WO2016101900A1 - 机械式蒸汽再压缩系统及其方法 - Google Patents

机械式蒸汽再压缩系统及其方法 Download PDF

Info

Publication number
WO2016101900A1
WO2016101900A1 PCT/CN2015/098649 CN2015098649W WO2016101900A1 WO 2016101900 A1 WO2016101900 A1 WO 2016101900A1 CN 2015098649 W CN2015098649 W CN 2015098649W WO 2016101900 A1 WO2016101900 A1 WO 2016101900A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
outlet
inlet
evaporator
collection zone
Prior art date
Application number
PCT/CN2015/098649
Other languages
English (en)
French (fr)
Inventor
杨志明
刘明通
Original Assignee
登福机械(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201420854210.2U external-priority patent/CN204767452U/zh
Priority claimed from CN201410838000.9A external-priority patent/CN105771288A/zh
Application filed by 登福机械(上海)有限公司 filed Critical 登福机械(上海)有限公司
Priority to US15/539,550 priority Critical patent/US20180133617A1/en
Priority to EP15871968.2A priority patent/EP3238797A4/en
Publication of WO2016101900A1 publication Critical patent/WO2016101900A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/10Vacuum distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/28Evaporating with vapour compression
    • B01D1/2887The compressor is integrated in the evaporation apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/28Evaporating with vapour compression
    • B01D1/284Special features relating to the compressed vapour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/30Accessories for evaporators ; Constructional details thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0057Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
    • B01D5/006Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with evaporation or distillation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/041Treatment of water, waste water, or sewage by heating by distillation or evaporation by means of vapour compression

Definitions

  • the present application relates to a mechanical vapor recompression system and method therefor.
  • MVR Mechanism Vapor Recompression
  • the secondary steam of the evaporator can not be directly used as the heat source of the effect, and can only be used as the secondary or secondary heat source. If it is used as an effective heat source, it must be additionally energized to increase its temperature (pressure).
  • the steam jet pump can only compress part of the secondary steam, while the MVR system compresses all secondary steam in the evaporator.
  • the solution is circulated in a heating tube through a material circulation pump in a falling film evaporator.
  • the initial steam uses waste steam to heat outside the tube, and the solution is heated and boiled to generate secondary steam.
  • the generated secondary steam is sucked by the Roots booster fan.
  • the secondary steam temperature is increased and used as clean steam for the user. .
  • the secondary steam is used as a heat source to heat the clean water, so that the source continuously circulates and evaporates.
  • the MVR evaporator uses low-temperature and low-pressure steaming technology and clean energy as “electric energy” to generate steam and separate the moisture from the medium.
  • MVR is the most advanced evaporation technology in the world and is an upgraded product that replaces traditional evaporators.
  • the mechanical vapor recompression system can include an evaporator and a first separation tank and a second separation tank.
  • the first A separation tank and a second separation tank may each be a cavity having a fluid collection region therein.
  • the evaporator receives a mixture of waste steam and water at a first temperature from a steam source and releases heat to the received mixture of waste steam and water for cooling to form a mixture of waste steam and water at a second temperature.
  • the second separation tank separates the mixture of the second temperature to separate the waste steam and water therein, and filters the separated water, feeds it to the first separation tank, and replenishes the water at normal temperature.
  • a mechanical vapor recovery system may include an evaporator, a first chamber, a first fluid collection region, a second chamber, and an blast pump.
  • the evaporator has a first inlet, a second inlet, a first outlet, and a second outlet, the first inlet and the first outlet forming opposite ends of the high temperature fluid receiving passage, the second inlet and the second outlet Forming an opposite end of the cryogenic fluid receiving passage, and there is no opening to the other side between the high temperature fluid receiving passage and the cryogenic fluid receiving passage;
  • the first cavity includes a void space and has an inlet to the void space, the inlet being fluidly coupled to the first outlet in a fluid receiving direction of the first outlet of the evaporator;
  • a first fluid collection region fluidly coupled to the inlet in a fluid receiving direction of the inlet of the first chamber, the fluid collection region having an outlet from the collection region, the outlet being passed from the collection region
  • An outlet is in fluid communication with the second inlet of the evaporator, the second inlet of the evaporator being located at a fluid receiving location relative to the outlet of the first fluid collection region.
  • the second cavity includes a void space and an inlet to the void space, an inlet of the second cavity being fluidly coupled to the second outlet of the evaporator and located at the second outlet of the evaporator The fluid receiving position, the second cavity having an outlet outwardly from its void space opening.
  • An blast pump has a fluid inlet fluidly coupled to the outlet of the second cavity, the fluid inlet being located at a fluid receiving location relative to the outlet of the second cavity, and
  • a first fluid having a first temperature is located in the high temperature fluid receiving passage, the first fluid is received to a steam source and comprises a mixture of gaseous and liquid water;
  • a second fluid having a second temperature is located in the cryogenic fluid receiving passage, and the second fluid comprises a mixture of gaseous and liquid water;
  • the first fluid in the high temperature fluid receiving passage is a current supply from the steam source, the steam source being fluidly coupled to the first inlet of the evaporator, the cryogenic fluid receiving passageway
  • the second fluid includes, at least in part, a fluid previously supplied by the source of steam; the second fluid in the cryogenic fluid receiving passage has been at least partially collected in the fluid collection zone.
  • a method for mechanical vapor recompression can include: a first fluid supply from a steam source to a high temperature fluid receiving passage of an evaporator, the first fluid supply comprising liquid and gaseous water a mixture; collecting liquid water in the first fluid supply; flowing the collected liquid water to a cryogenic fluid receiving passage in the evaporator; flowing gaseous water subsequently supplied by the steam source to the evaporator a high temperature fluid receiving passage; transferring heat from a subsequently supplied gaseous water in the high temperature fluid receiving passage in the evaporator to liquid water collected in the cryogenic fluid receiving passage in the evaporator; passing the heat Transfer increases the temperature of the collected liquid water; converts at least a portion of the liquid water collected in the cryogenic fluid receiving passage into gaseous water; further heats the water changed to a gaseous state; and heats the further heated gaseous water Return to the steam source.
  • At least the water generated by the steam can be recycled.
  • the first cavity and the first fluid collection zone form at least a portion of a separator and/or a condenser.
  • the second cavity and the second fluid collection zone form at least a portion of an evaporator and/or separator.
  • the region of the cryogenic fluid receiving channel proximate the outlet of the evaporator has a thousand times volume compared to the region of the cryogenic fluid receiving channel proximate the inlet of the evaporator Swell.
  • the first cavity has an outlet leading out of its void space, the outlet being fluidly connected to the fan, a gaseous state separated from the first fluid in the first fluid collection zone The water is drawn out by the fan through the outlet of the first cavity, and is discharged as waste steam.
  • MVR mechanical vapor recompression
  • FIG. 2 is a schematic diagram of implementation of an MVR system according to an embodiment of the present application.
  • FIG. 3 is a mechanical vapor recompression method in accordance with an embodiment of the present application.
  • FIG. 1 illustrates a mechanical vapor recompression (MVR) system 100 in accordance with an embodiment of the present application.
  • 2 is a specific implementation example of the system 100 shown in FIG. 1.
  • system 100 includes an evaporator 20.
  • the evaporator 20 may be a partition wall heat exchange device which operates on a low temperature and low pressure liquid state to vaporize heat on one side of the heat transfer wall so that the medium on the other side of the heat transfer wall is cooled.
  • horizontal shell and tube evaporators and riser type cold water tanks in the art can be used.
  • the evaporator 20 may have a high temperature fluid receiving passage 21a and a low temperature fluid receiving passage 21b.
  • the high temperature fluid receiving passage 21a includes a first inlet 20a and a first outlet 20c
  • the low temperature fluid receiving passage 21b has a second inlet 20b and the second outlet 20d.
  • the region of the cryogenic fluid receiving passage 21b adjacent to the outlet 20d has a thousand-fold volume expansion than the first region, as compared with the first region of the cryogenic fluid receiving passage 21b adjacent to the inlet 20b.
  • the MVR system 100 continuously receives a mixture of high temperature liquid and gaseous water generated from the steam source 10 through the high temperature fluid passage 21a.
  • the evaporator 20 receives the high temperature mixture through the first inlet 20a and passes it through the high temperature fluid receiving passage 21a. There is no opening to the other side between the high temperature fluid receiving passage 21a and the low temperature fluid receiving passage 21b, so that the fluid in the low temperature fluid receiving passage 21b exchanges heat through the walls of the receiving passages 21a and 21b.
  • the high temperature fluid receiving passage 21a exchanges heat with the fluid in the low temperature fluid receiving passage 21b, which is high temperature.
  • the mixture releases heat for cooling, for example, the cooled mixture becomes a mixture of 90 C of waste steam and water.
  • system 100 further includes a first separator and/or condenser including at least a first cavity 30 and a first fluid collection zone 31 formed by the cavity.
  • the first cavity 30 has a void space and An inlet 30a leading to the void space.
  • the inlet 30a is located in the fluid receiving direction of the first outlet 20c of the evaporator 20 and is fluidly connected to the first outlet 20c.
  • the first fluid collection zone 31 is fluidly coupled to the inlet 30a in the fluid receiving direction of the inlet 30a of the first cavity 30.
  • the fluid of the high temperature fluid passage 20a of the evaporator 20 After the fluid of the high temperature fluid passage 20a of the evaporator 20 is heat-exchanged with the fluid in the low temperature fluid passage 20b, it is collected in the first fluid collection zone 31 via the first outlet 20c and the inlet 30a.
  • the mixture formed after the temperature is lowered is separated, that is, the gaseous water is separated from the liquid water.
  • the first cavity 30 has an outlet 30b to which the blower 35 is fluidly coupled.
  • the gaseous water (waste steam) separated in the first fluid collecting zone 31 is taken out by the blower 35, for example, through the outlet 30b, and is discharged as waste steam; and the separated liquid water is discharged from the first fluid collecting zone 31.
  • the outgoing outlet 31a flows out.
  • the second separator and/or condenser receives liquid water flowing from the first fluid collection zone 31 via the outlet 31a.
  • the second separator and/or condenser includes at least a second cavity 32 and a second fluid collection zone 34.
  • the second cavity 32 includes a void space and an inlet 32a leading to the void space.
  • the inlet 32a of the second chamber 32 is fluidly connected to the second outlet 20d of the evaporator 20 and is located at the fluid receiving position of the second outlet 20d of the evaporator 20, i.e., the inlet 32a of the second chamber 32 and the evaporator 20
  • the cryogenic fluid passage 20b is fluidly connected.
  • the second fluid collection zone 34 has an inlet 34a and an outlet 34b.
  • the second fluid collection zone 34 is in fluid connection with an inlet 32a that leads to the second cavity 32.
  • the inlet 34a of the second fluid collection zone 34 is in fluid communication with the outlet 31a of the first fluid collection zone 31 and at the fluid receiving location of the outlet 31a of the first fluid collection zone 31.
  • the liquid water collected in the first chamber 30 passes through its outlet side 31a, flows under the action of the pump 50 to the inlet 34a of the second fluid collection zone 34, and is collected in the second fluid collection zone 34 via the inlet 34a.
  • a filter 60 may also be disposed between the first fluid collection zone 31 and the second fluid collection zone 34, and the liquid water flowing out of the outlet 31a of the first fluid collection zone 31 is filtered through the filter 60. After the impurities, they are delivered to the second fluid collection zone 34.
  • the outlet 34b of the second fluid collection zone 34 is in fluid communication with the second inlet 20b of the evaporator 20, and the second inlet 20b of the evaporator 20 is located at a fluid receiving location relative to the outlet 34b of the second fluid collection zone 34.
  • the collected liquid water in the second fluid collection zone 34 is passed through the circulation pump 40, from the outlet 34b of the second fluid collection zone 34 along the low temperature side passage 21b of the evaporator 20 until the The inlet 32a of the two chamber 32 forms a fluid circuit.
  • the interior of the second fluid collection zone 34 formed in the vacuum chamber 32 is evacuated by a fan.
  • an air pressure of, for example, 57.8 kPa (a) may be formed to cause the collected liquid water to flow to the vacuum chamber 32. A part of it changes to a gaseous state.
  • the second cavity 32 also has an inlet 32c inwardly from its void space opening through which ambient water (eg, 20 ° C) can be added from the outside to the second fluid collection zone 34 (eg, clean ambient temperature) Water) to compensate for the waste steam discharged from the first fluid collection zone 31.
  • the second chamber 32 also has another outlet 32b with the fluid inlet 33a of the blower pump 33 in fluid communication with the outlet 32b, the fluid inlet 33a being in a fluid receiving position relative to the outlet 32b of the second chamber 32.
  • a high temperature mixture of a mixture of gaseous and liquid water received from the steam source 10 is located in the high temperature fluid receiving passage 21a, and a second fluid having a relatively low temperature is located in the low temperature fluid receiving passage 21b.
  • the heat of the fluid in the high temperature fluid receiving passage 21a is transferred to the second fluid in the low temperature fluid receiving passage 21b by heat exchange.
  • the fluid in the high temperature fluid receiving passage 21a is the current supply from the steam source 10, i.e., the high temperature fluid receiving passage 21a receives the liquid and gaseous mixture supply from the steam source 10 in real time.
  • the fluid in the cryogenic fluid receiving passage 21b at least partially includes the fluid previously supplied by the steam source 10.
  • the steam source 10 is fluidly coupled to a heat source of the boiler assembly, which may include, for example, oil and noodles.
  • a mechanical vapor recompression method 200 in accordance with one embodiment of the present application is described below with reference to FIG.
  • the interaction between the various components described above in a mechanical vapor recompression system will be better understood by the description of the mechanical vapor recompression method 200.
  • the mechanical vapor recovery method 200 begins with a step S201 of receiving a first fluid supply comprising a mixture of liquid water and gaseous water from a steam source 10 and transferring the first fluid supply from the steam source 10 to a high temperature fluid passage 21a of the evaporator 20. .
  • the liquid water in the first fluid supply is collected by the first fluid collection zone 31.
  • a mixture of liquid and gaseous water, such as 100 to 105 ° C, generated by steam source 10 enters the MVR system and enters evaporator 20 via pneumatic ball valve V10.
  • the mixture of liquid and gaseous water after releasing heat in the evaporator 20, becomes a mixture of water and waste vapor liquid, for example, 90 ° C, into the first fluid collection zone 31.
  • the waste steam is separated, extracted by the fan through the pneumatic regulating valve V12, and discharged as waste steam; and the separated liquid water is collected in the first fluid collecting zone 31.
  • step S203 the collected liquid water is flowed to the cryogenic fluid receiving passage in the evaporator.
  • the collected liquid water is drawn into the second fluid collection zone 34 by a water pump via a V34 pneumatic ball valve.
  • the water is filtered by the filter 40 prior to entering the second fluid collection zone 34.
  • the liquid water collected in the second fluid collection zone 34 flows through the outlet 34b thereof into the cryogenic fluid receiving passage 21b.
  • step S204 the mixture of the liquid and gaseous water subsequently supplied by the steam source 10 is supplied to the high temperature fluid passage 21a in the evaporator 20, and the heat in the subsequently supplied gaseous water in the high temperature fluid receiving passage 21a is transferred to the evaporator ( The liquid water collected in the cryogenic fluid receiving passage 21b in 20) increases the temperature of the collected liquid water by the transfer of heat.
  • step S205 the heat transferred liquid water is collected through the second fluid collection zone 34.
  • the second fluid collection zone 34 formed by the vacuum chamber 32 has a pressure of vacuum, and the vacuum pressure is sufficiently high to further change a portion of the collected liquid water flowing into the vacuum chamber 32 to a gaseous state, thereby passing through the blower. Water that changes to a gaseous state is delivered to return the gaseous water to the steam source 10.
  • clean water of, for example, 20 ° C may be added to the second fluid collection zone 34 to compensate for the exhaust gas discharged in the first fluid collection zone 31.
  • water such as 65 ° C is formed after mixing with hot water such as 90 ° C in the collection example in the first fluid collection zone 31.
  • 65 ° C of water is pumped through the opening 34b through the opening 34b to the low temperature fluid passage 21b of the evaporator 20, and after exchanging heat with the high temperature liquid and gaseous mixture of the high temperature passage 21a of the evaporator 20 from the steam source 10, for example, 100 to 105 ° C, Water or steam of, for example, 85 ° C is formed.
  • the pump 1 (frequency conversion) speeds up the pumping frequency, increases the heat exchange with the fluid in the high temperature passage, and raises the water temperature to, for example, 85 °C.
  • the inside of the second fluid collection zone 34 is evacuated by a fan.
  • an air pressure of, for example, 57.8 kPa (a) may be formed, thereby causing the water of 85 ° C to be vaporized into steam, after passing through the pneumatic ball valve V20, and then The fan is compressed to, for example, 120 to 140 KPa (a), at which time the steam temperature is raised to, for example, 105 to 110 ° C, and after passing through the check valve V23 and the manual shutoff valve V24, the steam source 10 is supplied.
  • the user in order not to affect the normal production of the user, the user needs to install a check valve V15 at the steam inlet of the steamer 10, and a pneumatic ball valve V11 at the waste steam outlet.
  • the pneumatic ball valve V11 is linked with the pneumatic ball valve V10: When the MVR system 100 is working normally, V10 is turned on and V11 is turned off; when the MVR system is normally stopped or stopped due to a fault, V11 is turned on and V10 is turned off.
  • the check valve V15 When the supply pressure of the MVR system 100 is less than a predetermined value (for example, 120 KPa (a)), the check valve V15 is opened, the original steam The system supplies steam to the steamer 10; when the steam pressure generated by the MVR system 100 reaches a predetermined value (120 KPa (a)), the check valve V15 is closed, so that the normal production of the user is not affected.
  • a predetermined value for example, 120 KPa (a)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

一种机械式蒸汽再压缩系统及蒸汽回收方法,该系统包括:蒸发器(20)、第一腔体(30)、第一流体收集区(31)、第二腔体(32)以及鼓风式泵(33);蒸发器(20)具有高温流体接收通道(21a)和低温流体接收通道(21b);该方法包括:使第一流体从蒸汽源(10)流到蒸发器(20)的高温流体接收通道(21a),将收集的第一流体供应中的液态水流到低温流体接收通道(21b),高温流体接收通道(21a)中的气态水的热传递到低温流体接收通道(21b)中的收集的液态水;将低温流体接收通道(21b)中收集的液态水中的至少一部分转换为气态的水,将进一步加热的气态水返回到蒸汽源(10)。

Description

机械式蒸汽再压缩系统及其方法 技术领域
本申请涉及一种机械式蒸汽再压缩系统及其方法。
背景技术
MVR(Mechanical Vapor Recompression;机械式蒸汽再压缩)系统是二十世纪九十年代末开发出来的一种新型高效节能蒸发设备。其工作过程是低温位的蒸汽经压缩机压缩,温度、压力提高和热焓增加后进入换热器冷凝,以充分利用蒸汽的潜热。除开车启动外,整个蒸发过程中无需生蒸汽。
多效蒸发过程中,蒸发器某一效的二次蒸汽不能直接作为本效热源,只能作为次效或次几效的热源。如作为本效热源必须额外给其能量,使其温度(压力)提高。蒸汽喷射泵只能压缩部分二次蒸汽,而MVR系统则可压缩蒸发器中所有的二次蒸汽。
溶液在一个降膜蒸发器里,通过物料循环泵在加热管内循环。初始蒸汽用废蒸汽在管外给热,将溶液加热沸腾产生二次汽,产生的二次汽由罗茨增压风机吸入,经增压后,二次汽温度提高,作为洁净蒸汽供用户使用。正常启动后,二次蒸汽再作为热源加热洁净水,就这样源源不断进行循环蒸发。
MVR蒸发器是采用低温与低压汽蒸技术和清洁能源为“电能”,产生蒸汽,将媒介中的水分分离出来。目前MVR是国际上最先进的蒸发技术,是替代传统蒸发器的升级换代产品。但是现有的MVR系统中没有对蒸汽生成的水再做循环处理应用。
发明内容
本申请的目的在于提供一种能够至少克服现有技术中的一些缺陷的机械式蒸汽再压缩系统及其方法。
本申请的一个方面提供了一种机械式蒸汽再压缩系统。该机械式蒸汽再压缩系统可包括蒸发器和第一分离罐和第二分离罐。在一个实施方式中,第 一分离罐和第二分离罐可分别为在其中具有流体收集区域的腔体。蒸发器从蒸汽源接收第一温度的废蒸汽与水的混合物,并对接收的废蒸汽与水的混合物释放热量以进行降温以形成第二温度的废蒸汽与水的混合物。第二分离罐对所述第二温度的混合物进行分离,以分离出其中的废蒸汽和水,并将分离出的水进行过滤后,馈送至第一分离罐,并向其中补充常温的水后送到蒸发器,其中,在蒸发器中,补充了水的水与蒸发器从蒸汽源实时地接收的高温(第一温度)废蒸汽进行热量交换升高到预定温度后回送到蒸汽源。
根据本申请一个实施方式的机械式蒸汽回收系统可包括:蒸发器,第一腔体,第一流体收集区域,第二腔体和鼓风式泵。
蒸发器具有第一入口、第二入口、第一出口和第二出口,所述第一入口和所述第一出口形成高温流体接收通道的相对端,所述第二入口和所述第二出口形成低温流体接收通道的相对端,所述高温流体接收通道和所述低温流体接收通道之间不存在通向对方的开口;
第一腔体包括空隙空间,并具有通向所述空隙空间的入口,所述入口在所述蒸发器的所述第一出口的流体接收方向上与该第一出口流体连接;
第一流体收集区域在所述第一腔体的所述入口的流体接收方向上与该入口流体连接,所述流体收集区域具有从所述收集区域通出的出口,从所述收集区域通出的出口与所述蒸发器的所述第二入口流体相通,所述蒸发器的所述第二入口位于相对于所述第一流体收集区域的所述出口的流体接收位置。
第二腔体包括空隙空间以及通到该空隙空间的入口,所述第二腔体的入口与所述蒸发器的所述第二出口流体连接,并位于所述蒸发器的所述第二出口的流体接收位置,所述第二腔体具有从其空隙空间开口向外的出口。
鼓风式泵具有与所述第二腔体的所述出口流体连接的流体入口,所述流体入口位于相对于所述第二腔体的所述出口的流体接收位置,以及
其中,在系统的操作状态中:
具有第一温度的第一流体位于所述高温流体接收通道,所述第一流体接收至蒸汽源并包括气态和液态的水的混合物;
具有第二温度的第二流体位于所述低温流体接收通道,所述第二流体包括气态和液态的水的混合物;
所述高温流体接收通道的所述第一流体的热量传递到所述低温流体接收 通道中的所述第二流体;以及
所述高温流体接收通道中的所述第一流体是来自所述蒸汽源的当前供应,所述蒸汽源与所述蒸发器的所述第一入口流体连接,所述低温流体接收通道中的所述第二流体至少部分地包括所述蒸汽源先前供应的流体;所述低温流体接收通道中的所述第二流体已被至少部分地收集在所述流体收集区中。
在本申请的另一个方面中提供了用于机械蒸汽再压缩的方法,可包括:第一流体供应从蒸汽源流到蒸发器的高温流体接收通道,所述第一流体供应包括液态和气态的水的混合物;收集所述第一流体供应中的液态的水;将所收集的液态水流到所述蒸发器中的低温流体接收通道;将所述蒸汽源随后供应的气态水流到所述蒸发器中的高温流体接收通道;将所述蒸发器中的高温流体接收通道中随后供应的气态水中的热传递到在所述蒸发器中的所述低温流体接收通道中收集的液态水;通过所述热的传递增加所收集的液态水的温度;将在所述低温流体接收通道中收集的液态水中的至少一部分转换为气态的水;进一步加热改变为气态的水;以及将所述进一步加热的气态水返回到所述蒸汽源。
根据上述的MVR系统至少能够对蒸汽生成的水再做循环处理应用。
在一个实施方式中,所述第一腔体和所述第一流体收集区形成分离器和/或冷凝器的至少一部分。
在一个实施方式中,所述第二腔体和所述第二流体收集区形成蒸发器和/或分离器的至少一部分。
在一个实施方式中,和所述低温流体接收通道紧邻所述蒸发器的所述入口的区域相比,所述低温流体接收通道的紧邻所述蒸发器的所述出口的区域具有千倍的体积膨胀。
在一个实施方式中,所述第一腔体具有从其空隙空间通出的出口,所述出口与风机流体连接,在所述第一流体收集区中从所述第一流体中分离出的气态水通过所述第一腔体的出口在风机的作用下抽出来,作废蒸汽排放。
附图说明
图1所示为根据本申请实施方式的机械式蒸汽再压缩(MVR)系统;
图2为根据本申请实施方式的MVR系统的实现示意图;以及
图3为根据本申请实施方式的机械式蒸汽再压缩方法。
具体实施方式
下面参照附图对本申请的实施方式进一步描述。在附图中,相同的附图标号使用相同的附图标记,并且为了清楚起见,在附图中省略了一些元器件。
图1所示为根据本申请实施方式的机械式蒸汽再压缩(MVR)系统100。图2为图1所示的系统100的具体实现实例。如图1和2所述,系统100包括蒸发器20。蒸发器20可以是间壁式热交换设备,其工作原理是低温低压的液态在传热壁的一侧气化吸热,从而使传热壁另一侧的介质被冷却。在这里,可以使用本领域中卧式壳管式蒸发器和立管式冷水箱。
根据本申请一个实施方式的蒸发器20可具有高温流体接收通道21a和低温流体接收通道21b。高温流体接收通道21a包括第一入口20a和第一出口20c,而低温流体接收通道21b具有第二入口20b和所述第二出口20d。和低温流体接收通道21b紧邻入口20b的第一区域相比,低温流体接收通道21b紧邻出口20d的区域比第一区域具有千倍的体积膨胀。
MVR系统100连续地通过高温流体通道21a接收从蒸汽源10生成的高温液态和气态水的混合物。蒸发器20通过第一入口20a接收该高温混合物,并使其通过高温流体接收通道21a。高温流体接收通道21a和低温流体接收通道21b之间不存在通向对方的开口,从而使得低温流体接收通道21b中的流体通过接收通道21a和21b的壁进行热量交换。具体地,高温流体接收通道21a从蒸汽源10接收到(例如,100~105C,参见图2)的液态和气态水的混合物后,通过与低温流体接收通道21b中的流体热量交换,将该高温混合物释放热量进行降温,例如降温后的混合物变成90C的废蒸汽与水的混合物。
如图1所示,系统100还包括至少包括第一腔体30和由该腔体形成的第一流体收集区31的第一分离器和/或冷凝器。第一腔体30具有空隙空间以及 通向空隙空间的入口30a。入口30a位于蒸发器20的第一出口20c的流体接收方向上,并与该第一出口20c流体连接。第一流体收集区31在第一腔体30的入口30a的流体接收方向上与该入口30a流体连接。在蒸发器20的高温流体通道20a的流体通过与低温流体通道20b中的流体热交换后,经由第一出口20c和入口30a被收集在第一流体收集区31中。在第一流体收集区31中,经过降温后形成的混合物被分离,即,将气态水从液态水冲分离出来。第一腔体30具有出口30b,风机35与出口30b流体连接。在第一流体收集区31中所分离出的气态水(废蒸汽)例如通过出口30b、在风机35的作用下抽出来,作废蒸汽排放;另外分离出来的液态水则从第一流体收集区31通出的出口31a流出。
第二分离器和/或冷凝器接纳从第一流体收集区31经由出口31a流出的液态水。如图2所示,第二分离器和/或冷凝器至少包括第二腔体32和第二流体收集区34。第二腔体32包括空隙空间以及通到该空隙空间的入口32a。第二腔体32的入口32a与蒸发器20的第二出口20d流体连接,并位于蒸发器20的第二出口20d的流体接收位置,即,第二腔体32的入口32a与蒸发器20的低温流体通道20b是流体连接的。在蒸发器10的低温测流通道21b中的流体(例如65℃)通过与高温侧流体通道21a热交换后升高温度(例如85℃)后,流到第二腔体32的入口32a。
第二流体收集区34具有入口34a和出口34b。第二流体收集区34与通到第二腔体32的入口32a流体连接。第二流体收集区34的入口34a与第一流体收集区31的出口31a流体连接,并位于第一流体收集区31的出口31a的流体接收位置。第一腔体30中收集的液态水通过其出口侧31a,在泵50的作用下流向第二流体收集区34的入口34a,并经由入口34a收集在第二流体收集区34中。在一个实施方式中,在第一流体收集区31和第二流体收集区34之间还可以设置过滤器60,从第一流体收集区31的出口31a流出的液态水在经过过滤器60过滤去除杂质后,输送到第二流体收集区34。
第二流体收集区34的出口34b与蒸发器20的第二入口20b流体连接,蒸发器20的第二入口20b相对于第二流体收集区34的出口34b位于流体接收的位置。第二流体收集区34中的收集的液态水通过循环泵40的作用下,从第二流体收集区34的出口34b沿经蒸发器20的低温侧通道21b一直到第 二腔体32的入口32a形成流体回路。在真空腔体32中形成的第二流体收集区34内部由风机抽真空,在一个实施方式中,可形成例如57.8KPa(a)的空气压力,从而使收集的液态水中流到真空腔体32中的一部分改变为气态。
如图所示,第二腔体32还具有从其空隙空间开口向内的入口32c,通过该入口可以从外部向第二流体收集区34增加常温(例如20℃)的水(例如洁净的常温水),从而补偿从第一流体收集区31中排放出去的废蒸汽。第二腔体32还具有另一出口32b,鼓风式泵33的流体入口33a与该出口32b流体连通,流体入口33a位于相对于第二腔体32的出口32b的流体接收位置。
在操作过程当中,从蒸汽源10接收的气态和液态的水的混合物高温混合物位于高温流体接收通道21a,而具有相对低温的第二流体位于低温流体接收通道21b。通过热交换,高温流体接收通道21a中的流体的热量传递到低温流体接收通道21b中的所述第二流体。高温流体接收通道21a中的流体是来自蒸汽源10的当前供应,即,高温流体接收通道21a实时地从蒸汽源10接收液态和气态的混合物供应。低温流体接收通道21b中的流体至少部分地包括蒸汽源10先前供应的流体。在一个实施方式中,蒸汽源10与锅炉组件的热源流体连接,锅炉组件例如可包括油和面条。
为了更好地理解本发明,下面参照附图3描述根据本申请一个实施方式的机械式蒸汽再压缩方法200。通过对机械式蒸汽再压缩方法200的描述将会更好地理解机械式蒸汽再压缩系统中上述各个部件之间的相互协作。
机械式蒸汽回收方法200从步骤S201开始,从蒸汽源10接收包括液态水和气态水的混合物的第一流体供应,并将第一流体供应从蒸汽源10传递到蒸发器20的高温流体通道21a。在步骤S202中,通过第一流体收集区31收集第一流体供应中的液态的水。例如,蒸汽源10生成的例如100~105℃的液态和气态水的混合物进入MVR系统后,经由气动球阀V10进入蒸发器20。液态和气态水的混合物在蒸发器20中释放热量后变成例如90℃的水和废蒸汽液体混合物,进入到第一流体收集区31。在第一流体收集区31中,废蒸汽被分离出来,经气动调节阀V12由风机抽出来,作废蒸汽排放;另外分离出来的液态水则被收集在第一流体收集区31中。
在步骤S203中,将所收集的液态水流到蒸发器中的低温流体接收通道 21b,例如所收集的液态水经V34气动球阀,由水泵抽入第二流体收集区34,在一个实施方式中,进入第二流体收集区34之前,需由过滤器40对水进行过滤。第二流体收集区34中收集的液态水则通过其出口34b流通到低温流体接收通道21b中。
在步骤S204中,将蒸汽源10随后供应的液态和气态水的混合物到蒸发器20中的高温流体通道21a,并将高温流体接收通道21a中随后供应的气态水中的热传递到在蒸发器(20)中的低温流体接收通道21b中收集的液态水,通过对热的传递增加所收集的液态水的温度。
接着在步骤S205中,通过第二流体收集区34收集经过热传递的液态水。由真空腔体32形成的第二流体收集区34中具有真空的压力,并且该真空压力足够高从而进一步使所述收集的液态水中流到真空腔体32中的一部分改变为气态,从而通过鼓风机传递改变为气态的水,以将气态的水返回到蒸汽源10。
如上所述,在本申请的一个实施方式中,在第二流体收集区34还可以增加例如20℃的洁净水以补偿在第一流体收集区31中排放出的废气。之后,与第一流体收集区31中收集例的如90℃热水混合后形成例如65℃的水。65℃的水经水泵1通过开口34b抽至蒸发器20的低温流体通道21b,与蒸发器20的高温通道21a从蒸汽源10接收的例如100~105℃的高温液态和气态混合物交换热量后,形成例如85℃的水或蒸汽。如果水温达不到85℃,水泵1(变频)加快抽水频率,加大与高温通道中的流体的热交换量,提高水温至例如85℃。在第二流体收集区34内部由风机抽真空,在一个实施方式中,可形成例如57.8KPa(a)的空气压力,从而使得85℃的水气化为蒸汽,经气动球阀V20后,再经风机压缩至例如120~140KPa(a),此时蒸汽温度升高为例如105~110℃,经过单向阀V23和手动截止阀V24后,供给蒸汽源10。
在该实施方式中,为不影响用户的正常生产,用户需在蒸箱10的蒸汽入口处加装单向阀V15,废蒸汽出口处加装气动球阀V11。气动球阀V11与气动球阀V10联动:当MVR系统100正常工作的时候,V10打开,同时V11关闭;当MVR系统正常停机或因为故障停机时,V11打开,同时V10关闭。当MVR系统100的供气压力不足预定值(例如120KPa(a))时,单向阀V15打开,原蒸汽 系统给蒸箱10补供蒸汽;当MVR系统100生成的蒸汽压力达到预定值(120KPa(a))时,单向阀V15关闭,这样就不会影响用户的正常生产。
以上对本申请实施方式的MVR系统及其方法进行了说明,然而,应该理解,以上所述仅为实现本发明的实施例而已,并不用以限制本发明。凡在本发明的精神和原则之内对本发明所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (14)

  1. 机械式蒸汽再压缩系统,包括:
    蒸发器(20),具有第一入口(20a)、第二入口(20b)、第一出口(20c)和第二出口(20d),所述第一入口(20a)和所述第一出口(20c)形成高温流体接收通道(21a)的相对端,所述第二入口(20b)和所述第二出口(20d)形成低温流体接收通道(21b)的相对端,所述高温流体接收通道(21a)和所述低温流体接收通道(21b)之间不存在通向对方的开口;
    第一腔体(30),包括空隙空间,并具有通向所述空隙空间的入口(30a),所述入口(30a)在所述蒸发器(20)的所述第一出口(20c)的流体接收方向上与该第一出口(20c)流体连接;
    第一流体收集区(31),在所述第一腔体(30)的所述入口(30a)的流体接收方向上与该入口(30a)流体连接,所述第一流体收集区(31)具有从所述第一流体收集区(31)通出的出口(31a),从所述第一流体收集区(31)通出的出口(31a)与所述蒸发器(20)的所述第二入口(20b)流体相通,所述蒸发器(20)的所述第二入口(20b)位于相对于所述第一流体收集区(31)的所述出口(31a)的流体接收位置;
    第二腔体(32),包括空隙空间以及通到该空隙空间的入口(32a),所述第二腔体(32)的入口(32a)与所述蒸发器(20)的所述第二出口(20d)流体连接,并位于所述蒸发器(20)的所述第二出口(20d)的流体接收位置,所述第二腔体(32)具有从其空隙空间开口向外的出口(32b);
    鼓风式泵(33),具有与所述第二腔体(32)的所述出口(32b)流体连接的流体入口(33a),所述流体入口(33a)位于相对于所述第二腔体(32)的所述出口(32b)的流体接收位置,以及
    其中,在系统的操作状态中:
    具有第一温度的第一流体位于所述高温流体接收通道(21a),所述第一流体接收至蒸汽源(10)并包括气态和液态的水的混合物;
    具有第二温度的第二流体位于所述低温流体接收通道(21b),所述第二流体包括气态和液态的水的混合物;
    所述高温流体接收通道(21a)的所述第一流体的热量传递到所述低温流体接收通道(21b)中的所述第二流体;以及
    所述高温流体接收通道(21a)中的所述第一流体是来自所述蒸汽源(10)的当前供应,所述蒸汽源(10)与所述蒸发器(20)的所述第一入口(20a)流体连接,所述低温流体接收通道(21b)中的所述第二流体至少部分地包括所述蒸汽源(10)先前供应的流体;所述低温流体接收通道(21b)中的所述第二流体至少部分地从所述第一流体收集区(31)中收集。
  2. 如权利要求1所述的系统,还包括:
    第二流体收集区(34),入口(34a)通到所述第二流体收集区(34),出口(34b)从所述第二流体收集区(34)向外通出,所述第二流体收集区(34)与通到所述第二流体收集区(34)的入口(32a)流体连接,所述第二流体收集区(34)的所述入口(34a)与所述第一流体收集区(31)的出口(31a)流体连接,并位于所述第一流体收集区(31)的出口(31a)的流体接收位置,所述第二流体收集区(34)的出口(34b)与所述蒸发器(20)的所述第二入口(20b)流体连接,所述蒸发器(20)的所述第二入口(20b)相对于所述第二流体收集区(34)的出口(34b)位于流体接收的位置。
  3. 如权利要求2所述的系统,其中,所述第一腔体(30)和所述第一流体收集区(31)形成分离器和/或冷凝器的至少一部分。
  4. 如权利要求2所述的系统,其中,所述第二腔体(32)和所述第二流体收集区(34)形成蒸发器和/或分离器的至少一部分。
  5. 如权利要求2所述的系统,其中,所述蒸汽源(10)与锅炉组件的热源流体连接。
  6. 如权利要求2所述的系统,其中,和所述低温流体接收通道(21b)紧邻所述蒸发器(20)的所述入口(20b)的区域相比,所述低温流体接收通道(21b)的紧邻所述蒸发器(20)的所述出口(20d)的区域具有千倍的体积 膨胀。
  7. 如权利要求2所述的系统,还包括设置于所述第一流体收集区(31)和所述第二流体收集区(34)之间的过滤器(60),从所述第一流体收集区(31)的出口(31a)流出的液态水在经过所述过滤器(60)过滤去除杂质后,输送到所述第二流体收集区(34)。
  8. 如权利要求1所述的系统,其中,所述第一腔体(30)具有从其空隙空间通出的出口(30b),所述出口(30b)与风机(35)流体连接,在所述第一流体收集区(31)中从所述第一流体中分离出的气态水通过所述第一腔体(30)的出口(30b)在风机(35)的作用下抽出来,作废蒸汽排放。
  9. 如权利要求8所述的系统,其中,所述第二腔体(32)还具有入口(32c),通过该入口(32c)向所述第二流体收集区(34)增加液态水以补偿所述系统在所述第一流体收集区(31)中排放出的废气。
  10. 机械式蒸汽回收方法,包括:
    将第一流体供应从蒸汽源(10)流到蒸发器(20)的高温流体接收通道(21a),所述第一流体供应包括液态和气态的水的混合物;
    收集所述第一流体供应中的液态的水;
    将所收集的液态水流到所述蒸发器中的低温流体接收通道(21b);
    将所述蒸汽源(10)随后供应的气态水流到所述蒸发器(20)中的高温流体接收通道(21a);
    将所述蒸发器(20)中的高温流体接收通道(21a)中随后供应的气态水中的热传递到在所述蒸发器(20)中的所述低温流体接收通道(21b)中收集的液态水;
    通过所述热的传递增加所收集的液态水的温度;
    将在所述低温流体接收通道(21b)中收集的液态水中的至少一部分转换为气态的水;
    进一步加热改变为气态的水;以及
    将所述进一步加热的气态水返回到所述蒸汽源(10)。
  11. 如权利要求10所述的方法,进一步包括:
    将在所述低温接收通道(21b)转换的气态水以及从所述低温接收通道(21b)中收集的液态水流到真空腔体(32),所述真空腔体(32)的真空压力足够高从而进一步使所述收集的液态水中流到真空腔体(32)中的一部分改变为气态。
  12. 如权利要求11所述的方法,其中,所述进一步加热的步骤包括:通过鼓风机传递改变为气态的水。
  13. 如权利要求11所述的方法,其中,收集所述第一流体供应中的液态的水的步骤包括:
    在第一收集区域(31)中将所述第一流体供应中的液态水和气态水分离;
    将所分离出的液态水收集在所述第一收集区域(31)中;以及
    将所分离出的气态水从第一收集区域(31)作废蒸汽排放。
  14. 如权利要求13所述的方法,还包括:
    向所述真空腔体(32)增加液态水以补偿从所述第一流体收集区(31)中排放出的液态水。
PCT/CN2015/098649 2014-12-24 2015-12-24 机械式蒸汽再压缩系统及其方法 WO2016101900A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/539,550 US20180133617A1 (en) 2014-12-24 2015-12-24 Mechanical vapor recompression system and method thereof
EP15871968.2A EP3238797A4 (en) 2014-12-24 2015-12-24 Mechanical vapor recompression system and method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201420854210.2 2014-12-24
CN201420854210.2U CN204767452U (zh) 2014-12-24 2014-12-24 机械式蒸汽再压缩系统
CN201410838000.9A CN105771288A (zh) 2014-12-24 2014-12-24 机械式蒸汽再压缩系统及其方法
CN201410838000.9 2014-12-24

Publications (1)

Publication Number Publication Date
WO2016101900A1 true WO2016101900A1 (zh) 2016-06-30

Family

ID=56149289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098649 WO2016101900A1 (zh) 2014-12-24 2015-12-24 机械式蒸汽再压缩系统及其方法

Country Status (3)

Country Link
US (1) US20180133617A1 (zh)
EP (1) EP3238797A4 (zh)
WO (1) WO2016101900A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109205716A (zh) * 2017-10-16 2019-01-15 广州中科鑫洲科技有限公司 一种发酵废水mvpc处理方法和处理后浓缩液及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202822807U (zh) * 2012-07-31 2013-03-27 广东正力精密机械有限公司 一种机械蒸汽再压缩系统
CN103203116A (zh) * 2013-04-24 2013-07-17 江苏科化节能环保设备有限公司 一种mvr连续蒸发结晶系统及连续蒸发结晶方法
CN203741072U (zh) * 2014-03-28 2014-07-30 北京浦仁美华节能环保科技有限公司 一种双效mvr蒸发系统
CN204767452U (zh) * 2014-12-24 2015-11-18 登福机械(上海)有限公司 机械式蒸汽再压缩系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005005008A1 (de) * 2005-02-03 2006-08-10 Erwin Dr. Oser Destillation mit Strahlverdichter
JP5805937B2 (ja) * 2010-08-16 2015-11-10 オルガノ株式会社 排水処理方法及び排水処理装置
CN104027993B (zh) * 2014-07-03 2016-08-24 北京欧泰克能源环保工程技术股份有限公司 一种机械蒸汽再压缩蒸发系统及节能方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202822807U (zh) * 2012-07-31 2013-03-27 广东正力精密机械有限公司 一种机械蒸汽再压缩系统
CN103203116A (zh) * 2013-04-24 2013-07-17 江苏科化节能环保设备有限公司 一种mvr连续蒸发结晶系统及连续蒸发结晶方法
CN203741072U (zh) * 2014-03-28 2014-07-30 北京浦仁美华节能环保科技有限公司 一种双效mvr蒸发系统
CN204767452U (zh) * 2014-12-24 2015-11-18 登福机械(上海)有限公司 机械式蒸汽再压缩系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3238797A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109205716A (zh) * 2017-10-16 2019-01-15 广州中科鑫洲科技有限公司 一种发酵废水mvpc处理方法和处理后浓缩液及应用

Also Published As

Publication number Publication date
US20180133617A1 (en) 2018-05-17
EP3238797A4 (en) 2018-06-27
EP3238797A1 (en) 2017-11-01

Similar Documents

Publication Publication Date Title
CN103908788B (zh) 一种mvr热泵蒸发系统
JP6441511B2 (ja) 多段プレート型蒸発吸収式冷凍装置及び方法
CN107014015B (zh) 热回收型蒸发冷凝式冷水机组
JP6163257B2 (ja) 2段階構成を含む廃熱回収構造を有するヒートポンプシステム
CN107213659B (zh) 一种机械蒸汽再压缩系统及控制方法
CN103102055B (zh) 能源循环式干化器
CN103908789A (zh) 一种采用蓄能水箱加速启动的mvr热泵蒸发系统
US11293666B2 (en) Superhigh temperature heat pump system and method capable of preparing boiling water not lower than 100° C
CN205627117U (zh) 机械式蒸汽再压缩系统
CN105241115B (zh) 蒸汽压缩‑喷射耦合制冷循环装置及方法
CN210321088U (zh) 一种加热排湿热泵装置
WO2019019514A1 (zh) 一种自动抽排气系统
WO2016101900A1 (zh) 机械式蒸汽再压缩系统及其方法
CN104075489B (zh) 高温蒸汽热泵机组
CN105258374A (zh) 节能压缩制冷方法
WO2013014145A1 (en) A heat pump system for a laundry dryer
CN209378463U (zh) 高效低温节能蒸发装置
CN210495249U (zh) 负压低温热泵型浓缩装置
CN207006621U (zh) 热回收系统
CN105737127A (zh) 水蒸汽调制机
CN105435480A (zh) 真空推挽醇浓缩系统
CN108204690A (zh) 一种单压缩机准复叠式空气源热泵系统
CN105771288A (zh) 机械式蒸汽再压缩系统及其方法
JP2011072858A (ja) 蒸発濃縮装置および蒸発濃縮方法
KR101177430B1 (ko) 재생 에너지를 이용한 냉난방 겸용 히트 펌프 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15871968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015871968

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15539550

Country of ref document: US