WO2016102839A1 - Procédé de fabrication d'une préforme fibreuse chargée de particules céramiques réfractaires - Google Patents

Procédé de fabrication d'une préforme fibreuse chargée de particules céramiques réfractaires Download PDF

Info

Publication number
WO2016102839A1
WO2016102839A1 PCT/FR2015/053621 FR2015053621W WO2016102839A1 WO 2016102839 A1 WO2016102839 A1 WO 2016102839A1 FR 2015053621 W FR2015053621 W FR 2015053621W WO 2016102839 A1 WO2016102839 A1 WO 2016102839A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibrous texture
slip
mold
fibrous
refractory
Prior art date
Application number
PCT/FR2015/053621
Other languages
English (en)
Inventor
Catherine BILLOTTE CABRE
Nicolas DROZ
Ludovic LIAIS
Michael Podgorski
Edu RUIZ
Sylvain Turenne
Original Assignee
Snecma
Safran
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snecma, Safran filed Critical Snecma
Priority to CA2972170A priority Critical patent/CA2972170C/fr
Priority to US15/538,982 priority patent/US10239795B2/en
Priority to CN201580075954.1A priority patent/CN107206624A/zh
Priority to EP15823672.9A priority patent/EP3237660B1/fr
Publication of WO2016102839A1 publication Critical patent/WO2016102839A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/26Producing shaped prefabricated articles from the material by slip-casting, i.e. by casting a suspension or dispersion of the material in a liquid-absorbent or porous mould, the liquid being allowed to soak into or pass through the walls of the mould; Moulds therefor ; specially for manufacturing articles starting from a ceramic slip; Moulds therefor
    • B28B1/265Producing shaped prefabricated articles from the material by slip-casting, i.e. by casting a suspension or dispersion of the material in a liquid-absorbent or porous mould, the liquid being allowed to soak into or pass through the walls of the mould; Moulds therefor ; specially for manufacturing articles starting from a ceramic slip; Moulds therefor pressure being applied on the slip in the filled mould or on the moulded article in the mould, e.g. pneumatically, by compressing slip in a closed mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/52Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/243Setting, e.g. drying, dehydrating or firing ceramic articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B23/00Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
    • B28B23/02Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects wherein the elements are reinforcing members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/36Linings or coatings, e.g. removable, absorbent linings, permanent anti-stick coatings; Linings becoming a non-permanent layer of the moulded article
    • B28B7/368Absorbent linings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58071Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on titanium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62847Coating fibres with oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62886Coating the powders or the macroscopic reinforcing agents by wet chemical techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62892Coating the powders or the macroscopic reinforcing agents with a coating layer consisting of particles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/803
    • C04B35/806
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D25/00Woven fabrics not otherwise provided for
    • D03D25/005Three-dimensional woven fabrics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2309/00Use of inorganic materials not provided for in groups B29K2303/00 - B29K2307/00, as reinforcement
    • B29K2309/02Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2509/00Use of inorganic materials not provided for in groups B29K2503/00 - B29K2507/00, as filler
    • B29K2509/02Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5228Silica and alumina, including aluminosilicates, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5232Silica or silicates other than aluminosilicates, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5252Fibers having a specific pre-form
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5252Fibers having a specific pre-form
    • C04B2235/5256Two-dimensional, e.g. woven structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6022Injection moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6027Slip casting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/20Metallic fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/282Selecting composite materials, e.g. blades with reinforcing filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/284Selection of ceramic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/601Fabrics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced
    • F05D2300/6033Ceramic matrix composites [CMC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced
    • F05D2300/6034Orientation of fibres, weaving, ply angle

Definitions

  • the invention relates to methods for manufacturing composite material parts comprising a fiber preform and a refractory ceramic matrix.
  • the present invention relates to a method of manufacturing a piece of thermostructural composite material having a ceramic matrix (CMC), that is to say having a fibrous reinforcement formed from refractory ceramic fiber fibers whose porosity is filled by a matrix also refractory ceramic material, the invention particularly relates to a method of manufacturing a piece of the type Oxide / Oxide.
  • CMC ceramic matrix
  • Parts made of composite Oxide / Oxide material are generally produced by draping in a mold of a plurality of fibrous layers made from refractory oxide fibers, the layers being each impregnated beforehand with a slip loaded with refractory oxide particles. All the layers thus arranged are then compacted using a counter mold or a vacuum cover. In the case where a vacuum cover is used, the pre-impregnated layers may for example be autoclaved ("CMO" type pre-impregnated process). The filled preform thus obtained is then subjected to sintering so as to form a refractory oxide matrix in the preform and obtain a piece of composite material Oxide / Oxide. This technique can also be used to make other pieces of ceramic matrix composite material (CMC).
  • CMC ceramic matrix composite material
  • the fibrous layers may be made from silicon carbide (SiC) or carbon (C) fibers and may be impregnated with a slurry loaded with carbide (eg SiC), boride (by examples of TiB 2 ), nitride (for example Si 3 N 4 ) or oxide, for example alumina or zirconia.
  • carbide eg SiC
  • boride by examples of TiB 2
  • nitride for example Si 3 N 4
  • oxide for example alumina or zirconia.
  • this type of production method can only achieve pieces of ceramic matrix composite material having a small thickness and two-dimensional (2D) fibrous reinforcement.
  • the mechanical characteristics of these composite materials are very different in the directions inherent in the structure of the reinforcement. More specifically, these materials have a low mechanical resistance to delamination and out-of-plane forces.
  • the impregnation of a fibrous texture of complex geometry and of great thickness may not be achieved by an infusion type process because this type of process may not achieve a sufficient pressure gradient to obtain good impregnation of the entire texture.
  • the method of the APS type does not, for its part, to finely control the amount of matrix introduced into the preform or the surface conditions.
  • the RTM process can be used to impregnate a fibrous texture with a loaded slip, it nonetheless requires the implementation of a step of elimination, (evacuation and / or evaporation) of the liquid medium of the slip so as not to leave solid charges in the preform before sintering. This additional step leads to an increase in the time of implementation of the method.
  • this step of elimination of the liquid medium can lead to a loss of particles and / or a change in the distribution of the latter in the preform and therefore to the appearance of macro porosities in the final material because of the lack matrix in some places.
  • RTM implementing a slip injection step
  • This constraint may lead to having to repeat the injection step of the slip and, consequently, the elimination step of the liquid medium in order to eventually obtain the desired volume ratio of the matrix.
  • the limitation of the volume content of refractory ceramic particles in the slip can therefore lead to a complexification of the manufacturing range.
  • the invention proposes, according to a first aspect, a method of manufacturing a fiber preform loaded with refractory ceramic particles comprising the following steps:
  • a slip comprising a powder of refractory ceramic particles present in a liquid medium in the porosity of the fibrous texture present in the molding cavity, the injection being carried out at least through a first face or a first edge of said fibrous texture
  • a piece of porous material of the liquid medium of the slip having penetrated into the fibrous texture the piece of porous material having a thickness greater than or equal to 0.1 mm, the drainage being carried out at least at through a second face or a second edge of the fibrous texture different from the first face or the first edge, said piece of porous material also making it possible to retain the powder of refractory particles in the porosity of the fibrous texture so as to obtain a fibrous preform loaded with refractory particles.
  • An edge designates one side of the fibrous texture extending along the thickness thereof (ie along the smaller dimension of the fibrous texture), the sides of the fibrous texture which are not edges are called “faces".
  • faces For example, in the case where the fibrous texture is in the form of a plate, it has two opposite faces ("front” and "back") and one or more edges.
  • the edges of the fibrous texture will be intended to constitute the leading edge and the trailing edge of the blade and the faces of the texture fibrous are going to be intended to constitute the intrados or the extrados of the dawn.
  • the thickness of the piece of porous material corresponds to its smallest dimension.
  • the method according to the invention makes it possible to eliminate the liquid medium from the slip introduced into the fibrous texture while retaining in the fibrous texture the ceramic solid particles. refractory. Due to the use of the porous material part allowing the selective elimination of the liquid medium, the invention advantageously makes it possible to obtain an accumulation of refractory particles in the fibrous texture.
  • the invention thus makes it possible to successfully use processes in which the slip is injected into the porosity of a fibrous texture and which requires the use of relatively low-loaded slip materials while allowing a degree of charge to be obtained. refractory ceramic particles high in texture and, therefore, a high matrix volume ratio after sintering of these particles.
  • the method according to the invention thus makes it possible to obtain in a simple manner thermostructural composite material parts having improved mechanical properties.
  • step b) the slip is injected into the molding cavity through one or more injection ports.
  • step c) the drainage of the liquid medium is carried out through at least one outlet vent.
  • the drainage of step c) is carried out by applying a pressure difference between the injection port and the outlet vent. This pressure difference can be applied by various means, and for example by injection under pressure of the slip during step b) and / or by pumping at the outlet vent and / or by applying a pressure of compaction on the fibrous texture by the mold and counter-mold.
  • a pressure of less than or equal to 950 mbar, for example between 50 mbar and 950 mbar, may be imposed at the outlet vent during step c).
  • the slip may be injected under pressure during step b), for example with an injection pressure greater than or equal to 1.1 bar, for example between 1.1 bar and 6 bar.
  • the mold may constitute a rigid support on which the fibrous texture is present and the counter-mold may be rigid.
  • the mold and the counter-mold do not deform during the implementation of the method according to the invention.
  • Such an embodiment advantageously makes it possible to manufacture a piece of composite material of precise shape imposed by the shape of the mold and the counter-mold.
  • Such a control of the shape of the part to be manufactured is advantageous especially when it is intended to be used in the aeronautical field.
  • the mold may constitute a rigid support on which the fibrous texture is present and the counter-mold may be deformable.
  • the piece of porous material may be present between the mold and the fibrous texture or between the counter-mold and the fibrous texture. In an exemplary embodiment, the piece of porous material may constitute all or part of the mold or counter-mold.
  • the against-mold may exert pressure on the fibrous texture during and / or after step b).
  • the fibrous texture can be compacted between the mold and the counter-mold during and / or after step b).
  • the fibrous texture is in a compacted form between the mold and the counter-mold during and / or after step b) due to the application of a compaction pressure by the counter mold.
  • the fact of compacting the fibrous texture advantageously makes it possible to reach a target thickness for it and consequently to reach a target thickness for the piece of composite material to obtain.
  • the compaction pressure can be applied before step b) and then be maintained during step b).
  • step b) can be initiated first and then the compaction pressure can be applied after the start of step b) and then maintained.
  • the pressure exerted by the counter-mold on the fibrous texture can be obtained by applying a fluid (gas or liquid) on the counter mold, the fluid being introduced into a chamber, the counter-mold being located between the chamber and the molding cavity.
  • a pumping at the outlet vent may be carried out in order to suck up all or part of the liquid medium present in the porosity of the fibrous texture.
  • the injection of the slip can be carried out during step b) through a plurality of different zones of the outer surface of the fibrous texture.
  • the slip can during step b) be injected through a plurality of injection ports opening into different areas of the mold cavity.
  • a slip stream distribution element may be present in the molding cavity, said distribution element defining a plurality of pores in which the slip flows during step b) to join the first face or the first edge of the fibrous texture.
  • Such an embodiment makes it possible to perform a multi-point injection in the fibrous texture and consequently to obtain in a homogeneous and faster manner a homogeneous distribution of the refractory ceramic particles in the fibrous texture.
  • injection of the slip may be performed on a first side of the fibrous texture and drainage of the liquid medium may be effected from a second side of the fibrous texture opposite to the first side.
  • the slip may be injected during step b) at least through an edge of the fibrous texture and the drainage may be carried out in step c) at least through a face of the fibrous texture.
  • the slip may be injected during step b) at least through a first face of the fibrous texture and the drainage may be carried out in step c) at least through a second face of the fibrous texture different from the first face.
  • the slip may have, prior to step b), a volume content of ceramic refractory particles less than or equal to 40%.
  • the viscosity of the slip before step b) can advantageously be less than or equal to 150 mPa.s -1 , or even 60 mPa.s "1.
  • the viscosity of the slip is measured using a Brookfield type viscometer at a temperature of 20 ° C.
  • the slip may comprise an organic binder.
  • an organic binder in the slip is advantageous because it makes it possible to improve the hold of the raw material (dried injected preform before sintering of the refractory ceramic particles), which is advantageous especially when the fibrous texture has a complex geometry.
  • the use of an organic binder is also advantageous in order to maintain the fiber volume ratio by improving the control of the thickness after injection of the slip.
  • the slip used may be free of a pre-ceramic polymer such as precursors of polysilane-based ceramic material.
  • the slip may comprise a pre-ceramic polymer.
  • the refractory particles may be the only solid phase present in the slip used.
  • the fibrous texture may comprise a plurality of refractory oxide fibers and the refractory particles may be of refractory oxide.
  • the present invention also relates to a method of manufacturing a composite material part comprising the following step:
  • the part obtained after sintering may, for example, constitute a turbomachine blade.
  • step sintering step demold the filled preform obtained at the end of step c) and place it in an oven in which the sintering will be performed.
  • FIGS. 1 and 2 show, in a schematic and partial manner, the configuration obtained following the implementation of various steps of a first exemplary method according to the invention
  • FIG. 3 represents, in a schematic and partial manner, the configuration obtained during injection and drainage in an alternative method according to the invention in which a "poly-flex" type process is implemented
  • FIG. 4 represents, in a schematic and partial manner, the configuration obtained during injection and drainage in an alternative method according to the invention.
  • FIG. 5 shows, schematically and partially, the configuration obtained during injection and drainage in an alternative method according to the invention.
  • FIG. 1 shows the configuration obtained after implementation of step a) in a first exemplary method according to the invention.
  • a fibrous texture 1 comprising refractory ceramic fibers is present in a molding cavity 2.
  • the fibrous texture 1 may be produced in a known manner by weaving using a Jacquard loom or shuttle on which a bundle of warp or strand wires has been arranged in a plurality of layers, the warp threads being tied by weft threads or vice versa.
  • the fibrous texture can be made by stacking strata or plies obtained by two-dimensional weaving (2D).
  • the fibrous texture can also be made directly in one piece by three-dimensional weaving (3D).
  • two-dimensional weaving is meant here a conventional weaving mode whereby each weft yarn passes from one side to another son of a single chain layer or vice versa.
  • the method according to the invention can be particularly adapted to allow the introduction of a loaded slip in 2D fiber textures, namely textures obtained by stacking 2D layers or plies, of significant thickness, that is to say 2D fibrous structures having a thickness of at least 0.5 mm, preferably at least 1 mm.
  • 3D weaving or “multilayer weaving” is meant here a weaving mode whereby at least some of the weft yarns bind warp yarns on several layers of warp yarns or conversely following a weave corresponding to a weave weave which can be chosen in particular from one of the following armor: interlock, multi-fabric, multi-satin and multi-twill.
  • weave or interlock fabric is meant here a 3D weave armor, each layer of warp threads binding several layers of weft threads with all the threads of the same warp column having the same movement in the plane of the weave. armor.
  • armor or multi-fabric fabric is meant here a 3D weave with several layers of weft threads whose basic armor of each layer is equivalent to a conventional canvas type armor but with some points of the armor that bind the layers of weft threads together.
  • multi-satin weave or fabric is meant here a 3D weave with several layers of weft yarns whose basic weave of each layer is equivalent to a classic satin-like weave but with certain points of the weave which bind the layers of weft threads together.
  • weave or multi-twill fabric is meant here a 3D weave with several layers of weft threads whose basic armor of each layer is equivalent to a classic twill type armor but with some points of the armor that bind the layers of weft threads together.
  • 3D textures have a complex geometry in which it can be difficult to introduce and evenly distribute solid particles in suspension.
  • the process of the invention is also very well suited for introducing a filled slip into 3D woven fiber textures.
  • the fibrous texture intended to form the fibrous reinforcement of the composite material part may comprise fibers chosen from: alumina fibers, mullite fibers, silica fibers, aluminosilicate fibers, borosilicate fibers, silicon carbide fibers, carbon fibers and mixtures of such fibers.
  • the fibrous texture implemented can for example be carried out by 2D weaving or by 3D weaving (stacking 2D strata or 3D weaving).
  • the fibrous texture can also be made by stacking several fibrous structures obtained by 3D weaving.
  • the fiber texture used may, for example, comprise a plurality of Nextel 610 TM alumina wires.
  • the molding cavity 2 is delimited by a mold 3 and a counter-mold 4.
  • the mold 3 and the counter-mold 4 are rigid.
  • the mold 3 constitutes a rigid support on which the fibrous texture 1 is present during the injection and drainage steps b) and c).
  • the mold 3 comprises lateral walls 3a and 3b delimiting the molding cavity 2.
  • the device 10 in which the fibrous texture 1 is present is closed in its lower part by the mold 3 and is closed in its part. by the counter-mold 4 forming a cover closing the device 10.
  • the mold 3 and the counter-mold 4 are used to size the preform and thus the part to be obtained and to adjust the volume ratio of fibers in the part to obtain .
  • the counter-mold 4 comprises a plurality of injection ports 15 of the slip through which the slip is intended to be injected in order to penetrate the porosity of the fibrous texture 1 through the first face 1a of the fibrous texture 1
  • the slip is intended to be injected through a plurality of injection ports 15 opening into different areas of the molding cavity.
  • the mold 3 comprises, meanwhile, a single outlet port 16 of the liquid medium of the slurry.
  • a single outlet port 16 of the liquid medium of the slurry is not beyond the scope of the invention when a plurality of output vents are implemented.
  • the piece of porous material 5 is present in the molding cavity 2 between the mold 3 and the fibrous texture 1.
  • the piece of porous material 5 is present between the outlet vent 16 and the fibrous texture 1
  • the piece of porous material 5 is present in contact with the mold 3 and in contact with the second face 1b of the fibrous texture 1 through which the drainage of the liquid medium of the slurry is intended to be carried out.
  • the second face lb of the fibrous texture 1 is, in the example illustrated in Figure 1, located on the opposite side to the first face through which the slip is intended to penetrate the texture 1.
  • the piece of porous material 5 may for example be made of microporous polytetrafluoroethylene (PTFE) such as "microporous PTFE" products sold by the company Porex®.
  • PTFE microporous polytetrafluoroethylene
  • the PM 0130 material sold by the company Porex® having a pore size of between 1 ⁇ m and 2 ⁇ m can be used to produce the porous material part 5.
  • the piece of porous material 5 extends along the entire second face 1b and completely covers the outlet vent 16. It is not beyond the scope of the present invention when the piece of material porous 5 extends along only a portion of the second face 1b and completely covers the outlet vent 16. In a variant not shown, the piece of porous material can extend along the entire second face and extend beyond it.
  • the piece of porous material 5 allows drainage of the liquid medium of the slip outside the fibrous texture 1 and its evacuation through the outlet vent 16 due to the application of a pressure gradient between the vent output 16 and the injection ports 15.
  • the piece of porous material 5 has a thickness greater than or equal to 0.1 mm.
  • the piece of porous material 5 may have a thickness greater than or equal to 1 mm, or even several millimeters.
  • the average porosity level of the porous material part 5 can be about 30%.
  • the average pore size (D 50) of the porous material part 5 may for example be between 1 ⁇ m and 2 ⁇ m.
  • the piece of porous material 5 may be rigid and have a shape corresponding to the shape of the preform and the piece of composite material to obtain.
  • the piece of porous material may for example be made by thermoforming.
  • the piece of porous material may be deformable and may take the form of the mold which corresponds to the shape of the preform and the composite material part to obtain.
  • a compaction pressure makes it possible to compact the fibrous texture 1 between the mold 3 and the counter mold 4 can be applied, this compaction pressure can be maintained during step b).
  • the compaction pressure can be applied after the start of the injection of the slip (ie after the start of step b)) and can then be maintained.
  • the compaction pressure can be applied once the injection of the slurry is complete and can then be maintained.
  • the fibrous texture may during and / or after step b) be subjected to a compaction pressure less than or equal to 15 bar, for example 7 bar.
  • the fibrous texture may during and / or after step b) be subjected to a compaction pressure greater than or equal to 0.3 bar.
  • the application of a compaction pressure can be used to compact the texture to help drain the liquid medium and reach a target thickness for the fiber preform without damaging it.
  • the compaction pressure can be applied by a fluid applied to the counter-mold 4 on the opposite side to the molding cavity 2.
  • FIG. 2 illustrates the configuration obtained during the injection of the slip and the drainage of the liquid medium.
  • the slip has been injected through the injection ports 15 to penetrate the fibrous texture 1 through the first face 1a of the fibrous texture 1.
  • the refractory particles present in the slip are intended to allow the formation of a refractory ceramic matrix in the porosity of the fibrous texture 1.
  • This refractory ceramic matrix may, in an exemplary embodiment, be a refractory oxide matrix.
  • the slip may for example be a suspension of an alumina powder in water.
  • the average particle size (D50) of the alumina powder may be from 0.1 ⁇ m to 0.3 ⁇ m.
  • the alumina powder used may be an alpha alumina powder marketed by Baikowski under the name SM8.
  • the slip may be a suspension comprising refractory ceramic particles having a mean particle size of between 0.1 ⁇ m and 10 ⁇ m.
  • the volume content of refractory ceramic particles in the slip may, before step b), be between 25% and 40%.
  • the refractory ceramic particles may comprise a material chosen from: alumina, mullite, silica, aluminosilicates, aluminophosphates, carbides, borides, nitrides and mixtures of such materials.
  • the refractory ceramic particles may, in addition, be mixed with particles of alumina, zirconia, aluminosilicate, a rare earth oxide, rare earth silicate (which may example be used in environmental or thermal barriers) or any other load to functionalize the piece of composite material to obtain as carbon black, graphite or silicon carbide.
  • the liquid medium of the slip may, for example, comprise an aqueous phase having an acidic pH (i.e. a pH below 7) and / or an alcoholic phase comprising for example ethanol.
  • the slip may comprise an acidifier such as nitric acid and the pH of the liquid medium may for example be between 1.5 and 4.
  • the slip may, in addition, comprise an organic binder such as polyvinyl alcohol (PVA which is especially soluble in water.
  • PVA polyvinyl alcohol
  • the refractory ceramic particles 20 are present after injection of the slip into the porosity of the fibrous texture 1.
  • the arrows 21 represent the movement of the slip injected into the fibrous texture 1.
  • the arrows 22 represent they the movement of the liquid medium of the slip sucked by the piece of porous material 5.
  • the counter-mold 4 exerts pressure on the fibrous texture 1 during and / or after step b) in order to accelerate the drainage of the liquid medium.
  • Pumping may, in addition, be carried out at the outlet vent 16 during step c), for example by means of a primary vacuum pump.
  • the realization of such pumping improves the drainage and dry more quickly the fibrous texture.
  • step c) it is possible during step c) to heat the liquid medium still present in the porosity of the fibrous texture in order to evaporate the latter through the second face of the fibrous texture and the piece of porous material .
  • the temperature of the liquid medium can be raised to a temperature between 80 ° C and 105 ° C.
  • the piece of porous material 5 makes it possible to retain in the fibrous texture 1 the refractory ceramic particles. 20 initially present in the slip and all or some of these particles are deposited by filtration in the fibrous texture 1.
  • a fibrous preform is obtained which is filled with refractory ceramic particles, for example particles of refractory ceramic oxide, for example alumina.
  • the preform obtained is then dried and demolded, the preform can retain after demolding the shape adopted in the molding cavity, for example its shape adopted after compaction between the mold and against the mold.
  • the preform is then subjected to a sintering heat treatment, for example in air at a temperature of between 1000 ° C. and 1200 ° C. in order to sinter the refractory ceramic particles and thus form a refractory ceramic matrix in the porosity of the fibrous preform.
  • a piece of composite material is thus obtained, for example a part made of Oxide / Oxide composite material, provided with a fibrous reinforcement formed by the fibrous preform and having a high matrix volume ratio with a homogeneous distribution of the refractory ceramic matrix in any the fibrous reinforcement.
  • a piece of CMC composite material other than Oxide / Oxide can be obtained in the same way by producing the fiber texture with silicon carbide and / or carbon fibers and by using a slurry loaded with carbide particles (for example SiC ), boride (for example TiB 2 ) or nitride (for example S13N4).
  • carbide particles for example SiC
  • boride for example TiB 2
  • nitride for example S13N4
  • FIG. 3 shows an alternative embodiment in which the counter-mold 4 'is deformable. Pressure is exerted on the deformable against-mold 4 'in order to maintain the deformable against-mold 4' against the first face 1a of the fibrous texture 1. As described above, the counter mold 4 'can exert a pressure on the fibrous texture 1 during the process.
  • FIG. 3, as described above, also shows the presence of refractory particles in the porosity of the fibrous texture 1 as well as the drainage of the liquid medium from the injected slip (arrows 22).
  • FIG. 4 shows a variant embodiment in which a slip stream distribution element 30 here in the form of a grid is present between the first face 1a of the fibrous texture 1 and the injection port 15.
  • This distribution element 30 is in contact with the first face 1a of the fibrous texture 1.
  • This distribution element 30 defines a plurality of pores 31 in which the slip flows during injection for to join the first face of the fibrous texture 1.
  • the pores 31 may or may not be evenly spaced along the first face of the fibrous texture 1.
  • the distribution element 30 can as shown define at least two, or even at least three, pores 31.
  • Such an embodiment advantageously makes it possible to accelerate the obtaining of a uniform distribution of the refractory particles in the fibrous texture 1.
  • FIG. 5 shows a variant embodiment in which the mold 3 forming a support for the fibrous texture 1 comprises sidewalls 3a and 3b through which injection of the slip is carried out. The injection is carried out through edges 1 'of the fibrous texture 1. The slip is injected under pressure into the fibrous texture 1. In the example illustrated in FIG. 5, the liquid medium is discharged through the face 1b. superior fibrous texture.
  • the injection and drainage are not on two opposite sides of the fibrous texture.
  • the slip is injected through an edge 1 'of the fibrous texture and the liquid medium is discharged through the upper face 1b of the fibrous texture 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

L'invention concerne un procédé de fabrication d'une préforme fibreuse chargée de particules céramiques réfractaires (20) comportant les étapes suivantes : • a) placement d'une texture fibreuse (1) comportant des fibres céramiques réfractaires dans une cavité de moulage (2) délimitée par un moule (3) et un contre-moule (4; 4'), • b) injection d'une barbotine, comportant une poudre de particules céramiques réfractaires (20) présente dans un milieu liquide, dans la porosité de la texture fibreuse (1) présente dans la cavité de moulage (2), l'injection étant réalisée au moins au travers d'une première face (la) ou d'un premier bord (la') de ladite texture fibreuse (1), et • c) drainage par une pièce en matériau poreux (5) du milieu liquide de la barbotine ayant pénétré dans la texture fibreuse (1), la pièce en matériau poreux ayant une épaisseur supérieure ou égale à 0,1 mm, le drainage étant effectué au moins au travers d'une deuxième face (lb) ou d'un deuxième bord de la texture fibreuse (1) différent de la première face (la) ou du premier bord (la'), ladite pièce en matériau poreux (5) permettant en outre de retenir la poudre de particules réfractaires (20) dans la porosité de la texture fibreuse (1) afin d'obtenir une préforme fibreuse chargée de particules réfractaires (20), la pièce en matériau poreux (5) étant présente entre le moule (3) et la texture fibreuse (1) ou entre le contre-moule (4;4') et la texture fibreuse (1) et la pièce en matériau poreux (5) étant présente entre au moins un évent de sortie (16) et la texture fibreuse (1), un pompage étant effectué au niveau de l'évent de sortie (16) afin de drainer le milieu liquide au travers dudit évent de sortie (16).

Description

Procédé de fabrication d'une préforme fibreuse chargée de particules céramiques réfractaires
Arrière-plan de l'invention
L'invention concerne des procédés de fabrication de pièces en matériau composite comprenant une préforme fibreuse ainsi qu'une matrice céramique réfractaire.
La présente invention concerne un procédé de fabrication d'une pièce en matériau composite thermostructural à matrice céramique (CMC), c'est-à-dire comportant un renfort fibreux formé à partir de fibres en matériau céramique réfractaire dont la porosité est comblée par une matrice également en matériau céramique réfractaire, l'invention concerne notamment un procédé de fabrication d'une pièce de type Oxyde/Oxyde.
Les pièces en matériau composite Oxyde/Oxyde sont généralement élaborées par drapage dans un moule d'une pluralité de strates fibreuses réalisées à partir de fibres en oxyde réfractaire, les strates étant chacune préalablement imprégnées avec une barbotine chargée de particules d'oxyde réfractaire. L'ensemble des strates ainsi disposées est ensuite compacté à l'aide d'un contre-moule ou d'une bâche à vide. Dans le cas où une bâche à vide est mise en œuvre, les strates pré-imprégnées peuvent par exemple être passées à l'autoclave (procédé de type pré-imprégné « CMO »). La préforme chargée ainsi obtenue est alors soumise à un frittage afin de former une matrice en oxyde réfractaire dans la préforme et obtenir une pièce en matériau composite Oxyde/Oxyde. Cette technique peut être également utilisée pour réaliser d'autres pièces en matériau composite à matrice céramique (CMC). Dans ce cas, les strates fibreuses peuvent être réalisées à partir de fibres de carbure de silicium (SiC) ou de carbone (C) et peuvent être imprégnées avec une barbotine chargée de particules de carbure (par exemple de SiC), de borure (par exemple de TiB2), de nitrure (par exemple de Si3N4) ou d'oxyde par exemple d'alumine ou de zircone.
Cependant, ce type de procédé d'élaboration ne peut permettre de réaliser que des pièces en matériau composite à matrice céramique ayant une faible épaisseur et un renfort fibreux bidimensionnel (2D). Les caractéristiques mécaniques de ces matériaux composites sont très différentes selon les directions inhérentes à la structure du renfort. Plus précisément, ces matériaux présentent une faible tenue mécanique au délaminage et aux efforts hors plan.
La réalisation de textures fibreuses obtenues par tissage tridimensionnel entre des fils continus de chaîne et de trame permet d'augmenter la résistance mécanique du matériau et en particulier sa résistance au délaminage. Dans ce cas et également pour des textures fibreuses 2D de forte épaisseur, seuls les procédés utilisant un gradient de pression, comme les procédés de type infusion, moulage par injection dits « RTM » ou aspiration de poudre submicronique dits « APS », permettent de faire pénétrer une suspension chargée dans la texture fibreuse dont l'épaisseur peut atteindre plusieurs dizaines de millimètres selon les applications visées.
Cependant dans le cadre de la réalisation d'une pièce en matériau à matrice céramique, ces procédés présentent certains inconvénients.
En effet, l'imprégnation d'une texture fibreuse de géométrie complexe et de forte épaisseur peut ne pas être réalisée par un procédé de type infusion car ce type de procédé peut ne pas permettre d'atteindre un gradient de pression suffisant pour obtenir une bonne imprégnation de l'ensemble de la texture. Le procédé de type APS ne permet, quant à lui, pas de contrôler finement le taux de matrice introduit dans la préforme ni les états de surface.
Si le procédé RTM peut être utilisé pour imprégner une texture fibreuse avec une barbotine chargée, il nécessite néanmoins la mise en œuvre d'une étape d'élimination, (évacuation et/ou évaporation) du milieu liquide de la barbotine afin de ne laisser subsister que les charges solides dans la préforme avant le frittage. Cette étape supplémentaire entraîne un allongement du temps de mise en œuvre du procédé.
Par ailleurs, cette étape d'élimination du milieu liquide peut conduire à une perte de particules et/ou à une modification de la répartition de ces dernières dans la préforme et donc à l'apparition de macro porosités dans le matériau final en raison du manque de matrice à certains endroits.
II faut aussi prendre en compte le fait que, dans les procédés
RTM mettant en œuvre une étape d'injection de la barbotine, il peut être nécessaire de limiter le taux volumique de particules céramiques réfractaires présentes dans la barbotine afin de conserver une viscosité suffisamment faible pour permettre une injection homogène de la barbotine. Cette contrainte peut conduire à devoir répéter l'étape d'injection de la barbotine et, par conséquent, l'étape d'élimination du milieu liquide afin d'obtenir à terme le taux volumique souhaité de matrice. La limitation de la teneur volumique en particules céramiques réfractaires dans la barbotine peut donc entraîner une complexification de la gamme de fabrication.
Il existe par conséquent un besoin pour simplifier les procédés de fabrication de préformes chargées de particules réfractaires destinées à former des pièces en matériau composite présentant un taux volumique de matrice souhaité.
Il existe encore un besoin pour disposer de procédés rapides et fiables de fabrication de pièces en matériau composite présentant les propriétés souhaitées à partir d'une texture fibreuse épaisse et/ou de géométrie complexe.
Objet et résumé de l'invention
A cet effet, l'invention propose, selon un premier aspect, un procédé de fabrication d'une préforme fibreuse chargée de particules céramiques réfractaires comportant les étapes suivantes :
a) placement d'une texture fibreuse comportant des fibres céramiques réfractaires dans une cavité de moulage délimitée par un moule et un contre-moule,
b) injection d'une barbotine, comportant une poudre de particules céramiques réfractaires présente dans un milieu liquide, dans la porosité de la texture fibreuse présente dans la cavité de moulage, l'injection étant réalisée au moins au travers d'une première face ou d'un premier bord de ladite texture fibreuse, et
c) drainage par une pièce en matériau poreux du milieu liquide de la barbotine ayant pénétré dans la texture fibreuse, la pièce en matériau poreux ayant une épaisseur supérieure ou égale à 0,1 mm, le drainage étant effectué au moins au travers d'une deuxième face ou d'un deuxième bord de la texture fibreuse différent de la première face ou du premier bord, ladite pièce en matériau poreux permettant en outre de retenir la poudre de particules réfractaires dans la porosité de la texture fibreuse afin d'obtenir une préforme fibreuse chargée de particules réfractaires.
Un bord désigne un côté de la texture fibreuse s'étendant le long de l'épaisseur de celle-ci (i.e. le long de la direction de plus petite dimension de la texture fibreuse), les côtés de la texture fibreuse qui ne sont pas des bords sont appelés « faces ». Par exemple, dans le cas où la texture fibreuse est sous forme de plaque, celle-ci présente deux faces opposées (« recto » et « verso ») et un ou plusieurs bords. Dans le cas où la texture fibreuse est destinée à constituer le renfort fibreux d'une aube, les bords de la texture fibreuse vont être destinés à constituer le bord d'attaque et le bord de fuite de l'aube et les faces de la texture fibreuse vont être destinées à constituer l'intrados ou l'extrados de l'aube.
L'épaisseur de la pièce en matériau poreux correspond à sa plus petite dimension.
En utilisant une pièce en matériau poreux permettant de drainer sélectivement le milieu liquide de la barbotine, le procédé selon l'invention permet d'éliminer le milieu liquide de la barbotine introduite dans la texture fibreuse tout en retenant dans la texture fibreuse les particules solides céramiques réfractaires. Du fait de l'utilisation de la pièce en matériau poreux permettant l'élimination sélective du milieu liquide, l'invention permet avantageusement d'obtenir une accumulation de particules réfractaires dans la texture fibreuse. L'invention permet donc d'utiliser avec succès des procédés dans lesquels la barbotine est injectée dans la porosité d'une texture fibreuse et qui nécessitent d'utiliser des barbotines relativement peu chargées tout en permettant l'obtention d'un taux de charge en particules céramiques réfractaires élevé dans la texture et, par conséquent, d'un taux volumique de matrice élevé après frittage de ces particules. Le procédé selon l'invention permet ainsi d'obtenir de manière simple des pièces en matériau composite thermostructural présentant des propriétés mécaniques améliorées.
Durant l'étape b), la barbotine est injectée dans la cavité de moulage au travers d'un ou plusieurs ports d'injection. Durant l'étape c), le drainage du milieu liquide est effectué au travers d'au moins un évent de sortie. Le drainage de l'étape c) est réalisé par application d'une différence de pression entre le port d'injection et l'évent de sortie. Cette différence de pression peut être appliquée par différents moyens, et par exemple par injection sous pression de la barbotine durant l'étape b) et/ou par pompage au niveau de l'évent de sortie et/ou par application d'une pression de compactage sur la texture fibreuse par le moule et le contre- moule.
Dans un exemple de réalisation, une pression inférieure ou égale à 950 mbar, par exemple comprise entre 50 mbar et 950 mbar, peut être imposée au niveau de l'évent de sortie durant l'étape c).
Dans un exemple de réalisation, la barbotine peut être injectée sous pression lors de l'étape b), par exemple avec une pression d'injection supérieure ou égale à 1,1 bar, par exemple comprise entre 1,1 bar et 6 bars.
On peut avantageusement réaliser une seule phase d'injection de la barbotine. En variante, on peut réaliser une première phase d'injection de la barbotine, interrompre l'injection de la barbotine puis réaliser une deuxième phase d'injection de la barbotine.
Dans un exemple de réalisation, le moule peut constituer un support rigide sur lequel la texture fibreuse est présente et le contre- moule peut être rigide.
Autrement dit, dans ce cas, le moule et le contre-moule ne se déforment pas durant la mise en œuvre du procédé selon l'invention. Un tel mode de réalisation permet avantageusement de fabriquer une pièce en matériau composite de forme précise imposée par la forme du moule et du contre-moule. Un tel contrôle de la forme de la pièce à fabriquer est avantageux notamment lorsque celle-ci est destinée à être utilisée dans le domaine aéronautique.
Dans un exemple de réalisation, le moule peut constituer un support rigide sur lequel la texture fibreuse est présente et le contre- moule peut être déformable.
Dans un exemple de réalisation, la pièce en matériau poreux peut être présente entre le moule et la texture fibreuse ou entre le contre- moule et la texture fibreuse. Dans un exemple de réalisation, la pièce en matériau poreux peut constituer tout ou partie du moule ou du contre-moule.
Dans un exemple de réalisation, le contre-moule peut exercer une pression sur la texture fibreuse pendant et/ou après l'étape b).
L'application d'une telle pression sur la texture fibreuse permet avantageusement d'accélérer l'imprégnation de la texture fibreuse par la barbotine et d'accélérer le drainage du milieu liquide.
Dans un exemple de réalisation, la texture fibreuse peut être compactée entre le moule et le contre-moule pendant et/ou après l'étape b). En d'autres termes, dans ce cas, la texture fibreuse est sous une forme compactée entre le moule et le contre-moule pendant et/ou après l'étape b) du fait de l'application d'une pression de compaction par le contre- moule.
Outre l'avantage décrit plus haut relatif à l'application d'une pression sur la texture fibreuse, le fait de compacter la texture fibreuse permet avantageusement d'atteindre une épaisseur cible pour celle-ci et par conséquent d'atteindre une épaisseur cible pour la pièce en matériau composite à obtenir.
Dans un exemple de réalisation, la pression de compaction peut être appliquée avant l'étape b) et être ensuite maintenue durant l'étape b). En variante, l'étape b) peut d'abord être initiée puis la pression de compaction peut être appliquée après le début de l'étape b) et être ensuite maintenue.
La pression exercée par le contre-moule sur la texture fibreuse peut être obtenue par application d'un fluide (gaz ou liquide) sur le contre- moule, le fluide étant introduit dans une chambre, le contre-moule étant situé entre la chambre et la cavité de moulage.
Durant l'étape c), un pompage au niveau de l'évent de sortie peut être effectué afin d'aspirer tout ou partie du milieu liquide présent dans la porosité de la texture fibreuse. En alternative ou en combinaison, on peut durant l'étape c) chauffer le milieu liquide présent dans la porosité de la texture fibreuse afin de l'évaporer au travers de la deuxième face ou du deuxième bord de la texture fibreuse et au travers de la pièce en matériau poreux. Dans un exemple de réalisation, l'injection de la barbotine peut être réalisée lors de l'étape b) au travers d'une pluralité de zones différentes de la surface externe de la texture fibreuse.
Dans un exemple de réalisation, la barbotine peut durant l'étape b) être injectée au travers d'une pluralité de ports d'injections débouchant dans des zones différentes de la cavité de moulage.
En variante ou en combinaison, un élément de répartition du flux de barbotine peut être présent dans la cavité de moulage, ledit élément de répartition définissant une pluralité de pores dans lesquels la barbotine s'écoule durant l'étape b) pour rejoindre la première face ou le premier bord de la texture fibreuse.
Un tel mode de réalisation permet de réaliser une injection multi-points dans la texture fibreuse et par conséquent d'obtenir de manière homogène et plus rapide une distribution homogène des particules céramiques réfractaires dans la texture fibreuse.
Dans un exemple de réalisation, l'injection de la barbotine peut être effectuée d'un premier côté de la texture fibreuse et le drainage du milieu liquide peut être effectué d'un deuxième côté de la texture fibreuse opposé au premier côté.
Dans un exemple de réalisation, la barbotine peut être injectée lors de l'étape b) au moins au travers d'un bord de la texture fibreuse et le drainage peut être effectué lors de l'étape c) au moins au travers d'une face de la texture fibreuse.
Dans un exemple de réalisation, la barbotine peut être injectée lors de l'étape b) au moins au travers d'une première face de la texture fibreuse et le drainage peut être effectué lors de l'étape c) au moins au travers d'une deuxième face de la texture fibreuse différente de la première face.
Dans un exemple de réalisation, la barbotine peut présenter, avant l'étape b), une teneur volumique en particules céramiques réfractaires inférieure ou égale à 40%.
La mise en œuvre d'une barbotine présentant un tel taux volumique de particules céramiques réfractaires permet avantageusement d'améliorer la capacité d'injection de la barbotine en limitant sa viscosité.
Ainsi, la viscosité de la barbotine avant l'étape b) peut avantageusement être inférieure ou égale à 150 mPa.s"1, voire à 60 mPa.s"1. La viscosité de la barbotine est mesurée à l'aide d'un viscosimètre de type Brookfield à la température de 20°C.
Dans un exemple de réalisation, la barbotine peut comporter un liant organique.
La mise en œuvre d'un liant organique dans la barbotine est avantageuse car cela permet d'améliorer la tenue du cru (préforme injectée séchée avant frittage des particules céramiques réfractaires), ce qui est avantageux notamment lorsque la texture fibreuse a une géométrie complexe. La mise en œuvre d'un liant organique est aussi avantageuse afin de maintenir le taux volumique de fibres en améliorant le contrôle de l'épaisseur après l'injection de la barbotine.
Par ailleurs, la barbotine mise en œuvre peut être dépourvue d'un polymère pré-céramique comme les précurseurs de matériau céramique à base de polysilane. En variante, la barbotine peut comporter un polymère pré-céramique. Dans un exemple de réalisation, les particules réfractaires peuvent constituer la seule phase solide présente dans la barbotine utilisée.
Dans un exemple de réalisation, la texture fibreuse peut comporter une pluralité de fibres en oxyde réfractaire et les particules réfractaires peuvent être en oxyde réfractaire.
La présente invention vise également un procédé de fabrication d'une pièce en matériau composite comportant l'étape suivante :
d) fritter les particules céramiques réfractaires présentes dans la préforme fibreuse obtenue après mise en œuvre d'un procédé tel que décrit plus haut afin de former une matrice réfractaire dans la porosité de ladite préforme.
La pièce obtenue après frittage peut, par exemple, constituer une aube de turbomachine.
On peut avant l'étape de frittage démouler la préforme chargée obtenue à l'issue de l'étape c) et la placer dans un four dans lequel le frittage va être réalisé.
Brève description des dessins
D'autres caractéristiques et avantages de l'invention ressortiront de la description suivante de modes particuliers de réalisation de l'invention, donnés à titre d'exemples non limitatifs, en référence aux dessins annexés, sur lesquels :
- les figures 1 et 2 représentent, de manière schématique et partielle, la configuration obtenue suite à la mise en œuvre de différentes étapes d'un premier exemple de procédé selon l'invention,
- la figure 3 représente, de manière schématique et partielle, la configuration obtenue pendant l'injection et le drainage dans une variante de procédé selon l'invention dans laquelle un procédé de type « poly-flex » est mis en œuvre,
- la figure 4 représente, de manière schématique et partielle, la configuration obtenue pendant l'injection et le drainage dans une variante de procédé selon l'invention, et
- la figure 5 représente, de manière schématique et partielle, la configuration obtenue pendant l'injection et le drainage dans une variante de procédé selon l'invention.
Description détaillée de modes de réalisation
On a représenté à la figure 1 la configuration obtenue après mise en œuvre de l'étape a) dans un premier exemple de procédé selon l'invention. Comme illustré à la figure 1, une texture fibreuse 1 comportant des fibres céramiques réfractaires est présente dans une cavité de moulage 2. La texture fibreuse 1 peut être réalisée de façon connue par tissage au moyen d'un métier à tisser de type Jacquard ou à navette sur lequel on a disposé un faisceau de fils de chaînes ou de torons en une pluralité de couches, les fils de chaînes étant liés par des fils de trame ou inversement. La texture fibreuse peut être réalisée par empilement de strates ou plis obtenus par tissage bidimensionnel (2D). La texture fibreuse peut également être réalisée directement en une seule pièce par tissage tridimensionnel (3D). Par « tissage bidimensionnel », on entend ici un mode de tissage classique par lequel chaque fil de trame passe d'un côté à l'autre de fils d'une seule couche de chaîne ou inversement.
Le procédé selon l'invention peut être particulièrement adapté pour permettre l'introduction d'une barbotine chargée dans des textures fibreuses 2D, à savoir des textures obtenues par empilement de strates ou plis 2D, d'épaisseur importante, c'est-à-dire des structures fibreuses 2D ayant une épaisseur d'au moins 0,5 mm, de préférence d'au moins 1 mm. Par « tissage tridimensionnel » ou « tissage 3D » ou encore « tissage multicouche », on entend ici un mode de tissage par lequel certains au moins des fils de trame lient des fils de chaîne sur plusieurs couches de fils de chaîne ou inversement suivant un tissage correspondant à une armure de tissage qui peut être notamment choisie parmi une des armures suivantes : interlock, multi-toile, multi-satin et multi-sergé.
Par « armure ou tissu interlock », on entend ici une armure de tissage 3D dont chaque couche de fils de chaîne lie plusieurs couches de fils de trame avec tous les fils de la même colonne de chaîne ayant le même mouvement dans le plan de l'armure.
Par « armure ou tissu multi-toile », on désigne ici un tissage 3D avec plusieurs couches de fils de trame dont l'armure de base de chaque couche est équivalente à une armure de type toile classique mais avec certains points de l'armure qui lient les couches de fils de trame entre elles.
Par « armure ou tissu multi-satin », on désigne ici un tissage 3D avec plusieurs couches de fils de trame dont l'armure de base de chaque couche est équivalente à une armure de type satin classique mais avec certains points de l'armure qui lient les couches de fils de trame entre elles.
Par « armure ou tissu multi-sergé », on désigne ici un tissage 3D avec plusieurs couches de fils de trame dont l'armure de base de chaque couche est équivalente à une armure de type sergé classique mais avec certains points de l'armure qui lient les couches de fils de trame entre elles.
Les textures 3D présentent une géométrie complexe dans laquelle il peut être difficile d'introduire et de répartir de manière homogène des particules solides en suspension. Le procédé de l'invention est également très bien adapté pour l'introduction d'une barbotine chargée dans des textures fibreuses tissées 3D.
La texture fibreuse destinée à former le renfort fibreux de la pièce en matériau composite peut comporter des fibres choisies parmi : les fibres d'alumine, les fibres de mullite, les fibres de silice, les fibres d'aluminosilicate, les fibres de borosilicate, les fibres de carbure de silicium, les fibres de carbone et les mélanges de telles fibres. La texture fibreuse mise en œuvre peut par exemple être réalisée par tissage 2D ou par tissage 3D (empilement strates 2D ou tissage 3D). La texture fibreuse peut encore être réalisée par empilement de plusieurs structures fibreuses obtenues par tissage 3D. La texture fibreuse mise en œuvre peut, par exemple, comporter une pluralité de fils d'alumine Nextel 610™.
La cavité de moulage 2 est délimitée par un moule 3 et un contre-moule 4. Dans l'exemple illustré, le moule 3 et le contre-moule 4 sont rigides. Le moule 3 constitue un support rigide sur lequel la texture fibreuse 1 est présente durant les étapes d'injection et de drainage b) et c). Le moule 3 comporte des parois latérales 3a et 3b délimitant la cavité de moulage 2. Dans l'exemple illustré, le dispositif 10 dans lequel la texture fibreuse 1 est présente est fermé dans sa partie inférieure par le moule 3 et est fermé dans sa partie supérieure par le contre-moule 4 formant un couvercle refermant le dispositif 10. Le moule 3 et le contre- moule 4 servent à dimensionner la préforme et donc la pièce à obtenir ainsi qu'à ajuster le taux volumique de fibres dans la pièce à obtenir.
Le contre-moule 4 comporte une pluralité de ports d'injection 15 de la barbotine au travers desquels la barbotine est destinée à être injectée afin de pénétrer dans la porosité de la texture fibreuse 1 au travers de la première face la de la texture fibreuse 1. Dans l'exemple illustré à la figure 1, la barbotine est destinée à être injectée au travers d'une pluralité de ports d'injection 15 débouchant dans des zones différentes de la cavité de moulage. Toutefois, on ne sort pas du cadre de l'invention lorsque la barbotine est injectée au travers d'un unique pore d'injection.
Le moule 3 comporte, quant à lui, un unique évent de sortie 16 du milieu liquide de la barbotine. Bien entendu, on ne sort pas du cadre de l'invention lorsqu'une pluralité d'évents de sortie sont mis en œuvre.
Dans l'exemple illustré, la pièce en matériau poreux 5 est présente dans la cavité de moulage 2 entre le moule 3 et la texture fibreuse 1. La pièce en matériau poreux 5 est présente entre l'évent de sortie 16 et la texture fibreuse 1. Dans l'exemple illustré, la pièce en matériau poreux 5 est présente au contact du moule 3 et au contact de la deuxième face lb de la texture fibreuse 1 au travers de laquelle le drainage du milieu liquide de la barbotine est destiné à être réalisé. La deuxième face lb de la texture fibreuse 1 est, dans l'exemple illustré à la figure 1, située du côté opposé à la première face la au travers de laquelle la barbotine est destinée à pénétrer dans la texture 1.
La pièce en matériau poreux 5 peut par exemple être réalisée en polytétrafluoroéthylène (PTFE) microporeux comme les produits « microporous PTFE » vendus par la société Porex®. On peut par exemple utiliser pour réaliser la pièce en matériau poreux 5, le matériau PM 0130 commercialisé par la société Porex® présentant une taille de pores comprise entre 1 pm et 2 pm.
Dans l'exemple illustré, la pièce en matériau poreux 5 s'étend le long de l'intégralité la deuxième face lb et recouvre entièrement l'évent de sortie 16. On ne sort pas du cadre de la présente invention lorsque la pièce en matériau poreux 5 s'étend le long d'une partie seulement de la deuxième face lb et recouvre entièrement l'évent de sortie 16. Dans une variante non illustrée, la pièce en matériau poreux peut s'étendre le long de l'intégralité de la deuxième face et se prolonger au-delà de celle-ci.
La pièce en matériau poreux 5 permet le drainage du milieu liquide de la barbotine à l'extérieur de la texture fibreuse 1 et son évacuation par l'évent de sortie 16 du fait de l'application d'un gradient de pression entre l'évent de sortie 16 et les ports d'injection 15.
La pièce en matériau poreux 5 présente une épaisseur supérieure ou égale à 0,1 mm. A titre d'exemple, la pièce en matériau poreux 5 peut présenter une épaisseur supérieure ou égale à 1 mm, voire de plusieurs millimètres. Le taux moyen de porosité de la pièce en matériau poreux 5 peut être d'environ 30%. La taille moyenne des pores (D50) de la pièce en matériau poreux 5 peut par exemple être comprise entre 1 pm et 2 pm.
Dans un exemple de réalisation, la pièce en matériau poreux 5 peut être rigide et présenter une forme correspondant à la forme de la préforme et de la pièce en matériau composite à obtenir. Dans ce cas, la pièce en matériau poreux peut par exemple être réalisée par thermoformage. En variante, la pièce en matériau poreux peut être déformable et peut prendre la forme du moule laquelle correspond à la forme de la préforme et de la pièce en matériau composite à obtenir.
Avant mise en œuvre de l'étape b), une pression de compaction permettant de compacter la texture fibreuse 1 entre le moule 3 et le contre-moule 4 peut être appliquée, cette pression de compaction pouvant être maintenue durant l'étape b). En variante, la pression de compaction peut être appliquée après le début de l'injection de la barbotine (i.e. après le début de l'étape b)) et peut ensuite être maintenue. En particulier, la pression de compaction peut être appliquée une fois l'injection de la barbotine terminée et peut ensuite être maintenue. Par exemple, la texture fibreuse peut pendant et/ou après l'étape b) être soumise à une pression de compaction inférieure ou égale à 15 bars, par exemple à 7 bars. La texture fibreuse peut pendant et/ou après l'étape b) être soumise à une pression de compaction supérieure ou égale à 0,3 bar. L'application d'une pression de compaction peut permettre de compacter la texture afin d'aider au drainage du milieu liquide et d'atteindre une épaisseur cible pour la préforme fibreuse sans endommager celle-ci.
Comme mentionné plus haut, la pression de compaction peut être appliquée par un fluide appliqué sur le contre-moule 4 du côté opposé à la cavité de moulage 2.
On a illustré à la figure 2 la configuration obtenue durant l'injection de la barbotine et le drainage du milieu liquide. La barbotine a été injectée par les ports d'injection 15 de manière à pénétrer dans la texture fibreuse 1 au travers de la première face la de la texture fibreuse 1. Les particules réfractaires 20 présentes dans la barbotine sont destinées à permettre la formation d'une matrice céramique réfractaire dans la porosité de la texture fibreuse 1. Cette matrice céramique réfractaire peut, dans un exemple de réalisation, être une matrice d'oxyde réfractaire.
La barbotine peut par exemple être une suspension d'une poudre d'alumine dans de l'eau. La dimension particulaire moyenne (D50) de la poudre d'alumine peut être comprise entre 0,1 pm et 0,3 pm. La poudre d'alumine utilisée peut être une poudre d'alumine alpha commercialisée par la société Baikowski sous la dénomination SM8.
Plus généralement, la barbotine peut être une suspension comportant des particules céramiques réfractaires présentant une dimension particulaire moyenne comprise entre 0,1 pm et 10 pm. La teneur volumique en particules céramiques réfractaires dans la barbotine peut, avant l'étape b), être comprise entre 25% et 40%. Les particules céramiques réfractaires peuvent comporter un matériau choisi parmi : l'alumine, la mullite, la silice, les aluminosilicates, les aluminophosphates, les carbures, les borures, les nitrures et les mélanges de tels matériaux. En fonction de leur composition de base, les particules céramiques réfractaires peuvent, en outre, être mélangées avec des particules d'alumine, de zircone, d'aluminosilicate, d'un oxyde de terre rare, de silicate de terre rare (lequel peut par exemple être utilisé dans les barrières environnementales ou thermiques) ou toute autre charge permettant de fonctionnaliser la pièce en matériau composite à obtenir comme le noir de carbone, le graphite ou le carbure de silicium.
Le milieu liquide de la barbotine peut, par exemple, comporter une phase aqueuse présentant un pH acide (i.e. un pH inférieur à 7) et/ou une phase alcoolique comportant par exemple de l'éthanol. La barbotine peut comporter un acidifiant tel que de l'acide nitrique et le pH du milieu liquide peut par exemple être compris entre 1,5 et 4. La barbotine peut, en outre, comporter un liant organique comme de l'alcool polyvinylique (PVA) lequel est notamment soluble dans l'eau.
Comme illustré à la figure 2, les particules céramiques réfractaires 20 sont présentes après injection de la barbotine dans la porosité de la texture fibreuse 1. Les flèches 21 représentent le mouvement de la barbotine injectée dans la texture fibreuse 1. Les flèches 22 représentent quant à elles le mouvement du milieu liquide de la barbotine drainé par la pièce en matériau poreux 5.
Le contre-moule 4 exerce une pression sur la texture fibreuse 1 pendant et/ou après l'étape b) afin d'accélérer le drainage du milieu liquide.
Un pompage peut, en outre, être réalisé au niveau de l'évent de sortie 16 durant l'étape c), par exemple au moyen d'une pompe à vide primaire. La réalisation d'un tel pompage permet d'améliorer le drainage et de sécher plus rapidement la texture fibreuse.
En alternative ou en combinaison, on peut durant l'étape c) chauffer le milieu liquide encore présent dans la porosité de la texture fibreuse afin d'évaporer ce dernier au travers de la deuxième face de la texture fibreuse et de la pièce en matériau poreux. Par exemple, la température du milieu liquide peut être élevée à une température comprise entre 80°C et 105°C.
Dans cette configuration, la pièce en matériau poreux 5 permet de retenir dans la texture fibreuse 1 les particules céramiques réfractaires 20 initialement présentes dans la barbotine et que tout ou partie de ces particules 20 se déposent par filtration dans la texture fibreuse 1.
Une fois les étapes d'injection et de drainage effectuées, on obtient une préforme fibreuse chargée de particules céramiques réfractaires, par exemple de particules d'oxyde céramique réfractaire, par exemple d'alumine.
La préforme obtenue est ensuite séchée puis démoulée, la préforme pouvant conserver après démoulage la forme adoptée dans la cavité de moulage, par exemple sa forme adoptée après compaction entre le moule et le contre-moule.
La préforme est ensuite soumise à un traitement thermique de frittage, par exemple sous air à une température comprise entre 1000°C et 1200°C afin de fritter les particules céramiques réfractaires et ainsi former une matrice céramique réfractaire dans la porosité de la préforme fibreuse. On obtient alors une pièce en matériau composite, par exemple une pièce en matériau composite Oxyde/Oxyde, munie d'un renfort fibreux formé par la préforme fibreuse et présentant un taux volumique de matrice élevé avec une répartition homogène de la matrice céramique réfractaire dans tout le renfort fibreux.
Une pièce en matériau composite CMC autre que Oxyde/Oxyde peut être obtenue de la même façon en réalisant la texture fibreuse avec des fibres de carbure de silicium et/ou de carbone et en utilisant une barbotine chargée de particules de carbure (par exemple de SiC), de borure (par exemple de TiB2) ou de nitrure (par exemple de S13N4).
On a représenté à la figure 3 une variante de réalisation dans laquelle le contre-moule 4' est déformable. Une pression est exercée sur le contre-moule déformable 4' afin d'assurer le maintien du contre-moule déformable 4' contre la première face la de la texture fibreuse 1. Comme décrit plus haut, le contre-moule 4' peut exercer une pression sur la texture fibreuse 1 durant le procédé. On voit aussi à la figure 3, comme décrit plus haut, la présence de particules réfractaires 20 dans la porosité de la texture fibreuse 1 ainsi que le drainage du milieu liquide de la barbotine injectée (flèches 22).
On a représenté à la figure 4 une variante de réalisation dans laquelle un élément de répartition du flux de barbotine 30 ici sous la forme d'une grille est présent entre la première face la de la texture fibreuse 1 et le port d'injection 15. Cet élément de répartition 30 est au contact de la première face la de la texture fibreuse 1. Cet élément de répartition 30 définit une pluralité de pores 31 dans lesquels la barbotine s'écoule durant l'injection pour rejoindre la première face la de la texture fibreuse 1. Les pores 31 peuvent ou non être régulièrement espacés le long de la première face la de la texture fibreuse 1. L'élément de répartition 30 peut comme illustré définir au moins deux, voire au moins trois, pores 31.
Un tel mode de réalisation permet avantageusement d'accélérer l'obtention d'une distribution uniforme des particules réfractaires dans la texture fibreuse 1.
Bien entendu, on peut coupler la mise en œuvre d'un tel élément de répartition à la réalisation d'une injection de la barbotine au travers d'une pluralité de ports d'injection débouchant dans des zones différentes de la cavité de moulage.
Les autres détails relatifs au procédé mis en œuvre décrits plus haut sont applicables à ce mode de réalisation. En particulier, dans une variante non illustrée, on utilise un contre-moule 4' déformable au lieu du contre-moule 4 rigide.
On a représenté à la figure 5 une variante de réalisation où le moule 3 formant support de la texture fibreuse 1 comporte des parois latérales 3a et 3b au travers desquelles l'injection de la barbotine est réalisée. L'injection est effectuée au travers de bords la' de la texture fibreuse 1. La barbotine est injectée sous pression dans la texture fibreuse 1. Dans l'exemple illustré à la figure 5, le milieu liquide est évacué au travers de la face lb supérieure de la texture fibreuse.
Ainsi, dans le cas de la figure 5, l'injection et le drainage ne sont font pas sur deux côtés opposés de la texture fibreuse. La barbotine est en effet dans ce cas injectée au travers d'un bord la' de la texture fibreuse et le milieu liquide est évacué au travers de la face lb supérieure de la texture fibreuse 1.
L'expression « comportant/comprenant un(e) » doit se comprendre comme « comportant/comprenant au moins un(e) ».
L'expression « compris(e) entre ... et ... » doit se comprendre comme incluant les bornes.

Claims

REVENDICATIONS
Procédé de fabrication d'une préforme fibreuse chargée de particules céramiques réfractaires (20) comportant les étapes suivantes :
a) placement d'une texture fibreuse (1) comportant des fibres céramiques réfractaires dans une cavité de moulage (2) délimitée par un moule (3) et un contre-moule (4 ; 4*), b) injection d'une barbotine, comportant une poudre de particules céramiques réfractaires (20) présente dans un milieu liquide, dans la porosité de la texture fibreuse (1) présente dans la cavité de moulage (2), l'injection étant réalisée au moins au travers d'une première face (la) ou d'un premier bord (la') de ladite texture fibreuse (1), et c) drainage par une pièce en matériau poreux (5) du milieu liquide de la barbotine ayant pénétré dans la texture fibreuse (1), la pièce en matériau poreux ayant une épaisseur supérieure ou égale à 0,1 mm, le drainage étant effectué au moins au travers d'une deuxième face (lb) ou d'un deuxième bord de la texture fibreuse (1) différent de la première face (la) ou du premier bord (la1), ladite pièce en matériau poreux (5) permettant en outre de retenir la poudre de particules réfractaires (20) dans la porosité de la texture fibreuse (1) afin d'obtenir une préforme fibreuse chargée de particules réfractaires (20), la pièce en matériau poreux (5) étant présente entre le moule (3) et la texture fibreuse (1) ou entre le contre-moule (4 ; 1) et la texture fibreuse (1) et la pièce en matériau poreux (5) étant présente entre au moins un évent de sortie (16) et la texture fibreuse (1), un pompage étant effectué au niveau de l'évent de sortie (16) afin de drainer le milieu liquide au travers dudit évent de sortie (16).
2. Procédé selon la revendication 1, caractérisé en ce que le moule (3) constitue un support rigide sur lequel la texture fibreuse (1) est présente et le contre-moule (4) est rigide.
3. Procédé selon la revendication 1, caractérisé en ce que le moule (3) constitue un support rigide sur lequel la texture fibreuse (1) est présente et le contre-moule (4 est déformable.
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le contre-moule (4) exerce une pression sur la texture fibreuse (1) pendant et/ou après l'étape b).
Procédé selon la revendication 4, caractérisé en ce que la texture fibreuse (1) est compactée entre le moule (3) et le contre-moule (4) pendant et/ou après l'étape b).
6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que l'injection de la barbotine est réalisée lors de l'étape b) au travers d'une pluralité de zones différentes de la surface externe de la texture fibreuse (1).
7. Procédé selon la revendication 6, caractérisé en ce que un élément de répartition du flux de barbotine (30) est présent dans la cavité de moulage (2), ledit élément de répartition (30) définissant une pluralité de pores (31) dans lesquels la barbotine s'écoule durant l'étape b) pour rejoindre la première face (la) ou le premier bord (la de la texture fibreuse (1).
8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que l'injection de la barbotine est effectuée d'un premier côté de la texture fibreuse et le drainage du milieu liquide est effectué d'un deuxième côté de la texture fibreuse opposé au premier côté.
9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que la barbotine est injectée lors de l'étape b) au moins au travers d'un bord (la de la texture fibreuse et en ce que le drainage est effectué lors de l'étape c) au moins au travers d'une face (lb) de la texture fibreuse.
10. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce que la barbotine est injectée lors de l'étape b) au moins au travers d'une première face (la) de la texture fibreuse et en ce que le drainage est effectué lors de l'étape c) au moins au travers d'une deuxième face (lb) de la texture fibreuse différente de la première face (la).
11. Procédé selon l'une quelconque des revendications 1 à 10, caractérisé en ce que la barbotine présente, avant l'étape b), une teneur volumique en particules céramiques réfractaires (20) inférieure ou égale à 40%.
12. Procédé selon l'une quelconque des revendications 1 à 11, caractérisé en ce que la barbotine comporte un liant organique.
13. Procédé selon l'une quelconque des revendications 1 à 12, caractérisé en ce que la texture fibreuse (1) comporte des fibres en oxyde réfractaire et en ce que les particules réfractaires sont en oxyde réfractaire.
14. Procédé selon l'une quelconque des revendications 1 à 13, caractérisé en ce qu'une pression inférieure ou égale à 950 mbar est imposée au niveau de l'évent de sortie (16) durant l'étape c).
15. Procédé selon l'une quelconque des revendications 1 à 14, caractérisé en ce que la barbotine est injectée sous pression lors de l'étape b).
16. Procédé selon la revendication 15, caractérisé en ce que la barbotine est injectée lors de l'étape b) avec une pression d'injection supérieure ou égale à 1,1 bar, par exemple comprise entre 1,1 bar et 6 bars.
17. Procédé selon l'une quelconque des revendications 1 à 16, caractérisé en ce que la texture fibreuse est réalisée directement en une seule pièce par tissage tridimensionnel.
18. Procédé de fabrication d'une pièce en matériau composite comportant l'étape suivante :
d) fritter les particules réfractaires (20) présentes dans la préforme fibreuse obtenue après mise en œuvre d'un procédé selon l'une quelconque des revendications 1 à 17 afin de former une matrice réfractaire dans la porosité de ladite préforme.
PCT/FR2015/053621 2014-12-23 2015-12-18 Procédé de fabrication d'une préforme fibreuse chargée de particules céramiques réfractaires WO2016102839A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2972170A CA2972170C (fr) 2014-12-23 2015-12-18 Procede de fabrication d'une preforme fibreuse chargee de particules ceramiques refractaires
US15/538,982 US10239795B2 (en) 2014-12-23 2015-12-18 Method of fabricating a fiber preform filled with refractory ceramic particles
CN201580075954.1A CN107206624A (zh) 2014-12-23 2015-12-18 制造填充有耐火陶瓷颗粒的纤维预制件的方法
EP15823672.9A EP3237660B1 (fr) 2014-12-23 2015-12-18 Procédé de fabrication d'une préforme fibreuse chargée de particules céramiques réfractaires

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1463286A FR3030505B1 (fr) 2014-12-23 2014-12-23 Procede de fabrication d'une preforme fibreuse chargee de particules ceramiques refractaires
FR1463286 2014-12-23

Publications (1)

Publication Number Publication Date
WO2016102839A1 true WO2016102839A1 (fr) 2016-06-30

Family

ID=52779827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2015/053621 WO2016102839A1 (fr) 2014-12-23 2015-12-18 Procédé de fabrication d'une préforme fibreuse chargée de particules céramiques réfractaires

Country Status (6)

Country Link
US (1) US10239795B2 (fr)
EP (1) EP3237660B1 (fr)
CN (1) CN107206624A (fr)
CA (1) CA2972170C (fr)
FR (1) FR3030505B1 (fr)
WO (1) WO2016102839A1 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017060601A1 (fr) * 2015-10-05 2017-04-13 Safran Aircraft Engines Procede de fabrication d'une piece en materiau composite ceramique par injection sous pression d'une barbotine chargee dans un moule poreux
WO2018162827A1 (fr) * 2017-03-07 2018-09-13 Safran Ceramics Procédé de réalisation d'une préforme fibreuse consolidée
FR3071245A1 (fr) * 2017-09-21 2019-03-22 Safran Ceramics Procede d'injection d'une barbotine chargee dans une texture fibreuse
WO2019058050A1 (fr) 2017-09-19 2019-03-28 Safran Ceramics Procede d'injection d'une suspension chargee dans une texture fibreuse et procede de fabrication d'une piece en materiau composite
WO2019068996A1 (fr) 2017-10-03 2019-04-11 Safran Ceramics Realisation en materiau composite d'une structure a lobes de melangeur de flux
WO2019129983A1 (fr) 2017-12-28 2019-07-04 Safran Ceramics Procede de fabrication d'une piece en materiau composite par injection de poudre dans un renfort fibreux avec drainage par strate de filtration composite
WO2019197757A1 (fr) * 2018-04-13 2019-10-17 Safran Ceramics Procede de fabrication d'une piece en materiau composite par injection d'une barbotine ceramique chargee dans une texture fibreuse
EP3642031B1 (fr) * 2017-06-23 2021-10-06 Safran Ceramics Procédé de fabrication d'une préforme fibreuse chargée de particules
US11285638B2 (en) * 2016-04-25 2022-03-29 Safran Method of fabricating a composite material part by injecting a filled slurry into a fiber texture
FR3123819A1 (fr) 2021-06-15 2022-12-16 Safran Ceramics Procédé d’injection de poudres céramiques avec filtre crée in situ dans la préforme fibreuse
FR3132458A1 (fr) 2022-02-10 2023-08-11 Safran Nacelles Procédé de fabrication d’une pièce en matériau composite

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10144065B2 (en) 2015-01-07 2018-12-04 Kennametal Inc. Methods of making sintered articles
ITUB20160498A1 (it) * 2016-01-27 2017-07-27 Consiglio Nazionale Ricerche Materiali compositi a base di fibre C/SiC con matrice ultrarefrattaria ad alta tenacità e resistenza all’ablazione
US11065863B2 (en) 2017-02-20 2021-07-20 Kennametal Inc. Cemented carbide powders for additive manufacturing
FR3071246B1 (fr) 2017-09-21 2022-05-06 Safran Ceram Procede de fabrication d'une piece en cmc
FR3072672B1 (fr) 2017-10-24 2019-11-08 Safran Ceramics Installation pour le depot d'une meche chargee mise en forme
US11998987B2 (en) 2017-12-05 2024-06-04 Kennametal Inc. Additive manufacturing techniques and applications thereof
CA3088532A1 (fr) * 2018-01-19 2019-07-25 Albany Engineered Composites, Inc. Procede de fabrication d'un composite a matrice ceramique
FR3087194B1 (fr) 2018-10-12 2021-02-26 Safran Aircraft Engines Procede de fabrication d'une piece en materiau composite avec controle de conformite
FR3090627B1 (fr) 2018-12-21 2021-01-15 Safran Ceram Outillage et procédé de fabrication d’une pièce en matériau composite par voie liquide
CN109624025B (zh) * 2018-12-28 2024-07-19 广西晶联光电材料有限责任公司 一种氧化物靶材的注浆成型模具和方法
WO2020198245A1 (fr) * 2019-03-25 2020-10-01 Kennametal Inc. Techniques de fabrication additive et leurs applications
FR3096299B1 (fr) * 2019-05-23 2023-05-12 Safran Procédé de fabrication d’une pièce en matériau composite par injection d’une barbotine chargée dans une texture fibreuse
CN114080311B (zh) * 2019-07-11 2024-04-12 赛峰航空器发动机 通过将填充浆料注射到纤维织构中而由复合材料制造部件的方法
US20210355038A1 (en) * 2020-05-12 2021-11-18 Goodrich Corporation Methods and systems for in-plane slurry infiltration of composite preforms
FR3118030B1 (fr) * 2020-12-18 2023-09-01 Safran Ceram Procédé de fabrication d’une pièce en matériau composite à matrice céramique
CN112895115B (zh) * 2021-01-14 2022-04-15 北京建筑大学 一种组合式bfrp-frcm复合层钢模具及使用方法
DE102021132136A1 (de) * 2021-12-07 2023-06-07 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren und Vorrichtung zur Herstellung keramischer Faserkomposite mit variabler Geometrie
FR3137320A1 (fr) 2022-06-29 2024-01-05 Safran Nacelles Outillage et procédé d’infiltration d’une barbotine dans une préforme textile

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2326275A1 (fr) * 1975-10-01 1977-04-29 Gremigni Giuseppe Outillage pour le moulage par injection en fibro-ciment, par exemple en amiante-ciment et produits similaires
FR2702475A1 (fr) * 1993-03-08 1994-09-16 Agency Ind Science Techn Procédé de fabrication de céramiques renforcées par des fibres disposées dans trois dimensions, et appareil pour mettre en Óoeuvre ce procédé.
US5436042A (en) * 1994-03-11 1995-07-25 The Carborundum Company Ceramic fiber-reinforced composite articles and their production
EP2181974A1 (fr) * 2008-10-31 2010-05-05 AVIO S.p.A. Procédé pour la production de composants fabriqués à partir d'un matériau composite à matrice céramique
FR2958933A1 (fr) * 2010-04-20 2011-10-21 Onera (Off Nat Aerospatiale) Procede d'elaboration d'une piece composite a matrice ceramique
US20120217670A1 (en) * 2003-06-27 2012-08-30 Polyvalor, Limited Partnership Manufacture of Composites by a Flexible Injection Process Using a Double or Multiple Cavity Mold

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316462A (en) * 1993-02-18 1994-05-31 William Seemann Unitary vacuum bag for forming fiber reinforced composite articles
CN102896782B (zh) * 2011-07-29 2014-12-24 深圳光启高等理工研究院 一种介质基板的制备方法
CN102700203B (zh) * 2012-06-15 2014-10-29 哈尔滨工业大学 一种具有压电阻尼的碳纤维复合材料层合板的制备方法
US10525642B2 (en) * 2013-06-20 2020-01-07 Gkn Aerospace Services Structures Llc Method for infusing resin into a composite laminate
CN103979918B (zh) * 2014-05-30 2016-06-01 秦菊霞 一种纤维增强防火保温板及其制备工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2326275A1 (fr) * 1975-10-01 1977-04-29 Gremigni Giuseppe Outillage pour le moulage par injection en fibro-ciment, par exemple en amiante-ciment et produits similaires
FR2702475A1 (fr) * 1993-03-08 1994-09-16 Agency Ind Science Techn Procédé de fabrication de céramiques renforcées par des fibres disposées dans trois dimensions, et appareil pour mettre en Óoeuvre ce procédé.
US5436042A (en) * 1994-03-11 1995-07-25 The Carborundum Company Ceramic fiber-reinforced composite articles and their production
US20120217670A1 (en) * 2003-06-27 2012-08-30 Polyvalor, Limited Partnership Manufacture of Composites by a Flexible Injection Process Using a Double or Multiple Cavity Mold
EP2181974A1 (fr) * 2008-10-31 2010-05-05 AVIO S.p.A. Procédé pour la production de composants fabriqués à partir d'un matériau composite à matrice céramique
FR2958933A1 (fr) * 2010-04-20 2011-10-21 Onera (Off Nat Aerospatiale) Procede d'elaboration d'une piece composite a matrice ceramique

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHIH-YUAN CHANG: "Modeling and evaluation of the filling process of vacuum-assisted compression resin transfer molding", JOURNAL OF POLYMER ENGINEERING, WALTER DE GRUYTER GMBH, DE, vol. 33, no. 3, 1 May 2013 (2013-05-01), pages 211 - 219, XP008176406, ISSN: 0334-6447, DOI: 10.1515/POLYENG-2012-0160 *
HATICE SINEM SAS ET AL: "Modeling of particle-resin suspension impregnation in compression resin transfer molding of particle-filled, continuous fiber reinforced composites", HEAT AND MASS TRANSFER, vol. 50, no. 3, 13 December 2013 (2013-12-13), pages 397 - 414, XP055191097, ISSN: 0947-7411, DOI: 10.1007/s00231-013-1275-z *

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10954169B2 (en) 2015-10-05 2021-03-23 Safran Aircraft Engines Process for manufacturing a ceramic composite material part by pressurized injection of a loaded slurry into a porous mould
WO2017060601A1 (fr) * 2015-10-05 2017-04-13 Safran Aircraft Engines Procede de fabrication d'une piece en materiau composite ceramique par injection sous pression d'une barbotine chargee dans un moule poreux
US11285638B2 (en) * 2016-04-25 2022-03-29 Safran Method of fabricating a composite material part by injecting a filled slurry into a fiber texture
WO2018162827A1 (fr) * 2017-03-07 2018-09-13 Safran Ceramics Procédé de réalisation d'une préforme fibreuse consolidée
FR3063725A1 (fr) * 2017-03-07 2018-09-14 Safran Ceramics Procede de realisation d'une preforme fibreuse consolidee
US11332411B2 (en) 2017-03-07 2022-05-17 Safran Method for producing a consolidated fiber preform
EP3642031B1 (fr) * 2017-06-23 2021-10-06 Safran Ceramics Procédé de fabrication d'une préforme fibreuse chargée de particules
WO2019058050A1 (fr) 2017-09-19 2019-03-28 Safran Ceramics Procede d'injection d'une suspension chargee dans une texture fibreuse et procede de fabrication d'une piece en materiau composite
US11655193B2 (en) 2017-09-19 2023-05-23 Safran Ceramics Method for injecting a loaded suspension into a fibrous texture and method for manufacturing a part made of composite material
JP2020534243A (ja) * 2017-09-21 2020-11-26 サフラン セラミクス 充填されたスラリーを繊維質テクスチャに注入する方法
RU2764203C2 (ru) * 2017-09-21 2022-01-14 Сафран Серамикс Способ нагнетания содержащего наполнитель шликера в волокнистую структуру
US11255203B2 (en) 2017-09-21 2022-02-22 Safran Ceramics Method for injecting a loaded slurry into a fibrous texture
WO2019058054A1 (fr) 2017-09-21 2019-03-28 Safran Ceramics Procédé d'injection d'une barbotine chargée dans une texture fibreuse
FR3071245A1 (fr) * 2017-09-21 2019-03-22 Safran Ceramics Procede d'injection d'une barbotine chargee dans une texture fibreuse
US11667089B2 (en) 2017-10-03 2023-06-06 Safran Ceramics Production in composite material of a lobed structure of a flow mixer
WO2019068996A1 (fr) 2017-10-03 2019-04-11 Safran Ceramics Realisation en materiau composite d'une structure a lobes de melangeur de flux
FR3076242A1 (fr) * 2017-12-28 2019-07-05 Safran Ceramics Procede de fabrication d'une piece en materiau composite par injection de poudre dans un renfort fibreux avec drainage par strate de filtration composite
US12053957B2 (en) 2017-12-28 2024-08-06 Safran Ceramics Method for the production of a part made from a composite material, by means of the injection of powder into a fibrous reinforcement with drainage through a composite filtration layer
CN111542431A (zh) * 2017-12-28 2020-08-14 赛峰航空陶瓷技术公司 通过将粉末注入纤维增强件并由复合过滤层排出,制备由复合材料制成的部件的方法
WO2019129983A1 (fr) 2017-12-28 2019-07-04 Safran Ceramics Procede de fabrication d'une piece en materiau composite par injection de poudre dans un renfort fibreux avec drainage par strate de filtration composite
US11045974B2 (en) 2018-04-13 2021-06-29 Safran Ceramics Method for manufacturing a part made from a composite material by means of the injection of a laden ceramic slurry into a fibrous structure
FR3080113A1 (fr) * 2018-04-13 2019-10-18 Safran Ceramics Procede de fabrication d'une piece en materiau composite par injection d'une barbotine chargee dans une texture fibreuse
WO2019197757A1 (fr) * 2018-04-13 2019-10-17 Safran Ceramics Procede de fabrication d'une piece en materiau composite par injection d'une barbotine ceramique chargee dans une texture fibreuse
WO2022263741A1 (fr) 2021-06-15 2022-12-22 Safran Ceramics Procede d'injection de poudres ceramiques avec filtre cree in situ dans la preforme fibreuse
FR3123819A1 (fr) 2021-06-15 2022-12-16 Safran Ceramics Procédé d’injection de poudres céramiques avec filtre crée in situ dans la préforme fibreuse
US12115696B2 (en) 2021-06-15 2024-10-15 Safran Ceramics Method for injecting ceramic powders with filter created in situ in the fibrous preform
FR3132458A1 (fr) 2022-02-10 2023-08-11 Safran Nacelles Procédé de fabrication d’une pièce en matériau composite
WO2023152441A1 (fr) 2022-02-10 2023-08-17 Safran Nacelles Procede de fabrication d'une piece en materiau composite

Also Published As

Publication number Publication date
EP3237660A1 (fr) 2017-11-01
CA2972170A1 (fr) 2016-06-30
FR3030505A1 (fr) 2016-06-24
FR3030505B1 (fr) 2019-07-12
CA2972170C (fr) 2023-01-10
CN107206624A (zh) 2017-09-26
US20170369382A1 (en) 2017-12-28
EP3237660B1 (fr) 2018-12-05
US10239795B2 (en) 2019-03-26

Similar Documents

Publication Publication Date Title
EP3237660B1 (fr) Procédé de fabrication d'une préforme fibreuse chargée de particules céramiques réfractaires
FR3050454B1 (fr) Procede de fabrication d'une piece en materiau composite par injection d'une barbotine chargee dans une texture fibreuse
EP3359506B1 (fr) Procédé de fabrication d'une pièce en matériau composite céramique par injection sous pression d'une barbotine chargée dans un moule poreux
EP3237358B1 (fr) Procédé de fabrication d'une pièce réfractaire en matériau composite
EP3237359B1 (fr) Procédé de fabrication d'une pièce en matériau composite
WO2019197757A1 (fr) Procede de fabrication d'une piece en materiau composite par injection d'une barbotine ceramique chargee dans une texture fibreuse
FR3071245B1 (fr) Procede d'injection d'une barbotine chargee dans une texture fibreuse
WO2018234669A1 (fr) Procede de fabrication d'une piece en materiau composite presentant une ou plusieurs variations locales d'epaisseur
EP3996889B1 (fr) Procede de fabrication d'une piece en materiau composite par injection d'une barbotine chargee dans une texture fibreuse
EP3863992B1 (fr) Procédé de fabrication d'une pièce en matériau composite avec contrôle de conformité
WO2020234550A1 (fr) Procede de fabrication d'une piece en materiau composite par injection d'une barbotine chargee dans une texture fibreuse
WO2022079379A1 (fr) Texture fibreuse non tissee avec embuvage
FR3114990A1 (fr) Texture fibreuse comprenant des plis unidirectionnels avec des mèches espacées
EP4355542A1 (fr) Procede d'injection de poudres ceramiques avec filtre cree in situ dans la preforme fibreuse

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15823672

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015823672

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15538982

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2972170

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE