WO2016099008A1 - 화상정보 분석을 이용한 피사체 상황 예측 시스템 및 방법 - Google Patents

화상정보 분석을 이용한 피사체 상황 예측 시스템 및 방법 Download PDF

Info

Publication number
WO2016099008A1
WO2016099008A1 PCT/KR2015/010190 KR2015010190W WO2016099008A1 WO 2016099008 A1 WO2016099008 A1 WO 2016099008A1 KR 2015010190 W KR2015010190 W KR 2015010190W WO 2016099008 A1 WO2016099008 A1 WO 2016099008A1
Authority
WO
WIPO (PCT)
Prior art keywords
image information
subject
predicting
analyzing
temperature
Prior art date
Application number
PCT/KR2015/010190
Other languages
English (en)
French (fr)
Inventor
이명훈
여현
정호석
강병범
박한솔
김순용
황정환
Original Assignee
순천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 순천대학교 산학협력단 filed Critical 순천대학교 산학협력단
Publication of WO2016099008A1 publication Critical patent/WO2016099008A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/48Thermography; Techniques using wholly visual means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining

Definitions

  • the technology described below relates to a system and method for predicting a situation in which a subject will change through image information analysis.
  • Infrared energy one of the features of an object, is concentrated through an optical lens to an infrared detector.
  • the sensor sends this information to the sensor to process the image, which converts the data from the sensor into an image for viewing on a standard video monitor or viewfinder on an LCD screen.
  • Infrared thermography is a technique that converts an infrared image into a radiometric value that can read temperature values from the image. Therefore, every pixel in the radiometric image is actually a temperature measurement.
  • the thermal imaging analysis used in the conventional agricultural field was the advantage of the thermal imaging camera was able to analyze the radiometric value with only a moment of information.
  • the analysis was performed based on the thermal image information acquired at the moment, so that only fragmentary information on the measurement object was obtained. Therefore, since only the current state of the measurement object is measured, it is difficult to effectively predict the situation that will change after a certain time.
  • the subject situation prediction system described below includes an image information collecting unit for photographing a subject to obtain image information, an image information storage unit for storing the image information, and an image information processing unit for extracting temperature information of the subject based on the image information. And an image information analyzer configured to analyze the state of the subject based on the temperature information.
  • the subject situation prediction method described below includes photographing a subject to obtain image information, storing the image information, extracting temperature information on the subject based on the image information, and subjecting the subject based on the temperature information. Analyzing the state of the.
  • the technique described below may analyze information without directly contacting a subject, and may predict a future situation through subject information acquired for a predetermined time.
  • any object having physical properties may acquire and analyze image information to predict a characteristic to be changed after a predetermined time.
  • FIG. 1 is a block diagram of a subject situation prediction system using image information analysis, according to an exemplary embodiment.
  • FIG. 2 is a flowchart illustrating a method of predicting a subject situation using image information analysis, according to an exemplary embodiment.
  • FIG. 3 is a diagram illustrating a process of time-series analysis of temperature information extracted from image information collected in an embodiment of the disclosed technology.
  • first, second, A, B, etc. may be used to describe various components, but the components are not limited by the terms, but merely for distinguishing one component from other components. Only used as For example, without departing from the scope of the present invention, the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • &quot comprises, " and the like, means that there is a feature, number, step, action, component, part, or combination thereof described, and one or more other features or numbers, step action component, part, etc. Or it does not exclude the presence or the possibility of adding them.
  • each of the components to be described below may additionally perform some or all of the functions of other components in addition to the main functions of the components, and some of the main functions of each of the components are different. Of course, it may be carried out exclusively by. Therefore, the presence or absence of each component described through this specification should be functionally interpreted.
  • a subject situation prediction system using image information analysis includes an image information collecting unit 110 for capturing a subject to obtain image information, an image information storage unit 120 storing the image information, and the image information.
  • the image information processor 130 extracts temperature information of the subject based on the image information analysis unit 140 that analyzes the state of the subject based on the temperature information.
  • the image information collecting unit 110 acquires image information by photographing a subject.
  • the image information collecting unit 110 includes a thermal imaging camera. By using the thermal imaging camera, it is possible to obtain an image for extracting temperature information of the subject.
  • thermal imaging camera it is also possible to use not only a thermal imaging camera but also other imaging apparatuses of a similar kind.
  • an infrared camera or a camera mounted on a smartphone can also be used.
  • the image information refers to a thermal image obtained through the thermal camera.
  • the image may be an image in which different temperatures are expressed in colors for each part of the subject.
  • the thermal image includes a picture or a video.
  • the image information can be divided into a plurality of pixels.
  • Each pixel may be used as a minimum unit for extracting information.
  • temperature information of the subject may be obtained from any one pixel.
  • the image information storage unit 120 stores the photographed image information.
  • the image information storage unit 120 stores a plurality of image information in order of time so that the system can analyze the image information.
  • the image information storage unit 120 stores the image information according to a predetermined cycle or number of times. For example, in order to check that the state of the subject is changed, image information photographing the subject may be stored once every hour.
  • the image information processor 130 extracts temperature information on the subject based on the image information.
  • the image information processing unit 130 extracts temperature information of pixels having specific coordinates of the image information.
  • temperature information of any one pixel (n, m) may be extracted from image information having N * M resolution.
  • an image taken by a thermal imaging camera is displayed in a blue color when the temperature of the corresponding area is low, and is displayed in a red color when the temperature is high. Therefore, the temperature value matching each color may be stored in advance, and the temperature information may be extracted by finding a temperature value matching the color of the (n, m) pixel.
  • the image information analyzer 140 analyzes the state of the subject based on the temperature information.
  • the image information analysis unit 140 analyzes the temperature information in time series. The state of the subject to be changed is analyzed after a predetermined time from the point of time when the temperature information is obtained.
  • the temperature information is extracted based on the (n, m) pixels, it is possible to analyze (n, m, t) by adding a time value t to the (n, m) pixels. That is, the temperature information may be analyzed in a time series to analyze how the temperature information of the subject has changed during a predetermined time. Furthermore, it is possible to predict what state the subject will change in the future based on the analyzed information.
  • the image information analyzer 140 may classify the plurality of subjects into at least one group by analyzing a state of the plurality of subjects. For example, if the subjects are chickens raised in a poultry farm, it is possible to collect and analyze temperature information of several chickens and classify them into at least one group according to the temperature difference of the chickens.
  • the image information analysis unit 140 further comprises a disease prediction unit for predicting the disease of the subject.
  • the disease prediction unit 1410 receives the temperature information analyzed by the image information analysis unit 140 and determines whether the subject is infected with the disease based on information about the disease previously input. For example, it may be determined whether the subject has a disease by comparing the calorific value of the subject with previously inputted disease information.
  • the disease prediction unit 141 further includes a communication unit 141a for transmitting a response corresponding to the disease of the subject to the manager terminal.
  • the communication unit 141a is used to transmit a response to the manager terminal along with a corresponding response to the manager terminal so that the manager can take prompt action on the subject.
  • a method of predicting a subject situation using image information analysis may include obtaining an image by photographing a subject (210), storing the image information (220), and a temperature of the subject based on the image information. Extracting information 230 and analyzing the state of the subject 240 based on the temperature information.
  • step 210 the subject is photographed to obtain image information.
  • a thermal imaging camera is used to acquire the image information.
  • other cameras of a similar kind may be used to obtain image information.
  • a camera for identifying a temperature gauge, a thermal camera, or an imaging device having a similar function may be used.
  • the subject here includes livestock and crops.
  • livestock such as chickens, pigs, and cattle raised in a barn, and various kinds of crops grown in farmland.
  • the image information refers to a thermal image obtained by using a thermal imaging camera in the disclosed technology.
  • the image may be an image in which different temperatures are expressed in colors for each part of the subject.
  • the thermal image includes a picture or a video.
  • the image information can be broken into specific units such as pixels.
  • Each pixel may be used as a minimum unit for extracting information.
  • temperature information of the subject may be obtained from any one pixel.
  • step 220 image information is stored.
  • the image information is used to extract temperature information in the following steps. Therefore, in operation 220, at least one image information is stored in the acquired order.
  • the image information may be stored according to a predetermined cycle or number of times. For example, in order to predict a change in the state of the subject, it may be sequentially stored every 10 minutes.
  • temperature information of the subject is extracted based on the image information.
  • temperature information of a peccel of a specific coordinate of the subject is extracted.
  • temperature information of any one pixel (a, b) may be extracted from image information having A * B resolution.
  • image information having A * B resolution In general, an image taken by a thermal imaging camera is displayed in a blue color when the temperature of the corresponding area is low, and is displayed in a red color when the temperature is high. Therefore, the temperature value matching each color may be stored in advance, and the temperature information may be extracted by finding a temperature value matching the color of the (a, b) pixels.
  • the state of the subject is analyzed based on the temperature information.
  • the temperature information is analyzed in time series to predict how the state of the subject will change after a predetermined time.
  • the temperature information is extracted based on the (a, b) pixels
  • the time value may vary somewhat depending on the setting.
  • the temperature information may be analyzed in a time series as described above to analyze how the temperature information of the subject changes during a predetermined time. And, based on the analyzed information, it is possible to predict what state the subject will change in the future.
  • the method may further include predicting a disease of the subject.
  • the predicting of the disease may determine whether the subject is infected with the disease based on temperature information obtained by analyzing the image information and information about the disease previously input. For example, it may be determined whether the subject has a disease by comparing the calorific value of the subject with previously inputted disease information.
  • the step of predicting the disease if it is determined that the subject is infected with the disease, a response to the disease infection of the subject is transmitted to the manager terminal. Therefore, it is possible for a farm manager or a farmer who grows crops to prevent disease spread of crops at an early stage.
  • the plurality of subjects are classified into at least one group by analyzing a state of the plurality of subjects. For example, if the subjects are pigs raised by pigs, it is possible to collect and analyze temperature information of several pigs and classify them into at least one group according to the temperature difference of each pig.
  • FIG. 3 is a diagram illustrating a process of time-series analysis of temperature information extracted from image information collected in an embodiment of the disclosed technology.
  • the image information photographing unit photographs a thermal image of a subject.
  • the thermal image is used as image information in the disclosed technology.
  • the image information is photographed and stored at a specific cycle or number of times.
  • Each of the stored image information is composed of a plurality of pixel units horizontally and vertically, so that the system can extract temperature information by matching temperature values corresponding to the colors of the plurality of pixels.
  • the temperature information for each image information is analyzed according to the time series as described above, it is possible to analyze the temperature change amount of the specific pixel or its trend. For example, if the temperature information obtained by time series analysis of the pixel at the point (x, y) is (x, y, t), and (x, y, t) is gradually increasing, the (x, y, t) Based on the information, it is possible to predict that at some point, the upper temperature limit, which indicates the onset of the disease, will be reached. Therefore, there is an effect that can prevent the spread of disease and damage caused by livestock or crops.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Mining & Mineral Resources (AREA)
  • Strategic Management (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Tourism & Hospitality (AREA)
  • Animal Husbandry (AREA)
  • General Business, Economics & Management (AREA)
  • Agronomy & Crop Science (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

본 발명에 따른 화상정보 분석을 이용한 피사체 상황 예측 시스템은 피사체를 촬영하여 화상정보를 획득하는 화상정보 수집부, 상기 화상정보를 저장하는 화상정보 저장부, 상기 화상정보를 토대로 상기 피사체에 대한 온도정보를 추출하는 화상정보 처리부 및 상기 온도정보를 토대로 상기 피사체의 상태를 분석하는 화상정보 분석부를 포함한다. 또한, 본 발명에 따른 화상정보 분석을 이용한 피사체 상황 예측 방법은 피사체를 촬영하여 화상정보를 획득하는 단계, 상기 화상정보를 저장하는 단계, 상기 화상정보를 토대로 상기 피사체에 대한 온도정보를 추출하는 단계 및 상기 온도정보를 토대로 상기 피사체의 상태를 분석하는 단계를 포함한다.

Description

화상정보 분석을 이용한 피사체 상황 예측 시스템 및 방법
이하 설명하는 기술은 화상정보 분석을 통하여 피사체가 변화될 상황을 예측하는 시스템 및 방법에 관한 것이다.
물체의 특징 중 하나인 적외선 에너지는 광학렌즈를 통해 적외선 탐지기로 집중된다. 감지기는 이미지를 처리하기 위해 이 정보를 센서로 보내고, 상기 센서는 감지기로부터 나오는 데이터를 표준 비디오 모니터나 LCD 화면의 뷰파인더에서 볼 수 있도록 이미지로 변환한다. 적외선 서모그래피는 적외선 이미지를 방사측정값으로 변환하는 기술로, 이를 통해 이미지로부터 온도 값을 읽을 수 있다. 따라서 방사측정 이미지의 모든 픽셀은 사실상 온도를 측정한 값이다.
한편, 종래에 농업현장에서 사용된 열화상 분석은 열화상 카메라의 장점은 방사측정값을 일순간의 정보만을 가지고 분석하는 것이 가능하였다. 그러나 측정대상의 일부분에 대한 정보를 획득할 수 있었고 동시에 순간에 획득된 열화상 정보를 토대로 분석이 이루어지다 보니 측정대상에 대한 단편적인 정보만을 획득할 수 있었다. 따라서, 측정대상의 현재의 상태만을 측정하기 때문에 일정시간 이후에 변화될 상황을 효과적으로 예측하는데 다소 어려움이 있었다.
측정대상의 열화상 이미지를 토대로 특정 정보를 획득하는 것에 관한 종래기술로는 한국 공개특허 제10-2011-0049172호 (발명의 명칭 : 가축의 생체변화 모니터링 시스템)가 있다.
개시된 기술은 피사체를 촬영하여 획득한 화상정보를 분석하여 상기 피사체가 일정 시간 이후에 변화될 상황을 예측하는 시스템 및 방법을 제공하는데 있다.
이하 설명하는 피사체 상황 예측 시스템은 피사체를 촬영하여 화상정보를 획득하는 화상정보 수집부, 상기 화상정보를 저장하는 화상정보 저장부, 상기 화상정보를 토대로 상기 피사체에 대한 온도정보를 추출하는 화상정보 처리부 및 상기 온도정보를 토대로 상기 피사체의 상태를 분석하는 화상정보 분석부를 포함한다.
이하 설명하는 피사체 상황 예측 방법은 피사체를 촬영하여 화상정보를 획득하는 단계, 상기 화상정보를 저장하는 단계, 상기 화상정보를 토대로 상기 피사체에 대한 온도정보를 추출하는 단계 및 상기 온도정보를 토대로 상기 피사체의 상태를 분석하는 단계를 포함한다.
이하 설명하는 기술은 피사체에 직접적인 접촉이 없이도 정보를 분석할 수 있으며, 일정시간 동안 획득된 피사체 정보를 통해 추후 상황을 예측할 수 있는 효과가 있다.
또한, 물성을 갖는 어떠한 피사체에서도 화상정보를 획득 및 분석하여 일정시간 이후의 변화될 특성을 예측할 수 있는 장점이 있다.
또한, 피사체의 질병에 대한 상태를 예찰하고 그에 따른 대응안을 제공하여 피해확산을 방지하는 효과를 제공한다.
도 1은 개시된 기술의 일 실시예에 따른 화상정보 분석을 이용한 피사체 상황 예측 시스템에 대한 블록도이다.
도 2는 개시된 기술의 일 실시예에 따른 화상정보 분석을 이용한 피사체 상황 예측 방법에 대한 순서도이다.
도 3은 개시된 기술의 일 실시예에서 수집된 화상정보로부터 추출한 온도정보를 시계열로 분석하는 과정을 나타낸 도면이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제 1, 제 2, A, B 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 해당 구성요소들은 상기 용어들에 의해 한정되지는 않으며, 단지 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제 1 구성요소는 제 2 구성요소로 명명될 수 있고, 유사하게 제 2 구성요소도 제 1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
본 명세서에서 사용되는 용어에서 단수의 표현은 문맥상 명백하게 다르게 해석되지 않는 한 복수의 표현을 포함하는 것으로 이해되어야 한다. 그리고 "포함한다" 등의 용어는 설시된 특징, 개수, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 의미하는 것이지, 하나 또는 그 이상의 다른 특징들이나 개수, 단계 동작 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 배제하지 않는 것으로 이해되어야 한다.
도면에 대한 상세한 설명을 하기에 앞서, 본 명세서에서의 구성부들에 대한 구분은 각 구성부가 담당하는 주기능 별로 구분한 것에 불과함을 명확히 하고자 한다. 즉, 이하에서 설명할 2개 이상의 구성부가 하나의 구성부로 합쳐지거나 또는 하나의 구성부가 보다 세분화된 기능별로 2개 이상으로 분화되어 구비될 수도 있다.
그리고 이하에서 설명할 구성부 각각은 자신이 담당하는 주기능 이외에도 다른 구성부가 담당하는 기능 중 일부 또는 전부의 기능을 추가적으로 수행할 수도 있으며, 구성부 각각이 담당하는 주기능 중 일부 기능이 다른 구성부에 의해 전담되어 수행될 수도 있음은 물론이다. 따라서, 본 명세서를 통해 설명되는 각 구성부들의 존재 여부는 기능적으로 해석되어야 할 것이다.
도 1은 개시된 기술의 일 실시예에 따른 화상정보 분석을 이용한 피사체 상황 예측 시스템에 대한 블록도이다. 도 1을 참조하면 화상정보 분석을 이용한 피사체 상황 예측 시스템은 피사체를 촬영하여 화상정보를 획득하는 화상정보 수집부(110), 상기 화상정보를 저장하는 화상정보 저장부(120), 상기 화상정보를 토대로 상기 피사체에 대한 온도정보를 추출하는 화상정보 처리부(130) 및 상기 온도정보를 토대로 상기 피사체의 상태를 분석하는 화상정보 분석부(140)를 포함한다.
화상정보 수집부(110)는 피사체를 촬영하여 화상정보를 획득한다. 상기 화상정보 수집부(110)는 열화상 카메라를 포함한다. 상기 열화상 카메라를 이용하면 상기 피사체의 온도정보를 추출하기 위한 이미지를 획득하는 것이 가능하다.
물론, 열화상 카메라 뿐만 아니라 유사한 종류의 다른 촬영장치를 이용하는 것 또한 얼마든지 가능하다. 예컨대, 적외선 카메라나 스마트폰에 탑재된 카메라를 이용할 수도 있다.
여기에서 피사체는 닭, 돼지, 소 또는 오리와 같은 가축과 농가에서 재배되는 여러종류의 농작물을 포함한다. 그리고 화상정보는 상기 열화상 카메라를 통해 획득된 열화상 이미지를 의미한다. 예컨대, 이미지에 피사체의 각 부분마다 서로 다른 온도가 색으로 표현되는 이미지일 수 있다. 상기 열화상 이미지는 사진이나 동영상을 포함한다.
한편, 상기 화상정보는 복수개의 픽셀로 쪼개는 것이 가능하다. 그리고 각각의 픽셀을 정보를 추출할 수 있는 최소단위로 이용할 수 있다. 그리고 어느 하나의 픽셀로부터 피사체에 대한 온도정보를 획득할 수 있다.
화상정보 저장부(120)는 촬영된 화상정보를 저장한다. 상기 화상정보 저장부(120)는 시스템에서 상기 화상정보를 분석할 수 있도록 시간의 순서에 따라 복수개의 화상정보를 저장한다.
한편, 상기 화상정보 저장부(120)는 소정의 주기 또는 횟수에 따라 화상정보를 저장한다. 예컨대, 피사체의 상태가 변화되는 것을 체크하기 위하여 1시간에 한번씩 피사체를 촬영한 화상정보를 저장할 수 있다.
화상정보 처리부(130)는 화상정보를 토대로 피사체에 대한 온도정보를 추출한다. 상기 화상정보 처리부(130)는 상기 화상정보의 특정 좌표의 픽셀에 대한 온도정보를 추출한다.
일 실시예로, N*M 해상도를 갖는 화상정보에서 어느 하나의 픽셀인 (n, m)에 대한 온도정보를 추출할 수 있다. 일반적으로 열화상 카메라로 촬영된 이미지는 해당 영역의 온도가 낮으면 파란색 계열의 색으로 표시되고, 온도가 높으면 붉은색 계열의 색으로 표시된다. 따라서, 각 색상에 매칭되는 온도값을 미리 저장하고, 상기 (n, m) 픽셀의 색상에 매칭되는 온도값을 찾아 온도정보를 추출할 수 있다.
화상정보 분석부(140)는 온도정보를 토대로 피사체의 상태를 분석한다. 상기 화상정보 분석부(140)는 상기 온도정보를 시계열로 분석한다. 그리고 상기 온도정보를 획득한 시점으로부터 일정 시간 이후에 상기 피사체의 변화될 상태를 분석한다.
일 실시예로, 상기 (n, m) 픽셀을 기준으로 온도정보를 추출한다면, 상기 (n, m) 픽셀에 시간값인 t를 추가하여 (n, m, t)를 분석하는 것이 가능하다. 즉, 온도정보를 시계열로 분석하여 정해진 시간 동안에 피사체의 온도정보가 어떻게 변화하였는지를 분석할 수 있다. 나아가, 상기 분석된 정보를 토대로 앞으로 피사체가 어떤 상태로 변화될 것인지를 예측하는 것이 가능하다.
한편, 상기 화상정보 분석부(140)는 복수개의 피사체들에 대한 상태를 분석하여 상기 복수개의 피사체들을 적어도 하나의 그룹으로 분류하는 것이 가능하다. 예컨대, 피사체들이 양계장에서 기르는 닭이라면, 여러마리의 닭들에 대한 온도정보를 수집 및 분석하여 닭의 온도 차이에 따라 적어도 하나의 그룹으로 분류하는 것이 가능하다.
통상적으로 일반적인 수준의 닭의 체온에 해당되는 온도에 다소 못미치거나 반대로 체온보다 훨씬 높은 개체는 질병을 일으키는 병균에 감염되어 있거나 다른 비정상적인 요인을 가지고 있는 것이므로, 이들이 발병하여 주변에 질병을 전염시켜서 집단으로 폐사하기 이전에 미리 솎아내는 것이 가능하다.
한편, 상기 화상정보 분석부(140)는, 상기와 같이 피사체의 질병을 예찰하는 질병예찰부(141)를 더 포함한다. 상기 질병예찰부(1410)는 화상정보 분석부(140)에서 분석된 온도정보를 전송받고 미리 입력된 질병에 대한 정보를 토대로 피사체가 질병에 감염되었는지를 판단한다. 예컨대, 피사체의 발열량과 미리 입력된 질병 정보를 비교하여 상기 피사체의 질병 발병 여부를 판단할 수 있다.
한편, 상기 질병예찰부(141)는 상기 피사체의 질병에 따른 대응안을 관리자 단말에 전송하는 통신부(141a)를 더 포함한다. 상기 통신부(141a)를 이용하여 관리자 단말에 피사체의 질병 발병 여부와 함께 그에 따른 대응안을 전송하여 관리자가 피사체에 대한 신속한 조치를 취할 수 있도록 한다.
도 2는 개시된 기술의 일 실시예에 따른 화상정보 분석을 이용한 피사체 상황 예측 방법에 대한 순서도이다. 도 2를 참조하면 화상정보 분석을 이용한 피사체 상황 예측 방법은 피사체를 촬영하여 화상정보를 획득하는 단계(210), 상기 화상정보를 저장하는 단계(220), 상기 화상정보를 토대로 상기 피사체에 대한 온도정보를 추출하는 단계(230) 및 상기 온도정보를 토대로 상기 피사체의 상태를 분석하는 단계(240)를 포함한다.
210 단계에서는 피사체를 촬영하여 화상정보를 획득한다. 상기 화상정보를 획득하기 위해 210 단계에서는 열화상 카메라를 이용한다. 화상정보를 획득하는데 있어서 상기 열화상 카메라 뿐만 아니라 유사한 종류의 다른 카메라를 이용할 수도 있다. 예컨대, 온도게이지를 식별하는 카메라나, 열감지 카메라 또는 이와 유사한 기능을 갖는 촬영 장치를 이용할 수 있다.
여기에서 피사체는 가축 및 농작물을 포함한다. 예컨대, 축사에서 사육하는 닭, 돼지 및 소와 같은 가축과 농경지에서 재배되는 여러종류의 농작물을 포함할 수 있다.
한편, 상기 화상정보는 개시된 기술에서 열화상 카메라를 이용하여 획득된 열화상 이미지를 의미한다. 예컨대, 이미지에 피사체의 각 부분마다 서로 다른 온도가 색으로 표현되는 이미지일 수 있다. 상기 열화상 이미지는 사진이나 동영상을 포함한다.
한편, 상기 화상정보는 픽셀과 같은 특정한 단위로 쪼개는 것이 가능하다. 그리고 각각의 픽셀을 정보를 추출할 수 있는 최소단위로 이용할 수 있다. 그리고 어느 하나의 픽셀로부터 피사체에 대한 온도정보를 획득할 수 있다.
220 단계에서는 화상정보를 저장한다. 상기 화상정보는 이하의 단계에서 온도정보를 추출하는데 이용하게 된다. 따라서, 220 단계에서는 획득된 순서에 따라 적어도 하나의 화상정보를 저장한다.
한편, 220 단계에서 상기 화상정보는 소정의 주기 또는 횟수에 따라 저장될 수 있다. 예컨대, 피사체의 상태 변화를 예측하기 위해서 10분에 한번씩 순차적으로 저장할 수 있다.
230 단계에서는 화상정보를 토대로 피사체에 대한 온도정보를 추출한다. 온도정보를 추출하는데 있어서 230 단계에서는 상기 피사체의 특정 좌표의 펙셀에 대한 온도정보를 추출한다.
일 실시예로, A*B 해상도를 갖는 화상정보에서 어느 하나의 픽셀인 (a, b)에 대한 온도정보를 추출할 수 있다. 일반적으로 열화상 카메라로 촬영된 이미지는 해당 영역의 온도가 낮으면 파란색 계열의 색으로 표시되고, 온도가 높으면 붉은색 계열의 색으로 표시된다. 따라서, 각 색상에 매칭되는 온도값을 미리 저장하고, 상기 (a, b) 픽셀의 색상에 매칭되는 온도값을 찾아 온도정보를 추출할 수 있다.
240 단계에서는 상기 온도정보를 토대로 피사체의 상태를 분석한다. 240 단계에서는 상기 온도정보를 시계열로 분석하여 상기 피사체의 상태가 일정시간 이후에 어떻게 변화할 것인지 예측한다.
일 실시예로, 상기 (a, b) 픽셀을 기준으로 온도정보를 추출한다면, 상기 (a, b) 픽셀에 시간값인 t를 추가하여 (a, b, t)를 분석하는 것이 가능하다. 여기에서 시간값은 t는 설정에 따라 다소 달라질 수 있다.
240 단계에서는 상기와 같이 온도정보를 시계열로 분석하여 정해진 시간 동안에 피사체의 온도정보가 어떻게 변화하는지를 분석할 수 있다. 그리고, 상기 분석된 정보를 토대로 앞으로 피사체가 어떤 상태로 변화될 것인지를 예측하는 것이 가능하다.
통상적으로 일반적인 수준의 돼지의 체온에 해당되는 온도에 다소 못미치거나 반대로 체온보다 훨씬 높은 개체는 질병을 일으키는 병균에 감염되어 있거나 다른 비정상적인 요인을 가지고 있는 것이므로, 이들이 얼마간의 시간이 지나 발병하여 주변에 질병을 전염시켜서 집단으로 폐사하기 이전에 미리 솎아내는 것이 가능하다.
종래기술의 경우 예컨대, 열차가 통과하는 순간에 열차 하부의 온도를 측정하여 이를 토대로 기기의 이상여부를 판단하거나 적외선 카메라와 같은 열화상 장비를 이용하여 이미지를 촬영하고 이를 분석하여 검출되는 온도에 따라 고장 여부를 진단하고 있다.
그러나 이러한 종래기술들은 특정한 순간을 촬영하여 획득한 데이터를 근거로 분석이 이루어지기 때문에 그 순간에 대한 단편적인 정보만을 얻기 때문에, 촬영한 순간 이후에 변화될 피사체의 상태를 확인할 수 없었다. 개시된 기술에서는 상기 종래기술이 갖는 문제점에 착안하여 가축이나 농작물의 현재 상태는 물론이고, 앞으로 어떤 상태로 변화될 것인지를 예측한다.
한편, 240 단계는 피사체의 질병을 예찰하는 단계를 더 포함한다. 상기 질병을 예찰하는 단계는 화상정보를 분석하여 얻어진 온도정보와 미리 입력된 질병에 대한 정보를 토대로 피사체가 질병에 감염되었는지를 판단한다. 예컨대, 피사체의 발열량과 미리 입력된 질병 정보를 비교하여 상기 피사체의 질병 발병 여부를 판단할 수 있다.
한편, 상기 질병을 예찰하는 단계는 상기 피사체가 질병에 감염된 것으로 판단되면 관리자 단말에 피사체의 질병 감염에 대한 대응안을 전송한다. 따라서, 농장의 경영인이나 작물을 재배하는 농부가 조기에 농작물의 질병 확산을 방지하는 것이 가능하다.
한편, 240 단계에서는 복수개의 피사체들에 대한 상태를 분석하여 상기 복수개의 피사체들을 적어도 하나의 그룹으로 분류한다. 예컨대, 피사체들이 돈사에서 기르는 돼지라면, 여러마리의 돼지들에 대한 온도정보를 수집 및 분석하여 각 돼지들의 온도 차이에 따라 적어도 하나의 그룹으로 분류하는 것이 가능하다.
별개의 그룹으로 분류됨에 따라 질병의 발병 위험도가 높은 그룹과 별다른 이상이 없는 그룹으로 구분하는 것이 가능하므로, 감시범위를 좁혀서 보다 면밀하게 모니터링할 수 있는 장점이 있다.
도 3은 개시된 기술의 일 실시예에서 수집된 화상정보로부터 추출한 온도정보를 시계열로 분석하는 과정을 나타낸 도면이다. 도 3을 참조하면 화상정보 촬영부는 피사체의 열화상 이미지를 촬영한다. 상기 열화상 이미지는 개시된 기술에서의 화상정보로 이용된다.
그리고 상기 화상정보를 특정 주기 내지는 횟수대로 촬영하여 저장한다. 저장된 각각의 화상정보는 가로 및 세로로 복수개의 픽셀단위로 이루어져 있어서, 시스템에서는 상기 복수개의 픽셀들의 색깔에 대응되는 온도값을 매칭시켜서 온도정보를 추출하는 것이 가능하다.
한편, 상기와 같이 각 화상정보들에 대한 온도정보를 시계열에 따라 분석하면 특정 픽셀의 온도변화량이나 그 추이를 분석하는 것이 가능하다. 에컨대, (x, y) 지점의 픽셀을 시계열 분석하여 얻어진 온도정보가 (x, y, t)이고, 상기 (x, y, t)가 점차 증가되고 있다면, 현재까지의 (x, y, t) 정보를 토대로 어느 시점이 되면 질병의 발병을 나타내는 온도 상한값에 다다르게 될 것이라고 예측하는 것이 가능하다. 따라서, 가축이나 농작물의 질병 확산 및 그에 따른 피해를 방지할 수 있는 효과가 있다.
개시된 기술의 일 실시예에 따른 화상정보 분석을 이용한 피사체 상황 예측 시스템 및 방법은 이해를 돕기 위하여 도면에 도시된 실시 예를 참고로 설명되었으나, 이는 예시적인 것에 불과하며, 당해 분야에서 통상적 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시 예가 가능하다는 점을 이해할 것이다. 따라서, 개시된 기술의 진정한 기술적 보호범위는 첨부된 특허청구범위에 의해 정해져야 할 것이다.

Claims (16)

  1. 피사체를 촬영하여 화상정보를 획득하는 화상정보 수집부;
    상기 화상정보를 저장하는 화상정보 저장부;
    상기 화상정보를 토대로 상기 피사체에 대한 온도정보를 추출하는 화상정보 처리부; 및
    상기 온도정보를 토대로 상기 피사체의 상태를 분석하는 화상정보 분석부;를 포함하는 화상정보 분석을 통한 피사체 상황 예측 시스템.
  2. 제 1 항에 있어서, 상기 화상정보 수집부는,
    열화상 카메라를 포함하는 상기 피사체를 촬영하는 화상정보 분석을 통한 피사체 상황 예측 시스템.
  3. 제 1 항에 있어서, 상기 화상정보 처리부는,
    상기 화상정보의 특정 좌표의 픽셀에 대한 온도정보를 추출하는 화상정보 분석을 통한 피사체 상황 예측 시스템.
  4. 제 1 항에 있어서, 상기 화상정보 분석부는,
    상기 온도정보를 시계열로 분석하여 상기 온도정보를 획득한 시점으로부터 일정 시간 이후에 상기 피사체의 변화될 상태를 분석하는 화상정보 분석을 통한 피사체 상황 예측 시스템.
  5. 제 1 항에 있어서, 상기 피사체는,
    가축 및 농작물을 포함하는 화상정보 분석을 통한 피사체 상황 예측 시스템.
  6. 제 1 항에 있어서, 상기 화상정보 분석부는,
    상기 피사체의 질병을 예찰하는 질병예찰부를 더 포함하는 화상정보 분석을 통한 피사체 상황 예측 시스템.
  7. 제 1 항에 있어서, 상기 화상정보 분석부는,
    복수개의 피사체들에 대한 상태를 분석하여 상기 복수개의 피사체들을 적어도 하나의 그룹으로 분류하는 화상정보 분석을 통한 피사체 상황 예측 시스템.
  8. 제 6 항에 있어서, 상기 질병예찰부는,
    상기 피사체의 질병에 따른 대응안을 관리자 단말에 전송하는 통신부를 더 포함하는 화상정보 분석을 통한 피사체 상황 예측 시스템.
  9. 피사체를 촬영하여 화상정보를 획득하는 단계;
    상기 화상정보를 저장하는 단계;
    상기 화상정보를 토대로 상기 피사체에 대한 온도정보를 추출하는 단계; 및
    상기 온도정보를 토대로 상기 피사체의 상태를 분석하는 단계;를 포함하는 화상정보 분석을 통한 피사체 상황 예측 방법.
  10. 제 9 항에 있어서, 상기 화상정보를 획득하는 단계는,
    열화상 카메라를 이용하여 상기 피사체를 촬영하는 화상정보 분석을 통한 피사체 상황 예측 방법.
  11. 제 9 항에 있어서, 상기 온도정보를 추출하는 단계는,
    상기 화상정보의 특정 좌표의 픽셀에 대한 온도정보를 추출하는 화상정보 분석을 통한 피사체 상황 예측 방법.
  12. 제 9 항에 있어서, 상기 피사체의 상태를 분석하는 단계는,
    상기 온도정보를 시계열로 분석하여 상기 온도정보를 획득한 시점으로부터 일정 시간 이후에 상기 피사체의 변화될 상태를 분석하는 화상정보 분석을 통한 피사체 상황 예측 방법.
  13. 제 9 항에 있어서, 상기 피사체는,
    가축 및 농작물을 포함하는 화상정보 분석을 통한 피사체 상황 예측 방법.
  14. 제 9 항에 있어서, 상기 피사체의 상태를 분석하는 단계는,
    상기 피사체의 질병을 예찰하는 단계를 더 포함하는 화상정보 분석을 통한 피사체 상황 예측 방법.
  15. 제 9 항에 있어서, 상기 피사체의 상태를 분석하는 단계는,
    복수개의 피사체들에 대한 상태를 분석하여 상기 복수개의 피사체들을 적어도 하나의 그룹으로 분류하는 화상정보 분석을 통한 피사체 상황 예측 방법.
  16. 제 14 항에 있어서, 상기 질병을 예찰하는 단계는,
    상기 피사체의 질병에 따른 대응안을 관리자 단말에 전송하는 화상정보 분석을 통한 피사체 상황 예측 방법.
PCT/KR2015/010190 2014-12-17 2015-09-25 화상정보 분석을 이용한 피사체 상황 예측 시스템 및 방법 WO2016099008A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0182152 2014-12-17
KR20140182152 2014-12-17

Publications (1)

Publication Number Publication Date
WO2016099008A1 true WO2016099008A1 (ko) 2016-06-23

Family

ID=56126848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010190 WO2016099008A1 (ko) 2014-12-17 2015-09-25 화상정보 분석을 이용한 피사체 상황 예측 시스템 및 방법

Country Status (1)

Country Link
WO (1) WO2016099008A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022056654A1 (zh) * 2020-09-15 2022-03-24 华为技术有限公司 一种测温方法和测温装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004520878A (ja) * 2000-12-15 2004-07-15 オムニコーダー テクノロジーズ インコーポレイテッド 赤外線検知器を用いた生理機能測定方法及び装置
KR20110035335A (ko) * 2009-09-30 2011-04-06 주식회사 케이티 열화상 카메라를 이용한 모니터링 방법 및 시스템
KR20110049172A (ko) * 2009-11-04 2011-05-12 대한민국(농촌진흥청장) 가축의 생체변화 모니터링 시스템
KR20110137096A (ko) * 2010-06-16 2011-12-22 모듈티시 주식회사 가축방역 예방시스템 및 그 예방방법
KR20140119228A (ko) * 2013-03-27 2014-10-10 한국로봇융합연구원 스마트 단말기 연계형 실시간 검진 방법 및 이를 위한 통합관리시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004520878A (ja) * 2000-12-15 2004-07-15 オムニコーダー テクノロジーズ インコーポレイテッド 赤外線検知器を用いた生理機能測定方法及び装置
KR20110035335A (ko) * 2009-09-30 2011-04-06 주식회사 케이티 열화상 카메라를 이용한 모니터링 방법 및 시스템
KR20110049172A (ko) * 2009-11-04 2011-05-12 대한민국(농촌진흥청장) 가축의 생체변화 모니터링 시스템
KR20110137096A (ko) * 2010-06-16 2011-12-22 모듈티시 주식회사 가축방역 예방시스템 및 그 예방방법
KR20140119228A (ko) * 2013-03-27 2014-10-10 한국로봇융합연구원 스마트 단말기 연계형 실시간 검진 방법 및 이를 위한 통합관리시스템

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022056654A1 (zh) * 2020-09-15 2022-03-24 华为技术有限公司 一种测温方法和测温装置

Similar Documents

Publication Publication Date Title
KR101729327B1 (ko) 듀얼 카메라를 이용한 체온 추적 모니터링 시스템
KR101832724B1 (ko) 영상이미지를 통한 농작물 생육 진단 시스템 및 방법
KR101806400B1 (ko) 흑체를 이용한 듀얼 카메라 기반 체온 감시 시스템
US10195008B2 (en) System, device and method for observing piglet birth
CN108553081B (zh) 一种基于舌苔图像的诊断系统
KR102009677B1 (ko) 패턴인식 기반의 가금류 무게측정 시스템 및 방법
WO2022030685A1 (ko) 휴대용 단말기를 이용한 피부질환 측정 시스템 및 피부질환 관리방법
WO2005039402A1 (en) Diagnostic alignment of in vivo images
CN107643125A (zh) 设备故障的确定方法和装置
WO2017095120A1 (ko) 깊이 이미지를 이용한 행동 패턴 분석 시스템 및 방법
WO2017099395A1 (en) Method and apparatus for correction of non-invasive blood glucose measurement
WO2019098415A1 (ko) 자궁경부암에 대한 피검체의 발병 여부를 판정하는 방법 및 이를 이용한 장치
WO2017065358A1 (ko) 시약 키트의 이미지를 통한 감염병 진단 방법 및 장치
CN110136808B (zh) 一种拍摄装置辅助显示系统
CN113273178A (zh) 畜舍监视方法和畜舍监视系统
Petrellis Plant Disease Diagnosis Based on Image Processing, Appropriate for Mobile Phone Implementation.
KR20200105558A (ko) 컴퓨터 비전을 이용한 가축 질병 예측 시스템 및 그 방법
CN113205075A (zh) 一种检测吸烟行为的方法、装置及可读存储介质
KR102622793B1 (ko) 양식 어류의 실시간 질병 감지시스템 및 그 방법
WO2016099008A1 (ko) 화상정보 분석을 이용한 피사체 상황 예측 시스템 및 방법
CN107977958A (zh) 一种图像诊断方法和装置
WO2012057389A1 (ko) 복수개의 카메라를 이용한 관심영역 추출 시스템 및 그 방법
US20230239419A1 (en) Image display system and image display method
CN106790900B (zh) 一种手机温度检测方法及系统
CN111583732B (zh) 基于头戴式显示设备的测评状态监测方法、装置和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15870176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15870176

Country of ref document: EP

Kind code of ref document: A1