WO2016099243A1 - Systèmes analyseurs de bulles dans des cellules de flottation reposant sur la vision artificielle - Google Patents
Systèmes analyseurs de bulles dans des cellules de flottation reposant sur la vision artificielle Download PDFInfo
- Publication number
- WO2016099243A1 WO2016099243A1 PCT/MX2015/000214 MX2015000214W WO2016099243A1 WO 2016099243 A1 WO2016099243 A1 WO 2016099243A1 MX 2015000214 W MX2015000214 W MX 2015000214W WO 2016099243 A1 WO2016099243 A1 WO 2016099243A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bubble
- flotation cells
- artificial vision
- cells based
- images
- Prior art date
Links
- 238000005188 flotation Methods 0.000 title claims abstract description 46
- 238000004891 communication Methods 0.000 claims abstract description 27
- 229910052500 inorganic mineral Inorganic materials 0.000 claims abstract description 26
- 239000011707 mineral Substances 0.000 claims abstract description 26
- 238000012545 processing Methods 0.000 claims abstract description 26
- 238000004458 analytical method Methods 0.000 claims abstract description 15
- 238000011084 recovery Methods 0.000 claims abstract description 11
- 238000009826 distribution Methods 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 20
- 230000008569 process Effects 0.000 claims description 14
- 230000009471 action Effects 0.000 claims description 8
- 238000010191 image analysis Methods 0.000 claims description 5
- 238000012544 monitoring process Methods 0.000 claims description 5
- 230000003750 conditioning effect Effects 0.000 claims description 4
- 230000006870 function Effects 0.000 claims description 4
- 239000012141 concentrate Substances 0.000 claims description 3
- 230000010354 integration Effects 0.000 claims description 3
- 238000005265 energy consumption Methods 0.000 claims 1
- 239000003153 chemical reaction reagent Substances 0.000 abstract description 9
- 239000006260 foam Substances 0.000 description 13
- 230000003287 optical effect Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000004886 process control Methods 0.000 description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000005065 mining Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 206010033799 Paralysis Diseases 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000010436 fluorite Substances 0.000 description 1
- 238000009920 food preservation Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052595 hematite Inorganic materials 0.000 description 1
- 239000011019 hematite Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical class [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D1/00—Flotation
- B03D1/02—Froth-flotation processes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/06—Investigating concentration of particle suspensions
Definitions
- the present invention is comprised within the fields of mining and control systems. Particularly to a real-time vision system, specifically to an embedded image analysis system that allows taking measurements and analyzing them for process control in flotation cells.
- a first object of the invention is a new Bubble Analyzer System based on Artificial Vision in order to improve the recovery of ore in flotation cells.
- the system has the characteristic of being compact, since it consists of a camera that captures images of the bubbles that occur in the flotation cells and sends them to an embedded image processing system, which analyzes the bubbles in real time with in order to estimate parameters such as speed and direction, stability, distribution of size and color and send the results of the analysis to an external control system by means of Ethernet / IP communication, which will make use of the results by the invention described herein to perform control actions either in the addition of reagents, air control or level control in the cell.
- flotation is a technique for mineral recovery that is present in mining plants. Originally, the flotation process was patented in 1906 and has grown to possibly become the most important mineral processing technique today. Flotation is a mineral enrichment process, initially developed for the treatment of copper, lead and zinc sulphides. The treatment of oxides, such as hematite (iron oxide) and cassiterite (tin oxide) and other oxidized minerals, as well as non-metallic minerals, such as fluorite, phosphates and fine carbon, are currently included. It begins with the grinding of the mineral, with water and certain chemical reagents, up to a particular average particle size, which ensures the release of valuable mineral species from the host rock.
- oxides such as hematite (iron oxide) and cassiterite (tin oxide) and other oxidized minerals
- non-metallic minerals such as fluorite, phosphates and fine carbon
- the resulting water-mineral suspension (or pulp) is generally directed to a separation device known as a hydrocyclone.
- the upper flow leaving the hydrocyclone which contains the fine particles, is passed to the flotation section; while the lower flow, consisting of coarse particles, returns to the mills for re-milling.
- additional reagents can be added to the pulp.
- An additional time of conditioning to achieve a uniform distribution of reagents and allow competition between different mineral particles. Once the conditioning is complete, the pulp is introduced to the flotation cells.
- Flotation is generally a multi-stage process, which aims to improve the total separation of minerals (grade) and the proportion of valuable minerals obtained (recovery).
- the vision systems currently used to analyze bubbles in flotation cells, capture and analyze video images in real time by a centralized system, which also processes the images and communicates with the control system through OPC communication ( Object Linking and Embedding for Process Control).
- OPC communication Object Linking and Embedding for Process Control
- DSP digital signal processor
- the system requires high bandwidth since it transfers the images to the server in order to be analyzed and not interrupt data traffic at the information level.
- the current systems that carry out the image processing techniques are computer systems with image analysis software at the information network level, that is, they do not have direct communication with the control system, in addition to not being deterministic systems
- an area of opportunity related to current technologies consists of a Bubble Analyzer system that reduces the complexity and costs of current equipment, without affecting the efficiency and accuracy required to perform the analyzes.
- the invention relates to a Bubble Analyzer System in Flotation Cells based on Artificial Vision.
- the characteristic details of this product are clearly shown in the following description and in the accompanying figures.
- the system consists of a camera (1) contained within a robust cover with lighting that captures the images of the bubbles in the flotation cells (6), the camera has an Ethernet / IP interface (3) through which it sends the images to an embedded system (2) of image processing that analyzes the bubbles in real time to estimate parameters such as speed and direction, stability, size and color distribution.
- the system when working at the controller level, through a second Ethernet / IP interface (4), is able to send the results to an external control system (5) which makes use of the results of the invention described herein to execute control actions.
- the interface can also be used to manipulate the application and configure parameters through a graphical interface.
- One of the main advantages is that it works directly in the control network through interconnection with the control system as a Remote Node through Ethernet / IP communication, sending the results of the analysis so that the control system executes the actions necessary for mineral recovery.
- Another advantage that can work at the same time with the information network by sending to the monitoring computer the results of the analysis and what the camera observes (bubbles). It shows the advantage of being a deterministic system, executing the processing in a certain time rate without interruptions, providing reliability in the execution of the algorithms and communication. The system restarts in parallel with the control system, restoring communication immediately. It uses the Ethernet interface for both camera configuration, embedded system configuration, communication with the control system and monitoring from the supervisory station (computer). No image processing servers are required with the disadvantages they represent: OPC, database and specialized hardware.
- the images are acquired by the embedded system processor (2), which sends the images to the FPGA chip of the embedded system, which executes the image analysis and processing algorithms that require a high level of parallel operations to obtain the parameters of desired measurement.
- the FPGA chip communicates dynamically with the processor through special buses and sends the results of the algorithms and image analysis.
- the processor is responsible for communicating with external controllers (5) using the Ethernet / IP communication protocol (4).
Landscapes
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
La présente invention concerne un système analyseur de bulles reposant sur la vision artificielle afin d'améliorer la récupération de minerai dans des cellules de flottation. Ledit système comprend une chambre qui capture des images des bulles se produisant dans les cellules de flottation et les envoie à un système intégré de traitement d'images, lequel système analyse les bulles en temps réel afin d'estimer des paramètres tels que la vitesse et la direction, la stabilité, la répartition de la taille et des couleurs, ledit système étant capable d'envoyer les résultats de l'analyse à un système de commande externe par une communication industrielle Ethernet/IP. Ce système de commande externe utilise les résultats de l'invention pour effectuer des actions de commande sur l'ajout de réactifs ou le contrôle de l'air ou le contrôle de niveau dans la cellule.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MXMX/A/2014/015829 | 2014-12-18 | ||
MX2014015829A MX366835B (es) | 2014-12-18 | 2014-12-18 | Sistema analizador de burbujas en celdas de flotacion basado en vision artificial. |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016099243A1 true WO2016099243A1 (fr) | 2016-06-23 |
Family
ID=56127014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/MX2015/000214 WO2016099243A1 (fr) | 2014-12-18 | 2015-12-17 | Systèmes analyseurs de bulles dans des cellules de flottation reposant sur la vision artificielle |
Country Status (3)
Country | Link |
---|---|
MX (1) | MX366835B (fr) |
PE (1) | PE20170870A1 (fr) |
WO (1) | WO2016099243A1 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106902988A (zh) * | 2017-04-10 | 2017-06-30 | 中国矿业大学 | 一种浮游选煤过程自动控制系统与方法 |
CN110918266A (zh) * | 2019-12-10 | 2020-03-27 | 中南大学 | 一种提升浮选泡沫质量的控制装置及方法 |
CN111175197A (zh) * | 2020-01-08 | 2020-05-19 | 武汉理工大学 | 矿物表面气泡成核及气泡生长过程的观测装置和方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050260189A1 (en) * | 2002-07-11 | 2005-11-24 | Klibanov Alexander L | Microbubble compositions, and methods for preparing and using same |
US20130299394A1 (en) * | 2010-11-19 | 2013-11-14 | Johannes Jacobus Le Roux Cilliers | Method and apparatus for froth flotation control |
US20140151273A1 (en) * | 2011-08-18 | 2014-06-05 | Outotec Oyj | Probe arrangement for a flotation cell |
-
2014
- 2014-12-18 MX MX2014015829A patent/MX366835B/es active IP Right Grant
-
2015
- 2015-12-17 PE PE2017001079A patent/PE20170870A1/es unknown
- 2015-12-17 WO PCT/MX2015/000214 patent/WO2016099243A1/fr active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050260189A1 (en) * | 2002-07-11 | 2005-11-24 | Klibanov Alexander L | Microbubble compositions, and methods for preparing and using same |
US20130299394A1 (en) * | 2010-11-19 | 2013-11-14 | Johannes Jacobus Le Roux Cilliers | Method and apparatus for froth flotation control |
US20140151273A1 (en) * | 2011-08-18 | 2014-06-05 | Outotec Oyj | Probe arrangement for a flotation cell |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106902988A (zh) * | 2017-04-10 | 2017-06-30 | 中国矿业大学 | 一种浮游选煤过程自动控制系统与方法 |
CN106902988B (zh) * | 2017-04-10 | 2019-01-08 | 中国矿业大学 | 一种浮游选煤过程自动控制系统与方法 |
CN110918266A (zh) * | 2019-12-10 | 2020-03-27 | 中南大学 | 一种提升浮选泡沫质量的控制装置及方法 |
CN110918266B (zh) * | 2019-12-10 | 2020-09-29 | 中南大学 | 一种提升浮选泡沫质量的控制装置及方法 |
CN111175197A (zh) * | 2020-01-08 | 2020-05-19 | 武汉理工大学 | 矿物表面气泡成核及气泡生长过程的观测装置和方法 |
Also Published As
Publication number | Publication date |
---|---|
MX2014015829A (es) | 2016-06-17 |
PE20170870A1 (es) | 2017-07-05 |
MX366835B (es) | 2019-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016099243A1 (fr) | Systèmes analyseurs de bulles dans des cellules de flottation reposant sur la vision artificielle | |
CN105828041A (zh) | 一种支持并行预处理的视频采集系统 | |
CN104063347A (zh) | 多用途无线数据转换器 | |
Venu | Smart Agriculture Remote Monitoring System Using Low Power IOT Network | |
CN209659352U (zh) | 一种基于物联网和云计算平台的智能实验管理系统 | |
CN205177127U (zh) | 基于433无线传输方式的水文监测系统 | |
CN109560853A (zh) | 基于天通一号卫星移动通信系统的物联网采集终端 | |
CN201673594U (zh) | 无线传感装置及传感系统 | |
CN102098806A (zh) | 基于本地处理的景区监控无线视觉感知网络系统及方法 | |
CN103685884A (zh) | 一种基于片上视觉系统的智能相机 | |
CN215910460U (zh) | 一种基于计算机视觉的水质检测装置 | |
CN103475873B (zh) | 多功能行走平台及其图像传输方法 | |
CN207959427U (zh) | 一种基于bim的雨水收集系统 | |
CN109307892A (zh) | 一种道路气象环境智能监测系统 | |
CN205280141U (zh) | 近岸风、浪、流和水位监测集成装置 | |
CN202615206U (zh) | 平板电脑式混凝土搅拌站控制系统 | |
CN204288486U (zh) | 多模式无线数据采集主机 | |
CN202212361U (zh) | 一种矿石色选机控制系统 | |
CN206757865U (zh) | 一种无线数据采集及远程监测装置 | |
EP2908157A1 (fr) | Agencement de système d'affichage portable destiné à la détection de rayonnements | |
CN206863229U (zh) | 一种基于sim7100c的无人机监视装置 | |
CN202974276U (zh) | 一种空间可移动视觉传感器阵列系统 | |
CN210691083U (zh) | 一种机器视觉智能传感器 | |
CN204578210U (zh) | 电力通讯规约转换装置 | |
CN211733641U (zh) | 起重机械监测设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15870404 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 001079-2017 Country of ref document: PE |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15870404 Country of ref document: EP Kind code of ref document: A1 |