WO2016098833A1 - Optical element and light source device - Google Patents

Optical element and light source device Download PDF

Info

Publication number
WO2016098833A1
WO2016098833A1 PCT/JP2015/085277 JP2015085277W WO2016098833A1 WO 2016098833 A1 WO2016098833 A1 WO 2016098833A1 JP 2015085277 W JP2015085277 W JP 2015085277W WO 2016098833 A1 WO2016098833 A1 WO 2016098833A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
optical
gate
element body
handling
Prior art date
Application number
PCT/JP2015/085277
Other languages
French (fr)
Japanese (ja)
Inventor
北川仁
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2016098833A1 publication Critical patent/WO2016098833A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses

Definitions

  • the present invention relates to an optical element used together with a device that performs an optical operation such as light emission or light reception, and a light source device using the optical element.
  • Patent Document 2 since it is difficult to separate only the lens when the lens is miniaturized, it is conceivable to cut the lens and the runner unit integrally before shipping (Patent Document 2). In this case, the runner portion is separated at the assembly site of the pickup lens or the like, and the man-hour is increased by the amount of the separation.
  • the present invention has been made in view of the above-described background art, and is a small lens or other optical element that is easy to handle and does not require separation of a runner portion or the like at the assembly site, and has an effect on lens performance.
  • An object is to provide a small number of optical elements and a light source device using the optical elements.
  • an optical element made of a first resin according to the present invention includes an element body having an outer dimension of 2.5 mm or less, and a pair of supporting portions extending from the side surface of the element body and extending in parallel. And a gate part including a handling part provided.
  • the external dimension means the diameter or long side of the contour viewed from the optical axis direction, and the element body of 2.5 mm or less is considerably small to handle as a single item, Assembly and positioning on the device becomes difficult.
  • the gate part extending from the side surface of the element body includes a handling part in which a pair of supporting parts extending in parallel is provided. Therefore, the optical element is transported using the handling part and mounted at the target position. Therefore, even a small optical element having an outer dimension of 2.5 mm or less can be handled easily.
  • the handling part is provided in the relatively small gate part, the gate part can be left as it is, and the work of removing the runner part etc. is not required at the assembly site, improving workability and affecting the optical performance. It becomes easy to suppress.
  • the optical element when handling using the flange side surface, it is necessary to have a space corresponding to “the outer shape of the optical element” + “the thickness of the arm” at the place where the optical element is placed.
  • the handling portion can be gripped by the arm, the optical element can be placed without any problem as long as there is a space of “width of the handling portion” + “thickness of the arm”.
  • it can be cut so that the gate part is left when the optical element is taken out from the resin molded product, so that it is cut at a position close to the optical surface in spite of a small optical element of 2.5 mm or less. The effect (deformation, distortion, etc.) on the optical surface during cutting can be reduced.
  • the second resin-made optical element according to the present invention is a resin-made optical element having an outer dimension of 2.5 mm or less and a rectangular element body as viewed from the optical axis direction, A gate portion extending from a side surface of the element body, and a flange side surface of the element body is fixed for assembly.
  • the flange side surface of the element body is fixed for assembly, so that the optical element can be assembled in a horizontal position, and even a small optical element can be easily assembled.
  • the light source device is a light source device for optical communication or projector using an optical element.
  • FIG. 1A is a conceptual perspective view of an optical element according to a first embodiment of the present invention
  • FIGS. 1B and 1C are a front view and a side view of the optical element shown in FIG. 1A.
  • It is a conceptual perspective view explaining the holding
  • It is sectional drawing explaining the manufacturing method of the optical element using a metal mold
  • 4A and 4B are perspective views for explaining the process of assembling the optical element shown in FIG. 5A and 5B are diagrams illustrating a modification of the method for supporting an optical element.
  • 6A and 6B are a perspective view and a plan view of an optical element according to the second embodiment.
  • 7A and 7B are a front view and a side view of an optical element according to the third embodiment.
  • FIG. 11A It is a front view of the optical element which concerns on 4th Embodiment. It is a front view of the optical element which concerns on 5th Embodiment. It is a figure explaining an example of the support method of the optical element shown in FIG. 11A is a conceptual diagram illustrating a light source device incorporating the optical element shown in FIG. 1A and the like, and FIG. 11B is an enlarged view of a part of the light source device of FIG. 11A.
  • the optical element 100 of the first embodiment includes a main element body 10 and a gate portion 20 associated therewith.
  • the optical element 100 is a component incorporated in a light source device or other optical system for optical communication or projector, and specifically, a collimator lens that collimates the diverging light (or a cup that condenses the diverging light again). Ring lens).
  • a collimator lens that collimates the diverging light (or a cup that condenses the diverging light again). Ring lens).
  • the optical element 100 is a collimator, even if a prism, a wave plate or the like is inserted, it is parallel light, which is advantageous for routing light in the optical communication module 300 described later.
  • the optical element 100 is a resin-made molded product having optical transparency, and is formed by injection molding using a mold. That is, the element body 10 and the gate portion 20 are integrated.
  • the element body 10 is relatively thick and has a block-like contour.
  • the element body 10 includes a circular lens portion 11 and a frame-shaped flange portion 12.
  • the lens unit 11 is a biconvex optical lens, for example, and has a first optical surface 11a and a second optical surface 11b.
  • the outer diameter of the first optical surface 11a is smaller than the outer diameter of the second optical surface 11b.
  • the first optical surface 11a is a light incident surface
  • the second optical surface 11b is a light exit surface.
  • the flange portion 12 extends from the lens portion 11 to the outside of the side perpendicular to the optical axis AX direction.
  • the flange portion 12 has a circular shape on the inner side and a rectangular shape on the outer side (specifically, when viewed from the optical axis AX direction). Is a square). That is, the element body 10 has a rectangular outline when viewed from the optical axis AX direction. By making the outline of the element body 10 rectangular, the attachment and assembly are stabilized with respect to rotation around the optical axis AX.
  • the flange portion 12 includes two flange surfaces 12a and 12b extending in parallel to surround the optical surfaces 11a and 11b of the lens portion 11, and four flat and rectangular flange side surfaces 12c to 12b extending between the flange surfaces 12a and 12b. 12f.
  • the flange side surfaces 12c to 12f can be, for example, mirror surfaces, but can be roughened microscopically as long as the macroscopic flatness is not impaired.
  • the flange side face 12e on the non-gate side is a part for fixing the optical element 100 to an assembly receiving part of another member by adhesion, that is, a part for assembly. ing. Since the optical element 100 is fixed for assembly at the flange side surface (flange side surface 12e in the present embodiment) of the element body 10, the optical element 100 can be assembled at an appropriate position in a horizontal state. Thereby, even the small optical element 100 can be easily assembled.
  • the handling body 21 is conveyed so as to be hung and placed at a prescribed position where, for example, an adhesive is applied. Installation and fixing become possible. Further, by fixing the optical element 100 at one of the flange side surfaces 12c to 12f, it is possible to fix the optical element 100 so as to be placed on the substrate 70 (see FIG. 4B) as a support plate.
  • the gate portion 20 has a block-like outline, and is the center of one side of the outline of the element body 10 as viewed from the optical axis AX direction (that is, one flange side face 12c of the element body 10), and one flange side face 12c. It protrudes from the area
  • the edge part 20a of the gate part 20 is cut
  • the gate section 20 functions as a handling section 21 as a whole, and is gripped by a handling tool 90 such as tweezers or other holders or a robot hand when handling the optical element 100 for transporting or placing it (see FIG. 2). ).
  • the gate part 20 intentionally, it is possible to prevent the cut part formed by the conventional technique from entering the optical surfaces 11a and 11b, or the influence of the deformation, distortion, etc. from the cut part up to the optical surface. It is possible to prevent the performance from deteriorating.
  • the effective diameters of the optical surfaces 11a and 11b can be expanded to near the outer shape of the element body 10, the optical element 100 can be further reduced in size, and the applicable range of the optical system is expanded. .
  • the lens unit 11 becomes small, it becomes difficult to cut the gate portion 20 itself, and stable cutting cannot be performed. However, if the gate portion 20 is left large, the difficulty level of the gate cut itself is reduced, and man-hours are reduced. Connected.
  • the gate unit 20, that is, the handling unit 21, has four rectangular side surfaces 21a to 21d around an axis along which the gate unit 20 extends.
  • the pair of side surfaces 21a and 21b face each other in parallel, and the other pair of side surfaces 21c and 21d also face each other in parallel.
  • the side surfaces 21a and 21b and the side surfaces 21c and 21d are orthogonal to each other.
  • the pair of side surfaces 21a and 21b function as supporting portions suitable for holding between the pair of side surfaces 21a and 21b. Since the handling unit 21 has these side surfaces 21a to 21d, the gripping by the handling instrument 90 (see FIG. 2) is stabilized, and the handling reliability of the transport and installation of the optical element 100 is increased. In the example illustrated in FIG.
  • the front and rear side surfaces 21 a and 21 b are illustrated as being sandwiched between the pair of holding members 91, but the lateral side surfaces 21 c and 21 d may be sandwiched between the holding members 91 as support portions.
  • the side surfaces 21c and 21d do not need to be parallel to each other.
  • the front and back side surfaces 21a and 21b do not need to be parallel to each other.
  • the optical element 100 can be bonded to another member using only one flange side face 12e among the four flange side faces 12c to 12f provided on the element body 10. That is, one flange side surface 12e of the flange portion 12 having a quadrangular prism-like contour can be formed relatively accurately. If this flange side surface 12e is used, the element body 10 is assembled with another member precisely. be able to. In the conventional method in which the flange surfaces 12a and 12b are attracted and positioned, when the optical element 100 is stood sideways, not only a dedicated jig is required, but also the adhesive protrudes from the fixed side surface. There is also a risk of sticking to the jig.
  • the length of the element body 10 with respect to the injection direction AB of the resin at the time of molding is a
  • the length b of the gate part 20 with respect to the injection direction AB in which the element body 10 and the gate part 20 are arranged is: a / 8 ⁇ b ⁇ a Satisfy the relationship.
  • the element body 10 of the present embodiment has a square outline when viewed from the direction of the optical axis AX, and the length a matches the length of each side and corresponds to the external dimensions.
  • the operation of gripping the handling portion 21 is facilitated by making the length b of the gate portion 20 larger than a / 8.
  • the length b of the gate portion 20 is made smaller than the length a of the element body 10, it is possible to reliably eliminate the need to cut the gate portion 20 at the assembly site. Further, it is possible to suppress the height of the optical element 100 from being lowered and the center of gravity to come to a position close to the gate portion 20 or the gate portion 20, and the stability of the posture can be achieved. Therefore, it is easy to stabilize the support after being placed at the target location, and further, it is possible to prevent the element body 10 from being tilted during transportation, and it is easy to store in the tray for storage and transportation, and it is easy to take out.
  • the distance c from the end of the lens unit 11 on the gate unit 20 side to the end of the flange unit 12 on the gate unit 20 side is 0.05 mm or more and 0.3 mm or less.
  • the gate unit 20 side of the lens unit 11 is based on the second optical surface 11b having a larger outer diameter than the first optical surface 11a.
  • the distance c corresponds to the flange width on the gate part 20 side (specifically, the distance between the outer diameter of the second optical surface 11b and the boundary BL between the flange part 12 and the gate part 20), Even when an external force is applied to the gate portion 20, it has a role to prevent the element body 10 from being affected, and is preferably 0.05 mm or more as described above.
  • the distance c when the distance c is set to 0.05 mm or more, the protection of the lens unit 11 by the flange unit 12 is ensured.
  • an increase in the distance c means that the flange width is widened.
  • the distance c is 0.3 mm or less as described above. That is, by making the distance c 0.3 mm or less, it is possible to meet the demand for downsizing the element body 10.
  • the lens unit 11 is disposed at the center of the element body 10
  • the thickness of the flange portion 12 in the optical axis AX direction has a side surface that depends on the optical design, but the thickness e is a / 3 ⁇ e ⁇ a. It is desirable to satisfy this relationship.
  • the width and thickness of the gate portion 20 are determined mainly depending on molding conditions.
  • the width of the gate portion 20 is (a / 8) to 1 mm, and the depth or The thickness is (a / 3) to a.
  • the production of the optical element 100 will be described with reference to FIG.
  • the optical element 100 is manufactured by injection molding using a mold 80.
  • the mold 80 includes a first mold part 81 and a second mold part 82.
  • a molding space CA, a gate GA, and a runner RU are formed between the mold parts 81 and 82 in a state where the mold is closed as illustrated.
  • the molten resin is supplied from the runner RU side and injected into the molding space CA through the gate GA.
  • the molding space CA is sandwiched between a pair of transfer surfaces 81a and 82a corresponding to the pair of optical surfaces 11a and 11b, and is a portion where the element body 10 is formed.
  • the gate GA is a space in which the gate portion GP or the gate portion 20 extending from the element body 10 is formed.
  • the runner RU is a space in which a runner portion RP connected to the gate portion GP is formed.
  • the molded product MP taken out after the mold opening for separating the mold parts 81 and 82 from each other includes the element body 10, the gate part GP, the runner part RP, and the like.
  • the molded product MP is cut off near the boundary between the gate portion GP and the runner portion RP, and includes an element body 10 having an optical function and a gate portion 20 that is a main portion of the gate portion GP on the element body 10 side.
  • Element 100 is obtained. In the optical element 100, distortion remains in the region A1 of the gate portion 20 near the cutting portion C1 due to release, cutting, or the like, but does not affect the element body 10.
  • the assembly of the optical element 100 will be described with reference to FIGS. 4A and 4B.
  • two optical elements 100 are already fixed on the substrate 70.
  • fixing of the third optical element 100 will be described.
  • three laser diodes are attached to the back side of the substrate 70 corresponding to the arrangement of the three optical elements 100.
  • a UV curable resin UA is applied in advance to an appropriate position in the target area A3 on the substrate 70.
  • the handling device 90 shown in FIG. 2 is used to hold the gate portion 20, so that the optical element 100 is unloaded from the storage tray or the like and is transported to above the substrate 70. It is placed almost accurately on the target area A3 set on the surface 70a.
  • the optical element 100 is finely moved two-dimensionally on the substrate 70 while loosely holding the gate portion 20 by using the holding member 91 of the handling instrument 90, thereby making a laser (not shown). Align the diode.
  • the optical element 100 can be rotated not only in the horizontal CD direction and in the EF direction but also around a vertical axis perpendicular to the CD direction and the EF direction. Further, at the time of alignment, the state of the light beam that passes through the optical element 100 can be confirmed by causing the laser diode to emit light.
  • the holding member 91 of the handling instrument 90 is completely separated from the gate portion 20, and the UV curable resin UA is cured by irradiating the UV curable resin UA with UV light through the optical element 100. Accordingly, the flange side surface 12e of the optical element 100 and the flat surface 70a on the substrate 70 are fixed in close proximity so as to be in close contact with each other. As described above, by arranging the optical elements 100 using the handling unit 21, it becomes easy to combine a plurality of optical elements 100 in parallel, and an array of high-precision optical elements 100 can be manufactured while being small.
  • the above steps are performed in the same manner when each optical element 100 is attached, and an optical unit 200 as shown in FIG. 4B can be obtained.
  • the optical unit 200 is a lens array in which a plurality of optical elements 100 are arranged in a space-saving manner. Not only can the optical element 100 itself be reduced particularly in terms of lateral width by providing the gate portion 20 in each optical element 100, The size of the optical unit 200 can be reduced by increasing the arrangement density and alignment accuracy. However, although the dimension in the height direction is increased by the amount of the gate portion 20, in the light source device for optical communication or projector, there is often no problem even if the height dimension orthogonal to the arrangement direction is slightly increased. .
  • the optical element 100 is assembled to the other installation member 170 using the flange side surface 12d adjacent to the flange side surface 12c with the gate portion 20. It adheres to the mounting surface 73a which is a receiving part.
  • the optical element 100 is made to another type by utilizing the flange side surface 12e opposite to the gate and the flange side surface 12f adjacent thereto. It is bonded to a set of mounting surfaces 73b and 73c which are the assembly receiving portions of the installation member 170.
  • the optical communication module 300 is a light source device for optical communication, and a plurality of laser diodes 40 that are light emitting elements on a flat surface 70a of a substrate 70, a plurality of optical elements 100, And a housing 50.
  • FIG. 11B shows an example in which three optical elements 100 are arranged in parallel (that is, the optical unit 200 shown in FIG. 4B).
  • the housing 50 is provided so as to cover the laser diode 40 and the optical element 100.
  • the housing 50 is formed with a fiber fixing portion 60 protruding from one side surface thereof. An optical fiber 61 is inserted and fixed to the fiber fixing portion 60.
  • the laser diode 40 has a light emitting portion or a light emitting point 41 in the front center. Laser light is output from the light emitting point 41.
  • the optical element 100 is arranged such that its optical axis AX is at the same height as the light emitting point 41 of the laser diode 40 with respect to the substrate 70.
  • the laser light emitted from the light emitting point 41 of the laser diode 40 is divergent light, and the laser light enters the lens unit 11 of the optical element 100 and is emitted as a slight convergent light.
  • the emitted light is coupled to the end face of the optical fiber 61.
  • the laser light may be collimated by the optical element 100. In this case, an additional lens is required before the optical fiber 61.
  • the gate portion 20 extending from the flange side surface 12c of the element body 10 has a pair of side surfaces 21a and 21b or another pair of side surfaces 21c and 21d as a pair of supporting portions extending in parallel. Therefore, the handling unit 21 can be used to transport the optical element 100 to be placed and positioned at a target position, and even a small optical element 100 can be handled easily. become.
  • the handling portion 21 is provided in the relatively small gate portion 20, the gate portion 20 can be left as it is, and the work of removing the runner portion and the like at the assembly site becomes unnecessary, thereby improving the workability and improving the optical performance. It becomes easy to suppress the influence of.
  • a small collimator associated with a small light source may be required.
  • the element body 10 functions as a collimator lens, and can be conveniently handled by the optical element 100 that is small and easy to position.
  • optical element of the second embodiment is obtained by partially changing the optical element according to the first embodiment, and the parts that are not particularly described are the same as those of the optical element according to the first embodiment.
  • the gate portion 20 has a trapezoidal shape, and has only the front side surface 21a as a surface perpendicular to the optical axis AX.
  • the side surface 21b facing the side surface 21a is slightly inclined with respect to the side surface 21a.
  • the side surfaces 21c and 21d sandwiched between them form an acute angle with respect to the front side surface 21a, and are inclined toward each other to be narrowed toward the back surface.
  • a pair of edge parts 21i and 21j formed at both ends of the front side surface 21a in the direction orthogonal to the injection direction AB extend in the injection direction AB and are parallel to each other.
  • edge portions 21 i and 21 j can be gripped by the handling instrument 90 as a main portion of the handling portion 21. That is, as shown in FIG. 6B, the gate portion 20 can be gripped by sandwiching the edge portions 21 i and 21 j between the pair of holding members 91 and 91 having an L-shaped cross section of the handling instrument 90, and optical The element 100 can be transported, placed, positioned, and the like.
  • the optical element according to the third embodiment will be described below.
  • the optical element according to the third embodiment is obtained by partially changing the optical element according to the first embodiment, and the parts that are not particularly described are the same as those according to the first embodiment.
  • the gate unit 20 includes a handling unit 21 and a base unit 22.
  • the handling part 21 on the distal end side is connected to the gate part 20 via the base part 22 and has a smaller cross-sectional area than the base part 22 as viewed from the injection direction AB.
  • the handling part 21 does not need to be formed over the entire gate part 20, and can be formed only at a place necessary for gripping by the handling instrument 90.
  • the shape of the handling portion 21 is not limited to the rectangular column shape and the rectangular side surfaces 21a to 21d, but a pair of parallel extending edges similar to those shown in FIGS. 6A and 6B. It may be a tapered shape including the portions 21i and 21j.
  • optical element according to the fourth embodiment will be described below.
  • the optical element of the fourth embodiment is a partial modification of the optical element of the first embodiment, and the parts that are not particularly described are the same as those of the optical element of the first embodiment.
  • the element body 10 has a rectangular parallelepiped block-like outer shape, and has a rectangular outline when viewed from the optical axis AX direction. That is, the flange portion 12 has a rectangular outline when viewed from the optical axis AX direction.
  • the shapes of the gate unit 20 and the handling unit 21 are the same as those in the first embodiment.
  • the length of the element main body 10 with respect to the resin injection direction AB at the time of molding is a
  • the distance c from the end of the lens unit 11 on the gate unit 20 side to the end of the flange unit 12 on the gate unit 20 side is 0.05 mm or more and 0.3 mm or less.
  • optical element according to the fifth embodiment will be described below.
  • the optical element according to the fifth embodiment is obtained by partially changing the optical element according to the first embodiment, and parts not specifically described are the same as those according to the first embodiment.
  • the element body 10 has a cylindrical outer shape, and has a circular contour when viewed from the optical axis AX direction. That is, the flange portion 12 also has a circular outline when viewed from the optical axis AX direction, and the flange side surface 112e is a cylindrical surface extending in the optical axis AX direction.
  • the shapes of the gate unit 20 and the handling unit 21 are the same as those in the first embodiment. Since the element body 10 has a circular outline, the optical element 100 can be fixed at a target position in a space-saving manner.
  • the length of the element main body 10 with respect to the resin injection direction AB at the time of molding is a
  • the distance c from the end of the lens unit 11 on the gate unit 20 side to the end of the flange unit 12 on the gate unit 20 side is 0.05 mm or more and 0.3 mm or less.
  • the end of the flange portion 12 on the gate portion 20 side (that is, the vertex of the boundary BL) is connected to the lens portion 11 with respect to the optical axis. Judgment is made based on the virtual extension of the contour line viewed from the AX direction.
  • the element body 10 and the flange portion 12 are concentrically arranged in the drawing, but both can be eccentric.
  • the optical element 100 of the fourth embodiment is not supported by a flat support member but supported by a support member 270 having a support groove 74a having a V-shaped cross section. Since the optical element 100 of the fourth embodiment is formed by the cylindrical element body 10, the support can be stabilized by the support groove 74a. At this time, the cylindrical flange side surface 112e of the optical element 100 is in contact with the support groove 74a in two lines. The optical element 100 can be moved along the support groove 74a or rotated around the optical axis AX, but alignment for moving in the direction perpendicular to the optical axis AX is not easy.
  • the three optical elements 100 are arranged in parallel and fixed to the support member 270.
  • the single optical element 100 may be fixed to the support member 270.
  • optical element according to the embodiment has been described above.
  • the optical element according to the present invention is not limited to the above-described one, and various modifications can be made.
  • the shapes of the optical surfaces 11 a and 11 b provided on the lens unit 11 can be set as appropriate according to the application, specifications, and the like of the optical element 100.
  • the optical element 100 is used for a light source device for a projector. Also good.
  • the configuration of the light source device can be changed as appropriate according to the application. For example, light may be guided not by an optical fiber but by a dichroic mirror or the like.
  • the laser diode 40 is used as the light emitting element, but this can be replaced with an LED, a VCSEL, a photodiode, or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

Provided is an optical element, such as a miniature lens or the like, wherein handling is easy and it is not necessary to detach a runner part or the like at the assembly work-site, with little impact on lens performance. The present invention includes: an element body 10 the outer dimensions of which are no more than 2.5mm; and a gate part 20 that extends out from a lateral surface of the element body 10, and that includes a handling part 21. The gate part 20 extends out from a lateral surface 12c of the support body 10 and includes the handling part 21 formed by being provided with a pair of lateral surfaces 21a, 21b and a different pair of lateral surfaces 21c, 21d which serve as pairs of support portions that extend in parallel. Because of this configuration, the handling part 21 can be utilized to convey an optical element 100, install the same in a target position, position the same, and the like, and handling becomes easier even with the miniature optical element 100. Further, because the handling part 21 is provided to the gate part 20 which becomes relatively small, the gate part 20 can be left as is, and the work of removing the runner part or the like at the assembly work-site becomes unnecessary.

Description

光学素子及び光源装置Optical element and light source device
 本発明は、発光や受光のような光学的動作を行うデバイス等とともに使用される光学素子及び当該光学素子を用いた光源装置に関する。 The present invention relates to an optical element used together with a device that performs an optical operation such as light emission or light reception, and a light source device using the optical element.
 従来、ピックアップレンズや撮像系レンズ等に組み込まれるレンズのような、組み込み等に際して単品で取り扱われる樹脂製のレンズについては、一般に成形後の二次加工で樹脂充填部分に当たるゲート部をカットしている(例えば特許文献1)。 Conventionally, for a resin lens that is handled as a single item, such as a lens incorporated in a pickup lens or an imaging lens, the gate portion that hits the resin-filled portion is generally cut by secondary processing after molding. (For example, patent document 1).
 レンズを組み込む際にゲート部がレンズ部外周よりも突起すると組み込み等の作業の弊害となるため、ゲート部を殆ど取り除くゲートカットを行うが、レンズが小型になるにつれ、従来どおりのゲートカットやハンドリングが困難となり、ゲートカット等によるレンズ性能や後工程への影響が課題となっていた。 When the lens is installed, if the gate part protrudes from the outer periphery of the lens part, it will be a detrimental effect for the work such as assembling, so gate cutting will be done to remove most of the gate part, but as the lens becomes smaller, conventional gate cutting and handling However, the lens performance due to gate cuts and the influence on the subsequent process have been problems.
 また、レンズが小型化するとレンズのみを切り離すことが困難なため、出荷前にレンズとランナー部とを一体としてカットを行うことも考えられる(特許文献2)。この場合、ピックアップレンズ等の組立現場でランナー部を切り離すことになり、この切り離しをする分だけ工数の増加が発生する。 Moreover, since it is difficult to separate only the lens when the lens is miniaturized, it is conceivable to cut the lens and the runner unit integrally before shipping (Patent Document 2). In this case, the runner portion is separated at the assembly site of the pickup lens or the like, and the man-hour is increased by the amount of the separation.
特開平10-246801号公報JP-A-10-246801 特開2003-161880号公報JP 2003-161880 A
 本発明は、上記背景技術に鑑みてなされたものであり、小型のレンズその他の光学素子であって、ハンドリングが容易であり、組立現場でランナー部等を切り離す必要がなくレンズ性能への影響が少ない光学素子及び当該光学素子を用いた光源装置を提供することを目的とする。 The present invention has been made in view of the above-described background art, and is a small lens or other optical element that is easy to handle and does not require separation of a runner portion or the like at the assembly site, and has an effect on lens performance. An object is to provide a small number of optical elements and a light source device using the optical elements.
 上記目的を達成するため、本発明に係る第1の樹脂製の光学素子は、外形寸法2.5mm以下の素子本体と、素子本体の側面から延びるとともに、一対の平行に延びる支持用の部分を設けてなるハンドリング部を含むゲート部とを備える。ここで、外形寸法とは、光軸方向から見た輪郭の直径や長辺を意味し、これが2.5mm以下の素子本体は、単品で扱うにはかなり小型であり、一般的には他の装置への組み付けや位置決めが困難になる。 In order to achieve the above object, an optical element made of a first resin according to the present invention includes an element body having an outer dimension of 2.5 mm or less, and a pair of supporting portions extending from the side surface of the element body and extending in parallel. And a gate part including a handling part provided. Here, the external dimension means the diameter or long side of the contour viewed from the optical axis direction, and the element body of 2.5 mm or less is considerably small to handle as a single item, Assembly and positioning on the device becomes difficult.
 上記光学素子では、素子本体の側面から延びるゲート部が一対の平行に延びる支持用の部分を設けてなるハンドリング部を含むので、このハンドリング部を利用して光学素子を搬送し、目標位置に載置、位置決め等することができ、外形寸法2.5mm以下の小型の光学素子であってもハンドリングが容易になる。また、比較的小さくなるゲート部にハンドリング部を設けているのでゲート部をそのまま残すことができ、組立現場でランナー部等を除去する作業が不要となって作業性を高め光学性能への影響を抑えやすくなる。また、フランジ側面を用いてハンドリングする場合には、光学素子を載置する際に、載置する場所に「光学素子の外形」+「アームの厚み」に対応する空間があることが必要となってしまうが、ハンドリング部をアームによって把持することができるため「ハンドリング部の幅」+「アームの厚み」の空間さえあれば、光学素子を問題なく載置することができる。加えて、樹脂の成形品から光学素子を取り出す際にゲート部を残すようにカットすることができるため、2.5mm以下という小型の光学素子にもかかわらず、光学面に近い位置でカットをせずに済み、カット時に光学面に与える影響(変形・歪等)を低減できる。更に良いことに、小型のレンズをゲート部を残さないようにカットしようとすると、光学面に与える影響や取扱い性のむずかしさという問題から、安定的にカットをすることが困難になるが、上記光学素子の場合には、ゲート部を残すようにカットすればよいため、安定的にカットを行うことができる。 In the optical element described above, the gate part extending from the side surface of the element body includes a handling part in which a pair of supporting parts extending in parallel is provided. Therefore, the optical element is transported using the handling part and mounted at the target position. Therefore, even a small optical element having an outer dimension of 2.5 mm or less can be handled easily. In addition, since the handling part is provided in the relatively small gate part, the gate part can be left as it is, and the work of removing the runner part etc. is not required at the assembly site, improving workability and affecting the optical performance. It becomes easy to suppress. Further, when handling using the flange side surface, it is necessary to have a space corresponding to “the outer shape of the optical element” + “the thickness of the arm” at the place where the optical element is placed. However, since the handling portion can be gripped by the arm, the optical element can be placed without any problem as long as there is a space of “width of the handling portion” + “thickness of the arm”. In addition, it can be cut so that the gate part is left when the optical element is taken out from the resin molded product, so that it is cut at a position close to the optical surface in spite of a small optical element of 2.5 mm or less. The effect (deformation, distortion, etc.) on the optical surface during cutting can be reduced. Even better, if you try to cut a small lens without leaving the gate, it will be difficult to cut stably due to the effects on the optical surface and the difficulty of handling. In the case of an optical element, it is only necessary to cut so as to leave the gate portion, so that the cutting can be performed stably.
 上記目的を達成するため、本発明に係る第2の樹脂製の光学素子は、樹脂製の光学素子であって、外形寸法2.5mm以下で光軸方向から見て矩形状の素子本体と、素子本体の側面から延びるゲート部とを備え、素子本体のうちフランジ側面が組み付けのために固定される。 To achieve the above object, the second resin-made optical element according to the present invention is a resin-made optical element having an outer dimension of 2.5 mm or less and a rectangular element body as viewed from the optical axis direction, A gate portion extending from a side surface of the element body, and a flange side surface of the element body is fixed for assembly.
 上記光学素子では、素子本体のうちフランジ側面が組み付けのために固定されるので、光学素子を横置きにした状態で適所に組み付けることができ、小型の光学素子であっても組み付けが容易になる。 In the above optical element, the flange side surface of the element body is fixed for assembly, so that the optical element can be assembled in a horizontal position, and even a small optical element can be easily assembled. .
 上記目的を達成するため、本発明に係る光源装置は、光学素子を用いた光通信用又はプロジェクター用の光源装置である。 In order to achieve the above object, the light source device according to the present invention is a light source device for optical communication or projector using an optical element.
図1Aは、本発明の第1実施形態に係る光学素子の概念的な斜視図であり、図1B及び1Cは、図1Aに示す光学素子の正面図及び側面図である。1A is a conceptual perspective view of an optical element according to a first embodiment of the present invention, and FIGS. 1B and 1C are a front view and a side view of the optical element shown in FIG. 1A. 光学素子の把持、搬送、設置等を説明する概念的な斜視図である。It is a conceptual perspective view explaining the holding | grip of an optical element, conveyance, installation, etc. 金型を利用した光学素子の作製方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the optical element using a metal mold | die. 図4A及び4Bは、図1A等に示す光学素子を基板に組み付ける工程及び組み付け後を説明する斜視図である。4A and 4B are perspective views for explaining the process of assembling the optical element shown in FIG. 図5A及び5Bは、光学素子の支持方法の変形例を説明する図である。5A and 5B are diagrams illustrating a modification of the method for supporting an optical element. 図6A及び6Bは、第2実施形態に係る光学素子の斜視図及び平面図である。6A and 6B are a perspective view and a plan view of an optical element according to the second embodiment. 図7A及び7Bは、第3実施形態に係る光学素子の正面図及び側面図である。7A and 7B are a front view and a side view of an optical element according to the third embodiment. 第4実施形態に係る光学素子の正面図である。It is a front view of the optical element which concerns on 4th Embodiment. 第5実施形態に係る光学素子の正面図である。It is a front view of the optical element which concerns on 5th Embodiment. 図9に示す光学素子の支持方法の一例を説明する図である。It is a figure explaining an example of the support method of the optical element shown in FIG. 図11Aは、図1A等に示す光学素子を組み込んだ光源装置を説明する概念図であり、図11Bは、図11Aの光源装置の一部を拡大した図である。11A is a conceptual diagram illustrating a light source device incorporating the optical element shown in FIG. 1A and the like, and FIG. 11B is an enlarged view of a part of the light source device of FIG. 11A.
 以下、図面を参照しつつ本発明に係る光学素子の具体的な実施形態について詳細に説明する。 Hereinafter, specific embodiments of the optical element according to the present invention will be described in detail with reference to the drawings.
 〔第1実施形態〕
 図1A~1Cに示すように、第1実施形態の光学素子100は、主たる素子本体10と、これに付随するゲート部20とを備える。光学素子100は、光通信用又はプロジェクター用の光源装置その他の光学系に組み込まれる部品であり、具体的には発散する光を平行化するコリメーターレンズ(又は発散する光を再度集光するカップリングレンズ)である。例えば、光学素子100がコリメーターである場合、プリズム、波長板等を挿入しても平行光であるため後述する光通信モジュール300内での光の引き回しに有利となっている。この光学素子100は、光透過性を有する樹脂製の成形品であり、金型を利用した射出成形によって形成される。つまり、素子本体10とゲート部20とは一体化されている。
[First Embodiment]
As shown in FIGS. 1A to 1C, the optical element 100 of the first embodiment includes a main element body 10 and a gate portion 20 associated therewith. The optical element 100 is a component incorporated in a light source device or other optical system for optical communication or projector, and specifically, a collimator lens that collimates the diverging light (or a cup that condenses the diverging light again). Ring lens). For example, when the optical element 100 is a collimator, even if a prism, a wave plate or the like is inserted, it is parallel light, which is advantageous for routing light in the optical communication module 300 described later. The optical element 100 is a resin-made molded product having optical transparency, and is formed by injection molding using a mold. That is, the element body 10 and the gate portion 20 are integrated.
 光学素子100のうち、素子本体10は、比較的肉厚であり、ブロック状の輪郭を有する。素子本体10は、円形のレンズ部11と枠状のフランジ部12とを有する。レンズ部11は、例えば両凸の光学レンズであり、第1光学面11aと第2光学面11bとを有する。第1光学面11aの外径は、第2光学面11bの外径よりも小さくなっている。本実施形態において、第1光学面11aは、光入射面であり、第2光学面11bは、光射出面となっている。フランジ部12は、レンズ部11から光軸AX方向に垂直な側方の外側に延在しており、光軸AX方向から見て内側で円形であり外側でロの字状の矩形(具体的には正方形)となっている。つまり、素子本体10は、光軸AX方向から見て矩形状の輪郭を有する。素子本体10の輪郭を矩形状とすることで、光軸AXのまわりの回転等に関して取り付けや組み付けが安定する。フランジ部12は、レンズ部11の光学面11a,11bを囲んで平行に延びる2つのフランジ面12a,12bと、両フランジ面12a,12b間に延在する平坦で矩形の4つのフランジ側面12c~12fとを有する。フランジ側面12c~12fは、例えば鏡面とすることができるが、巨視的な平坦性を損なわない程度であれば微視的に粗面化することもできる。4つのフランジ側面12c~12fのうち、反ゲート側のフランジ側面12eは、光学素子100を他の部材の組付受部に対して接着によって固定等するための部分、すなわち組み付け用の部分となっている。光学素子100が素子本体10のうちフランジ側面(本実施形態ではフランジ側面12e)で組み付けのために固定されることにより、光学素子100を横置きにした状態で適所に組み付けることができる。これにより、小型の光学素子100であっても組み付けが容易になる。特に、光学素子100を反ゲート側のフランジ側面12eで組み付けることにより、ハンドリング部21で素子本体10を吊るすように搬送して例えば接着剤を塗布した規定位置に配置するだけで、簡易で正確な設置や固定が可能になる。また、光学素子100がフランジ側面12c~12fのうち一箇所で固定されることにより、支持板である基板70(図4B参照)に載置するような固定が可能になる。 Among the optical elements 100, the element body 10 is relatively thick and has a block-like contour. The element body 10 includes a circular lens portion 11 and a frame-shaped flange portion 12. The lens unit 11 is a biconvex optical lens, for example, and has a first optical surface 11a and a second optical surface 11b. The outer diameter of the first optical surface 11a is smaller than the outer diameter of the second optical surface 11b. In the present embodiment, the first optical surface 11a is a light incident surface, and the second optical surface 11b is a light exit surface. The flange portion 12 extends from the lens portion 11 to the outside of the side perpendicular to the optical axis AX direction. The flange portion 12 has a circular shape on the inner side and a rectangular shape on the outer side (specifically, when viewed from the optical axis AX direction). Is a square). That is, the element body 10 has a rectangular outline when viewed from the optical axis AX direction. By making the outline of the element body 10 rectangular, the attachment and assembly are stabilized with respect to rotation around the optical axis AX. The flange portion 12 includes two flange surfaces 12a and 12b extending in parallel to surround the optical surfaces 11a and 11b of the lens portion 11, and four flat and rectangular flange side surfaces 12c to 12b extending between the flange surfaces 12a and 12b. 12f. The flange side surfaces 12c to 12f can be, for example, mirror surfaces, but can be roughened microscopically as long as the macroscopic flatness is not impaired. Of the four flange side faces 12c to 12f, the flange side face 12e on the non-gate side is a part for fixing the optical element 100 to an assembly receiving part of another member by adhesion, that is, a part for assembly. ing. Since the optical element 100 is fixed for assembly at the flange side surface (flange side surface 12e in the present embodiment) of the element body 10, the optical element 100 can be assembled at an appropriate position in a horizontal state. Thereby, even the small optical element 100 can be easily assembled. In particular, by assembling the optical element 100 with the flange side surface 12e on the side opposite to the gate, the handling body 21 is conveyed so as to be hung and placed at a prescribed position where, for example, an adhesive is applied. Installation and fixing become possible. Further, by fixing the optical element 100 at one of the flange side surfaces 12c to 12f, it is possible to fix the optical element 100 so as to be placed on the substrate 70 (see FIG. 4B) as a support plate.
 ゲート部20は、ブロック状の輪郭を有し、光軸AX方向から見た素子本体10の輪郭の一辺(すなわち素子本体10の1つのフランジ側面12c)の中央であって、1つのフランジ側面12cの側壁部分のうちフランジ面12b寄りの領域から突起している。ゲート部20の端部20aは、成形直後に存在したゲート又はランナーから切り離されたものである。ゲート部20は、全体がハンドリング部21として機能しており、光学素子100を搬送、載置等する取扱い時に、ピンセットその他の保持具、ロボットハンド等の取扱い器具90によって把持される(図2参照)。 The gate portion 20 has a block-like outline, and is the center of one side of the outline of the element body 10 as viewed from the optical axis AX direction (that is, one flange side face 12c of the element body 10), and one flange side face 12c. It protrudes from the area | region near the flange surface 12b among the side wall parts. The edge part 20a of the gate part 20 is cut | disconnected from the gate or runner which existed immediately after shaping | molding. The gate section 20 functions as a handling section 21 as a whole, and is gripped by a handling tool 90 such as tweezers or other holders or a robot hand when handling the optical element 100 for transporting or placing it (see FIG. 2). ).
 なお、ゲート部20をあえて残すことで、従来の手法で形成されるカット部が光学面11a,11bへ入り込むことを防止でき、或いは、かかるカット部からの変形、歪等の影響が光学面まで及んで性能を劣化させる要因となることを防止できる。その一方で、光学面11a,11bの有効径を素子本体10の外形近くまで広げることが可能となるので、結果的に光学素子100のさらなる小型化が可能となり、かつ光学系の適用範囲が広がる。また、レンズ部11が小型になると、ゲート部20のカット自体が困難となって安定的なカットができなくなるが、ゲート部20を大きく残せばゲートカット自体の難易度が低減し、工数削減につながる。光学素子100の搬送等のハンドリングを考慮した場合、レンズ部11が小型になると、仮にゲート部20をカットするとフランジ部12を保持してハンドリングする必要があるが、このようなハンドリングの際に、光学面に傷や歪を発生させる懸念がある。他方、上記のようにゲート部20を残し搬送等に際してこれを把持すれば、このような問題は生じない。このように、ゲート部20を利用してハンドリングすることで、接着時の位置微調整が可能となる。なお、フランジ面12a,12bを吸着して搬送する従来方式では、光学面11a,11bを避けた状態で吸引を行う必要があり、その際に位置ずれ等に起因して光学面11a,11bを傷つける可能性がある。 In addition, by leaving the gate part 20 intentionally, it is possible to prevent the cut part formed by the conventional technique from entering the optical surfaces 11a and 11b, or the influence of the deformation, distortion, etc. from the cut part up to the optical surface. It is possible to prevent the performance from deteriorating. On the other hand, since the effective diameters of the optical surfaces 11a and 11b can be expanded to near the outer shape of the element body 10, the optical element 100 can be further reduced in size, and the applicable range of the optical system is expanded. . Further, when the lens unit 11 becomes small, it becomes difficult to cut the gate portion 20 itself, and stable cutting cannot be performed. However, if the gate portion 20 is left large, the difficulty level of the gate cut itself is reduced, and man-hours are reduced. Connected. In consideration of handling such as transport of the optical element 100, if the lens unit 11 becomes small, if the gate unit 20 is cut, it is necessary to hold and handle the flange unit 12, but in such handling, There is a concern of causing scratches and distortion on the optical surface. On the other hand, such a problem does not occur if the gate part 20 is left and gripped during transportation or the like as described above. Thus, by using the gate portion 20 for handling, fine adjustment of the position at the time of bonding becomes possible. In the conventional method in which the flange surfaces 12a and 12b are attracted and transported, it is necessary to perform suction while avoiding the optical surfaces 11a and 11b. At this time, the optical surfaces 11a and 11b are caused to be displaced due to misalignment or the like. May hurt.
 ゲート部20、すなわちハンドリング部21は、ゲート部20が延びる軸のまわりに4つの矩形の側面21a~21dを有する。これらのうち、一対の側面21a,21bは、互いに平行で対向し、別の一対の側面21c,21dも、互いに平行で対向する。また、側面21a,21bと側面21c,21dとは、互いに直交する。ここで、一対の側面21a,21bは、挟んで保持するのに適した支持用の部分として機能する。ハンドリング部21がこれらの側面21a~21dを有することにより、取扱い器具90(図2参照)による把持が安定し、光学素子100の搬送、設置に関して取扱いの信頼性が高まる。なお、図2に示す例では、前後の側面21a,21bを一対の保持部材91で挟む場合を例示したが、横の側面21c,21dを支持用の部分として保持部材91で挟むようにしてもよい。前後の側面21a,21bを一対の保持部材91で挟むことによって光学素子100を把持する場合、横の側面21c,21dを互いに平行とする必要はない。また、横の側面21c,21dを一対の保持部材91で挟むことによって光学素子100を把持する場合、前後の側面21a,21bを互いに平行とする必要はない。 The gate unit 20, that is, the handling unit 21, has four rectangular side surfaces 21a to 21d around an axis along which the gate unit 20 extends. Among these, the pair of side surfaces 21a and 21b face each other in parallel, and the other pair of side surfaces 21c and 21d also face each other in parallel. The side surfaces 21a and 21b and the side surfaces 21c and 21d are orthogonal to each other. Here, the pair of side surfaces 21a and 21b function as supporting portions suitable for holding between the pair of side surfaces 21a and 21b. Since the handling unit 21 has these side surfaces 21a to 21d, the gripping by the handling instrument 90 (see FIG. 2) is stabilized, and the handling reliability of the transport and installation of the optical element 100 is increased. In the example illustrated in FIG. 2, the front and rear side surfaces 21 a and 21 b are illustrated as being sandwiched between the pair of holding members 91, but the lateral side surfaces 21 c and 21 d may be sandwiched between the holding members 91 as support portions. When the optical element 100 is gripped by sandwiching the front and rear side surfaces 21a and 21b between the pair of holding members 91, the side surfaces 21c and 21d do not need to be parallel to each other. When the optical element 100 is gripped by sandwiching the side surfaces 21c and 21d between the pair of holding members 91, the front and back side surfaces 21a and 21b do not need to be parallel to each other.
 本実施形態の場合、例えば素子本体10に設けた4つのフランジ側面12c~12fのうち、1つのフランジ側面12eのみを利用して、光学素子100を他の部材に接着することができる。つまり、四角柱状の輪郭を有するフランジ部12の1つのフランジ側面12eは、比較的精密に形成可能であり、このフランジ側面12eを利用すれば、素子本体10を他の部材に対して精密に組み付けることができる。なお、フランジ面12a,12bを吸着して位置決めする従来方式では、光学素子100を横向きにして立てる際に、専用の治具が必要になるだけでなく、固定される側面から接着剤がはみ出して治具につくおそれもある。 In the case of the present embodiment, for example, the optical element 100 can be bonded to another member using only one flange side face 12e among the four flange side faces 12c to 12f provided on the element body 10. That is, one flange side surface 12e of the flange portion 12 having a quadrangular prism-like contour can be formed relatively accurately. If this flange side surface 12e is used, the element body 10 is assembled with another member precisely. be able to. In the conventional method in which the flange surfaces 12a and 12b are attracted and positioned, when the optical element 100 is stood sideways, not only a dedicated jig is required, but also the adhesive protrudes from the fixed side surface. There is also a risk of sticking to the jig.
 以下、図1Bを参照して、光学素子100の特徴的な寸法関係について説明する。成形に際しての樹脂の射出方向ABに関する素子本体10の長さをaとした場合、素子本体10とゲート部20とが並ぶ射出方向ABに関するゲート部20の長さbは、
 a/8<b<a
の関係を満たす。なお、本実施形態の素子本体10は光軸AX方向から見て正方形の輪郭を有し、長さaは、各辺の長さと一致しており、外形寸法に相当するものとなっている。外形寸法に対応する長さaが2.5mm以下であることを前提として、ゲート部20の長さbをa/8より大きくすることにより、ハンドリング部21を把持する作業が容易になる。一方、ゲート部20の長さbを素子本体10の長さaより小さくすることにより、組立現場でゲート部20をカットする必要が確実になくなる。また、光学素子100の背が低くなりゲート部20又はゲート部20に近い位置に重心が来ることを抑制でき、姿勢の安定性が図れる。そのため、目標箇所に載置した後における支持を安定化させやすく、さらに、搬送する際に素子本体10が傾くことを防止でき、保管や搬送用のトレーに収容しやすく取り出しも容易になる。
Hereinafter, a characteristic dimensional relationship of the optical element 100 will be described with reference to FIG. 1B. When the length of the element body 10 with respect to the injection direction AB of the resin at the time of molding is a, the length b of the gate part 20 with respect to the injection direction AB in which the element body 10 and the gate part 20 are arranged is:
a / 8 <b <a
Satisfy the relationship. Note that the element body 10 of the present embodiment has a square outline when viewed from the direction of the optical axis AX, and the length a matches the length of each side and corresponds to the external dimensions. On the premise that the length a corresponding to the outer dimension is 2.5 mm or less, the operation of gripping the handling portion 21 is facilitated by making the length b of the gate portion 20 larger than a / 8. On the other hand, by making the length b of the gate portion 20 smaller than the length a of the element body 10, it is possible to reliably eliminate the need to cut the gate portion 20 at the assembly site. Further, it is possible to suppress the height of the optical element 100 from being lowered and the center of gravity to come to a position close to the gate portion 20 or the gate portion 20, and the stability of the posture can be achieved. Therefore, it is easy to stabilize the support after being placed at the target location, and further, it is possible to prevent the element body 10 from being tilted during transportation, and it is easy to store in the tray for storage and transportation, and it is easy to take out.
 また、レンズ部11のゲート部20側の端からフランジ部12のゲート部20側の端までの距離cは、0.05mm以上0.3mm以下となっている。ここで、レンズ部11のゲート部20側とは、第1光学面11aよりも大きな外径を有する第2光学面11bを基準とする。上記距離cは、ゲート部20側のフランジ幅(具体的には、第2光学面11bの外径と、フランジ部12及びゲート部20間の境界BLとの間隔)に相当するものであり、ゲート部20に外力が加わった場合にも素子本体10に影響が及ばないようにする役割を有し、上記のように0.05mm以上であることが望ましい。つまり、距離cを0.05mm以上とすることにより、フランジ部12によるレンズ部11の保護が確実になる。一方で、距離cが大きくなることはフランジ幅が広がることを意味し、素子本体10の大型化を阻止する観点で、上記のように0.3mm以下であることが望ましい。つまり、距離cを0.3mm以下とすることにより、素子本体10の小型化の要請に対応できる。なお、一般に素子本体10の中央にレンズ部11が配置されるので、レンズ部11の直径をdとすると、c=(a-d)/2なる関係が成り立つ。 The distance c from the end of the lens unit 11 on the gate unit 20 side to the end of the flange unit 12 on the gate unit 20 side is 0.05 mm or more and 0.3 mm or less. Here, the gate unit 20 side of the lens unit 11 is based on the second optical surface 11b having a larger outer diameter than the first optical surface 11a. The distance c corresponds to the flange width on the gate part 20 side (specifically, the distance between the outer diameter of the second optical surface 11b and the boundary BL between the flange part 12 and the gate part 20), Even when an external force is applied to the gate portion 20, it has a role to prevent the element body 10 from being affected, and is preferably 0.05 mm or more as described above. That is, when the distance c is set to 0.05 mm or more, the protection of the lens unit 11 by the flange unit 12 is ensured. On the other hand, an increase in the distance c means that the flange width is widened. From the viewpoint of preventing the element body 10 from being enlarged, it is desirable that the distance c is 0.3 mm or less as described above. That is, by making the distance c 0.3 mm or less, it is possible to meet the demand for downsizing the element body 10. In general, since the lens unit 11 is disposed at the center of the element body 10, the relationship c = (ad) / 2 is established when the diameter of the lens unit 11 is d.
 フランジ部12の光軸AX方向の厚みについては、光学的設計に依存する側面もあるが、その厚みeが
 a/3<e<a
なる関係を満たすことが望ましい。
The thickness of the flange portion 12 in the optical axis AX direction has a side surface that depends on the optical design, but the thickness e is a / 3 <e <a.
It is desirable to satisfy this relationship.
 さらに、ゲート部20の幅や厚みは主に成形条件に依存して定まるものであるが、具体的な作製例の場合、ゲート部20の幅は(a/8)~1mmで、深さ又は厚みは(a/3)~aである。 Furthermore, the width and thickness of the gate portion 20 are determined mainly depending on molding conditions. In the case of a specific manufacturing example, the width of the gate portion 20 is (a / 8) to 1 mm, and the depth or The thickness is (a / 3) to a.
 図3を参照して、光学素子100の作製について説明する。光学素子100は、金型80を利用した射出成形によって作製される。金型80は、第1型部分81と第2型部分82とを備える。図示のように型閉じした状態の型部分81,82間には、成形空間CAとゲートGAとランナーRUとが形成される。成形に際して、溶融した樹脂は、ランナーRU側から供給され、ゲートGAを経て成形空間CAに注入される。成形空間CAは、一対の光学面11a,11bに対応する一対の転写面81a,82a間に挟まれており、素子本体10が形成される部分となっている。ゲートGAは、素子本体10から延びるゲート部分GP又はゲート部20が形成される空間となっている。ランナーRUは、ゲート部分GPに繋がるランナー部分RPが形成される空間となっている。型部分81,82を互いに離間させる型開き後に取り出される成形品MPは、上記した素子本体10、ゲート部分GP、ランナー部分RP等からなる。成形品MPは、ゲート部分GPとランナー部分RPとの境界付近で切り離され、光学的機能を有する素子本体10と、ゲート部分GPの素子本体10側の主要部であるゲート部20とからなる光学素子100が得られる。光学素子100において、ゲート部20のうち切断部C1に近い領域A1には、離型、切断等によって歪みが残っているが、素子本体10に影響を及ぼすものとなっていない。 The production of the optical element 100 will be described with reference to FIG. The optical element 100 is manufactured by injection molding using a mold 80. The mold 80 includes a first mold part 81 and a second mold part 82. A molding space CA, a gate GA, and a runner RU are formed between the mold parts 81 and 82 in a state where the mold is closed as illustrated. In molding, the molten resin is supplied from the runner RU side and injected into the molding space CA through the gate GA. The molding space CA is sandwiched between a pair of transfer surfaces 81a and 82a corresponding to the pair of optical surfaces 11a and 11b, and is a portion where the element body 10 is formed. The gate GA is a space in which the gate portion GP or the gate portion 20 extending from the element body 10 is formed. The runner RU is a space in which a runner portion RP connected to the gate portion GP is formed. The molded product MP taken out after the mold opening for separating the mold parts 81 and 82 from each other includes the element body 10, the gate part GP, the runner part RP, and the like. The molded product MP is cut off near the boundary between the gate portion GP and the runner portion RP, and includes an element body 10 having an optical function and a gate portion 20 that is a main portion of the gate portion GP on the element body 10 side. Element 100 is obtained. In the optical element 100, distortion remains in the region A1 of the gate portion 20 near the cutting portion C1 due to release, cutting, or the like, but does not affect the element body 10.
 図4A及び4Bを参照して、光学素子100の組み付けについて説明する。図4Aに示す状態では、基板70上には既に2つの光学素子100が固定されている。ここでは、3つ目の光学素子100の固定について説明する。なお、基板70の奥側には、3つのレーザーダイオード(図11B参照)が3つの光学素子100の配列に対応して取り付けられている。 The assembly of the optical element 100 will be described with reference to FIGS. 4A and 4B. In the state shown in FIG. 4A, two optical elements 100 are already fixed on the substrate 70. Here, fixing of the third optical element 100 will be described. Note that three laser diodes (see FIG. 11B) are attached to the back side of the substrate 70 corresponding to the arrangement of the three optical elements 100.
 図4Aに示すように、基板70上の目標領域A3の適所にUV硬化樹脂UAを予め塗布しておく。その後、図2に示す取扱い器具90を利用してゲート部20を把持することによって、光学素子100を収納用のトレー等から搬出するとともに基板70上方まで搬送し、光学素子100を基板70の平坦面70a上に設定した目標領域A3上に略正確に載置する。次に、図4Bに示すように、取扱い器具90の保持部材91を利用してゲート部20を緩く保持しつつ基板70上で光学素子100を2次元的に微動させることによって、不図示のレーザーダイオードに対してアライメントを行う。この際、光学素子100を水平なCD方向やEF方向に並進移動させるだけでなく、CD方向及びEF方向に垂直な鉛直軸のまわりに回転させることもできる。また、アライメントに際しては、レーザーダイオードを発光させて光学素子100を通過する光線の状態を確認することもできる。アライメントが完了した段階で、取扱い器具90の保持部材91をゲート部20から完全に離し、UV光を光学素子100越しにUV硬化樹脂UAに照射することでUV硬化樹脂UAを硬化させる。これにより、光学素子100のフランジ側面12eと基板70上の平坦面70aとが密着するように近接して固定される。以上のように、ハンドリング部21を利用して光学素子100を配列させることにより、複数の光学素子100を並列的に組み合わせる作業が容易となり、小型ながら高精度の光学素子100のアレイを作製できる。 As shown in FIG. 4A, a UV curable resin UA is applied in advance to an appropriate position in the target area A3 on the substrate 70. Thereafter, the handling device 90 shown in FIG. 2 is used to hold the gate portion 20, so that the optical element 100 is unloaded from the storage tray or the like and is transported to above the substrate 70. It is placed almost accurately on the target area A3 set on the surface 70a. Next, as shown in FIG. 4B, the optical element 100 is finely moved two-dimensionally on the substrate 70 while loosely holding the gate portion 20 by using the holding member 91 of the handling instrument 90, thereby making a laser (not shown). Align the diode. At this time, the optical element 100 can be rotated not only in the horizontal CD direction and in the EF direction but also around a vertical axis perpendicular to the CD direction and the EF direction. Further, at the time of alignment, the state of the light beam that passes through the optical element 100 can be confirmed by causing the laser diode to emit light. When the alignment is completed, the holding member 91 of the handling instrument 90 is completely separated from the gate portion 20, and the UV curable resin UA is cured by irradiating the UV curable resin UA with UV light through the optical element 100. Accordingly, the flange side surface 12e of the optical element 100 and the flat surface 70a on the substrate 70 are fixed in close proximity so as to be in close contact with each other. As described above, by arranging the optical elements 100 using the handling unit 21, it becomes easy to combine a plurality of optical elements 100 in parallel, and an array of high-precision optical elements 100 can be manufactured while being small.
 以上の工程は、各光学素子100の取り付けに際して同様に行われ、図4Bに示すような光学ユニット200を得ることができる。光学ユニット200は、複数の光学素子100を省スペースで配置したレンズアレイであり、各光学素子100にゲート部20を設けることで光学素子100自体を特に横幅に関して小さくできるだけでなく、光学素子100の配置密度やアライメント精度を高めて光学ユニット200の小型化を実現することができる。ただし、ゲート部20の分だけ高さ方向の寸法が増加するが、光通信用又はプロジェクター用の光源装置では、配列方向に直交する高さ寸法が若干増加しても問題が生じない場合が多い。 The above steps are performed in the same manner when each optical element 100 is attached, and an optical unit 200 as shown in FIG. 4B can be obtained. The optical unit 200 is a lens array in which a plurality of optical elements 100 are arranged in a space-saving manner. Not only can the optical element 100 itself be reduced particularly in terms of lateral width by providing the gate portion 20 in each optical element 100, The size of the optical unit 200 can be reduced by increasing the arrangement density and alignment accuracy. However, although the dimension in the height direction is increased by the amount of the gate portion 20, in the light source device for optical communication or projector, there is often no problem even if the height dimension orthogonal to the arrangement direction is slightly increased. .
 図5Aを参照して、光学素子100の別の固定方法を説明する。この場合、光学素子100に設けた4つのフランジ側面12c~12fのうち、ゲート部20のあるフランジ側面12cに隣接するフランジ側面12dを利用して、光学素子100を他の設置部材170の組付受部となっている取付面73aに接着している。 With reference to FIG. 5A, another fixing method of the optical element 100 will be described. In this case, of the four flange side surfaces 12c to 12f provided on the optical element 100, the optical element 100 is assembled to the other installation member 170 using the flange side surface 12d adjacent to the flange side surface 12c with the gate portion 20. It adheres to the mounting surface 73a which is a receiving part.
 図5Bに示す場合、光学素子100に設けた4つのフランジ側面12c~12fのうち、反ゲート側のフランジ側面12eと、これに隣接するフランジ側面12fとを利用して、光学素子100を他の設置部材170の組付受部となっている一組の取付面73b,73cに接着している。 In the case shown in FIG. 5B, among the four flange side surfaces 12c to 12f provided on the optical element 100, the optical element 100 is made to another type by utilizing the flange side surface 12e opposite to the gate and the flange side surface 12f adjacent thereto. It is bonded to a set of mounting surfaces 73b and 73c which are the assembly receiving portions of the installation member 170.
 以下、光学素子100を用いた光通信モジュール300について説明する。図11A及び11Bに示すように、光通信モジュール300は、光通信用の光源装置であり、基板70の平坦面70a上に発光素子である複数のレーザーダイオード40と、複数の光学素子100と、ハウジング50とを有する。図11Bでは、3つの光学素子100が並列に並んだ例(すなわち図4Bに示す光学ユニット200)を挙げている。ハウジング50は、レーザーダイオード40及び光学素子100を覆うように設けられている。ハウジング50には、その一側面から突出したファイバー固定部60が形成されている。ファイバー固定部60には、光ファイバー61が挿入された状態で固定されている。 Hereinafter, the optical communication module 300 using the optical element 100 will be described. As shown in FIGS. 11A and 11B, the optical communication module 300 is a light source device for optical communication, and a plurality of laser diodes 40 that are light emitting elements on a flat surface 70a of a substrate 70, a plurality of optical elements 100, And a housing 50. FIG. 11B shows an example in which three optical elements 100 are arranged in parallel (that is, the optical unit 200 shown in FIG. 4B). The housing 50 is provided so as to cover the laser diode 40 and the optical element 100. The housing 50 is formed with a fiber fixing portion 60 protruding from one side surface thereof. An optical fiber 61 is inserted and fixed to the fiber fixing portion 60.
 レーザーダイオード40は、正面中央に光射出部又は発光点41を有している。この発光点41からレーザー光が出力される。光学素子100は、その光軸AXが基板70を基準としてレーザーダイオード40の発光点41と同じ高さになるように配置される。レーザーダイオード40の発光点41から出射されたレーザー光は発散光であり、レーザー光が光学素子100のレンズ部11に入射し、わずかな収束光となって出射される。出射された光は、光ファイバー61の端面に結合される。なお、光学素子100によってレーザー光を平行化してもよい。この場合、光ファイバー61の前に追加のレンズが必要になる。 The laser diode 40 has a light emitting portion or a light emitting point 41 in the front center. Laser light is output from the light emitting point 41. The optical element 100 is arranged such that its optical axis AX is at the same height as the light emitting point 41 of the laser diode 40 with respect to the substrate 70. The laser light emitted from the light emitting point 41 of the laser diode 40 is divergent light, and the laser light enters the lens unit 11 of the optical element 100 and is emitted as a slight convergent light. The emitted light is coupled to the end face of the optical fiber 61. The laser light may be collimated by the optical element 100. In this case, an additional lens is required before the optical fiber 61.
 本実施形態の光学素子100によれば、素子本体10のフランジ側面12cから延びるゲート部20が、一対の平行に延びる支持用の部分として一対の側面21a,21b又は別の一対の側面21c,21dを設けてなるハンドリング部21を含むので、ハンドリング部21を利用して光学素子100を搬送し、目標位置に載置、位置決め等することができ、小型の光学素子100であってもハンドリングが容易になる。また、比較的小さくなるゲート部20にハンドリング部21を設けているのでゲート部20をそのまま残すことができ、組立現場でランナー部等を除去する作業が不要となって作業性を高め光学性能への影響を抑えやすくなる。 According to the optical element 100 of the present embodiment, the gate portion 20 extending from the flange side surface 12c of the element body 10 has a pair of side surfaces 21a and 21b or another pair of side surfaces 21c and 21d as a pair of supporting portions extending in parallel. Therefore, the handling unit 21 can be used to transport the optical element 100 to be placed and positioned at a target position, and even a small optical element 100 can be handled easily. become. In addition, since the handling portion 21 is provided in the relatively small gate portion 20, the gate portion 20 can be left as it is, and the work of removing the runner portion and the like at the assembly site becomes unnecessary, thereby improving the workability and improving the optical performance. It becomes easy to suppress the influence of.
 また、例えば半導体レーザー等を光源として装置に組み込む場合、小型の光源に付随させる小型のコリメーターが必要となる場合がある。素子本体10は、コリメーターレンズとして機能しており、小型で位置決めの容易な光学素子100によって取扱いの便宜を図ることができる。 Also, for example, when a semiconductor laser or the like is incorporated in the apparatus as a light source, a small collimator associated with a small light source may be required. The element body 10 functions as a collimator lens, and can be conveniently handled by the optical element 100 that is small and easy to position.
 〔第2実施形態〕
 以下、第2実施形態の光学素子について説明する。第2実施形態の光学素子は、第1実施形態の光学素子を部分的に変更したものであり、特に説明しない部分は、第1実施形態の光学素子と同様である。
[Second Embodiment]
Hereinafter, the optical element of the second embodiment will be described. The optical element according to the second embodiment is obtained by partially changing the optical element according to the first embodiment, and the parts that are not particularly described are the same as those of the optical element according to the first embodiment.
 図6A及び6Bに示すように、第2実施形態の光学素子100の場合、ゲート部20は、台形的な形状を有しており、光軸AXに垂直な面として正面の側面21aのみを有し、側面21aに対向する側面21bは、側面21aに対して僅かに傾斜している。また、これらに挟まれた側面21c,21dは、正面の側面21aに対して鋭角をなし、互いに傾いて裏面に向けて間隔が狭まっている。このようなゲート部20において、正面の側面21aのうち、射出方向ABに直交する方向の両端に形成された一対のエッジ部21i、21jは、射出方向ABに延び互いに平行となっている。これらのエッジ部21i、21jは、ハンドリング部21の主要部として、取扱い器具90による把持を可能にする。つまり、図6Bに示すように、取扱い器具90のL字状の断面形状を有する一対の保持部材91,91によってエッジ部21i、21jを挟むことで、ゲート部20の把持が可能になり、光学素子100の搬送、載置、位置決め等が可能になる。 As shown in FIGS. 6A and 6B, in the optical element 100 of the second embodiment, the gate portion 20 has a trapezoidal shape, and has only the front side surface 21a as a surface perpendicular to the optical axis AX. The side surface 21b facing the side surface 21a is slightly inclined with respect to the side surface 21a. Further, the side surfaces 21c and 21d sandwiched between them form an acute angle with respect to the front side surface 21a, and are inclined toward each other to be narrowed toward the back surface. In such a gate part 20, a pair of edge parts 21i and 21j formed at both ends of the front side surface 21a in the direction orthogonal to the injection direction AB extend in the injection direction AB and are parallel to each other. These edge portions 21 i and 21 j can be gripped by the handling instrument 90 as a main portion of the handling portion 21. That is, as shown in FIG. 6B, the gate portion 20 can be gripped by sandwiching the edge portions 21 i and 21 j between the pair of holding members 91 and 91 having an L-shaped cross section of the handling instrument 90, and optical The element 100 can be transported, placed, positioned, and the like.
 〔第3実施形態〕
 以下、第3実施形態の光学素子について説明する。第3実施形態の光学素子は、第1実施形態の光学素子を部分的に変更したものであり、特に説明しない部分は、第1実施形態の光学素子と同様である。
[Third Embodiment]
The optical element according to the third embodiment will be described below. The optical element according to the third embodiment is obtained by partially changing the optical element according to the first embodiment, and the parts that are not particularly described are the same as those according to the first embodiment.
 図7A及び7Bに示すように、第3実施形態の光学素子100の場合、ゲート部20は、ハンドリング部21と基部22とを備える。先端側のハンドリング部21は、基部22を介してゲート部20に連結され、射出方向ABから見た断面積が基部22よりも小さくなっている。このように、ハンドリング部21は、ゲート部20の全体に亘って形成されたものである必要はなく、取扱い器具90による把持に必要な箇所だけに形成することができる。 7A and 7B, in the case of the optical element 100 according to the third embodiment, the gate unit 20 includes a handling unit 21 and a base unit 22. The handling part 21 on the distal end side is connected to the gate part 20 via the base part 22 and has a smaller cross-sectional area than the base part 22 as viewed from the injection direction AB. Thus, the handling part 21 does not need to be formed over the entire gate part 20, and can be formed only at a place necessary for gripping by the handling instrument 90.
 第3実施形態の光学素子100において、ハンドリング部21の形状については、四角柱状で矩形の側面21a~21dを有するものに限らず、図6A及び6Bに示すものと同様に一対の平行に延びるエッジ部21i、21jを含む先細りの形状であってもよい。 In the optical element 100 according to the third embodiment, the shape of the handling portion 21 is not limited to the rectangular column shape and the rectangular side surfaces 21a to 21d, but a pair of parallel extending edges similar to those shown in FIGS. 6A and 6B. It may be a tapered shape including the portions 21i and 21j.
 〔第4実施形態〕
 以下、第4実施形態の光学素子について説明する。第4実施形態の光学素子は、第1実施形態の光学素子を部分的に変更したものであり、特に説明しない部分は、第1実施形態の光学素子と同様である。
[Fourth Embodiment]
The optical element according to the fourth embodiment will be described below. The optical element of the fourth embodiment is a partial modification of the optical element of the first embodiment, and the parts that are not particularly described are the same as those of the optical element of the first embodiment.
 図8に示すように、第4実施形態の光学素子100の場合、素子本体10が直方体ブロック状の外形を有し、光軸AX方向から見て長方形の輪郭を有する。つまり、フランジ部12は、光軸AX方向から見て長方形の輪郭を有する。ただし、ゲート部20やハンドリング部21の形状は、第1実施形態と同様となっている。 As shown in FIG. 8, in the case of the optical element 100 of the fourth embodiment, the element body 10 has a rectangular parallelepiped block-like outer shape, and has a rectangular outline when viewed from the optical axis AX direction. That is, the flange portion 12 has a rectangular outline when viewed from the optical axis AX direction. However, the shapes of the gate unit 20 and the handling unit 21 are the same as those in the first embodiment.
 本実施形態の光学素子100においても、成形に際しての樹脂の射出方向ABに関する素子本体10の長さをaとした場合、素子本体10とゲート部20とが並ぶ射出方向ABに関するゲート部20の長さbは、
 a/8<b<a
の関係を満たす。また、レンズ部11のゲート部20側の端からフランジ部12のゲート部20側の端までの距離cは、0.05mm以上0.3mm以下となっている。
Also in the optical element 100 of the present embodiment, when the length of the element main body 10 with respect to the resin injection direction AB at the time of molding is a, the length of the gate section 20 with respect to the injection direction AB in which the element main body 10 and the gate section 20 are aligned. B
a / 8 <b <a
Satisfy the relationship. The distance c from the end of the lens unit 11 on the gate unit 20 side to the end of the flange unit 12 on the gate unit 20 side is 0.05 mm or more and 0.3 mm or less.
 〔第5実施形態〕
 以下、第5実施形態の光学素子について説明する。第5実施形態の光学素子は、第1実施形態の光学素子を部分的に変更したものであり、特に説明しない部分は、第1実施形態の光学素子と同様である。
[Fifth Embodiment]
The optical element according to the fifth embodiment will be described below. The optical element according to the fifth embodiment is obtained by partially changing the optical element according to the first embodiment, and parts not specifically described are the same as those according to the first embodiment.
 図9に示すように、第4実施形態の光学素子100の場合、素子本体10が円柱状の外形を有し、光軸AX方向から見て円形の輪郭を有する。つまり、フランジ部12も、光軸AX方向から見て円形の輪郭を有し、フランジ側面112eは、光軸AX方向に延びる円筒面となっている。ただし、ゲート部20やハンドリング部21の形状は、第1実施形態と同様となっている。素子本体10が円形の輪郭を有することにより、光学素子100を省スペースで目標位置に固定することができる。 As shown in FIG. 9, in the case of the optical element 100 of the fourth embodiment, the element body 10 has a cylindrical outer shape, and has a circular contour when viewed from the optical axis AX direction. That is, the flange portion 12 also has a circular outline when viewed from the optical axis AX direction, and the flange side surface 112e is a cylindrical surface extending in the optical axis AX direction. However, the shapes of the gate unit 20 and the handling unit 21 are the same as those in the first embodiment. Since the element body 10 has a circular outline, the optical element 100 can be fixed at a target position in a space-saving manner.
 本実施形態の光学素子100においても、成形に際しての樹脂の射出方向ABに関する素子本体10の長さをaとした場合、素子本体10とゲート部20とが並ぶ射出方向ABに関するゲート部20の長さbは、
 a/8<b<a
の関係を満たす。また、レンズ部11のゲート部20側の端からフランジ部12のゲート部20側の端までの距離cは、0.05mm以上0.3mm以下となっている。なお、素子本体10とゲート部20との境界BLがはっきり明示されると否とに関わらず、フランジ部12のゲート部20側の端(つまり境界BLの頂点)は、レンズ部11を光軸AX方向から見た輪郭線の仮想延長線を基準として判断する。
Also in the optical element 100 of the present embodiment, when the length of the element main body 10 with respect to the resin injection direction AB at the time of molding is a, the length of the gate section 20 with respect to the injection direction AB in which the element main body 10 and the gate section 20 are aligned. B
a / 8 <b <a
Satisfy the relationship. The distance c from the end of the lens unit 11 on the gate unit 20 side to the end of the flange unit 12 on the gate unit 20 side is 0.05 mm or more and 0.3 mm or less. Note that, regardless of whether or not the boundary BL between the element body 10 and the gate portion 20 is clearly indicated, the end of the flange portion 12 on the gate portion 20 side (that is, the vertex of the boundary BL) is connected to the lens portion 11 with respect to the optical axis. Judgment is made based on the virtual extension of the contour line viewed from the AX direction.
 素子本体10とフランジ部12とは、図示の場合、同心状の配置となっているが、両者を偏芯させることもできる。 The element body 10 and the flange portion 12 are concentrically arranged in the drawing, but both can be eccentric.
 図10に示すように、第4実施形態の光学素子100は、平坦な支持部材ではなく、V字断面の支持溝74aを有する支持部材270に支持されている。第4実施形態の光学素子100は、円柱状の素子本体10で形成されるので、支持溝74aによって支持を安定化させることができる。この際、光学素子100の円筒状のフランジ側面112eは、2箇所で線状に支持溝74aと接している。なお、光学素子100は、支持溝74aに沿って移動させたり、光軸AXのまわりに回転させたりすることはできるが、光軸AXに垂直な方向に移動させるアライメントは容易でなくなる。 As shown in FIG. 10, the optical element 100 of the fourth embodiment is not supported by a flat support member but supported by a support member 270 having a support groove 74a having a V-shaped cross section. Since the optical element 100 of the fourth embodiment is formed by the cylindrical element body 10, the support can be stabilized by the support groove 74a. At this time, the cylindrical flange side surface 112e of the optical element 100 is in contact with the support groove 74a in two lines. The optical element 100 can be moved along the support groove 74a or rotated around the optical axis AX, but alignment for moving in the direction perpendicular to the optical axis AX is not easy.
 図示の場合、3つの光学素子100が並列に配置されて支持部材270に固定される例を示しているが、単一の光学素子100を支持部材270に固定することもできる。 In the illustrated example, the three optical elements 100 are arranged in parallel and fixed to the support member 270. However, the single optical element 100 may be fixed to the support member 270.
 以上、実施形態の光学素子について説明したが、本発明に係る光学素子は上記のものに限定されるものではなく、様々な変形が可能である。例えば、レンズ部11に設けた光学面11a,11bの形状は、光学素子100の用途、仕様等に応じて適宜設定できる。 The optical element according to the embodiment has been described above. However, the optical element according to the present invention is not limited to the above-described one, and various modifications can be made. For example, the shapes of the optical surfaces 11 a and 11 b provided on the lens unit 11 can be set as appropriate according to the application, specifications, and the like of the optical element 100.
 また、上記実施形態において、光学素子100を用いた光通信用の光源装置(具体的には、光通信モジュール300)の例を挙げたが、光学素子100は、プロジェクター用の光源装置に用いてもよい。この場合、用途に応じて光源装置の構成を適宜変更することができる。例えば、光を光ファイバーで導くのではなく、ダイクロイックミラー等で導いてもよい。 In the above embodiment, an example of a light source device for optical communication (specifically, the optical communication module 300) using the optical element 100 has been described. However, the optical element 100 is used for a light source device for a projector. Also good. In this case, the configuration of the light source device can be changed as appropriate according to the application. For example, light may be guided not by an optical fiber but by a dichroic mirror or the like.
 また、上記実施形態において、発光素子としてレーザーダイオード40を用いているが、これをLEDやVCSELやフォトダイオード等に置き換えることができる。 In the above embodiment, the laser diode 40 is used as the light emitting element, but this can be replaced with an LED, a VCSEL, a photodiode, or the like.

Claims (12)

  1.  樹脂製の光学素子であって、
     外形寸法2.5mm以下の素子本体と、
     前記素子本体の側面から延びるとともに、一対の平行に延びる支持用の部分を設けてなるハンドリング部を含むゲート部と
    を備える光学素子。
    A resin optical element,
    An element body having an outer dimension of 2.5 mm or less;
    An optical element comprising: a gate portion including a handling portion that extends from a side surface of the element body and includes a pair of support portions extending in parallel.
  2.  前記素子本体は、光軸方向から見て矩形状又は円形の輪郭を有する、請求項1に記載の光学素子。 The optical element according to claim 1, wherein the element body has a rectangular or circular outline when viewed from the optical axis direction.
  3.  前記素子本体のうちフランジ側面が組み付けのために固定される、請求項1又は2に記載の光学素子。 The optical element according to claim 1 or 2, wherein a flange side surface of the element body is fixed for assembly.
  4.  前記素子本体のうち反ゲート側のフランジ側面が組み付けのために固定される、請求項3に記載の光学素子。 The optical element according to claim 3, wherein a flange side surface on the side opposite to the gate of the element body is fixed for assembly.
  5.  前記素子本体は、コリメーターレンズとして機能する、請求項1~4のいずれか一項に記載の光学素子。 The optical element according to any one of claims 1 to 4, wherein the element body functions as a collimator lens.
  6.  成形に際しての樹脂の射出方向に関する前記素子本体の長さをaとした場合、前記射出方向に関する前記ゲート部の長さbは、
     a/8<b<a
    である、請求項1~5のいずれか一項に記載の光学素子。
    When the length of the element body with respect to the injection direction of the resin at the time of molding is a, the length b of the gate portion with respect to the injection direction is:
    a / 8 <b <a
    The optical element according to any one of claims 1 to 5, wherein
  7.  前記素子本体は、レンズ部とフランジ部とを有し、前記レンズ部の前記ゲート部側の端から前記フランジ部の前記ゲート部側の端までの距離は、0.05mm以上0.3mm以下である、請求項1~6のいずれか一項に記載の光学素子。 The element body includes a lens portion and a flange portion, and a distance from an end of the lens portion on the gate portion side to an end of the flange portion on the gate portion side is 0.05 mm or more and 0.3 mm or less. The optical element according to any one of claims 1 to 6.
  8.  樹脂製の光学素子であって、
     外形寸法2.5mm以下で光軸方向から見て矩形状の素子本体と、
     前記素子本体の側面から延びるゲート部と
    を備え、
     前記素子本体のうちフランジ側面が組み付けのために固定される、光学素子。
    A resin optical element,
    A rectangular element body having an outer dimension of 2.5 mm or less as viewed from the optical axis direction;
    A gate portion extending from a side surface of the element body,
    An optical element in which a flange side surface of the element body is fixed for assembly.
  9.  前記素子本体のフランジ側面のうち一箇所が固定される、請求項8に記載の光学素子。 The optical element according to claim 8, wherein one part of the flange side surface of the element body is fixed.
  10.  前記素子本体のうち反ゲート側のフランジ側面が固定される、請求項8又は9に記載の光学素子。 The optical element according to claim 8 or 9, wherein a flange side surface on the side opposite to the gate of the element body is fixed.
  11.  請求項1~10のいずれか一項に記載の光学素子を用いた光通信用又はプロジェクター用の光源装置。 A light source device for optical communication or projector using the optical element according to any one of claims 1 to 10.
  12.  複数の前記光学素子が、並列に並んでいる、請求項11に記載の光源装置。 The light source device according to claim 11, wherein the plurality of optical elements are arranged in parallel.
PCT/JP2015/085277 2014-12-17 2015-12-16 Optical element and light source device WO2016098833A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014254801 2014-12-17
JP2014-254801 2014-12-17

Publications (1)

Publication Number Publication Date
WO2016098833A1 true WO2016098833A1 (en) 2016-06-23

Family

ID=56126717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085277 WO2016098833A1 (en) 2014-12-17 2015-12-16 Optical element and light source device

Country Status (1)

Country Link
WO (1) WO2016098833A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI698670B (en) * 2018-08-31 2020-07-11 台灣山村光學股份有限公司 Coupling lens
WO2021251043A1 (en) * 2020-06-11 2021-12-16 アルプスアルパイン株式会社 Optical component and optical module using same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003043349A (en) * 2001-08-03 2003-02-13 Konica Corp Optical pickup lens
JP2005285177A (en) * 2004-03-29 2005-10-13 Konica Minolta Opto Inc Optical element and optical pickup apparatus provided with optical element
WO2012043190A1 (en) * 2010-09-30 2012-04-05 コニカミノルタオプト株式会社 Method for manufacturing lens
JP2014002284A (en) * 2012-06-19 2014-01-09 Alps Electric Co Ltd Lens array and optical module
JP2014123518A (en) * 2012-12-21 2014-07-03 Casio Comput Co Ltd Light source device and projector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003043349A (en) * 2001-08-03 2003-02-13 Konica Corp Optical pickup lens
JP2005285177A (en) * 2004-03-29 2005-10-13 Konica Minolta Opto Inc Optical element and optical pickup apparatus provided with optical element
WO2012043190A1 (en) * 2010-09-30 2012-04-05 コニカミノルタオプト株式会社 Method for manufacturing lens
JP2014002284A (en) * 2012-06-19 2014-01-09 Alps Electric Co Ltd Lens array and optical module
JP2014123518A (en) * 2012-12-21 2014-07-03 Casio Comput Co Ltd Light source device and projector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI698670B (en) * 2018-08-31 2020-07-11 台灣山村光學股份有限公司 Coupling lens
WO2021251043A1 (en) * 2020-06-11 2021-12-16 アルプスアルパイン株式会社 Optical component and optical module using same

Similar Documents

Publication Publication Date Title
JP5336600B2 (en) Light emitting device and manufacturing method thereof
US9039248B2 (en) Illuminating apparatus
US8305867B2 (en) Lens and optical pick-up
KR20140109757A (en) Lens module
WO2016098833A1 (en) Optical element and light source device
JP4662153B2 (en) OPTICAL MODULE AND OPTICAL CONNECTOR HAVING OPTICAL MODULE
WO2016080296A1 (en) Optical path changing element and optical coupling device
JP2019507376A (en) Optoelectronic lighting device manufacturing method and optoelectronic lighting device
JP2018072499A (en) Coupling lens and laser optical system
US20150331212A1 (en) Method for forming optoelectronic modules connectable to optical fibers and optoelectronic module connectable to at least one optical fiber
FR2901723B1 (en) ASSEMBLY AND METHOD FOR BRAZING ASSEMBLY OF OBJECT AND SUPPORT
US9746160B2 (en) Light emitting device and method of manufacturing light emitting device
US20220404609A1 (en) Mirror unit
US20070183735A1 (en) Capillary tube for holding optical fiber
EP2762936A1 (en) Method for forming optoelectronic modules connectable to optical fibers and optoelectronic module connectable to at least one optical fiber
JP2016103617A (en) Optical element
US9266203B2 (en) Part being centered during assembly process, wafer level parts assembly, and apparatus and method to manufacture wafer level parts assembly
TWI491960B (en) Optical film and film-positioning device
WO2014050537A1 (en) Optical communication lens, optical communication module, and molding die
JP5615666B2 (en) Lens unit and manufacturing method thereof
JP2015175979A (en) optical fiber connector
US20050029435A1 (en) Photo-interrupter and method of manufacturing the same, and optical coupling apparatus and method of manufacturing the same
WO2013021747A1 (en) Image pickup device and method for manufacturing same
JP2011025520A (en) Injection molding part equipped with glass window and method of manufacturing the same
WO2018025480A1 (en) Optical lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15870035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15870035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP