WO2016101192A1 - 减压膨胀透平发电机组 - Google Patents

减压膨胀透平发电机组 Download PDF

Info

Publication number
WO2016101192A1
WO2016101192A1 PCT/CN2014/094862 CN2014094862W WO2016101192A1 WO 2016101192 A1 WO2016101192 A1 WO 2016101192A1 CN 2014094862 W CN2014094862 W CN 2014094862W WO 2016101192 A1 WO2016101192 A1 WO 2016101192A1
Authority
WO
WIPO (PCT)
Prior art keywords
casing
turbine
gas inlet
outer casing
generator set
Prior art date
Application number
PCT/CN2014/094862
Other languages
English (en)
French (fr)
Inventor
王崎文
Original Assignee
深圳智慧能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳智慧能源技术有限公司 filed Critical 深圳智慧能源技术有限公司
Priority to PCT/CN2014/094862 priority Critical patent/WO2016101192A1/zh
Publication of WO2016101192A1 publication Critical patent/WO2016101192A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings

Definitions

  • the present invention relates to a generator set that utilizes fluid to generate electricity, particularly a reduced pressure expansion turbine generator set that utilizes ducted gas to generate electricity.
  • this paper proposes a decompression expansion turbine generator set that can solve the above-mentioned pipeline gas leakage problem.
  • the reduced pressure expansion turbine generator set proposed herein includes a housing and a turbine housed within the housing.
  • the outer casing includes a ducted gas inlet for connection to the upstream conduit and a ducted gas outlet for connection to the downstream conduit.
  • the genset also includes a generator coupled to the turbine drive, the generator being housed within the housing.
  • the generator set further includes a valve core housed in the outer casing, the valve core being configured to adjust a pipeline gas entering the turbine according to a pressure of a pipeline gas downstream of the turbine. flow.
  • the outer casing includes a casing body and a duct gas inlet portion detachably mounted to the casing body, the duct gas inlet portion is provided with the duct gas inlet at one end, and the other end is connected to the outer casing a conduit gas inlet connection end of the body, the conduit gas inlet having a diameter smaller than a diameter of the conduit gas inlet connection end.
  • the generator set further includes a valve core housed in the outer casing and facing the gas inlet of the pipeline, the valve core for regulating the inlet according to the pressure of the pipeline gas downstream of the turbine
  • the flow rate of the turbine conduit gas, the spool may move axially toward or away from the conduit gas inlet.
  • the spool includes a tapered head and a cylindrical connecting portion, and an outer surface of the tapered head forms an input duct air passage with an inner surface of the duct gas inlet portion,
  • the cylindrical connecting portion is slidably coupled to a cavity.
  • the tapered head outer surface and the inner surface of the duct gas inlet portion are streamlined surfaces.
  • the cavity is an inner casing located within the outer casing, and the generator is mounted within the inner casing.
  • an inner casing is disposed in the outer casing
  • the generator is installed in the inner casing
  • a flow passage is formed between an outer surface of the inner casing and an inner surface of the outer casing, and the flow passage a cross-sectional area equal to a cross-sectional area of the inlet duct gas passage
  • the valve core being disposed at an end of the inner casing adjacent to the duct gas inlet
  • the turbine being disposed at the inner casing adjacent to the duct gas outlet One end.
  • an inner casing is disposed in the outer casing, the inner casing is radially spaced from the outer casing, and the generator includes a stator and a rotor rotatable relative to the stator.
  • the stator is mounted on an inner surface of the inner casing, the rotor is fixed to a rotating shaft, and the rotating shaft is rotatably mounted in the inner casing.
  • the turbine comprises one or more stages of turbines, each stage of the turbine comprising a guide and a bucket, the guide being fixed to the outer casing, the bucket being fixed to the shaft Rotate around a rotation axis.
  • the present invention provides a reduced-pressure expansion turbine generator set in which the main moving parts are disposed inside the casing, so that the problem of pipe gas leakage is solved. Moreover, at the construction site, it is only necessary to connect the duct gas inlet and the duct gas outlet of the outer casing with the upstream and downstream pipelines. Therefore, the present invention adopts modular installation and is easy to construct.
  • the movement of the spool not only regulates the flow of the input line gas, but also enables the switching function of the pipe.
  • the flow rate of the pipeline gas can be calculated based on the pressure difference and the temperature difference between the upstream and downstream of the turbine and the amount of electricity emitted, so that it can be used as a flow meter.
  • the generator set of the invention realizes multiple functions of pipeline gas pressure regulation, switching and metering. Moreover, the generator can be used to dissipate heat from the generator. From another point of view, the generator can warm the pipeline gas, which is beneficial to the transmission of pipeline gas in some low temperature areas.
  • FIG. 1 is a simplified schematic diagram of one embodiment of a reduced pressure expansion turbine generator set.
  • the genset 10 includes a housing 12, a turbine 14, and a generator 16. Both the generator 16 and the turbine 14 are disposed within the outer casing 12 and the generator 16 is drivingly coupled to the turbine 14.
  • the duct gas entering the outer casing 12 e.g., liquefied gas, natural gas, etc.
  • the generator 16 pushes the turbine 14 to rotate, which in turn drives the generator 16 to generate electricity.
  • the generator 16 is located in the duct gas within the outer casing 12, the generator 16 can be dissipated by the duct gas.
  • temperature is also a parameter that needs to be maintained within a predetermined range. In some low temperature environments, it is often necessary to warm the pipeline gas in transit.
  • the heat of the generator 16 can be used to warm the pipe gas or to provide a portion of the heat for heating the pipe gas to a predetermined temperature.
  • the outer casing 12 has a duct gas inlet 18 and a duct gas outlet 20.
  • a duct gas inlet 18 is connected to the upstream duct to receive upstream air.
  • the duct gas outlet 20 is connected to the downstream duct to output the expanded duct gas downstream.
  • the outer casing 12 includes a substantially cylindrical outer casing body 22 and a ducting gas inlet portion 24 that is coupled to the outer casing body 22.
  • One end 26 of the duct gas inlet portion 24 (hereinafter referred to as the duct gas inlet portion connecting end 26) is connected to the outer casing main body 22, and the other end of the outer casing main body 22 is provided with the above-described duct gas inlet 18.
  • the ducting gas inlet connection end 26 can be detachably mounted to the outer casing body 22, such as a flange.
  • the diameter of the duct gas inlet 18 is smaller than the diameter of the duct gas inlet connecting end 26.
  • the duct gas inlet portion 24 has an inner surface 28 that is streamlined.
  • the turbine 14 is provided with two stages, the first stage turbine including a first stage guide 30 and a first stage bucket 32, the second stage turbine including a second stage guide 34 and a second stage Moving leaves 36.
  • the first stage guide 30 and the second stage guide 34 are fixed to the outer casing 12 (eg, the outer casing body 22), for example, the outer rings of the first stage guide 30 and the second stage guide 34 are welded or otherwise secured To the inner circular surface of the outer casing main body 22.
  • the first stage moving blade 32 and the second stage moving blade 36 are fixed to a rotating shaft 38 to rotate about a rotating shaft under the urging of the duct gas.
  • the turbine 14 may be provided with only one or more than two stages, depending on actual needs.
  • Generator 16 includes a relatively rotatable rotor 40 and stator 42.
  • the rotor 40 is fixed to the shaft 38 for rotation with the shaft 38.
  • the stator 42 is fixed to the inside of a casing 44.
  • the housing 44 is located within the outer casing 12 and is therefore referred to as an inner casing 44.
  • the rotating shaft 38 is rotatably fixed in the inner casing 44, and the stator 42 is fixed to the inner surface of the inner casing 44.
  • the turbine 14 is disposed downstream of the generator 16 as seen from the direction of the duct airflow.
  • a flow passage 46 is formed between the inner surface of the outer casing 12 and the outer surface of the inner casing 44, and the conduit gas, through the flow passage 46, pushes the corresponding buckets 32, 36 to rotate under the guidance of the corresponding guides 30, 34, thereby
  • the rotating shaft 38 is rotated, and the rotating rotating shaft 38 in turn drives the rotor 40 to rotate relative to the stator 42 to generate electric power.
  • the emitted electric power can be output to the outside of the casing 12 through a conductive structure such as a wire.
  • the inner casing 44 can be provided with holes or apertures to allow ducting gas to enter the inner casing 44 so that heat can be dissipated to generator components, such as stator windings, that are installed during the period.
  • the inner casing 44 is positioned relative to the outer casing 12 in at least two positions in the axial direction. At one end near the duct gas inlet 18, a support bracket 48 is disposed between the outer casing 12 and the inner casing 44. At an end near the duct gas outlet 20, the inner casing 44 is supported by the first stage guide 30 and/or the second stage guide 34.
  • the above generator set can be used in a pipeline valve station (such as a city gate station).
  • the pressure from the upstream gas will be reduced.
  • the present invention utilizes ducted gas to reduce pressure after expansion through the turbine.
  • the pressure of the pipeline gas which is expanded and reduced by the turbine needs to be maintained at a predetermined value.
  • the predetermined values described herein are different depending on the location of the gas station at the entire pipeline.
  • the pipeline gas pressure can be reduced from 10 Mpa to 4 MPa, from 4 MPa to 2.5 MPa or from 2.5 MPa to 1.6 MPa, and can float within a certain range. It should be understood that at some gas stations, the pressure of the regulated piping gas may be maintained at other predetermined or predetermined ranges.
  • a spool 50 may be disposed upstream of the turbine 14, the spool 50 for regulating the flow of the duct gas entering the turbine 14 according to the pressure of the duct gas downstream of the turbine 14. Thereby, the pressure of the pipeline after the pressure regulation is maintained within a predetermined value or a predetermined range.
  • the spool 50 is also disposed within the outer casing 12 at the end of the inner casing 44 adjacent the duct gas inlet 18.
  • the outer surface of the spool 50 and the inner surface 28 of the outer casing 12 define an inlet conduit gas passage 52.
  • the outer surface of the spool 50 also forms a streamlined surface, causing the spool 50 to taper in a direction opposite to the direction of intake.
  • the cross-sectional area of the input conduit gas passage 52 is substantially the same as the cross-sectional area of the flow passage 46.
  • the cross-sectional areas of the upstream conduit, the input conduit gas passage 52, and the flow passage 46 are substantially the same.
  • the spool 50 can be adjusted relative to the turbine 14 according to the pipe air pressure downstream of the turbine 14 to change the cross-sectional area of the input pipe air passage 52 to change the input pipe air flow, thereby adjusting the turbine 14 Downstream pipeline gas pressure.
  • the movement of the spool 36 can be accomplished in a variety of ways.
  • the spool 50 is of a retractable design including a tapered head 54 and a cylindrical sliding connection 56 that is coupled to the tapered head 54.
  • the cylindrical sliding connection 56 can be slidably coupled to a cavity (Fig. 2) such that the tapered head 54 is adjacent to or away from the conduit gas inlet 18 to reduce or increase conduit air flow.
  • the cavity is part of the inner casing 44 or the inner casing 44. If the tapered head 54 is moved further toward the duct gas inlet 18, the duct gas inlet 18 can be completely blocked, which will allow the present invention to have a ducted gas switching function.
  • Pressure sensors 58, 60 may be provided upstream and downstream of the turbine 14 to detect the duct air pressure upstream and downstream of the turbine 14, and to electrically drive the spool 50 to perform the above-described movement for regulating the flow rate based on the detected pressure.
  • the movement of the spool 50 can also be driven mechanically by a lever type depending on the downstream pressure.
  • Temperature sensors 62, 64 may also be provided upstream and downstream of turbine 14 to detect duct gas temperatures upstream and downstream of turbine 14.
  • the flow rate of the pipe gas can be calculated based on the pressure difference and the temperature difference upstream and downstream of the turbine 14 and the amount of electricity emitted, and thus the present invention can be used as a flow meter.
  • the main moving parts of the genset 10 are installed inside the casing 12, so that the problem of piping gas leakage is solved. Moreover, it is only necessary to connect the duct gas inlet portion 18 of the outer casing 12 and the duct gas outlet portion 20 to the upstream and downstream ducts during construction. Therefore, the present invention adopts modular installation and is easy to construct.
  • the movement of the spool 50 not only regulates the flow of the input conduit gas, but also enables the switching function of the conduit.
  • the flow rate of the pipeline gas can be calculated based on the pressure difference and the temperature difference between the upstream and downstream of the turbine and the amount of electricity emitted, so that it can be used as a flow meter. Therefore, the generator set of the invention realizes multiple functions of pipeline gas pressure regulation, switching and metering. Moreover, the generator can be used to dissipate heat from the generator. From another point of view, the generator can warm the pipeline gas, which is beneficial to the transmission of pipeline gas in some low temperature areas.
  • the present invention provides a reduced-pressure expansion turbine generator set in which the main moving parts are disposed inside the casing, so that the problem of pipe gas leakage is solved. Moreover, at the construction site, it is only necessary to connect the duct gas inlet and the duct gas outlet of the outer casing with the upstream and downstream pipelines. Therefore, the present invention adopts modular installation and is easy to construct.
  • the movement of the spool not only regulates the flow of the input line gas, but also enables the switching function of the pipe.
  • the flow rate of the pipeline gas can be calculated based on the pressure difference and the temperature difference between the upstream and downstream of the turbine and the amount of electricity emitted, so that it can be used as a flow meter.
  • the generator set of the invention realizes multiple functions of pipeline gas pressure regulation, switching and metering. Moreover, the generator can be used to dissipate heat from the generator. From another point of view, the generator can warm the pipeline gas, which is beneficial to the transmission of pipeline gas in some low temperature areas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

一种减压膨胀透平发电机组包括外壳(12)以及容置在外壳(12)内的透平(14)。外壳(12)包括管道气入口(18)以及管道气出口(20)。发电机组(10)包括与透平(14)驱动连接的发电机(16),发电机(16)容置在外壳(12)内。也可以在透平(14)上游设置阀芯(50),阀芯(50)外表面与外壳内表面(28)定义输入管道气通道(52),而阀芯(50)可相对于透平(14)在透平(14)的轴向上移动以改变所述输入管道气通道(52)的横截面积。

Description

减压膨胀透平发电机组 技术领域
本发明涉及一种利用流体发电的发电机组,特别是利用管道气发电的减压膨胀透平发电机组。
背景技术
在现有技术中,有利用管道气推动透平继而带动发电机发电的技术。在这种现有的装置中,透平设置在封闭壳体内,这个封闭壳体的入口和出口与上游管道和下游管道连接。发电机设置在壳体外部,透过转轴与透平连接进行发电。由于管道内与管道外的巨大压力差,因此在封闭壳体与转轴连接处,有管道气泄漏的风险。
技术问题
有鉴于此,本文提出一种可解决上述管道气泄漏问题的减压膨胀透平发电机组。
技术解决方案
本文提出的减压膨胀透平发电机组,包括外壳以及容置在所述外壳内的透平。所述外壳包括用以与上游管道连接的管道气入口以及用以与下游管道连接的管道气出口。所述发电机组还包括与所述透平驱动连接的发电机,所述发电机容置在所述外壳内。
在一实施例中,所述发电机组还包括容置在所述外壳内的阀芯,所述阀芯用以根据所述透平下游的管道气的压力调节进入所述透平的管道气的流量。
在一实施例中,所述外壳包括外壳主体以及可拆卸地安装至所述外壳主体的管道气入口部,所述管道气入口部一端设置所述管道气入口,另一端为连接至所述外壳主体的管道气入口部连接端,所述管道气入口的直径小于所述管道气入口部连接端的直径。
在一实施例中,所述发电机组还包括容置在所述外壳内并正对所述管道气入口的阀芯,所述阀芯用以根据所述透平下游的管道气的压力调节进入所述透平的管道气的流量,所述阀芯可在轴向上朝向或远离所述管道气入口移动。
在一实施例中,所述阀芯包括锥状头部和圆柱形连接部,所述锥状头部的外表面与所述管道气入口部的内表面之间形成输入管道气通道,所述圆柱形连接部与一腔体滑动连接。
在一实施例中,所述锥状头部外表面和所述管道气入口部内表面为流线型表面。
在一实施例中,所述腔体为一位于所述外壳内的内壳体,所述发电机安装在所述内壳体内。
在一实施例中,所述外壳内设置一内壳体,所述发电机安装在所述内壳体内,所述内壳体外表面与所述外壳内表面之间形成流道,所述流道截面积与所述输入管道气通道截面积相等,所述阀芯设置在所述内壳体靠近所述管道气入口的一端,所述透平设置在所述内壳体靠近所述管道气出口的一端。
在一实施例中,所述外壳内设置一内壳体,所述内壳体与所述外壳之间在径向上隔开,所述发电机包括定子以及可相对于所述定子转动的转子,所述定子安装在所述内壳体的内表面,所述转子固定在一转轴上,所述转轴可转动地安装在所述内壳体内。
在一实施例中,所述透平包括一级或多级透平,每一级透平包括导向器和动叶,所述导向器固定至所述外壳,所述动叶固定至所述转轴以可绕一旋转轴旋转。
有益效果
综上所述,本发明提供了一种减压膨胀透平发电机组,其主要运动部件都设置在外壳内部,因此管道气泄漏的问题得以解决。而且,在施工现场,只需要将外壳的管道气入口和管道气出口与上下游管道连接即可,因此本发明采用模块化安装,施工容易。阀芯的移动不仅可以调节输入管道气的流量,而且也可以实现管道的开关功能。同时,根据透平上游和下游的压力差和温度差以及发出的电量可计算管道气的流量,因此可以作为流量计。因此,本发明的发电机组实现了管道气调压、开关、计量的多重功能。而且还可以利用管道气对发电机进行散热,从另一个角度看,发电机可以对管道气进行加温,这在某些低温地区,对管道气的传输是很有利的。
附图说明
图1是减压膨胀透平发电机组的一个实施例的简化示意图。
[根据细则91更正 09.02.2015] 
本发明的实施方式
在详细描述实施例之前,应该理解的是,本发明不限于本申请中下文或附图中所描述的详细结构或元件排布。本发明可为其它方式实现的实施例。而且,应当理解,本文所使用的措辞及术语仅仅用作描述用途,不应作限定性解释。本文所使用的“包括”、“包含”、“具有”等类似措辞意为包含其后所列出之事项、其等同物及其它附加事项。特别是,当描述“一个某元件”时,本发明并不限定该元件的数量为一个,也可以包括多个。
图1是减压膨胀透平发电机组的一个实施例的简化示意图。该发电机组10包括外壳12、透平14、发电机16。发电机16和透平14都设置在外壳12内,且发电机16与透平14驱动连接。这样,进入外壳12的管道气(例如液化气,天然气等)推动透平14旋转,继而驱动发电机16进行发电。由于发电机16位于外壳12内的管道气中,因此可以利用管道气对发电机16进行散热。在管道气传输过程中,温度也是一个需要维持在预定范围内的参数。在一些低温环境下,经常需要对传输中的管道气进行加温。发电机16的热量刚好可以用以对管道气进行加温或者为管道气加热至预定温度提供部分热量。
外壳12具有管道气入口18和管道气出口20。管道气入口18与上游管道连接以接收上游来气。管道气出口20与下游管道连接以向下游输出膨胀后的管道气。
在本实施例中,外壳12包括基本呈圆柱形的外壳主体22以及与外壳主体22连接的管道气入口部24。管道气入口部24的一端26(下称管道气入口部连接端26)连接至外壳主体22,而远离外壳主体22的另一端设置上述管道气入口18。管道气入口部连接端26可以可拆卸地方式,例如法兰安装至外壳主体22。管道气入口18的直径小于管道气入口部连接端26的直径。优选的是,管道气入口部24具有呈流线型曲面的内表面28。
在所示的实施例中,透平14设有两级,一级透平包括第一级导向器30和第一级动叶32,二级透平包括第二级导向器34和第二级动叶36。其中,第一级导向器30和第二级导向器34与外壳12(例如,外壳主体22)固定,例如第一级导向器30和第二级导向器34的外圈焊接或以其它方式固定至外壳主体22的内圆表面。第一级动叶32和第二级动叶36固定在一转轴38上以在管道气的推动作用下绕一旋转轴转动。
在其它实施例中,根据实际需要,透平14可以仅设置一级或多于两级。
发电机16包括可相对转动的转子40和定子42。在所示的实施例中,转子40固定在转轴38上以随转轴38转动。定子42固定在一壳体44内侧。该壳体44位于外壳12内,因此称为内壳体44。转轴38可转动地固定在内壳体44内,定子42固定在内壳体44的内表面。从管道气流向看,透平14设置在发电机16下游。
外壳12内表面与内壳体44外表面之间形成流道46,管道气经由此流道46,在对应的导向器30,34的导向作用下,推动对应的动叶32,36旋转,从而带动转轴38转动,转动的转轴38继而带动转子40相对于定子42旋转,发出电力。发出的电力可通过电线等导电结构输出至外壳12之外。内壳体44可设有孔或孔隙以让管道气可进入内壳体44内,这样可以对安装在期内的发电机部件,例如定子绕组进行散热。
内壳体44在轴向上的至少两个位置相对于外壳12定位。在靠近管道气入口18的一端,外壳12和内壳体44之间设置支撑架48。在靠近管道气出口20的一端,内壳体44被第一级导向器30和/或第二级导向器34支撑。
上述发电机组可以使用在管道气门站(如城市门站)中。在这里,上游来气的压力将被降低。本发明是利用管道气在经过透平膨胀之后降低压力的。为了满足管道传输的管道气压力要求,经透平膨胀降压的管道气的压力需要维持在预定值。根据输气站在整个管道传输中的不同位置,在此所述的预定值是不同的。例如,管道气压力可以从10Mpa降压至4MPa、从4MPa降压至2.5MPa或从2.5MPa降压至1.6MPa,并可在一定范围内浮动。应当理解的是,在一些输气站,经过调压的管道气压力可以维持在其它预定值或预定范围。
在有些情况下,下游用气量是不断变化的,因此会造成经透平膨胀降压的管道气的压力波动。为了维持其压力,如图1所示,可在透平14上游设置一个阀芯50,该阀芯50用以根据透平14下游的管道气的压力调节进入透平14的管道气的流量,以此维持调压后的管道气压力在预定值或预定范围内。
阀芯50也设置在外壳12内,位于内壳体44靠近管道气入口18的这一端。阀芯50外表面与外壳12内表面28定义输入管道气通道52。为了形成均匀的管道气通道52,阀芯50外表面也形成流线型表面,使阀芯50在与进气方向相反的方向上呈渐缩的锥状。在一些实施例中,该输入管道气通道52的截面积与流道46的截面积实质上相同。在一些实施例中,上游管道、输入管道气通道52和流道46的截面积实质上相同。保持相同截面积,可以尽量防止管道气在进入透平前发生膨胀,从而提高发电机的发电效率。
在本实施例中,阀芯50可根据透平14下游的管道气压力相对于透平14移动以改变输入管道气通道52的横截面积从而改变输入的管道气流量,以此调节透平14下游的管道气压力。阀芯36的移动可以采用多种方式来实现。在所示的例子中,阀芯50采用可伸缩设计,包括锥状头部54和与锥状头部54连接的圆柱形滑动连接部56。该圆柱形滑动连接部56可与一腔体滑动连接(图2),使锥状头部54靠近或远离管道气入口18,从而减小或增加管道气流量。在所示的实施例中,该腔体是内壳体44或者说为内壳体44的一部分。如果锥状头部54进一步向管道气入口18移动,则可以完全堵住管道气入口18,这将使本发明具有管道气开关功能。
透平14上游和下游可分别设置压力传感器58、60以检测透平14上游和下游的管道气压力,并根据该检测的压力以电动方式驱动阀芯50进行上述用以调节流量的移动。
阀芯50的活动也可以根据下游的压力采用杠杠式机械驱动。
透平14上游和下游还可分别设有温度传感器62、64以检测透平14上游和下游的管道气温度。根据透平14上游和下游的压力差和温度差以及发出的电量可计算管道气的流量,因此本发明可以作为流量计。
在本实施例中,发电机组10的主要运动部件都安装在外壳12内部,因此管道气泄漏的问题得以解决。而且,施工时只需要将外壳12的管道气入口部18和管道气出口部20与上下游管道连接即可,因此本发明采用模块化安装,施工容易。
阀芯50的移动不仅可以调节输入管道气的流量,而且也可以实现管道的开关功能。同时,根据透平上游和下游的压力差和温度差以及发出的电量可计算管道气的流量,因此可以作为流量计。因此,本发明的发电机组实现了管道气调压、开关、计量的多重功能。而且还可以利用管道气对发电机进行散热,从另一个角度看,发电机可以对管道气进行加温,这在某些低温地区,对管道气的传输是很有利的。
综上所述,本发明提供了一种减压膨胀透平发电机组,其主要运动部件都设置在外壳内部,因此管道气泄漏的问题得以解决。而且,在施工现场,只需要将外壳的管道气入口和管道气出口与上下游管道连接即可,因此本发明采用模块化安装,施工容易。阀芯的移动不仅可以调节输入管道气的流量,而且也可以实现管道的开关功能。同时,根据透平上游和下游的压力差和温度差以及发出的电量可计算管道气的流量,因此可以作为流量计。因此,本发明的发电机组实现了管道气调压、开关、计量的多重功能。而且还可以利用管道气对发电机进行散热,从另一个角度看,发电机可以对管道气进行加温,这在某些低温地区,对管道气的传输是很有利的。
本文所描述的概念在不偏离其精神和特性的情况下可以实施成其它形式。所公开的具体实施例应被视为例示性而不是限制性的。因此,本发明的范围是由所附的权利要求,而不是根据之前的这些描述进行确定。在权利要求的字面意义及等同范围内的任何改变都应属于这些权利要求的范围。

Claims (10)

  1. 一种减压膨胀透平发电机组,包括外壳以及容置在所述外壳内的透平,所述外壳包括管道气入口以及管道气出口,其特征在于,所述发电机组还包括与所述透平驱动连接的发电机,所述发电机容置在所述外壳内。
  2. 如权利要求1所述的减压膨胀透平发电机组,其特征在于,所述发电机组还包括容置在所述外壳内的阀芯,所述阀芯用以根据所述透平下游的管道气的压力调节进入所述透平的管道气的流量。
  3. 如权利要求1所述的减压膨胀透平发电机组,其特征在于,所述外壳包括外壳主体以及可拆卸地安装至所述外壳主体的管道气入口部,所述管道气入口部一端设置所述管道气入口,另一端为连接至所述外壳主体的管道气入口部连接端,所述管道气入口的直径小于所述管道气入口部连接端的直径。
  4. 如权利要求3所述的减压膨胀透平发电机组,其特征在于,所述发电机组还包括容置在所述外壳内并正对所述管道气入口的阀芯,所述阀芯用以根据所述透平下游的管道气的压力调节进入所述透平的管道气的流量,所述阀芯可在轴向上朝向或远离所述管道气入口移动。
  5. 如权利要求4所述的减压膨胀透平发电机组,其特征在于,所述阀芯包括锥状头部和圆柱形连接部,所述锥状头部的外表面与所述管道气入口部的内表面之间形成输入管道气通道,所述圆柱形连接部与一腔体滑动连接。
  6. 如权利要求5所述的减压膨胀透平发电机组,其特征在于,所述锥状头部外表面和所述管道气入口部内表面为流线型表面。
  7. 如权利要求5所述的减压膨胀透平发电机组,其特征在于,所述腔体为一位于所述外壳内的内壳体,所述发电机安装在所述内壳体内。
  8. 如权利要求5所述的减压膨胀透平发电机组,其特征在于,所述外壳内设置一内壳体,所述发电机安装在所述内壳体内,所述内壳体外表面与所述外壳内表面之间形成流道,所述流道截面积与所述输入管道气通道截面积相等,所述阀芯设置在所述内壳体靠近所述管道气入口的一端,所述透平设置在所述内壳体靠近所述管道气出口的一端。
  9. 如权利要求5所述的减压膨胀透平发电机组,其特征在于,所述外壳内设置一内壳体,所述内壳体与所述外壳之间在径向上隔开,所述发电机包括定子以及可相对于所述定子转动的转子,所述定子安装在所述内壳体的内表面,所述转子固定在一转轴上,所述转轴可转动地安装在所述内壳体内。
  10. 如权利要求9所述的减压膨胀透平发电机组,其特征在于,所述透平包括一级或多级透平,每一级透平包括导向器和动叶,所述导向器固定至所述外壳,所述动叶固定至所述转轴以可绕一旋转轴旋转。
PCT/CN2014/094862 2014-12-24 2014-12-24 减压膨胀透平发电机组 WO2016101192A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/094862 WO2016101192A1 (zh) 2014-12-24 2014-12-24 减压膨胀透平发电机组

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/094862 WO2016101192A1 (zh) 2014-12-24 2014-12-24 减压膨胀透平发电机组

Publications (1)

Publication Number Publication Date
WO2016101192A1 true WO2016101192A1 (zh) 2016-06-30

Family

ID=56148926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/094862 WO2016101192A1 (zh) 2014-12-24 2014-12-24 减压膨胀透平发电机组

Country Status (1)

Country Link
WO (1) WO2016101192A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106050325A (zh) * 2016-08-12 2016-10-26 深圳智慧能源技术有限公司 透平膨胀发电机
WO2018027896A1 (zh) * 2016-08-12 2018-02-15 深圳智慧能源技术有限公司 透平膨胀发电机
WO2018027897A1 (zh) * 2016-08-12 2018-02-15 深圳智慧能源技术有限公司 透平膨胀发电机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0103216D0 (en) * 2001-02-09 2001-03-28 Rolls Royce Plc Electrical machine
US20030038553A1 (en) * 2001-08-24 2003-02-27 Smiths Aerospace, Inc,.Electronic Systems Rockford Permanent magnet turbo-generator having magnetic bearings
CN1727654A (zh) * 2004-07-30 2006-02-01 三星Techwin株式会社 涡轮发电机和具有该涡轮发电机的燃料电池系统
CN103097666A (zh) * 2010-09-17 2013-05-08 三菱重工业株式会社 透平机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0103216D0 (en) * 2001-02-09 2001-03-28 Rolls Royce Plc Electrical machine
US20030038553A1 (en) * 2001-08-24 2003-02-27 Smiths Aerospace, Inc,.Electronic Systems Rockford Permanent magnet turbo-generator having magnetic bearings
CN1727654A (zh) * 2004-07-30 2006-02-01 三星Techwin株式会社 涡轮发电机和具有该涡轮发电机的燃料电池系统
CN103097666A (zh) * 2010-09-17 2013-05-08 三菱重工业株式会社 透平机

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106050325A (zh) * 2016-08-12 2016-10-26 深圳智慧能源技术有限公司 透平膨胀发电机
WO2018027896A1 (zh) * 2016-08-12 2018-02-15 深圳智慧能源技术有限公司 透平膨胀发电机
WO2018027897A1 (zh) * 2016-08-12 2018-02-15 深圳智慧能源技术有限公司 透平膨胀发电机

Similar Documents

Publication Publication Date Title
US8558424B2 (en) Suspended rotors for use in electrical generators and other devices
UA91667C2 (ru) Устройство для регулировки величины зазоров возле торцов рабочих лопаток ротора и турбомашина
CN104065236A (zh) 可无级调节磁场强度的永磁调速、制动或负载装置
WO2016101192A1 (zh) 减压膨胀透平发电机组
CN102763311B (zh) 供发电中使用的流体冷却负载电阻及其使用
US20120274066A1 (en) In-pipe turbine
CN102325988B (zh) 液力能的转化设备和这类设备的控制方法
JP2010164052A5 (zh)
JP2017089627A (ja) 中心線に取り付けられた油圧ピッチ変更機構アクチュエータ
JP2011132960A (ja) 流体流を制御する方法及び装置
CN206099711U (zh) 一种垂直管道磁感应发电装置
JP5809126B2 (ja) マイクロ水力発電機
RU2012150811A (ru) Турбина, включающая систему клапанов уплотнительного воздуха
CN103397974A (zh) 磁悬浮水轮发电机
SE446410B (sv) Gasturbin
JP2009209935A (ja) ガスタービンエンジンの流体流調整方法および装置
GB2461286A (en) Fluid turbine
CN105156156A (zh) 透平减压动力装置和透平减压机组
CN109219699B (zh) 具有限速的管道用涡轮
CN104564178A (zh) 减压膨胀透平发电机组
CN112431640A (zh) 一种管道式工艺气压力能回收发电装置及工艺气减压管路
CN107636279B (zh) 多级式废气涡轮增压器和内燃机
JP7477436B2 (ja) 水車式流量制御装置
CN204827548U (zh) 透平减压动力装置和透平减压机组
RU2516053C2 (ru) Турбогенератор без выходного вала

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14908760

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/10/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14908760

Country of ref document: EP

Kind code of ref document: A1