WO2016103263A1 - Method for fabricating a substrate-guided optical device - Google Patents
Method for fabricating a substrate-guided optical device Download PDFInfo
- Publication number
- WO2016103263A1 WO2016103263A1 PCT/IL2015/051247 IL2015051247W WO2016103263A1 WO 2016103263 A1 WO2016103263 A1 WO 2016103263A1 IL 2015051247 W IL2015051247 W IL 2015051247W WO 2016103263 A1 WO2016103263 A1 WO 2016103263A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- plates
- partially reflecting
- loe
- optical
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 72
- 230000003287 optical effect Effects 0.000 title claims abstract description 41
- 239000000758 substrate Substances 0.000 claims abstract description 40
- 230000008569 process Effects 0.000 claims abstract description 18
- 238000005520 cutting process Methods 0.000 claims abstract description 8
- 238000000576 coating method Methods 0.000 claims description 12
- 239000011248 coating agent Substances 0.000 claims description 7
- 238000000227 grinding Methods 0.000 claims description 6
- 238000005498 polishing Methods 0.000 claims description 6
- 230000008878 coupling Effects 0.000 claims description 4
- 238000010168 coupling process Methods 0.000 claims description 4
- 238000005859 coupling reaction Methods 0.000 claims description 4
- 239000010409 thin film Substances 0.000 claims description 4
- 238000005728 strengthening Methods 0.000 claims description 2
- 239000011521 glass Substances 0.000 description 20
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 6
- 239000005345 chemically strengthened glass Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 229910001415 sodium ion Inorganic materials 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 4
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 4
- 230000004075 alteration Effects 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 229910001414 potassium ion Inorganic materials 0.000 description 3
- 235000010333 potassium nitrate Nutrition 0.000 description 3
- 239000004323 potassium nitrate Substances 0.000 description 3
- 239000004568 cement Substances 0.000 description 2
- 238000003426 chemical strengthening reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000005329 float glass Substances 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 210000001747 pupil Anatomy 0.000 description 2
- 239000005336 safety glass Substances 0.000 description 2
- 235000010344 sodium nitrate Nutrition 0.000 description 2
- 239000004317 sodium nitrate Substances 0.000 description 2
- 239000005341 toughened glass Substances 0.000 description 2
- 239000003513 alkali Substances 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000009501 film coating Methods 0.000 description 1
- 238000007730 finishing process Methods 0.000 description 1
- 239000005400 gorilla glass Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000005304 optical glass Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- -1 oxygen anions Chemical class 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0065—Manufacturing aspects; Material aspects
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B27/0172—Head mounted characterised by optical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0005—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
- G02B6/0008—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type the light being emitted at the end of the fibre
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0075—Arrangements of multiple light guides
- G02B6/0078—Side-by-side arrangements, e.g. for large area displays
- G02B6/008—Side-by-side arrangements, e.g. for large area displays of the partially overlapping type
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/0123—Head-up displays characterised by optical features comprising devices increasing the field of view
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/0123—Head-up displays characterised by optical features comprising devices increasing the field of view
- G02B2027/0125—Field-of-view increase by wavefront division
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0075—Arrangements of multiple light guides
- G02B6/0076—Stacked arrangements of multiple light guides of the same or different cross-sectional area
Definitions
- the present invention relates to substrate-guided optical devices, and particularly to devices which include a plurality of reflecting surfaces carried by a common light-transmissive substrate, also referred to as a light-guide element.
- the invention can be implemented to advantage in a large number of imaging applications, such as portable DVDs, cellular phone, mobile TV receiver, video games, portable media players or any other mobile display devices.
- HMDs head-mounted displays
- an optical module serves both as an imaging lens and a combiner, in which a two-dimensional image source is imaged to infinity and reflected into the eye of an observer.
- the display source can be directly obtained from either a spatial light modulator (SLM) such as a cathode ray tube (CRT), a liquid crystal display (LCD), an organic light emitting diode array (OLED), a scanning source or similar devices, or indirectly, by means of a relay lens or an optical fiber bundle.
- SLM spatial light modulator
- CTR cathode ray tube
- LCD liquid crystal display
- OLED organic light emitting diode array
- scanning source or similar devices, or indirectly, by means of a relay lens or an optical fiber bundle.
- the display source comprises an array of elements (pixels) imaged to infinity by a collimating lens and transmitted into the eye of the viewer by means of a reflecting or partially reflecting surface acting as a combiner for non-see-through and see-through applications, respectively.
- a conventional, free-space optical module is used for these purposes.
- FOV field-of-view
- the present invention facilitates the exploitation of very compact light-guide optical element (LOE) for, amongst other applications, HMDs.
- LOE very compact light-guide optical element
- the invention allows relatively wide FOVs together with relatively large EMB values.
- the resulting optical system offers a large, high-quality image, which also accommodates large movements of the eye.
- the optical system offered by the present invention is particularly advantageous because it is substantially more compact than state-of-the-art implementations and yet it can be readily incorporated, even into optical systems having specialized configurations.
- a broad object of the present invention is therefore to alleviate the drawbacks of prior art compact optical display devices and to provide other optical components and systems having improved performance, according to specific requirements.
- the main physical principle of the LOE's operation is that light waves are trapped inside the substrate by total internal reflections from the external surfaces of the LOE.
- the light waves which are trapped inside the LOE are coupled out into the eyes of the viewer by an array of partially reflecting surfaces. Therefore, in order to achieve an undistorted image having good optical quality it is important that the on one hand the quality of the external as well as the partially reflecting surfaces will be with high quality and on the other hand that the fabrication process of the LOE will be as simple and straightforward as possible.
- the invention therefore provides a method for fabricating an optical device comprising a light waves-transmitting substrate having at least two major surfaces and edges and a plurality of partially reflecting surfaces carried by the substrate, wherein the partially reflecting surfaces are parallel to each other and not parallel to any of the edges of the substrate, the method comprising: providing at least one transparent flat plate and plates having partially reflecting surfaces, optically attaching together the flat plates so as to create a stacked, staggered form, slicing off from the stacked, staggered form at least one segment by cutting across several plates, grinding and polishing the segment to produce the light waves-transmitting substrate, characterized in that the plates are optically attached to each other by an optically adhesive-free process.
- Fig. 1 is a side view of an exemplary, prior art, LOE
- Fig. 2 is a diagram illustrating steps (a) to (e) of a method for fabricating an array of partially reflecting surfaces, according to the present invention
- Fig. 3 is a schematic diagram illustrating steps (a) to (c) of a method to increase the number of LOEs which can be fabricated out of a single slice according to the present invention
- Fig. 4 is a diagram illustrating steps (a) to (e) of an embodiment of another method for fabricating an array of partially reflecting surfaces, according to the present invention
- Fig. 5 is a diagram illustrating steps (a) and (b) of a method to attach a blank plate at the edge of the LOE;
- Fig. 6 illustrates a span of optical rays illuminating the input aperture of an LOE, wherein one of the edges of the LOE is slanted at an oblique angle with respect to the major surfaces, in accordance with the present invention
- Fig. 7 is a schematic diagram illustrating a system coupling-in input light-waves from a display light source into a substrate, wherein an intermediate prism is attached to the slanted edge of the LOE, in accordance with the present invention
- Fig. 8 is a diagram illustrating steps (a) to (c) of a method for fabricating an LOE having a slanted edge, according to the present invention
- Fig. 1 illustrates a sectional view of a prior art substrate 20 and associated components (hereinafter also “an LOE"), utilizable in the present invention.
- An optical means e.g., a reflecting surface 16 is illuminated by a collimated display light waves 18, emanating from a light source (not shown).
- the reflecting surface 16 reflects incident light waves from the source, such that the light waves are trapped inside a planar substrate 20 of the LOE, by total internal reflection. After several reflections off the major lower and upper surfaces 26, 28 of the substrate 20, the trapped light waves reach an array of selective reflecting surfaces 22, which couple the light out of the substrate into an eye 24, having a pupil 25, of a viewer.
- the input surface of the LOE will be regarded as the surface through which the input light waves enter the LOE and the output surface of the LOE will be regarded as the surface through which the trapped light waves exit the LOE.
- both the input and the output surfaces are on the lower surface 26.
- Other configurations, however, are envisioned in which the input and the image light waves could be located on opposite sides of the substrate 20, or when the light waves are coupled into the LOE through a slanted edge of the substrate.
- the light waves are trapped inside the substrate by total internal reflections from the two major surfaces 26 and 28 of the substrate 20.
- the parallelism between the major surfaces 26 and 28 will be to a high degree.
- the light waves which are trapped inside the LOE are coupled out into the eyes of the viewer by an array of partially reflecting surfaces 22.
- the parallelism of these surfaces should also be as high as possible.
- the fabrication process of the LOE will be as simple and straightforward as possible.
- FIG. 2 A possible method to fabricate an LOE is illustrated in Fig. 2.
- (a) A plurality of transparent flat plates 102 coated with required partially reflecting coatings 103 and a non-coated flat plate 104, are optically attached together so as to create a stacked form 106, see step (b).
- a segment 108, step (c), is then sliced off the stacked form by cutting, grinding and polishing, to create the desired LOE 110 (d).
- Several LOE elements 112 and 114 can be sliced off from the stacked form, as shown in (e). The number of the LOE elements that can be sliced off the stack can be maximized by a proper staggering of the plates in the stack.
- FIGs. 3A to 3C Another method to increase the number of the final elements is illustrated in Figs. 3A to 3C.
- a top view of the sliced LOE 108 is shown in Fig. 3(a).
- the slice is then cut along the lines 120 and 122 to create three similar sub-segments Fig. 3(b).
- These sliced segments are then processed by cutting, grinding and polishing, to create three similar LOEs 126 Fig. 3(c).
- FIGs. 4(a) to 4(e) An alternative method to produce the LOE is illustrated in Figs. 4(a) to 4(e). Instead of coating the selected partially reflecting coatings on the surfaces of the blank plates 132 the reflecting surfaces are prepared on an array of thin plates 134.
- the reflecting mechanism here can be an anisotropic polarizing-sensitive reflection such as from wire-grid array, or DBEF films.
- Fig. 4(a) shows the blank plates 132 and the plates 134 with the reflecting surfaces alternately optically attached together so as to create a stacked form 136 see Fig. 4(b).
- a segment 138 Fig. 4(c) is then sliced off the stacked form by cutting, is finished by grinding and polishing, to create the desired LOE 140, as shown in Fig. 4(d).
- Several elements 142 and 144 illustrated in Fig. 4(e) can be sliced off from this stacked form.
- Fig. 5 illustrates a method, applicable to each of the fabrication methods described with reference to Figs. 2 and 4(a) to 4(e) in which a blank plate 146 Fig. 5(a) is optically attached to one of the major surfaces of the substrate 110, so as to form an LOE 150 Fig. 5(b) with the appropriate active apertures for all of the reflecting surfaces.
- the LOE 110 will have a wedge structure, namely, surfaces 151 and 152 are not parallel. In such a case it is strictly required that the two external major surfaces 154 and 155, of the final LOE 150, will be parallel to each other.
- the light waves are coupled into the LOE through the major surface 26.
- the light waves-transmitting substrate 20 has two major parallel surfaces and edges, wherein at least one edge 160 is oriented at an oblique angle with respect to the major surfaces.
- a collimating module (not shown), can be optically attached to the LOE.
- FIG. 7 A method for solving this problem is illustrated in Fig. 7.
- An intermediate prism 164 is inserted between the collimating module (not shown) and the slanted edge 160 of the substrate, wherein one of its surfaces 166 is located next to the said slanted edge 160.
- the refractive index of the intermediate prism should be similar to that of the LOE. Nevertheless, there are cases wherein a different refractive index may be chosen for the prism, for compensating for chromatic aberrations in the system.
- the incoming collimated light waves are coupled directly from the air, or alternatively, the collimating module (not shown) can be attached to the intermediate prism 164.
- the refractive index of the collimating module is substantially different than that of the LOE, and accordingly is different than that of the prism. Therefore, In order to minimize the chromatic aberrations, the input surface 168 of the prism 164 should be oriented substantially normal to the central wave 162 (Fig. 6).
- FIG. 8 A method for fabricating the required LOE with the slanted edge is illustrated in Fig. 8.
- one of the side edges of the un-slanted LOE 110 which was fabricated according to the procedures described with references to Figs. 2 and 4 (a), is cut to create the required slanted edge 160 (b), the new surface is then processed by grinding and polishing to achieved the required optical quality.
- the final LOE 174 assumes the shape illustrated in Fig. 8(c).
- the apparent method to achieve the optical attachment between the various optical elements in Figs. 2, 4(a)-4(e), 5(a) and (b) and 7 is by applying an optical adhesive between the plates.
- this method might suffer from some severe drawbacks.
- the parallelism between the partially reflecting surfaces 22 should be very high. This can be achieved by assuring that the parallelism between the external surfaces of the coated plates 102 (Fig. 2a) will have the same required degree of parallelism.
- the cement layer between the attached plates might have some degree of wedge that will create a finite angle between two adjacent coated surfaces.
- the refractive index of the adhesive, located between the cemented plates should be with very close proximity to that of the plates, in order to avoid undesired reflections. Since the variation of the refractive index of existing optical adhesive is very limited, especially for relatively high indices, the number of optical glass materials that can be utilized for fabricating LOEs is very limited as well.
- Anodic bonding is a method of hermetically and permanently joining glass to glass without the use of adhesives.
- the intermedia layer is applied on the glass substrate by sputtering or E-beam evaporation.
- the glass plates are pressed together and heated to a temperature (typically in the range 300-500 degrees centigrade depending on the glass type) at which the alkali-metal ions in the glass become mobile.
- the components are brought into contact and a high voltage applied across them.
- the reflectance properties of the partially reflecting surfaces will not be damaged during the anodic bonding procedure. This can be done, for example, by a proper design of the external layer of the thin film coating to ensure that after the Anodic bonding process, which might change the final thickness of this layer, the reflectance properties of the coating will be as required.
- the proposed attaching process allows the chemical strengthening of the outside surfaces of the LOE and hence enabling scratch resistance and hardness of the element (like in gorilla glass).
- Chemically strengthened glass is a type of glass that has increased strength as a result of a post-production chemical process. When broken, it still shatters in long pointed splinters similar to float glass. For this reason, it is not considered a safety glass and must be laminated if a safety glass is required.
- chemically strengthened glass is typically six to eight times the strength of float glass.
- the glass is chemically strengthened by a surface finishing process. Glass is submersed in a bath containing a potassium salt (typically potassium nitrate) at 300°C.
- a potassium salt typically potassium nitrate
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Optical Elements Other Than Lenses (AREA)
- Mounting And Adjusting Of Optical Elements (AREA)
- Optical Couplings Of Light Guides (AREA)
- Optical Integrated Circuits (AREA)
Abstract
Description
Claims
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR112017013678A BR112017013678A2 (en) | 2014-12-25 | 2015-12-23 | method for manufacturing an optical device |
SG11201705066QA SG11201705066QA (en) | 2014-12-25 | 2015-12-23 | Method for fabricating a substrate-guided optical device |
CN201580070550.3A CN107111135B (en) | 2014-12-25 | 2015-12-23 | Method for manufacturing substrate guided optical device |
JP2017534291A JP6637049B2 (en) | 2014-12-25 | 2015-12-23 | Method of making substrate transmission type optical device |
US15/538,307 US20170363799A1 (en) | 2014-12-25 | 2015-12-23 | Method for fabricating a substrate-guided optical device |
CA2972204A CA2972204C (en) | 2014-12-25 | 2015-12-23 | Method for fabricating a substrate-guided optical device |
EP15831163.9A EP3237961B1 (en) | 2014-12-25 | 2015-12-23 | Method for fabricating a substrate-guided optical device |
RU2017122202A RU2687984C2 (en) | 2014-12-25 | 2015-12-23 | Method of making an optical device with a light-guiding substrate |
KR1020177019464A KR20170099942A (en) | 2014-12-25 | 2015-12-23 | Method for fabricating substrate-guided optical device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IL236491 | 2014-12-25 | ||
IL236491A IL236491B (en) | 2014-12-25 | 2014-12-25 | A method for fabricating substrate-guided optical device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016103263A1 true WO2016103263A1 (en) | 2016-06-30 |
Family
ID=54347972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IL2015/051247 WO2016103263A1 (en) | 2014-12-25 | 2015-12-23 | Method for fabricating a substrate-guided optical device |
Country Status (11)
Country | Link |
---|---|
US (1) | US20170363799A1 (en) |
EP (1) | EP3237961B1 (en) |
JP (1) | JP6637049B2 (en) |
KR (1) | KR20170099942A (en) |
CN (2) | CN107111135B (en) |
BR (1) | BR112017013678A2 (en) |
CA (1) | CA2972204C (en) |
IL (1) | IL236491B (en) |
RU (1) | RU2687984C2 (en) |
SG (1) | SG11201705066QA (en) |
WO (1) | WO2016103263A1 (en) |
Cited By (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10089516B2 (en) | 2013-07-31 | 2018-10-02 | Digilens, Inc. | Method and apparatus for contact image sensing |
CN108693596A (en) * | 2017-04-06 | 2018-10-23 | 鲁姆斯有限公司 | Guide-lighting optical element and its manufacturing method |
US10145533B2 (en) | 2005-11-11 | 2018-12-04 | Digilens, Inc. | Compact holographic illumination device |
US10156681B2 (en) | 2015-02-12 | 2018-12-18 | Digilens Inc. | Waveguide grating device |
US10185154B2 (en) | 2011-04-07 | 2019-01-22 | Digilens, Inc. | Laser despeckler based on angular diversity |
US10209517B2 (en) | 2013-05-20 | 2019-02-19 | Digilens, Inc. | Holographic waveguide eye tracker |
US10216061B2 (en) | 2012-01-06 | 2019-02-26 | Digilens, Inc. | Contact image sensor using switchable bragg gratings |
US10234696B2 (en) | 2007-07-26 | 2019-03-19 | Digilens, Inc. | Optical apparatus for recording a holographic device and method of recording |
US10241330B2 (en) | 2014-09-19 | 2019-03-26 | Digilens, Inc. | Method and apparatus for generating input images for holographic waveguide displays |
US10330777B2 (en) | 2015-01-20 | 2019-06-25 | Digilens Inc. | Holographic waveguide lidar |
US10359736B2 (en) | 2014-08-08 | 2019-07-23 | Digilens Inc. | Method for holographic mastering and replication |
US10423222B2 (en) | 2014-09-26 | 2019-09-24 | Digilens Inc. | Holographic waveguide optical tracker |
US10437051B2 (en) | 2012-05-11 | 2019-10-08 | Digilens Inc. | Apparatus for eye tracking |
US10437064B2 (en) | 2015-01-12 | 2019-10-08 | Digilens Inc. | Environmentally isolated waveguide display |
US10459145B2 (en) | 2015-03-16 | 2019-10-29 | Digilens Inc. | Waveguide device incorporating a light pipe |
US10545346B2 (en) | 2017-01-05 | 2020-01-28 | Digilens Inc. | Wearable heads up displays |
US10591756B2 (en) | 2015-03-31 | 2020-03-17 | Digilens Inc. | Method and apparatus for contact image sensing |
US10642058B2 (en) | 2011-08-24 | 2020-05-05 | Digilens Inc. | Wearable data display |
US10670876B2 (en) | 2011-08-24 | 2020-06-02 | Digilens Inc. | Waveguide laser illuminator incorporating a despeckler |
US10678053B2 (en) | 2009-04-27 | 2020-06-09 | Digilens Inc. | Diffractive projection apparatus |
US10690916B2 (en) | 2015-10-05 | 2020-06-23 | Digilens Inc. | Apparatus for providing waveguide displays with two-dimensional pupil expansion |
US10690851B2 (en) | 2018-03-16 | 2020-06-23 | Digilens Inc. | Holographic waveguides incorporating birefringence control and methods for their fabrication |
US10732569B2 (en) | 2018-01-08 | 2020-08-04 | Digilens Inc. | Systems and methods for high-throughput recording of holographic gratings in waveguide cells |
US10859768B2 (en) | 2016-03-24 | 2020-12-08 | Digilens Inc. | Method and apparatus for providing a polarization selective holographic waveguide device |
US10890707B2 (en) | 2016-04-11 | 2021-01-12 | Digilens Inc. | Holographic waveguide apparatus for structured light projection |
US10914950B2 (en) | 2018-01-08 | 2021-02-09 | Digilens Inc. | Waveguide architectures and related methods of manufacturing |
US10942430B2 (en) | 2017-10-16 | 2021-03-09 | Digilens Inc. | Systems and methods for multiplying the image resolution of a pixelated display |
US10983340B2 (en) | 2016-02-04 | 2021-04-20 | Digilens Inc. | Holographic waveguide optical tracker |
WO2021240515A1 (en) * | 2020-05-24 | 2021-12-02 | Lumus Ltd. | Method of fabrication of compound light-guide optical elements |
JP2022020626A (en) * | 2017-03-22 | 2022-02-01 | ルムス エルティーディー. | Overlapping facets |
US11307432B2 (en) | 2014-08-08 | 2022-04-19 | Digilens Inc. | Waveguide laser illuminator incorporating a Despeckler |
US11378732B2 (en) | 2019-03-12 | 2022-07-05 | DigLens Inc. | Holographic waveguide backlight and related methods of manufacturing |
US11402801B2 (en) | 2018-07-25 | 2022-08-02 | Digilens Inc. | Systems and methods for fabricating a multilayer optical structure |
US11442222B2 (en) | 2019-08-29 | 2022-09-13 | Digilens Inc. | Evacuated gratings and methods of manufacturing |
US11448937B2 (en) | 2012-11-16 | 2022-09-20 | Digilens Inc. | Transparent waveguide display for tiling a display having plural optical powers using overlapping and offset FOV tiles |
US11460621B2 (en) | 2012-04-25 | 2022-10-04 | Rockwell Collins, Inc. | Holographic wide angle display |
US11480788B2 (en) | 2015-01-12 | 2022-10-25 | Digilens Inc. | Light field displays incorporating holographic waveguides |
US11513350B2 (en) | 2016-12-02 | 2022-11-29 | Digilens Inc. | Waveguide device with uniform output illumination |
US11543594B2 (en) | 2019-02-15 | 2023-01-03 | Digilens Inc. | Methods and apparatuses for providing a holographic waveguide display using integrated gratings |
US11681143B2 (en) | 2019-07-29 | 2023-06-20 | Digilens Inc. | Methods and apparatus for multiplying the image resolution and field-of-view of a pixelated display |
US11726332B2 (en) | 2009-04-27 | 2023-08-15 | Digilens Inc. | Diffractive projection apparatus |
US11747568B2 (en) | 2019-06-07 | 2023-09-05 | Digilens Inc. | Waveguides incorporating transmissive and reflective gratings and related methods of manufacturing |
US12078800B2 (en) | 2021-09-21 | 2024-09-03 | Envisics Ltd | Pupil expander integrity |
US12092914B2 (en) | 2018-01-08 | 2024-09-17 | Digilens Inc. | Systems and methods for manufacturing waveguide cells |
US12140764B2 (en) | 2023-06-02 | 2024-11-12 | Digilens Inc. | Wide angle waveguide display |
Families Citing this family (60)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL166799A (en) | 2005-02-10 | 2014-09-30 | Lumus Ltd | Substrate-guided optical device utilizing beam splitters |
US10073264B2 (en) | 2007-08-03 | 2018-09-11 | Lumus Ltd. | Substrate-guide optical device |
US10048499B2 (en) | 2005-11-08 | 2018-08-14 | Lumus Ltd. | Polarizing optical system |
IL232197B (en) | 2014-04-23 | 2018-04-30 | Lumus Ltd | Compact head-mounted display system |
IL235642B (en) | 2014-11-11 | 2021-08-31 | Lumus Ltd | Compact head-mounted display system protected by a hyperfine structure |
IL237337B (en) | 2015-02-19 | 2020-03-31 | Amitai Yaakov | Compact head-mounted display system having uniform image |
BR112018006747A2 (en) | 2016-10-09 | 2018-10-16 | Lumus Ltd. | aperture multiplier using a rectangular waveguide |
WO2018087756A1 (en) | 2016-11-08 | 2018-05-17 | Lumus Ltd | Light-guide device with optical cutoff edge and corresponding production methods |
WO2018138714A1 (en) | 2017-01-28 | 2018-08-02 | Lumus Ltd. | Augmented reality imaging system |
EP3397998A4 (en) | 2017-02-22 | 2019-04-17 | Lumus Ltd. | Light guide optical assembly |
JP6885184B2 (en) * | 2017-04-25 | 2021-06-09 | 日亜化学工業株式会社 | Laser device |
CN110869839B (en) | 2017-07-19 | 2022-07-08 | 鲁姆斯有限公司 | Liquid crystal on silicon illuminator with light guide optical element |
JP7303557B2 (en) | 2017-09-29 | 2023-07-05 | ルムス エルティーディー. | augmented reality display |
KR102695589B1 (en) | 2017-10-22 | 2024-08-14 | 루머스 리미티드 | Head-mounted augmented reality device using an optical bench |
KR102570722B1 (en) | 2017-11-21 | 2023-08-24 | 루머스 리미티드 | Optical Aperture Expansion Array for Near Eye Displays |
CN111417883B (en) | 2017-12-03 | 2022-06-17 | 鲁姆斯有限公司 | Optical equipment alignment method |
CA3068659A1 (en) | 2018-01-02 | 2019-07-11 | Lumus Ltd. | Augmented reality displays with active alignment and corresponding methods |
US10551544B2 (en) | 2018-01-21 | 2020-02-04 | Lumus Ltd. | Light-guide optical element with multiple-axis internal aperture expansion |
US11221294B2 (en) | 2018-04-08 | 2022-01-11 | Lumus Ltd. | Optical sample characterization |
CN112219149A (en) * | 2018-05-14 | 2021-01-12 | 深圳市美誉镜界光电科技有限公司 | Substrate guided wave optical waveguide structure, AR equipment optical imaging system and AR equipment |
EP4339656A3 (en) | 2018-05-14 | 2024-06-05 | Lumus Ltd. | Projector configuration with subdivided optical aperture for near-eye displays, and corresponding optical systems |
KR20210010537A (en) | 2018-05-17 | 2021-01-27 | 루머스 리미티드 | Near-eye display with overlapping projector assembly |
IL259518B2 (en) | 2018-05-22 | 2023-04-01 | Lumus Ltd | Optical system and method for improvement of light field uniformity |
BR112020023513A2 (en) | 2018-05-23 | 2021-02-09 | Lumus Ltd. | optical system |
TWI819008B (en) | 2018-06-21 | 2023-10-21 | 以色列商魯姆斯有限公司 | Measurement technique for refractive index inhomogeneity between plates of a lightguide optical element (loe) |
US11415812B2 (en) | 2018-06-26 | 2022-08-16 | Lumus Ltd. | Compact collimating optical device and system |
WO2020016772A1 (en) | 2018-07-16 | 2020-01-23 | Lumus Ltd. | Light-guide optical element employing polarized internal reflectors |
TW202419907A (en) | 2018-08-26 | 2024-05-16 | 以色列商魯姆斯有限公司 | Near-eye displays |
TWI837175B (en) * | 2018-09-09 | 2024-04-01 | 以色列商魯姆斯有限公司 | Optical systems including light-guide optical elements with two-dimensional expansion |
JP7097066B2 (en) * | 2018-09-27 | 2022-07-07 | ブルーオプテック株式会社 | Optical device, wearable image display device |
TW202026685A (en) | 2018-11-08 | 2020-07-16 | 以色列商魯姆斯有限公司 | Light-guide display with reflector |
JP7402543B2 (en) | 2018-11-08 | 2023-12-21 | ルーマス リミテッド | Optical devices and systems with dichroic beam splitters and color combiners |
TWM598414U (en) | 2018-11-11 | 2020-07-11 | 以色列商魯姆斯有限公司 | Near eye display with intermediate window |
WO2020148665A1 (en) * | 2019-01-15 | 2020-07-23 | Lumus Ltd. | Method of fabricating a symmetric light guide optical element |
EP4220276A3 (en) | 2019-01-24 | 2023-08-09 | Lumus Ltd. | Optical systems including loe with three stage expansion |
CN113474715A (en) | 2019-02-28 | 2021-10-01 | 鲁姆斯有限公司 | Compact collimated image projector |
TWI800657B (en) | 2019-03-12 | 2023-05-01 | 以色列商魯姆斯有限公司 | Image projector |
EP3722265B1 (en) * | 2019-04-11 | 2023-07-19 | Saint-Gobain Glass France | Method for assessing the sensitivity of a glass panel to forming quench marks |
CN113661359A (en) * | 2019-04-15 | 2021-11-16 | 鲁姆斯有限公司 | Method for manufacturing light guide optical element |
US12117614B2 (en) | 2019-05-06 | 2024-10-15 | Lumus Ltd. | Transparent lightguide for viewing a scene and a near-eye display |
CA3137994A1 (en) | 2019-06-27 | 2020-12-30 | Lumus Ltd | Apparatus and methods for eye tracking based on eye imaging via a light-guide optical element |
KR102719374B1 (en) | 2019-07-04 | 2024-10-17 | 루머스 리미티드 | Image waveguide using symmetrical beam multiplication |
WO2021009766A1 (en) * | 2019-07-18 | 2021-01-21 | Lumus Ltd. | Encapsulated light-guide optical element |
AU2020349136A1 (en) * | 2019-09-16 | 2022-04-07 | Lumus Ltd. | Image display system with beam multiplication |
WO2021105982A1 (en) | 2019-11-25 | 2021-06-03 | Lumus Ltd. | Method of polishing a surface of a waveguide |
IL270991B (en) | 2019-11-27 | 2020-07-30 | Lumus Ltd | Lightguide optical element for polarization scrambling |
AU2020395978A1 (en) | 2019-12-05 | 2022-06-16 | Lumus Ltd. | Light-guide optical element employing complementary coated partial reflectors, and light-guide optical element having reduced light scattering |
CA3155597C (en) | 2019-12-08 | 2023-02-14 | Lumus Ltd. | Optical systems with compact image projector |
CN114787687B (en) | 2019-12-25 | 2024-07-30 | 鲁姆斯有限公司 | Systems and methods for eye tracking based on redirecting light from an eye using an optical arrangement associated with a light guide optical element |
IL294794A (en) * | 2020-02-02 | 2022-09-01 | Lumus Ltd | Method for producing light-guide optical elements |
TW202138873A (en) * | 2020-03-13 | 2021-10-16 | 日商三菱化學股份有限公司 | Light-guiding plate and AR display |
IL277285A (en) * | 2020-09-10 | 2022-04-01 | Oorym Optics Ltd | Method for producing substrate-guided elements for compact head-mounted display system |
DE202021104723U1 (en) | 2020-09-11 | 2021-10-18 | Lumus Ltd. | Image projector coupled to an optical light guide element |
IL302581B2 (en) | 2020-11-18 | 2024-06-01 | Lumus Ltd | Optical-based validation of orientations of internal facets |
KR20230148324A (en) | 2021-03-01 | 2023-10-24 | 루머스 리미티드 | Optical system with compact coupling from projector to waveguide |
KR102676604B1 (en) | 2021-07-04 | 2024-06-18 | 루머스 리미티드 | Display with stacked light guiding elements providing different parts of the field of view |
IL309531B2 (en) | 2021-07-26 | 2024-09-01 | Lumus Ltd | Optical-based validation of parallelism between internal facets |
US12055385B1 (en) | 2021-07-26 | 2024-08-06 | Lumus Ltd. | Methods and systems for validating parallelism between internal facets |
KR20240046489A (en) | 2021-08-23 | 2024-04-09 | 루머스 리미티드 | Method for manufacturing composite light guiding optical elements with embedded coupling-in reflector |
CN117075252B (en) * | 2023-10-12 | 2024-01-12 | 北京极溯光学科技有限公司 | Geometric optical waveguide and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6322256B1 (en) * | 1998-11-24 | 2001-11-27 | Nippon Electric Glass Co., Ltd. | Optical fiber holding capillary tube |
WO2006013565A1 (en) * | 2004-08-05 | 2006-02-09 | Lumus Ltd. | Optical device for light coupling |
WO2006085309A1 (en) * | 2005-02-10 | 2006-08-17 | Lumus Ltd. | Substrate-guided optical device utilizing thin transparent layer |
WO2007054928A1 (en) * | 2005-11-08 | 2007-05-18 | Lumus Ltd. | Polarizing optical system |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3013470B2 (en) * | 1991-02-20 | 2000-02-28 | ソニー株式会社 | Image display device |
JP2777041B2 (en) * | 1993-02-12 | 1998-07-16 | 京セラ株式会社 | Watch cover glass |
US20050174641A1 (en) * | 2002-11-26 | 2005-08-11 | Jds Uniphase Corporation | Polarization conversion light integrator |
IL166799A (en) * | 2005-02-10 | 2014-09-30 | Lumus Ltd | Substrate-guided optical device utilizing beam splitters |
US8358400B2 (en) * | 2007-04-16 | 2013-01-22 | North Carolina State University | Methods of fabricating liquid crystal polarization gratings on substrates and related devices |
JP2010060770A (en) * | 2008-09-03 | 2010-03-18 | Epson Toyocom Corp | Optical article and method for manufacturing optical article |
JP2010170606A (en) * | 2009-01-21 | 2010-08-05 | Fujinon Corp | Method of manufacturing prism assembly |
JP2011199672A (en) * | 2010-03-19 | 2011-10-06 | Seiko Instruments Inc | Glass substrate bonding method, glass assembly, package manufacturing method, package, piezoelectric vibrator, oscillator, electronic device, and radio-controlled timepiece |
JP5646981B2 (en) * | 2010-12-21 | 2014-12-24 | 新光電気工業株式会社 | Antireflection glass with frame and manufacturing method thereof |
JP6119091B2 (en) * | 2011-09-30 | 2017-04-26 | セイコーエプソン株式会社 | Virtual image display device |
-
2014
- 2014-12-25 IL IL236491A patent/IL236491B/en active IP Right Grant
-
2015
- 2015-12-23 US US15/538,307 patent/US20170363799A1/en not_active Abandoned
- 2015-12-23 CN CN201580070550.3A patent/CN107111135B/en active Active
- 2015-12-23 CN CN202010075287.XA patent/CN111175879A/en active Pending
- 2015-12-23 CA CA2972204A patent/CA2972204C/en active Active
- 2015-12-23 EP EP15831163.9A patent/EP3237961B1/en active Active
- 2015-12-23 WO PCT/IL2015/051247 patent/WO2016103263A1/en active Application Filing
- 2015-12-23 SG SG11201705066QA patent/SG11201705066QA/en unknown
- 2015-12-23 KR KR1020177019464A patent/KR20170099942A/en not_active Application Discontinuation
- 2015-12-23 BR BR112017013678A patent/BR112017013678A2/en active Search and Examination
- 2015-12-23 RU RU2017122202A patent/RU2687984C2/en active
- 2015-12-23 JP JP2017534291A patent/JP6637049B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6322256B1 (en) * | 1998-11-24 | 2001-11-27 | Nippon Electric Glass Co., Ltd. | Optical fiber holding capillary tube |
WO2006013565A1 (en) * | 2004-08-05 | 2006-02-09 | Lumus Ltd. | Optical device for light coupling |
WO2006085309A1 (en) * | 2005-02-10 | 2006-08-17 | Lumus Ltd. | Substrate-guided optical device utilizing thin transparent layer |
WO2007054928A1 (en) * | 2005-11-08 | 2007-05-18 | Lumus Ltd. | Polarizing optical system |
Non-Patent Citations (1)
Title |
---|
DA-YONG QIAO ET AL: "A continuous-membrane micro deformable mirror based on anodic bonding of SOI to glass wafer", MICROSYSTEM TECHNOLOGIES ; MICRO AND NANOSYSTEMS INFORMATION STORAGE AND PROCESSING SYSTEMS, SPRINGER, BERLIN, DE, vol. 16, no. 10, 20 May 2010 (2010-05-20), pages 1765 - 1769, XP019851629, ISSN: 1432-1858 * |
Cited By (79)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10145533B2 (en) | 2005-11-11 | 2018-12-04 | Digilens, Inc. | Compact holographic illumination device |
US10725312B2 (en) | 2007-07-26 | 2020-07-28 | Digilens Inc. | Laser illumination device |
US10234696B2 (en) | 2007-07-26 | 2019-03-19 | Digilens, Inc. | Optical apparatus for recording a holographic device and method of recording |
US11175512B2 (en) | 2009-04-27 | 2021-11-16 | Digilens Inc. | Diffractive projection apparatus |
US10678053B2 (en) | 2009-04-27 | 2020-06-09 | Digilens Inc. | Diffractive projection apparatus |
US11726332B2 (en) | 2009-04-27 | 2023-08-15 | Digilens Inc. | Diffractive projection apparatus |
US10185154B2 (en) | 2011-04-07 | 2019-01-22 | Digilens, Inc. | Laser despeckler based on angular diversity |
US11487131B2 (en) | 2011-04-07 | 2022-11-01 | Digilens Inc. | Laser despeckler based on angular diversity |
US11287666B2 (en) | 2011-08-24 | 2022-03-29 | Digilens, Inc. | Wearable data display |
US10670876B2 (en) | 2011-08-24 | 2020-06-02 | Digilens Inc. | Waveguide laser illuminator incorporating a despeckler |
US10642058B2 (en) | 2011-08-24 | 2020-05-05 | Digilens Inc. | Wearable data display |
US10216061B2 (en) | 2012-01-06 | 2019-02-26 | Digilens, Inc. | Contact image sensor using switchable bragg gratings |
US10459311B2 (en) | 2012-01-06 | 2019-10-29 | Digilens Inc. | Contact image sensor using switchable Bragg gratings |
US11460621B2 (en) | 2012-04-25 | 2022-10-04 | Rockwell Collins, Inc. | Holographic wide angle display |
US10437051B2 (en) | 2012-05-11 | 2019-10-08 | Digilens Inc. | Apparatus for eye tracking |
US11994674B2 (en) | 2012-05-11 | 2024-05-28 | Digilens Inc. | Apparatus for eye tracking |
US11448937B2 (en) | 2012-11-16 | 2022-09-20 | Digilens Inc. | Transparent waveguide display for tiling a display having plural optical powers using overlapping and offset FOV tiles |
US11662590B2 (en) | 2013-05-20 | 2023-05-30 | Digilens Inc. | Holographic waveguide eye tracker |
US10209517B2 (en) | 2013-05-20 | 2019-02-19 | Digilens, Inc. | Holographic waveguide eye tracker |
US10423813B2 (en) | 2013-07-31 | 2019-09-24 | Digilens Inc. | Method and apparatus for contact image sensing |
US10089516B2 (en) | 2013-07-31 | 2018-10-02 | Digilens, Inc. | Method and apparatus for contact image sensing |
US11709373B2 (en) | 2014-08-08 | 2023-07-25 | Digilens Inc. | Waveguide laser illuminator incorporating a despeckler |
US10359736B2 (en) | 2014-08-08 | 2019-07-23 | Digilens Inc. | Method for holographic mastering and replication |
US11307432B2 (en) | 2014-08-08 | 2022-04-19 | Digilens Inc. | Waveguide laser illuminator incorporating a Despeckler |
US11726323B2 (en) | 2014-09-19 | 2023-08-15 | Digilens Inc. | Method and apparatus for generating input images for holographic waveguide displays |
US10241330B2 (en) | 2014-09-19 | 2019-03-26 | Digilens, Inc. | Method and apparatus for generating input images for holographic waveguide displays |
US10423222B2 (en) | 2014-09-26 | 2019-09-24 | Digilens Inc. | Holographic waveguide optical tracker |
US10437064B2 (en) | 2015-01-12 | 2019-10-08 | Digilens Inc. | Environmentally isolated waveguide display |
US11726329B2 (en) | 2015-01-12 | 2023-08-15 | Digilens Inc. | Environmentally isolated waveguide display |
US11740472B2 (en) | 2015-01-12 | 2023-08-29 | Digilens Inc. | Environmentally isolated waveguide display |
US11480788B2 (en) | 2015-01-12 | 2022-10-25 | Digilens Inc. | Light field displays incorporating holographic waveguides |
US10330777B2 (en) | 2015-01-20 | 2019-06-25 | Digilens Inc. | Holographic waveguide lidar |
US11703645B2 (en) | 2015-02-12 | 2023-07-18 | Digilens Inc. | Waveguide grating device |
US10527797B2 (en) | 2015-02-12 | 2020-01-07 | Digilens Inc. | Waveguide grating device |
US10156681B2 (en) | 2015-02-12 | 2018-12-18 | Digilens Inc. | Waveguide grating device |
US10459145B2 (en) | 2015-03-16 | 2019-10-29 | Digilens Inc. | Waveguide device incorporating a light pipe |
US12013561B2 (en) | 2015-03-16 | 2024-06-18 | Digilens Inc. | Waveguide device incorporating a light pipe |
US10591756B2 (en) | 2015-03-31 | 2020-03-17 | Digilens Inc. | Method and apparatus for contact image sensing |
US11281013B2 (en) | 2015-10-05 | 2022-03-22 | Digilens Inc. | Apparatus for providing waveguide displays with two-dimensional pupil expansion |
US11754842B2 (en) | 2015-10-05 | 2023-09-12 | Digilens Inc. | Apparatus for providing waveguide displays with two-dimensional pupil expansion |
US10690916B2 (en) | 2015-10-05 | 2020-06-23 | Digilens Inc. | Apparatus for providing waveguide displays with two-dimensional pupil expansion |
US10983340B2 (en) | 2016-02-04 | 2021-04-20 | Digilens Inc. | Holographic waveguide optical tracker |
US10859768B2 (en) | 2016-03-24 | 2020-12-08 | Digilens Inc. | Method and apparatus for providing a polarization selective holographic waveguide device |
US11604314B2 (en) | 2016-03-24 | 2023-03-14 | Digilens Inc. | Method and apparatus for providing a polarization selective holographic waveguide device |
US10890707B2 (en) | 2016-04-11 | 2021-01-12 | Digilens Inc. | Holographic waveguide apparatus for structured light projection |
US11513350B2 (en) | 2016-12-02 | 2022-11-29 | Digilens Inc. | Waveguide device with uniform output illumination |
US11586046B2 (en) | 2017-01-05 | 2023-02-21 | Digilens Inc. | Wearable heads up displays |
US11194162B2 (en) | 2017-01-05 | 2021-12-07 | Digilens Inc. | Wearable heads up displays |
US10545346B2 (en) | 2017-01-05 | 2020-01-28 | Digilens Inc. | Wearable heads up displays |
JP7289462B2 (en) | 2017-03-22 | 2023-06-12 | ルムス エルティーディー. | Duplicate facet |
JP2022020626A (en) * | 2017-03-22 | 2022-02-01 | ルムス エルティーディー. | Overlapping facets |
TWI800974B (en) * | 2017-03-22 | 2023-05-01 | 以色列商魯姆斯有限公司 | A method for producing a light-guide optical element |
CN108693596B (en) * | 2017-04-06 | 2021-10-19 | 鲁姆斯有限公司 | Light guide optical element and method for manufacturing same |
CN108693596A (en) * | 2017-04-06 | 2018-10-23 | 鲁姆斯有限公司 | Guide-lighting optical element and its manufacturing method |
US10942430B2 (en) | 2017-10-16 | 2021-03-09 | Digilens Inc. | Systems and methods for multiplying the image resolution of a pixelated display |
US10732569B2 (en) | 2018-01-08 | 2020-08-04 | Digilens Inc. | Systems and methods for high-throughput recording of holographic gratings in waveguide cells |
US12092914B2 (en) | 2018-01-08 | 2024-09-17 | Digilens Inc. | Systems and methods for manufacturing waveguide cells |
US10914950B2 (en) | 2018-01-08 | 2021-02-09 | Digilens Inc. | Waveguide architectures and related methods of manufacturing |
US11150408B2 (en) | 2018-03-16 | 2021-10-19 | Digilens Inc. | Holographic waveguides incorporating birefringence control and methods for their fabrication |
US10690851B2 (en) | 2018-03-16 | 2020-06-23 | Digilens Inc. | Holographic waveguides incorporating birefringence control and methods for their fabrication |
US11726261B2 (en) | 2018-03-16 | 2023-08-15 | Digilens Inc. | Holographic waveguides incorporating birefringence control and methods for their fabrication |
US11402801B2 (en) | 2018-07-25 | 2022-08-02 | Digilens Inc. | Systems and methods for fabricating a multilayer optical structure |
US11543594B2 (en) | 2019-02-15 | 2023-01-03 | Digilens Inc. | Methods and apparatuses for providing a holographic waveguide display using integrated gratings |
US11378732B2 (en) | 2019-03-12 | 2022-07-05 | DigLens Inc. | Holographic waveguide backlight and related methods of manufacturing |
US11747568B2 (en) | 2019-06-07 | 2023-09-05 | Digilens Inc. | Waveguides incorporating transmissive and reflective gratings and related methods of manufacturing |
US11681143B2 (en) | 2019-07-29 | 2023-06-20 | Digilens Inc. | Methods and apparatus for multiplying the image resolution and field-of-view of a pixelated display |
US11899238B2 (en) | 2019-08-29 | 2024-02-13 | Digilens Inc. | Evacuated gratings and methods of manufacturing |
US11442222B2 (en) | 2019-08-29 | 2022-09-13 | Digilens Inc. | Evacuated gratings and methods of manufacturing |
US11592614B2 (en) | 2019-08-29 | 2023-02-28 | Digilens Inc. | Evacuated gratings and methods of manufacturing |
WO2021240515A1 (en) * | 2020-05-24 | 2021-12-02 | Lumus Ltd. | Method of fabrication of compound light-guide optical elements |
AU2021279462B2 (en) * | 2020-05-24 | 2023-06-08 | Lumus Ltd. | Method of fabrication of compound light-guide optical elements |
KR102623956B1 (en) | 2020-05-24 | 2024-01-10 | 루머스 리미티드 | Method for manufacturing composite light guiding optical elements |
KR20230015877A (en) * | 2020-05-24 | 2023-01-31 | 루머스 리미티드 | Manufacturing method of composite light guiding optical element |
EP4325277A2 (en) | 2020-05-24 | 2024-02-21 | Lumus Ltd. | Method of fabrication of compound light-guide optical elements |
EP4062101A4 (en) * | 2020-05-24 | 2023-06-07 | Lumus Ltd. | Method of fabrication of compound light-guide optical elements |
US11630260B2 (en) | 2020-05-24 | 2023-04-18 | Lumus Ltd. | Production method and corresponding structures of compound light-guide optical elements |
EP4325277A3 (en) * | 2020-05-24 | 2024-06-19 | Lumus Ltd. | Method of fabrication of compound light-guide optical elements |
US12078800B2 (en) | 2021-09-21 | 2024-09-03 | Envisics Ltd | Pupil expander integrity |
US12140764B2 (en) | 2023-06-02 | 2024-11-12 | Digilens Inc. | Wide angle waveguide display |
Also Published As
Publication number | Publication date |
---|---|
JP6637049B2 (en) | 2020-01-29 |
RU2687984C2 (en) | 2019-05-17 |
CN111175879A (en) | 2020-05-19 |
CA2972204C (en) | 2023-08-01 |
CA2972204A1 (en) | 2016-06-30 |
KR20170099942A (en) | 2017-09-01 |
IL236491A0 (en) | 2015-04-30 |
EP3237961A1 (en) | 2017-11-01 |
JP2018503121A (en) | 2018-02-01 |
SG11201705066QA (en) | 2017-07-28 |
CN107111135A (en) | 2017-08-29 |
IL236491B (en) | 2020-11-30 |
RU2017122202A (en) | 2018-12-25 |
BR112017013678A2 (en) | 2018-03-13 |
CN107111135B (en) | 2020-02-28 |
RU2017122202A3 (en) | 2019-03-26 |
EP3237961B1 (en) | 2021-08-25 |
US20170363799A1 (en) | 2017-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3237961B1 (en) | Method for fabricating a substrate-guided optical device | |
US20200183170A1 (en) | Substrate-guided optical device | |
US10126482B2 (en) | Lightguide device with outcoupling structures | |
US20200089001A1 (en) | Compact head-mounted display system protected by a hyperfine structure | |
US10739598B2 (en) | Head-mounted imaging device | |
CA2628871C (en) | Polarizing optical system | |
US20200041795A1 (en) | Virtual image display device and enlargement optical system | |
CN108732749A (en) | Display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15831163 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2015831163 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11201705066Q Country of ref document: SG |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15538307 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2017122202 Country of ref document: RU Kind code of ref document: A Ref document number: 2972204 Country of ref document: CA Ref document number: 2017534291 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112017013678 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 20177019464 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 112017013678 Country of ref document: BR Kind code of ref document: A2 Effective date: 20170623 |