WO2016103385A1 - Method for producing surface-modified base - Google Patents

Method for producing surface-modified base Download PDF

Info

Publication number
WO2016103385A1
WO2016103385A1 PCT/JP2014/084267 JP2014084267W WO2016103385A1 WO 2016103385 A1 WO2016103385 A1 WO 2016103385A1 JP 2014084267 W JP2014084267 W JP 2014084267W WO 2016103385 A1 WO2016103385 A1 WO 2016103385A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin layer
base material
substrate
layer
Prior art date
Application number
PCT/JP2014/084267
Other languages
French (fr)
Japanese (ja)
Inventor
拓人 山口
秀樹 萩野
Original Assignee
地方独立行政法人大阪府立産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 地方独立行政法人大阪府立産業技術総合研究所 filed Critical 地方独立行政法人大阪府立産業技術総合研究所
Priority to JP2016565745A priority Critical patent/JP6390056B2/en
Priority to PCT/JP2014/084267 priority patent/WO2016103385A1/en
Publication of WO2016103385A1 publication Critical patent/WO2016103385A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00

Definitions

  • the present invention relates to a method for producing a surface modified substrate, and more particularly to a method for performing surface modification by irradiating a surface of a metal substrate with laser light.
  • Patent Document 1 discloses that a carbide layer is formed on the surface of a substrate by irradiating the surface of the substrate supplied with graphite powder with laser light in an inert atmosphere or in a vacuum.
  • Patent Document 2 discloses that a ceramic layer is formed on the surface of the substrate by irradiating the surface of the substrate supplied with the ceramic powder and the bonding metal powder with laser light.
  • JP-A 61-163283 Japanese Unexamined Patent Publication No. 2-118083
  • the manufacturing method is a method for manufacturing a surface-modified base material that performs surface modification of the base material by irradiating the surface of the metal base material with a laser beam.
  • a more uniform and stable surface modification is possible while being a simple method of forming a resin layer on a substrate surface and irradiating a laser beam.
  • a resin layer that transmits laser light is provided on the surface of a metal base material, and laser light is transmitted to the surface of the base material through the resin layer. Irradiation. Thereby, the surface of the substrate is melted and the resin layer is thermally decomposed by the heat of the substrate. That is, in this manufacturing method, the surface of the base material is irradiated with laser light to selectively heat the surface, and the resin layer is heated and thermally decomposed by the heated base material.
  • the decomposition component of a resin layer acts as an alloying element, and forms the metal and compound of the base material in a molten state. That is, on the surface of the base material, a decomposition layer (for example, carbon) of the resin layer and a metal constituting the base material are combined to form a modified layer (for example, a film containing metal carbide as a main component).
  • a decomposition layer for example, carbon
  • a metal constituting the base material are combined to form a modified layer (for example, a film containing metal carbide as a main component).
  • the resin layer that is an alloying material transmits laser light. Material will not scatter.
  • a resin layer can be provided by coating a resin in a region where surface modification is performed. Therefore, compared to a powder process in which powder is supplied to the substrate surface, an alloying material is applied to the substrate surface. It can be supplied uniformly. Therefore, it is possible to form a modified layer that is more uniform than when a conventional powder process is used, and it is possible to stably form the desired modified layer with good reproducibility.
  • the laser irradiation process may be performed in an inert gas atmosphere or in a vacuum.
  • the base material in the chamber is irradiated with laser light through the chamber window.
  • Japanese Patent Laid-Open No. 10-72656 discloses disposing a titanium base material in a chamber filled with nitrogen gas and irradiating the base material surface with laser light to form a nitride layer. ing. If a hydrocarbon gas such as methane gas is used instead of nitrogen gas, a carbide layer can be formed on the substrate surface.
  • a gas process is not suitable for surface modification of large parts because a chamber is indispensable, the window of the chamber is contaminated and the irradiation efficiency of the laser beam is deteriorated, and further, a window with dirt is applied to the laser beam.
  • FIG. 1 is a diagram illustrating a manufacturing process of a surface-modified base material 10 which is an example of an embodiment.
  • the surface-modified base material 10 is a base material whose surface has been modified by irradiation of the laser beam ⁇ through the resin layer 20, and the hardness and wear resistance thereof are compared with the base material region 15 as will be described in detail later. It has a modified surface (modified layer 12) with greatly improved physical properties.
  • the base material 10z means a base material before surface modification.
  • the surface-modified base material 10 is suitable for, for example, machine parts, molds, tools, and the like that require wear resistance, but the use is not particularly limited.
  • the manufacturing process of the surface modified substrate 10 includes a step of providing a resin layer 20 on the surface 11 z of the substrate 10 z, And a step of irradiating the surface 11z of the base material 10z with the laser beam ⁇ (see FIGS. 1A to 1C).
  • the resin layer 20 is a layer that transmits the laser beam ⁇ , and is composed mainly of resin.
  • the resin layer 20 may contain components other than the resin component as long as, for example, the transmittance of the laser beam ⁇ is not impaired, but is preferably composed only of the resin component.
  • first step or resin layer forming step the step of providing the resin layer 20
  • second step or laser irradiation step the step of irradiating the laser light ⁇
  • the second step is a step of melting the surface 11z of the base material 10z by irradiation of the laser beam ⁇ through the resin layer 20 and thermally decomposing the resin layer 20 by the heat of the base material 10z.
  • a step of removing the resin layer 20 after the irradiation with the laser beam ⁇ is provided (see FIG. 1D).
  • the resin layer 20 can be peeled off from the surface-modified base material 10, for example.
  • the resin layer 20 may be removed using a solvent or the like that dissolves the resin layer 20.
  • the resin layer 20 may be gradually removed, for example, in the process in which the surface modified substrate 10 is used.
  • the base material 10z applicable to the surface modification step P is a metal base material, and is composed, for example, of a metal whose main component is at least the surface 11z combined with a decomposition component of the resin layer 20 to form a compound. .
  • the base material 10z may have a laminated structure of dissimilar metals, the following description will be made assuming that the whole base material 10z is configured with the same composition.
  • the base material 10z preferably contains a metal component that has a strong tendency to generate carbides.
  • carbon (C) which is a decomposition component of the resin layer 20, and Ti are bonded to form a titanium carbide (TiC) layer on the substrate surface.
  • shape of the base material 10z, a dimension, etc. are not specifically limited.
  • the surface 11z of the base material 10z is not limited to a flat surface, and may be, for example, curved or uneven.
  • a resin layer 20 is provided on the surface 11z of the substrate 10z.
  • the resin layer 20 is provided in at least a region (planned modification region) whose surface is modified by irradiation with the laser beam ⁇ in the surface 11z of the substrate 10z.
  • the resin layer 20 may be provided outside the region to be modified, for example, when the region to be modified is a part of the surface 11z, the resin layer 20 may be provided over the entire surface 11z.
  • a resin substrate or a resin film may be disposed on the surface 11z of the base material 10z, and the resin film or the like may be used as the resin layer 20.
  • the resin layer 20 is a layer that transmits the laser beam ⁇ used in the second step, and is thermally decomposed by being heated by the base material 10z that has generated heat by absorbing the laser beam ⁇ .
  • the decomposition component of the resin layer 20 acts as an alloying element as described above, and is combined with the metal constituting the base material 10z to form a compound. That is, the resin layer 20 becomes a supply source of the alloying element.
  • the resin layer 20 generates carbon or a reactive gas containing carbon by, for example, thermal decomposition.
  • the resin layer 20 plays a role of blocking the atmosphere and preventing the surface 11z of the base material 10z from being exposed to the atmosphere.
  • the resin layer 20 functions like a chamber and prevents adverse effects when the laser beam ⁇ is irradiated in the atmosphere, for example, generation of cracks.
  • the resin layer 20 has a higher transmittance of the laser beam ⁇ than that of the substrate 10z, and has a larger amount of heat generated by indirect heating from the substrate 10z that generates heat than the amount of heat generated by absorption of the laser beam ⁇ . .
  • the resin layer 20 generates heat due to the absorption of the laser beam ⁇ , the amount of the laser beam ⁇ irradiated to the base material 10z is reduced, so that the irradiation efficiency is lowered, and the resin layer 20 is a part away from the surface 11z of the base material 10z. May not be able to supply a sufficient alloying element to the surface 11z.
  • the transmittance of the laser beam ⁇ of the resin layer 20 is preferably as high as possible, at least 50% or more, more preferably 70% or more, and particularly preferably 80% or more.
  • the transmittance of the resin layer 20 can be measured using a spectrophotometer.
  • the thickness of the resin layer 20 is determined in consideration of the transmittance of the laser beam ⁇ , the blocking of atmospheric components, the amount of alloying element supplied, and the like, for example, 1 ⁇ m to 1000 ⁇ m, and preferably 100 ⁇ m to 500 ⁇ m.
  • the resin layer 20 includes, for example, a polyvinyl alcohol resin (PVA), a polyester resin such as polyethylene terephthalate, a polycarbonate resin, a polyolefin resin such as polyethylene, polypropylene, and cyclic polyolefin, a polyvinyl ester resin such as polyvinyl acetate, and polymethyl Polymethacrylate such as methacrylate, acrylic resin such as polyacrylate, aromatic vinyl resin such as polystyrene, polyurethane resin, epoxy resin, polyamide resin, polyimide resin, polysulfone resin, polytetra Consists of at least one resin selected from the group consisting of fluorine resins such as fluoroethylene and polyvinylidene fluoride, chlorine resins such as polyvinyl chloride and polyvinylidene chloride, and silicone resins. That.
  • the resin constituting the resin layer 20 may be either a thermoplastic resin or a curable resin.
  • the curable resin may be a thermo
  • polyvinyl alcohol resin examples include, for example, Kuraray Kuraraypoval PVA235, Kuraraypoval PVA117, Nippon Synthetic Chemical Co., Ltd. Gohsenol KH20 and other acetoacetylated polyvinyls such as Nippon Synthetic Chemical Co., Ltd. Examples thereof include alcohol and water-based polyvinyl acetal such as SLECK KX series manufactured by Sekisui Chemical Co., Ltd.
  • the transmittance of the laser light ⁇ of the resin layer 20 (thickness: 100 ⁇ m) made of PVA is, for example, about 90%.
  • the resin layer 20 is formed by coating the surface 11z of the substrate 10z with a resin.
  • the resin layer 20 having good adhesion to the surface 11z can be formed, and the resin layer 20 is hardly peeled off in the second step or the like, and between the surface 11z and the resin layer 20 It becomes easy to suppress the bubble from entering the surface.
  • Resin coating can be performed by a conventionally known method.
  • the resin layer 20 can be formed by applying a resin to the surface 11z of the substrate 10z and drying or curing the coating film.
  • a resin solution is prepared by dissolving a resin in a solvent, and the resin layer 20 is formed by volatilizing and removing the solvent in the coating film after the solution is applied to the surface 11z.
  • an aqueous PVA solution is prepared, and the aqueous solution is applied to the surface 11z to form the resin layer 20.
  • an emulsion in which a resin is dispersed can be used.
  • curable resin after apply
  • the surface 11z of the base material 10z is irradiated with laser light ⁇ through the resin layer 20 to melt the surface 11z of the base material 10z.
  • the resin layer 20 is heated and thermally decomposed with the heat
  • a molten region 12z in which the metal constituting the substrate 10z is melted is formed on the surface 11z irradiated with the laser beam ⁇ and in the vicinity thereof.
  • the adjacent region 21 in contact with the molten region 12z in the resin layer 20 is heated and heated. Decompose.
  • the melting region 12z can be formed deeper as the output of the laser beam ⁇ is increased or the irradiation time is increased.
  • the modified component 12 is formed by combining the decomposition component of the resin layer 20 with the metal of the base material 10z in a molten state.
  • the modified layer 12 contains metal carbide.
  • the decomposition component of the resin layer 20 varies depending on the resin constituting the layer. For example, in addition to C, oxygen (O), nitrogen (N), sulfur (S), fluorine (F), chlorine (Cl), silicon (Si) may be included.
  • the modified layer 12 containing a metal nitride can be formed by forming the resin layer 20 using a resin containing N such as a polyamide-based resin or a polyimide-based resin. Further, when the resin layer 20 is formed using a resin containing S such as a polysulfone-based resin, the modified layer 12 containing a metal sulfide can be formed.
  • the composition of the modified layer 12 can be changed by changing the composition of the resin layer 20.
  • the laser device used in the second step is not particularly limited as long as it can melt the surface 11z of the base material 10z.
  • the peak oscillation wavelength ranges from the visible light region to the near infrared region (500 nm to 1200 nm).
  • a device capable of outputting the laser light ⁇ in FIG. If the peak transmission wavelength is within the range, the laser light ⁇ is hardly absorbed by the resin layer 20 and the irradiation efficiency with respect to the base material 10z is improved.
  • laser devices applicable to the second step include a Yb fiber laser, a Yb disk laser (peak oscillation wavelength: 1000 nm to 1100 nm), an Nd: YAG laser (peak oscillation wavelength: 1064 nm), an argon laser, and an AlGaAs semiconductor.
  • Examples thereof include high-power semiconductor lasers such as lasers and InGaAs-based semiconductor lasers.
  • the laser beam ⁇ is scanned over the region to be modified of the substrate 10z.
  • the laser beam ⁇ can be scanned using, for example, a galvano scanner.
  • the base material 10z may be installed on an XY table or the like, and the base material 10z may be moved with respect to the irradiation spot of the laser light ⁇ .
  • the thickness, composition, and the like of the modified layer 12 can be adjusted by irradiation conditions such as the output, wavelength, and irradiation time (scanning speed) of the laser beam ⁇ . In general, the thickness of the modified layer 12 increases as the output of the laser beam ⁇ is higher and the irradiation time is longer.
  • An example of the irradiation condition of the laser beam ⁇ in the second step is as follows.
  • Laser device Yb Faber laser Peak oscillation wavelength: 1070 nm
  • Oscillation mode CW
  • Irradiation spot diameter 30 ⁇ m Scanning speed: 100 to 250 mm / s
  • FIG. 2 is a cross-sectional view schematically showing the surface modified substrate 10 obtained by the surface modification step P.
  • the surface-modified base material 10 has a modified layer 12 formed in a predetermined depth range from the surface 11.
  • the modified layer 12 is a laser alloy region formed by combining the decomposition component of the resin layer 20 and the metal constituting the substrate 10z by irradiation with the laser beam ⁇ .
  • the physical properties such as hardness and friction characteristics of the first region 13 are compared with the physical properties of the base material region 15 (region not subjected to surface modification), which is a region not irradiated with the laser light ⁇ .
  • the base material region 15 region not subjected to surface modification
  • the first region 13 is formed, for example, in a shallow range from the surface 11, for example, in a range from 0.5 ⁇ m to 5 ⁇ m in depth from the surface. Note that the modified layer 12 formed by the surface modification step P may not be clearly confirmed by a microscopic image, and the boundary between the modified layer 12 and the base material region 15, and the first region 13 and the second region. It is not necessary that the boundary with 14 is clear.
  • FIG. 3 is a view showing a modification of the surface modification step P.
  • an additive material 30 that forms a compound by bonding with a decomposition component of the resin layer 20 is disposed on the surface 11z of the base material 10z.
  • the method further includes a step.
  • the additive material 30 is provided at least on the planned modification region before the resin layer 20 is provided.
  • the resin layer 20 covers the additive material 30, and is provided in the surface 11z of the base material 10z. As shown in FIGS.
  • the subsequent steps are the same as the surface modification step P, and the surface 11z of the substrate 10z is irradiated with the laser beam ⁇ through the resin layer 20. Since the additive material 30 is covered with the resin layer 20, the additive material 30 is not scattered by the irradiation of the laser beam ⁇ .
  • the same material as in the surface modification step P can be applied.
  • the additive material 30 it is preferable to use a material that combines with the decomposition component of the resin layer 20 to form a compound by irradiation with the laser beam ⁇ and is combined with the metal of the base material 10z.
  • the additive material 30 is supplied in the form of, for example, a powder or a foil, and is formed in a layer form on the surface 11z of the substrate 10z.
  • a binder may be used to form the layer made of the additive material 30.
  • the additive material 30 absorbs the laser beam ⁇ to be in a molten state, and is compounded with the metal of the base material 10z that is also in the molten state and the decomposition component of the resin layer 20.
  • the surface modification base material 10x which has the modification layer 12x is obtained.
  • the base material 10z has iron (Fe) as a main component
  • titanium carbide (TiC) is used on the surface of the base material having iron as a main component by using titanium (Ti) particles or foil as the additive material 30. ) And the like can be formed.
  • the composition of the modified layer 12 x can be changed by changing the composition of the additive material 30 and the resin layer 20.
  • the reactivity with a decomposition component may be low. That is, the use of the additive material 30 increases the choice of the base material 10z, and the application range of this process using the resin layer 20 is expanded.
  • the additive material 30 is covered with the resin layer 20, scattering of the additive material 30 due to the irradiation of the laser beam ⁇ is prevented, and uniform and stable surface modification can be performed. Further, since the resin layer 20 blocks the atmosphere, the surface of the base material is not exposed to the atmosphere, and the occurrence of cracks and the like is prevented.
  • the physical properties of the surface modified substrate 10 obtained by the surface modification step P will be described in detail with reference to FIGS.
  • a case where a titanium base material is applied to the base material 10z and a layer made of polyvinyl alcohol-based resin (PVA) is applied to the resin layer 20 (hereinafter referred to as “TiC / Ti base material”) will be described as an example.
  • PVA polyvinyl alcohol-based resin
  • TiC / Ti base material a layer made of polyvinyl alcohol-based resin
  • FIG. 4 is a microscopic image showing a cross section of the TiC / Ti substrate.
  • 4A is an image (OM image) photographed using an optical microscope
  • FIG. 4B is an image photographed using an electron microscope (SEM image).
  • SEM image an electron microscope
  • the thickness of the modified layer is about 50 ⁇ m.
  • the thickness of the first region which is a dendritic crystal layer, is about 5 ⁇ m.
  • the thicknesses of the modified layer and the first region can be increased, for example, by reducing the scanning speed of the laser beam ⁇ .
  • FIG. 5 is an XRD pattern (lower) of the modified surface of the TiC / Ti substrate, and shows an XRD pattern (upper) of the base material region as a comparison.
  • SmartLab CuK ⁇ line, 40 mA ⁇ 150 kV manufactured by Rigaku was used.
  • peaks indicated by ⁇
  • TiC, TiN, and TiO there are peaks (peaks indicated by ⁇ ) caused by TiC, TiN, and TiO that are not seen in the XRD pattern of the base material region. confirmed.
  • FIG. 6 shows the results of elemental analysis of the TiC / Ti substrate by glow discharge emission spectrometry (GDS).
  • GDS glow discharge emission spectrometry
  • FIG. 7 shows the measurement results of the hardness of the modified surface of the TiC / Ti substrate by the nanoindentation method.
  • an ultra-fine indentation hardness tester ENT-1100a load: 2 mN
  • the hardness of the modified surface of the TiC / Ti substrate is 2000 HV or higher, which is comparable to the ceramic coating.
  • FIG. 8 is an SEM image (bottom) after the sliding wear test of the modified surface of the TiC / Ti substrate, and shows an SEM image (top) after the sliding wear test of the base material region as a comparison.
  • the sliding wear test was performed under the following conditions.
  • Other Drying conditions, temperature 25 ° C, humidity 50%
  • large wear marks are formed on the surface of the base material region, but no wear marks are formed on the modified surface. That is, the modified surface of the TiC / Ti substrate has excellent wear resistance.
  • the surface modification process in which the resin layer that transmits the laser beam is provided on the surface of the metal substrate and the substrate surface is irradiated with the laser beam through the resin layer, there is no crack even in the air atmosphere.
  • High quality products can be provided. That is, since this process does not require a chamber, it is simple and inexpensive, and surface modification of large parts can be easily performed.
  • the substrate surface modified by this process has significantly improved hardness, wear resistance and the like compared to the base material region.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laser Beam Processing (AREA)

Abstract

In a method for producing a surface-modified base according to one embodiment of the present invention, surface modification of a metal base is carried out by irradiating the surface of the metal base with laser light. This method for producing a surface-modified base according to one embodiment of the present invention comprises: a step wherein the surface of the metal base is provided with a resin layer that transmits laser light; and a step wherein the base surface is irradiated with laser light through the resin layer, so that the base surface is melted and the resin layer is thermally decomposed by the heat of the base.

Description

表面改質基材の製造方法Method for producing surface modified substrate
 本発明は、表面改質基材の製造方法に関し、より詳しくは金属製基材の表面にレーザ光を照射して表面改質を行う方法に関する。 The present invention relates to a method for producing a surface modified substrate, and more particularly to a method for performing surface modification by irradiating a surface of a metal substrate with laser light.
 金属製基材の表面改質法としては、PVD、CVD、浸炭、窒化などの方法が一般的であるが、これらの方法では基材全体が加熱されるため、熱影響により基材の変形、劣化等が発生する場合がある。基材全体を加熱することなく、必要な部分だけを表面改質する方法として、レーザ表面改質法が知られている(例えば、特許文献1,2参照)。レーザ表面改質によれば、基材に対する熱影響が比較的小さく、基材の変形、劣化等を抑制することができる。 As surface modification methods for metal substrates, PVD, CVD, carburizing, nitriding, etc. are common methods, but since these methods heat the entire substrate, deformation of the substrate due to thermal effects, Deterioration or the like may occur. Laser surface modification methods are known as methods for surface modification of only necessary portions without heating the entire substrate (see, for example, Patent Documents 1 and 2). According to the laser surface modification, the thermal influence on the substrate is relatively small, and deformation, deterioration, etc. of the substrate can be suppressed.
 特許文献1には、不活性雰囲気又は真空中において、グラファイト粉末が供給された基材表面にレーザ光を照射し、基材表面に炭化物層を形成することが開示されている。また、特許文献2には、セラミックス粉末と結合用金属粉末が供給された基材表面にレーザ光を照射して、基材表面にセラミックス層を形成することが開示されている。 Patent Document 1 discloses that a carbide layer is formed on the surface of a substrate by irradiating the surface of the substrate supplied with graphite powder with laser light in an inert atmosphere or in a vacuum. Patent Document 2 discloses that a ceramic layer is formed on the surface of the substrate by irradiating the surface of the substrate supplied with the ceramic powder and the bonding metal powder with laser light.
特開昭61-163283号公報JP-A 61-163283 特開平2-118083号公報Japanese Unexamined Patent Publication No. 2-118083
 しかし、特許文献1,2に開示された技術では、レーザ光の照射により粉末が飛散し易いため、均一で安定した表面改質を行うことは困難である。 However, in the techniques disclosed in Patent Documents 1 and 2, since powder easily scatters by irradiation with laser light, it is difficult to perform uniform and stable surface modification.
 本発明の一態様である製造方法は、金属製基材の表面にレーザ光を照射して、前記基材の表面改質を行う表面改質基材の製造方法であって、前記基材の表面に、前記レーザ光を透過する樹脂層を設ける工程と、前記樹脂層を通して前記基材の表面に前記レーザ光を照射し、前記基材の表面を溶融させると共に、前記基材の熱により前記樹脂層を熱分解させる工程とを備えることを特徴とする。 The manufacturing method according to one aspect of the present invention is a method for manufacturing a surface-modified base material that performs surface modification of the base material by irradiating the surface of the metal base material with a laser beam. Providing a resin layer that transmits the laser beam on the surface; irradiating the surface of the substrate with the laser beam through the resin layer to melt the surface of the substrate; and by the heat of the substrate And a step of thermally decomposing the resin layer.
 本発明の一態様である製造方法によれば、基材表面に樹脂層を形成してレーザ光を照射するという簡便な方法でありながら、より均一で安定した表面改質が可能である。 According to the production method which is one embodiment of the present invention, a more uniform and stable surface modification is possible while being a simple method of forming a resin layer on a substrate surface and irradiating a laser beam.
実施形態の一例である基材の表面改質プロセスを示す図である。It is a figure which shows the surface modification process of the base material which is an example of embodiment. 実施形態の一例である表面改質基材を模式的に示す断面図である。It is sectional drawing which shows typically the surface modification base material which is an example of embodiment. 実施形態の他の一例である基材の表面改質プロセスを示す図である。It is a figure which shows the surface modification process of the base material which is another example of embodiment. 実施形態の一例である表面改質基材の断面を示す顕微鏡画像である。It is a microscope image which shows the cross section of the surface modification base material which is an example of embodiment. 実施形態の一例である表面改質基材のXRDパターンである。It is an XRD pattern of the surface modification base material which is an example of embodiment. 実施形態の一例である表面改質基材のグロー放電発光分析法(GDS)による元素分析結果である。It is the elemental analysis result by the glow discharge emission spectrometry (GDS) of the surface modification base material which is an example of embodiment. 実施形態の一例である表面改質基材のナノインデンテーション法による硬度の測定結果である。It is the measurement result of the hardness by the nanoindentation method of the surface modification base material which is an example of embodiment. 実施形態の一例である表面改質基材の摺動摩耗試験後における基材表面を示す顕微鏡画像である。It is a microscope image which shows the base-material surface after the sliding abrasion test of the surface-modified base material which is an example of embodiment.
 以下、図面を参照しながら、実施形態の一例について詳細に説明する。
 実施形態の一例である表面改質基材の製造方法(表面改質プロセス)は、金属製基材の表面にレーザ光を透過する樹脂層を設け、当該樹脂層を通して基材表面にレーザ光を照射するものである。これにより、基材表面を溶融させると共に、基材の熱により樹脂層を熱分解させる。つまり、本製造方法では、基材表面にレーザ光を照射して当該表面を選択的に加熱し、加熱された基材によって樹脂層が加熱されて熱分解する。そして、樹脂層の分解成分がアロイング元素として作用し、溶融状態にある基材の金属と化合物を形成する。即ち、基材表面には、樹脂層の分解成分(例えば、炭素)と基材を構成する金属とが複合化して改質層(例えば、金属炭化物を主成分とする被膜)が形成される。
Hereinafter, an example of an embodiment will be described in detail with reference to the drawings.
In a method for producing a surface-modified base material (surface modification process) as an example of the embodiment, a resin layer that transmits laser light is provided on the surface of a metal base material, and laser light is transmitted to the surface of the base material through the resin layer. Irradiation. Thereby, the surface of the substrate is melted and the resin layer is thermally decomposed by the heat of the substrate. That is, in this manufacturing method, the surface of the base material is irradiated with laser light to selectively heat the surface, and the resin layer is heated and thermally decomposed by the heated base material. And the decomposition component of a resin layer acts as an alloying element, and forms the metal and compound of the base material in a molten state. That is, on the surface of the base material, a decomposition layer (for example, carbon) of the resin layer and a metal constituting the base material are combined to form a modified layer (for example, a film containing metal carbide as a main component).
 従来の粉末プロセスではレーザ照射により粉末が飛散するという課題があるが、実施形態の一例である表面改質プロセスでは、アロイング材料である樹脂層がレーザ光を透過するため、レーザ光の照射によりアロイング材料が飛散することがない。また、本プロセスでは、表面改質を行う領域に、例えば樹脂をコーティングして樹脂層を設けることができるため、基材表面に粉末を供給する粉末プロセスと比べて、基材表面にアロイング材料を均一に供給することができる。したがって、従来の粉末プロセスを用いた場合よりも均一な改質層を形成でき、目的とする改質層を再現性良く安定に形成できる。 In the conventional powder process, there is a problem that the powder is scattered by laser irradiation. However, in the surface modification process as an example of the embodiment, the resin layer that is an alloying material transmits laser light. Material will not scatter. In addition, in this process, for example, a resin layer can be provided by coating a resin in a region where surface modification is performed. Therefore, compared to a powder process in which powder is supplied to the substrate surface, an alloying material is applied to the substrate surface. It can be supplied uniformly. Therefore, it is possible to form a modified layer that is more uniform than when a conventional powder process is used, and it is possible to stably form the desired modified layer with good reproducibility.
 実施形態の一例である表面改質プロセスは、不活性ガス雰囲気又は真空中でレーザ照射工程を行ってもよい。但し、不活性ガス雰囲気又は真空中でレーザ照射等の工程を行う場合、基材を密閉性の高いチャンバー内に配置する必要があり、チャンバーの窓を通してレーザ光をチャンバー内の基材に照射する。このため、処理可能な基材の寸法、形状等に制限を受け易く、また雰囲気の制御が必要である。したがって、大気雰囲気下において、樹脂層が設けられた基材の表面にレーザ光を照射することが好適である。レーザ光の照射による表面改質は、樹脂層に覆われた基材表面で行われ、樹脂層が大気を遮断するため、大気中でレーザ照射した場合の弊害(例えば、クラックの発生)が防止される。以下では、全ての工程を大気雰囲気下で行うものとして説明する。 In the surface modification process as an example of the embodiment, the laser irradiation process may be performed in an inert gas atmosphere or in a vacuum. However, when performing processes such as laser irradiation in an inert gas atmosphere or vacuum, it is necessary to place the base material in a highly sealed chamber, and the base material in the chamber is irradiated with laser light through the chamber window. . For this reason, it is easy to receive a restriction | limiting in the dimension, shape, etc. of the base material which can be processed, and control of atmosphere is required. Therefore, it is preferable to irradiate the surface of the base material provided with the resin layer with laser light in an air atmosphere. Surface modification by laser light irradiation is performed on the surface of the substrate covered with a resin layer, and the resin layer blocks the atmosphere, preventing harmful effects (for example, generation of cracks) when laser irradiation is performed in the atmosphere. Is done. Below, it demonstrates as what performs all the processes in an atmospheric condition.
 従来のレーザ表面改質法の1つとして、アロイング元素をガスで供給するガスプロセスが知られている。例えば、特開平10-72656号公報には、窒素ガスで満たされたチャンバー内にチタン製の基材を配置し、基材表面にレーザ光を照射して窒化物層を形成することが開示されている。なお、窒素ガスの代わりにメタンガス等の炭化水素系ガスを用いれば、基材表面に炭化物層を形成することができる。かかるガスプロセスは、チャンバーが不可欠であるため、大型部品の表面改質には不向きであり、チャンバーの窓が汚染されてレーザ光の照射効率が悪くなる、さらには汚れの付着した窓がレーザ光を吸収して発熱し割損するという課題もある。また、メタンガス等を用いた場合には、安全性の面でも課題がある。実施形態の一例である表面改質プロセスを大気雰囲気下で行った場合は、チャンバーが不要であるから、簡便且つ安価であり、大型部品の表面改質も容易に行うことができる。 As a conventional laser surface modification method, a gas process for supplying an alloying element with a gas is known. For example, Japanese Patent Laid-Open No. 10-72656 discloses disposing a titanium base material in a chamber filled with nitrogen gas and irradiating the base material surface with laser light to form a nitride layer. ing. If a hydrocarbon gas such as methane gas is used instead of nitrogen gas, a carbide layer can be formed on the substrate surface. Such a gas process is not suitable for surface modification of large parts because a chamber is indispensable, the window of the chamber is contaminated and the irradiation efficiency of the laser beam is deteriorated, and further, a window with dirt is applied to the laser beam. There is also a problem of absorbing heat and generating heat and breaking. In addition, when methane gas or the like is used, there is a problem in terms of safety. When the surface modification process which is an example of the embodiment is performed in an air atmosphere, the chamber is unnecessary, so that it is simple and inexpensive, and the surface modification of a large component can be easily performed.
 図1は、実施形態の一例である表面改質基材10の製造工程を示す図である。表面改質基材10は、樹脂層20を介したレーザ光αの照射により表面が改質された基材であって、詳しくは後述するように母材領域15に比べて硬度、耐摩耗性等の物性が大幅に向上した改質表面(改質層12)を有する。基材10zは表面改質される前の基材を意味する。表面改質基材10は、例えば耐摩耗性を必要とする機械部品、金型、工具等に好適であるが、その用途は特に限定されない。 FIG. 1 is a diagram illustrating a manufacturing process of a surface-modified base material 10 which is an example of an embodiment. The surface-modified base material 10 is a base material whose surface has been modified by irradiation of the laser beam α through the resin layer 20, and the hardness and wear resistance thereof are compared with the base material region 15 as will be described in detail later. It has a modified surface (modified layer 12) with greatly improved physical properties. The base material 10z means a base material before surface modification. The surface-modified base material 10 is suitable for, for example, machine parts, molds, tools, and the like that require wear resistance, but the use is not particularly limited.
 図1に例示するように、表面改質基材10の製造工程(以下、「表面改質工程P」という)は、基材10zの表面11zに樹脂層20を設ける工程と、樹脂層20を通して基材10zの表面11zにレーザ光αを照射する工程とを備える(図1(a)~(c)参照)。樹脂層20は、レーザ光αを透過する層であって、樹脂を主成分として構成される。樹脂層20は、例えばレーザ光αの透過性を損なわない範囲で樹脂成分以外の成分を含んでいてもよいが、好ましくは樹脂成分のみで構成される。以下では、樹脂層20を設ける工程を「第1工程又は樹脂層形成工程」、レーザ光αを照射する工程を「第2工程又はレーザ照射工程」という。第2工程は、樹脂層20を介したレーザ光αの照射により、基材10zの表面11zを溶融させると共に、基材10zの熱により樹脂層20を熱分解させる工程である。 As illustrated in FIG. 1, the manufacturing process of the surface modified substrate 10 (hereinafter referred to as “surface modified process P”) includes a step of providing a resin layer 20 on the surface 11 z of the substrate 10 z, And a step of irradiating the surface 11z of the base material 10z with the laser beam α (see FIGS. 1A to 1C). The resin layer 20 is a layer that transmits the laser beam α, and is composed mainly of resin. The resin layer 20 may contain components other than the resin component as long as, for example, the transmittance of the laser beam α is not impaired, but is preferably composed only of the resin component. Hereinafter, the step of providing the resin layer 20 is referred to as “first step or resin layer forming step”, and the step of irradiating the laser light α is referred to as “second step or laser irradiation step”. The second step is a step of melting the surface 11z of the base material 10z by irradiation of the laser beam α through the resin layer 20 and thermally decomposing the resin layer 20 by the heat of the base material 10z.
 図1に示す例では、レーザ光αの照射後に樹脂層20を取り除く工程が設けられている(図1(d)参照)。樹脂層20は、例えば表面改質基材10から剥離除去することができる。或いは、樹脂層20を溶解する溶剤等を用いて樹脂層20を除去してもよい。なお、表面改質基材10の用途によっては樹脂層20の除去が不要な場合もある。樹脂層20は、例えば表面改質基材10が使用される過程で徐々に取り除かれてもよい。 In the example shown in FIG. 1, a step of removing the resin layer 20 after the irradiation with the laser beam α is provided (see FIG. 1D). The resin layer 20 can be peeled off from the surface-modified base material 10, for example. Alternatively, the resin layer 20 may be removed using a solvent or the like that dissolves the resin layer 20. Depending on the application of the surface-modified base material 10, it may be unnecessary to remove the resin layer 20. The resin layer 20 may be gradually removed, for example, in the process in which the surface modified substrate 10 is used.
 表面改質工程Pに適用可能な基材10zは、金属製の基材であって、例えば少なくとも表面11zが樹脂層20の分解成分と結合して化合物を形成する金属を主成分として構成される。基材10zは、異種金属の積層構造であってもよいが、以下では基材10zの全体が同一組成で構成されているものとして説明する。基材10zを構成する金属成分としては、鉄(Fe)、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)、タングステン(W)、モリブデンn(Mo)、クロム(Cr)、マンガン(Mn)などが例示できる。基材10zには、炭化物の生成傾向が強い金属成分が含まれていることが好ましい。例えば、Ti製の基材10zを用いた場合は、樹脂層20の分解成分である炭素(C)とTiが結合して、基材表面に炭化チタン(TiC)の層が形成される。なお、基材10zの形状、寸法等は特に限定されない。基材10zの表面11zは、平坦なものに限定されず、例えば湾曲していてもよく、凹凸を有していてもよい。 The base material 10z applicable to the surface modification step P is a metal base material, and is composed, for example, of a metal whose main component is at least the surface 11z combined with a decomposition component of the resin layer 20 to form a compound. . Although the base material 10z may have a laminated structure of dissimilar metals, the following description will be made assuming that the whole base material 10z is configured with the same composition. As the metal components constituting the substrate 10z, iron (Fe), titanium (Ti), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), tantalum (Ta), tungsten (W) Molybdenum n (Mo), chromium (Cr), manganese (Mn), and the like. The base material 10z preferably contains a metal component that has a strong tendency to generate carbides. For example, when a Ti substrate 10z is used, carbon (C), which is a decomposition component of the resin layer 20, and Ti are bonded to form a titanium carbide (TiC) layer on the substrate surface. In addition, the shape of the base material 10z, a dimension, etc. are not specifically limited. The surface 11z of the base material 10z is not limited to a flat surface, and may be, for example, curved or uneven.
 図1(a)に示すように、第1工程では、基材10zの表面11zに樹脂層20が設けられる。樹脂層20は、基材10zの表面11zのうち、少なくともレーザ光αの照射により表面改質される領域(改質予定領域)に設けられる。樹脂層20は、改質予定領域以外に設けられてもよく、例えば改質予定領域が表面11zの一部である場合に表面11zの全域に設けてもよい。第1工程では、基材10zの表面11zに樹脂基板又は樹脂フィルムを配置し、当該樹脂フィルム等を樹脂層20としてもよい。予め作成された樹脂フィルム等を用いて樹脂層20を設ける場合は、樹脂フィルム等を表面11zに押し付けて表面11zと密着させることが好ましい。詳しくは後述するように、コーティングプロセスにより樹脂層20を設けることが特に好適である。 As shown in FIG. 1A, in the first step, a resin layer 20 is provided on the surface 11z of the substrate 10z. The resin layer 20 is provided in at least a region (planned modification region) whose surface is modified by irradiation with the laser beam α in the surface 11z of the substrate 10z. The resin layer 20 may be provided outside the region to be modified, for example, when the region to be modified is a part of the surface 11z, the resin layer 20 may be provided over the entire surface 11z. In the first step, a resin substrate or a resin film may be disposed on the surface 11z of the base material 10z, and the resin film or the like may be used as the resin layer 20. When providing the resin layer 20 using the resin film etc. which were produced previously, it is preferable to press the resin film etc. against the surface 11z and to adhere to the surface 11z. As will be described in detail later, it is particularly preferable to provide the resin layer 20 by a coating process.
 樹脂層20は、第2工程で使用されるレーザ光αを透過する層であって、レーザ光αを吸収して発熱した基材10zにより加熱されて熱分解する。樹脂層20の分解成分は、上述のようにアロイング元素として作用し、基材10zを構成する金属と結合して化合物を形成する。即ち、樹脂層20はアロイング元素の供給源となる。樹脂層20は、例えば熱分解により炭素又は炭素を含む反応性ガスを発生させる。また、樹脂層20は大気を遮断して基材10zの表面11zが大気に曝されることを防止する役割を果たす。樹脂層20は、チャンバーのように機能し、大気中でレーザ光αを照射した場合の弊害、例えば、クラックの発生等を防止する。 The resin layer 20 is a layer that transmits the laser beam α used in the second step, and is thermally decomposed by being heated by the base material 10z that has generated heat by absorbing the laser beam α. The decomposition component of the resin layer 20 acts as an alloying element as described above, and is combined with the metal constituting the base material 10z to form a compound. That is, the resin layer 20 becomes a supply source of the alloying element. The resin layer 20 generates carbon or a reactive gas containing carbon by, for example, thermal decomposition. The resin layer 20 plays a role of blocking the atmosphere and preventing the surface 11z of the base material 10z from being exposed to the atmosphere. The resin layer 20 functions like a chamber and prevents adverse effects when the laser beam α is irradiated in the atmosphere, for example, generation of cracks.
 樹脂層20は、レーザ光αの透過率が基材10zよりも高く、レーザ光αの吸収による発熱量よりも発熱した基材10zからの間接的な加熱による発熱量が大きいことが好適である。樹脂層20がレーザ光αの吸収により発熱すると、基材10zに照射されるレーザ光αの光量が減少するため照射効率が低下し、また樹脂層20が基材10zの表面11zから離れた部分で熱分解して表面11zに十分なアロイング元素を供給できない場合がある。樹脂層20のレーザ光αの透過率は、高いほど好ましく、少なくとも50%以上であり、より好ましくは70%以上、特に好ましくは80%以上である。樹脂層20の透過率は、分光光度計を用いて測定することができる。樹脂層20の厚みは、レーザ光αの透過性、大気成分の遮断性、アロイング元素の供給量等を考慮して決定され、例えば1μm~1000μmであり、好ましくは100μm~500μmである。 It is preferable that the resin layer 20 has a higher transmittance of the laser beam α than that of the substrate 10z, and has a larger amount of heat generated by indirect heating from the substrate 10z that generates heat than the amount of heat generated by absorption of the laser beam α. . When the resin layer 20 generates heat due to the absorption of the laser beam α, the amount of the laser beam α irradiated to the base material 10z is reduced, so that the irradiation efficiency is lowered, and the resin layer 20 is a part away from the surface 11z of the base material 10z. May not be able to supply a sufficient alloying element to the surface 11z. The transmittance of the laser beam α of the resin layer 20 is preferably as high as possible, at least 50% or more, more preferably 70% or more, and particularly preferably 80% or more. The transmittance of the resin layer 20 can be measured using a spectrophotometer. The thickness of the resin layer 20 is determined in consideration of the transmittance of the laser beam α, the blocking of atmospheric components, the amount of alloying element supplied, and the like, for example, 1 μm to 1000 μm, and preferably 100 μm to 500 μm.
 樹脂層20は、例えばポリビニルアルコール系樹脂(PVA)、ポリエチレンテレフタレート等のポリエステル系樹脂、ポリカーボネート系樹脂、ポリエチレン、ポリプロピレン、環状ポリオレフィン等のポリオレフィン系樹脂、ポリ酢酸ビニル等のポリビニルエステル系樹脂、ポリメチルメタクリレート等のポリメタアクリル酸エステル、ポリアクリル酸エステル等のアクリル系樹脂、ポリスチレン等の芳香族ビニル系樹脂、ポリウレタン系樹脂、エポキシ系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリスルホン系樹脂、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等のフッ素系樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン等の塩素系樹脂、及びシリコーン系樹脂からなる群より選択される少なくとも1種の樹脂で構成される。樹脂層20を構成する樹脂は、熱可塑性樹脂、硬化性樹脂のいずれであってもよい。硬化性樹脂は、熱硬化型、紫外線硬化型、又は2液硬化型のいずれであってもよい。 The resin layer 20 includes, for example, a polyvinyl alcohol resin (PVA), a polyester resin such as polyethylene terephthalate, a polycarbonate resin, a polyolefin resin such as polyethylene, polypropylene, and cyclic polyolefin, a polyvinyl ester resin such as polyvinyl acetate, and polymethyl Polymethacrylate such as methacrylate, acrylic resin such as polyacrylate, aromatic vinyl resin such as polystyrene, polyurethane resin, epoxy resin, polyamide resin, polyimide resin, polysulfone resin, polytetra Consists of at least one resin selected from the group consisting of fluorine resins such as fluoroethylene and polyvinylidene fluoride, chlorine resins such as polyvinyl chloride and polyvinylidene chloride, and silicone resins. That. The resin constituting the resin layer 20 may be either a thermoplastic resin or a curable resin. The curable resin may be a thermosetting type, an ultraviolet curable type, or a two-component curable type.
 上記ポリビニルアルコール系樹脂(PVA)としては、例えばクラレ社製クラレポバールPVA235、クラレポバールPVA117、日本合成化学社製ゴーセノールKH20等のポリビニルアルコール、日本合成化学社製ゴーセファイマーZ200等のアセトアセチル化ポリビニルアルコール、積水化学社製エスレックKXシリーズ等の水系ポリビニルアセタールなどが挙げられる。PVAからなる樹脂層20(厚み:100μm)のレーザ光αの透過率は、例えば約90%である。 Examples of the polyvinyl alcohol resin (PVA) include, for example, Kuraray Kuraraypoval PVA235, Kuraraypoval PVA117, Nippon Synthetic Chemical Co., Ltd. Gohsenol KH20 and other acetoacetylated polyvinyls such as Nippon Synthetic Chemical Co., Ltd. Examples thereof include alcohol and water-based polyvinyl acetal such as SLECK KX series manufactured by Sekisui Chemical Co., Ltd. The transmittance of the laser light α of the resin layer 20 (thickness: 100 μm) made of PVA is, for example, about 90%.
 第1工程では、基材10zの表面11zに樹脂をコーティングして樹脂層20を形成することが好適である。コーティングプロセスを適用することにより、表面11zに対して良好な密着性を有する樹脂層20を形成することができ、第2工程等において樹脂層20が剥がれ難く、また表面11zと樹脂層20の間に気泡が浸入することを抑制し易くなる。樹脂のコーティングは、従来公知の方法により行うことができる。 In the first step, it is preferable that the resin layer 20 is formed by coating the surface 11z of the substrate 10z with a resin. By applying the coating process, the resin layer 20 having good adhesion to the surface 11z can be formed, and the resin layer 20 is hardly peeled off in the second step or the like, and between the surface 11z and the resin layer 20 It becomes easy to suppress the bubble from entering the surface. Resin coating can be performed by a conventionally known method.
 樹脂層20は、基材10zの表面11zに樹脂を塗布し、塗膜を乾燥又は硬化させて形成することができる。例えば、樹脂を溶媒に溶解して樹脂溶液を作成し、当該溶液を表面11zに塗布した後、塗膜中の溶媒を揮発除去させることにより樹脂層20を形成する。PVAを用いる場合は、PVA水溶液を作成し、当該水溶液を表面11zに塗布して樹脂層20を形成する。樹脂溶液の代わりに樹脂が分散したエマルジョンを用いることもできる。また、硬化性樹脂を用いる場合は、未硬化成分を表面11zに塗布した後、塗膜を硬化させて樹脂層20を形成することができる。 The resin layer 20 can be formed by applying a resin to the surface 11z of the substrate 10z and drying or curing the coating film. For example, a resin solution is prepared by dissolving a resin in a solvent, and the resin layer 20 is formed by volatilizing and removing the solvent in the coating film after the solution is applied to the surface 11z. In the case of using PVA, an aqueous PVA solution is prepared, and the aqueous solution is applied to the surface 11z to form the resin layer 20. Instead of the resin solution, an emulsion in which a resin is dispersed can be used. Moreover, when using curable resin, after apply | coating an uncured component to the surface 11z, the coating film can be hardened and the resin layer 20 can be formed.
 図1(b)に示すように、第2工程では、樹脂層20を通して基材10zの表面11zにレーザ光αを照射し、基材10zの表面11zを溶融させる。そして、図1(c)に示すように、基材10zの熱により樹脂層20が加熱されて熱分解する。即ち、第2工程では、基材10zの表面11zを溶融させるエネルギーを持ったレーザ光αを、樹脂層20を通して表面11zに照射する。レーザ光αが照射された表面11z及びその近傍には基材10zを構成する金属が溶融した溶融領域12zが形成され、例えば樹脂層20のうち溶融領域12zに接する近接領域21が加熱されて熱分解する。一般的には、レーザ光αの出力を高くする又は照射時間を長くするほど、深くまで溶融領域12zを形成できる。第2工程では、樹脂層20の分解成分が溶融状態にある基材10zの金属と結合して改質層12が形成される。 As shown in FIG. 1B, in the second step, the surface 11z of the base material 10z is irradiated with laser light α through the resin layer 20 to melt the surface 11z of the base material 10z. And as shown in FIG.1 (c), the resin layer 20 is heated and thermally decomposed with the heat | fever of the base material 10z. That is, in the second step, the surface 11z is irradiated through the resin layer 20 with laser light α having energy for melting the surface 11z of the base material 10z. On the surface 11z irradiated with the laser beam α and in the vicinity thereof, a molten region 12z in which the metal constituting the substrate 10z is melted is formed. For example, the adjacent region 21 in contact with the molten region 12z in the resin layer 20 is heated and heated. Decompose. In general, the melting region 12z can be formed deeper as the output of the laser beam α is increased or the irradiation time is increased. In the second step, the modified component 12 is formed by combining the decomposition component of the resin layer 20 with the metal of the base material 10z in a molten state.
 樹脂層20の主な分解成分には炭素(C)が含まれるから、改質層12には金属炭化物が含まれる。樹脂層20の分解成分は、層を構成する樹脂に応じて変化し、例えばC以外に、酸素(O)、窒素(N)、硫黄(S)、フッ素(F)、塩素(Cl)、ケイ素(Si)などが含まれる場合がある。例えば、ポリアミド系樹脂、ポリイミド系樹脂等のNを含有する樹脂を用いて樹脂層20を構成することにより、金属窒化物を含む改質層12を形成することが可能である。また、ポリスルホン系樹脂等のSを含有する樹脂を用いて樹脂層20を構成すると、金属硫化物を含む改質層12を形成することが可能である。このように、表面改質工程Pによれば、樹脂層20の組成を変更することにより改質層12の組成を変更することができる。 Since the main decomposition component of the resin layer 20 contains carbon (C), the modified layer 12 contains metal carbide. The decomposition component of the resin layer 20 varies depending on the resin constituting the layer. For example, in addition to C, oxygen (O), nitrogen (N), sulfur (S), fluorine (F), chlorine (Cl), silicon (Si) may be included. For example, the modified layer 12 containing a metal nitride can be formed by forming the resin layer 20 using a resin containing N such as a polyamide-based resin or a polyimide-based resin. Further, when the resin layer 20 is formed using a resin containing S such as a polysulfone-based resin, the modified layer 12 containing a metal sulfide can be formed. Thus, according to the surface modification step P, the composition of the modified layer 12 can be changed by changing the composition of the resin layer 20.
 第2工程で使用されるレーザ装置としては、基材10zの表面11zを溶融させることが可能な装置であれば特に限定されず、例えばピーク発振波長が可視光域から近赤外域(500nm~1200nm)にあるレーザ光αを出力可能な装置が用いられる。ピーク発信波長が当該範囲内であれば、レーザ光αが樹脂層20に吸収され難く、基材10zに対する照射効率が向上する。第2工程に適用可能なレーザ装置の具体例としては、Ybファイバーレーザ、Ybディスクレーザ(ピーク発振波長:1000nm~1100nm)、Nd:YAGレーザ(ピーク発振波長:1064nm)、アルゴンレーザ、AlGaAs系半導体レーザ、InGaAs系半導体レーザ等の高出力半導体レーザなどが挙げられる。 The laser device used in the second step is not particularly limited as long as it can melt the surface 11z of the base material 10z. For example, the peak oscillation wavelength ranges from the visible light region to the near infrared region (500 nm to 1200 nm). A device capable of outputting the laser light α in FIG. If the peak transmission wavelength is within the range, the laser light α is hardly absorbed by the resin layer 20 and the irradiation efficiency with respect to the base material 10z is improved. Specific examples of laser devices applicable to the second step include a Yb fiber laser, a Yb disk laser (peak oscillation wavelength: 1000 nm to 1100 nm), an Nd: YAG laser (peak oscillation wavelength: 1064 nm), an argon laser, and an AlGaAs semiconductor. Examples thereof include high-power semiconductor lasers such as lasers and InGaAs-based semiconductor lasers.
 第2工程では、基材10zの改質予定領域に対してレーザ光αを走査する。レーザ光αの走査は、例えばガルバノスキャナ―を用いて行うことができる。また、基材10zをXYテーブル等に設置し、レーザ光αの照射スポットに対して基材10zを移動させてもよい。レーザ光αの出力、波長、照射時間(走査速度)等の照射条件により、改質層12の厚み、組成等を調整することができる。一般的には、レーザ光αの出力が高く、照射時間が長いほど、改質層12の厚みが増加する。 In the second step, the laser beam α is scanned over the region to be modified of the substrate 10z. The laser beam α can be scanned using, for example, a galvano scanner. Moreover, the base material 10z may be installed on an XY table or the like, and the base material 10z may be moved with respect to the irradiation spot of the laser light α. The thickness, composition, and the like of the modified layer 12 can be adjusted by irradiation conditions such as the output, wavelength, and irradiation time (scanning speed) of the laser beam α. In general, the thickness of the modified layer 12 increases as the output of the laser beam α is higher and the irradiation time is longer.
 第2工程におけるレーザ光αの照射条件の一例は、下記の通りである。
  レーザ装置:Ybファーバーレーザ
  ピーク発振波長:1070nm
  発振モード:CW
  出力:40W
  照射スポット径:30μm
  走査速度:100~250mm/s
An example of the irradiation condition of the laser beam α in the second step is as follows.
Laser device: Yb Faber laser Peak oscillation wavelength: 1070 nm
Oscillation mode: CW
Output: 40W
Irradiation spot diameter: 30 μm
Scanning speed: 100 to 250 mm / s
 図2は、表面改質工程Pにより得られた表面改質基材10を模式的に示す断面図である。図2に例示するように、表面改質基材10は、表面11から所定の深さ範囲に形成された改質層12を有する。改質層12は、レーザ光αの照射により樹脂層20の分解成分と基材10zを構成する金属が複合化して形成されたレーザアロイ領域である。詳しくは後述するように、特に第1領域13の硬度、摩擦特性等の物性は、レーザ光αが照射されていない領域である母材領域15(表面改質されていない領域)の物性と比べて大きく向上している。第1領域13は、例えば表面11から深さの浅い範囲、例えば表面からの深さが0.5μm~5μmの範囲に形成される。なお、表面改質工程Pにより形成される改質層12は顕微鏡画像により明確に確認できなくてもよく、改質層12と母材領域15との境界、また第1領域13と第2領域14との境界が明確である必要はない。 FIG. 2 is a cross-sectional view schematically showing the surface modified substrate 10 obtained by the surface modification step P. As illustrated in FIG. 2, the surface-modified base material 10 has a modified layer 12 formed in a predetermined depth range from the surface 11. The modified layer 12 is a laser alloy region formed by combining the decomposition component of the resin layer 20 and the metal constituting the substrate 10z by irradiation with the laser beam α. As will be described in detail later, in particular, the physical properties such as hardness and friction characteristics of the first region 13 are compared with the physical properties of the base material region 15 (region not subjected to surface modification), which is a region not irradiated with the laser light α. Greatly improved. The first region 13 is formed, for example, in a shallow range from the surface 11, for example, in a range from 0.5 μm to 5 μm in depth from the surface. Note that the modified layer 12 formed by the surface modification step P may not be clearly confirmed by a microscopic image, and the boundary between the modified layer 12 and the base material region 15, and the first region 13 and the second region. It is not necessary that the boundary with 14 is clear.
 図3は、表面改質工程Pの変形例を示す図である。図3に例示する表面改質プロセスは、樹脂層形成工程、レーザ照射工程に加えて、基材10zの表面11zに樹脂層20の分解成分と結合して化合物を形成する添加材料30を配置する工程をさらに備える。添加材料30は、樹脂層20を設ける前に、少なくとも改質予定領域上に設けられる。そして、図3(a)に示すように、樹脂層20が添加材料30を覆って基材10zの表面11zに設けられる。図3(b)~(d)に示すように、以降の工程は表面改質工程Pと同様であり、樹脂層20を通して基材10zの表面11zにレーザ光αを照射する。添加材料30は樹脂層20に覆われているため、レーザ光αの照射により添加材料30が飛散することはない。なお、樹脂層20、レーザ照射工程で照射されるレーザ光α等には、表面改質工程Pの場合と同様のものが適用できる。 FIG. 3 is a view showing a modification of the surface modification step P. In the surface modification process illustrated in FIG. 3, in addition to the resin layer forming step and the laser irradiation step, an additive material 30 that forms a compound by bonding with a decomposition component of the resin layer 20 is disposed on the surface 11z of the base material 10z. The method further includes a step. The additive material 30 is provided at least on the planned modification region before the resin layer 20 is provided. And as shown to Fig.3 (a), the resin layer 20 covers the additive material 30, and is provided in the surface 11z of the base material 10z. As shown in FIGS. 3B to 3D, the subsequent steps are the same as the surface modification step P, and the surface 11z of the substrate 10z is irradiated with the laser beam α through the resin layer 20. Since the additive material 30 is covered with the resin layer 20, the additive material 30 is not scattered by the irradiation of the laser beam α. For the resin layer 20 and the laser beam α irradiated in the laser irradiation step, the same material as in the surface modification step P can be applied.
 添加材料30には、レーザ光αの照射により、樹脂層20の分解成分と結合して化合物を形成すると共に、基材10zの金属と複合化する材料を用いることが好適である。添加材料30は、例えば粉末又は箔の形態で供給され、基材10zの表面11z上に層状に形成される。添加材料30からなる層の形成には、バインダーを用いてもよい。第2工程において、添加材料30はレーザ光αを吸収して溶融状態となり、同じく溶融状態にある基材10zの金属、及び樹脂層20の分解成分と複合化する。これにより、改質層12xを有する表面改質基材10xが得られる。例えば、基材10zが鉄(Fe)を主成分とする場合に、添加材料30としてチタン(Ti)の粒子又は箔を用いることで、鉄を主成分とする基材の表面に炭化チタン(TiC)等の改質層を形成することができる。 As the additive material 30, it is preferable to use a material that combines with the decomposition component of the resin layer 20 to form a compound by irradiation with the laser beam α and is combined with the metal of the base material 10z. The additive material 30 is supplied in the form of, for example, a powder or a foil, and is formed in a layer form on the surface 11z of the substrate 10z. A binder may be used to form the layer made of the additive material 30. In the second step, the additive material 30 absorbs the laser beam α to be in a molten state, and is compounded with the metal of the base material 10z that is also in the molten state and the decomposition component of the resin layer 20. Thereby, the surface modification base material 10x which has the modification layer 12x is obtained. For example, when the base material 10z has iron (Fe) as a main component, titanium carbide (TiC) is used on the surface of the base material having iron as a main component by using titanium (Ti) particles or foil as the additive material 30. ) And the like can be formed.
 図3に例示する表面改質プロセスによれば、添加材料30及び樹脂層20の組成を変更することで改質層12xの組成を変更することができるため、例えば基材10zは樹脂層20の分解成分との反応性が低いものであってもよい。即ち、添加材料30を用いることにより基材10zの選択肢が増え、樹脂層20を利用した本プロセスの適用範囲が広がる。なお、添加材料30は樹脂層20に覆われているため、レーザ光αの照射による添加材料30の飛散が防止され、均一で安定した表面改質を行うことができる。また、樹脂層20は大気を遮断するため、基材表面が大気に曝されることがなく、クラックの発生等が防止される。 According to the surface modification process illustrated in FIG. 3, the composition of the modified layer 12 x can be changed by changing the composition of the additive material 30 and the resin layer 20. The reactivity with a decomposition component may be low. That is, the use of the additive material 30 increases the choice of the base material 10z, and the application range of this process using the resin layer 20 is expanded. In addition, since the additive material 30 is covered with the resin layer 20, scattering of the additive material 30 due to the irradiation of the laser beam α is prevented, and uniform and stable surface modification can be performed. Further, since the resin layer 20 blocks the atmosphere, the surface of the base material is not exposed to the atmosphere, and the occurrence of cracks and the like is prevented.
 図4~図8を参照しながら、表面改質工程Pにより得られた表面改質基材10の物性等について詳説する。以下では、基材10zにチタン製基材を、樹脂層20にポリビニルアルコール系樹脂(PVA)からなる層をそれぞれ適用した場合(以下、「TiC/Ti基材」という)を例に挙げて説明する。PVA層は、PVA水溶液を基材表面に塗布し、乾燥させて、乾燥後の厚みが100μmとなるように形成した。レーザ照射工程には、上述のYbファーバーレーザを用いた。 The physical properties of the surface modified substrate 10 obtained by the surface modification step P will be described in detail with reference to FIGS. Hereinafter, a case where a titanium base material is applied to the base material 10z and a layer made of polyvinyl alcohol-based resin (PVA) is applied to the resin layer 20 (hereinafter referred to as “TiC / Ti base material”) will be described as an example. To do. The PVA layer was formed by applying a PVA aqueous solution to the substrate surface and drying it so that the thickness after drying was 100 μm. The Yb Faber laser described above was used for the laser irradiation process.
 図4は、TiC/Ti基材の断面を示す顕微鏡画像である。図4(a)は光学顕微鏡を用いて撮影した画像(OM画像)であり、図4(b)は電子顕微鏡を用いて撮影した画像(SEM画像)である。OM画像から、TiC/Ti基材の表面から所定深さの範囲に母材領域と様子が異なる層(改質層)が形成されていることが分かる。また、SEM画像から、基材表面から深さの浅い範囲に樹枝状結晶層(第1領域)が形成されていることが分かる。改質層は、PVA層の分解成分と溶融したチタンが複合化して形成されたレーザアロイ領域であって、基材表面から深さ50μm程度の範囲に形成されている。即ち、改質層の厚みは約50μmである。改質層のうち、樹枝状結晶層である第1領域の厚みは約5μmである。改質層及び第1領域の厚みは、例えばレーザ光αの走査速度を遅くすることで増加させることができる。 FIG. 4 is a microscopic image showing a cross section of the TiC / Ti substrate. 4A is an image (OM image) photographed using an optical microscope, and FIG. 4B is an image photographed using an electron microscope (SEM image). From the OM image, it can be seen that a layer (modified layer) having a different state from the base material region is formed within a predetermined depth from the surface of the TiC / Ti substrate. Further, it can be seen from the SEM image that a dendritic crystal layer (first region) is formed in a shallow range from the substrate surface. The modified layer is a laser alloy region formed by combining the decomposition component of the PVA layer and molten titanium, and is formed in a range of about 50 μm from the surface of the base material. That is, the thickness of the modified layer is about 50 μm. Of the modified layer, the thickness of the first region, which is a dendritic crystal layer, is about 5 μm. The thicknesses of the modified layer and the first region can be increased, for example, by reducing the scanning speed of the laser beam α.
 図5は、TiC/Ti基材の改質表面のXRDパターン(下)であり、比較として母材領域のXRDパターン(上)を示す。XRD測定には、Rigaku社製のSmartLab(CuKα線、40mA・150kV)を用いた。図5に示すように、TiC/Ti基材の改質表面のXRDパターンには、母材領域のXRDパターンには見られない、TiC、TiN、TiOに起因するピーク(●で示すピーク)が確認された。 FIG. 5 is an XRD pattern (lower) of the modified surface of the TiC / Ti substrate, and shows an XRD pattern (upper) of the base material region as a comparison. For XRD measurement, SmartLab (CuKα line, 40 mA · 150 kV) manufactured by Rigaku was used. As shown in FIG. 5, in the XRD pattern of the modified surface of the TiC / Ti substrate, there are peaks (peaks indicated by ●) caused by TiC, TiN, and TiO that are not seen in the XRD pattern of the base material region. confirmed.
 図6は、TiC/Ti基材のグロー放電発光分析法(GDS)による元素分析結果である。図6に示すように、GDSによる元素分析の結果、基材表面から深さ50μm程度の範囲に、Ti、C、N、Oの存在が確認された。特に基材表面に近い深さ5μm以下の範囲には、PVA層の分解成分であるCが多く存在しており、TiCを主成分とする改質層が形成されていると考えられる。また、改質層はTiO、TiNを含んでいる。OはPVAの分解成分及び大気中の酸素に起因するものであると考えられ、Nは主に大気中の窒素に起因するものと考えられる。 FIG. 6 shows the results of elemental analysis of the TiC / Ti substrate by glow discharge emission spectrometry (GDS). As shown in FIG. 6, as a result of elemental analysis by GDS, the presence of Ti, C, N, and O was confirmed within a depth range of about 50 μm from the substrate surface. In particular, in the range of a depth of 5 μm or less near the substrate surface, a large amount of C which is a decomposition component of the PVA layer is present, and it is considered that a modified layer mainly composed of TiC is formed. The modified layer contains TiO and TiN. O is considered to be caused by a decomposition component of PVA and oxygen in the atmosphere, and N is considered to be mainly caused by nitrogen in the atmosphere.
 図7は、TiC/Ti基材の改質表面のナノインデンテーション法による硬度の測定結果である。硬度の測定には、エリオニクス社製の超微小押し込み硬さ試験機ENT-1100a(荷重:2mN)を用いた。図7に示すように、基材表面から深さの浅い範囲に形成される樹枝状結晶層(第1領域)の硬度は、母材領域の硬度と比べて大幅に上昇していることが分かる。TiC/Ti基材の改質表面の硬度は、2000HV以上であり、これはセラミックコーティングに匹敵する硬度である。 FIG. 7 shows the measurement results of the hardness of the modified surface of the TiC / Ti substrate by the nanoindentation method. For the measurement of hardness, an ultra-fine indentation hardness tester ENT-1100a (load: 2 mN) manufactured by Elionix was used. As shown in FIG. 7, it can be seen that the hardness of the dendritic crystal layer (first region) formed in a shallow depth range from the surface of the base material is significantly higher than the hardness of the base material region. . The hardness of the modified surface of the TiC / Ti substrate is 2000 HV or higher, which is comparable to the ceramic coating.
 図8は、TiC/Ti基材の改質表面の摺動摩耗試験後のSEM画像(下)であり、比較として母材領域の摺動摩耗試験後のSEM画像(上)を示す。
 摺動摩耗試験は、下記の条件で行った。
  装置:新東科学社製のトライボギアTYPE:14FW
  ボールマテリアル:Fe-1.0C-1.4Cr
  荷重:0.98N
  摺動距離:72m
  その他:乾燥条件、温度25℃、湿度50%
 図8に示すように、母材領域の表面には大きな摩耗痕が形成されているが、改質表面には摩耗痕が形成されていない。即ち、TiC/Ti基材の改質表面は、優れた耐摩耗性を有している。
FIG. 8 is an SEM image (bottom) after the sliding wear test of the modified surface of the TiC / Ti substrate, and shows an SEM image (top) after the sliding wear test of the base material region as a comparison.
The sliding wear test was performed under the following conditions.
Equipment: Tribogear TYPE manufactured by Shinto Scientific Co., Ltd .: 14FW
Ball material: Fe-1.0C-1.4Cr
Load: 0.98N
Sliding distance: 72m
Other: Drying conditions, temperature 25 ° C, humidity 50%
As shown in FIG. 8, large wear marks are formed on the surface of the base material region, but no wear marks are formed on the modified surface. That is, the modified surface of the TiC / Ti substrate has excellent wear resistance.
 以上のように、金属製基材の表面にレーザ光を透過する樹脂層を設け、当該樹脂層を通して基材表面にレーザ光を照射する表面改質プロセスによれば、大気雰囲気においてもクラックのない高品質な製品を提供することができる。即ち、本プロセスはチャンバーが不要であるから、簡便且つ安価であり、大型部品の表面改質も容易に行うことができる。本プロセスにより改質された基材表面は、母材領域と比較して大幅に向上した硬度、耐摩耗性等を有する。 As described above, according to the surface modification process in which the resin layer that transmits the laser beam is provided on the surface of the metal substrate and the substrate surface is irradiated with the laser beam through the resin layer, there is no crack even in the air atmosphere. High quality products can be provided. That is, since this process does not require a chamber, it is simple and inexpensive, and surface modification of large parts can be easily performed. The substrate surface modified by this process has significantly improved hardness, wear resistance and the like compared to the base material region.
 10,10x 表面改質基材、10z 基材、11,11z 表面、12,12x 改質層、12z 溶融領域、13 第1領域、14 第2領域、15 母材領域、20 樹脂層、21 近接領域、30 添加材料 10, 10x surface modified substrate, 10z substrate, 11, 11z surface, 12, 12x modified layer, 12z melted region, 13 first region, 14 second region, 15 base material region, 20 resin layer, 21 proximity Area, 30 additive material

Claims (5)

  1.  金属製基材の表面にレーザ光を照射して、前記基材の表面改質を行う表面改質基材の製造方法であって、
     前記基材の表面に、前記レーザ光を透過する樹脂層を設ける工程と、
     前記樹脂層を通して前記基材の表面に前記レーザ光を照射し、前記基材の表面を溶融させると共に、前記基材の熱により前記樹脂層を熱分解させる工程と、
     を備えた表面改質基材の製造方法。
    A method for producing a surface-modified base material that irradiates the surface of a metal base material with laser light to perform surface modification of the base material,
    Providing a resin layer that transmits the laser light on the surface of the substrate;
    Irradiating the surface of the substrate with the laser light through the resin layer, melting the surface of the substrate, and thermally decomposing the resin layer by heat of the substrate;
    A method for producing a surface-modified substrate comprising:
  2.  前記樹脂層は、ポリビニルアルコール系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリオレフィン系樹脂、ポリビニルエステル系樹脂、アクリル系樹脂、芳香族ビニル系樹脂、ポリウレタン系樹脂、エポキシ系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリスルホン系樹脂、フッ素系樹脂、塩素系樹脂、及びシリコーン系樹脂からなる群より選択される少なくとも1種の樹脂で構成される、請求項1に記載の製造方法。 The resin layer is made of polyvinyl alcohol resin, polyester resin, polycarbonate resin, polyolefin resin, polyvinyl ester resin, acrylic resin, aromatic vinyl resin, polyurethane resin, epoxy resin, polyamide resin, polyimide. The manufacturing method of Claim 1 comprised with at least 1 sort (s) of resin selected from the group which consists of a resin based, a polysulfone resin, a fluorine resin, a chlorine resin, and a silicone resin.
  3.  前記基材の表面に前記樹脂をコーティングして前記樹脂層を形成する、請求項2に記載の製造方法。 The manufacturing method according to claim 2, wherein the resin layer is formed by coating the surface of the substrate with the resin.
  4.  大気雰囲気下において、前記樹脂層が設けられた前記基材の表面に前記レーザ光を照射する、請求項1~3のいずれか1項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 3, wherein the laser light is irradiated on a surface of the base material provided with the resin layer in an air atmosphere.
  5.  前記基材の表面に、前記樹脂層の分解成分と結合して化合物を形成する添加材料を配置する工程をさらに備え、
     前記樹脂層は、前記添加材料を覆って前記基材の表面に設けられる、請求項1~4のいずれか1項に記載の製造方法。
    Further comprising a step of disposing an additive material that binds to the decomposition component of the resin layer to form a compound on the surface of the base material;
    The manufacturing method according to any one of claims 1 to 4, wherein the resin layer is provided on a surface of the base material so as to cover the additive material.
PCT/JP2014/084267 2014-12-25 2014-12-25 Method for producing surface-modified base WO2016103385A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016565745A JP6390056B2 (en) 2014-12-25 2014-12-25 Method for producing surface modified substrate
PCT/JP2014/084267 WO2016103385A1 (en) 2014-12-25 2014-12-25 Method for producing surface-modified base

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/084267 WO2016103385A1 (en) 2014-12-25 2014-12-25 Method for producing surface-modified base

Publications (1)

Publication Number Publication Date
WO2016103385A1 true WO2016103385A1 (en) 2016-06-30

Family

ID=56149481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084267 WO2016103385A1 (en) 2014-12-25 2014-12-25 Method for producing surface-modified base

Country Status (2)

Country Link
JP (1) JP6390056B2 (en)
WO (1) WO2016103385A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01210172A (en) * 1988-02-18 1989-08-23 Nkk Corp Fusion welding method for resin laminated metal plates
JPH02263947A (en) * 1989-04-03 1990-10-26 Tokushu Denkyoku Kk Manufacture of high strength steel containing dispersed carbide
JPH05245670A (en) * 1992-03-10 1993-09-24 Nkk Corp Method for welding high damping steel sheets with laser beam
JPH05318154A (en) * 1992-05-25 1993-12-03 Nkk Corp Laser welding method for dumping steel plate
JPH0852580A (en) * 1994-08-09 1996-02-27 Nkk Corp Structure of laser beam welded part of laminated steel sheet with common steel sheet
JP2008162288A (en) * 2004-06-02 2008-07-17 Nagoya Industrial Science Research Inst Laser bonding process of members
JP2010046831A (en) * 2008-08-19 2010-03-04 Toyota Motor Corp Method and apparatus for joining resin and metal together

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0941125A (en) * 1995-07-28 1997-02-10 Hitachi Seiki Co Ltd Method for hardening metallic surface
CA2542085A1 (en) * 2003-10-23 2005-05-12 Medtronic, Inc. Methods of producing carbon layers on titanium metal
JP5690051B2 (en) * 2009-05-27 2015-03-25 公益財団法人名古屋産業科学研究所 Method of joining members using laser
JP2011144849A (en) * 2010-01-13 2011-07-28 Ntn Corp Constant velocity universal joint
JP5569932B2 (en) * 2010-05-12 2014-08-13 株式会社新技術研究所 Member in which metal body and resin body are joined and method for producing the same
JP5835945B2 (en) * 2010-08-11 2015-12-24 株式会社日立製作所 Laser bonding method
JP2014046599A (en) * 2012-08-31 2014-03-17 Nippon Light Metal Co Ltd Metal member for producing metal-resin complex, and production method of the member

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01210172A (en) * 1988-02-18 1989-08-23 Nkk Corp Fusion welding method for resin laminated metal plates
JPH02263947A (en) * 1989-04-03 1990-10-26 Tokushu Denkyoku Kk Manufacture of high strength steel containing dispersed carbide
JPH05245670A (en) * 1992-03-10 1993-09-24 Nkk Corp Method for welding high damping steel sheets with laser beam
JPH05318154A (en) * 1992-05-25 1993-12-03 Nkk Corp Laser welding method for dumping steel plate
JPH0852580A (en) * 1994-08-09 1996-02-27 Nkk Corp Structure of laser beam welded part of laminated steel sheet with common steel sheet
JP2008162288A (en) * 2004-06-02 2008-07-17 Nagoya Industrial Science Research Inst Laser bonding process of members
JP2010046831A (en) * 2008-08-19 2010-03-04 Toyota Motor Corp Method and apparatus for joining resin and metal together

Also Published As

Publication number Publication date
JP6390056B2 (en) 2018-09-19
JPWO2016103385A1 (en) 2017-07-06

Similar Documents

Publication Publication Date Title
CN107532272B (en) Method for roughening surface of substrate, method for treating surface of substrate, spray-coated member, and method for producing same
US8367971B2 (en) Method of working material with high-energy radiation
JP2010142862A (en) Method for producing nano-periodic structure on surface of dielectric material
Liu et al. Optical quality laser polishing of CVD diamond by UV pulsed laser irradiation
Shi et al. Femtosecond laser rapid fabrication of large-area rose-like micropatterns on freestanding flexible graphene films
JP2007157659A (en) Forming method of wiring pattern of organic el element and forming device of organic el element
JP4734569B2 (en) Processing method of glass material
Wang et al. Nitrogen assisted formation of large-area ripples on Ti6Al4V surface by nanosecond pulse laser irradiation
Shan et al. Surface integrity control of laser cleaning of an aluminum alloy surface paint layer
He et al. Controlling periodic ripple microstructure formation on 4H-SiC crystal with three time-delayed femtosecond laser beams of different linear polarizations
JP6390056B2 (en) Method for producing surface modified substrate
Liu et al. Highly efficient finishing of large-sized single crystal diamond substrates by combining nanosecond pulsed laser trimming and plasma-assisted polishing
Kuisat et al. Fabrication of Water‐and Ice‐Repellent Surfaces on Additive‐Manufactured Components Using Laser‐Based Microstructuring Methods
Tsukamoto et al. Control of electrical resistance of TiO 2 films by short-pulse laser irradiation
Bogue Fifty years of the laser: its role in material processing
Yürekli et al. Additive manufacturing of binary Al-Li alloys
JP7451073B2 (en) Manufacturing method of composite molded body
US20050247923A1 (en) Semiconductor nano-structure and method of forming the same
Lautre et al. Characterization of drilled hole in low melting point material during low power microwave drilling process
US20120318776A1 (en) Method and apparatus for machining a workpiece
Savriama et al. Optimization of diode pumped solid state ultraviolet laser dicing of silicon carbide chips using design of experiment methodology
Gadag Studying the mechanism of micromachining by short pulsed laser
TWI658144B (en) System and method for strengthening a surface of a workpiece
Liu et al. Elimination of surface/subsurface defects on additively manufactured AlSi10Mg mirrors through nano-second laser irradiation
Eichler et al. Material processing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14908992

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016565745

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14908992

Country of ref document: EP

Kind code of ref document: A1