⁇ or less, still more preferably 10 4 ⁇ / ⁇ or less, such as 10 2 to 10 7 ⁇ / ⁇ . Further, the sheet resistance value varies depending on the thickness of the conductive polymer layer, but a preferable thickness is separately described below.
- the conductive polymer layer is preferably black from the viewpoint of reducing the reflectance, but can be used even when it is not black.
- the polymer itself is blue or red, it can be used depending on its color density, or it can be colored by blending a blue or red pigment or dye.
- polythiophene is blue, it can be used as it is.
- a binder can be blended in order to improve adhesion with the transparent substrate.
- the binder is not particularly limited.
- the binder used can be used in an amount of 11 parts by mass or more per 1 part by mass of the conductive polymer, and specifically, in the range of 11 to 60 parts by mass with respect to 1 part by mass of the conductive polymer fine particles. Preferably there is. If the binder exceeds 60 parts by mass, metal plating may be difficult to deposit, and if the binder is less than 11 parts by mass, it is difficult to increase the viscosity of the paint.
- the conductive polymer layer can be blended with inorganic fillers such as carbon black, titanium oxide and silica particles for promoting the deposition of metal plating.
- the amount of the inorganic filler used is not particularly limited, but is preferably in the range of 0.1 to 1.5 parts by mass with respect to 1 part by mass of the binder. When the amount of the inorganic filler used exceeds 1.5 parts by mass with respect to 1 part by mass of the binder, peeling between the base material and the coating film layer is likely to occur, and good adhesion may be difficult to obtain. Moreover, when it becomes less than 0.1 mass part, metal plating may become difficult to precipitate.
- the thickness of the conductive polymer layer is important from the viewpoints of a decrease in reflectance, simultaneous exposure on both sides, and plating properties. It is preferably 0.1 ⁇ m or more for the reason of ensuring a low reflectance, effectively suppressing the exposure influence on the opposite side photoresist during double-sided simultaneous exposure, and facilitating adhesion of the plating film.
- the thickness is more preferably 0.2 ⁇ m or more, and still more preferably 0.3 ⁇ m or more.
- the thickness of the conductive polymer layer is preferably 1 ⁇ m or less, more preferably 0.7 ⁇ m or less, and 0.5 ⁇ m or less in order to maintain adhesion with the transparent substrate. Is even more preferred.
- the material for forming the metal layer is not particularly limited as long as it is a metal, but copper, copper alloy, silver, silver alloy, gold, gold alloy, chromium, nickel, nickel alloy and the like having high conductivity are suitable. Copper is particularly preferred because it is relatively inexpensive and has high conductivity.
- the thickness of the metal layer is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, and preferably 0.7 ⁇ m or more from the viewpoint of securing low sheet resistance and preventing disconnection. Even more preferred.
- the thickness of the metal layer is preferably 1 ⁇ m or less, more preferably 0.9 ⁇ m or less, and even more preferably 0.8 ⁇ m or less from the viewpoint of increasing production efficiency.
- sheet resistance will fall if the thickness of a metal layer becomes large, 1 micrometer or less is sufficient for the thickness of a metal layer in this way for a touch-panel use.
- the total thickness of the conductive polymer layer and the metal layer is the height of the sensor wiring, if the wiring height becomes too high, there is a high possibility that the wiring will be peeled off during the process.
- it is 1.3 ⁇ m or less, and more preferably 1.1 ⁇ m or less.
- the outer surface of the metal layer is preferably blackened. Since the outer surface of the metal layer is black, light reflection from the metal layer is further suppressed, which is advantageous for improving the visibility of the display screen. As described above, in the present invention, since the conductive polymer layer having a low reflectance is interposed between the transparent substrate and the metal layer, the reflected light from the metal layer is shielded by the conductive polymer layer and is transparent. By making it difficult to pass through the substrate, the visibility of the display screen can be improved. However, this alone exposes the outer surface of the metal layer, and light reflection from the outer surface of the metal layer can still occur.
- the outer surface of the metal layer is blackened.
- the entire outer surface of the metal layer is preferably blackened.
- the blackening method is not particularly limited as long as the outer surface of the metal layer is blackened.
- the outer surface of the metal layer usually a copper layer
- the surface oxidation process represented by the process to make is illustrated.
- blackening treatment it is possible to blacken by chemical conversion treatment, black chrome plating, black nickel plating, etc., but it is a process that can be incorporated on the plating process line and due to the high processing speed, blackening due to surface oxidation treatment of the thin film preferable.
- the blackening treatment also has a role of imparting a rust prevention function.
- the line width of the metal mesh pattern is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less from the viewpoint of making the mesh pattern substantially unrecognizable by human vision and significantly improving the visibility of the display screen.
- it is still more preferably 3 ⁇ m or less, still more preferably 2 ⁇ m or less, for example, about 1 to 5 ⁇ m.
- the size of the metal mesh substrate is not particularly limited, and can be used for any of small, medium and large touch panels.
- the river width of the film substrate can be 500 to 600 mm, can be 800 mm or more for a medium or larger panel, and can be 1500 mm or more for a large panel. You can also.
- a transparent substrate 12 is prepared, and a conductive polymer layer 11 having a maximum reflectance of 20% or less is formed on one or both surfaces of the transparent substrate 12 ((1) in FIG. 1).
- the method for forming the conductive polymer layer 11 on the transparent substrate 12 is not limited, but a dispersion liquid in which fine particles of the conductive polymer are dispersed in an organic solvent is applied on the transparent substrate, followed by heat drying. The method of doing is mentioned.
- the temperature at the time of heat drying is preferably 90 ° C. or lower.
- a thin film may be formed by polymerizing a conductive polymer on the surface of the transparent substrate 12.
- the conductive polymer layer is usually in the form of a flat film having no pattern.
- the conductive polymer layer is blended with a dark pigment such as black dye or black pigment. The reflectance may be adjusted.
- the conductive polymer fine particles commercially available fine particles may be used, or they can be produced by the production method described in JP 2010-95776 A.
- organic solvents examples include aliphatic esters such as butyl acetate, aromatic solvents such as toluene, ketones such as methyl ethyl ketone, cyclohexanone and isophorone, cyclic saturated hydrocarbons such as cyclohexane, and chain saturated hydrocarbons such as n-octane. , Chain saturated alcohols such as methanol, ethanol, n-octanol, aromatic esters such as methyl benzoate, aliphatic ethers such as diethyl ether, and mixtures thereof.
- the conductive polymer fine particles have a solid content of 5% by mass or less (solid content ratio) of the mass of the dispersion.
- the average particle diameter of the conductive polymer fine particles used can be, for example, 1 to 500 nm, typically about 10 to 100 nm.
- the particle size is defined as the diameter of the smallest circle that can surround the fine particles to be measured.
- various additives such as binders, dispersion stabilizers, thickeners, inorganic fillers and dopants can be added in addition to the conductive polymer fine particles.
- a resist film 13 is formed on the conductive polymer layer 11 ((2) in FIG. 1).
- a liquid or solid resist can be used.
- Photoresists and dry film resists can be suitably used, but liquid photoresists are more preferred because of their good workability and easy application uniformly.
- a resist film can be formed by baking after applying a liquid photoresist on the conductive polymer layer using a slit coater for photoresist. Baking is preferably performed at 100 ° C. or lower in order to avoid thermal damage to the substrate.
- the thickness of the resist film is not limited, but can be formed with a thickness of about 0.1 to 10 ⁇ m, and typically with a thickness of about 2 to 4 ⁇ m. What is important here is that when the conductive polymer layer is removed later, the thickness of the resist film is set so that the resist film does not disappear before the conductive polymer layer. Since the resist film generally has a higher removal rate than the conductive polymer layer, it is necessary to ensure a sufficient thickness of the resist film. However, it should be noted that side etching tends to occur if the resist film is too thick. Further, the uniformity of the applied resist film is important, and it is within ⁇ 10%, more preferably ⁇ 5%.
- Examples of a method for patterning the resist film 13 include a method of transferring the pattern to the resist film by exposing the resist film through a given mask pattern with ultraviolet rays or the like. A portion indicated by reference numeral 14 in FIG. 1 is an exposed portion.
- a contact exposure system or a non-contact exposure system for example, a proximity exposure system in which a gap is provided between the substrate and the mask and the exposure surface is scanned or exposed in a non-contact manner
- the contact exposure method is preferable because the apparatus price is low and the resolution is high, and the hard contact exposure method is more preferable.
- the exposure amount is determined by the respective resist characteristics in order to ensure the optimum line width and development conditions.
- a portion indicated by reference numeral 15 in FIG. 1 is a portion where the conductive polymer layer is exposed.
- the resist film may be either a positive type or a negative type. In the case of the positive type, the exposed resist film is removed, and an unexposed resist film is left as a pattern portion.
- the development processing can be performed by a resist development processing apparatus.
- a method for removing the conductive polymer layer includes, but is not limited to, wet etching and dry etching. At this time, a wet etching apparatus or a dry etching apparatus can be used. From the viewpoint of suppressing side etching and forming a highly accurate pattern, dry etching is preferable. Examples of dry etching include plasma etching, photoetching, ion beam etching, and the like.
- the resist film is also removed during the etching, but the resist film is removed while removing the conductive polymer layer by optimally setting the resist film thickness by determining the selection ratio of the resist and conductive polymer removal amount. Can be left behind. Thereby, since the resist film functions as a kind of mask, the exposed conductive polymer layer can be selectively removed.
- a portion indicated by reference numeral 16 in FIG. 1 is a portion from which the conductive polymer layer has been removed.
- This step can be performed, for example, by bringing a resist film into contact with a stripping solution, and a resist stripping apparatus can be used.
- a contact method a method in which the entire substrate on which the patterned resist film remains is placed in a container containing a stripping solution (immersion method), or a method in which the stripping solution is sprayed onto the resist film (spraying method, spraying method).
- immersion method a method in which the stripping solution is sprayed onto the resist film
- spraying method spraying method
- a separate stripping condition is set using the plasma processing apparatus, and the resist film remaining on the conductive polymer layer is removed. The peeling method by doing can be used. In this case, it is not necessary to prepare a resist stripping apparatus separately, and the cost merit is high.
- the stripping solution is generally used by heating, but the stripping solution may adversely affect the conductivity of the conductive polymer layer in high temperature treatment. Therefore, 50 degrees C or less is preferable. More preferably, it is 40 degrees C or less, More preferably, it is 35 degrees C or less, Most preferably, it is 30 degrees C or less. Moreover, since peeling ability falls at low temperature, 5 degreeC or more is preferable, More preferably, it is 10 degreeC or more.
- a metal layer 17 is formed on the patterned conductive polymer layer 11 ((7) in FIG. 1).
- the formation of the metal layer 17 is not limited, but an electroless plating method and an electroplating method can be employed and may be performed by a plating apparatus. Any known method may be used for the electroless plating method and the electroplating method.
- the conductive polymer particles in the conductive polymer layer are dedoped and reduced.
- the substrate having the patterned conductive polymer layer is immersed in a catalyst solution for adhering a catalytic metal such as palladium chloride, washed with water, and immersed in an electroless plating bath.
- a metal layer can be selectively formed on the molecular layer.
- a reducing agent for example, a borohydride compound such as sodium borohydride or potassium borohydride, an alkylamine borane such as dimethylamine borane, diethylamine borane, trimethylamine borane, triethylamine borane, hydrazine, etc.
- a borohydride compound such as sodium borohydride or potassium borohydride
- an alkylamine borane such as dimethylamine borane, diethylamine borane, trimethylamine borane, triethylamine borane, hydrazine, etc.
- the catalyst solution is a solution containing a noble metal (catalyst metal) having catalytic activity for electroless plating.
- the catalyst metal include palladium, gold, platinum, rhodium, etc. These metals may be simple substances or compounds.
- a palladium compound is preferable from the viewpoint of stability including a metal, and palladium chloride is particularly preferable among them.
- a preferred specific catalyst solution includes 0.05% palladium chloride-0.005% hydrochloric acid aqueous solution (pH 3).
- the treatment temperature is 20 to 50 ° C., preferably 30 to 40 ° C., and the treatment time is 0.1 to 20 minutes, preferably 1 to 10 minutes.
- the substrate having the patterned conductive polymer layer is immersed in a plating solution, whereby an electroless plating film can be formed.
- the plating solution is not particularly limited as long as it is a plating solution usually used for electroless plating. That is, metal, copper, gold, silver, nickel, etc. that can be used for electroless plating can all be applied, but copper is preferred.
- Specific examples of the electroless copper plating bath include, for example, an ATS add copper IW bath (Okuno Pharmaceutical Co., Ltd.).
- the treatment temperature is 20 to 50 ° C., preferably 30 to 40 ° C., and the treatment time is 1 to 30 minutes, preferably 5 to 15 minutes.
- the obtained plated product is preferably cured for several hours or more, for example, 2 hours or more in a temperature range lower than Tg of the substrate used.
- the substrate may be cleaned with a cleaning solution such as water or an organic solvent before metal plating. Further, in order to improve the adhesion of the metal layer 17 to the conductive polymer layer 11, the surface of the conductive polymer layer 11 can be cleaned before the metal layer 17 is formed.
- the cleaning method is not limited, and examples thereof include plasma treatment.
- the blackening process is exemplified by the method described above.
- the advantages of the blackening process are also as described above.
- the blackening process can be performed using a blackening apparatus.
- the plating apparatus may have the function of a blackening apparatus.
- a metal mesh substrate is manufactured by performing metal plating at the final stage using a thin black conductive polymer.
- This method has an effect of reducing copper consumption by 90% or more compared to a manufacturing method in which a pattern is formed by etching a copper foil.
- the consumed conductive polymer itself is an inexpensive material compared to the copper foil, the manufacturing cost of the metal mesh substrate can be significantly reduced by the present invention.
- the metal mesh substrate according to the present invention can be applied to a capacitively coupled touch panel.
- Example 1 A substrate in which a black polypyrrole layer having a thickness of about 0.3 ⁇ m was formed on the upper and lower surfaces of a polyethylene terephthalate (PET) film having a thickness of 100 ⁇ m was prepared.
- PET polyethylene terephthalate
- an ORC UV light source 42 mW / cm 2
- an ORC U-35 / U-42 illuminance meter is used. The rate of transmission through the sensor was measured. The measured transmittance was 27%.
- the reflectance of the polypyrrole layer of the double-sided coated product is irradiated with light in the region of 200 nm to 800 nm, and the reflectance is measured by a spectral reflectometer (USE 50 made by USHIO, incident angle 30 °, using a 75 W xenon lamp).
- a spectral reflectometer USHIO, incident angle 30 °, using a 75 W xenon lamp.
- polypyrrole on one surface of the defoamed positive photoresist is uniformly (coating uniformity: ⁇ 4.8%) with a thickness of about 2.2 ⁇ m using an Able Japan slit coater (TL0704) device. It was applied to the layer (application area 370 mm ⁇ 470 mm). After coating, the photoresist film was dried with hot air / IR heater at 100 ° C. or lower for 15 minutes. Subsequently, a photoresist film was formed in the same manner on the polypyrrole layer on the other surface.
- the uniformity of the photoresist coating was determined by measuring the film thickness of the photoresist film at 45 points over the entire film by spectral interference using an Optical NanoGauge film thickness meter manufactured by Hamamatsu Photonics, Inc. ⁇ (maximum film thickness-minimum film) Thickness) / (maximum film thickness + minimum film thickness) ⁇ 100 (%).
- a mask of a sensor pattern for touch panel (the line width of the portion where the metal layer is formed is 1, 2, 3, 5, 8, 11 ⁇ m depending on the location) is applied to both the upper and lower photoresist films (Toa Gosei).
- Hard contact exposure double-sided exposure equipment manufactured by Dainippon Kaken: RA series
- a positive resist (Clearmage TPR) made by UV irradiation and exposing the photoresist to UV light from the mask to transfer the pattern.
- the exposure amount was in the range of 100 mJ to 140 mJ / cm 2 .
- the exposed resist was developed to expose the polypyrrole layer.
- temperature control 25 ° C. ⁇ 1 ° C.
- concentration management of the chemical solution were controlled by PID parameters.
- the exposed polypyrrole layer is removed by plasma etching, and then the photoresist film remaining on the polypyrrole layer is stripped with an alkaline aqueous solution using a resist stripping apparatus. Only the pattern portion of the polypyrrole layer was exposed on the surface. In order to remove the remaining resist film and perform the subsequent plating process more efficiently, the polypyrrole layer after resist removal was irradiated with plasma for a short time (about 1 minute).
- a copper plating layer was formed only on the polypyrrole layer, and a metal mesh substrate having a predetermined sensor pattern was obtained. Then, the blackening process which forms a cuprous oxide on the surface of a copper plating layer was performed. The thickness of the obtained copper plating layer was about 0.5 ⁇ m.
- the metal mesh substrate obtained by the above method was visually observed, the reflected light from the sensor pattern was hardly confirmed, and it was difficult to visually recognize the sensor pattern.
- the sensor pattern was observed with a microscope, the metal mesh was patterned on the transparent substrate with a line width of about 1, 2, 3, 5, 8, and 11 ⁇ m with high accuracy according to the line width of the sensor pattern.
- the transmittance in the sensor pattern was 83 to 88%.
- the sheet resistance value was 1 to 20 ⁇ / ⁇ .
- the transmittance was determined by measuring the ratio of visible light passing through the sensor using an ORC UV light source (42 mW / cm 2 ) and using an ORC U-35 / U-42 illuminometer. .
- the sheet resistance is a contact-type (4-probe method) resistance measuring instrument.
- Four needle-shaped electrodes are placed on a measurement sample on a straight line, a constant current is passed between the two outer probes, and the inner two The resistance was determined by measuring the potential difference generated between the probe tips.
- the touch panel sensors currently produced are mainly substrates using ITO film, but the ITO substrate cannot be applied to medium and large panels due to its high sheet resistance.
- a low sheet resistance material sensor such as a mesh sensor is required.
- the touch panel made using the metal mesh substrate according to the present invention has a low electric resistance because the sensor pattern is made of metal. Therefore, according to the present invention, not only a small touch panel but also a medium / large touch panel can be easily manufactured, and high visibility can be secured. For this reason, it is considered that the present invention greatly contributes to the expansion of the medium and large touch panel market, which is a new market.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Position Input By Displaying (AREA)
Abstract
Provided is a metal mesh substrate capable of improving the visibility of a display screen. In the metal mesh substrate, a metal mesh pattern is provided on one or both surfaces of a transparent substrate. The metal mesh pattern is formed from a stacked body obtained by sequentially stacking, on the transparent substrate, a conductive polymer layer having a maximum reflectance for wavelengths in the range of 400-700 nm of 20% or lower, and a metal layer.
Description
本発明はメタルメッシュ基板に関する。また、本発明はメタルメッシュ基板の製造方法に関する。とりわけ、本発明はタッチパネル基板として有用なメタルメッシュ基板に関する。
The present invention relates to a metal mesh substrate. The present invention also relates to a method for manufacturing a metal mesh substrate. In particular, the present invention relates to a metal mesh substrate useful as a touch panel substrate.
近年、ディスプレイの前面にタッチパネル(以下、「タッチセンサ」ともいう。)が設けられたタッチパネル付き表示装置の需要が、携帯電話機、携帯情報端末及びカーナビゲーションシステム等に代表される小型携帯端末の普及と共に大きく伸びている。タッチパネルは、指やペン等が接触した箇所の位置を検出することにより、操作指示やデータ入力を可能とする入力装置である。位置検出の方式としては、主流となる静電容量結合方式の他に、抵抗膜方式、赤外線方式、超音波方式および電磁誘導/結合方式などが知られている。
In recent years, the demand for display devices with a touch panel in which a touch panel (hereinafter also referred to as a “touch sensor”) is provided on the front surface of the display is in widespread use of small portable terminals typified by cellular phones, portable information terminals, car navigation systems, and the like. It grows greatly with. The touch panel is an input device that enables an operation instruction and data input by detecting the position of a part touched by a finger, a pen, or the like. As a position detection method, a resistive film method, an infrared method, an ultrasonic method, an electromagnetic induction / coupling method, and the like are known in addition to the mainstream capacitive coupling method.
現在主流になっているタッチパネルの材料であるITO膜は小型表示装置には向いているものの、シート抵抗が比較的高い。このため、技術的に中・大型タッチパネルには採用できないことから、中・大型タッチパネル向けの新たな市場を開拓し普及させるためには、より廉価な基材とより安定した製造プロセスによるタッチパネルを開発する必要がある。そこで、タッチパネルに採用されるセンサパターンをITO膜ではなく、銅や銀などの導電性の高い材料で形成するメタルメッシュが検討されている。
Although the ITO film, which is currently the mainstream touch panel material, is suitable for small display devices, it has a relatively high sheet resistance. For this reason, it cannot be used technically for medium- and large-sized touch panels, so in order to develop and popularize a new market for medium- and large-sized touch panels, we developed a cheaper base material and a touch panel with a more stable manufacturing process. There is a need to. Therefore, a metal mesh in which a sensor pattern used for a touch panel is formed of a highly conductive material such as copper or silver instead of an ITO film has been studied.
特開2010-95776号公報(特許文献1)には、基材上に無電解めっき法によりパターン化された金属膜を形成する技術が記載されている。当該公報においては、基材上に無電解めっき法によりパターン化された金属膜を形成するための下地塗料であって、前記下地塗料は、導電性又は還元性の高分子微粒子、バインダー及び無機系フィラーを含み、前記導電性又は還元性の高分子微粒子と前記バインダーとの質量比は、1:11ないし1:60の範囲であり且つ50cps以上の粘度を有する下地塗料が開示されている。そして、当該下地塗料を基材上にパターン印刷し、形成された塗膜層に無電解めっき液から金属膜を化学めっきすることが開示されている。
JP 2010-95776 A (Patent Document 1) describes a technique for forming a patterned metal film on a substrate by an electroless plating method. In this publication, a base coating for forming a metal film patterned by an electroless plating method on a substrate, the base coating comprising conductive or reducing polymer fine particles, a binder, and an inorganic system A base coating material containing a filler and having a mass ratio of the conductive or reducing polymer fine particles to the binder in the range of 1:11 to 1:60 and having a viscosity of 50 cps or more is disclosed. And it discloses that the said base coating material is pattern-printed on a base material, and the metal film is chemically plated from the electroless-plating liquid to the formed coating film layer.
しかしながら、特許文献1に記載の技術を利用してタッチパネル用のセンサパターンを形成した場合、金属膜からの光反射が透明基板底面(裏面)を通して発生しやすく、表示画面の視認性を悪化させてしまうという問題がある。そこで、本発明は表示画面の視認性を改善可能なメタルメッシュ基板を提供することを課題の一つとする。また、本発明はそのようなメタルメッシュ基板の製造方法を提供することも課題の一つとする。
However, when the sensor pattern for the touch panel is formed using the technique described in Patent Document 1, light reflection from the metal film is likely to occur through the bottom surface (back surface) of the transparent substrate, which deteriorates the visibility of the display screen. There is a problem of end. Therefore, an object of the present invention is to provide a metal mesh substrate that can improve the visibility of a display screen. Another object of the present invention is to provide a method for manufacturing such a metal mesh substrate.
本発明者は上記課題を解決するために鋭意検討したところ、反射率の低い導電性高分子層を透明基板に形成し、その上に金属層を形成することによって製造したメタルメッシュ基板をタッチパネルに用いた場合、金属層からの反射光が導電性高分子層によって遮蔽されて透明基板を通過しにくくなるので、表示画面の視認性が向上することを見出した。また、メタルメッシュの線幅を5μm以下にすることにより、メタルメッシュが形成する配線パターンを実質的に視認することが困難になるため、表示画面の視認性が更に改善することもできる。本発明は以上の知見を基礎として完成したものである。
The present inventor has intensively studied to solve the above-mentioned problems. As a result, a metal mesh substrate manufactured by forming a conductive polymer layer having a low reflectance on a transparent substrate and forming a metal layer thereon is used as a touch panel. When used, it was found that the reflected light from the metal layer is shielded by the conductive polymer layer and hardly passes through the transparent substrate, so that the visibility of the display screen is improved. Moreover, since it becomes difficult to substantially visually recognize the wiring pattern formed by the metal mesh by setting the line width of the metal mesh to 5 μm or less, the visibility of the display screen can be further improved. The present invention has been completed based on the above findings.
本発明は一側面において、透明基板の片面又は両面上にメタルメッシュパターンを有するメタルメッシュ基板であって、メタルメッシュパターンは透明基板上に波長400~700nmの領域における最大反射率が20%以下である導電性高分子層及び金属層が順に積層された積層体で形成されている基板である。
In one aspect, the present invention is a metal mesh substrate having a metal mesh pattern on one or both sides of a transparent substrate, and the metal mesh pattern has a maximum reflectance of 20% or less in a wavelength region of 400 to 700 nm on the transparent substrate. It is a substrate formed of a laminate in which a certain conductive polymer layer and metal layer are sequentially laminated.
本発明に係る基板の一実施形態において、導電性高分子層の厚みは0.1~1μmである。
In one embodiment of the substrate according to the present invention, the conductive polymer layer has a thickness of 0.1 to 1 μm.
本発明に係る基板の別の一実施形態において、金属層の厚みは0.1~1μmである。
In another embodiment of the substrate according to the present invention, the metal layer has a thickness of 0.1 to 1 μm.
本発明に係る基板の更に別の一実施形態において、導電性高分子層と金属層の合計厚みが1.5μm以下である。
In yet another embodiment of the substrate according to the present invention, the total thickness of the conductive polymer layer and the metal layer is 1.5 μm or less.
本発明に係る基板の更に別の一実施形態において、金属層の外表面が黒化処理されている。
In yet another embodiment of the substrate according to the present invention, the outer surface of the metal layer is blackened.
本発明に係る基板の更に別の一実施形態において、メタルメッシュパターンが5μm以下の線幅で形成されている。
In yet another embodiment of the substrate according to the present invention, the metal mesh pattern is formed with a line width of 5 μm or less.
本発明に係る基板の更に別の一実施形態において、メタルメッシュパターンがタッチパネル用のセンサパターンを形成している。
In yet another embodiment of the substrate according to the present invention, the metal mesh pattern forms a sensor pattern for a touch panel.
本発明に係る基板の更に別の一実施形態において、導電性高分子層が黒色である。
In yet another embodiment of the substrate according to the present invention, the conductive polymer layer is black.
本発明に係る基板の更に別の一実施形態において、導電性高分子層には黒色の染料及び/又は顔料が配合されている。
In yet another embodiment of the substrate according to the present invention, a black dye and / or pigment is blended in the conductive polymer layer.
本発明は別の一側面において、透明基板の片面又は両面上に波長400~700nmの領域における最大反射率が20%以下である導電性高分子層を形成する工程1と、
導電性高分子層上にレジスト膜を形成する工程2と、
レジスト膜を露光及び現像処理を経てパターニングする工程3と、
レジスト膜のパターニングにより露出した導電性高分子層を除去する工程4と、
導電性高分子層上に残留しているレジスト膜を除去する工程5と、
当該パターニングされた導電性高分子層上に金属層を形成する工程6と、
を含むメタルメッシュ基板の製造方法である。 In another aspect of the present invention, a step 1 of forming a conductive polymer layer having a maximum reflectance of 20% or less in a wavelength region of 400 to 700 nm on one or both surfaces of a transparent substrate;
Step 2 of forming a resist film on the conductive polymer layer;
Step 3 of patterning the resist film through exposure and development,
Step 4 of removing the conductive polymer layer exposed by patterning the resist film;
Step 5 of removing the resist film remaining on the conductive polymer layer;
Forming a metal layer on the patterned conductive polymer layer; and
Is a method for manufacturing a metal mesh substrate.
導電性高分子層上にレジスト膜を形成する工程2と、
レジスト膜を露光及び現像処理を経てパターニングする工程3と、
レジスト膜のパターニングにより露出した導電性高分子層を除去する工程4と、
導電性高分子層上に残留しているレジスト膜を除去する工程5と、
当該パターニングされた導電性高分子層上に金属層を形成する工程6と、
を含むメタルメッシュ基板の製造方法である。 In another aspect of the present invention, a step 1 of forming a conductive polymer layer having a maximum reflectance of 20% or less in a wavelength region of 400 to 700 nm on one or both surfaces of a transparent substrate;
Step 2 of forming a resist film on the conductive polymer layer;
Step 3 of patterning the resist film through exposure and development,
Step 4 of removing the conductive polymer layer exposed by patterning the resist film;
Step 5 of removing the resist film remaining on the conductive polymer layer;
Forming a metal layer on the patterned conductive polymer layer; and
Is a method for manufacturing a metal mesh substrate.
本発明に係るメタルメッシュ基板の製造方法の一実施形態においては、金属めっき層の外表面を黒化処理する工程を更に含む。
In one embodiment of the method for manufacturing a metal mesh substrate according to the present invention, the method further includes a step of blackening the outer surface of the metal plating layer.
本発明に係るメタルメッシュ基板の製造方法の別の一実施形態においては、工程1では透明基板の両面上に導電性高分子層を形成し、工程2では透明基板の両面上に形成された導電性高分子層の上にそれぞれレジスト膜を形成し、工程3では両面のレジスト膜を両面露光装置によって同時に露光する。
In another embodiment of the method for producing a metal mesh substrate according to the present invention, in Step 1, a conductive polymer layer is formed on both surfaces of the transparent substrate, and in Step 2, the conductive material formed on both surfaces of the transparent substrate. A resist film is formed on each of the conductive polymer layers, and in step 3, the resist films on both sides are simultaneously exposed by a double-side exposure apparatus.
本発明に係るメタルメッシュ基板の製造方法の更に別の一実施形態においては、工程4及び工程5を同一のプラズマ処理装置内で実施する。
In yet another embodiment of the method for manufacturing a metal mesh substrate according to the present invention, Step 4 and Step 5 are performed in the same plasma processing apparatus.
本発明によれば、メタルメッシュ基板を利用したタッチパネルにおける表示画面の視認性を改善することができる。メタルメッシュ技術を用いたタッチパネルは大型化が容易であるため、今後普及が見込まれるところ、本発明によれば、例えば対角線の長さが15インチ以上のタッチパネル、更には対角線の長さが50インチ以上のタッチパネルにも適用可能である。
According to the present invention, the visibility of a display screen on a touch panel using a metal mesh substrate can be improved. Since the touch panel using the metal mesh technology is easy to increase in size, it is expected to spread in the future. According to the present invention, for example, a touch panel having a diagonal length of 15 inches or more, and further a diagonal length of 50 inches. The present invention can also be applied to the touch panel described above.
<1.メタルメッシュ基板>
本発明に係るメタルメッシュ基板の一実施形態においては、透明基板の片面又は両面上にメタルメッシュパターンを有する。本発明に係るメタルメッシュ基板の用途の一つである投影型静電容量方式のタッチパネルにおいてはx軸方向及びy軸方向の二層の電極層を絶縁層を挟んで重ね、タッチ位置を電極間の静電容量の変化から検出する。そのため、本発明に係るメタルメッシュ基板の好ましい実施形態においては透明基板の両面上にメタルメッシュパターンを有する。メタルメッシュパターンは典型的にはタッチパネル用のセンサパターンとすることができる。透明基板の両面上にメタルメッシュを有する場合は、x軸方向の電極層及びy軸方向の電極層をそれぞれメタルメッシュで形成することができる。 <1. Metal mesh substrate>
In one embodiment of the metal mesh substrate according to the present invention, the metal mesh pattern is provided on one side or both sides of the transparent substrate. In the projected capacitive touch panel that is one of the uses of the metal mesh substrate according to the present invention, two electrode layers in the x-axis direction and the y-axis direction are stacked with an insulating layer interposed therebetween, and the touch position is set between the electrodes. It is detected from the change in capacitance. Therefore, in a preferred embodiment of the metal mesh substrate according to the present invention, the metal mesh pattern is provided on both surfaces of the transparent substrate. The metal mesh pattern can be typically a sensor pattern for a touch panel. When the metal mesh is provided on both surfaces of the transparent substrate, the electrode layer in the x-axis direction and the electrode layer in the y-axis direction can be formed with the metal mesh, respectively.
本発明に係るメタルメッシュ基板の一実施形態においては、透明基板の片面又は両面上にメタルメッシュパターンを有する。本発明に係るメタルメッシュ基板の用途の一つである投影型静電容量方式のタッチパネルにおいてはx軸方向及びy軸方向の二層の電極層を絶縁層を挟んで重ね、タッチ位置を電極間の静電容量の変化から検出する。そのため、本発明に係るメタルメッシュ基板の好ましい実施形態においては透明基板の両面上にメタルメッシュパターンを有する。メタルメッシュパターンは典型的にはタッチパネル用のセンサパターンとすることができる。透明基板の両面上にメタルメッシュを有する場合は、x軸方向の電極層及びy軸方向の電極層をそれぞれメタルメッシュで形成することができる。 <1. Metal mesh substrate>
In one embodiment of the metal mesh substrate according to the present invention, the metal mesh pattern is provided on one side or both sides of the transparent substrate. In the projected capacitive touch panel that is one of the uses of the metal mesh substrate according to the present invention, two electrode layers in the x-axis direction and the y-axis direction are stacked with an insulating layer interposed therebetween, and the touch position is set between the electrodes. It is detected from the change in capacitance. Therefore, in a preferred embodiment of the metal mesh substrate according to the present invention, the metal mesh pattern is provided on both surfaces of the transparent substrate. The metal mesh pattern can be typically a sensor pattern for a touch panel. When the metal mesh is provided on both surfaces of the transparent substrate, the electrode layer in the x-axis direction and the electrode layer in the y-axis direction can be formed with the metal mesh, respectively.
透明基板の材料としては、限定的ではないが、ソーダ石灰硝子、ケイ酸硝子、バリウム硝子、燐酸塩硝子、ホウ酸塩硝子、フッ化物硝子及び石英硝子等の硝子類、ポリエチレンテレフタレート(PET)、ポリブチレンテレフテレート(PBT)及びポリエチレンナフタレート(PEN)等のポリエステル樹脂、シクロオレフィン系樹脂、ポリカーボネート樹脂、ポリイミド樹脂、セルロース系樹脂等の樹脂類が挙げられる。中でも、フレキシブルな基板となってロール・トゥ・ロール方式での生産が可能な樹脂類が好ましく、ポリエチレンテレフタレート又はシクロオレフィン系樹脂が特に好ましい。透明樹脂基板は一般にフィルムの形態で提供することができる。
The material of the transparent substrate is not limited, but glass such as soda lime glass, silicate glass, barium glass, phosphate glass, borate glass, fluoride glass and quartz glass, polyethylene terephthalate (PET), Examples thereof include polyester resins such as polybutylene terephthalate (PBT) and polyethylene naphthalate (PEN), and resins such as cycloolefin resins, polycarbonate resins, polyimide resins, and cellulose resins. Among them, resins that can be produced as a flexible substrate and can be produced in a roll-to-roll method are preferable, and polyethylene terephthalate or cycloolefin resins are particularly preferable. The transparent resin substrate can generally be provided in the form of a film.
透明基板の厚みは、限定的ではないが、10μm~700μmが好ましく、25μm~200μmがより好ましい。厚みが上記範囲内であれば、樹脂フィルム製としたときに透明基板が耐久性と適度な柔軟性とを有し得るため、その上に導電性高分子層及び金属層をロール・トゥ・ロール方式により生産性高く製膜することが可能である。
The thickness of the transparent substrate is not limited, but is preferably 10 μm to 700 μm, more preferably 25 μm to 200 μm. If the thickness is within the above range, the transparent substrate can have durability and moderate flexibility when made of a resin film, so that a conductive polymer layer and a metal layer are roll-to-roll on it. It is possible to form a film with high productivity by the method.
本発明に係るメタルメッシュ基板の一実施形態においては、メタルメッシュパターンは透明基板上に反射率が20%以下である導電性高分子層及び金属層が順に積層された積層体で形成されている。透明基板上に導電性高分子層を形成することで、金属層からの反射光が導電性高分子層によって遮蔽されて透明基板を通過しにくくなることで、表示画面の視認性が向上する。導電性高分子層の反射率は好ましくは20~1%の範囲であり、より好ましくは10~1%の範囲であり、更により好ましくは7~1%の範囲であり、更により好ましくは5~1%の範囲である。導電性高分子層の色は反射率低減の観点から黒色であることが好ましい。本発明において、反射率は分光反射率計(例えばウシオ電機株式会社製のURE-50)で測定可能であり、可視域光(波長400~700nm)における最大反射率を指す。反射率測定時の入射角度は30°とし、75Wキセノンランプを使用する。
In one embodiment of the metal mesh substrate according to the present invention, the metal mesh pattern is formed of a laminate in which a conductive polymer layer having a reflectance of 20% or less and a metal layer are sequentially laminated on a transparent substrate. . By forming the conductive polymer layer on the transparent substrate, the reflected light from the metal layer is shielded by the conductive polymer layer and hardly passes through the transparent substrate, thereby improving the visibility of the display screen. The reflectance of the conductive polymer layer is preferably in the range of 20 to 1%, more preferably in the range of 10 to 1%, still more preferably in the range of 7 to 1%, and still more preferably 5%. It is in the range of ˜1%. The color of the conductive polymer layer is preferably black from the viewpoint of reducing the reflectance. In the present invention, the reflectance can be measured with a spectral reflectometer (for example, URE-50 manufactured by USHIO INC.) And refers to the maximum reflectance in visible light (wavelength 400 to 700 nm). The incident angle at the time of reflectance measurement is 30 °, and a 75 W xenon lamp is used.
導電性高分子層を構成する高分子の材質としては、例えば、ポリアニリン、ポリチオフェン、ポリピロール、ポリフェニレン、ポリフルオレン、ポリビチオフェン、ポリイソチオフェン、ポリ(3,4-エチレンジオキシチオフェン)、ポリイソチアナフテン、ポリイソナフトチオフェン、ポリアセチレン、ポリジアセチレン、ポリパラフェニレンビニレン、ポリアセン、ポリチアジル、ポリエチレンビニレン、ポリパラフェニレン、ポリドデシルチオフェン、ポリフェニレンビニレン、ポリチエニレンビニレン、ポリフェニレンスルフィド及びこれらの誘導体等が例示できる。
Examples of the polymer material constituting the conductive polymer layer include polyaniline, polythiophene, polypyrrole, polyphenylene, polyfluorene, polybithiophene, polyisothiophene, poly (3,4-ethylenedioxythiophene), polyisothione. Examples include thianaphthene, polyisonaphthothiophene, polyacetylene, polydiacetylene, polyparaphenylene vinylene, polyacene, polythiazyl, polyethylene vinylene, polyparaphenylene, polydodecylthiophene, polyphenylene vinylene, polythienylene vinylene, polyphenylene sulfide, and their derivatives. it can.
導電性高分子の電気伝導度を高める目的で、ドーパントを併用してもよい。ドーパントとしては、ヨウ素、塩素等のハロゲン類、BF3、PF5等のルイス酸類、硝酸、硫酸等のプロトン酸類や、遷移金属、アルカリ金属、アミノ酸、核酸、界面活性剤、色素、クロラニル、テトラシアノエチレン、TCNQ等、公知のものが例示される。
A dopant may be used in combination for the purpose of increasing the electrical conductivity of the conductive polymer. Examples of dopants include halogens such as iodine and chlorine, Lewis acids such as BF 3 and PF 5 , proton acids such as nitric acid and sulfuric acid, transition metals, alkali metals, amino acids, nucleic acids, surfactants, dyes, chloranil, tetra Well-known things are illustrated, such as cyanoethylene and TCNQ.
透明基板上に導電性の高い導電性高分子層を形成することで、メッキプロセスにより形成された金属層が、幅広いプロセス条件で容易に且つ均一に形成される。導電性高分子層のシート抵抗値は好ましくは107Ω/□以下であり、より好ましくは105Ω/□以下であり、更により好ましくは104Ω/□以下であり、例えば102~107Ω/□とすることができる。また、そのシート抵抗値は、導電性高分子層の厚みよっても変化するが、好ましい厚みは別途、以下に記述する。
By forming the conductive polymer layer having high conductivity on the transparent substrate, the metal layer formed by the plating process is easily and uniformly formed under a wide range of process conditions. The sheet resistance value of the conductive polymer layer is preferably 10 7 Ω / □ or less, more preferably 10 5 Ω / □ or less, still more preferably 10 4 Ω / □ or less, such as 10 2 to 10 7 Ω / □. Further, the sheet resistance value varies depending on the thickness of the conductive polymer layer, but a preferable thickness is separately described below.
高分子自体が透明である等により低反射率を確保できない場合は、導電性高分子層中に黒色顔料や黒色染料等の黒色色素に代表される濃色色素を必要量配合することで反射率を制御することが可能である。顔料及び染料は高分子内での均一分散性の観点から水溶性であることが好ましい。導電性高分子層の色は反射率低減の観点から黒色であることが好ましいが、黒色でない場合でも使用可能である。例えば、高分子自体が青色系・赤色系の場合、その色濃度により使用することが可能であるし、青色系や赤色系の顔料や染料を配合して着色することも可能である。例えば、ポリチオフェンは青色系なので、これをそのまま利用することも可能である。しかしながら、黒色の顔料や染料を配合することにより反射率を低下させ、視認性を向上することがより望ましい。
If low reflectivity cannot be ensured due to the polymer itself being transparent, etc., reflect the reflectivity by blending the conductive polymer layer with the necessary amount of dark color typified by black pigments such as black pigments and black dyes. Can be controlled. The pigment and the dye are preferably water-soluble from the viewpoint of uniform dispersibility in the polymer. The color of the conductive polymer layer is preferably black from the viewpoint of reducing the reflectance, but can be used even when it is not black. For example, when the polymer itself is blue or red, it can be used depending on its color density, or it can be colored by blending a blue or red pigment or dye. For example, since polythiophene is blue, it can be used as it is. However, it is more desirable to reduce the reflectance and improve the visibility by blending a black pigment or dye.
導電性高分子層には透明基板との密着性を上げるためにバインダーを配合することができる。バインダーとしては、特に限定されるものではないが、例えば、ポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリメチルメタクリレート、ポリエステル、ポリスルホン、ポリフェニレンオキシド、ポリブタジエン、ポリ(N-ビニルカルバゾール)、炭化水素樹脂、ケトン樹脂、フェノキシ樹脂、ポリアミド、エチルセルロース、酢酸ビニル、ABS樹脂、ウレタン樹脂、メラミン樹脂、アクリル樹脂、不飽和ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、シリコン樹脂等が挙げられる。
In the conductive polymer layer, a binder can be blended in order to improve adhesion with the transparent substrate. The binder is not particularly limited. For example, polyvinyl chloride, polycarbonate, polystyrene, polymethyl methacrylate, polyester, polysulfone, polyphenylene oxide, polybutadiene, poly (N-vinylcarbazole), hydrocarbon resin, ketone resin. , Phenoxy resin, polyamide, ethyl cellulose, vinyl acetate, ABS resin, urethane resin, melamine resin, acrylic resin, unsaturated polyester resin, alkyd resin, epoxy resin, silicon resin and the like.
使用するバインダー量は、導電性高分子1質量部に対して11質量部以上使用することができ、具体的には、導電性高分子微粒子1質量部に対して11~60質量部の範囲であるのが好ましい。バインダーが60質量部を超えると金属めっきが析出しにくくなる場合があり、バインダーが11質量部未満であると、塗料の粘度を上げ難くなる。
The binder used can be used in an amount of 11 parts by mass or more per 1 part by mass of the conductive polymer, and specifically, in the range of 11 to 60 parts by mass with respect to 1 part by mass of the conductive polymer fine particles. Preferably there is. If the binder exceeds 60 parts by mass, metal plating may be difficult to deposit, and if the binder is less than 11 parts by mass, it is difficult to increase the viscosity of the paint.
また、導電性高分子層には金属めっきの析出を促進するためのカーボンブラック、酸化チタン及びシリカ粒子等の無機フィラーを配合することもできる。無機フィラーの使用量は、特に、限定されるものではないが、バインダー1質量部に対して0.1~1.5質量部の範囲であるのが好ましい。無機フィラーの使用量が、バインダー1質量部に対して1.5質量部を超える場合、基材と塗膜層間での剥離が起こり易くなり、良好な密着性が得られ難くなることがあり、また、0.1質量部未満となる場合、金属めっきが析出しにくくなることがある。
Also, the conductive polymer layer can be blended with inorganic fillers such as carbon black, titanium oxide and silica particles for promoting the deposition of metal plating. The amount of the inorganic filler used is not particularly limited, but is preferably in the range of 0.1 to 1.5 parts by mass with respect to 1 part by mass of the binder. When the amount of the inorganic filler used exceeds 1.5 parts by mass with respect to 1 part by mass of the binder, peeling between the base material and the coating film layer is likely to occur, and good adhesion may be difficult to obtain. Moreover, when it becomes less than 0.1 mass part, metal plating may become difficult to precipitate.
導電性高分子層の厚みは、反射率の低下、両面同時露光及びめっき性の観点から重要である。低い反射率を確保し、両面同時露光の際に反対面のフォトレジストへの露光影響を効果的に抑制し、そして、めっき被膜を付着しやすくするという理由により0.1μm以上であることが好ましく、0.2μm以上であることがより好ましく、0.3μm以上であることが更により好ましい。また、導電性高分子層の厚みは、透明基材との密着性を維持するために、1μm以下であることが好ましく、0.7μm以下であることがより好ましく、0.5μm以下であることが更により好ましい。
The thickness of the conductive polymer layer is important from the viewpoints of a decrease in reflectance, simultaneous exposure on both sides, and plating properties. It is preferably 0.1 μm or more for the reason of ensuring a low reflectance, effectively suppressing the exposure influence on the opposite side photoresist during double-sided simultaneous exposure, and facilitating adhesion of the plating film. The thickness is more preferably 0.2 μm or more, and still more preferably 0.3 μm or more. Further, the thickness of the conductive polymer layer is preferably 1 μm or less, more preferably 0.7 μm or less, and 0.5 μm or less in order to maintain adhesion with the transparent substrate. Is even more preferred.
金属層を形成する材料としては、金属であれば特に制限はないが、導電性が高い銅、銅合金、銀、銀合金、金、金合金、クロム、ニッケル及びニッケル合金等が好適であるが、比較的安価であり、導電性も高いという理由により銅が特に好ましい。
The material for forming the metal layer is not particularly limited as long as it is a metal, but copper, copper alloy, silver, silver alloy, gold, gold alloy, chromium, nickel, nickel alloy and the like having high conductivity are suitable. Copper is particularly preferred because it is relatively inexpensive and has high conductivity.
金属層の厚みは、低いシート抵抗を確保し、また、断線を防止する観点から0.1μm以上であることが好ましく、0.5μm以上であることがより好ましく、0.7μm以上であることが更により好ましい。また、金属層の厚みは、生産効率を高める観点から1μm以下であることが好ましく、0.9μm以下であることがより好ましく、0.8μm以下であることが更により好ましい。なお、シート抵抗は金属層の厚みが大きくなれば低下するが、タッチパネル用途としては金属層の厚みはこのように1μm以下で十分である。
The thickness of the metal layer is preferably 0.1 μm or more, more preferably 0.5 μm or more, and preferably 0.7 μm or more from the viewpoint of securing low sheet resistance and preventing disconnection. Even more preferred. In addition, the thickness of the metal layer is preferably 1 μm or less, more preferably 0.9 μm or less, and even more preferably 0.8 μm or less from the viewpoint of increasing production efficiency. In addition, although sheet resistance will fall if the thickness of a metal layer becomes large, 1 micrometer or less is sufficient for the thickness of a metal layer in this way for a touch-panel use.
また、導電性高分子層と金属層の合計厚みは、センサー配線の高さとなるので、その配線高さが高くなりすぎるとプロセス中にその配線が剥がれる可能性も高くなるため、1.5μm以下であることが好ましく、1.3μm以下であることがより好ましく、1.1μm以下であることが更により好ましい。
In addition, since the total thickness of the conductive polymer layer and the metal layer is the height of the sensor wiring, if the wiring height becomes too high, there is a high possibility that the wiring will be peeled off during the process. Preferably, it is 1.3 μm or less, and more preferably 1.1 μm or less.
金属層の外表面は黒化処理されていることが好ましい。金属層の外表面が黒いことにより、金属層からの光反射はいっそう抑制されることから、表示画面の視認性の向上に有利である。先述したように、本発明においては、透明基板と金属層の間に低反射率の導電性高分子層が介在することで、金属層からの反射光が導電性高分子層によって遮蔽されて透明基板を通過しにくくなることで、表示画面の視認性を向上させることができる。しかしながら、これだけでは金属層の外表面は露出しており、金属層の外表面からの光反射は依然として生じ得る。
The outer surface of the metal layer is preferably blackened. Since the outer surface of the metal layer is black, light reflection from the metal layer is further suppressed, which is advantageous for improving the visibility of the display screen. As described above, in the present invention, since the conductive polymer layer having a low reflectance is interposed between the transparent substrate and the metal layer, the reflected light from the metal layer is shielded by the conductive polymer layer and is transparent. By making it difficult to pass through the substrate, the visibility of the display screen can be improved. However, this alone exposes the outer surface of the metal layer, and light reflection from the outer surface of the metal layer can still occur.
そこで、金属層の外表面を黒化処理する。これにより、金属層の外表面からの光反射も抑制することができる。光反射を効果的に抑制する観点から、金属層の外表面は全体を黒色化することが好ましい。黒化処理の方法としては、金属層の外表面を黒くする処理であれば特に制限はないが、例えば、金属層(通常は銅層)の外表面を酸化して亜酸化銅の被膜を成長させる処理に代表される表面酸化処理が例示される。その他、化成処理、黒色クロムめっき、黒色ニッケルめっきなどにより黒化処理することも可能であるが、メッキ工程ライン上に組み込める工程であり処理速度が速い理由により、薄膜の表面酸化処理による黒化が好ましい。黒化処理は防錆機能を付与する役割もある。
Therefore, the outer surface of the metal layer is blackened. Thereby, the light reflection from the outer surface of a metal layer can also be suppressed. From the viewpoint of effectively suppressing light reflection, the entire outer surface of the metal layer is preferably blackened. The blackening method is not particularly limited as long as the outer surface of the metal layer is blackened. For example, the outer surface of the metal layer (usually a copper layer) is oxidized to grow a cuprous oxide film. The surface oxidation process represented by the process to make is illustrated. In addition, it is possible to blacken by chemical conversion treatment, black chrome plating, black nickel plating, etc., but it is a process that can be incorporated on the plating process line and due to the high processing speed, blackening due to surface oxidation treatment of the thin film preferable. The blackening treatment also has a role of imparting a rust prevention function.
メタルメッシュパターンの線幅は、メッシュパターンが人間の視覚によって実質的に認識できなくなり、表示画面の視認性を顕著に向上させる観点から、10μm以下であることが好ましく、5μm以下であることがより好ましく、3μm以下であることが更により好ましく、2μm以下であることが更により好ましく、例えば1~5μm程度とすることができる。
The line width of the metal mesh pattern is preferably 10 μm or less, more preferably 5 μm or less from the viewpoint of making the mesh pattern substantially unrecognizable by human vision and significantly improving the visibility of the display screen. Preferably, it is still more preferably 3 μm or less, still more preferably 2 μm or less, for example, about 1 to 5 μm.
メタルメッシュ基板の大きさには特に制限はなく、小型、中型及び大型の何れのタッチパネルにも利用可能である。例えばロールに巻かれたフィルム基板の場合、フィルム基板の川幅を500~600mmとすることができ、中型以上のパネル用には800mm以上とすることができ、大型のパネル用には1500mm以上とすることもできる。
The size of the metal mesh substrate is not particularly limited, and can be used for any of small, medium and large touch panels. For example, in the case of a film substrate wound on a roll, the river width of the film substrate can be 500 to 600 mm, can be 800 mm or more for a medium or larger panel, and can be 1500 mm or more for a large panel. You can also.
<2.メタルメッシュ基板の製造方法>
本発明に係るメタルメッシュ基板を製造するための好適な方法について、図面を参照しながら以下に説明する。まず、透明基板12を用意し、透明基板12の片面又は両面上に最大反射率が20%以下である導電性高分子層11を形成する(図1中の(1))。導電性高分子層11を透明基板12上に形成する方法としては、限定的ではないが、導電性高分子の微粒子を有機溶媒に分散させた分散液を透明基板上に塗工し、熱乾燥する方法が挙げられる。熱乾燥時の温度は透明基板12へのダメージを回避するために90℃以下とすることが好ましい。また、透明基板12の表面上で導電性高分子を重合することにより薄膜を形成してもよい。導電性高分子層はパターンの存在しない平膜の形態とするのが通常である。先述したように、導電性高分子が黒色ではない又は黒色度合いが足りない場合には、黒色染料や黒色顔料などの黒色色素に代表される濃色色素を配合することで、導電性高分子層の反射率を調整してもよい。導電性高分子の微粒子は市販のものを使用してもよいし、特開2010-95776号公報に記載の製造方法によって製造することも可能である。 <2. Manufacturing method of metal mesh substrate>
A suitable method for manufacturing the metal mesh substrate according to the present invention will be described below with reference to the drawings. First, atransparent substrate 12 is prepared, and a conductive polymer layer 11 having a maximum reflectance of 20% or less is formed on one or both surfaces of the transparent substrate 12 ((1) in FIG. 1). The method for forming the conductive polymer layer 11 on the transparent substrate 12 is not limited, but a dispersion liquid in which fine particles of the conductive polymer are dispersed in an organic solvent is applied on the transparent substrate, followed by heat drying. The method of doing is mentioned. In order to avoid damage to the transparent substrate 12, the temperature at the time of heat drying is preferably 90 ° C. or lower. Further, a thin film may be formed by polymerizing a conductive polymer on the surface of the transparent substrate 12. The conductive polymer layer is usually in the form of a flat film having no pattern. As mentioned above, when the conductive polymer is not black or the blackness is insufficient, the conductive polymer layer is blended with a dark pigment such as black dye or black pigment. The reflectance may be adjusted. As the conductive polymer fine particles, commercially available fine particles may be used, or they can be produced by the production method described in JP 2010-95776 A.
本発明に係るメタルメッシュ基板を製造するための好適な方法について、図面を参照しながら以下に説明する。まず、透明基板12を用意し、透明基板12の片面又は両面上に最大反射率が20%以下である導電性高分子層11を形成する(図1中の(1))。導電性高分子層11を透明基板12上に形成する方法としては、限定的ではないが、導電性高分子の微粒子を有機溶媒に分散させた分散液を透明基板上に塗工し、熱乾燥する方法が挙げられる。熱乾燥時の温度は透明基板12へのダメージを回避するために90℃以下とすることが好ましい。また、透明基板12の表面上で導電性高分子を重合することにより薄膜を形成してもよい。導電性高分子層はパターンの存在しない平膜の形態とするのが通常である。先述したように、導電性高分子が黒色ではない又は黒色度合いが足りない場合には、黒色染料や黒色顔料などの黒色色素に代表される濃色色素を配合することで、導電性高分子層の反射率を調整してもよい。導電性高分子の微粒子は市販のものを使用してもよいし、特開2010-95776号公報に記載の製造方法によって製造することも可能である。 <2. Manufacturing method of metal mesh substrate>
A suitable method for manufacturing the metal mesh substrate according to the present invention will be described below with reference to the drawings. First, a
有機溶媒としては、酢酸ブチル等の脂肪族エステル類、トルエン等の芳香族溶媒、メチルエチルケトン、シクロヘキサノン、イソホロン等のケトン類、シクロヘキサン等の環状飽和炭化水素類、n-オクタン等の鎖状飽和炭化水素類、メタノール、エタノール、n-オクタノール等の鎖状飽和アルコール類、安息香酸メチル等の芳香族エステル類、ジエチルエーテル等の脂肪族エーテル類及びこれらの混合物等が挙げられる。導電性高分子の微粒子は、分散液中における分散安定性を維持するために、固形分として該分散液の質量の5質量%以下(固形分比)となるようにすることが好ましい。
Examples of organic solvents include aliphatic esters such as butyl acetate, aromatic solvents such as toluene, ketones such as methyl ethyl ketone, cyclohexanone and isophorone, cyclic saturated hydrocarbons such as cyclohexane, and chain saturated hydrocarbons such as n-octane. , Chain saturated alcohols such as methanol, ethanol, n-octanol, aromatic esters such as methyl benzoate, aliphatic ethers such as diethyl ether, and mixtures thereof. In order to maintain the dispersion stability in the dispersion, it is preferable that the conductive polymer fine particles have a solid content of 5% by mass or less (solid content ratio) of the mass of the dispersion.
使用する導電性高分子の微粒子の平均粒径は、例えば1~500nm、典型的には10~100nm程度とすることができる。ここでは、粒径は測定対象となる微粒子を取り囲むことのできる最小円の直径として定義する。
The average particle diameter of the conductive polymer fine particles used can be, for example, 1 to 500 nm, typically about 10 to 100 nm. Here, the particle size is defined as the diameter of the smallest circle that can surround the fine particles to be measured.
分散液中には、導電性高分子の微粒子の他、バインダー、分散安定剤、増粘剤、無機フィラー、ドーパント等の添加剤を種々添加し得る。
In the dispersion, various additives such as binders, dispersion stabilizers, thickeners, inorganic fillers and dopants can be added in addition to the conductive polymer fine particles.
次いで、導電性高分子層11上にレジスト膜13を形成する(図1中の(2))。レジストとしては、液状のものでも固形化したものでもいずれも使用できる。フォトレジストやドライフィルムレジストが好適に使用できるが、作業性が良く、均一に塗布しやすいことから液状のフォトレジストがより好ましい。例えば、フォトレジスト用スリットコータを使用して、液状のフォトレジストを導電性高分子層上に塗布後、ベーキングを行うことでレジスト膜を形成することができる。ベーキングは基板への熱ダメージを避けるために、100℃以下で実施することが好ましい。
Next, a resist film 13 is formed on the conductive polymer layer 11 ((2) in FIG. 1). As the resist, either a liquid or solid resist can be used. Photoresists and dry film resists can be suitably used, but liquid photoresists are more preferred because of their good workability and easy application uniformly. For example, a resist film can be formed by baking after applying a liquid photoresist on the conductive polymer layer using a slit coater for photoresist. Baking is preferably performed at 100 ° C. or lower in order to avoid thermal damage to the substrate.
次いで、レジスト膜13をパターニングする(図1中の(3))。レジスト膜の厚みは、限定的ではないが、0.1~10μm程度の厚みで形成することができ、典型的には2~4μm程度の厚みで形成することができる。ここで重要なことは、後に導電性高分子層を除去する際に、導電性高分子層よりも先にレジスト膜がなくなってしまわないようにレジスト膜の厚みを設定するということである。除去速度は一般に導電性高分子層よりもレジスト膜の方が高いため、レジスト膜の厚みを十分に確保しておくことが必要となる。但し、レジスト膜が厚すぎるとサイドエッチングが生じやすいことに注意すべきである。また、塗布したレジスト膜の均一性が重要であり、±10%以内にし、±5%がより好ましい。レジスト膜13をパターニングする方法としては例えば、紫外線等で所与のマスクパターンを介してレジスト膜を露光することで、レジスト膜にパターンを転写する方法が挙げられる。図1中の符号14で示した箇所が露光した箇所である。露光は接触式露光方式及び非接触式露光方式(例えば、基板とマスク間に隙間を設け、非接触で露光面をスキャン又は一括露光するプロキシミティー露光方式)の何れを採用することも可能であるが、装置価格が安価であり且つ解像度が高いことから接触式露光方式が好ましく、ハードコンタクト露光方式がより好ましい。露光量は最適な線幅と現像条件を確保するためにそれぞれのレジスト特性により決定される。
Next, the resist film 13 is patterned ((3) in FIG. 1). The thickness of the resist film is not limited, but can be formed with a thickness of about 0.1 to 10 μm, and typically with a thickness of about 2 to 4 μm. What is important here is that when the conductive polymer layer is removed later, the thickness of the resist film is set so that the resist film does not disappear before the conductive polymer layer. Since the resist film generally has a higher removal rate than the conductive polymer layer, it is necessary to ensure a sufficient thickness of the resist film. However, it should be noted that side etching tends to occur if the resist film is too thick. Further, the uniformity of the applied resist film is important, and it is within ± 10%, more preferably ± 5%. Examples of a method for patterning the resist film 13 include a method of transferring the pattern to the resist film by exposing the resist film through a given mask pattern with ultraviolet rays or the like. A portion indicated by reference numeral 14 in FIG. 1 is an exposed portion. For the exposure, either a contact exposure system or a non-contact exposure system (for example, a proximity exposure system in which a gap is provided between the substrate and the mask and the exposure surface is scanned or exposed in a non-contact manner) can be adopted. However, the contact exposure method is preferable because the apparatus price is low and the resolution is high, and the hard contact exposure method is more preferable. The exposure amount is determined by the respective resist characteristics in order to ensure the optimum line width and development conditions.
透明基板の上下面にセンサパターンが形成されたタッチパネルを製造する場合、露光装置で上下面を露光する必要があるが、透明な材料では、上下の露光量が互いの面に影響して正確なパターンが形成できない。しかし、本発明では透明基板上の導電性高分子層が上下面からの露光影響を十分遮蔽するため、正確なパターンを透明基板の上下面に形成することが可能となる。そのため、本発明においては両面露光装置を用いて同時に透明基板の上下面を露光することも可能であり、生産効率を著しく向上することができる。
When manufacturing touch panels with sensor patterns formed on the upper and lower surfaces of a transparent substrate, it is necessary to expose the upper and lower surfaces with an exposure device. However, with transparent materials, the upper and lower exposure amounts affect each other and are accurate. A pattern cannot be formed. However, in the present invention, since the conductive polymer layer on the transparent substrate sufficiently shields the influence of exposure from the upper and lower surfaces, an accurate pattern can be formed on the upper and lower surfaces of the transparent substrate. Therefore, in the present invention, it is possible to simultaneously expose the upper and lower surfaces of the transparent substrate using a double-side exposure apparatus, and the production efficiency can be remarkably improved.
次いで、露光されたレジスト膜を現像液で現像処理すると、レジスト膜がパターンに応じて除去されて導電性高分子層が露出する(図1中の(4))。図1中の符号15で示した箇所が導電性高分子層の露出した箇所である。レジスト膜はポジ型及びネガ型の何れを使用しても良い。ポジ型の場合、感光されたレジスト膜が除去され、露光されていないレジスト膜がパターン部として残される。現像処理はレジスト現像処理装置により行うことができる。
Next, when the exposed resist film is developed with a developer, the resist film is removed according to the pattern to expose the conductive polymer layer ((4) in FIG. 1). A portion indicated by reference numeral 15 in FIG. 1 is a portion where the conductive polymer layer is exposed. The resist film may be either a positive type or a negative type. In the case of the positive type, the exposed resist film is removed, and an unexposed resist film is left as a pattern portion. The development processing can be performed by a resist development processing apparatus.
次いで、レジスト膜のパターニングにより露出した導電性高分子層を除去する(図1中の(5))。導電性高分子層を除去する方法としては、限定的ではないが、ウェットエッチング及びドライエッチングが挙げられる。この際、ウェットエッチング装置又はドライエッチング装置を使用することができる。サイドエッチングを抑制し、高精度のパターンを形成する観点からは、ドライエッチングが好ましい。ドライエッチングとしては、例えば、プラズマエッチング、光エッチング、イオンビームエッチングなどが挙げられる。エッチングの際、レジスト膜も除去されるが、レジストと導電性高分子の除去量の選択比を求めることによりレジスト膜厚を最適に設定することにより、導電性高分子層を除去しつつレジスト膜を残留させることが可能である。これにより、レジスト膜が一種のマスクとして機能するため、露出した導電性高分子層を選択的に除去可能である。図1中の符号16で示した箇所が導電性高分子層が除去された箇所である。
Next, the exposed conductive polymer layer is removed by patterning the resist film ((5) in FIG. 1). A method for removing the conductive polymer layer includes, but is not limited to, wet etching and dry etching. At this time, a wet etching apparatus or a dry etching apparatus can be used. From the viewpoint of suppressing side etching and forming a highly accurate pattern, dry etching is preferable. Examples of dry etching include plasma etching, photoetching, ion beam etching, and the like. The resist film is also removed during the etching, but the resist film is removed while removing the conductive polymer layer by optimally setting the resist film thickness by determining the selection ratio of the resist and conductive polymer removal amount. Can be left behind. Thereby, since the resist film functions as a kind of mask, the exposed conductive polymer layer can be selectively removed. A portion indicated by reference numeral 16 in FIG. 1 is a portion from which the conductive polymer layer has been removed.
次いで、導電性高分子層上に残留しているレジスト膜を除去する(図1中の(6))。当該工程は、例えば、レジスト膜と剥離液を接触させることにより実施することが可能であり、レジスト剥離処理装置を使用することができる。接触方法としては、パターニングされたレジスト膜が残留している基板全体を剥離液の入った容器中に入れる方法(浸漬法)や、剥離液をレジスト膜に噴霧する方法(噴霧法、スプレー法)が例示できる。さらに効率の良い方法として、前工程にてプラズマ処理装置によるドライエッチングを行った場合、そのプラズマ処理装置を用いて、剥離条件を別途設定し、導電性高分子層上に残留したレジスト膜を除去することによる剥離方法が使用できる。この場合、レジスト剥離処理装置を別途用意する必要はなく、コストメリットも高い。
Next, the resist film remaining on the conductive polymer layer is removed ((6) in FIG. 1). This step can be performed, for example, by bringing a resist film into contact with a stripping solution, and a resist stripping apparatus can be used. As a contact method, a method in which the entire substrate on which the patterned resist film remains is placed in a container containing a stripping solution (immersion method), or a method in which the stripping solution is sprayed onto the resist film (spraying method, spraying method). Can be illustrated. As an even more efficient method, when dry etching is performed using a plasma processing apparatus in the previous process, a separate stripping condition is set using the plasma processing apparatus, and the resist film remaining on the conductive polymer layer is removed. The peeling method by doing can be used. In this case, it is not necessary to prepare a resist stripping apparatus separately, and the cost merit is high.
剥離液は、加熱して用いるのが一般的であるが、高温処理では剥離液が導電性高分子層の導電性に対して悪影響を与える場合がある。したがって50℃以下が好ましい。より好ましくは40℃以下であり、さらに好ましくは35℃以下であり、最も好ましくは30℃以下である。また、低温であると、剥離能力が落ちるので5℃以上が好ましく、より好ましくは10℃以上である。
The stripping solution is generally used by heating, but the stripping solution may adversely affect the conductivity of the conductive polymer layer in high temperature treatment. Therefore, 50 degrees C or less is preferable. More preferably, it is 40 degrees C or less, More preferably, it is 35 degrees C or less, Most preferably, it is 30 degrees C or less. Moreover, since peeling ability falls at low temperature, 5 degreeC or more is preferable, More preferably, it is 10 degreeC or more.
次いで、当該パターニングされた導電性高分子層11上に金属層17を形成する(図1中の(7))。金属層17の形成は、限定的ではないが、無電解めっき法及び電気めっき法を採用することができ、めっき処理装置により実施すればよい。無電解めっき法及び電気めっき法は公知の任意の方法を使用すればよいが、例えば、無電解めっき法の場合、導電性高分子層中の導電性高分子微粒子を脱ドープ処理して還元性とした後、パターニングされた導電性高分子層を有する基板を塩化パラジウム等の触媒金属を付着させるための触媒液に浸漬し、水洗等を行い、無電解めっき浴に浸漬することにより導電性高分子層上に選択的に金属層を形成することができる。
Next, a metal layer 17 is formed on the patterned conductive polymer layer 11 ((7) in FIG. 1). The formation of the metal layer 17 is not limited, but an electroless plating method and an electroplating method can be employed and may be performed by a plating apparatus. Any known method may be used for the electroless plating method and the electroplating method. For example, in the case of the electroless plating method, the conductive polymer particles in the conductive polymer layer are dedoped and reduced. After that, the substrate having the patterned conductive polymer layer is immersed in a catalyst solution for adhering a catalytic metal such as palladium chloride, washed with water, and immersed in an electroless plating bath. A metal layer can be selectively formed on the molecular layer.
脱ドープ処理としては、還元剤、例えば、水素化ホウ素ナトリウム、水素化ホウ素カリウム等の水素化ホウ素化合物、ジメチルアミンボラン、ジエチルアミンボラン、トリメチルアミンボラン、トリエチルアミンボラン等のアルキルアミンボラン、及び、ヒドラジン等を含む溶液で処理して還元する方法、又は、アルカリ性溶液で処理する方法が挙げられる。操作性及び経済性の観点からアルカリ性溶液で処理するのが好ましい。
As the dedoping treatment, a reducing agent, for example, a borohydride compound such as sodium borohydride or potassium borohydride, an alkylamine borane such as dimethylamine borane, diethylamine borane, trimethylamine borane, triethylamine borane, hydrazine, etc. The method of processing and reducing with the solution to contain, or the method of processing with an alkaline solution is mentioned. It is preferable to treat with an alkaline solution from the viewpoint of operability and economy.
触媒液は、無電解めっきに対する触媒活性を有する貴金属(触媒金属)を含む溶液であり、触媒金属としては、パラジウム、金、白金、ロジウム等が挙げられ、これら金属は単体でも化合物でもよく、触媒金属を含む安定性の点からパラジウム化合物が好ましく、その中でも塩化パラジウムが特に好ましい。好ましい具体的な触媒液としては、0.05%塩化パラジウム-0.005%塩酸水溶液(pH3)が挙げられる。処理温度は、20~50℃、好ましくは30~40℃であり、処理時間は、0.1~20分、好ましくは、1~10分である。
The catalyst solution is a solution containing a noble metal (catalyst metal) having catalytic activity for electroless plating. Examples of the catalyst metal include palladium, gold, platinum, rhodium, etc. These metals may be simple substances or compounds. A palladium compound is preferable from the viewpoint of stability including a metal, and palladium chloride is particularly preferable among them. A preferred specific catalyst solution includes 0.05% palladium chloride-0.005% hydrochloric acid aqueous solution (pH 3). The treatment temperature is 20 to 50 ° C., preferably 30 to 40 ° C., and the treatment time is 0.1 to 20 minutes, preferably 1 to 10 minutes.
触媒付与の処理を行った後は、パターニングされた導電性高分子層を有する基板をめっき液に浸漬し、これにより無電解めっき膜を形成可能である。めっき液としては、通常、無電解めっきに使用されるめっき液であれば、特に限定されない。即ち、無電解めっきに使用できる金属、銅、金、銀、ニッケル等、全て適用することができるが、銅が好ましい。無電解銅めっき浴の具体例としては、例えば、ATSアドカッパーIW浴(奥野製薬工業(株)社製)等が挙げられる。処理温度は、20~50℃、好ましくは30~40℃であり、処理時間は1~30分、好ましくは5~15分である。得られためっき物は、使用した基板のTgより低い温度範囲において、数時間以上、例えば、2時間以上養生するのが好ましい。
After the catalyst application treatment, the substrate having the patterned conductive polymer layer is immersed in a plating solution, whereby an electroless plating film can be formed. The plating solution is not particularly limited as long as it is a plating solution usually used for electroless plating. That is, metal, copper, gold, silver, nickel, etc. that can be used for electroless plating can all be applied, but copper is preferred. Specific examples of the electroless copper plating bath include, for example, an ATS add copper IW bath (Okuno Pharmaceutical Co., Ltd.). The treatment temperature is 20 to 50 ° C., preferably 30 to 40 ° C., and the treatment time is 1 to 30 minutes, preferably 5 to 15 minutes. The obtained plated product is preferably cured for several hours or more, for example, 2 hours or more in a temperature range lower than Tg of the substrate used.
レジスト膜を除去後、金属めっきを実施する前に、水や有機溶剤などの洗浄液で基板を洗浄しても良い。また、導電性高分子層11に対する金属層17の密着性を高めるために、金属層17の形成前に、導電性高分子層11の表面をクリーニングすることもできる。クリーニングの方法としては、限定的ではないが、例えばプラズマ処理が挙げられる。
After removing the resist film, the substrate may be cleaned with a cleaning solution such as water or an organic solvent before metal plating. Further, in order to improve the adhesion of the metal layer 17 to the conductive polymer layer 11, the surface of the conductive polymer layer 11 can be cleaned before the metal layer 17 is formed. The cleaning method is not limited, and examples thereof include plasma treatment.
金属層17を形成した後は、更に金属層の外表面を黒化処理して黒化処理被膜18を形成することが好ましい(図1中の(8))。黒化処理の方法は先述した方法が例示される。また、黒化処理による利点も先述したとおりである。黒化処理は黒化処理装置を用いて行うことができる。めっき処理装置が黒化処理装置の機能を有していても良い。
After forming the metal layer 17, it is preferable to further blacken the outer surface of the metal layer to form a blackened film 18 ((8) in FIG. 1). The blackening process is exemplified by the method described above. The advantages of the blackening process are also as described above. The blackening process can be performed using a blackening apparatus. The plating apparatus may have the function of a blackening apparatus.
以上の方法では、薄膜の黒色導電性高分子を用いて、最終段階で金属めっきを行うことによりメタルメッシュ基板を製造する。当該方法は銅箔をエッチングしてパターン形成する製造方法に比べ、銅の消費量を90%以上軽減する効果がある。また、消費される導電性高分子そのものは、銅箔に比べて安価な材料であるため、本発明によりメタルメッシュ基板の製造コストを顕著に低減できる。
In the above method, a metal mesh substrate is manufactured by performing metal plating at the final stage using a thin black conductive polymer. This method has an effect of reducing copper consumption by 90% or more compared to a manufacturing method in which a pattern is formed by etching a copper foil. Moreover, since the consumed conductive polymer itself is an inexpensive material compared to the copper foil, the manufacturing cost of the metal mesh substrate can be significantly reduced by the present invention.
本発明に係るメタルメッシュ基板は、静電容量結合方式のタッチパネルに適用可能である。
The metal mesh substrate according to the present invention can be applied to a capacitively coupled touch panel.
以下、本発明及びその利点をより良く理解するための実施例を示すが、本発明はこれらの実施例に限定されるものではない。
Hereinafter, examples for better understanding of the present invention and its advantages will be shown, but the present invention is not limited to these examples.
(実施例1)
厚み100μmのポリエチレンテレフタレート(PET)フィルムの上下面に約0.3μmの厚みの黒色ポリピロール層が形成された基板を用意した。このポリピロール層の厚み0.3μmの両面塗工品の場合、ORC社製UV光源(42mW/cm2)を使用し、ORC社製U-35/U-42照度計を用いて、可視光がセンサーを透過する割合を測定した。測定した透過率は、27%であった。また、その両面塗工品の当該ポリピロール層の反射率は200nm~800nm領域光を照射し、その反射率を分光反射率計(ウシオ電機製URE-50、入射角度30°、75Wキセノンランプ使用)で測定したところ、可視域光(400~700nm)における領域の反射率は最大で5.89%であった。 (Example 1)
A substrate in which a black polypyrrole layer having a thickness of about 0.3 μm was formed on the upper and lower surfaces of a polyethylene terephthalate (PET) film having a thickness of 100 μm was prepared. In the case of a double-sided coated product having a thickness of 0.3 μm of this polypyrrole layer, an ORC UV light source (42 mW / cm 2 ) is used, and an ORC U-35 / U-42 illuminance meter is used. The rate of transmission through the sensor was measured. The measured transmittance was 27%. In addition, the reflectance of the polypyrrole layer of the double-sided coated product is irradiated with light in the region of 200 nm to 800 nm, and the reflectance is measured by a spectral reflectometer (USE 50 made by USHIO, incident angle 30 °, using a 75 W xenon lamp). As a result, the maximum reflectance of the region in the visible light (400 to 700 nm) was 5.89%.
厚み100μmのポリエチレンテレフタレート(PET)フィルムの上下面に約0.3μmの厚みの黒色ポリピロール層が形成された基板を用意した。このポリピロール層の厚み0.3μmの両面塗工品の場合、ORC社製UV光源(42mW/cm2)を使用し、ORC社製U-35/U-42照度計を用いて、可視光がセンサーを透過する割合を測定した。測定した透過率は、27%であった。また、その両面塗工品の当該ポリピロール層の反射率は200nm~800nm領域光を照射し、その反射率を分光反射率計(ウシオ電機製URE-50、入射角度30°、75Wキセノンランプ使用)で測定したところ、可視域光(400~700nm)における領域の反射率は最大で5.89%であった。 (Example 1)
A substrate in which a black polypyrrole layer having a thickness of about 0.3 μm was formed on the upper and lower surfaces of a polyethylene terephthalate (PET) film having a thickness of 100 μm was prepared. In the case of a double-sided coated product having a thickness of 0.3 μm of this polypyrrole layer, an ORC UV light source (42 mW / cm 2 ) is used, and an ORC U-35 / U-42 illuminance meter is used. The rate of transmission through the sensor was measured. The measured transmittance was 27%. In addition, the reflectance of the polypyrrole layer of the double-sided coated product is irradiated with light in the region of 200 nm to 800 nm, and the reflectance is measured by a spectral reflectometer (USE 50 made by USHIO, incident angle 30 °, using a 75 W xenon lamp). As a result, the maximum reflectance of the region in the visible light (400 to 700 nm) was 5.89%.
次いで、脱泡処理されたポジ型フォトレジストをエイブルジャパン製スリットコータ(TL0704)装置を用いて約2.2μmの厚みで均一(塗布均一性:±4.8%)に一方の面上のポリピロール層に塗布した(塗布面積370mm×470mm)。塗布後、フォトレジスト膜を100℃以下の熱風・IRヒータにて15分乾燥した。引き続き、他方の面上のポリピロール層にも同様の手順でフォトレジス膜を形成した。フォトレジストの塗布均一性は、フォトレジスト膜の膜厚を浜松ホトニクス社製Optical NanoGauge膜厚計を使用して分光干渉方法によって膜全体に亘って45点測定し、±(最大膜厚-最小膜厚)/(最大膜厚+最小膜厚)×100(%)の式により算出した。
Next, polypyrrole on one surface of the defoamed positive photoresist is uniformly (coating uniformity: ± 4.8%) with a thickness of about 2.2 μm using an Able Japan slit coater (TL0704) device. It was applied to the layer (application area 370 mm × 470 mm). After coating, the photoresist film was dried with hot air / IR heater at 100 ° C. or lower for 15 minutes. Subsequently, a photoresist film was formed in the same manner on the polypyrrole layer on the other surface. The uniformity of the photoresist coating was determined by measuring the film thickness of the photoresist film at 45 points over the entire film by spectral interference using an Optical NanoGauge film thickness meter manufactured by Hamamatsu Photonics, Inc. ± (maximum film thickness-minimum film) Thickness) / (maximum film thickness + minimum film thickness) × 100 (%).
次いで、タッチパネル用のセンサパターン(金属層が形成される箇所の線幅は場所によって1、2、3、5、8、11μmが存在する。)のマスクを上下面両方のフォトレジスト膜(東亜合成製ポジ型レジスト:クリアマージュTPR)に真空密着させて、UV光をマスク上より照射しフォトレジストを感光させパターンを転写するハードコンタクト露光(大日本科研製両面露光装置:RAシリーズ)を行った。露光量は100mJ~140mJ/cm2の範囲内とした。
Next, a mask of a sensor pattern for touch panel (the line width of the portion where the metal layer is formed is 1, 2, 3, 5, 8, 11 μm depending on the location) is applied to both the upper and lower photoresist films (Toa Gosei). Hard contact exposure (double-sided exposure equipment manufactured by Dainippon Kaken: RA series) was performed by vacuum-adhering to a positive resist (Clearmage TPR) made by UV irradiation and exposing the photoresist to UV light from the mask to transfer the pattern. . The exposure amount was in the range of 100 mJ to 140 mJ / cm 2 .
次いで、レジスト現像処理装置を使用し、感光されたレジストを現像処理し、ポリピロール層を露出した。安定した現像処理を行うため、薬液の温度制御(25℃±1℃)と濃度管理をPIDパラメータで制御した。
Next, using a resist developing apparatus, the exposed resist was developed to expose the polypyrrole layer. In order to perform stable development processing, temperature control (25 ° C. ± 1 ° C.) and concentration management of the chemical solution were controlled by PID parameters.
パターニングしたレジスト膜をマスク材として、露出しているポリピロール層をプラズマエッチング処理によって除去した後、レジスト剥離処理装置を使用し、ポリピロール層の上に残っているフォトレジスト膜をアルカリ水溶液で剥離処理し、ポリピロール層のパターン部だけを表面に露出した。レジストの残膜を除去するため及びこの後のめっき処理をより効率よく実施するために、レジスト剥離後のポリピロール層上にプラズマを短時間(1分程度)照射した。
Using the patterned resist film as a mask material, the exposed polypyrrole layer is removed by plasma etching, and then the photoresist film remaining on the polypyrrole layer is stripped with an alkaline aqueous solution using a resist stripping apparatus. Only the pattern portion of the polypyrrole layer was exposed on the surface. In order to remove the remaining resist film and perform the subsequent plating process more efficiently, the polypyrrole layer after resist removal was irradiated with plasma for a short time (about 1 minute).
パターン化されたポリピロール層上に、無電解銅めっきを行うことにより、ポリピロール層上にのみ銅めっき層が形成され、所定のセンサパターンを有するメタルメッシュ基板が得られた。その後、銅めっき層の表面に亜酸化銅を形成する黒化処理を行った。得られた銅めっき層の厚みは約0.5μmであった。
By performing electroless copper plating on the patterned polypyrrole layer, a copper plating layer was formed only on the polypyrrole layer, and a metal mesh substrate having a predetermined sensor pattern was obtained. Then, the blackening process which forms a cuprous oxide on the surface of a copper plating layer was performed. The thickness of the obtained copper plating layer was about 0.5 μm.
上記の方法で得られたメタルメッシュ基板を目視により観察したところ、センサパターンからの反射光はほとんど確認できず、センサパターンを視認することは困難であった。また、顕微鏡によりセンサパターンを観察したところ、センサパターンの線幅に応じてメタルメッシュが約1、2、3、5、8、11μmの線幅で高精度に透明基板上にパターニングされていた。また、センサパターン内の透過率は83~88%であった。シート抵抗値は、1~20Ω/□であった。透過率は、ORC社製UV光源(42mW/cm2)を使用し、ORC社製U-35/U-42照度計を用いて、可視光がセンサーを透過する割合を測定することで求めた。シート抵抗は、接触式(4探針法)抵抗測定器で、測定サンプルに4本の針状の電極を直線上に置き、外側の2本の探針間に一定電流を流し、内側の2本の探針間に生じる電位差を測定することで、抵抗を求めた。
When the metal mesh substrate obtained by the above method was visually observed, the reflected light from the sensor pattern was hardly confirmed, and it was difficult to visually recognize the sensor pattern. When the sensor pattern was observed with a microscope, the metal mesh was patterned on the transparent substrate with a line width of about 1, 2, 3, 5, 8, and 11 μm with high accuracy according to the line width of the sensor pattern. The transmittance in the sensor pattern was 83 to 88%. The sheet resistance value was 1 to 20Ω / □. The transmittance was determined by measuring the ratio of visible light passing through the sensor using an ORC UV light source (42 mW / cm 2 ) and using an ORC U-35 / U-42 illuminometer. . The sheet resistance is a contact-type (4-probe method) resistance measuring instrument. Four needle-shaped electrodes are placed on a measurement sample on a straight line, a constant current is passed between the two outer probes, and the inner two The resistance was determined by measuring the potential difference generated between the probe tips.
現在生産されているタッチパネルセンサーは、ITO膜を使用した基材が主流であるが、そのITO基材では、そのシート抵抗の高さにより中・大型パネルへの応用は不可能であるため、メタルメッシュセンサーのような低シート抵抗材センサーが必要である。本発明に係るメタルメッシュ基板を利用してできたタッチパネルは、センサパターンが金属でできていることから電気抵抗が低い。そのため、本発明によれば小型のタッチパネルのみならず、中・大型のタッチパネルを容易に作製可能であり、高い視認性も確保できる。このため、本発明は、新しい市場である中・大型のタッチパネル市場の拡大に大いに貢献すると考えられる。
The touch panel sensors currently produced are mainly substrates using ITO film, but the ITO substrate cannot be applied to medium and large panels due to its high sheet resistance. A low sheet resistance material sensor such as a mesh sensor is required. The touch panel made using the metal mesh substrate according to the present invention has a low electric resistance because the sensor pattern is made of metal. Therefore, according to the present invention, not only a small touch panel but also a medium / large touch panel can be easily manufactured, and high visibility can be secured. For this reason, it is considered that the present invention greatly contributes to the expansion of the medium and large touch panel market, which is a new market.
11 導電性高分子層
12 透明基板
13 レジスト膜
14 露光箇所
15 導電性高分子層の露出した箇所
16 導電性高分子層が除去された箇所
17 金属層
18 黒化処理被膜 DESCRIPTION OFSYMBOLS 11 Conductive polymer layer 12 Transparent substrate 13 Resist film 14 Exposure location 15 Exposed location of the conductive polymer layer 16 Location where the conductive polymer layer is removed 17 Metal layer 18 Blackening treatment film
12 透明基板
13 レジスト膜
14 露光箇所
15 導電性高分子層の露出した箇所
16 導電性高分子層が除去された箇所
17 金属層
18 黒化処理被膜 DESCRIPTION OF
Claims (13)
- 透明基板の片面又は両面上にメタルメッシュパターンを有するメタルメッシュ基板であって、メタルメッシュパターンは透明基板上に波長400~700nmの領域における最大反射率が20%以下である導電性高分子層及び金属層が順に積層された積層体で形成されている基板。 A metal mesh substrate having a metal mesh pattern on one or both sides of the transparent substrate, the metal mesh pattern having a maximum reflectivity of 20% or less in a wavelength region of 400 to 700 nm on the transparent substrate; A substrate formed of a laminate in which metal layers are sequentially laminated.
- 導電性高分子層の厚みは0.1~1μmである請求項1に記載の基板。 2. The substrate according to claim 1, wherein the conductive polymer layer has a thickness of 0.1 to 1 μm.
- 金属層の厚みは0.1~1μmである請求項1又は2に記載の基板。 3. The substrate according to claim 1, wherein the metal layer has a thickness of 0.1 to 1 μm.
- 導電性高分子層と金属層の合計厚みが1.5μm以下である請求項1~3のいずれか一項に記載の基板。 The substrate according to any one of claims 1 to 3, wherein the total thickness of the conductive polymer layer and the metal layer is 1.5 µm or less.
- 金属層の外表面が黒化処理されている請求項1~4の何れか一項に記載の基板。 The substrate according to any one of claims 1 to 4, wherein the outer surface of the metal layer is blackened.
- メタルメッシュパターンが5μm以下の線幅で形成されている請求項1~5の何れか一項に記載の基板。 6. The substrate according to claim 1, wherein the metal mesh pattern is formed with a line width of 5 μm or less.
- メタルメッシュパターンがタッチパネル用のセンサパターンを形成している請求項1~6の何れか一項に記載の基板。 The substrate according to any one of claims 1 to 6, wherein the metal mesh pattern forms a sensor pattern for a touch panel.
- 導電性高分子層が黒色である請求項1~7の何れか一項に記載の基板。 The substrate according to any one of claims 1 to 7, wherein the conductive polymer layer is black.
- 導電性高分子層には黒色の染料及び/又は顔料が配合されている請求項1~8の何れか一項に記載の基板。 The substrate according to any one of claims 1 to 8, wherein the conductive polymer layer is mixed with a black dye and / or pigment.
- 透明基板の片面又は両面上に波長400~700nmの領域における最大反射率が20%以下である導電性高分子層を形成する工程1と、
導電性高分子層上にレジスト膜を形成する工程2と、
レジスト膜を露光及び現像処理を経てパターニングする工程3と、
レジスト膜のパターニングにより露出した導電性高分子層を除去する工程4と、
導電性高分子層上に残留しているレジスト膜を除去する工程5と、
当該パターニングされた導電性高分子層上に金属層を形成する工程6と、
を含むメタルメッシュ基板の製造方法。 Forming a conductive polymer layer having a maximum reflectance of 20% or less in a wavelength region of 400 to 700 nm on one or both surfaces of a transparent substrate;
Step 2 of forming a resist film on the conductive polymer layer;
Step 3 of patterning the resist film through exposure and development,
Step 4 of removing the conductive polymer layer exposed by patterning the resist film;
Step 5 of removing the resist film remaining on the conductive polymer layer;
Forming a metal layer on the patterned conductive polymer layer; and
A method of manufacturing a metal mesh substrate including: - 金属めっき層の外表面を黒化処理する工程を更に含む請求項10に記載のメタルメッシュ基板の製造方法。 The method for producing a metal mesh substrate according to claim 10, further comprising a step of blackening the outer surface of the metal plating layer.
- 工程1では透明基板の両面上に導電性高分子層を形成し、工程2では透明基板の両面上に形成された導電性高分子層の上にそれぞれレジスト膜を形成し、工程3では両面のレジスト膜を両面露光装置によって同時に露光する請求項10又は11に記載のメタルメッシュ基板の製造方法。 In step 1, a conductive polymer layer is formed on both surfaces of the transparent substrate, in step 2, a resist film is formed on the conductive polymer layer formed on both surfaces of the transparent substrate. The method for producing a metal mesh substrate according to claim 10 or 11, wherein the resist film is simultaneously exposed by a double-side exposure apparatus.
- 工程4及び工程5を同一のプラズマ処理装置内で実施する請求項10~12の何れか一項に記載のメタルメッシュ基板の製造方法。 The method for manufacturing a metal mesh substrate according to any one of claims 10 to 12, wherein the step 4 and the step 5 are performed in the same plasma processing apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/084675 WO2016103507A1 (en) | 2014-12-26 | 2014-12-26 | Metal mesh substrate, and production method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/084675 WO2016103507A1 (en) | 2014-12-26 | 2014-12-26 | Metal mesh substrate, and production method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016103507A1 true WO2016103507A1 (en) | 2016-06-30 |
Family
ID=56149589
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/084675 WO2016103507A1 (en) | 2014-12-26 | 2014-12-26 | Metal mesh substrate, and production method therefor |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016103507A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110024138A (en) * | 2016-12-08 | 2019-07-16 | 株式会社钟化 | Solar cell module |
JP2021155814A (en) * | 2020-03-27 | 2021-10-07 | アキレス株式会社 | Plated article and method for manufacturing the same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011065393A (en) * | 2009-09-16 | 2011-03-31 | Nissha Printing Co Ltd | Conductive sheet, laminate conductive sheet and conductive pattern sheet, method for manufacturing laminate conducive sheet and method for manufacturing transparent antenna or transparent display or touch input sheet |
US20120319963A1 (en) * | 2011-06-14 | 2012-12-20 | Samsung Electro-Mechanics Co., Ltd. | Touch panel |
-
2014
- 2014-12-26 WO PCT/JP2014/084675 patent/WO2016103507A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011065393A (en) * | 2009-09-16 | 2011-03-31 | Nissha Printing Co Ltd | Conductive sheet, laminate conductive sheet and conductive pattern sheet, method for manufacturing laminate conducive sheet and method for manufacturing transparent antenna or transparent display or touch input sheet |
US20120319963A1 (en) * | 2011-06-14 | 2012-12-20 | Samsung Electro-Mechanics Co., Ltd. | Touch panel |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110024138A (en) * | 2016-12-08 | 2019-07-16 | 株式会社钟化 | Solar cell module |
JP2021155814A (en) * | 2020-03-27 | 2021-10-07 | アキレス株式会社 | Plated article and method for manufacturing the same |
JP7454424B2 (en) | 2020-03-27 | 2024-03-22 | アキレス株式会社 | Manufacturing method for plated products |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI732161B (en) | Touch sensing panel and manufacturing method thereof | |
JP5991554B2 (en) | Manufacturing method of transparent substrate | |
US8008752B2 (en) | Component for an information display device | |
KR101668936B1 (en) | Method of manufacturing conductive member, conductive member, and touch panel using same | |
WO2016103510A1 (en) | Method for producing layered substrate in which patterned conductive polymer layer is provided on transparent substrate, and method for producing metal mesh substrate | |
JP6366577B2 (en) | Manufacturing method of conductive pattern and conductive pattern forming substrate | |
TW201337705A (en) | Polarizer resistive touch screen | |
KR102276074B1 (en) | Method for manufacturing a substrate with a wiring electrode and a substrate with a wiring electrode | |
TWI584709B (en) | Optical property alterations of high resolution conducting patterns | |
WO2016103507A1 (en) | Metal mesh substrate, and production method therefor | |
US8795778B2 (en) | Photo-patterning using a translucent cylindrical master to form microscopic conductive lines on a flexible substrate | |
CN113126829B (en) | Touch panel and manufacturing method thereof | |
US20190364665A1 (en) | Silver-based transparent conductive layers interfaced with copper traces and methods for forming the structures | |
US8980531B2 (en) | Transparent components | |
US9801284B2 (en) | Method of manufacturing a patterned conductor | |
TW201814730A (en) | Conductive film, touch panel, photomask, imprint template, laminate for forming a conductive film, method for producing a conductive film, and method for manufacturing an electronic device | |
CN105278709A (en) | Manufacturing method of metal circuit micro-structures | |
KR101796527B1 (en) | Touch panel and method for preparing the same | |
JP2019121580A (en) | Conductive material | |
CN106662811A (en) | Photosensitive resin composition, photosensitive film, pattern substrate, photosensitive conductive film, and conductive pattern substrate | |
JP2015114979A (en) | Electrode pattern material | |
EP1892224B1 (en) | Method of hiding transparent electrodes on a transparent substrate | |
KR20200108042A (en) | Conductive material and processing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14909109 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14909109 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |