WO2016101869A1 - 一种高增益窄波束天线 - Google Patents

一种高增益窄波束天线 Download PDF

Info

Publication number
WO2016101869A1
WO2016101869A1 PCT/CN2015/098263 CN2015098263W WO2016101869A1 WO 2016101869 A1 WO2016101869 A1 WO 2016101869A1 CN 2015098263 W CN2015098263 W CN 2015098263W WO 2016101869 A1 WO2016101869 A1 WO 2016101869A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
metal
dielectric plate
beam antenna
feed network
Prior art date
Application number
PCT/CN2015/098263
Other languages
English (en)
French (fr)
Inventor
刘良骥
Original Assignee
刘良骥
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 刘良骥 filed Critical 刘良骥
Publication of WO2016101869A1 publication Critical patent/WO2016101869A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • H01Q1/2225Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in active tags, i.e. provided with its own power source or in passive tags, i.e. deriving power from RF signal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0037Particular feeding systems linear waveguide fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0075Stripline fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic

Definitions

  • the present invention relates to the field of RFID application technologies, and in particular, to a high gain narrow beam antenna.
  • Radio Frequency Identification technology is a technology that uses radio frequency signals to automatically identify target objects and obtain relevant information.
  • RFID Radio Frequency Identification
  • the application field is expanding, and more and more applications have been applied in military, aviation, warehousing and logistics, commodity retail, industrial manufacturing, asset management, transportation, animal husbandry, anti-counterfeiting and other security. field.
  • RFID Radio Frequency Identification
  • the field of warehousing and logistics as an example, with the deepening of the application of RFID technology in the logistics and warehousing industry, there are more and more forklift trucks using RFID technology, and more and more types of labels need to be identified for various applications, such as Buried labels, shelf labels, pallet labels, etc.
  • the same antenna should be able to identify three or more types of tags in the same system at the same time, so there are higher requirements for the antenna's high gain, narrow beam and small size. Since the forklift antennas are mostly installed between the forklift arms, the conventional RFID reader antenna form microstrip antennas cannot meet the requirements of such applications for small size, and the gain of small antennas that can be moved by a simple L-slot cannot be achieved. Meet the high gain requirements.
  • the object of the present invention is to provide a high-gain narrow-beam antenna for the defects in the prior art, which mainly uses a feed network to realize phase differences of 0°, 90°, 180°, and 270°, and connects four metal radiations through a feed network.
  • Arrays, metal radiant arrays add directors; the antenna has high gain, narrow beam, small size, wide bandwidth, etc., can achieve high gain and narrow beam under the premise of meeting the size requirements of the antenna.
  • the present invention adopts the following technical solutions:
  • a high-gain narrow-beam antenna comprising an insulating dielectric plate, a feed network on the front side of the dielectric plate, a metal back plate on the back of the dielectric plate, and four metal radiant films mounted on the front side of the dielectric plate and connected to the feed network And fixed on the front side of the insulating dielectric plate and suspended in the metal radiation array a director above the child;
  • the feeding network has an input end and four output ends, and includes a plurality of interconnected power splitters and phase shifters for converting signals input from the input end into four equal amplitudes, and the phase difference is 90 in order.
  • the signal of ° is output from four outputs to four metal radiation sources.
  • the director is supported on the front surface of the insulating dielectric plate by a plurality of insulating supports, and is suspended above the metal radiation array, and is coupled by a metal radiation array.
  • the metal base plate is a copper clad layer and is connected to the ground.
  • the metal radiant array is an inverted L-shaped antenna array.
  • the four metal radiant elements enclose a square in a clockwise or counterclockwise direction above the feed network, the center of which is the center of the dielectric plate.
  • the four metal radiant elements are arranged in a radial shape centering on the center of the insulating dielectric plate.
  • the insulating medium plate is circular or rectangular.
  • the feed network includes a two-stage power splitting circuit
  • the first-stage power splitting circuit includes a first power splitter and a 180° phase shifter
  • the second-level power splitting circuit includes a second power a splitter, a third splitter and two 90° phase shifters
  • the input end of the first power splitter is an input end of the feed network, one output end of the first power splitter is connected to the second power splitter through a 180° phase shifter, and the other output end is directly connected to the third power splitter Device
  • One output of the second splitter is connected to the first output of the feed network through a 90° phase shifter; the other output of the second splitter is directly connected to the second output of the feed network;
  • One output of the third splitter is connected to the third output of the feed network through a 90° phase shifter; the other output of the third splitter is directly connected to the fourth output of the feed network;
  • the first to fourth outputs of the feed network are respectively connected to four metal radiation sources.
  • phase shifter is a phase shifter in the form of a coplanar waveguide or a microstrip line
  • the power splitter is a power splitter such as a ceramic power splitter or a microstrip line
  • the insulating dielectric plate is a poly 4 a vinyl fluoride plate or an FR-4 insulating plate
  • the metal radiation frame is composed of stainless steel, copper or copper.
  • the high gain narrow beam antenna further includes a molded fiberglass radome, the insulating dielectric plate, the feed network and the director being located in the molded fiberglass radome.
  • the high-gain narrow beam antenna provided by the present invention has the advantages of wide shaft ratio bandwidth, high gain, circular polarization, miniaturization, stable performance, and easy mass production.
  • the invention not only overcomes the narrow bandwidth and large volume defect of the single port feeding, but also simplifies the complicated shortcomings of the multi-port feeding system, improves the performance, and is more suitable for the application of the RFID industry.
  • FIG. 1 is a schematic view showing the side structure of an embodiment of the present invention.
  • FIG. 2 is a schematic view showing the structure of a top surface according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a feed network according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a metal radiation ray in an embodiment of the present invention.
  • FIG. 5 is a schematic view showing the overall arrangement of a metal radiation ray in an embodiment of the present invention.
  • Insulated dielectric board 1 feed network 2 metal base 3
  • a high-gain narrow-beam antenna provided by an embodiment of the present invention includes an insulating dielectric plate, a feeding network 2 on the front surface of the insulating dielectric plate 1, and a metal backplane on the back surface of the insulating dielectric plate 1. 3.
  • Four metal radiating elements 4 mounted on the front surface of the insulating dielectric plate 1 and connected to the feeding network 2, and a director 5 fixed to the front surface of the insulating dielectric plate 1 and suspended above the metal radiating element 4.
  • the director 5 is supported on the front surface of the insulating dielectric plate 1 through a plurality of insulating supports 6, and is suspended above the metal radiation array 4, and is coupled and fed through the metal radiation array 4.
  • the insulating dielectric plate 1 has a rectangular shape and is a polytetrafluoroethylene plate or an FR-4 insulating plate.
  • the insulating dielectric plate 1 is provided with a plurality of through holes 8 , and the lower end of the insulating support member 6 is riveted into the through hole 8 , and the upper end is fixedly connected to the deflector 5 .
  • the director 5 can be a metal plate.
  • the metal base plate 1 on the back surface of the insulating dielectric plate 1 is a copper clad layer and is connected to the ground.
  • the metal base plate 3 is formed by entirely copper plating on the back surface of the insulating dielectric plate 1, and is provided with a feed pad, which enables the feed network 2 to have a transmission characteristic of the coplanar waveguide and increases signal stability.
  • the feed network 2 on the front side of the dielectric plate 1 has an input and four outputs, including a plurality of interconnected power splitters and phase shifters for converting signals input from the input into four equal amplitudes
  • the signals having a phase difference of 90° are respectively outputted from the four output terminals to the four metal radiation arrays 4, and the metal radiation array 4 is coupled to the director 5 by a coupling feed.
  • a high-gain narrow beam antenna provided by an embodiment of the present invention further includes a molded glass reinforced plastic radome, and the insulating dielectric plate 1, the feeding network 2 and the director 5 are located in the molded fiberglass radome. Since the shape of the molded FRP radome can be changed according to actual application requirements, and its structure is simple, it is not shown in the figure.
  • the molded glass fiber reinforced plastic radome has the characteristics of firmness, heat resistance, high temperature resistance, corrosion resistance and excellent insulation, which can effectively protect the dielectric plate 1, the feeding network 2 and the director 5 from external compression and interference, and strengthen the narrow
  • the safety and stability of the beam antenna can adapt to the various environments in which the narrow beam is used.
  • the feed network 2 includes a two-stage power splitting circuit
  • the first-stage power splitting circuit includes a first splitter 21 and a 180° phase shifter 22, and the second stage
  • the power splitting circuit includes a second power splitter 23, a third power splitter 24, and two 90° phase shifters 25, both printed on the front side of the dielectric dielectric board 1.
  • the phase shifter is a phase shifter in the form of a coplanar waveguide or a microstrip line;
  • the power splitter is a power splitter such as a ceramic power splitter or a microstrip line.
  • the input end of the first power splitter 21 is an input end of the feed network 2, and is connected to the external feed port 7.
  • One output end of the first power splitter 21 is connected to the second work through the 180° phase shifter 22.
  • the divider 23 has another output connected directly to the third splitter 24.
  • An output of the second splitter 23 is connected to the first output 201 of the feed network 2 via a 90° phase shifter 25; the other output of the second splitter 23 is directly connected to the feed network 2 Second output 202.
  • An output of the third splitter 24 is connected to the third output 203 of the feed network 2 via a 90° phase shifter 25; the other output of the third splitter 24 is directly connected to the feed network 2 Fourth output 204.
  • the first to fourth output terminals 201, 202, 203, 204 of the feed network 2 are connected to four metal radiant elements 4, respectively.
  • the second power splitter 23 and the third splitter in the second-stage power split are respectively sent to the signal with a phase angle of 180° and 0°.
  • the second power splitter 23 equally divides the signal with a phase angle of 180°, one of the outputs is phase-shifted by a 90° phase shifter 25, and outputs a phase angle of 270° to the first output terminal 201.
  • the signal, the other output directly outputs a signal having a phase angle of 180° to the second output 202.
  • the third power splitter 24 equally divides the signal having a phase angle of 0°, one of the outputs is phase-shifted by a 90° phase shifter 25, and a signal having a phase angle of 90° is outputted to the third output terminal 203.
  • the other output directly outputs a signal having a phase angle of 0° to the fourth output terminal 204.
  • the first to fourth output terminals 201, 202, 203, and 204 of the feed network 2 respectively output four signals having the same amplitude and phase angles of 270, 180, 90, and 0, respectively.
  • a metal radiant element 4 is fed.
  • the metal radiation ray 4 is an inverted L-shaped antenna array.
  • the inverted L-shaped antenna array includes a vertical portion 41 and a horizontal portion 42, the lower end of which is vertically fixed to the insulating dielectric plate 1, and the upper end of the vertical portion 41 is connected to the horizontal portion 42, the level The portion 42 is parallel to the insulating dielectric plate 1 and integrally forms a lying "L" shape.
  • the metal radiant array 4 is made of PCB, stainless steel, copper or other metallic conductor material.
  • the vertical portions of the four metal radiant elements 4 are respectively connected to the four output ends of the feed network 2, which are arranged in parallel with the horizontal portions of the four metal radiant elements 4 and suspended by the insulating support member 6.
  • the four inverted L-shaped metal radiant elements 4 greatly reduce the length of the array, which facilitates the miniaturization of the antenna, and on the other hand, greatly improves the stability of the antenna; the director 5 is used to widen the impedance bandwidth of the antenna while Increase signal gain.
  • the four metal radiating elements 4 are sequentially mounted on the feeding network 2 on the front side of the insulating dielectric plate 1 in a certain order, and the height thereof is adjustable.
  • the insulating dielectric plate 1 is rectangular, and the four metal radiation arrays 4 form a square in a clockwise or counterclockwise direction above the feeding network 2, The center is the center of the dielectric plate 1, and each of the metal radiant elements 4 is parallel to one side of the rectangle.
  • the insulating dielectric plate 1 may also be circular, and the four The metal radiant elements 4 are arranged in a radial shape centering on the center of the insulating dielectric plate 1.
  • the invention provides a high-gain narrow beam antenna, and the working frequency band can be an ultra-high frequency of RFID, or a frequency band of 433MHz or 2.4GHz.
  • the operating frequency band of the antenna can be adjusted over a wide range or in a small range by adjusting the length of the metal radiation frame and the length of the microstrip line width on the feed network and the height of the array from the floor.
  • the high-gain narrow beam antenna provided by the present invention has the advantages of wide axial ratio bandwidth, circular polarization, high gain, narrow beam, stable performance, and easy mass production.
  • the invention not only overcomes the narrow bandwidth and large volume defect of the single port feeding, but also simplifies the complicated shortcomings of the multi-port feeding system, improves the performance, and is more suitable for the application of the narrow beam requirement in the RFID industry.
  • the high-gain narrow beam antenna provided by the present invention is used as a forklift antenna, and has the advantages of high application efficiency, high accuracy, and good real-time performance.
  • the high-gain narrow beam antenna of the present invention is not only suitable for the field of warehousing and logistics, but also suitable for industrial manufacturing, transportation, anti-counterfeiting and the like, and has a very broad application prospect.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

本发明涉及一种高增益窄波束天线,包括绝缘介质板、位于绝缘介质板正面的馈电网络、位于绝缘介质板背面的金属底板、安装于绝缘介质板正面且与馈电网络连接的四个金属辐射阵子、以及固定于绝缘介质板正面且悬空设置于金属辐射阵子上方的引向器;所述馈电网络包括若干个相互连接的功分器和移相器,用于将从输入端输入的信号转化为四路等幅、相位差依次为90°的信号,分别输出给四个金属辐射阵子。本发明具有具有宽轴比带宽、圆极化、高增益、窄波束、性能稳定、易于量产等优点,适用于仓储物流、工业制造、交通运输、防伪防盗等领域,具有非常广阔的应用前景。

Description

一种高增益窄波束天线 技术领域
本发明涉及RFID应用技术领域,特别涉及一种高增益窄波束天线。
背景技术
射频识别(Radio Frequency Identification,RFID)技术是一种利用射频信号自动识别目标对象并获取相关信息的技术。随着RFID核心技术的不断发展和成熟,应用领域日益扩大,已经越来越多的应用在包括军事、航空、仓储物流、商品零售、工业制造、资产管理、交通运输、畜牧、防伪防盗等不同领域。以仓储物流领域为例,随着RFID技术在物流和仓储行业的应用越来越深入,应用RFID技术的叉车也越来越多,针对各种应用需要识别的标签种类越来越多,如地埋标签、货架标签、托盘标签等。而同一款天线要能够实现同时识别同一个系统中的三类或多类标签,因此对天线的高增益、窄波束和小尺寸有更高的要求。由于叉车天线大多安装在叉车臂之间,普通的RFID读写器天线形式微带天线是无法满足此类应用关于小尺寸的要求,而通过简单的L阵子实现移向的小天线的增益又不能满足高增益的要求。
发明内容
本发明的目的在于针对现有技术中的缺陷提供一种高增益窄波束天线,主要采用馈电网络实现0°、90°、180°、270°的相差,通过馈电网络连接四个金属辐射阵子,金属辐射阵子上增加引向器;该天线具有增益高、窄波束、尺寸小、带宽宽等特点,可以在满足天线对尺寸要求的前提下实现高增益和窄波束。
为实现上述目的,本发明采用以下技术方案:
一种高增益窄波束天线,包括绝缘介质板、位于绝缘介质板正面的馈电网络、位于绝缘介质板背面的金属底板、安装于绝缘介质板正面且与馈电网络连接的四个金属辐射阵子、以及固定于绝缘介质板正面且悬空设置于金属辐射阵 子上方的引向器;
所述馈电网络具有一个输入端和四个输出端,包括若干个相互连接的功分器和移相器,用于将从输入端输入的信号转化为四路等幅、相位差依次为90°的信号,分别从四个输出端输出给四个金属辐射阵子。
进一步地,所述引向器通过多个绝缘支撑件支撑于绝缘介质板正面,且悬空设置于金属辐射阵子的上方,通过金属辐射阵子耦合馈电。
进一步地,所述金属底板为覆铜层,连接到地。
进一步地,所述金属辐射阵子为倒L形天线阵子。
进一步地,所述四个金属辐射阵子在馈电网络上方沿顺时针或逆时针方向围成一正方形,其中心为绝缘介质板的中心。
进一步地,所述四个金属辐射阵子以绝缘介质板的中心为中心,呈辐射状排列。
进一步地,所述绝缘介质板为圆形或矩形。
进一步地,所述馈电网络包括两级功分移向电路,第一级功分移向电路包括第一功分器和180°移相器,第二级功分移向电路包括第二功分器、第三功分器和两个90°移相器;
第一功分器的输入端为馈电网络的输入端,第一功分器的一个输出端通过180°移相器连接到第二功分器,另一个输出端直接连接到第三功分器;
第二功分器的一个输出端通过一个90°移相器连接到馈电网络的第一输出端;第二功分器的另一个输出端直接连接到馈电网络的第二输出端;
第三功分器的一个输出端通过一个90°移相器连接到馈电网络的第三输出端;第三功分器的另一个输出端直接连接到馈电网络的第四输出端;
馈电网络的第一至第四输出端分别连接四个金属辐射阵子。
进一步地,所述移相器为共面波导或微带线形式的移相器;所述功分器为陶瓷功分器或者微带线等功率功分器;所述绝缘介质板为聚四氟乙烯板或FR-4绝缘板;所述金属辐射阵子由不锈钢、洋白铜或PCB构成。
进一步地,所述高增益窄波束天线还包括一模压玻璃钢天线罩,所述绝缘介质板、馈电网络和引向器位于模压玻璃钢天线罩内。
同现有的技术相比较,本发明提供的一种高增益窄波束天线具有宽轴比带宽、高增益、圆极化、小型化、性能稳定、易于量产等优点。本发明不仅克服了单端口馈电的带宽窄,体积大的缺陷,而且简化了多端口馈电系统复杂的缺点,提高了性能,更加适合RFID行业的应用。
附图说明
图1是本发明实施例的侧面结构示意图。
图2为本发明实施例的顶面结构示意图。
图3为本发明实施例中的馈电网络的结构示意图。
图4为本发明实施例中的金属辐射阵子的结构示意图。
图5为本发明实施例中的金属辐射阵子的整体排布示意图。
附图标记
绝缘介质板1    馈电网络2      金属底板3
金属辐射阵子4  引向器5        绝缘支撑件6
外部馈电端口7  通孔8          第一功分器21
180°移相器22  第二功分器23   第三功分器24
90°移相器25   第一输出端201  第二输出端202
第三输出端203  第四输出端204  垂直部分41
水平部分42
具体实施方式
下面将结合附图和具体的实施例对本发明的技术方案进行详细说明。
如图1至图3所示,本发明实施例提供的一种高增益窄波束天线,包括绝缘介质板1、位于绝缘介质板1正面的馈电网络2、位于绝缘介质板1背面的金属底板3、安装于绝缘介质板1正面且与馈电网络2连接的四个金属辐射阵子4、以及固定于绝缘介质板1正面且悬空设置于金属辐射阵子4上方的引向器5。
具体地,所述引向器5通过多个绝缘支撑件6支撑于绝缘介质板1正面,且悬空设置于金属辐射阵子4上方,通过金属辐射阵子4耦合馈电。
所述绝缘介质板1呈矩形,为聚四氟乙烯板或FR-4绝缘板。绝缘介质板1上设有多个通孔8,绝缘支撑件6的下端铆接于通孔8中,上端与引向器5固定连接。所述引向器5可以是金属板。
位于绝缘介质板1背面的金属底板1为覆铜层,连接到地。金属底板3是在绝缘介质板1的背面全部铺铜形成的,并设有馈电焊盘,能够使得馈电网络2呈共面波导的传输特性,增加信号稳定性。
位于绝缘介质板1正面的馈电网络2具有一个输入端和四个输出端,包括若干个相互连接的功分器和移相器,用于将从输入端输入的信号转化为四路等幅、相位差依次为90°的信号,分别从四个输出端输出给四个金属辐射阵子4,金属辐射阵子4通过耦合馈电的形式与引向器5耦合。
进一步地,本发明实施例提供的一种高增益窄波束天线还包括一模压玻璃钢天线罩,所述绝缘介质板1、馈电网络2和引向器5位于模压玻璃钢天线罩内。由于模压玻璃钢天线罩的形状可以根据实际应用需求进行变化设计,且其结构简单,故未在图中示出。模压玻璃钢天线罩具备坚固、耐热、耐高温、耐腐蚀、绝缘性优良等特点,能够有效保护绝缘介质板1、馈电网络2和引向器5不受外界挤压和干扰,增强了窄波束天线的安全性和稳定性,能够适应窄波束的各种使用环境。
具体地,如图3所示,所述馈电网络2包括两级功分移向电路,第一级功分移向电路包括第一功分器21和180°移相器22,第二级功分移向电路包括第二功分器23、第三功分器24和两个90°移相器25,均印刷在绝缘介质板1的正面。所述移相器为共面波导或微带线形式的移相器;所述功分器为陶瓷功分器或者微带线等功率功分器。其中,第一功分器21的输入端为馈电网络2的输入端,与外部馈电端口7连接,第一功分器21的一个输出端通过180°移相器22连接到第二功分器23,另一个输出端直接连接到第三功分器24。第二功分器23的一个输出端通过一个90°移相器25连接到馈电网络2的第一输出端201;第二功分器23的另一个输出端直接连接到馈电网络2的第二输出端202。第三功分器24的一个输出端通过一个90°移相器25连接到馈电网络2的第三输出端203;第三功分器24的另一个输出端直接连接到馈电网络2的第四输出端204。 馈电网络2的第一至第四输出端201、202、203、204分别连接四个金属辐射阵子4。
初始信号经过第一级功分移向电路后,分别向第二级功分移向电路中的第二功分器23和第三功分器输24出相位角为180°和0°的信号,第二功分器23对相位角为180°的信号进行等分后,其中一个输出端通过一个90°移相器25进行移相,并向第一输出端201输出相位角为270°的信号,另一个输出端则直接向第二输出端202输出相位角为180°的信号。第三功分器24对相位角为0°的信号进行等分后,其中一个输出端通过一个90°移相器25进行移相,并向第三输出端203输出相位角为90°的信号,另一个输出端则直接向第四输出端204输出相位角为0°的信号。最终,馈电网络2的第一至第四输出端201、202、203、204分别输出幅值相等,相位角分别为270°、180°、90°和0°的四路信号,分别对四个金属辐射阵子4馈电。
优选地,在本发明实施例中,所述金属辐射阵子4为倒L形天线阵子。如图4所示,倒L形天线阵子包括垂直部分41和水平部分42,所述垂直部分41的下端垂直固定于绝缘介质板1上,垂直部分41的上端与水平部分42连接,所述水平部分42则与绝缘介质板1平行,整体形成一个躺倒的“L”的形状。所述金属辐射阵子4由PCB、不锈钢、洋白铜或其他金属导体材料制成。四个金属辐射阵子4的垂直部分分别与馈电网络2的四个输出端连接馈电,所述引向器5与四个金属辐射阵子4的水平部分平行设置,且通过绝缘支撑件6悬设于四个金属辐射阵子4上方。四个倒L形的金属辐射阵子4,一方面大大缩小了阵子长度,利于天线小型化,另一方面对天线的稳定性有很大提高;引向器5则用于拓宽天线阻抗带宽,同时提高信号增益。
进一步地,所述四个金属辐射阵子4按照一定的顺序依次安装在绝缘介质板1正面的馈电网络2上,其高度可调。如图5所示,在本发明实施例中,所述绝缘介质板1是矩形的,所述四个金属辐射阵子4在馈电网络2上方沿顺时针或逆时针方向围成一正方形,其中心为绝缘介质板1的中心,每一个金属辐射阵子4分别平行于矩形的一条边。
在本发明的另一个实施例中,所述绝缘介质板1还可以为圆形,所述四个 金属辐射阵子4以绝缘介质板1的中心为中心,呈辐射状排列。
本发明提供的一种高增益窄波束天线,其工作频段可以是RFID的超高频,也可以是433MHz或2.4GHz等频段。可通过调节金属辐射阵子的长度和馈电网络上微带线宽度长度以及阵子距离地板的高度,来大范围或者小范围调节天线的工作频段。
同现有技术相比较,本发明提供的高增益窄波束天线具有宽轴比带宽,圆极化,高增益,窄波束,性能稳定,易于量产等优点。本发明不仅克服了单端口馈电的带宽窄,体积大的缺陷,而且简化了多端口馈电系统复杂的缺点,提高了性能,更加适合RFID行业中对窄波束要求的应用。
将本发明提供的高增益窄波束天线作为叉车天线使用,具有应用效率高、准确度高、实时性好的优点。
此外,本发明的高增益窄波束天线不仅适用于仓储物流领域,也同样适用于工业制造、交通运输、防伪防盗等领域,具有非常广阔的应用前景。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种高增益窄波束天线,其特征在于,包括绝缘介质板、位于绝缘介质板正面的馈电网络、位于绝缘介质板背面的金属底板、安装于绝缘介质板正面且与馈电网络连接的四个金属辐射阵子、以及固定于绝缘介质板正面且悬空设置于金属辐射阵子上方的引向器;
    所述馈电网络具有一个输入端和四个输出端,包括若干个相互连接的功分器和移相器,用于将从输入端输入的信号转化为四路等幅、相位差依次为90°的信号,分别从四个输出端输出给四个金属辐射阵子。
  2. 根据权利要求1所述的高增益窄波束天线,其特征在于,所述引向器通过多个绝缘支撑件支撑于绝缘介质板正面,且悬空设置于金属辐射阵子的上方,通过金属辐射阵子耦合馈电。
  3. 根据权利要求1所述的高增益窄波束天线,其特征在于,所述金属底板为覆铜层,连接到地。
  4. 根据权利要求1所述的高增益窄波束天线,其特征在于,所述金属辐射阵子为倒L形天线阵子。
  5. 根据权利要求1所述的高增益窄波束天线,其特征在于,所述四个金属辐射阵子在馈电网络上方沿顺时针或逆时针方向围成一正方形,其中心为绝缘介质板的中心。
  6. 根据权利要求1所述的高增益窄波束天线,其特征在于,所述四个金属辐射阵子以绝缘介质板的中心为中心,呈辐射状排列。
  7. 根据权利要求1所述的高增益窄波束天线,其特征在于,所述绝缘介质板为圆形或矩形。
  8. 根据权利要求1所述的高增益窄波束天线,其特征在于,所述馈电网络包括两级功分移向电路,第一级功分移向电路包括第一功分器和180°移相器,第二级功分移向电路包括第二功分器、第三功分器和两个90°移相器;
    第一功分器的输入端为馈电网络的输入端,第一功分器的一个输出端通过180°移相器连接到第二功分器,另一个输出端直接连接到第三功分器;
    第二功分器的一个输出端通过一个90°移相器连接到馈电网络的第一输出端;第二功分器的另一个输出端直接连接到馈电网络的第二输出端;
    第三功分器的一个输出端通过一个90°移相器连接到馈电网络的第三输出端;第三功分器的另一个输出端直接连接到馈电网络的第四输出端;
    馈电网络的第一至第四输出端分别连接四个金属辐射阵子。
  9. 根据权利要求8所述的高增益窄波束天线,其特征在于,所述移相器为共面波导或微带线形式的移相器;所述功分器为陶瓷功分器或者微带线等功率功分器;所述绝缘介质板为聚四氟乙烯板或FR-4绝缘板;所述金属辐射阵子由不锈钢、洋白铜或PCB构成。
  10. 根据权利要求1所述的高增益窄波束天线,其特征在于,还包括一模压玻璃钢天线罩,所述绝缘介质板、馈电网络和引向器位于模压玻璃钢天线罩内。
PCT/CN2015/098263 2014-12-26 2015-12-22 一种高增益窄波束天线 WO2016101869A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410837597.5A CN104505577A (zh) 2014-12-26 2014-12-26 一种宽带高增益叉车天线
CN201410837597.5 2014-12-26

Publications (1)

Publication Number Publication Date
WO2016101869A1 true WO2016101869A1 (zh) 2016-06-30

Family

ID=52947310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098263 WO2016101869A1 (zh) 2014-12-26 2015-12-22 一种高增益窄波束天线

Country Status (2)

Country Link
CN (2) CN104505577A (zh)
WO (1) WO2016101869A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107317107A (zh) * 2017-07-11 2017-11-03 深圳市鼎耀科技有限公司 抗干扰阵列集成天线
CN109119753A (zh) * 2018-08-29 2019-01-01 国网思极神往位置服务(北京)有限公司 一种蝶形振子结构的宽频零相位中心高精度天线
CN109462041A (zh) * 2018-10-31 2019-03-12 佛山市盛夫通信设备有限公司 高增益mimo定向天线
CN110620287A (zh) * 2019-10-30 2019-12-27 上海创远仪器技术股份有限公司 支持结构自适应的一分八功分器
CN113381173A (zh) * 2021-07-13 2021-09-10 西安雷远电子科技有限公司 一种双频段共面天线结构以及方法
CN114243280A (zh) * 2021-12-30 2022-03-25 杭州海康威视数字技术股份有限公司 超宽带宽波束双极化天线和无线通信设备
CN114552221A (zh) * 2022-02-25 2022-05-27 南京邮电大学 一种改善方向性的圆极化腔体天线
CN114709621A (zh) * 2022-03-07 2022-07-05 南京航空航天大学 一种单层基片集成波导单脉冲天线

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104505577A (zh) * 2014-12-26 2015-04-08 刘良骥 一种宽带高增益叉车天线
CN106911012B (zh) * 2017-04-01 2023-03-31 华侨大学 一种试衣间rfid系统的高增益读写器天线
CN107768833B (zh) * 2017-10-09 2024-03-15 成都瑞德星无线技术有限公司 一种任意极化宽波束贴片天线
CN108923129B (zh) * 2018-07-10 2021-01-26 西安中电科西电科大雷达技术协同创新研究院有限公司 多谐振点垂直极化磁流端射天线
JP7111546B2 (ja) * 2018-07-27 2022-08-02 アズビル株式会社 アンテナ装置
CN109444571B (zh) * 2018-09-21 2021-02-05 北京遥测技术研究所 一种小卫星通信载荷电磁兼容预测方法
CN109462023A (zh) * 2018-10-26 2019-03-12 哈尔滨电工仪表研究所有限公司 一种超高频rfid手持终端天线
WO2021022484A1 (zh) * 2019-08-06 2021-02-11 华为技术有限公司 一种天线及基站
CN110867640B (zh) * 2019-12-09 2022-05-24 湖南大学 一种近场/远场可重构rfid读写天线
CN111162373A (zh) * 2019-12-13 2020-05-15 山东冠通智能科技有限公司 一种rfid圆极化空气微带天线

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101589508A (zh) * 2006-10-09 2009-11-25 株式会社Emw天线 直接馈电型贴片天线
US20100277389A1 (en) * 2009-05-01 2010-11-04 Applied Wireless Identification Group, Inc. Compact circular polarized antenna
CN103414015A (zh) * 2013-08-08 2013-11-27 清华大学 宽带三维全向平面天线
CN103515700A (zh) * 2013-09-27 2014-01-15 北京邮电大学 一种rfid天线
CN104505577A (zh) * 2014-12-26 2015-04-08 刘良骥 一种宽带高增益叉车天线
CN204348900U (zh) * 2014-12-26 2015-05-20 刘良骥 一种宽带高增益叉车天线

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101589508A (zh) * 2006-10-09 2009-11-25 株式会社Emw天线 直接馈电型贴片天线
US20100277389A1 (en) * 2009-05-01 2010-11-04 Applied Wireless Identification Group, Inc. Compact circular polarized antenna
CN103414015A (zh) * 2013-08-08 2013-11-27 清华大学 宽带三维全向平面天线
CN103515700A (zh) * 2013-09-27 2014-01-15 北京邮电大学 一种rfid天线
CN104505577A (zh) * 2014-12-26 2015-04-08 刘良骥 一种宽带高增益叉车天线
CN204348900U (zh) * 2014-12-26 2015-05-20 刘良骥 一种宽带高增益叉车天线

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107317107A (zh) * 2017-07-11 2017-11-03 深圳市鼎耀科技有限公司 抗干扰阵列集成天线
CN107317107B (zh) * 2017-07-11 2023-09-08 深圳市鼎耀科技有限公司 抗干扰阵列集成天线
CN109119753A (zh) * 2018-08-29 2019-01-01 国网思极神往位置服务(北京)有限公司 一种蝶形振子结构的宽频零相位中心高精度天线
CN109462041A (zh) * 2018-10-31 2019-03-12 佛山市盛夫通信设备有限公司 高增益mimo定向天线
CN110620287A (zh) * 2019-10-30 2019-12-27 上海创远仪器技术股份有限公司 支持结构自适应的一分八功分器
CN113381173A (zh) * 2021-07-13 2021-09-10 西安雷远电子科技有限公司 一种双频段共面天线结构以及方法
CN113381173B (zh) * 2021-07-13 2024-03-19 西安雷远电子科技有限公司 一种双频段共面天线结构以及方法
CN114243280A (zh) * 2021-12-30 2022-03-25 杭州海康威视数字技术股份有限公司 超宽带宽波束双极化天线和无线通信设备
CN114243280B (zh) * 2021-12-30 2023-12-29 杭州海康威视数字技术股份有限公司 超宽带宽波束双极化天线和无线通信设备
CN114552221A (zh) * 2022-02-25 2022-05-27 南京邮电大学 一种改善方向性的圆极化腔体天线
CN114552221B (zh) * 2022-02-25 2023-12-12 南京邮电大学 一种改善方向性的圆极化腔体天线
CN114709621A (zh) * 2022-03-07 2022-07-05 南京航空航天大学 一种单层基片集成波导单脉冲天线

Also Published As

Publication number Publication date
CN104505577A (zh) 2015-04-08
CN105633567A (zh) 2016-06-01
CN105633567B (zh) 2018-06-15

Similar Documents

Publication Publication Date Title
WO2016101869A1 (zh) 一种高增益窄波束天线
US7138952B2 (en) Array antenna with dual polarization and method
CN201378631Y (zh) 一种rfid定向天线阵列
CN109768372A (zh) 一种应用于毫米波雷达的串并结合馈电微带阵列天线
CN203895604U (zh) 一种小型化窄波束圆极化天线
CN103779671B (zh) 一种应用于有源天线系统的基站阵列天线
CN103606743A (zh) 一种圆极化宽带天线
CN104681981A (zh) 毫米波介质集成短背射天线
CN104779448A (zh) 一种基于rf mems移相器的rfid识别天线
CN107834212A (zh) 基于新型超表面的高增益高次模腔体阵列天线
CN204424448U (zh) 一种高增益窄波束圆极化天线
CN104009288A (zh) 毫米波宽波束高增益透镜天线
CN111162373A (zh) 一种rfid圆极化空气微带天线
CN106997986B (zh) 一种x波段的圆极化天线阵列
Liu et al. Circularly polarized beam‐steering antenna array for ultra‐high frequency radio frequency identification applications
Prakasam et al. Rectangular micro strip patch array antenna with corporate feed network for wireless communication applications
CN204348900U (zh) 一种宽带高增益叉车天线
CN107123851B (zh) 一种基于小型化技术的试衣间rfid系统读写器天线
CN203415679U (zh) 一种小型微带贴片天线
Hirose et al. A loop antenna with quasi‐two sources for circular polarisation
CN204441473U (zh) 赋形高增益全向天线馈电网络
CN209282385U (zh) 一种应用于毫米波雷达的串并结合馈电微带阵列天线
CN110661089A (zh) 一种基于金属膜阵子的高增益窄波束圆极化天线
Pflaum et al. Performance enhancement of a circularly polarized patch antenna for radio frequency identification readers using an electromagnetic band‐gap ground plane
CN203536566U (zh) 一种圆极化宽带天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15871937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10.10.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15871937

Country of ref document: EP

Kind code of ref document: A1