WO2016101886A1 - 一种应用于石油钻杆作业的身份识别方法及装置 - Google Patents

一种应用于石油钻杆作业的身份识别方法及装置 Download PDF

Info

Publication number
WO2016101886A1
WO2016101886A1 PCT/CN2015/098373 CN2015098373W WO2016101886A1 WO 2016101886 A1 WO2016101886 A1 WO 2016101886A1 CN 2015098373 W CN2015098373 W CN 2015098373W WO 2016101886 A1 WO2016101886 A1 WO 2016101886A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
drill pipe
mark
identification method
drill
Prior art date
Application number
PCT/CN2015/098373
Other languages
English (en)
French (fr)
Inventor
梅士兵
Original Assignee
梅士兵
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 梅士兵 filed Critical 梅士兵
Publication of WO2016101886A1 publication Critical patent/WO2016101886A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/08Methods or arrangements for sensing record carriers, e.g. for reading patterns by means detecting the change of an electrostatic or magnetic field, e.g. by detecting change of capacitance between electrodes

Definitions

  • the invention relates to an identification method and device applied to an oil drill pipe operation.
  • each drill pipe has a length of about 10 meters, the multi-section drill pipe is connected by a thread, the lower part is connected with the bottom drill, and the upper part is connected with the drill pipe. Faucet, etc.
  • the mud is transported downhole through the drill pipe.
  • the torque of the drill is transmitted by the drill pipe to the drill bit downhole.
  • the drill pipe is the longest part of the drill string.
  • the drill pipe needs to withstand tensile force, pressure, torsion, vibration, friction, and drilling fluid corrosion in the underground. It is necessary to periodically assess the aging degree of the drill pipe, and then the drill pipe is graded and eliminated and updated in time.
  • Current grading of drill pipes includes periodic thickness testing and flaw detection. If the drill pipe can be filed one by one, it is possible to know the time each drill pipe has worked under different drilling conditions, such as depth, tension/pressure, vibration, mud corrosion, etc., thereby aging the drill pipe. A more comprehensive and accurate assessment can effectively reduce drilling accidents, avoid excessive margins when drilling rods are eliminated, and reduce the total cost of drilling operations.
  • the prior art includes: First, the mainstream practice is to use a steel font to number the drill pipe joint. In this way, it is difficult to realize automatic reading of the machine, and it is also easy to be contaminated with sludge and oil, and is also susceptible to wear. 2.
  • the electronic chip used in this scheme is difficult to work for a long time under the conditions of high temperature and high vibration in the well, and the damage rate is high. 3.
  • the object of the present invention is to overcome the above deficiencies and provide an identification method applied to an oil drill pipe operation, which is not only low in cost but also high in reliability, and is convenient for automatic reading of the machine, especially It is easy to implement on-site reading during drilling operations.
  • the technical solution adopted by the present invention is: an identification method applied to an oil drill pipe operation, comprising: performing magnetic labeling processing on a specific portion of the drill pipe; and detecting the specific local magnetic field The characteristic change; when an abnormal value of the magnetic characteristic is detected, the magnetic mark of the drill pipe is detected, and the drill pipe code is acquired based on the position, width and/or magnetic abnormal amplitude information of the magnetic mark.
  • the step of magnetically marking the particular portion of the drill rod includes adding or reducing material to the particular portion of the joint or rod of the drill rod such that the magnetic properties of the particular portion are altered.
  • the step of performing a magnetic labeling process on a specific portion of the drill pipe includes a magnetic field heat treatment, the magnetic field heat treatment comprising: heating the specific portion to a Curie temperature point of the material to serve as a magnetic mark region Applying a magnetic field of a specific direction to the magnetic mark region, the specific direction being a magnetic field consistent with an axial direction of the drill pipe when the magnetic mark region is located on a rod of the drill pipe; when the magnetic mark region is located When the joint of the drill pipe is on the joint, the specific direction is in the radial direction of the joint; the magnetic mark region is insulated under the action of a magnetic field, and then controlled to cool down to form a magnetic mark.
  • the magnetic markers are disposed on the rod of the drill rod and arranged in the axial direction, or the magnetic markers are disposed on the drill rod rod and arranged along the circumference, or the magnetic mark is disposed on the drill rod joint. And arranged in a circle.
  • the axial width and axial position of the magnetic mark are measured by a photoelectric encoder.
  • the circumferential width and/or magnetic anomaly amplitude of the magnetic mark is measured by a sensor array.
  • the position, width and/or magnetic anomaly amplitude of the magnetic marker is measured by a sensor or sensor array disposed on the outer side of the drill rod, the inner side or circumferentially surrounding the drill rod.
  • the step of detecting the change in the magnetic characteristic of the specific portion comprises: detecting using a Hall sensor, a magnetoresistive sensor and/or a coil.
  • the drill pipe coding includes: an encoded value part and a start mark part, wherein the coded value part is expressed in a binary or multi-digit form, or is represented by a Morse code coding manner, and the start mark part is It consists of the same hexadecimal notation as the coded value part, or is set to a special mark different from the hexadecimal notation.
  • the drill pipe coding further includes an error correction or verification portion, and the error correction or verification portion is represented by a binary or multi-digit representation, or is represented by a Morse code or the like.
  • Another object of the present invention is to provide an identification device for use in an oil drill pipe operation, comprising: a marking unit for performing magnetic marking processing on a specific portion of the drill pipe; and a detecting unit for Detecting a change in the magnetic property of the specific portion; and acquiring means for detecting a magnetic mark of the drill pipe when an abnormal value of the magnetic property is detected, based on the position, width, and/or magnetic anomaly amplitude information of the magnetic mark Get the drill pipe code.
  • the implementation is simple, and the specific part of the drill pipe is processed, so that the local magnetic property is changed to form a plurality of magnetic marks.
  • the magnetic mark of the drill pipe is detected, based on The position, width and/or magnetic anomaly amplitude information of the magnetic mark acquires the drill pipe code.
  • the identification information of the oil drill pipe can be identified, and the drill pipe can be filed one by one, so that each drill pipe can work under different conditions of depth, tension/pressure, vibration, mud corrosion and the like.
  • the elapsed time to achieve a more scientific drill pipe grading can reduce drilling accidents, avoid excessive margins when the drill pipe is eliminated, and reduce the total cost of drilling operations.
  • FIG. 1 is a flow chart of an identification method applied to an oil drill pipe operation of the present invention
  • Figure 2 is a schematic view of a first embodiment of the drill pipe coding of the method of Figure 1;
  • Figure 3 is a schematic view showing a second embodiment of the drill pipe coding of the method of Figure 1;
  • FIG. 4 and 5 are schematic views of a third embodiment of the drill pipe coding of the method of FIG. 1;
  • Figure 6 is a schematic view showing a fourth embodiment of the drill pipe coding of the method shown in Figure 1;
  • FIG. 7 is a schematic structural view of an identification device applied to an oil drill pipe operation of the present invention.
  • FIG. 8a to 8d are schematic views of a specific embodiment of the marking unit of the present invention.
  • FIG. 9 is a schematic diagram of a specific embodiment of a detecting unit and an acquiring unit of the present invention.
  • an identification method for an oil drill pipe operation includes: S100, performing magnetic labeling processing on a specific portion of the drill pipe; S200, detecting a change in magnetic characteristics of the specific portion; S300, when detecting When an abnormal value of the magnetic characteristic is detected, the magnetic mark of the drill pipe is detected, and the drill pipe code is acquired based on the position, width and/or magnetic abnormal amplitude information of the magnetic mark.
  • the magnetic property comprises magnetic permeability
  • the magnetic field heat treatment comprises increasing magnetic permeability
  • the magnetic characteristic comprises a rectangular ratio of hysteresis loops.
  • the magnetic field heat treatment includes improving the squareness ratio of the hysteresis loop or keeping the magnetic permeability constant over a range of magnetic fields.
  • the longitudinal magnetic field heat treatment is employed, that is, the direction of the magnetic field during heat treatment is the same as the magnetic flux direction actually used by the reading device.
  • the transverse magnetic field heat treatment is employed, that is, the direction of the magnetic field during the heat treatment is perpendicular to the direction of the magnetic flux actually used by the reading device.
  • the step of magnetically marking a particular portion of the drill rod includes heating the particular portion to or slightly beyond a Curie temperature point of the material to serve as a magnetic marking region; Applying a magnetic field of a specific direction on the marking area, the specific direction being a magnetic field consistent with the axial direction of the drill pipe when the magnetic marking area is located on the rod of the drill pipe; when the magnetic marking area is located at the joint of the drill pipe In the upper direction, the specific direction is in the radial direction of the joint; the magnetic marking area is insulated, and then controlled to cool down to form a magnetic mark.
  • the specific part is heated, or it can be brought close to the Curie temperature point of the material, that is, the isothermal magnetic field heat treatment method is adopted: the magnetic mark area is heated to 50 to 100 ° C below the Curie point, and the temperature is maintained after applying the magnetic field. Constantly longer, then cool down.
  • the magnetic permeability when used as the magnetic property, as a specific embodiment, it is heated to a temperature slightly higher than the Curie temperature point of 780 to 830 ° C, and after the application of the magnetic field, the holding time is 30 to 60 min.
  • the temperature is controlled to be lowered to 300 to 400 ° C, and the temperature is naturally lowered to increase the magnetic permeability.
  • the heating is performed to a temperature slightly lower than the Curie temperature point of 600 to 700 ° C, and after the application of the magnetic field, the holding time is 60 to 90 min, and the longitudinal magnetic field is passed. After heat treatment, it is cooled to 350 ° C at a cooling rate of 200 ° C / hour, and naturally cooled.
  • controllable temperature drop is cooled to 200 ° C at 300 ° C / hour, 280 ° C / hour, 260 ° C / hour, respectively, the hysteresis loop pattern becomes steep, and the return line area is significantly reduced.
  • the heating means may comprise a flame heater and a heat retention device, or an alternating current induction heater.
  • the direction of change in the magnetic characteristic anomaly is related to the excitation direction used in the magnetic field heat treatment, and is also related to the sensor design of the reading device. Accordingly, the mark can be made to exhibit a magnetic property that is too high or low.
  • the step of magnetically marking the particular portion of the drill rod includes adding or subtracting material to the particular portion of the joint or rod of the drill rod such that the magnetic properties of the particular portion are altered.
  • the material is added or subtracted to the particular portion, for example, adding or reducing materials having the same magnetic properties, in particular embodiments, being added to the joint or rod of the drill rod, for example to form a projection, or to reduce For example, a way of forming a groove.
  • the material is added or subtracted to the particular portion, for example, adding or reducing materials having similar magnetic properties, in particular embodiments, adding to the joint or rod of the drill rod, for example, forming a protrusion, or reducing For example, a way of forming a groove.
  • the material is added or subtracted to the particular portion, for example, a high permeability material is added or reduced, and in a particular embodiment, the high permeability material is permalloy.
  • the high permeability material is permalloy.
  • it is added to the joint or rod of the drill rod, for example to form a projection, or to reduce the formation, for example, as a groove.
  • the steel material at a specific position is replaced with a material having different magnetic properties on the drill pipe joint, such as a metal such as nickel, copper or aluminum or an alloy thereof, or a non-metal material such as a high-strength rubber, or a neodymium iron boron or the like.
  • a material having different magnetic properties on the drill pipe joint such as a metal such as nickel, copper or aluminum or an alloy thereof, or a non-metal material such as a high-strength rubber, or a neodymium iron boron or the like.
  • An alternative method involves mechanically machining a plurality of holes in the drill pipe joint, filling in other materials, and forming a code depending on the location and size of the holes.
  • the step of performing magnetic marking treatment on a specific portion of the drill pipe comprises: heating the specific portion to a Curie temperature point of the material as a magnetic mark region; applying the magnetic mark region a magnetic field in the radial direction of the drill pipe joint; the magnetic mark region is insulated by a magnetic field, and then controlled to cool down to form a magnetic mark.
  • Figure 2 illustrates the magnetic marks arranged on the circumference of the drill pipe joint, the black portions being indicated by the position and width of the different magnetic marks.
  • the drill pipe code is arranged circumferentially on the end face of the internal threaded joint of a drill pipe.
  • the binary symbol is used, and the symbols represented by the magnetic mark are defined as follows:
  • Each symbol occupies a 12 degree fan angle.
  • the spacing of the symbols is a 12 degree fan angle.
  • a magnetic mark with a sector angle of 36 degrees is used as a starting mark.
  • the code value is 12 symbols.
  • This drill string encoding format can represent up to 4096 different values, which is the 12th power of 2.
  • the codes in the figure are arranged in the direction indicated by the arrows. The two codes are:
  • the position, width and magnetic anomaly amplitude of the magnetic mark are measured by a circumferentially arranged sensor array on the drill pipe joint.
  • the step of detecting the change in the magnetic property of the specific portion comprises: detecting using a Hall sensor, a magnetoresistive sensor and/or a coil.
  • the coil is disposed around the drill rod.
  • the drill pipe coding comprises: an encoded value part, a start mark part, an error correction or check part, wherein the code value part and the error correction or check part adopt a binary representation, or more In the hexadecimal notation, the start tag portion is composed of the same hexadecimal notation as the coded value portion, and/or the error correction or check portion, or is set to a special mark different from the hexadecimal symbol.
  • the direction of change in the magnetic characteristic anomaly is related to the excitation direction used in the magnetic field heat treatment, and is also related to the sensor design of the reading device. Accordingly, the mark can be made to exhibit a magnetic property that is too high or low.
  • the portion of the coded value included in the drill pipe coding and the error correction or check portion are represented by a binary representation, or a multi-digit representation, and the start mark portion is composed of logic 0 and logic 1, or is an AND logic.
  • a binary representation it may, but is not limited to, represent logic 0 and logic 1 in the following manner:
  • a magnetic marker for a logical one there is a magnetic marker for a logical one and a no marker for a logic zero. Or the opposite.
  • logical 0 and logical 1 are distinguished by the size of the magnetic mark, for example, a logic 1 is greater than the decision threshold and a logic 0 less than the decision threshold. Or the opposite.
  • the magnetic signature of the magnetic marker is logic 1 higher than the original value of the drill rod material and logic 0 when it is low. Or the opposite.
  • the deviation value is logic 1 above the threshold, and the logic threshold is lower than the threshold. . Or the opposite.
  • the spacing between the two magnetic markers is greater than the decision threshold and is logic 1 and less than the decision threshold is logic 0. Or the opposite.
  • the starting position of the encoding can be determined using the starting marker.
  • the "specific location" described above may be referenced to the starting mark.
  • the number of binary digits of the encoded value portion determines the range of values that the encoding can represent.
  • a 16-bit binary code value can represent 65536 different values.
  • one or more combinations of the above methods can be used to form a multi-digit magnetic mark.
  • the spacing between two magnetic marks is 100mm and 200mm, and the width can be 30mm, 50mm, 70mm.
  • Each magnetic mark can be one of the following six:
  • Each symbol in the table represents a width of 10 mm.
  • " indicates that the position has been subjected to magnetic field heat treatment, ":” indicates that the position is not subjected to magnetic field heat treatment, and the double slash "//" is the portion of the next mark.
  • the above table shows a hexadecimal magnetic mark.
  • An encoded value consisting of 7 sets of such magnetic markers can represent 279,936 different values, namely the 7th power of 6.
  • multi-ary representation it can be a non-magnetic mark (no abnormality of magnetic characteristics) as logic 0, a magnetic characteristic is high as logic 1, and a magnetic characteristic is low as logic 2, which is a ternary coding method. It is also possible to use the magnetic characteristic as no logic as the logic 0, the magnetic characteristic higher than 0.5-1.5 units as the logic 1, the higher 1.5-2.5 units as the logic 2, and the higher than 2.5 units as the logic 3, which is a kind Quaternary encoding.
  • the magnetic mark is in quaternary, and the symbols represented by the magnetic mark are defined as follows:
  • the spacing of each symbol is 200mm.
  • a specific combination 31 of quaternary symbols is used as a starting marker.
  • the code value is 8 symbols. Using a sum check of a symbol, the check value is calculated by bitwise XOR of the coded value of 8 symbols.
  • This drill string encoding format can represent up to 65,536 different values, which is the 8th power of 4. The following are examples of valid code values:
  • Drill pipe coding Start tag Coded value
  • Check value Coded value decimal 31010311233 31 01031123 3 4955 31131023002 31 13102300 2 29872 31200112321 31 20011232 1 33134 31102231210 31 10223121 0 19161
  • the identification method of this embodiment can also be applied to oil pipes and other downhole tools.
  • the identification method applied to the oil drill pipe operation of the embodiment includes: S100, performing magnetic mark processing on a specific portion of the drill pipe; S200, detecting a change in magnetic characteristics having the specific portion; S300, when detecting magnetic characteristics When the value is abnormal, the magnetic mark of the drill pipe is detected, and the drill pipe code is obtained based on the position, width and/or magnetic abnormal amplitude information of the magnetic mark.
  • the magnetic property comprises magnetic permeability
  • the magnetic field heat treatment comprises increasing magnetic permeability
  • the magnetic characteristic comprises a rectangular ratio of hysteresis loops.
  • the magnetic field heat treatment includes improving the squareness ratio of the hysteresis loop or keeping the magnetic permeability constant over a range of magnetic fields.
  • longitudinal heat treatment is employed, i.e., the direction of the magnetic field during heat treatment is the same as the direction of magnetic flux actually used by the drill pipe.
  • a transverse magnetic field heat treatment is employed, that is, the direction of the magnetic field is perpendicular to the direction of the magnetic flux actually used by the drill pipe.
  • the step of magnetically marking a particular portion of the drill rod includes heating the particular portion to or slightly beyond a Curie temperature point of the material to serve as a magnetic marking region; Applying a magnetic field of a specific direction on the marking area, the specific direction being a magnetic field consistent with the axial direction of the drill pipe when the magnetic marking area is located on the rod of the drill pipe; when the magnetic marking area is located at the joint of the drill pipe In the upper direction, the specific direction is in the radial direction of the joint; the magnetic marking area is insulated, and then controlled to cool down to form a magnetic mark.
  • the magnetic permeability when used as the magnetic property, as a specific embodiment, it is heated to a temperature slightly higher than the Curie temperature point of 780 to 830 ° C, and the holding time is 30 to 60 min.
  • the temperature is controlled to be lowered to 300 to 400 ° C, and the temperature is naturally lowered to increase the magnetic permeability.
  • the heating is performed to a temperature slightly lower than the Curie temperature point of 600 to 700 ° C
  • the holding time is 60 to 90 min
  • the longitudinal magnetic field heat treatment is performed. It is cooled to 350 ° C at a cooling rate of 200 ° C / hour, and naturally cooled.
  • controllable temperature drop is cooled to 200 ° C at 300 ° C / hour, 280 ° C / hour, 260 ° C / hour, respectively, the hysteresis loop pattern becomes steep, and the return line area is significantly reduced.
  • the heating means may comprise a flame heater and a heat retention device, or an alternating current induction heater.
  • the direction of change in the magnetic characteristic anomaly is related to the excitation direction used in the magnetic field heat treatment, and is also related to the sensor design of the reading device. Accordingly, the mark can be made to exhibit a magnetic property that is too high or low.
  • the step of magnetically marking a particular portion of the drill rod includes replacing a particular portion of the material of the drill rod with a material having a different magnetic properties.
  • the material is replaced by a material having a different magnetic properties, for example by adding to the joint or rod of the drill rod, for example to form a projection, or to reduce the formation, for example, as a groove.
  • a high permeability material is used, the high permeability material being permalloy.
  • the steel material at a specific position is replaced with a material having different magnetic properties on the drill pipe joint, such as a metal such as nickel, copper, aluminum or an alloy thereof, or a non-metal material such as a high-strength rubber.
  • a material having different magnetic properties on the drill pipe joint such as a metal such as nickel, copper, aluminum or an alloy thereof, or a non-metal material such as a high-strength rubber.
  • An alternative method is to mechanically machine a plurality of holes in the drill pipe joint, fill in other materials, and form a code depending on the location and size of the holes.
  • the step of magnetically marking a particular portion of the drill rod includes heating the particular portion to or slightly beyond a Curie temperature point of the material to serve as a magnetic marking region; A magnetic field conforming to the radial direction of the drill pipe joint is applied to the marking area; the magnetic marking area is insulated.
  • Figure 3 illustrates another embodiment of a magnetic mark arranged on the circumference of a drill pipe joint, the black portions being illustrated by the position and width of the different magnetic marks.
  • the drill pipe code is arranged circumferentially on the end face of the threaded joint of a drill pipe, and the symbol definition represented by the magnetic mark is shown in the figure on the right side.
  • Each symbol occupies a fan angle of 36 degrees, including a fixed interval of 12 degree fan angles.
  • a magnetic mark with a fan angle of 60 degrees is used as a starting mark.
  • the code value is 8 symbols. No checksum correction.
  • This drill string encoding format can represent up to 65,536 different values, which is the 8th power of 4.
  • the encoding value in this embodiment is hexadecimal 13021032, which is 29262 in decimal.
  • the position, width and magnetic anomaly amplitude of the magnetic mark are measured by a circumferentially arranged sensor array on the drill pipe joint.
  • the step of detecting the change in the magnetic characteristic of the particular portion comprises detecting using a Hall sensor, a magnetoresistive sensor and/or a coil.
  • the coil is circumferentially disposed on the drill pipe or disposed on a side of the drill pipe.
  • the drill pipe coding comprises: an encoded value part, a start mark part, an error correction or check part, wherein the code value part and the error correction or check part adopt a binary representation, or more In the hexadecimal notation, the start tag portion is composed of the same hexadecimal notation as the coded value portion, and/or the error correction or check portion, or is set to a special mark different from the hexadecimal symbol.
  • the direction of change in the magnetic characteristic anomaly is related to the excitation direction used in the magnetic field heat treatment, and is also related to the sensor design of the reading device. Accordingly, the mark can be made to exhibit a magnetic property that is too high or low.
  • the portion of the coded value included in the drill pipe coding and the error correction or check portion are represented by a binary representation, or a multi-digit representation, and the start mark portion is composed of logic 0 and logic 1, or is an AND logic.
  • a binary representation it may, but is not limited to, represent logic 0 and logic 1 in the following manner:
  • a magnetic marker for a logical one there is a magnetic marker for a logical one and a no marker for a logic zero. Or the opposite.
  • logical 0 and logical 1 are distinguished by the size of the magnetic mark, for example, a logic 1 is greater than the decision threshold and a logic 0 less than the decision threshold. Or the opposite.
  • the magnetic signature of the magnetic marker is logic 1 higher than the original value of the drill rod material and logic 0 when it is low. Or the opposite.
  • the deviation value is logic 1 above the threshold, and the logic threshold is lower than the threshold. . Or the opposite.
  • the spacing between the two magnetic markers is greater than the decision threshold and is logic 1 and less than the decision threshold is logic 0. Or the opposite.
  • the starting position of the encoding can be determined using the starting marker.
  • the "specific location" described above may be referenced to the starting mark.
  • the number of binary digits of the encoded value portion determines the range of values that the encoding can represent.
  • a 16-bit binary code value can represent 65536 different values.
  • one or more combinations of the above methods can be used to form a multi-digit magnetic mark.
  • the spacing between two magnetic marks is 100mm and 200mm, and the width can be 30mm, 50mm, 70mm.
  • Each magnetic mark can be one of the following six:
  • Each symbol in the table represents a width of 10 mm.
  • " indicates that the position has been subjected to magnetic field heat treatment, ":” indicates that the position is not subjected to magnetic field heat treatment, and the double slash "//" is the portion of the next mark.
  • the above table shows a hexadecimal magnetic mark.
  • An encoded value consisting of 7 sets of such magnetic markers can represent 279,936 different values, namely the 7th power of 6.
  • a non-magnetic mark (no abnormality in magnetic characteristics) can be used as logic 0, a magnetic characteristic is high as logic 1, and a magnetic characteristic is low as logic 2, which is a binary coding method. It is also possible to use the magnetic characteristic as no logic as the logic 0, the magnetic characteristic higher than 0.5-1.5 units as the logic 1, the higher 1.5-2.5 units as the logic 2, and the higher than 2.5 units as the logic 3, which is a kind Quaternary encoding.
  • the magnetic mark is in quaternary, and the symbols represented by the magnetic mark are defined as follows:
  • the spacing of each symbol is 200mm.
  • a specific combination 31 of quaternary symbols is used as a starting marker.
  • the code value is 8 symbols. Using a sum check of a symbol, the check value is calculated by bitwise XOR of the coded value of 8 symbols.
  • This drill string encoding format can represent up to 65,536 different values, which is the 8th power of 4. The following are examples of valid code values:
  • Drill pipe coding Start tag Coded value
  • Check value Coded value decimal 31010311233 31 01031123 3 4955 31131023002 31 13102300 2 29872 31200112321 31 20011232 1 33134 31102231210 31 10223121 0 19161
  • the identification method of this embodiment can also be applied to oil pipes and other downhole tools.
  • the identification method applied to the oil drill pipe operation of the embodiment includes: S100, performing magnetic mark processing on a specific portion of the drill pipe; S200, detecting a change in magnetic characteristics having the specific portion; S300, when detecting magnetic characteristics When the value is abnormal, the magnetic mark of the drill pipe is detected, and the drill pipe code is obtained based on the position, width and/or magnetic abnormal amplitude information of the magnetic mark.
  • the magnetic property comprises magnetic permeability
  • the magnetic field heat treatment comprises increasing magnetic permeability
  • the magnetic characteristic comprises a rectangular ratio of hysteresis loops.
  • the magnetic field heat treatment includes improving the squareness ratio of the hysteresis loop or keeping the magnetic permeability constant over a range of magnetic fields.
  • longitudinal heat treatment is employed, i.e., the direction of the magnetic field during heat treatment is the same as the direction of magnetic flux actually used by the drill pipe.
  • a transverse magnetic field heat treatment is employed, that is, the direction of the magnetic field is perpendicular to the direction of the magnetic flux actually used by the drill pipe.
  • the step of magnetically marking a particular portion of the drill rod includes heating the particular portion to or slightly beyond a Curie temperature point of the material to serve as a magnetic marking region; Applying a magnetic field of a specific direction on the marking area, the specific direction being a magnetic field consistent with the axial direction of the drill pipe when the magnetic marking area is located on the rod of the drill pipe; when the magnetic marking area is located at the joint of the drill pipe In the upper direction, the specific direction is in the radial direction of the joint; the magnetic marking area is insulated, and then controlled to cool down to form a magnetic mark.
  • the magnetic permeability when used as the magnetic property, as a specific embodiment, it is heated to a temperature slightly higher than the Curie temperature point of 780 to 830 ° C, and the holding time is 30 to 60 min.
  • the temperature is controlled to be lowered to 300 to 400 ° C, and the temperature is naturally lowered to increase the magnetic permeability.
  • a permanent magnet having a high magnetic energy product such as a neodymium iron boron magnet
  • a permanent magnet having a low magnetic energy product such as an alnico magnet
  • the heating is performed to a temperature slightly lower than the Curie temperature point of 600 to 700 ° C
  • the holding time is 60 to 90 min
  • the longitudinal magnetic field heat treatment is performed. It is cooled to 350 ° C at a cooling rate of 200 ° C / hour, and naturally cooled.
  • controllable temperature drop is cooled to 200 ° C at 300 ° C / hour, 280 ° C / hour, 260 ° C / hour, respectively, the hysteresis loop pattern becomes steep, and the return line area is significantly reduced.
  • the heating means may comprise a flame heater and a heat retention device, or an alternating current induction heater.
  • the direction of change in the magnetic characteristic anomaly is related to the excitation direction used in the magnetic field heat treatment, and is also related to the sensor design of the reading device. Accordingly, the mark can be made to exhibit a magnetic property that is too high or low.
  • the step of magnetically marking the particular portion of the drill rod includes adding or subtracting material to the particular portion of the joint or rod of the drill rod such that the magnetic properties of the particular portion are altered.
  • the material is added or subtracted to the particular portion, for example, adding or reducing materials having the same magnetic properties, in particular embodiments, being added to the joint or rod of the drill rod, for example to form a projection, or to reduce For example, a way of forming a groove.
  • the material is added or subtracted to the particular portion, for example, adding or reducing materials having similar magnetic properties, in particular embodiments, adding to the joint or rod of the drill rod, for example, forming a protrusion, or reducing For example, a way of forming a groove.
  • the material is added or subtracted to the particular portion, for example, a high permeability material is added or reduced, and in a particular embodiment, the high permeability material is permalloy.
  • the high permeability material is permalloy.
  • it is added to the joint or rod of the drill rod, for example to form a projection, or to reduce the formation, for example, as a groove.
  • the step of magnetically marking a particular portion of the drill rod includes replacing a particular portion of the material of the drill rod with a material having a different magnetic properties.
  • the material is replaced by a material having a different magnetic properties, for example by adding to the joint or rod of the drill rod, for example to form a projection, or to reduce the formation, for example, as a groove.
  • the high magnetic permeability material is permalloy.
  • the steel material at a specific position is replaced with a material having different magnetic properties on the drill pipe joint, such as a metal such as copper or aluminum or an alloy thereof, or a non-metal material such as a high-strength rubber.
  • a material having different magnetic properties on the drill pipe joint such as a metal such as copper or aluminum or an alloy thereof, or a non-metal material such as a high-strength rubber.
  • An alternative method is to mechanically machine a plurality of holes in the drill pipe joint, fill in other materials, and form a code depending on the location and size of the holes.
  • the step of magnetically marking a particular portion of the drill rod includes heating the particular portion to or slightly beyond a Curie temperature point of the material to serve as a magnetic marking region; A magnetic field is applied to the marking area that coincides with the axial direction of the drill pipe; the magnetic marking area is insulated.
  • Figures 4 and 5 illustrate magnetic markers arranged axially on the drill rod, the black portions being indicative of the location, width and magnetic permeability anomaly amplitude of the different magnetic markers.
  • the drill string codes are axially aligned along the drill rod shaft.
  • the width between each symbol and the spacing between the symbols are 50mm.
  • a specific combination 201 of ternary symbols is used as a starting tag.
  • the code value is 13 symbols. With a check of one symbol, the check value is equal to the lowest bit of each of the encoded values.
  • This drill string encoding format can represent up to 1594323 different values, which is 3 to the power of 13.
  • the encoding value in this embodiment is binary 0210022021102, which is decimal 419375.
  • the drill string code is aligned axially along the drill rod shaft.
  • Use octal The symbol definition represented by the magnetic mark is shown on the right side of the figure.
  • Each symbol has a length of 200 mm, including a fixed interval of 50 mm. Take the octal symbol 6 as the starting tag.
  • the code value is 5 symbols. Using a sum check of the symbol, the check value is calculated by adding the 5 symbols of the coded value and taking the lowest bit symbol.
  • This drill string encoding format can represent up to 32,768 different values, which is the 5th power of 8.
  • the encoding value in this embodiment is octal 24607, that is, decimal 10631, and the check value is 3 (octal).
  • the width and axial position of the magnetic marker are measured by a photoelectric encoder.
  • the step of detecting the change in the magnetic characteristic of the particular portion comprises detecting using a Hall sensor, a magnetoresistive sensor and/or a coil.
  • the coil is circumferentially disposed on the drill pipe or disposed on a side of the drill pipe.
  • the drill pipe coding comprises: an encoded value portion, a start mark portion, an error correction or check portion, wherein the code value portion and the error correction or check portion adopt a binary representation, or a multi-ary code Indicates that the start tag portion is composed of the same hexadecimal notation as the code value portion, and/or the error correction or check portion, or is set to a special flag different from the hex symbol.
  • the direction of change in the magnetic characteristic anomaly is related to the excitation direction used in the magnetic field heat treatment, and is also related to the sensor design of the reading device. Accordingly, the mark can be made to exhibit a magnetic property that is too high or low.
  • the portion of the coded value included in the drill pipe coding and the error correction or check portion are represented by a binary representation, or a multi-digit representation, and the start mark portion is composed of logic 0 and logic 1, or is an AND logic.
  • a binary representation it may, but is not limited to, represent logic 0 and logic 1 in the following manner:
  • a magnetic marker for a logical one there is a magnetic marker for a logical one and a no marker for a logic zero. Or the opposite.
  • logical 0 and logical 1 are distinguished by the size of the magnetic mark, for example, a logic 1 is greater than the decision threshold and a logic 0 less than the decision threshold. Or the opposite.
  • the magnetic signature of the magnetic marker is logic 1 higher than the original value of the drill rod material and logic 0 when it is low. Or the opposite.
  • the deviation value is logic 1 above the threshold, and the logic threshold is lower than the threshold. . Or the opposite.
  • the spacing between the two magnetic markers is greater than the decision threshold and is logic 1 and less than the decision threshold is logic 0. Or the opposite.
  • the starting position of the encoding can be determined using the starting marker.
  • the "specific location" described above may be referenced to the starting mark.
  • the number of binary digits of the encoded value portion determines the range of values that the encoding can represent.
  • a 16-bit binary code value can represent 65536 different values.
  • one or more combinations of the above methods can be used to form a multi-digit magnetic mark.
  • the spacing between two magnetic marks is 100mm and 200mm, and the width can be 30mm, 50mm, 70mm.
  • Each magnetic mark can be one of the following six:
  • Width 30 Width 50 Width 70 Spacing 100
  • Each symbol in the table represents a width of 10 mm.
  • " indicates that the position has been subjected to magnetic field heat treatment, ":” indicates that the position is not subjected to magnetic field heat treatment, and the double slash "//" is the portion of the next mark.
  • the above table shows a hexadecimal magnetic mark.
  • An encoded value consisting of 7 sets of such magnetic markers can represent 279,936 different values, namely the 7th power of 6.
  • a non-magnetic mark (no abnormality in magnetic characteristics) can be used as logic 0, a magnetic characteristic is high as logic 1, and a magnetic characteristic is low as logic 2, which is a binary coding method. It is also possible to use the magnetic characteristic as no logic as the logic 0, the magnetic characteristic higher than 0.5-1.5 units as the logic 1, the higher 1.5-2.5 units as the logic 2, and the higher than 2.5 units as the logic 3, which is a kind Quaternary encoding.
  • the magnetic marks are arranged axially along the shaft of the drill rod, and the symbols represented by the magnetic marks are defined as follows:
  • the spacing of each symbol is 200mm.
  • a specific combination 31 of quaternary symbols is used as a starting marker.
  • the code value is 8 symbols. Using a sum check of a symbol, the check value is calculated by bitwise XOR of the coded value of 8 symbols.
  • This drill string encoding format can represent up to 65,536 different values, which is the 8th power of 4. The following are examples of valid code values:
  • Drill pipe coding Start tag Coded value
  • Check value Coded value decimal 31010311233 31 01031123 3 4955 31131023002 31 13102300 2 29872 31200112321 31 20011232 1 33134 31102231210 31 10223121 0 19161
  • the top-to-bottom marking on the drill pipe is as follows (for convenience, it is changed from left to right, "
  • the identification method of this embodiment can also be applied to oil pipes and other downhole tools.
  • the identification method applied to the oil drill pipe operation of the embodiment includes: S100, performing magnetic mark processing on a specific portion of the drill pipe; S200, detecting a change in magnetic characteristics having the specific portion; S300, when detecting magnetic characteristics When the value is abnormal, the magnetic mark of the drill pipe is detected, and the drill pipe code is obtained based on the position, width and/or magnetic abnormal amplitude information of the magnetic mark.
  • the magnetic property comprises magnetic permeability
  • the magnetic field heat treatment comprises increasing magnetic permeability
  • the magnetic characteristic comprises a rectangular ratio of hysteresis loops.
  • the magnetic field heat treatment includes improving the squareness ratio of the hysteresis loop or keeping the magnetic permeability constant over a range of magnetic fields.
  • longitudinal heat treatment is employed, i.e., the direction of the magnetic field during heat treatment is the same as the direction of magnetic flux actually used by the drill pipe.
  • a transverse magnetic field heat treatment is employed, that is, the direction of the magnetic field is perpendicular to the direction of the magnetic flux actually used by the drill pipe.
  • the step of magnetically marking a particular portion of the drill rod includes heating the particular portion to or slightly beyond a Curie temperature point of the material to serve as a magnetic marking region; Applying a magnetic field of a specific direction on the marking area, the specific direction being a magnetic field consistent with the axial direction of the drill pipe when the magnetic marking area is located on the rod of the drill pipe; when the magnetic marking area is located at the joint of the drill pipe In the upper direction, the specific direction is in the radial direction of the joint; the magnetic marking area is insulated, and then controlled to cool down to form a magnetic mark.
  • the magnetic permeability when used as the magnetic property, as a specific embodiment, it is heated to a temperature slightly higher than the Curie temperature point of 780 to 830 ° C, and the holding time is 30 to 60 min.
  • the temperature is controlled to be lowered to 300 to 400 ° C, and the temperature is naturally lowered to increase the magnetic permeability.
  • the heating is performed to a temperature slightly lower than the Curie temperature point of 600 to 700 ° C
  • the holding time is 60 to 90 min
  • the longitudinal magnetic field heat treatment is performed. It is cooled to 350 ° C at a cooling rate of 200 ° C / hour, and naturally cooled.
  • controllable temperature drop is cooled to 200 ° C at 300 ° C / hour, 280 ° C / hour, 260 ° C / hour, respectively, the hysteresis loop pattern becomes steep, and the return line area is significantly reduced.
  • the heating means may comprise a flame heater and a heat retention device, or an alternating current induction heater.
  • the direction of change in the magnetic characteristic anomaly is related to the excitation direction used in the magnetic field heat treatment, and is also related to the sensor design of the reading device. Accordingly, the mark can be made to exhibit a magnetic property that is too high or low.
  • the step of magnetically marking a particular portion of the drill rod includes: at the drill rod On the joint or rod, the material is added or subtracted to the particular portion such that the magnetic properties of the particular portion are altered.
  • the material is added or subtracted to the particular portion, for example, adding or reducing materials having the same magnetic properties, in particular embodiments, being added to the joint or rod of the drill rod, for example to form a projection, or to reduce For example, a way of forming a groove.
  • the material is added or subtracted to the particular portion, for example, adding or reducing materials having similar magnetic properties, in particular embodiments, adding to the joint or rod of the drill rod, for example, forming a protrusion, or reducing For example, a way of forming a groove.
  • the material is added or subtracted to the particular portion, for example, a high permeability material is added or reduced, and in a particular embodiment, the high permeability material is permalloy.
  • the high permeability material is permalloy.
  • it is added to the joint or rod of the drill rod, for example to form a projection, or to reduce the formation, for example, as a groove.
  • the step of magnetically marking a particular portion of the drill rod includes replacing a particular portion of the material of the drill rod with a material having a different magnetic properties.
  • the material is replaced by a material having a different magnetic properties, for example by adding to the joint or rod of the drill rod, for example to form a projection, or to reduce the formation, for example, as a groove.
  • the high magnetic permeability material is permalloy.
  • the steel material at a specific position is replaced with a material having different magnetic properties on the drill pipe joint, such as a metal such as nickel, copper, aluminum or an alloy thereof, or a non-metal material such as a high-strength rubber.
  • a material having different magnetic properties on the drill pipe joint such as a metal such as nickel, copper, aluminum or an alloy thereof, or a non-metal material such as a high-strength rubber.
  • An alternative method is to mechanically machine a plurality of holes in the drill pipe joint, fill in other materials, and form a code depending on the location and size of the holes.
  • the step of magnetically marking a particular portion of the drill rod includes heating the particular portion to or slightly beyond a Curie temperature point of the material to serve as a magnetic marking region; A magnetic field conforming to the radial direction of the drill pipe joint is applied to the marking area; the magnetic marking area is insulated.
  • Figure 6 illustrates another embodiment of a magnetic marker arranged axially on a drill rod.
  • the black portion is illustrated by the position and width of the different magnetic markers, the magnetic markers being located on the circumference of the shaft.
  • the drill pipe code is arranged in two layers along the circumference of the drill pipe shaft, with A-A being the first layer and B-B being the second layer.
  • A-A being the first layer
  • B-B being the second layer.
  • each symbol occupies a 20 degree fan angle in the circumferential direction.
  • the spacing of the symbols is a 20 degree fan angle.
  • Each symbol has an axial length of 200 mm and an axial spacing of two layers of 300 mm. In each layer of symbols, there is a symbol of length 400mm as the starting marker. No checksum correction.
  • Each layer has 8 symbols in addition to the start tag, and the two layers have a total of 16 symbols.
  • This drill string encoding format can represent up to 65,536 different values, which is 2 to the 16th power.
  • the encoding value in this embodiment is binary 1010011001001101, that is, decimal 42573.
  • the magnetic mark of each layer can also be used to form a Morse code, and several Morse codes are arranged in the axial direction to represent the coded information of the drill pipe.
  • the width and axial position of the magnetic marker are measured by a photoelectric encoder.
  • said detecting the change in the magnetic characteristic of said particular portion comprises: detecting using a Hall sensor, and/or a coil.
  • the coil is circumferentially disposed on the drill pipe or disposed on a side of the drill pipe.
  • the drill pipe coding comprises: an encoded value portion, a start mark portion, an error correction or check portion, wherein the code value portion and the error correction or check portion adopt a binary representation, or a multi-ary code Indicates that the start tag portion is composed of the same hexadecimal notation as the code value portion, and/or the error correction or check portion, or is set to a special flag different from the hex symbol.
  • the direction of change in the magnetic characteristic anomaly is related to the excitation direction used in the magnetic field heat treatment, and is also related to the sensor design of the reading device. Accordingly, the mark can be made to exhibit a magnetic property that is too high or low.
  • the portion of the coded value included in the drill pipe coding and the error correction or check portion are represented by a binary representation, or a multi-digit representation, and the start mark portion is composed of logic 0 and logic 1, or is an AND logic.
  • a binary representation it may, but is not limited to, represent logic 0 and logic 1 in the following manner:
  • a magnetic marker for a logical one there is a magnetic marker for a logical one and a no marker for a logic zero. Or the opposite.
  • logical 0 and logical 1 are distinguished by the size of the magnetic mark, for example, a logic 1 is greater than the decision threshold and a logic 0 less than the decision threshold. Or the opposite.
  • the magnetic properties of the magnetic marker are higher than the original value of the drill pipe material.
  • Series 1, low is logic 0. Or the opposite.
  • the deviation value is logic 1 above the threshold, and the logic threshold is lower than the threshold. . Or the opposite.
  • the spacing between the two magnetic markers is greater than the decision threshold and is logic 1 and less than the decision threshold is logic 0. Or the opposite.
  • the starting position of the encoding can be determined using the starting marker.
  • the "specific location" described above may be referenced to the starting mark.
  • the number of binary digits of the encoded value portion determines the range of values that the encoding can represent.
  • a 16-bit binary code value can represent 65536 different values.
  • one or more combinations of the above methods can be used to form a multi-digit magnetic mark.
  • the spacing between two magnetic marks is 100mm and 200mm, and the width can be 30mm, 50mm, 70mm.
  • Each magnetic mark can be one of the following six:
  • Width 30 Width 50 Width 70 Spacing 100
  • Each symbol in the table represents a width of 10 mm.
  • " indicates that the position has been subjected to magnetic field heat treatment, ":” indicates that the position is not subjected to magnetic field heat treatment, and the double slash "//" is the portion of the next mark.
  • the above table shows a hexadecimal magnetic mark.
  • An encoded value consisting of 7 sets of such magnetic markers can represent 279,936 different values, namely the 7th power of 6.
  • a non-magnetic mark (no abnormality in magnetic characteristics) can be used as logic 0, a magnetic characteristic is high as logic 1, and a magnetic characteristic is low as logic 2, which is a binary coding method. It is also possible to use the magnetic characteristic as no logic as the logic 0, the magnetic characteristic higher than 0.5-1.5 units as the logic 1, the higher 1.5-2.5 units as the logic 2, and the higher than 2.5 units as the logic 3, which is a kind Quaternary encoding.
  • the magnetic marks are arranged axially along the shaft of the drill rod, using a symbol represented by a quaternary, magnetic mark The number is defined as follows:
  • the spacing of each symbol is 200mm.
  • a specific combination 31 of quaternary symbols is used as a starting marker.
  • the code value is 8 symbols. Using a sum check of a symbol, the check value is calculated by bitwise XOR of the coded value of 8 symbols.
  • This drill string encoding format can represent up to 65,536 different values, which is the 8th power of 4. The following are examples of valid code values:
  • Drill pipe coding Start tag Coded value
  • Check value Coded value decimal 31010311233 31 01031123 3 4955 31131023002 31 13102300 2 29872 31200112321 31 20011232 1 33134 31102231210 31 10223121 0 19161
  • the top-to-bottom marking on the drill pipe is as follows (for convenience, it is changed from left to right, "
  • the identification method of this embodiment can also be applied to oil pipes and other downhole tools.
  • reasonable magnetic field heat treatment process parameters including heating, heat preservation and cooling methods, excitation mode, and mechanical stress mode, can be determined through test methods.
  • the process parameters of the magnetic field heat treatment are determined considering the compromise effect of the magnetic mark treatment effect, the influence on the performance of the drill pipe, the heat treatment energy consumption, the heat treatment time, the difficulty of the excitation mode, and the difficulty of the mechanical stress.
  • magnetic permeability when magnetic permeability is used as the magnetic property, it starts from 350 ° C and reaches 800 ° C every 50 ° C. Select a temperature point as the heating temperature of the heat treatment.
  • the holding time is 5 minutes, 15 minutes, 30 minutes, 60 minutes respectively.
  • the cooling speed is 120 °C / hour, 300 °C / hour, 600 °C / hour, respectively.
  • the magnetic field and the transverse magnetic field apply 10 tons of axial tensile force and no axial force to the drill pipe respectively.
  • the magnetic permeability of the magnetic mark is increased by more than 5%, and the heat treatment time is within 3 hours.
  • a group with less energy consumption is selected as the final magnetic field heat treatment process parameter.
  • an identification device for an oil drill pipe operation of the present invention includes: a marking unit 100 for performing magnetic marking processing on a specific portion of a drill pipe; and a detecting unit 200 for detecting the specific portion a magnetic characteristic change; an acquisition unit 300, configured to detect a magnetic mark of the drill pipe when an abnormal value of the magnetic characteristic is detected, and obtain a drill pipe code based on the position, width, and/or magnetic abnormal amplitude information of the magnetic mark .
  • the marking unit 100 may include four parts of heating, temperature detection, temperature control, and excitation.
  • the heating may be a flame
  • the temperature detection may be a thermocouple or an infrared temperature sensor
  • the excitation may be a permanent magnet or an electromagnet.
  • the heating lance 22 heats the drill pipe 11
  • the hanging plate 21 clamps and fixes the drill pipe 11
  • the temperature measuring device 23 performs temperature detection on the drill pipe 11.
  • a heat insulating layer 13 is disposed outside the drill pipe 11, and a high frequency heating coil 14 is disposed outside the heat insulating layer 13, a high frequency heating coil 14 is connected to the high frequency heating power source 15, and the temperature measuring device 17 performs the drill pipe 11 temperature check.
  • an insulation layer 33 is disposed outside the drill pipe 11, and an excitation coil 34 is disposed outside the insulation layer 33.
  • the excitation coil 34 is connected to the DC power source 35, and the temperature measuring device 37 performs temperature detection on the drill pipe 11.
  • the inner thermal insulation layer 31 is applied to the inner side of the shaft, the outer side is applied with the outer thermal insulation layer 19, the inner side is inserted with the iron rod 43 to which the permanent magnet 39 is fixed, and the outer side is provided with the outer thermal insulation layer 19
  • the outer magnet 2 is applied to the outer and inner magnets 39 at positions corresponding to each other, and the direction of the magnetic field and the direction of the magnetic field of the corresponding inner magnet constitute a state of mutual attraction.
  • the detecting unit 200 is provided with a sensor or a sensor array, for example, on the inner side or the outer side of the drill rod.
  • the sensors are arranged circumferentially or can move along the circumference, the sensor is connected to the signal collecting device, and the collected signals are input to the code reading machine.
  • the senor may be a Hall sensor 9, a magnetoresistive sensor or a sensor composed of a coil and a magnetic core
  • the code reader 5 may use a single chip microcomputer and may be connected to a background meter.
  • the specific part of the drill pipe is processed, the local magnetic property is changed, a plurality of magnetic marks are formed, and when an abnormal value of the magnetic property is detected, the magnetic mark of the drill pipe is detected, based on the magnetic
  • the position, width and/or magnetic anomaly amplitude information of the marker acquires the drill pipe code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Earth Drilling (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

一种应用于石油钻杆作业的身份识别方法及装置,包括:对钻杆的特定局部进行磁标记处理;检测特定局部的磁特性变化;当检测到磁特性的异常值时,则检测到钻杆的磁标记,基于磁标记的位置、宽度和/或磁异常幅度信息获取钻杆编码。本发明的优点是:第一,实现简单,基于磁标记的位置、宽度和/或磁异常幅度信息获取钻杆编码;第二,便于机器自动识读,特别是易于在钻井过程中实现对编码的自动现场识读;第三,通过钻杆编码,能够识别石油钻杆的身份信息,对钻杆逐根进行建档,从而知道每根钻杆在不同深度、拉/压力、振动、泥浆腐蚀性等条件下工作过的时间,实现更科学的钻杆分级,可以减少钻井事故,也可以避免在钻杆淘汰时所留的裕量过大,降低钻井作业的总成本。

Description

一种应用于石油钻杆作业的身份识别方法及装置 技术领域
本发明涉及一种应用于石油钻杆作业的身份识别方法及装置。
背景技术
现有技术中,石油钻杆是钻井作业的重要工具,每根钻杆的长度约为10米,多节钻杆以丝扣方式相连,下部同底部钻具组合相连,上部连接方钻杆、水龙头等。泥浆通过钻杆输送到井下。在采用转盘钻的钻井作业中,由钻杆把钻机的扭矩传递给井下的钻头。钻杆是钻柱组成中最长的部分。钻杆在井下需要经受拉力、压力、扭力、振动、摩擦、钻井液腐蚀,需要定期评估钻杆的老化程度,据此对钻杆进行分级,并及时淘汰和更新。目前对钻杆的分级依据包括定期进行的厚度检测和探伤。如果能够对钻杆逐根进行建档,就可以知道每根钻杆在不同钻井条件,例如深度、拉/压力、振动、泥浆腐蚀性等下工作过的时间,据此能够对钻杆的老化程度进行更全面和准确的评估,可以有效减少钻井事故,也可以避免在钻杆淘汰时所留的裕量过大,降低钻井作业的总成本。现有技术包括:一、主流做法是在钻杆接头处用钢字模打编号。这种方式难以实现机器自动识读,此外还容易沾污泥浆和油污,也易受磨损。二、在钻杆接头上嵌入电子芯片,其中存储钻杆的编号,通过接触式或非接触式读取装置,读取该编号。这种方案中采用的电子芯片难以在井下高温和高振动的条件下长时间工作,损坏率高。三、在钻杆接头上安装条形码(包括二维条码)。条形码同样存在易沾污和易磨损的缺点。总之,目前缺少一种可靠性高而又便于识读的石油钻杆身份识别方法。
发明内容
本发明的目的在于克服上述不足,提供一种应用于石油钻杆作业的身份识别方法,其不仅成本低廉,而且可靠性高,并且便于机器自动识读,特别 是易于实现在钻井作业过程中的现场识读。
为了实现上述目的,本发明采用的技术方案为:一种应用于石油钻杆作业的身份识别方法,其特征在于,包括:对钻杆的特定局部进行磁标记处理;检测所述特定局部的磁特性变化;当检测到磁特性的异常值时,则检测到钻杆的磁标记,基于所述磁标记的位置、宽度和/或磁异常幅度信息获取钻杆编码。
进一步地,所述对钻杆的特定局部进行磁标记处理的步骤包括:在钻杆的接头或杆身上,对所述特定局部添加或减少材料,使得所述特定局部的磁特性发生改变。
进一步地,所述对钻杆的特定局部进行磁标记处理的步骤包括磁场热处理,所述磁场热处理包括:对所述特定局部进行加热,使其达到材料的居里温度点,以作为磁标记区域;对所述磁标记区域施加特定方向的磁场,当所述磁标记区域位于钻杆的杆身上时,所述特定方向为与钻杆的轴向方向一致的磁场;当所述磁标记区域位于钻杆的接头上时,所述特定方向为沿接头的径向方向;在磁场作用下对所述磁标记区域进行保温,然后,进行可控降温,形成磁标记。
进一步地,所述磁标记设置于钻杆的杆身上,并沿轴向排列,或者所述磁标记设置于钻杆杆身上,并沿圆周排列,或者所述磁标记设置于钻杆接头上,并按圆周排列。
进一步地,通过光电编码器测量所述磁标记的轴向宽度和轴向位置。
进一步地,通过传感器阵列测量所述磁标记的圆周宽度和/或磁异常幅度。
进一步地,通过设置于钻杆外侧面、内侧面或环绕钻杆沿圆周排列的传感器或传感器阵列测量所述磁标记的位置、宽度和/或磁异常幅度。
进一步地,所述检测所述特定局部的磁特性变化的步骤包括:采用霍尔传感器,磁阻传感器和/或线圈进行检测。
进一步地,所述钻杆编码包括:编码值部分和起始标记部分,其中,所述编码值部分采用二进制或多进制表示,或者采用莫尔斯码编码方式表示,所述起始标记部分由与所述编码值部分相同的进制符号组成,或设置为与所述进制符号不同的特殊标记。
进一步地,所述钻杆编码还包括纠错或校验部分,所述纠错或校验部分采用二进制或多进制表示,或者采用莫尔斯码等编码方式表示。
本发明的另一目的还在于提供一种应用于石油钻杆作业的身份识别装置,其特征在于,包括:打标单元,用于对钻杆的特定局部进行磁标记处理;检测单元,用于检测所述特定局部的磁特性变化;获取单元,用于当检测到磁特性的异常值时,则检测到钻杆的磁标记,基于所述磁标记的位置、宽度和/或磁异常幅度信息获取钻杆编码。
本发明的有益效果为:
第一,实现简单,对钻杆的特定局部进行处理,使得该局部的磁性能发生改变,形成若干个磁标记,当检测到磁特性的异常值时,则检测到钻杆的磁标记,基于磁标记的位置、宽度和/或磁异常幅度信息获取钻杆编码。
第二,便于机器自动识读,特别是易于在钻井过程中实现对编码的自动现场识读,减少对人工的需求,可提高人员的安全性,也可降低因人工操作引发错误的可能性。
第三,通过钻杆编码,能够识别石油钻杆的身份信息,对钻杆逐根进行建档,从而可以知道每根钻杆在不同深度、拉/压力、振动、泥浆腐蚀性等条件下工作过的时间,实现更科学的钻杆分级,可以减少钻井事故,也可以避免在钻杆淘汰时所留的裕量过大,降低钻井作业的总成本。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本发明的应用于石油钻杆作业的身份识别方法的流程图;
图2是图1所示方法的钻杆编码的第一实施例示意图;
图3是图1所示方法的钻杆编码的第二实施例示意图;
图4和图5是图1所示方法的钻杆编码的第三实施例示意图;
图6是图1所示方法的钻杆编码的第四实施例示意图;
图7是本发明的应用于石油钻杆作业的身份识别装置的结构示意图;
图8a至图8d是本发明的打标单元的具体实施例示意图;
图9是本发明的检测单元与获取单元的具体实施例示意图。
具体实施方式
如在说明书及权利要求当中使用了某些词汇来指称特定组件。本领域技术人员应可理解,硬件制造商可能会用不同名词来称呼同一个组件。本说明书及权利要求并不以名称的差异来作为区分组件的方式,而是以组件在功能上的差异来作为区分的准则。如在通篇说明书及权利要求当中所提及的“包含”为一开放式用语,故应解释成“包含但不限定于”。“大致”是指在可接受的误差范围内,本领域技术人员能够在一定误差范围内解决所述技术问题,基本达到所述技术效果。说明书后续描述为实施本申请的较佳实施方式,然所述描述乃以说明本申请的一般原则为目的,并非用以限定本申请的范围。本申请的保护范围当视所附权利要求所界定者为准。
实施例1
请参照图1,本发明的应用于石油钻杆作业的身份识别方法包括:S100,对钻杆的特定局部进行磁标记处理;S200,检测所述特定局部的磁特性变化;S300,当检测到磁特性的异常值时,则检测到钻杆的磁标记,基于所述磁标记的位置,宽度和/或磁异常幅度信息获取钻杆编码。
优选地,所述磁特性包括磁导率,作为具体的实施例,所述磁场热处理包括提高磁导率。
优选地,所述磁特性包括磁滞回线的矩形比。作为具体的实施例,所述磁场热处理包括改善磁滞回线的矩形比,或者使磁导率在一定磁场范围内保持恒定不变。在具体的实施例中,采用纵向磁场热处理,即热处理时磁场方向与识读装置实际使用的磁通方向相同。或者,采用横向磁场热处理,即热处理时磁场方向与识读装置实际使用的磁通方向相垂直。
优选地,所述对钻杆的特定局部进行磁标记处理的步骤包括:对所述特定局部进行加热,使其达到或略超过材料的居里温度点,以作为磁标记区域;在所述磁标记区域上施加特定方向的磁场,当所述磁标记区域位于钻杆的杆身上时,所述特定方向为与钻杆的轴向方向一致的磁场;当所述磁标记区域位于钻杆的接头上时,所述特定方向为沿接头的径向方向;对所述磁标记区域进行保温,然后,进行可控降温,形成磁标记。
优选地,对所述特定局部进行加热,也可使其接近材料的居里温度点,即采用等温磁场热处理方式:将磁标记区域加热到居里点以下50~100℃,施加磁场后保持温度恒定较长时间,再进行降温。
优选地,以磁导率作为磁特性时,作为具体的实施例,加热到略高于居里温度点的780~830℃,施加磁场后保温时间为30~60min。
优选地,可控降温至300~400℃,自然降温,可提高磁导率。
优选地,以磁滞回线的矩形比作为磁特性时,作为具体的实施例,加热到略低于居里温度点的600~700℃,施加磁场后保温时间为60~90min,经过纵向磁场热处理,再以200℃/时冷却速度冷却到350℃,自然降温。
优选地,可控降温分别以300℃/时,280℃/时,260℃/时冷却至200℃,磁滞回线图形变陡立,回线面积显著减小。
优选地,加热装置可以包括火焰加热器以及保温装置,也可以采用交流感应加热器。
磁特性异常的变化方向与磁场热处理中采用的励磁方向有关,也与识读装置的传感器设计有关。据此可以使标记呈现磁特性偏高或偏低。
优选地,所述对钻杆的特定局部进行磁标记处理的步骤包括:在钻杆的接头或杆身上,对所述特定局部添加或减少材料,使得所述特定局部的磁特性发生改变。
优选地,对所述特定局部添加或减少材料,例如:添加或减少磁性能相同的材料,在具体的实施例中,采用在钻杆的接头或杆身上增加,例如形成为凸起,或减少例如形成为凹槽的方式。
优选地,对所述特定局部添加或减少材料,例如:添加或减少磁性能相近的材料,在具体的实施例中,采用在钻杆的接头或杆身上增加,例如形成为凸起,或减少例如形成为凹槽的方式。
优选地,对所述特定局部添加或减少材料,例如:添加或减少高磁导率材料,在具体的实施例中,所述高磁导率材料为坡莫合金。作为具体的实施例,采用在钻杆的接头或杆身上增加,例如形成为凸起,或减少例如形成为凹槽的方式。
优选地,在钻杆接头上将特定位置的钢材替换为磁性能不同的材料,如镍、铜、铝等金属或其合金,或者高强度胶等非金属材料,或者钕铁硼等永 磁材料。替换的方法包括在钻杆接头上用机械加工的方法制造出多个孔洞,填入其它材料,依靠孔洞的位置和尺寸形成编码。
优选地,所述对钻杆的特定局部进行磁标记处理的步骤包括:对所述特定局部进行加热,使其达到材料的居里温度点,以作为磁标记区域;对所述磁标记区域施加沿钻杆接头径向方向的磁场;在磁场作用下对所述磁标记区域进行保温,然后,进行可控降温,形成磁标记。
图2示意了在钻杆接头的圆周上排列的磁标记,黑色部分为不同磁标记的位置和宽度示意。
钻杆编码在某钻杆的内螺纹接头的端面上按圆周排列,采用二进制,磁标记所代表的符号定义如下:
磁标记扇形角度 0(无磁标记) 12
代表符号 0 1
每个符号占据12度扇形角。符号的间隔为12度扇形角。以一个扇形角为36度的磁标记作为起始标记。编码值为12个符号。有1个偶校验位。这个钻杆编码格式最多可以表示4096个不同的值,即2的12次幂。图中编码以箭头所指示的方向排列,两个编码分别为:
  编码值 校验值 编码值十进制
左侧编码 011010111010 1 1722
右侧编码 101100111011 0 2875
优选地,通过在钻杆接头上沿圆周排列的传感器阵列测量所述磁标记的位置、宽度和磁异常幅度。
优选地,所述检测所述特定局部的磁特性变化的步骤包括:采用霍尔传感器,磁阻传感器和/或线圈进行检测。
优选地,所述线圈环绕设置于钻杆。
优选地,所述钻杆编码包括:编码值部分,起始标记部分,纠错或校验部分,其中,所述编码值部分与所述纠错或校验部分采用二进制表示,或多 进制表示,所述起始标记部分由与所述编码值部分,和/或纠错或校验部分相同的进制符号组成,或设置为与所述进制符号不同的特殊标记。
磁特性异常的变化方向与磁场热处理中采用的励磁方向有关,也与识读装置的传感器设计有关。据此可以使标记呈现磁特性偏高或偏低。
优选地,所述钻杆编码包括的编码值部分与所述纠错或校验部分采用二进制表示,或多进制表示,所述起始标记部分由逻辑0和逻辑1组成,或为与逻辑0和逻辑1都不同的特殊标记。
优选地,如果使用二进制表示,可以,但不限于用以下方式表示逻辑0和逻辑1:
优选地,在特定位置,有磁标记则为逻辑1,无标记则为逻辑0。或相反。
优选地,在特定位置,以磁标记的尺寸来区分逻辑0和逻辑1,如,尺寸大于判决门限则为逻辑1,小于判决门限则为逻辑0。或相反。
优选地,在特定位置,磁标记的磁特性比钻杆材料的原始值偏高则为逻辑1,偏低则为逻辑0。或相反。
优选地,在特定位置,所有磁标记的磁特性比钻杆材料的原始值都偏高或都偏低的情况下,偏离值高于判决门限则为逻辑1,低于判决门限则为逻辑0。或相反。
优选地,两个磁标记之间的间距大于判决门限则为逻辑1,小于判决门限则为逻辑0。或相反。
优选地,可以利用起始标记确定编码的起始位置。上文所述的“特定位置”可以以起始标记为参照标准。
优选地,编码值部分的二进制位数决定了编码所能表示的数值范围。一个16位二进制编码值可以表示65536个不同的数值。
优选地,可以使用上述方法的一项或多项组合,形成多进制的磁标记。例如,两个磁标记之间的间距有100mm和200mm,宽度可以为30mm、50mm、70mm,则每个磁标记可以是下面六种之一:
  宽度30 宽度50 宽度70
间距100 |||:::::::// |||||:::::// |||||||::://
间距200 |||:::::::::::::::::// |||||:::::::::::::::// |||||||::::::::::::://
表中每个符号代表10mm的宽度。竖线“|”代表该位置经过了磁场热处理,“:”表示该位置未经过磁场热处理,双斜线“//”为下一个标记的部分。上表所表示的即为一个6进制的磁标记。一个由7组这样的磁标记组成的编码值可以表示279936个不同的数值,即6的7次幂。
如果使用多进制表示,可以以无磁标记(磁特性无异常)作为逻辑0,以磁特性偏高作为逻辑1,以磁特性偏低作为逻辑2,这就是一种三进制的编码方式。也可以以磁特性无异常作为逻辑0,以磁特性偏高0.5-1.5个单位作为逻辑1,偏高1.5-2.5个单位作为逻辑2,偏高2.5个单位以上作为逻辑3,这就是一种四进制编码方式。
优选地,磁标记采用四进制,磁标记所代表的符号定义如下:
磁标记宽度(mm) 0(无磁标记) 50 100 150
代表符号 0 1 2 3
每个符号的间隔为200mm。以四进制符号的特定组合31作为起始标记。编码值为8个符号。采用一个符号的和校验,校验值的计算方法为编码值8个符号按位异或。这个钻杆编码格式最多可以表示65536个不同的值,即4的8次幂。以下为有效编码值实例:
钻杆编码 起始标记 编码值 校验值 编码值十进制
31010311233 31 01031123 3 4955
31131023002 31 13102300 2 29872
31200112321 31 20011232 1 33134
31102231210 31 10223121 0 19161
本实施例的身份识别方法还可以应用于油管和其它井下工具。
实施例2
本实施例的应用于石油钻杆作业的身份识别方法包括:S100,对钻杆的特定局部进行磁标记处理;S200,检测具有所述特定局部的磁特性变化;S300,当检测到磁特性的异常值时,则检测到钻杆的磁标记,基于所述磁标记的位置、宽度和/或磁异常幅度信息获取钻杆编码。
优选地,所述磁特性包括磁导率,作为具体的实施例,所述磁场热处理包括提高磁导率。
优选地,所述磁特性包括磁滞回线的矩形比。作为具体的实施例,所述磁场热处理包括改善磁滞回线的矩形比,或者使磁导率在一定磁场范围内保持恒定不变。在具体的实施例中,采用纵向热处理,即热处理时磁场方向与钻杆实际使用的磁通方向相同。或者,采用横向磁场热处理,即热处理时磁场方向与钻杆实际使用的磁通方向相垂直。
优选地,所述对钻杆的特定局部进行磁标记处理的步骤包括:对所述特定局部进行加热,使其达到或略超过材料的居里温度点,以作为磁标记区域;在所述磁标记区域上施加特定方向的磁场,当所述磁标记区域位于钻杆的杆身上时,所述特定方向为与钻杆的轴向方向一致的磁场;当所述磁标记区域位于钻杆的接头上时,所述特定方向为沿接头的径向方向;对所述磁标记区域进行保温,然后,进行可控降温,形成磁标记。
优选地,以磁导率作为磁特性时,作为具体的实施例,加热到略高于居里温度点的780~830℃,保温时间为30~60min。
优选地,可控降温至300~400℃,自然降温,可提高磁导率。
优选地,以磁滞回线的矩形比作为磁特性时,作为具体的实施例,加热到略低于居里温度点的600~700℃,保温时间为60~90min,经过纵向磁场热处理,再以200℃/时冷却速度冷却到350℃,自然降温。
优选地,可控降温分别以300℃/时,280℃/时,260℃/时冷却至200℃,磁滞回线图形变陡立,回线面积显著减小。
优选地,加热装置可以包括火焰加热器以及保温装置,也可以采用交流感应加热器。
磁特性异常的变化方向与磁场热处理中采用的励磁方向有关,也与识读装置的传感器设计有关。据此可以使标记呈现磁特性偏高或偏低。
优选地,所述对钻杆的特定局部进行磁标记处理的步骤包括:将钻杆特定局部的材料替换为磁性能不同的材料。
优选地,替换为磁性能不同的材料,例如:采用在钻杆的接头或杆身上增加,例如形成为凸起,或减少例如形成为凹槽的方式。在具体的实施例中,采用高磁导率材料,所述高磁导率材料为坡莫合金。
优选地,在钻杆接头上将特定位置的钢材替换为磁性能不同的材料,如镍、铜、铝等金属或其合金,或者高强度胶等非金属材料。替换的方法是在钻杆接头上用机械加工的方法制造出多个孔洞,填入其它材料,依靠孔洞的位置和尺寸形成编码。
优选地,所述对钻杆的特定局部进行磁标记处理的步骤包括:对所述特定局部进行加热,使其达到或略超过材料的居里温度点,以作为磁标记区域;在所述磁标记区域上施加与钻杆接头径向方向一致的磁场;对所述磁标记区域进行保温。
图3示意了在钻杆接头的圆周上排列的磁标记的另一种实施例,黑色部分为不同磁标记的位置和宽度示意。
钻杆编码在某钻杆内螺纹接头的端面上按圆周排列,采用四进制,磁标记所代表的符号定义如图中右侧所示。
每个符号占据36度的扇形角,其中包括12度扇形角的固定间隔。以一个扇形角为60度的磁标记作为起始标记。编码值为8个符号。无校验和纠错。这个钻杆编码格式最多可以表示65536个不同的值,即4的8次幂。本实施例中的编码值为四进制13021032,即十进制29262。
对于本领域的技术人员,同样可以对具有相同或类似母扣接头的其它井下工具进行编码,从而实现对这些井下工具的身份识别。
优选地,通过在钻杆接头上沿圆周排列的传感器阵列测量所述磁标记的位置、宽度和磁异常幅度。
优选地,所述检测具有所述特定局部的磁特性变化的步骤包括:采用霍尔传感器,磁阻传感器和/或线圈进行检测。
优选地,所述线圈环绕设置于钻杆,或设置于贴近钻杆的侧面。
优选地,所述钻杆编码包括:编码值部分,起始标记部分,纠错或校验部分,其中,所述编码值部分与所述纠错或校验部分采用二进制表示,或多 进制表示,所述起始标记部分由与所述编码值部分,和/或纠错或校验部分相同的进制符号组成,或设置为与所述进制符号不同的特殊标记。
磁特性异常的变化方向与磁场热处理中采用的励磁方向有关,也与识读装置的传感器设计有关。据此可以使标记呈现磁特性偏高或偏低。
优选地,所述钻杆编码包括的编码值部分与所述纠错或校验部分采用二进制表示,或多进制表示,所述起始标记部分由逻辑0和逻辑1组成,或为与逻辑0和逻辑1都不同的特殊标记。
优选地,如果使用二进制表示,可以,但不限于用以下方式表示逻辑0和逻辑1:
优选地,在特定位置,有磁标记则为逻辑1,无标记则为逻辑0。或相反。
优选地,在特定位置,以磁标记的尺寸来区分逻辑0和逻辑1,如,尺寸大于判决门限则为逻辑1,小于判决门限则为逻辑0。或相反。
优选地,在特定位置,磁标记的磁特性比钻杆材料的原始值偏高则为逻辑1,偏低则为逻辑0。或相反。
优选地,在特定位置,所有磁标记的磁特性比钻杆材料的原始值都偏高或都偏低的情况下,偏离值高于判决门限则为逻辑1,低于判决门限则为逻辑0。或相反。
优选地,两个磁标记之间的间距大于判决门限则为逻辑1,小于判决门限则为逻辑0。或相反。
优选地,可以利用起始标记确定编码的起始位置。上文所述的“特定位置”可以以起始标记为参照标准。
优选地,编码值部分的二进制位数决定了编码所能表示的数值范围。一个16位二进制编码值可以表示65536个不同的数值。
优选地,可以使用上述方法的一项或多项组合,形成多进制的磁标记。例如,两个磁标记之间的间距有100mm和200mm,宽度可以为30mm、50mm、70mm,则每个磁标记可以是下面六种之一:
  宽度30 宽度50 宽度70
间距100 |||:::::::// |||||:::::// |||||||::://
间距200 |||:::::::::::::::::// |||||:::::::::::::::// |||||||::::::::::::://
表中每个符号代表10mm的宽度。竖线“|”代表该位置经过了磁场热处理,“:”表示该位置未经过磁场热处理,双斜线“//”为下一个标记的部分。上表所表示的即为一个6进制的磁标记。一个由7组这样的磁标记组成的编码值可以表示279936个不同的数值,即6的7次幂。
如果使用多进制表示,可以以无磁标记(磁特性无异常)作为逻辑0,以磁特性偏高作为逻辑1,以磁特性偏低作为逻辑2,这就是一种进制的编码方式。也可以以磁特性无异常作为逻辑0,以磁特性偏高0.5-1.5个单位作为逻辑1,偏高1.5-2.5个单位作为逻辑2,偏高2.5个单位以上作为逻辑3,这就是一种四进制编码方式。
优选地,磁标记采用四进制,磁标记所代表的符号定义如下:
磁标记宽度(mm) 0(无磁标记) 50 100 150
代表符号 0 1 2 3
每个符号的间隔为200mm。以四进制符号的特定组合31作为起始标记。编码值为8个符号。采用一个符号的和校验,校验值的计算方法为编码值8个符号按位异或。这个钻杆编码格式最多可以表示65536个不同的值,即4的8次幂。以下为有效编码值实例:
钻杆编码 起始标记 编码值 校验值 编码值十进制
31010311233 31 01031123 3 4955
31131023002 31 13102300 2 29872
31200112321 31 20011232 1 33134
31102231210 31 10223121 0 19161
本实施例的身份识别方法还可以应用于油管和其它井下工具。
实施例3
本实施例的应用于石油钻杆作业的身份识别方法包括:S100,对钻杆的特定局部进行磁标记处理;S200,检测具有所述特定局部的磁特性变化;S300,当检测到磁特性的异常值时,则检测到钻杆的磁标记,基于所述磁标记的位置、宽度和/或磁异常幅度信息获取钻杆编码。
优选地,所述磁特性包括磁导率,作为具体的实施例,所述磁场热处理包括提高磁导率。
优选地,所述磁特性包括磁滞回线的矩形比。作为具体的实施例,所述磁场热处理包括改善磁滞回线的矩形比,或者使磁导率在一定磁场范围内保持恒定不变。在具体的实施例中,采用纵向热处理,即热处理时磁场方向与钻杆实际使用的磁通方向相同。或者,采用横向磁场热处理,即热处理时磁场方向与钻杆实际使用的磁通方向相垂直。
优选地,所述对钻杆的特定局部进行磁标记处理的步骤包括:对所述特定局部进行加热,使其达到或略超过材料的居里温度点,以作为磁标记区域;在所述磁标记区域上施加特定方向的磁场,当所述磁标记区域位于钻杆的杆身上时,所述特定方向为与钻杆的轴向方向一致的磁场;当所述磁标记区域位于钻杆的接头上时,所述特定方向为沿接头的径向方向;对所述磁标记区域进行保温,然后,进行可控降温,以形成磁标记。
优选地,以磁导率作为磁特性时,作为具体的实施例,加热到略高于居里温度点的780~830℃,保温时间为30~60min。
优选地,可控降温至300~400℃,自然降温,可提高磁导率。
优选地,励磁时使用高磁能积的永久磁铁(如钕铁硼磁铁)使磁导率提高10%,使用低磁能积的永久磁铁(如铝镍钴磁铁)使磁导率提高5%。
优选地,以磁滞回线的矩形比作为磁特性时,作为具体的实施例,加热到略低于居里温度点的600~700℃,保温时间为60~90min,经过纵向磁场热处理,再以200℃/时冷却速度冷却到350℃,自然降温。
优选地,可控降温分别以300℃/时,280℃/时,260℃/时冷却至200℃,磁滞回线图形变陡立,回线面积显著减小。
优选地,加热装置可以包括火焰加热器以及保温装置,也可以采用交流感应加热器。
磁特性异常的变化方向与磁场热处理中采用的励磁方向有关,也与识读装置的传感器设计有关。据此可以使标记呈现磁特性偏高或偏低。
优选地,所述对钻杆的特定局部进行磁标记处理的步骤包括:在钻杆的接头或杆身上,对所述特定局部添加或减少材料,使得所述特定局部的磁特性发生改变。
优选地,对所述特定局部添加或减少材料,例如:添加或减少磁性能相同的材料,在具体的实施例中,采用在钻杆的接头或杆身上增加,例如形成为凸起,或减少例如形成为凹槽的方式。
优选地,对所述特定局部添加或减少材料,例如:添加或减少磁性能相近的材料,在具体的实施例中,采用在钻杆的接头或杆身上增加,例如形成为凸起,或减少例如形成为凹槽的方式。
优选地,对所述特定局部添加或减少材料,例如:添加或减少高磁导率材料,在具体的实施例中,所述高磁导率材料为坡莫合金。作为具体的实施例,采用在钻杆的接头或杆身上增加,例如形成为凸起,或减少例如形成为凹槽的方式。
优选地,所述对钻杆的特定局部进行磁标记处理的步骤包括:将钻杆特定局部的材料替换为磁性能不同的材料。
优选地,替换为磁性能不同的材料,例如:采用在钻杆的接头或杆身上增加,例如形成为凸起,或减少例如形成为凹槽的方式。在具体的实施例中,所述高磁导率材料为坡莫合金。
优选地,在钻杆接头上将特定位置的钢材替换为磁性能不同的材料,如铜、铝等金属或其合金,或者高强度胶等非金属材料。替换的方法是在钻杆接头上用机械加工的方法制造出多个孔洞,填入其它材料,依靠孔洞的位置和尺寸形成编码。
优选地,所述对钻杆的特定局部进行磁标记处理的步骤包括:对所述特定局部进行加热,使其达到或略超过材料的居里温度点,以作为磁标记区域;在所述磁标记区域上施加与钻杆的轴向方向一致的磁场;对所述磁标记区域进行保温。
图4和图5示意了在钻杆身上沿轴向排列的磁标记,黑色部分为不同磁标记的位置、宽度和磁导率异常幅度示意。
如图4所示,钻杆编码沿钻杆杆身轴向排列。采用三进制。磁标记由不同的励磁强度形成不同的磁导率异常幅度,其所代表的符号定义如下:
磁导率异常幅度 0(无磁标记) +5% +10%
代表符号 0 1 2
每个符号的宽度和符号之间的间隔均为50mm。以三进制符号的特定组合201作为起始标记。编码值为13个符号。采用一个符号的校验,校验值等于编码值各符合和的最低位。这个钻杆编码格式最多可以表示1594323个不同的值,即3的13次幂。本实施例中的编码值为二进制0210022021102,即十进制419375。
如图5左侧所示,钻杆编码沿钻杆杆身轴向排列。采用八进制。磁标记所代表的符号定义如图中右侧所示。
每个符号的长度为200mm,其中包括50mm的固定间隔。以八进制符号6作为起始标记。编码值为5个符号。采用一个符号的和校验,校验值的计算方法为编码值5个符号相加后取最低位符号。这个钻杆编码格式最多可以表示32768个不同的值,即8的5次幂。本实施例中的编码值为八进制24607,即十进制10631,校验值为3(八进制)。
优选地,通过光电编码器测量所述磁标记的宽度和轴向位置。
优选地,所述检测具有所述特定局部的磁特性变化的步骤包括:采用霍尔传感器,磁阻传感器和/或线圈进行检测。
优选地,所述线圈环绕设置于钻杆,或设置于贴近钻杆的侧面。
优选地,所述钻杆编码包括:编码值部分,起始标记部分,纠错或校验部分,其中,所述编码值部分与所述纠错或校验部分采用二进制表示,或多进制表示,所述起始标记部分由与所述编码值部分,和/或纠错或校验部分相同的进制符号组成,或设置为与所述进制符号不同的特殊标记。
磁特性异常的变化方向与磁场热处理中采用的励磁方向有关,也与识读装置的传感器设计有关。据此可以使标记呈现磁特性偏高或偏低。
优选地,所述钻杆编码包括的编码值部分与所述纠错或校验部分采用二进制表示,或多进制表示,所述起始标记部分由逻辑0和逻辑1组成,或为与逻辑0和逻辑1都不同的特殊标记。
优选地,如果使用二进制表示,可以,但不限于用以下方式表示逻辑0和逻辑1:
优选地,在特定位置,有磁标记则为逻辑1,无标记则为逻辑0。或相反。
优选地,在特定位置,以磁标记的尺寸来区分逻辑0和逻辑1,如,尺寸大于判决门限则为逻辑1,小于判决门限则为逻辑0。或相反。
优选地,在特定位置,磁标记的磁特性比钻杆材料的原始值偏高则为逻辑1,偏低则为逻辑0。或相反。
优选地,在特定位置,所有磁标记的磁特性比钻杆材料的原始值都偏高或都偏低的情况下,偏离值高于判决门限则为逻辑1,低于判决门限则为逻辑0。或相反。
优选地,两个磁标记之间的间距大于判决门限则为逻辑1,小于判决门限则为逻辑0。或相反。
优选地,可以利用起始标记确定编码的起始位置。上文所述的“特定位置”可以以起始标记为参照标准。
优选地,编码值部分的二进制位数决定了编码所能表示的数值范围。一个16位二进制编码值可以表示65536个不同的数值。
优选地,可以使用上述方法的一项或多项组合,形成多进制的磁标记。例如,两个磁标记之间的间距有100mm和200mm,宽度可以为30mm、50mm、70mm,则每个磁标记可以是下面六种之一:
  宽度30 宽度50 宽度70
间距100 |||:::::::// |||||:::::// |||||||::://
间距200 |||:::::::::::::::::// |||||:::::::::::::::// |||||||::::::::::::://
表中每个符号代表10mm的宽度。竖线“|”代表该位置经过了磁场热处理,“:”表示该位置未经过磁场热处理,双斜线“//”为下一个标记的部分。上表所表示的即为一个6进制的磁标记。一个由7组这样的磁标记组成的编码值可以表示279936个不同的数值,即6的7次幂。
如果使用多进制表示,可以以无磁标记(磁特性无异常)作为逻辑0,以磁特性偏高作为逻辑1,以磁特性偏低作为逻辑2,这就是一种进制的编码方式。也可以以磁特性无异常作为逻辑0,以磁特性偏高0.5-1.5个单位作为逻辑1,偏高1.5-2.5个单位作为逻辑2,偏高2.5个单位以上作为逻辑3,这就是一种四进制编码方式。
优选地,磁标记沿钻杆杆身轴向排列,采用四进制,磁标记所代表的符号定义如下:
磁标记宽度(mm) 0(无磁标记) 50 100 150
代表符号 0 1 2 3
每个符号的间隔为200mm。以四进制符号的特定组合31作为起始标记。编码值为8个符号。采用一个符号的和校验,校验值的计算方法为编码值8个符号按位异或。这个钻杆编码格式最多可以表示65536个不同的值,即4的8次幂。以下为有效编码值实例:
钻杆编码 起始标记 编码值 校验值 编码值十进制
31010311233 31 01031123 3 4955
31131023002 31 13102300 2 29872
31200112321 31 20011232 1 33134
31102231210 31 10223121 0 19161
以第一个钻杆编码为例,在钻杆上由上到下的打标记情况如下所示(为方便起见改为从左至右,“|”表示此位置有磁标记,“:”表示此位置无磁标记,每个符号代表的宽度为50mm。)
|||:|:::::::|:::::::|||:|:::|:::||::|||:|||:
3   1   0   1   0   3   1   1   2   3   3
本实施例的身份识别方法还可以应用于油管和其它井下工具。
实施例4
本实施例的应用于石油钻杆作业的身份识别方法包括:S100,对钻杆的特定局部进行磁标记处理;S200,检测具有所述特定局部的磁特性变化;S300,当检测到磁特性的异常值时,则检测到钻杆的磁标记,基于所述磁标记的位置、宽度和/或磁异常幅度信息获取钻杆编码。
优选地,所述磁特性包括磁导率,作为具体的实施例,所述磁场热处理包括提高磁导率。
优选地,所述磁特性包括磁滞回线的矩形比。作为具体的实施例,所述磁场热处理包括改善磁滞回线的矩形比,或者使磁导率在一定磁场范围内保持恒定不变。在具体的实施例中,采用纵向热处理,即热处理时磁场方向与钻杆实际使用的磁通方向相同。或者,采用横向磁场热处理,即热处理时磁场方向与钻杆实际使用的磁通方向相垂直。
优选地,所述对钻杆的特定局部进行磁标记处理的步骤包括:对所述特定局部进行加热,使其达到或略超过材料的居里温度点,以作为磁标记区域;在所述磁标记区域上施加特定方向的磁场,当所述磁标记区域位于钻杆的杆身上时,所述特定方向为与钻杆的轴向方向一致的磁场;当所述磁标记区域位于钻杆的接头上时,所述特定方向为沿接头的径向方向;对所述磁标记区域进行保温,然后,进行可控降温,以形成磁标记。
优选地,以磁导率作为磁特性时,作为具体的实施例,加热到略高于居里温度点的780~830℃,保温时间为30~60min。
优选地,可控降温至300~400℃,自然降温,可提高磁导率。
优选地,以磁滞回线的矩形比作为磁特性时,作为具体的实施例,加热到略低于居里温度点的600~700℃,保温时间为60~90min,经过纵向磁场热处理,再以200℃/时冷却速度冷却到350℃,自然降温。
优选地,可控降温分别以300℃/时,280℃/时,260℃/时冷却至200℃,磁滞回线图形变陡立,回线面积显著减小。
优选地,加热装置可以包括火焰加热器以及保温装置,也可以采用交流感应加热器。
磁特性异常的变化方向与磁场热处理中采用的励磁方向有关,也与识读装置的传感器设计有关。据此可以使标记呈现磁特性偏高或偏低。
优选地,所述对钻杆的特定局部进行磁标记处理的步骤包括:在钻杆的 接头或杆身上,对所述特定局部添加或减少材料,使得所述特定局部的磁特性发生改变。
优选地,对所述特定局部添加或减少材料,例如:添加或减少磁性能相同的材料,在具体的实施例中,采用在钻杆的接头或杆身上增加,例如形成为凸起,或减少例如形成为凹槽的方式。
优选地,对所述特定局部添加或减少材料,例如:添加或减少磁性能相近的材料,在具体的实施例中,采用在钻杆的接头或杆身上增加,例如形成为凸起,或减少例如形成为凹槽的方式。
优选地,对所述特定局部添加或减少材料,例如:添加或减少高磁导率材料,在具体的实施例中,所述高磁导率材料为坡莫合金。作为具体的实施例,采用在钻杆的接头或杆身上增加,例如形成为凸起,或减少例如形成为凹槽的方式。
优选地,所述对钻杆的特定局部进行磁标记处理的步骤包括:将钻杆特定局部的材料替换为磁性能不同的材料。
优选地,替换为磁性能不同的材料,例如:采用在钻杆的接头或杆身上增加,例如形成为凸起,或减少例如形成为凹槽的方式。在具体的实施例中,所述高磁导率材料为坡莫合金。
优选地,在钻杆接头上将特定位置的钢材替换为磁性能不同的材料,如镍、铜、铝等金属或其合金,或者高强度胶等非金属材料。替换的方法是在钻杆接头上用机械加工的方法制造出多个孔洞,填入其它材料,依靠孔洞的位置和尺寸形成编码。
优选地,所述对钻杆的特定局部进行磁标记处理的步骤包括:对所述特定局部进行加热,使其达到或略超过材料的居里温度点,以作为磁标记区域;在所述磁标记区域上施加与钻杆接头径向方向一致的磁场;对所述磁标记区域进行保温。
图6示意了在钻杆身上沿轴向排列的磁标记的另一种实施例,黑色部分为不同磁标记的位置和宽度示意,磁标记位于杆身的圆周上。
钻杆编码沿钻杆杆身圆周排列两层,A-A为第一层,B-B为第二层。采用二进制。磁标记所代表的符号定义如下:
磁标记扇形角度 0(无磁标记) 20
代表符号 0 1
每层符号中,每个符号在圆周方向占据20度扇形角。符号的间隔为20度扇形角。每个符号的轴向长度为200mm,两层符号的轴向间隔为300mm。每层符号中,有一个长度为400mm的符号作为起始标记。无校验和纠错。每层除起始标记外,有8个符号,两层共16个符号。这个钻杆编码格式最多可以表示65536个不同的值,即2的16次幂。本实施例中的编码值为二进制1010011001001101,即十进制42573。
对于本领域的技术人员,依据本例原理,同样可以用每层的磁标记构成一个摩尔斯码,沿轴向排列若干个摩尔斯码,以此表示钻杆的编码信息。
优选地,通过光电编码器测量所述磁标记的宽度和轴向位置。
优选地,所述检测具有所述特定局部的磁特性变化的步骤包括:采用霍尔传感器,和/或线圈进行检测。
优选地,所述线圈环绕设置于钻杆,或设置于贴近钻杆的侧面。
优选地,所述钻杆编码包括:编码值部分,起始标记部分,纠错或校验部分,其中,所述编码值部分与所述纠错或校验部分采用二进制表示,或多进制表示,所述起始标记部分由与所述编码值部分,和/或纠错或校验部分相同的进制符号组成,或设置为与所述进制符号不同的特殊标记。
磁特性异常的变化方向与磁场热处理中采用的励磁方向有关,也与识读装置的传感器设计有关。据此可以使标记呈现磁特性偏高或偏低。
优选地,所述钻杆编码包括的编码值部分与所述纠错或校验部分采用二进制表示,或多进制表示,所述起始标记部分由逻辑0和逻辑1组成,或为与逻辑0和逻辑1都不同的特殊标记。
优选地,如果使用二进制表示,可以,但不限于用以下方式表示逻辑0和逻辑1:
优选地,在特定位置,有磁标记则为逻辑1,无标记则为逻辑0。或相反。
优选地,在特定位置,以磁标记的尺寸来区分逻辑0和逻辑1,如,尺寸大于判决门限则为逻辑1,小于判决门限则为逻辑0。或相反。
优选地,在特定位置,磁标记的磁特性比钻杆材料的原始值偏高则为逻 辑1,偏低则为逻辑0。或相反。
优选地,在特定位置,所有磁标记的磁特性比钻杆材料的原始值都偏高或都偏低的情况下,偏离值高于判决门限则为逻辑1,低于判决门限则为逻辑0。或相反。
优选地,两个磁标记之间的间距大于判决门限则为逻辑1,小于判决门限则为逻辑0。或相反。
优选地,可以利用起始标记确定编码的起始位置。上文所述的“特定位置”可以以起始标记为参照标准。
优选地,编码值部分的二进制位数决定了编码所能表示的数值范围。一个16位二进制编码值可以表示65536个不同的数值。
优选地,可以使用上述方法的一项或多项组合,形成多进制的磁标记。例如,两个磁标记之间的间距有100mm和200mm,宽度可以为30mm、50mm、70mm,则每个磁标记可以是下面六种之一:
  宽度30 宽度50 宽度70
间距100 |||:::::::// |||||:::::// |||||||::://
间距200 |||:::::::::::::::::// |||||:::::::::::::::// |||||||::::::::::::://
表中每个符号代表10mm的宽度。竖线“|”代表该位置经过了磁场热处理,“:”表示该位置未经过磁场热处理,双斜线“//”为下一个标记的部分。上表所表示的即为一个6进制的磁标记。一个由7组这样的磁标记组成的编码值可以表示279936个不同的数值,即6的7次幂。
如果使用多进制表示,可以以无磁标记(磁特性无异常)作为逻辑0,以磁特性偏高作为逻辑1,以磁特性偏低作为逻辑2,这就是一种进制的编码方式。也可以以磁特性无异常作为逻辑0,以磁特性偏高0.5-1.5个单位作为逻辑1,偏高1.5-2.5个单位作为逻辑2,偏高2.5个单位以上作为逻辑3,这就是一种四进制编码方式。
优选地,磁标记沿钻杆杆身轴向排列,采用四进制,磁标记所代表的符 号定义如下:
磁标记宽度(mm) 0(无磁标记) 50 100 150
代表符号 0 1 2 3
每个符号的间隔为200mm。以四进制符号的特定组合31作为起始标记。编码值为8个符号。采用一个符号的和校验,校验值的计算方法为编码值8个符号按位异或。这个钻杆编码格式最多可以表示65536个不同的值,即4的8次幂。以下为有效编码值实例:
钻杆编码 起始标记 编码值 校验值 编码值十进制
31010311233 31 01031123 3 4955
31131023002 31 13102300 2 29872
31200112321 31 20011232 1 33134
31102231210 31 10223121 0 19161
以第一个钻杆编码为例,在钻杆上由上到下的打标记情况如下所示(为方便起见改为从左至右,“|”表示此位置有磁标记,“:”表示此位置无磁标记,每个符号代表的宽度为50mm。)
|||:|:::::::|:::::::|||:|:::|:::||::|||:|||:
3   1   0   1   0   3   1   1   2   3   3
本实施例的身份识别方法还可以应用于油管和其它井下工具。
实施例5
采用磁场热处理对一批钻杆进行批量化磁标记处理之前,可以先通过试验方法确定合理的磁场热处理工艺参数,包括加热、保温和降温方式,励磁方式,外加机械应力方式等。根据试验数据,考虑到磁标记处理效果、对钻杆性能的影响、热处理能耗、热处理时间、励磁方式的难度、外加机械应力的难度等多种因素的折衷效果,确定磁场热处理的工艺参数。
例如,以磁导率作为磁特性时,自350℃开始,到800℃为止,每隔50℃ 选择一个温度点作为热处理的加热温度,保温时间分别采用5分钟、15分钟、30分钟、60分钟,降温速度分别采用120℃/小时、300℃/小时、600℃/小时,励磁方式分别采用纵向磁场和横向磁场,对钻杆分别施加10吨的轴向拉力和不施加轴向力,通过上述参数组合试验的结果,在磁标记的磁导率增加5%以上、热处理时间在3小时以内的参数组合中,选择能耗较少的一组作为最终的磁场热处理工艺参数。
请参照图7,本发明的应用于石油钻杆作业的身份识别装置,包括:打标单元100,用于对钻杆的特定局部进行磁标记处理;检测单元200,用于检测所述特定局部的磁特性变化;获取单元300,用于当检测到磁特性的异常值时,则检测到钻杆的磁标记,基于所述磁标记的位置、宽度和/或磁异常幅度信息获取钻杆编码。
优选地,打标单元100可包括:加热、温度检测、温度控制和励磁四个部分。具体实施,加热可以采用火焰,温度检测可以采用热电偶或红外线测温传感器,励磁可以采用永久磁铁或电磁铁。
如图8a所示,加热喷枪22对钻杆11进行加热,挂板21对钻杆11进行夹持固定,测温装置23对钻杆11进行温度检测。
如图8b所示,在钻杆11外设有保温层13,保温层13外设有高频加热线圈14,高频加热线圈14连接高频加热电源15,测温装置17对钻杆11进行温度检测。
如图8c所示,在钻杆11外设有保温层33,保温层33外设有励磁线圈34,励磁线圈34连接直流电源35,测温装置37对钻杆11进行温度检测。
如图8d所示,在钻杆11打标处,在杆身的内侧施加内保温层31,外侧,施加外保温层19,内侧插入固定有永久磁铁39的铁棒43,外侧在外保温层19外与内侧磁铁39对应位置施加外磁铁2,磁场方向与相应的内侧磁铁的磁场方向构成相互吸引的状态。
优选地,检测单元200例如是在钻杆内侧或外侧设置传感器或传感器阵列,传感器沿圆周排列或可以沿圆周运动,传感器连接到信号采集装置,采集到的信号输入给编码识读机。
优选地,如图9所示,传感器可以采用霍尔传感器9、磁阻传感器或由线圈和磁芯组成的传感器,编码识读机5可以使用单片机,并可连接后台计 算机3,作为具体的实施例,编码识读机5与后台计算机3作为获取单元。
本发明的有益效果为:
实现简单,对钻杆的特定局部进行处理,使得该局部的磁性能发生改变,形成若干个磁标记,当检测到磁特性的异常值时,则检测到钻杆的磁标记,基于所述磁标记的位置、宽度和/或磁异常幅度信息获取钻杆编码。通过钻杆编码,就可以知道每根钻杆在不同钻井条件,例如深度、拉力、压力,工作过的时间,据此能够识别石油钻杆作业的身份信息,能够对钻杆逐根进行建档,成本较低,避免了在钻杆淘汰时所留的裕量过大,可以减少浪费。
上述说明示出并描述了本申请的若干优选实施例,但如前所述,应当理解本申请并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述申请构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本申请的精神和范围,则都应在本申请所附权利要求的保护范围内。

Claims (11)

  1. 一种应用于石油钻杆作业的身份识别方法,其特征在于,包括:
    对钻杆的特定局部进行磁标记处理;
    检测所述特定局部的磁特性变化;
    当检测到磁特性的异常值时,则检测到钻杆的磁标记,基于所述磁标记的位置、宽度和/或磁异常幅度信息获取钻杆编码。
  2. 根据权利要求1所述的应用于石油钻杆作业的身份识别方法,其特征在于,所述对钻杆的特定局部进行磁标记处理的步骤包括:在钻杆的接头或杆身上,对所述特定局部添加或减少材料,使得所述特定局部的磁特性发生改变。
  3. 根据权利要求1所述的应用于石油钻杆作业的身份识别方法,其特征在于,所述对钻杆的特定局部进行磁标记处理的步骤包括磁场热处理。
  4. 根据权利要求3所述的应用于石油钻杆作业的身份识别方法,其特征在于,所述磁标记设置于钻杆的杆身上,并沿轴向排列,或者
    所述磁标记设置于钻杆杆身上,并沿圆周排列,或者
    所述磁标记设置于钻杆接头上,并按圆周排列。
  5. 根据权利要求4所述的应用于石油钻杆作业的身份识别方法,其特征在于,通过光电编码器测量所述磁标记的轴向宽度和轴向位置。
  6. 根据权利要求5所述的应用于石油钻杆作业的身份识别方法,其特征在于,通过传感器阵列测量所述磁标记的圆周宽度和磁异常幅度。
  7. 根据权利要求1所述的应用于石油钻杆作业的身份识别方法,其特征在于,通过设置于钻杆外侧面、内侧面或环绕钻杆沿圆周排列的传感器或传感器阵列测量所述磁标记的位置、宽度和/或磁异常幅度信息。
  8. 根据权利要求7所述的应用于石油钻杆作业的身份识别方法,其特征在于,所述检测所述特定局部的磁特性变化的步骤包括:采用霍尔传感器,磁阻传感器和/或线圈进行检测。
  9. 根据权利要求1-8中任何一项所述的应用于石油钻杆作业的身份识别方法,其特征在于,所述钻杆编码包括:编码值部分和起始标记部分,其中,所述编码值部分采用二进制或多进制表示,或者采用莫尔斯码编码方式表示,所述起始标记部分由与所述编码值部分相同的进制符号组成,或设置为与所述进制符号不同的特殊标记。
  10. 根据权利要求9所述的应用于石油钻杆作业的身份识别方法,其特征在于,所述钻杆编码还包括纠错或校验部分,所述纠错或校验部分采用二进制或多进制表示,或者采用莫尔斯码编码方式表示。
  11. 一种应用于石油钻杆作业的身份识别装置,其特征在于,包括:
    打标单元,用于对钻杆的特定局部进行磁标记处理;
    检测单元,用于检测所述特定局部的磁特性变化;
    获取单元,用于当检测到磁特性的异常值时,则检测到钻杆的磁标记,基于所述磁标记的位置、宽度和/或磁异常幅度信息获取钻杆编码。
PCT/CN2015/098373 2014-12-26 2015-12-23 一种应用于石油钻杆作业的身份识别方法及装置 WO2016101886A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410829390.3A CN105787401B (zh) 2014-12-26 2014-12-26 一种应用于石油钻杆作业的身份识别方法
CN201410829390.3 2014-12-26

Publications (1)

Publication Number Publication Date
WO2016101886A1 true WO2016101886A1 (zh) 2016-06-30

Family

ID=56149284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098373 WO2016101886A1 (zh) 2014-12-26 2015-12-23 一种应用于石油钻杆作业的身份识别方法及装置

Country Status (2)

Country Link
CN (1) CN105787401B (zh)
WO (1) WO2016101886A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115613029A (zh) * 2022-09-08 2023-01-17 河北光束激光科技有限公司 一种基于二进制编码的石油钻杆标记方法
CN117892755A (zh) * 2023-11-24 2024-04-16 四川迈棣辉石油科技有限责任公司 一种基于磁电感应的钻杆标识方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1676863A (zh) * 2004-04-02 2005-10-05 中国科学院金属研究所 一种油井管或抽油杆的特征标识方法
CN2763465Y (zh) * 2004-07-15 2006-03-08 中国科学院金属研究所 一种磁标记型油井管、抽油杆
US20060179694A1 (en) * 2005-01-31 2006-08-17 Akins Charles T Coding identification system and method for drill pipe
CN102121352A (zh) * 2010-01-07 2011-07-13 王海侨 钻杆长度自动识别系统
CN202533980U (zh) * 2012-03-15 2012-11-14 上海中科清洁能源技术发展中心 电子标签
CN203925311U (zh) * 2014-04-25 2014-11-05 上海海隆石油钻具有限公司 具有电子识别标签的钻具

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100353162C (zh) * 2004-09-24 2007-12-05 华中科技大学 管杆螺纹缺陷检测传感器
CN101055615A (zh) * 2007-02-02 2007-10-17 北京理工大学 一种磁电式槽码标记与识别技术

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1676863A (zh) * 2004-04-02 2005-10-05 中国科学院金属研究所 一种油井管或抽油杆的特征标识方法
CN2763465Y (zh) * 2004-07-15 2006-03-08 中国科学院金属研究所 一种磁标记型油井管、抽油杆
US20060179694A1 (en) * 2005-01-31 2006-08-17 Akins Charles T Coding identification system and method for drill pipe
CN102121352A (zh) * 2010-01-07 2011-07-13 王海侨 钻杆长度自动识别系统
CN202533980U (zh) * 2012-03-15 2012-11-14 上海中科清洁能源技术发展中心 电子标签
CN203925311U (zh) * 2014-04-25 2014-11-05 上海海隆石油钻具有限公司 具有电子识别标签的钻具

Also Published As

Publication number Publication date
CN105787401A (zh) 2016-07-20
CN105787401B (zh) 2018-09-07

Similar Documents

Publication Publication Date Title
AU2013273664B2 (en) System and method for monitoring tubular components of a subsea structure
CA2862256C (en) Magnetic ranging tool and method
WO2016101886A1 (zh) 一种应用于石油钻杆作业的身份识别方法及装置
US20140116715A1 (en) System and method for monitoring a subsea well
CN105026683A (zh) 具有位置检测装置的完井组件
US4629991A (en) Methods and apparatus for detecting tubular defects having a plurality of expandable arcuate segments
US11111779B2 (en) Magnetic position indicator
US8471556B2 (en) Magnetic probe and processes of analysis
CN107632061B (zh) 一种连续油管在线检测缺陷的标记方法
CN103063126A (zh) 连续油管椭圆度检测方法
WO2007012685B1 (es) Equipo para el control permanente y continuo de los cable de acero utilizados en instalaciones de transporte o de elevación de personal y de materiales
CA1333412C (en) Method of magnetizing well tubulars
CN105784835A (zh) 用于石油钻杆损伤程度的测量系统及方法
CN205566690U (zh) 工频电磁感应加热辊
CN104616050A (zh) 金属标签及检测系统
Yilai et al. Improving SNR of MFL detecting defect signal of drill pipe by using pole piece
CN114856550B (zh) 一种基于地磁异常标记的石油套管精确定位装置及方法
US20140165741A1 (en) Mechanical force components sensing system and an associated method thereof for a magnetically encoded device
EP2752551B1 (en) Enhanced device for determining the location of induced stress in stuck borehole tubulars
Al-Yateem et al. Measuring and profiling casing corrosion for predicting subsurface leaks
CN204188175U (zh) 一种适用于井下作业的电机编码器
CN105781529A (zh) 连续油管和连续管电缆深度测量系统及方法
US11422205B2 (en) Magnetic freepoint indicator tool
Sharar et al. High Resolution Casing Imaging Utilizing Magnetic Flux Leakage Measurements.
CN104457801A (zh) 一种适用于井下作业的电机编码器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15871954

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15871954

Country of ref document: EP

Kind code of ref document: A1