WO2016098741A1 - ショベル及びショベルの制御方法 - Google Patents

ショベル及びショベルの制御方法 Download PDF

Info

Publication number
WO2016098741A1
WO2016098741A1 PCT/JP2015/084976 JP2015084976W WO2016098741A1 WO 2016098741 A1 WO2016098741 A1 WO 2016098741A1 JP 2015084976 W JP2015084976 W JP 2015084976W WO 2016098741 A1 WO2016098741 A1 WO 2016098741A1
Authority
WO
WIPO (PCT)
Prior art keywords
coordinates
coordinate acquisition
bucket
tip
coordinate
Prior art date
Application number
PCT/JP2015/084976
Other languages
English (en)
French (fr)
Inventor
泉川 岳哉
Original Assignee
住友建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友建機株式会社 filed Critical 住友建機株式会社
Priority to CN202010264507.3A priority Critical patent/CN111441401B/zh
Priority to KR1020177017214A priority patent/KR102447168B1/ko
Priority to CN201580068756.2A priority patent/CN107109825B/zh
Priority to EP15869946.2A priority patent/EP3235960B1/en
Priority to JP2016564848A priority patent/JP6401296B2/ja
Publication of WO2016098741A1 publication Critical patent/WO2016098741A1/ja
Priority to US15/621,278 priority patent/US10584466B2/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/267Diagnosing or detecting failure of vehicles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/431Control of dipper or bucket position; Control of sequence of drive operations for bucket-arms, front-end loaders, dumpers or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/28Small metalwork for digging elements, e.g. teeth scraper bits
    • E02F9/2808Teeth
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/28Small metalwork for digging elements, e.g. teeth scraper bits
    • E02F9/2883Wear elements for buckets or implements in general

Definitions

  • the present invention relates to an excavator provided with a machine guidance device and an excavator control method.
  • Patent Document 1 A drilling blade for an excavator that can easily determine the wear limit visually is known (see Patent Document 1).
  • the excavating blade of Patent Document 1 can indicate the replacement time, it cannot accurately indicate how much wear has progressed. Therefore, in order to use machine guidance based on the exact length of the excavator blade, the operator of the excavator manually measures the length of the excavator blade and inputs information on the measured value to the machine guidance device. It is necessary and troublesome. When the excavating blade is worn, accurate machine guidance cannot be used unless such complicated work is performed.
  • An excavator includes a lower traveling body, an upper revolving body that is turnably mounted on the lower traveling body, an attachment that is mounted on the upper revolving body, and a consumable part is attached to a tip.
  • a controller that obtains coordinates of the consumable part when the consumable part is brought into contact with a predetermined feature, and calculates a wear amount of the consumable part based on at least two coordinates obtained under different conditions; Excavator.
  • the above-described means provides an excavator that can provide accurate machine guidance even when a consumable part such as an excavating blade is worn.
  • FIG. 1 is a side view showing an excavator that is an example of a construction machine according to an embodiment of the present invention.
  • An upper swing body 3 is mounted on the lower traveling body 1 of the excavator via a swing mechanism 2 so as to be capable of swinging.
  • a boom 4 is attached to the upper swing body 3.
  • An arm 5 is attached to the tip of the boom 4, and a bucket 6 as an end attachment is attached to the tip of the arm 5.
  • a breaker may be attached as an end attachment.
  • the boom 4, the arm 5, and the bucket 6 constitute an excavation attachment that is an example of an attachment, and are hydraulically driven by the boom cylinder 7, the arm cylinder 8, and the bucket cylinder 9, respectively.
  • a boom angle sensor S1 is attached to the boom 4
  • an arm angle sensor S2 is attached to the arm 5
  • a bucket angle sensor S3 is attached to the bucket link.
  • the boom angle sensor S1 is a sensor that detects the rotation angle of the boom 4.
  • the acceleration sensor detects an inclination angle of the boom 4 with respect to a horizontal plane (hereinafter referred to as “boom angle”) by detecting gravitational acceleration.
  • the boom angle sensor S1 detects the rotation angle of the boom 4 around the boom foot pin connecting the upper swing body 3 and the boom 4 as the boom angle.
  • the arm angle sensor S2 is a sensor that detects the rotation angle of the arm 5.
  • the acceleration sensor detects the inclination angle of the arm 5 with respect to the horizontal plane (hereinafter referred to as “arm angle”) by detecting the gravitational acceleration.
  • the arm angle sensor S2 detects the rotation angle of the arm 5 around the arm pin that connects the boom 4 and the arm 5 as the arm angle.
  • the bucket angle sensor S3 is a sensor that detects the rotation angle of the bucket 6.
  • the acceleration sensor detects an inclination angle of the bucket 6 with respect to the horizontal plane (hereinafter referred to as “bucket angle”) by detecting gravitational acceleration.
  • the bucket angle sensor S3 detects the rotation angle of the bucket 6 around the bucket pin connecting the arm 5 and the bucket 6 as the bucket angle.
  • At least one of the boom angle sensor S1, the arm angle sensor S2, and the bucket angle sensor S3 includes a potentiometer that uses a variable resistor, a stroke sensor that detects a stroke amount of a corresponding hydraulic cylinder, and a rotation angle around a connecting pin. It may be a rotary encoder or the like to detect.
  • the boom angle sensor S1, the arm angle sensor S2, and the bucket angle sensor S3 function as posture sensors for calculating the posture of the attachment.
  • the upper swing body 3 is provided with a cabin 10 and a power source such as an engine 11 is mounted.
  • a body tilt sensor S4 and a positioning sensor S5 are attached to the upper swing body 3.
  • an input device D1 an audio output device D2, a display device D3, a storage device D4, a controller 30, and a machine guidance device 50 are mounted.
  • the controller 30 is a control device that performs drive control of the excavator.
  • the controller 30 is composed of an arithmetic processing unit including a CPU and an internal memory. Various functions of the controller 30 are realized by the CPU executing a program stored in the internal memory.
  • the machine guidance device 50 is a device that guides the operation of the excavator by the operator.
  • the machine guidance device 50 visually and audibly informs the operator of the distance in the vertical direction between the surface of the target terrain set by the operator and the tip (toe) position of the bucket 6, for example. Guide the operation of the excavator by the operator.
  • the machine guidance device 50 may only notify the operator of the distance visually or may only notify the operator audibly.
  • the machine guidance device 50 is configured as an arithmetic processing device including a CPU and an internal memory as one of the controllers. Various functions of the machine guidance device 50 are realized by the CPU executing a program stored in the internal memory. Further, the machine guidance device 50 may be integrated into the controller 30.
  • the body tilt sensor S4 is a sensor that detects the tilt angle of the upper swing body 3 with respect to the horizontal plane.
  • airframe pitch angle the inclination angle of the longitudinal axis of the upper swing body 3 with respect to the horizontal plane
  • airframe roll angle an acceleration sensor that detects an angle
  • the positioning sensor S5 is a device that measures the position and orientation of the excavator.
  • the positioning sensor S5 includes a GPS receiver and an electronic compass, and information on the position coordinates (latitude, longitude, altitude) and direction (azimuth) of the positioning sensor S5 in the world geodetic system with respect to the machine guidance device 50. Is output.
  • World Geodetic System is a three-dimensional orthogonal XYZ with the origin at the center of gravity of the earth, the X axis in the direction of the intersection of the Greenwich meridian and the equator, the Y axis in the direction of 90 degrees east longitude, and the Z axis in the direction of the North Pole Coordinate system.
  • the electronic compass is composed of, for example, a three-axis magnetic sensor.
  • the positioning sensor S5 may be a GPS compass composed of two GPS receivers.
  • the input device D1 is a device for an excavator operator to input various information.
  • the input device D1 is a hardware switch attached around the display screen of the display device D3.
  • the operator of the excavator inputs various information to the machine guidance device 50 through the input device D1.
  • the input device D1 may be a touch panel.
  • the input device D1 may be a USB memory. In this case, the operator can input the information stored in the USB memory into the machine guidance device 50 by inserting the USB memory into the USB connector installed in the cabin 10.
  • the audio output device D2 is a device that outputs various audio information in response to an audio output command from the machine guidance device 50.
  • a vehicle-mounted speaker that is directly connected to the machine guidance device 50 is used.
  • a buzzer may be used.
  • the display device D3 is a device that outputs various pieces of image information in response to a command from the machine guidance device 50.
  • an in-vehicle liquid crystal display directly connected to the machine guidance device 50 is used.
  • Storage device D4 is a device for storing various information.
  • the storage device D4 is a non-volatile storage medium such as a semiconductor memory, and stores various types of information output by the machine guidance device 50 and the like.
  • FIG. 2 is a block diagram showing a configuration example of the drive system of the excavator in FIG.
  • the mechanical power system is indicated by a double line
  • the high-pressure hydraulic line is indicated by a thick solid line
  • the pilot line is indicated by a broken line
  • the electric drive / control system is indicated by a thin solid line.
  • the engine 11 is a shovel drive source.
  • the engine 11 is a diesel engine that employs isochronous control that keeps the engine speed constant regardless of increase or decrease in engine load.
  • the engine 11 is connected with a main pump 14 and a pilot pump 15 as hydraulic pumps.
  • a control valve 17 is connected to the main pump 14 via a high pressure hydraulic line 16.
  • the control valve 17 is a hydraulic control device that controls the hydraulic system of the excavator.
  • the hydraulic actuators such as the right traveling hydraulic motor 1A, the left traveling hydraulic motor 1B, the boom cylinder 7, the arm cylinder 8, the bucket cylinder 9, and the turning hydraulic motor 21 are connected to the control valve 17 through a high pressure hydraulic line. .
  • the operating device 26 is connected to the pilot pump 15 through the pilot line 25.
  • the operating device 26 is a device for operating the hydraulic actuator, and includes a lever 26A, a lever 26B, and a pedal 26C.
  • the operating device 26 is connected to the control valve 17 via a hydraulic line 27.
  • the operating device 26 is connected to a pressure sensor 29 via a hydraulic line 28.
  • the pressure sensor 29 is a sensor that detects the operation content of the operation device 26 in the form of pressure, and outputs a detection value to the controller 30.
  • FIG. 3 is a functional block diagram illustrating a configuration example of the controller 30 and the machine guidance device 50.
  • the machine guidance device 50 receives outputs from the boom angle sensor S1, the arm angle sensor S2, the bucket angle sensor S3, the machine body inclination sensor S4, the positioning sensor S5, the input device D1, and the controller 30, and outputs sound.
  • Various commands are output to each of the device D2, the display device D3, and the storage device D4.
  • the machine guidance device 50 also includes a coordinate acquisition unit 51, a deviation calculation unit 52, an audio output processing unit 53, and a display processing unit 54.
  • the controller 30 and the machine guidance device 50 are connected to each other through a CAN (Controller Area Network).
  • CAN Controller Area Network
  • the coordinate acquisition unit 51 is a functional element that acquires the coordinates of a predetermined part of the attachment.
  • the coordinate acquisition unit 51 derives the origin coordinates (latitude, longitude, altitude) of the reference coordinate system based on the detection values of the body tilt sensor S4 and the positioning sensor S5.
  • the reference coordinate system is a coordinate system based on the excavator, and is, for example, a three-dimensional orthogonal coordinate system in which the extending direction of the excavation attachment is the X axis and the swivel axis of the excavator is the Z axis.
  • the positional relationship between the origin coordinates of the reference coordinate system and the coordinates of the mounting position of the positioning sensor S5 (hereinafter referred to as “positioning sensor coordinates”) is relatively unchanged. Therefore, the coordinate acquisition unit 51 can uniquely derive the origin coordinates of the reference coordinate system in the world geodetic system from the detection values of the body tilt sensor S4 and the positioning sensor S5.
  • the coordinate acquisition unit 51 derives the origin coordinate of the reference coordinate system in the world geodetic system based on the position coordinate and orientation of the positioning sensor S5 in the world geodetic system that is the detection value of the positioning sensor S5.
  • the coordinate acquisition unit 51 rotates the reference coordinate system based on the airframe roll angle and the airframe pitch angle detected by the airframe tilt sensor S4 so that the three axes of the reference coordinate system are aligned with the three axes of the world geodetic system. Derive the rotation matrix of
  • the coordinate acquisition part 51 will obtain the coordinate in the world geodetic system regarding the arbitrary point based on the origin coordinate and rotation matrix of the reference coordinate system in a world geodetic system. Can be derived.
  • the coordinate acquisition unit 51 derives the attitude of the excavation attachment based on the detection values of the boom angle sensor S1, the arm angle sensor S2, and the bucket angle sensor S3. This is because the coordinates in the reference coordinate system corresponding to each point on the excavation attachment can be derived, and by extension, the coordinates in the world geodetic system corresponding to each point can be derived.
  • Each point on the excavation attachment includes the position of the bucket pin and the tip position of the bucket 6.
  • the deviation calculator 52 derives the deviation between the current position of the tip of the bucket 6 and the target position.
  • the deviation calculation unit 52 derives a deviation between the current position of the tip of the bucket 6 and the target position based on the coordinates of the tip position of the bucket 6 and the target terrain information acquired by the coordinate acquisition unit 51.
  • the target terrain information is information regarding the terrain at the completion of construction, and includes a coordinate group representing the target terrain.
  • the target terrain information is input through the input device D1 and stored in the storage device D4.
  • the deviation calculation unit 52 derives the distance in the vertical direction between the tip position of the bucket 6 and the surface of the target landform as the deviation.
  • the deviation may be the distance in the horizontal direction between the tip position of the bucket 6 and the surface of the target terrain, the shortest distance, or the like.
  • the audio output processing unit 53 controls the content of audio information to be output from the audio output device D2.
  • the audio output processing unit 53 causes the audio output device D2 to output an intermittent sound as a guidance sound when the deviation derived by the deviation calculating unit 52 becomes a predetermined value or less. Further, the audio output processing unit 53 shortens the output interval of intermittent sound (the length of the silent portion) as the deviation becomes smaller.
  • the sound output processing unit 53 outputs a continuous sound (intermittent sound with an output interval of zero) from the sound output device D2. You may let them.
  • voice output process part 53 may change the height (frequency) of an intermittent sound, when the sign of the deviation reverses. The deviation becomes a positive value when, for example, the tip position of the bucket 6 is vertically above the surface of the target terrain.
  • the display processing unit 54 controls the contents of various image information displayed on the display device D3.
  • the display processing unit 54 causes the display device D3 to display the relationship between the coordinates of the tip position of the bucket 6 acquired by the coordinate acquisition unit 51 and the coordinate group representing the target landform.
  • the display processing unit 54 views the cross-section of the bucket 6 and the target landform from the side (Y-axis direction), and the cross-section of the bucket 6 and the target landform from the back (X-axis direction).
  • the displayed CG image is displayed on the display device D3.
  • the display processing unit 54 may display the magnitude of the deviation derived by the deviation calculating unit 52 as a bar graph.
  • FIGS. 4A and 4B are views of the shovel
  • FIG. 4A is a side view of the shovel
  • FIG. 4B is a top view of the shovel.
  • the Z axis of the reference coordinate system corresponds to the swing axis PC of the shovel
  • the origin O of the reference coordinate system corresponds to the intersection of the swing axis PC and the grounding surface of the shovel.
  • the X axis perpendicular to the Z axis extends in the extending direction of the excavation attachment, and the Y axis orthogonal to the Z axis extends in a direction perpendicular to the extending direction of the excavation attachment. That is, the X axis and the Y axis rotate around the Z axis as the shovel rotates.
  • the mounting position of the boom 4 with respect to the upper swing body 3 is represented by a boom foot pin position P1, which is a position of a boom foot pin as a boom rotating shaft.
  • the mounting position of the arm 5 with respect to the boom 4 is represented by an arm pin position P2, which is the position of the arm pin as the arm rotation axis.
  • the attachment position of the bucket 6 with respect to the arm 5 is represented by a bucket pin position P3 that is a position of a bucket pin as a bucket rotation axis.
  • the tip position of the claw 6a of the bucket 6 is represented by a bucket tip position P4.
  • the length of the line segment SG1 connecting the boom foot pin position P1 and the arm pin position P2 is represented by a predetermined value L 1 as the boom length
  • the length of the line segment SG2 connecting the arm pin position P2 and the bucket pin position P3 arm represented by a predetermined value L 2 as the length
  • the length of the line segment SG3 connecting the bucket pin position P3 and the bucket tip position P4 is represented by a predetermined value L 3 as a bucket length.
  • the predetermined values L 1 , L 2 , and L 3 are stored in advance in the storage device D4 and the like.
  • boom angle formed between the line segment SG1 and a horizontal plane is represented by beta 1
  • arm angle formed between the line segment SG2 and a horizontal plane is represented by beta 2
  • segment SG3 and the horizontal plane bucket angle formed between the represented by beta 3. 4A, the boom angle ⁇ 1 , the arm angle ⁇ 2 , and the bucket angle ⁇ 3 are positive in the counterclockwise direction with respect to a line parallel to the X axis.
  • Y 4 is zero. This is because the bucket tip position P4 exists on the XZ plane. Further, since the boom foot pin position P1 is relatively invariant with respect to the origin O, the coordinates of the arm pin position P2 once the boom angle beta 1 is uniquely determined. Similarly, the coordinates of the bucket pin position P3 once the boom angle beta 1 and arm angle beta 2 is uniquely determined, boom angle beta 1, arm angle beta 2, and once the bucket angle beta 3, the bucket end position P4 Coordinates are uniquely determined.
  • the coordinate acquisition unit 51 can uniquely derive the coordinates of the points P1 to P4 in the world geodetic system if the coordinates of the points P1 to P4 in the reference coordinate system are determined.
  • the controller 30 performs a leading edge information deriving process described later to derive an accurate coordinate of the bucket leading edge position P4 and accurately guides the operation of the shovel even when the claw 6a is worn. It can be so.
  • the controller 30 includes a coordinate calculation unit 31 and a wear amount calculation unit 32 as functional elements.
  • the coordinate calculation unit 31 is a functional element that calculates the coordinates of the tip of the consumable part.
  • the coordinate calculation unit 31 detects the coordinates of the bucket pin position P3 acquired by the coordinate acquisition unit 51 and the bucket angle sensor S3 when the claw 6a is brought into contact with one known coordinate on the world geodetic system. Based on the bucket angle, the coordinates of the bucket tip position P4 in the world geodetic system are derived.
  • the wear amount calculation unit 32 is a functional element that calculates the wear amount of the consumable portion.
  • the wear amount calculation unit 32 includes the coordinates of the bucket tip position P4 calculated by the coordinate calculation unit 31 before the claw 6a is worn and the bucket tip position P4 calculated by the coordinate calculation unit 31 after the claw 6a is worn.
  • the amount of wear of the claw 6a is calculated based on the coordinates.
  • the consumable part may be a breaker rod.
  • FIG. 5 is a flowchart showing an exemplary flow of tip information deriving processing.
  • 6A and 6B are side views of the bucket 6 showing coordinates related to the tip information deriving process of FIG.
  • FIG. 6A is a diagram when the tip of the claw 6a is brought into contact with the reference point RP.
  • the thick solid line indicates the bucket 6 when the tip of the claw 6a is worn, and the thick dotted line indicates the tip of the claw 6a is worn.
  • the bucket 6 is shown when not.
  • FIG. 6B shows the state which overlap
  • the reference point is a feature having coordinates of a predetermined geodetic system and includes a surveying sign such as a reference pile.
  • the reference point has the coordinates of the world geodetic system.
  • the coordinates (X R , Y R , Z R ) of the reference point RP are known to the controller 30 and the machine guidance device 50.
  • the coordinate calculation unit 31 coordinates (X 3A , Y 3A , Z) of the bucket pin position P3A acquired by the coordinate acquisition unit 51 when the tip of the claw 6a is brought into contact with the reference point RP during the first coordinate acquisition period. 3A ) is acquired (step ST1).
  • the coordinate acquisition period means a period during which the coordinate acquisition unit 51 acquires coordinates under the same wear condition.
  • the first coordinate acquisition period is a period during which the coordinate acquisition unit 51 can acquire coordinates when the claw 6a of the bucket 6 is not worn, and is a period immediately after the initial setting of the excavator. Including the period immediately after the replacement.
  • the operator of the shovel operates the operation device 26 such as a boom operation lever, an arm operation lever, a bucket operation lever, a turning operation lever, and a traveling pedal to bring the claw 6a of the bucket 6 into contact with the reference point RP. .
  • the operator gives an instruction to the machine guidance device 50 to store the coordinates of the bucket pin position P3A at that time via the input device D1.
  • the coordinate acquisition unit 51 of the machine guidance device 50 stores the coordinates of the bucket pin position P3A in the storage device D4 according to the instruction.
  • the operator instructs the machine guidance device 50 to store the coordinates of the bucket pin position P3 each time the contact is made by bringing the claw 6a of the bucket 6 into contact with the reference point RP a plurality of times while changing the posture of the excavation attachment. May be given.
  • the coordinate acquisition unit 51 may use the average coordinates of the plurality of coordinates stored over a plurality of times as the coordinates of the bucket pin position P3A.
  • the coordinate calculation unit 31 determines the coordinates (X 3B , Y 3B , Z) of the bucket pin position P3B acquired by the coordinate acquisition unit 51 when the tip of the claw 6a is brought into contact with the reference point RP during the second coordinate acquisition period. 3B ) is acquired (step ST2).
  • the second coordinate acquisition period is a coordinate acquisition period after the new nail 6a is actually used, that is, a coordinate acquisition period after the nail 6a is worn. It is a coordinate acquisition period after starting the shovel for a predetermined shovel operating time after starting.
  • the second coordinate acquisition period may be a period after a predetermined number of days have elapsed since the start of use of the new nail 6a.
  • the operator of the shovel acquires the coordinates of the bucket pin position P3B during the second coordinate acquisition period in the same manner as the acquisition of the coordinates of the bucket pin position P3A performed during the first coordinate acquisition period.
  • the coordinate calculation unit 31 calculates the coordinates of the tip of the claw 6a (step ST3).
  • the coordinate calculation unit 31 uses the following equation (3) to determine the distance between the bucket pin position P3A and the reference point RP (bucket tip position P4A) when the claw 6a is not worn. “Lead distance”.) L3A is calculated.
  • the coordinate calculation unit 31 has the coordinates (X 3A , Y 3A , Z 3A ) of the bucket pin position P3A acquired by the coordinate acquisition unit 51 and the coordinates (X R ) of the reference point RP acquired during the first coordinate acquisition period. , Y R , Z R ), the tip distance L 3A is calculated.
  • the coordinate calculation unit 31 claws 6a using the following equation (4) calculates the tip distance L 3B of the bucket pin position P3B and the reference point RP after abrasion (bucket end position P4B). Specifically, the coordinate calculation unit 31 coordinates (X 3B , Y 3B , Z 3B ) of the bucket pin position P3B acquired by the coordinate acquisition unit 51 and the coordinates (X R ) of the reference point RP acquired during the second coordinate acquisition period. , Y R , Z R ), the tip distance L 3B is calculated.
  • the coordinate values Y 3A , Y 3B and Y R are all the same value (for example, zero).
  • the coordinate calculation unit 31 calculates the coordinates (X 4C1 , Y 4C1 , Z 4C1 ) of the bucket tip position P4C1 when the claw 6a is a new product that is not worn based on the relationship shown in FIG. 6B.
  • the coordinate calculation unit 31 calculates the coordinates (X 4C1 , Y 4C1 , Z 4C1 ) of the bucket tip position P4C1 using the following formulas (5) and (6).
  • the coordinate calculation unit 31 includes the coordinates (X 3C , Y 3C , Z 3C ) of the bucket pin position P3C acquired by the coordinate acquisition unit 51 and the bucket angle sensor S3 when the excavation attachment is in an arbitrary posture.
  • coordinates (X 4C1 , Y 4C1 , Z 4C1 ) are calculated.
  • the coordinate values Y 3C and Y 4C1 are both the same value (for example, zero).
  • the coordinate calculation unit 31 calculates the coordinates (X 4C2 , Y 4C2 , Z 4C2 ) of the bucket tip position P4C2 after the claw 6a is worn using the following formulas (7) and (8).
  • the coordinate calculation unit 31 includes the coordinates (X 3C , Y 3C , Z 3C ) of the bucket pin position P3C acquired by the coordinate acquisition unit 51 and the bucket angle sensor S3 when the excavation attachment is in an arbitrary posture. Coordinates (X 4C2 , Y 4C2 , Z 4C2 ) are calculated based on the detected bucket angle ⁇ 3C and the tip distance L 3B .
  • the coordinate values Y 3C and Y 4C2 are both the same value (for example, zero).
  • the angle ⁇ is an angle formed between the line segment P3C-P4C1 and the line segment P3C-P4C2, and is an angle that is uniquely determined if the tip distance L 3A and the tip distance L 3B are determined.
  • the wear amount calculation unit 32 calculates the wear amount of the claw 6a (step ST4).
  • the wear amount calculation unit 32 calculates the wear amount W of the claw 6a of the bucket 6 using the following equation (9). Specifically, the wear amount calculation unit 32 calculates the coordinates (X 4C1 , Y 4C1 , Z 4C1 ) of the bucket tip position P4C1 when the claw 6a is not worn and the claw 6a calculated by the coordinate calculation unit 31 and the claw 6a.
  • the wear amount W is calculated based on the coordinates (X 4C2 , Y 4C2 , Z 4C2 ) of the bucket tip position P4C2 after wear.
  • the controller 30 derives the tip distance based on the coordinates of the bucket pin position P3 acquired by the coordinate acquisition unit 51 when the claw 6a is brought into contact with the reference point RP that is one known coordinate. Further, the controller 30 derives the coordinates of the bucket tip position P4 based on the tip distance and the bucket angle detected by the bucket angle sensor S3. Therefore, the controller 30 can accurately derive the coordinates of the bucket tip position P4 by acquiring the coordinates of the bucket pin position P3 regardless of whether or not the claw 6a is worn, after execution of the tip information derivation process. it can.
  • the controller 30 can calculate the wear amount W by using the tip distance derived in each of the two coordinate acquisition periods. In this case, instead of directly deriving the coordinates of the bucket tip position P4 corresponding to the tip of the worn claw 6a, the controller 30 indirectly derives the coordinates of the bucket tip position P4 corresponding to the tip of the worn claw 6a. May be. Specifically, after deriving the coordinates of the bucket tip position P4 corresponding to the tip of the claw 6a that is not worn, the coordinates of the bucket tip position P4 are corrected based on the wear amount W, and the tip of the worn claw 6a is obtained. The coordinates of the bucket tip position P4 corresponding to may be derived.
  • the machine guidance device 50 can provide machine guidance using the coordinates of the bucket tip position P4 in consideration of wear, which is derived by the controller 30.
  • FIG. 7 is a flowchart showing the flow of another example of tip information deriving processing.
  • 8A and 8B are side views of the excavation attachment showing coordinates relating to the tip information deriving process of FIG. 8A is a diagram when the tip of the arm 5 is brought into contact with a grounding point P5 (P5A, P5C), which is one point on the ground, and
  • FIG. 8B is a diagram where the claw 6a of the bucket 6 is grounded at a grounding point P5 (P5A, P5C). It is a figure when it is made to contact.
  • a thick solid line indicates the bucket 6 when the tip of the claw 6a is worn, and a thick dotted line indicates the bucket 6 when the tip of the claw 6a is not worn.
  • the coordinates of the ground point P5 are specified as the coordinates of one point when the point on the surface of the arm 5 as the non-consumable part is brought into contact with the ground, and are used instead of the coordinates of the reference point.
  • One point on the surface of the non-consumable part has the same relative positional relationship with the bucket pin position P ⁇ b> 3, and the relative positional relationship is known to the controller 30 and the machine guidance device 50.
  • the coordinate calculation unit 31 coordinates (X 3A , Y 3A , Z 3A) of the bucket pin position P3A acquired by the coordinate acquisition unit 51 when the tip of the arm 5 is brought into contact with the grounding point P5A during the first coordinate acquisition period. ) Is acquired (step ST11).
  • the first coordinate acquisition period is a period during which the coordinate acquisition unit 51 can acquire the coordinates when the claws 6a of the bucket 6 are not worn.
  • the excavator operator operates the operating device 26 to bring the tip of the arm 5 into contact with the grounding point P5A. Then, the operator gives an instruction to the machine guidance device 50 to store the coordinates of the bucket pin position P3A at that time via the input device D1.
  • the coordinate acquisition unit 51 of the machine guidance device 50 stores the coordinates of the bucket pin position P3A in the storage device D4 according to the instruction.
  • the coordinate calculation unit 31 coordinates (X 3B , Y) of the bucket pin position P3B acquired by the coordinate acquisition unit 51 when the tip of the claw 6a of the bucket 6 is brought into contact with the grounding point P5A during the first coordinate acquisition period. 3B , Z 3B ) are acquired (step ST12).
  • the excavator operator operates the operating device 26 to bring the tip of the claw 6a into contact with the grounding point P5A.
  • the operator brings the tip of the claw 6a into contact with the grounding point P5A so that the extending direction of the claw 6a is perpendicular to the ground (horizontal plane).
  • the operator gives an instruction to the machine guidance device 50 to store the coordinates of the bucket pin position P3B at that time via the input device D1.
  • the coordinate acquisition unit 51 of the machine guidance device 50 stores the coordinates of the bucket pin position P3B in the storage device D4 according to the instruction.
  • the coordinate calculation unit 31 coordinates (X 3C , Y 3C , Z 3C) of the bucket pin position P3C acquired by the coordinate acquisition unit 51 when the tip of the arm 5 is brought into contact with the ground point P5C during the second coordinate acquisition period. ) Is acquired (step ST13).
  • the second coordinate acquisition period is a coordinate acquisition period after the new claw 6a is actually used, that is, a coordinate acquisition period after the claw 6a is worn.
  • the coordinate calculation unit 31 coordinates (X 3D , Y 3D , Z) of the bucket pin position P3D acquired by the coordinate acquisition unit 51 when the tip of the claw 6a is brought into contact with the grounding point P5C during the second coordinate acquisition period. 3D ) is acquired (step ST14).
  • the coordinate calculation unit 31 calculates the coordinates of the tip of the claw 6a (step ST15).
  • the coordinate calculation unit 31 calculates the coordinates (X 5A , Y 5A , Z 5A ) of the contact point P5A when the claw 6a is not worn by using the following formula (10).
  • the coordinate value Y 5A is zero
  • the coordinate value X 5A is equal to the coordinate value X 3A .
  • the distance H1 is a value stored in advance in the storage device D4 or the like, and represents the distance between the bucket pin position P3A and one point on the arm surface that contacts the grounding point P5A.
  • the distance H1 may be a fixed value or a variable value determined according to the attitude of the excavation attachment.
  • a front end distance L 3A coordinate calculating unit 31 and the bucket pin position P3B when a new pawl 6a using the following equation (11) is not worn and the ground point P5A (bucket end position P4B) calculate.
  • the coordinate calculation unit 31 acquires the coordinates when the coordinates (X 5A , Y 5A , Z 5A ) of the above-mentioned ground point P5A and the claw 6a are brought into contact with the ground point P5A during the first coordinate acquisition period.
  • the tip distance L 3A is calculated based on the coordinates (X 3B , Y 3B , Z 3B ) of the bucket pin position P3B acquired by the unit 51.
  • the coordinate calculation unit 31 calculates the coordinates (X 5C , Y 5C , Z 5C ) of the ground contact point P5C after the claw 6a is worn using the following formula (12).
  • the coordinate value Y 5C is zero
  • the coordinate value X 5C is equal to the coordinate value X 3C .
  • the coordinates of the ground point P5C are equal to the coordinates of the ground point P5A.
  • the coordinates of the ground point P5C may be different from the coordinates of the ground point P5A.
  • the distance H2 is a value stored in advance in the storage device D4 or the like, and represents the distance between the bucket pin position P3C and one point on the arm surface that contacts the grounding point P5C.
  • the distance H2 may be a fixed value or a variable value determined according to the attitude of the excavation attachment. In this embodiment, the distance H2 is equal to the distance H1.
  • the pawl 6a is coordinate calculating unit 31 using the following equation (13) calculates the tip distance L 3B of the bucket pin position P3D after wearing a grounding point P5C (bucket end position P4D). Specifically, the coordinate calculation unit 31 obtains coordinates when the coordinates (X 5C , Y 5C , Z 5C ) of the above-described ground point P5C and the claw 6a are brought into contact with the ground point P5C during the second coordinate acquisition period. The tip distance L 3B is calculated based on the coordinates (X 3D , Y 3D , Z 3D ) of the bucket pin position P3D acquired by the unit 51.
  • the coordinate calculation unit 31 performs the same method as described with reference to FIGS. 6A and 6B, the coordinates of the bucket tip position P4 when the claw 6a is not worn, and the bucket after the claw 6a is worn.
  • the coordinates of the tip position P4 are calculated.
  • the wear amount calculation unit 32 calculates the wear amount of the claw 6a (step ST16).
  • the wear amount calculation unit 32 determines the coordinates of the bucket tip position P4 when the claw 6a is not worn and the bucket tip after the claw 6a is worn. The wear amount of the claw 6a is calculated based on the coordinates of the position P4.
  • the operator causes the controller 30 to specify the coordinates of the grounding point P5 by bringing the tip of the arm 5 into contact with the ground. Then, the operator causes the controller 30 to derive the tip distance based on the coordinates of the bucket pin position P3 acquired by the coordinate acquisition unit 51 when the claw 6a is brought into contact with the ground point P5.
  • the controller 30 derives the coordinates of the bucket tip position P4 based on the tip distance and the bucket angle detected by the bucket angle sensor S3. Therefore, the controller 30 can accurately derive the coordinates of the bucket tip position P4 by acquiring the coordinates of the bucket pin position P3 regardless of whether or not the claw 6a is worn, after execution of the tip information derivation process. it can. Further, the controller 30 can calculate the wear amount W by using the tip distance derived in each of the two coordinate acquisition periods.
  • the excavator operator causes the controller 30 to specify the coordinates of the ground contact point P5 by bringing the tip of the arm 5 into contact with the ground, but the present invention is not limited to this configuration.
  • the operator may cause the controller 30 to specify the coordinates of the ground contact point P5 (P5A, P5C) by bringing the back of the bucket as a non-consumable part into contact with the ground as shown in FIG.
  • the operator may cause the controller 30 to specify the coordinates of the contact point P5 by bringing a bucket link as a non-consumable part into contact with the ground.
  • the determination as to whether or not the user has touched the ground may be based on whether or not a predetermined switch has been operated.
  • the controller 30 determines that the predetermined part is in contact with the ground and acquires the coordinates of the grounding point P5.
  • the controller 30 may determine that the predetermined part has contacted the ground when the pressure of the hydraulic oil in the bucket cylinder 9 exceeds a preset threshold value, and may acquire the coordinates of the contact point P5.
  • the operator may operate the attachment so that the claw 6a is substantially perpendicular to the ground.
  • the controller 30 may automatically control the posture of the attachment so that the claw 6a is substantially perpendicular to the ground.
  • FIG. 10 is a flowchart showing the flow of still another example of the tip information derivation process.
  • the tip information derivation process of FIG. 10 is that the coordinates of the bucket tip position and the wear amount of the claw 6a are calculated based on the coordinates of the two bucket pin positions acquired during one coordinate acquisition period. This is different from the tip information derivation process. Therefore, the tip information derivation process of FIG. 10 will be described with reference to FIGS. 8A and 8B.
  • the coordinate calculation unit 31 acquires the coordinates (X 3C , Y 3C , Z 3C ) of the bucket pin position P3C acquired by the coordinate acquisition unit 51 when the tip of the arm 5 is brought into contact with the grounding point P5C (Step 3 ). ST21).
  • the coordinate calculation unit 31 acquires the coordinates (X 3D , Y 3D , Z 3D ) of the bucket pin position P3D acquired by the coordinate acquisition unit 51 when the tip of the claw 6a of the bucket 6 is brought into contact with the grounding point P5C. (Step ST22).
  • the coordinate calculation part 31 calculates the coordinate of the front-end
  • the coordinate calculation unit 31 calculates the value Z 5C Z coordinates of ground point P5C using the above equation (12).
  • the Y coordinate value Y 5C is zero, and the X coordinate value X 5C is equal to the X coordinate value X 3C of the bucket pin position P3C.
  • the coordinate calculation unit 31 calculates the tip distance L 3B of the bucket pin position P3D and the ground point P5C (bucket end position P4D) using the above equation (13).
  • the coordinate calculation unit 31 calculates the coordinates of the bucket tip position P4 after the claw 6a is worn by the same method as described in FIGS. 6A and 6B.
  • the wear amount calculation unit 32 calculates the wear amount of the claw 6a (step ST24).
  • the wear amount calculating section 32 has stored in advance (when the new pawl 6a is not worn) of the tip distance L 3A and pawl 6a on the basis of the the tip distance L 3B calculated in step ST23 Calculate the amount of wear.
  • the tip distance L3A may be automatically set according to the type of nail that the operator inputs in advance.
  • the wear amount calculation unit 32 is based on the tip distance L 3A , the tip distance L 3B, and the coordinates (X 3C , Y 3C , Z 3C ) of the current bucket pin position P3.
  • the wear amount W of the claw 6a of the bucket 6 is calculated using the above equation (9).
  • the controller 30 can derive the coordinates and the amount of wear of the tip of the claw 6a worn with a calculation load lower than the tip information deriving process of FIG.
  • FIG. 11 is a flowchart showing the flow of still another example of the tip information derivation process.
  • FIG. 12 is a side view of the bucket 6 showing coordinates relating to the tip information deriving process of FIG. 11. Specifically, FIG. 12 is a diagram when the claw 6a of the bucket 6 is brought into contact with the same reference point SP in two different postures. The thick solid line indicates the bucket 6 taking the first posture, and the thick dotted line shows the bucket 6 taking the second posture.
  • the coordinate calculation unit 31 makes the coordinates (X 3A , Y 3A , Z) of the bucket pin position P3A acquired by the coordinate acquisition unit 51 when the tip of the claw 6a of the bucket 6 taking the first posture contacts the reference point SP. 3A ) is acquired (step ST31).
  • the coordinate calculation unit 31 makes the coordinates (X 3B , Y 3B , Z 3B) of the bucket pin position P3B acquired by the coordinate acquisition unit 51 when the tip of the claw 6a of the bucket 6 taking the second posture contacts the reference point SP. ) Is acquired (step ST32).
  • the coordinate calculation unit 31 calculates the coordinates of the tip of the claw 6a (step ST33).
  • the coordinate calculation unit 31 includes the coordinates (X 3A , Y 3A , Z 3A ) of the bucket pin position P3A, the coordinates (X 3B , Y 3B , Z 3B ) of the bucket pin position P3B, and the line segment P3A.
  • the length of -SP is based on the fact that equal to the length of the segment P3B-SP, following a tip distance L 3B of the bucket pin position P3A or bucket pin position P3B and the reference point SP (bucket end position P4A) This is calculated using the equation (14).
  • the coordinate calculation unit 31 calculates the coordinates of the tip of the claw 6a based on the coordinates of the bucket pin position P3A or the bucket pin position P3B, the bucket angle detected by the bucket angle sensor S3, and the tip distance L3B .
  • the value of the X coordinate of the reference point that contacts the tip of the claw 6a of the bucket 6 that takes the first posture is different from the value of the X coordinate of the reference point that contacts the tip of the claw 6a of the bucket 6 that takes the second posture. Also good. That is, the two reference points may be at different positions on the horizontal plane at the same height.
  • the wear amount calculation unit 32 calculates the wear amount of the claw 6a (step ST34).
  • the wear amount calculating section 32 has stored in advance (when the new pawl 6a is not worn) of the tip distance L 3A and pawl 6a on the basis of the the tip distance L 3B calculated in step ST33 Calculate the amount of wear.
  • the wear amount calculation unit 32 is based on the tip distance L 3A , the tip distance L 3B, and the coordinates (X 3C , Y 3C , Z 3C ) of the current bucket pin position P3C.
  • the wear amount W of the claw 6a of the bucket 6 is calculated using the above equation (9).
  • FIG. 13 is a side view of the bucket 6 showing coordinates relating to a wear amount calculation process in which the wear amount calculation unit 32 calculates the wear amount W.
  • the controller 30 automatically controls the attitude of the excavation attachment so that the extending direction of the claw 6a is perpendicular to the ground (horizontal plane) and contacts the tip of the claw 6a with the ground. Let Therefore, the controller 30 can be calculated simply by the wear amount W to calculate the difference between the value Z 4C2 Z coordinate value Z 4C1 Z coordinates of the bucket tip position P4C1 and the bucket tip position P4C2.
  • the controller 30 can derive the coordinates and the amount of wear of the tip of the claw 6a worn with a calculation load lower than the tip information deriving process of FIG.
  • FIG. 14 is a functional block diagram illustrating another configuration example of the controller 30.
  • the controller 30 in FIG. 14 can achieve the same effects as the controller 30 in FIG. 14
  • the excavator operator can easily wear the claws 6a of the bucket 6 without any special tool by performing any of these tip information deriving processes.
  • the amount can be measured.
  • the operator can receive machine guidance based on the coordinates of the bucket tip position P4 corresponding to the tip of the worn claw 6a. Therefore, the finishing accuracy of the construction surface can be improved.
  • the grounding point P5 is one point on the ground, but the present invention is not limited to this configuration.
  • the contact point P5 may be any feature that can bring both the non-consumable part and the consumable part (claw 6a) of the excavation attachment into contact with each other, for example, one point on the surface of the vertical wall. Also good.
  • the reference point SP is one point on the ground, but the present invention is not limited to this configuration.
  • the reference point SP may be any feature that can contact the consumable part (claw 6a) of the excavation attachment, and may be, for example, one point on the surface of the vertical wall.
  • reference point RP, the ground point P5, and the reference point SP are not necessarily actual points, and may be virtual points set optically, magnetically, or electrically.
  • the coordinate acquisition unit 51 rotates any reference coordinate system based on the excavator so that the three axes of the reference coordinate system are aligned with the three axes of the world geodetic system.
  • the coordinates in the world geodetic system corresponding to are derived.
  • the coordinate acquisition unit 51 derives coordinates (latitude, longitude, altitude) in a global geodetic system such as the world geodetic system 1984, the Japanese geodetic system 2000, and the international earth reference coordinate system.
  • the coordinate acquisition unit 51 may derive coordinates of a geodetic system in a narrower range such as a local coordinate system (regional coordinate system).
  • the wear amount calculation unit 32 calculates the wear amount of the claw 6a of the bucket 6 regardless of whether or not the angle in the extending direction of the claw 6a with respect to the ground (horizontal plane) is known. However, when the angle of the extending direction of the claw 6a with respect to the ground (horizontal plane) is known, the wear amount calculation unit 32 can more easily calculate the wear amount of the claw 6a. For example, when information related to the shape of the bucket 6 is input in advance to the controller 30 through the input device D1 or the like, the controller 30 can control the angle in the extending direction of the claw 6a with respect to the ground (horizontal plane).
  • the controller 30 determines that the extending direction of the claw 6a is perpendicular to the ground (horizontal plane) when the operator operates the excavation attachment to bring the claw 6a of the bucket 6 into contact with the ground (horizontal plane).
  • the degree of opening and closing of the bucket 6 is automatically adjusted so that In this case, the controller 30 calculates the difference HD between the height of the bucket pin position P3A (Z coordinate value) and the height of the bucket pin position P3B (Z coordinate value) as the wear amount W, as shown in FIG. To do.
  • Bucket pin position P3A is the bucket pin position when claw 6a is brought into perpendicular contact with the ground (horizontal plane) when the tip of claw 6a is not worn, and bucket pin position P3B is worn at the tip of claw 6a.
  • the controller 30 can calculate the amount of wear of the claw 6a based only on the variation in the height of the bucket pin position when the claw 6a can be brought into contact with the ground (horizontal plane) vertically.
  • Deviation calculation unit 53 ... Audio output processing unit 54 ... Display processing unit S1 ... Boom angle sensor S2 ... Arm angle sensor S3 ... Bucket angle sensor S4 ... Airframe tilt sensor S5 ... Positioning sensor D1 ... Input device D2 ... Audio output device D3 ... Display device D4 ... Storage device

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Shovels (AREA)

Abstract

 本発明の実施例に係るショベルは、下部走行体(1)と、下部走行体(1)に旋回可能に搭載された上部旋回体(3)と、上部旋回体(3)に搭載され、先端に爪(6a)が取り付けられるアタッチメントと、バケット(6)の爪(6a)を基準点(RP)に接触させたときに爪(6a)の座標を取得し、異なる条件の下で取得した少なくとも2つの座標に基づいて爪(6a)の摩耗量(W)を算出するコントローラ(30)とを有する。

Description

ショベル及びショベルの制御方法
 本発明はマシンガイダンス装置を備えるショベル及びショベルの制御方法に関する。
 摩耗限界を目視により容易に判定できるようにした掘削機用掘削刃が知られている(特許文献1参照。)。
実開平5-71259号公報
 しかしながら、特許文献1の掘削刃は交換時期を提示できるものの摩耗がどの程度進行しているのかを正確に提示することはできない。そのため、掘削機の操作者は、掘削刃の正確な長さに基づくマシンガイダンスを利用するためには掘削刃の長さを手作業で測定してその測定値に関する情報をマシンガイダンス装置に入力する必要があり手間が掛かる。掘削刃が摩耗している場合にはこのような煩雑な作業を行わない限り正確なマシンガイダンスを利用できない。
 上述に鑑み、掘削刃等の消耗部が摩耗している場合であっても正確なマシンガイダンスを提供できるショベルの提供が望まれる。
 本発明の一実施形態に係るショベルは、下部走行体と、前記下部走行体に旋回可能に搭載された上部旋回体と、前記上部旋回体に搭載され、先端に消耗部が取り付けられるアタッチメントと、前記消耗部を所定地物に接触させたときに前記消耗部の座標を取得し、異なる条件の下で取得した少なくとも2つの座標に基づいて前記消耗部の摩耗量を算出するコントローラと、を有するショベル。
 上述の手段により、掘削刃等の消耗部が摩耗している場合であっても正確なマシンガイダンスを提供できるショベルが提供される。
本発明の実施例に係るショベルの側面図である。 図1のショベルの駆動系の構成例を示すブロック図である。 コントローラ及びマシンガイダンス装置の構成例を示す機能ブロック図である。 基準座標系を示すショベルの側面図である。 基準座標系を示すショベルの上面図である。 先端情報導出処理の一例の流れを示すフローチャートである。 図5の先端情報導出処理に関する座標を示すバケットの側面図である。 図5の先端情報導出処理に関する座標を示すバケットの側面図である。 先端情報導出処理の別の例の流れを示すフローチャートである。 図7の先端情報導出処理に関する座標を示す掘削アタッチメントの側面図である。 図7の先端情報導出処理に関する座標を示すバケットの側面図である。 図7の先端情報導出処理に関する座標を示すバケットの側面図である。 先端情報導出処理のさらに別の例の流れを示すフローチャートである。 先端情報導出処理のさらに別の例の流れを示すフローチャートである。 図11の先端情報導出処理に関する座標を示すバケットの側面図である。 摩耗量算出処理に関する座標を示すバケットの側面図である。 コントローラのさらに別の構成例を示す機能ブロック図である。 摩耗量算出処理の別の一例を説明するバケットの側面図である。
 図1は、本発明の実施例に係る建設機械の一例であるショベル(掘削機)を示す側面図である。ショベルの下部走行体1には旋回機構2を介して上部旋回体3が旋回可能に搭載される。上部旋回体3にはブーム4が取り付けられる。ブーム4の先端にはアーム5が取り付けられ、アーム5の先端にはエンドアタッチメントとしてのバケット6が取り付けられる。エンドアタッチメントとしてブレーカが取り付けられていてもよい。
 ブーム4、アーム5、及びバケット6は、アタッチメントの一例である掘削アタッチメントを構成し、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9によりそれぞれ油圧駆動される。ブーム4にはブーム角度センサS1が取り付けられ、アーム5にはアーム角度センサS2が取り付けられ、バケットリンクにはバケット角度センサS3が取り付けられる。
 ブーム角度センサS1は、ブーム4の回動角度を検出するセンサである。本実施例では、重力加速度を検出することで水平面に対するブーム4の傾斜角(以下、「ブーム角度」とする。)を検出する加速度センサである。具体的には、ブーム角度センサS1は上部旋回体3とブーム4とを連結するブームフートピン回りのブーム4の回動角度をブーム角度として検出する。
 アーム角度センサS2は、アーム5の回動角度を検出するセンサである。本実施例では、重力加速度を検出することで水平面に対するアーム5の傾斜角(以下、「アーム角度」とする。)を検出する加速度センサである。具体的には、アーム角度センサS2はブーム4とアーム5とを連結するアームピン回りのアーム5の回動角度をアーム角度として検出する。
 バケット角度センサS3は、バケット6の回動角度を検出するセンサである。本実施例では、重力加速度を検出することで水平面に対するバケット6の傾斜角(以下、「バケット角度」とする。)を検出する加速度センサである。具体的には、バケット角度センサS3はアーム5とバケット6を連結するバケットピン回りのバケット6の回動角度をバケット角度として検出する。
 ブーム角度センサS1、アーム角度センサS2、及びバケット角度センサS3の少なくとも1つは、可変抵抗器を利用したポテンショメータ、対応する油圧シリンダのストローク量を検出するストロークセンサ、連結ピン回りの回動角度を検出するロータリエンコーダ等であってもよい。そして、ブーム角度センサS1、アーム角度センサS2、及びバケット角度センサS3は、アタッチメントの姿勢を算出するための姿勢センサとして機能する。
 上部旋回体3にはキャビン10が設けられ且つエンジン11等の動力源が搭載される。また、上部旋回体3には機体傾斜センサS4及び測位センサS5が取り付けられる。キャビン10内には、入力装置D1、音声出力装置D2、表示装置D3、記憶装置D4、コントローラ30、及びマシンガイダンス装置50が搭載される。
 コントローラ30は、ショベルの駆動制御を行う制御装置である。本実施例では、コントローラ30は、CPU及び内部メモリを含む演算処理装置で構成される。そして、コントローラ30の各種機能はCPUが内部メモリに格納されたプログラムを実行することで実現される。
 マシンガイダンス装置50は操作者によるショベルの操作をガイドする装置である。本実施例では、マシンガイダンス装置50は、例えば、操作者が設定した目標地形の表面とバケット6の先端(爪先)位置との鉛直方向における距離を視覚的に且つ聴覚的に操作者に知らせることで操作者によるショベルの操作をガイドする。マシンガイダンス装置50は、その距離を視覚的に操作者に知らせるのみであってもよく、聴覚的に操作者に知らせるのみであってもよい。具体的には、マシンガイダンス装置50は、コントローラ30と同様、コントローラの1つとして、CPU及び内部メモリを含む演算処理装置で構成される。そして、マシンガイダンス装置50の各種機能はCPUが内部メモリに格納されたプログラムを実行することで実現される。また、マシンガイダンス装置50はコントローラ30に一体的に組み込まれていてもよい。
 機体傾斜センサS4は、水平面に対する上部旋回体3の傾斜角を検出するセンサである。本実施例では、重力加速度を検出することで上部旋回体3の前後軸の水平面に対する傾斜角(以下、「機体ピッチ角度」とする。)、及び、上部旋回体3の左右軸の水平面に対する傾斜角(以下、「機体ロール角度」とする。)を検出する加速度センサである。
 測位センサS5は、ショベルの位置及び向きを測定する装置である。本実施例では、測位センサS5は、GPS受信機及び電子コンパスを含み、マシンガイダンス装置50に対して世界測地系における測位センサS5の位置座標(緯度、経度、高度)及び向き(方位)に関する情報を出力する。世界測地系は、地球の重心に原点をおき、X軸をグリニッジ子午線と赤道との交点の方向にとり、Y軸を東経90度の方向にとり、そしてZ軸を北極の方向にとる三次元直交XYZ座標系である。電子コンパスは例えば3軸磁気センサで構成される。測位センサS5は2つのGPS受信機で構成されるGPSコンパスであってもよい。
 入力装置D1は、ショベルの操作者が各種情報を入力するための装置である。本実施例では、入力装置D1は表示装置D3の表示画面の周辺に取り付けられるハードウェアスイッチである。ショベルの操作者は入力装置D1を通じてマシンガイダンス装置50に各種情報を入力する。入力装置D1はタッチパネルであってもよい。また、入力装置D1はUSBメモリであってもよい。この場合、操作者はキャビン10内に設置されたUSBコネクタにUSBメモリを差し込むことでUSBメモリ内に記憶された情報をマシンガイダンス装置50に入力できる。
 音声出力装置D2は、マシンガイダンス装置50からの音声出力指令に応じて各種音声情報を出力する装置である。本実施例ではマシンガイダンス装置50に直接接続される車載スピーカが利用される。ブザーが利用されてもよい。
 表示装置D3は、マシンガイダンス装置50からの指令に応じて各種画像情報を出力する装置である。本実施例ではマシンガイダンス装置50に直接接続される車載液晶ディスプレイが利用される。
 記憶装置D4は、各種情報を記憶するための装置である。本実施例では、記憶装置D4は半導体メモリ等の不揮発性記憶媒体であり、マシンガイダンス装置50等が出力する各種情報を記憶する。
 図2は、図1のショベルの駆動系の構成例を示すブロック図である。図2において、機械的動力系は二重線、高圧油圧ラインは太実線、パイロットラインは破線、電気駆動・制御系は細実線でそれぞれ示される。
 エンジン11はショベルの駆動源である。本実施例では、エンジン11は、エンジン負荷の増減にかかわらずエンジン回転数を一定に維持するアイソクロナス制御を採用するディーゼルエンジンである。
 エンジン11には油圧ポンプとしてのメインポンプ14及びパイロットポンプ15が接続される。メインポンプ14には高圧油圧ライン16を介してコントロールバルブ17が接続される。
 コントロールバルブ17は、ショベルの油圧系の制御を行う油圧制御装置である。右側走行用油圧モータ1A、左側走行用油圧モータ1B、ブームシリンダ7、アームシリンダ8、バケットシリンダ9、旋回用油圧モータ21等の油圧アクチュエータは、高圧油圧ラインを介してコントロールバルブ17に接続される。
 パイロットポンプ15にはパイロットライン25を介して操作装置26が接続される。操作装置26は、油圧アクチュエータを操作するための装置であり、レバー26A、レバー26B、ペダル26Cを含む。本実施例では、操作装置26は油圧ライン27を介してコントロールバルブ17に接続される。また、操作装置26は油圧ライン28を介して圧力センサ29に接続される。圧力センサ29は、操作装置26の操作内容を圧力の形で検出するセンサであり、検出値をコントローラ30に対して出力する。
 次に、図3を参照し、コントローラ30及びマシンガイダンス装置50が有する各種機能要素について説明する。図3は、コントローラ30及びマシンガイダンス装置50の構成例を示す機能ブロック図である。
 本実施例では、マシンガイダンス装置50は、ブーム角度センサS1、アーム角度センサS2、バケット角度センサS3、機体傾斜センサS4、測位センサS5、入力装置D1、及びコントローラ30からの出力を受け、音声出力装置D2、表示装置D3、及び記憶装置D4のそれぞれに対して各種指令を出力する。また、マシンガイダンス装置50は、座標取得部51、偏差計算部52、音声出力処理部53、及び表示処理部54を有する。コントローラ30及びマシンガイダンス装置50は、CAN(Controller Area Network)を通じて互いに接続される。
 座標取得部51は、アタッチメントの所定部位の座標を取得する機能要素である。本実施例では、座標取得部51は、機体傾斜センサS4及び測位センサS5のそれぞれの検出値に基づいて基準座標系の原点座標(緯度、経度、高度)を導き出す。基準座標系はショベルを基準とする座標系であり、例えば、掘削アタッチメントの延在方向をX軸としショベルの旋回軸をZ軸とする3次元直交座標系である。基準座標系の原点座標と測位センサS5の取り付け位置の座標(以下、「測位センサ座標」とする。)との位置関係は相対的に不変である。そのため、座標取得部51は、機体傾斜センサS4及び測位センサS5のそれぞれの検出値から世界測地系における基準座標系の原点座標を一意に導き出すことができる。
 具体的には、座標取得部51は、測位センサS5の検出値である世界測地系における測位センサS5の位置座標及び方位に基づいて世界測地系における基準座標系の原点座標を導き出す。
 また、座標取得部51は、機体傾斜センサS4の検出値である機体ロール角度及び機体ピッチ角度に基づいて基準座標系を回転させて基準座標系の3軸を世界測地系の3軸に合わせるための回転行列を導き出す。
 これにより、座標取得部51は、基準座標系における任意の点の座標が決まれば、世界測地系における基準座標系の原点座標と回転行列とに基づいてその任意の点に関する世界測地系における座標を導き出すことができる。
 また、座標取得部51は、ブーム角度センサS1、アーム角度センサS2、及びバケット角度センサS3のそれぞれの検出値に基づいて掘削アタッチメントの姿勢を導き出す。掘削アタッチメント上の各点に対応する基準座標系における座標を導出できるようにするためであり、ひいては各点に対応する世界測地系における座標を導出できるようにするためである。掘削アタッチメント上の各点はバケットピンの位置及びバケット6の先端位置を含む。
 偏差計算部52は、バケット6の先端の現在位置と目標位置との偏差を導き出す。本実施例では、偏差計算部52は、座標取得部51が取得したバケット6の先端位置の座標と目標地形情報とに基づいてバケット6の先端の現在位置と目標位置との偏差を導き出す。目標地形情報は施工完了時の地形に関する情報であり、目標地形を表す座標群を含む。また、目標地形情報は入力装置D1を通じて入力され且つ記憶装置D4に記憶される。
 例えば、偏差計算部52は、バケット6の先端位置と目標地形の表面との鉛直方向における距離を偏差として導き出す。偏差は、バケット6の先端位置と目標地形の表面との水平方向における距離、最短距離等であってもよい。
 音声出力処理部53は音声出力装置D2から出力させる音声情報の内容を制御する。本実施例では、音声出力処理部53は偏差計算部52が導き出した偏差が所定値以下となった場合に音声出力装置D2からガイダンス音としての断続音を出力させる。また、音声出力処理部53は、その偏差が小さくなるほど断続音の出力間隔(無音部分の長さ)を短くする。音声出力処理部53は、その偏差がゼロの場合、すなわち、バケット6の先端位置と目標地形の表面とが一致する場合、音声出力装置D2から連続音(出力間隔がゼロの断続音)を出力させてもよい。また、音声出力処理部53は、その偏差の正負が反転した場合、断続音の高さ(周波数)を変化させてもよい。偏差は、例えば、バケット6の先端位置が目標地形の表面より鉛直上方にある場合に正値となる。
 表示処理部54は、表示装置D3に表示させる各種画像情報の内容を制御する。本実施例では、表示処理部54は、座標取得部51が取得したバケット6の先端位置の座標と目標地形を表す座標群との関係を表示装置D3に表示させる。具体的には、表示処理部54は、バケット6及び目標地形の断面を側方(Y軸方向)から見たCG画像、及び、バケット6及び目標地形の断面を後方(X軸方向)から見たCG画像を表示装置D3に表示させる。表示処理部54は偏差計算部52が導き出した偏差の大きさをバーグラフで表示してもよい。
 次に、図4A及び図4Bを参照しながら、三次元直交座標系である基準座標系について説明する。図4Aはショベルの側面図であり、図4Bはショベルの上面図である。
 図4A及び図4Bに示すように、基準座標系のZ軸はショベルの旋回軸PCに相当し、基準座標系の原点Oは旋回軸PCとショベルの接地面との交点に相当する。
 Z軸と直交するX軸は掘削アタッチメントの延在方向に伸び、同じくZ軸と直交するY軸は掘削アタッチメントの延在方向に垂直な方向に伸びる。すなわち、X軸及びY軸はショベルの旋回とともにZ軸回りを回転する。
 また、図4Aに示すように、上部旋回体3に対するブーム4の取り付け位置は、ブーム回転軸としてのブームフートピンの位置であるブームフートピン位置P1で表される。同様に、ブーム4に対するアーム5の取り付け位置は、アーム回転軸としてのアームピンの位置であるアームピン位置P2で表される。アーム5に対するバケット6の取り付け位置は、バケット回転軸としてのバケットピンの位置であるバケットピン位置P3で表される。バケット6の爪6aの先端位置はバケット先端位置P4で表される。
 ブームフートピン位置P1とアームピン位置P2とを結ぶ線分SG1の長さはブーム長さとして所定値Lで表され、アームピン位置P2とバケットピン位置P3とを結ぶ線分SG2の長さはアーム長さとして所定値Lで表され、バケットピン位置P3とバケット先端位置P4とを結ぶ線分SG3の長さはバケット長さとして所定値Lで表される。所定値L、L、Lは記憶装置D4等に予め記憶されている。
 また、線分SG1と水平面との間に形成されるブーム角度はβで表され、線分SG2と水平面との間に形成されるアーム角度はβで表され、線分SG3と水平面との間に形成されるバケット角度はβで表される。図4Aにおいて、ブーム角度β、アーム角度β、バケット角度βは、X軸に平行な線に関し反時計回り方向をプラス方向とする。
 ここで、ブームフートピン位置P1の三次元座標を(X、Y、Z)=(H0X、0、H0Z)とし、バケット先端位置P4の三次元座標を(X、Y、Z)=(X、Y、Z)とすると、X、Zはそれぞれ式(1)及び式(2)で表される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002

 Yは0となる。バケット先端位置P4はXZ平面上に存在するためである。また、ブームフートピン位置P1が原点Oに対して相対的に不変であるため、ブーム角度βが決まればアームピン位置P2の座標が一意に決まる。同様に、ブーム角度β及びアーム角度βが決まればバケットピン位置P3の座標が一意に決まり、ブーム角度β、アーム角度β、及びバケット角度βが決まれば、バケット先端位置P4の座標が一意に決まる。
 また、座標取得部51は、基準座標系における各点P1~P4の座標が決まれば、世界測地系における各点P1~P4の座標を一意に導き出すことができる。
 しかしながら、バケット6の爪6aは使用により摩耗する消耗部である。そのため、上述の式(1)及び式(2)を用いて算出されるバケット先端位置P4の三次元座標(X、Y、Z)=(Xe、Ye、Ze)は、爪6aの摩耗が進むにつれて実際のバケット先端位置の三次元座標から乖離する。その結果、座標取得部51はバケット先端位置P4の正確な座標を取得できなくなり、マシンガイダンス装置50はショベルの操作を正確にガイドできなくなる。
 そこで、本実施例では、コントローラ30は、後述の先端情報導出処理を実行することでバケット先端位置P4の正確な座標を導き出し、爪6aが摩耗したときであってもショベルの操作を正確にガイドできるようにする。
 具体的には、コントローラ30は、機能要素としての座標算出部31及び摩耗量算出部32を有する。
 座標算出部31は、消耗部の先端の座標を算出する機能要素である。本実施例では、座標算出部31は、世界測地系上の既知の一座標に爪6aを接触させたときに座標取得部51が取得するバケットピン位置P3の座標とバケット角度センサS3が検出するバケット角度とに基づいて世界測地系におけるバケット先端位置P4の座標を導き出す。
 摩耗量算出部32は、消耗部の摩耗量を算出する機能要素である。本実施例では、摩耗量算出部32は、爪6aが摩耗する前に座標算出部31が算出したバケット先端位置P4の座標と爪6aが摩耗した後に座標算出部31が算出したバケット先端位置P4の座標とに基づいて爪6aの摩耗量を算出する。消耗部はブレーカのロッドであってもよい。
 ここで図5、図6A、及び図6Bを参照し、コントローラ30が爪6aの先端に関する情報を導き出す処理(以下、「先端情報導出処理」とする。)について説明する。図5は先端情報導出処理の一例の流れを示すフローチャートである。また、図6A及び図6Bは図5の先端情報導出処理に関する座標を示すバケット6の側面図である。また、図6Aは爪6aの先端を基準点RPに接触させたときの図であり、太実線は爪6aの先端が摩耗したときのバケット6を示し、太点線は爪6aの先端が摩耗していないときのバケット6を示す。また、図6Bは図6Aにおける2つのバケット6の爪6a以外の部分の図を重ね合わせた状態を示す。
 基準点は、所定の測地系の座標を有する地物であり基準杭等の測量用標識を含む。本実施例では基準点は世界測地系の座標を有する。基準点RPの座標(X、Y、Z)はコントローラ30及びマシンガイダンス装置50にとって既知である。
 最初に、座標算出部31は第1座標取得期間中に爪6aの先端を基準点RPに接触させたときに座標取得部51が取得するバケットピン位置P3Aの座標(X3A、Y3A、Z3A)を取得する(ステップST1)。座標取得期間は、同じ摩耗条件の下で座標取得部51が座標を取得する期間を意味する。本実施例では、第1座標取得期間は、バケット6の爪6aが摩耗していない新品のときに座標取得部51が座標を取得できる期間であり、ショベルの初期設定直後の期間、爪6aの交換直後の期間等を含む。
 具体的には、ショベルの操作者は、ブーム操作レバー、アーム操作レバー、バケット操作レバー、旋回操作レバー、走行ペダル等の操作装置26を操作してバケット6の爪6aを基準点RPに接触させる。そして、操作者は入力装置D1を介してそのときのバケットピン位置P3Aの座標を記憶するようマシンガイダンス装置50に指示を与える。マシンガイダンス装置50の座標取得部51はその指示に応じてバケットピン位置P3Aの座標を記憶装置D4に記憶する。
 操作者は掘削アタッチメントの姿勢を変えながらバケット6の爪6aを複数回に亘って基準点RPに接触させ、その接触の度にバケットピン位置P3の座標を記憶するようマシンガイダンス装置50に指示を与えてもよい。この場合、座標取得部51は複数回に亘って記憶した複数の座標の平均座標をバケットピン位置P3Aの座標としてもよい。
 その後、座標算出部31は、第2座標取得期間中に爪6aの先端を基準点RPに接触させたときに座標取得部51が取得するバケットピン位置P3Bの座標(X3B、Y3B、Z3B)を取得する(ステップST2)。本実施例では、第2座標取得期間は、新品の爪6aが実際に使用された後の座標取得期間、すなわち爪6aが摩耗した後の座標取得期間であり、例えば新品の爪6aの使用を開始した後で所定のショベル稼働時間にわたってショベルを稼働させた後の座標取得期間である。第2座標取得期間は、新品の爪6aの使用を開始してから所定の日数が経過した後の期間であってもよい。
 具体的には、ショベルの操作者は第1座標取得期間中に行ったバケットピン位置P3Aの座標の取得と同様のやり方で第2座標取得期間中にバケットピン位置P3Bの座標を取得する。
 その後、座標算出部31は爪6aの先端の座標を算出する(ステップST3)。本実施例では、座標算出部31は以下の式(3)を用いて爪6aが摩耗していない新品のときのバケットピン位置P3Aと基準点RP(バケット先端位置P4A)との距離(以下、「先端距離」とする。)L3Aを算出する。具体的には、座標算出部31は、第1座標取得期間中に座標取得部51が取得したバケットピン位置P3Aの座標(X3A、Y3A、Z3A)と基準点RPの座標(X、Y、Z)とに基づいて先端距離L3Aを算出する。
Figure JPOXMLDOC01-appb-M000003
 また、座標算出部31は以下の式(4)を用いて爪6aが磨耗した後のバケットピン位置P3Bと基準点RP(バケット先端位置P4B)との先端距離L3Bを算出する。具体的には、座標算出部31は、第2座標取得期間中に座標取得部51が取得したバケットピン位置P3Bの座標(X3B、Y3B、Z3B)と基準点RPの座標(X、Y、Z)とに基づいて先端距離L3Bを算出する。座標値Y3A、Y3B、Yは何れも同じ値(例えばゼロ)である。
Figure JPOXMLDOC01-appb-M000004
 その後、座標算出部31は、図6Bに示す関係に基づいて爪6aが磨耗していない新品のときのバケット先端位置P4C1の座標(X4C1、Y4C1、Z4C1)を算出する。本実施例では、座標算出部31は、以下の式(5)及び式(6)を用いてバケット先端位置P4C1の座標(X4C1、Y4C1、Z4C1)を算出する。具体的には、座標算出部31は、掘削アタッチメントが任意の姿勢にあるときに座標取得部51が取得したバケットピン位置P3Cの座標(X3C、Y3C、Z3C)とバケット角度センサS3が検出したバケット角度β3Cと先端距離L3Aとに基づいて座標(X4C1、Y4C1、Z4C1)を算出する。座標値Y3C、Y4C1は何れも同じ値(例えばゼロ)である。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 また、座標算出部31は、以下の式(7)及び式(8)を用いて爪6aが摩耗した後のバケット先端位置P4C2の座標(X4C2、Y4C2、Z4C2)を算出する。具体的には、座標算出部31は、掘削アタッチメントが任意の姿勢にあるときに座標取得部51が取得したバケットピン位置P3Cの座標(X3C、Y3C、Z3C)とバケット角度センサS3が検出したバケット角度β3Cと先端距離L3Bとに基づいて座標(X4C2、Y4C2、Z4C2)を算出する。座標値Y3C、Y4C2は何れも同じ値(例えばゼロ)である。角度δは、線分P3C-P4C1と線分P3C-P4C2との間に形成される角度であり、先端距離L3Aと先端距離L3Bとが決まれば一意に決まる角度である。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 その後、摩耗量算出部32は爪6aの摩耗量を算出する(ステップST4)。本実施例では、摩耗量算出部32は、以下の式(9)を用いてバケット6の爪6aの摩耗量Wを算出する。具体的には、摩耗量算出部32は、座標算出部31が算出した、爪6aが摩耗していない新品のときのバケット先端位置P4C1の座標(X4C1、Y4C1、Z4C1)と爪6aが摩耗した後のバケット先端位置P4C2の座標(X4C2、Y4C2、Z4C2)とに基づいて摩耗量Wを算出する。
Figure JPOXMLDOC01-appb-M000009
 この構成により、コントローラ30は、既知の一座標である基準点RPに爪6aを接触させたときに座標取得部51が取得するバケットピン位置P3の座標に基づいて先端距離を導き出す。また、コントローラ30は、その先端距離とバケット角度センサS3が検出するバケット角度に基づいてバケット先端位置P4の座標を導き出す。そのため、コントローラ30は、先端情報導出処理の実行後であれば、爪6aの摩耗の有無にかかわらず、バケットピン位置P3の座標を取得することでバケット先端位置P4の座標を正確に導き出すことができる。
 また、コントローラ30は、2つの座標取得期間のそれぞれで導出した先端距離を用いて摩耗量Wを算出できる。この場合、コントローラ30は、摩耗した爪6aの先端に対応するバケット先端位置P4の座標を直接的に導き出す代わりに、摩耗した爪6aの先端に対応するバケット先端位置P4の座標を間接的に導き出してもよい。具体的には、摩耗していない爪6aの先端に対応するバケット先端位置P4の座標を導き出した上で摩耗量Wに基づいてそのバケット先端位置P4の座標を補正し、摩耗した爪6aの先端に対応するバケット先端位置P4の座標を導き出してもよい。
 そして、マシンガイダンス装置50は、コントローラ30が導き出す、摩耗を考慮したバケット先端位置P4の座標を利用してマシンガイダンスを提供できる。
 次に、図7、図8A、及び図8Bを参照し、先端情報導出処理の別の例について説明する。図7は先端情報導出処理の別の例の流れを示すフローチャートである。また、図8A及び図8Bは図7の先端情報導出処理に関する座標を示す掘削アタッチメントの側面図である。また、図8Aはアーム5の先端を地面上の一点である接地点P5(P5A、P5C)に接触させたときの図であり、図8Bはバケット6の爪6aを接地点P5(P5A、P5C)に接触させたときの図である。また、太実線は爪6aの先端が摩耗したときのバケット6を示し、太点線は爪6aの先端が摩耗していないときのバケット6を示す。
 接地点P5(P5A、P5C)の座標は、非消耗部としてのアーム5の表面上の一点を地面に接触させたときのその一点の座標として特定され、基準点の座標の代わりとして用いられる。非消耗部の表面上の一点は、バケットピン位置P3との相対位置関係が不変であり、その相対位置関係はコントローラ30及びマシンガイダンス装置50にとって既知である。
 最初に、座標算出部31は第1座標取得期間中にアーム5の先端を接地点P5Aに接触させときに座標取得部51が取得するバケットピン位置P3Aの座標(X3A、Y3A、Z3A)を取得する(ステップST11)。本実施例では、第1座標取得期間は、バケット6の爪6aが摩耗していない新品のときに座標取得部51が座標を取得できる期間である。
 具体的には、ショベルの操作者は、操作装置26を操作してアーム5の先端を接地点P5Aに接触させる。そして、操作者は入力装置D1を介してそのときのバケットピン位置P3Aの座標を記憶するようマシンガイダンス装置50に指示を与える。マシンガイダンス装置50の座標取得部51はその指示に応じてバケットピン位置P3Aの座標を記憶装置D4に記憶する。
 その後、座標算出部31は、第1座標取得期間中にバケット6の爪6aの先端を接地点P5Aに接触させたときに座標取得部51が取得するバケットピン位置P3Bの座標(X3B、Y3B、Z3B)を取得する(ステップST12)。
 具体的には、ショベルの操作者は操作装置26を操作して爪6aの先端を接地点P5Aに接触させる。例えば、操作者は、爪6aの延在方向が地面(水平面)に対して垂直となるように爪6aの先端を接地点P5Aに接触させる。そして、操作者は入力装置D1を介してそのときのバケットピン位置P3Bの座標を記憶するようマシンガイダンス装置50に指示を与える。マシンガイダンス装置50の座標取得部51はその指示に応じてバケットピン位置P3Bの座標を記憶装置D4に記憶する。
 その後、座標算出部31は第2座標取得期間中にアーム5の先端を接地点P5Cに接触させたときに座標取得部51が取得するバケットピン位置P3Cの座標(X3C、Y3C、Z3C)を取得する(ステップST13)。本実施例では、第2座標取得期間は、新品の爪6aが実際に使用された後の座標取得期間、すなわち爪6aが摩耗した後の座標取得期間である。
 その後、座標算出部31は、第2座標取得期間中に爪6aの先端を接地点P5Cに接触させたときに座標取得部51が取得するバケットピン位置P3Dの座標(X3D、Y3D、Z3D)を取得する(ステップST14)。
 その後、座標算出部31は爪6aの先端の座標を算出する(ステップST15)。本実施例では、座標算出部31は以下の式(10)を用いて爪6aが摩耗していない新品のときの接地点P5Aの座標(X5A、Y5A、Z5A)を算出する。本実施例では、座標値Y5Aはゼロであり、座標値X5Aは座標値X3Aと等しい。距離H1は、記憶装置D4等に予め記憶された値であり、バケットピン位置P3Aと接地点P5Aに接触するアーム表面上の一点との距離を表す。距離H1は固定値であってもよく、掘削アタッチメントの姿勢に応じて決まる変動値であってもよい。
Figure JPOXMLDOC01-appb-M000010
 その上で、座標算出部31は以下の式(11)を用いて爪6aが摩耗していない新品のときのバケットピン位置P3Bと接地点P5A(バケット先端位置P4B)との先端距離L3Aを算出する。具体的には、座標算出部31は、上述の接地点P5Aの座標(X5A、Y5A、Z5A)と第1座標取得期間中に爪6aを接地点P5Aに接触させたときに座標取得部51が取得したバケットピン位置P3Bの座標(X3B、Y3B、Z3B)とに基づいて先端距離L3Aを算出する。
Figure JPOXMLDOC01-appb-M000011
 また、座標算出部31は以下の式(12)を用いて爪6aが摩耗した後の接地点P5Cの座標(X5C、Y5C、Z5C)を算出する。本実施例では、座標値Y5Cはゼロであり、座標値X5Cは座標値X3Cと等しい。また、接地点P5Cの座標は接地点P5Aの座標に等しい。但し、接地点P5Cの座標は接地点P5Aの座標と異なっていてもよい。距離H2は、記憶装置D4等に予め記憶された値であり、バケットピン位置P3Cと接地点P5Cに接触するアーム表面上の一点との距離を表す。距離H2は固定値であってもよく、掘削アタッチメントの姿勢に応じて決まる変動値であってもよい。本実施例では距離H2は距離H1と等しい。
Figure JPOXMLDOC01-appb-M000012
 その上で、座標算出部31は以下の式(13)を用いて爪6aが摩耗した後のバケットピン位置P3Dと接地点P5C(バケット先端位置P4D)との先端距離L3Bを算出する。具体的には、座標算出部31は、上述の接地点P5Cの座標(X5C、Y5C、Z5C)と第2座標取得期間中に爪6aを接地点P5Cに接触させたときに座標取得部51が取得したバケットピン位置P3Dの座標(X3D、Y3D、Z3D)とに基づいて先端距離L3Bを算出する。
Figure JPOXMLDOC01-appb-M000013
 その後、座標算出部31は、図6A及び図6Bで説明した方法と同じ方法で、爪6aが磨耗していない新品のときのバケット先端位置P4の座標、及び、爪6aが摩耗した後のバケット先端位置P4の座標を算出する。
 その後、摩耗量算出部32は爪6aの摩耗量を算出する(ステップST16)。本実施例では、摩耗量算出部32は、図6A及び図6Bで説明したように、爪6aが磨耗していない新品のときのバケット先端位置P4の座標と爪6aが摩耗した後のバケット先端位置P4の座標とに基づいて爪6aの摩耗量を算出する。
 このように、操作者はアーム5の先端を地面に接触させることで接地点P5の座標をコントローラ30に特定させる。そして、操作者は接地点P5に爪6aを接触させたときに座標取得部51が取得するバケットピン位置P3の座標に基づいてコントローラ30に先端距離を導出させる。コントローラ30は、その先端距離とバケット角度センサS3が検出するバケット角度に基づいてバケット先端位置P4の座標を導き出す。そのため、コントローラ30は、先端情報導出処理の実行後であれば、爪6aの摩耗の有無にかかわらず、バケットピン位置P3の座標を取得することでバケット先端位置P4の座標を正確に導き出すことができる。また、コントローラ30は、2つの座標取得期間のそれぞれで導出した先端距離を用いて摩耗量Wを算出できる。
 上述の実施例では、ショベルの操作者はアーム5の先端を地面に接触させることで接地点P5の座標をコントローラ30に特定させるが、本発明はこの構成に限定されるものではない。例えば、操作者は、図9に示すように非消耗部としてのバケット背面を地面に接触させることで接地点P5(P5A、P5C)の座標をコントローラ30に特定させてもよい。また、操作者は非消耗部としてのバケットリンクを地面に接触させることで接地点P5の座標をコントローラ30に特定させてもよい。地面に接触したか否かの判定は、所定のスイッチが操作されたか否かに基づいていてもよい。この場合、操作者はバケット6の動きを見ながらバケット6の所定部位が地面に接触したと判断した場合にそのスイッチを押下する。コントローラ30はそのスイッチが押下された場合に所定部位が地面に接触したと判定して接地点P5の座標を取得する。コントローラ30はバケットシリンダ9内の作動油の圧力が予め設定された閾値を超えた場合に所定部位が地面に接触したと判定して接地点P5の座標を取得してもよい。バケット6の爪6aを地面に接触させる場合、操作者は爪6aが地面に対して略垂直となるようにアタッチメントを操作してもよい。バケット6の形状がコントローラ30に事前に入力されている場合、コントローラ30は、爪6aが地面に対して略垂直となるようにアタッチメントの姿勢を自動的に制御してもよい。
 次に、図10を参照し、先端情報導出処理のさらに別の例について説明する。図10は先端情報導出処理のさらに別の例の流れを示すフローチャートである。また、図10の先端情報導出処理は、1回の座標取得期間中に取得した2つのバケットピン位置の座標に基づいてバケット先端位置の座標及び爪6aの摩耗量を算出する点で図7の先端情報導出処理と相違する。そのため、図8A及び図8Bを参照しながら図10の先端情報導出処理について説明する。
 最初に、座標算出部31はアーム5の先端を接地点P5Cに接触させたときに座標取得部51が取得するバケットピン位置P3Cの座標(X3C、Y3C、Z3C)を取得する(ステップST21)。
 その後、座標算出部31は、バケット6の爪6aの先端を接地点P5Cに接触させたときに座標取得部51が取得するバケットピン位置P3Dの座標(X3D、Y3D、Z3D)を取得する(ステップST22)。
 その後、座標算出部31は爪6aの先端の座標を算出する(ステップST23)。本実施例では、座標算出部31は上述の式(12)を用いて接地点P5CのZ座標の値Z5Cを算出する。本実施例では、Y座標の値Y5Cはゼロであり、X座標の値X5Cはバケットピン位置P3CのX座標の値X3Cと等しい。
 その上で、座標算出部31は上述の式(13)を用いてバケットピン位置P3Dと接地点P5C(バケット先端位置P4D)との先端距離L3Bを算出する。
 その後、座標算出部31は、図6A及び図6Bで説明した方法と同じ方法で、爪6aが摩耗した後のバケット先端位置P4の座標を算出する。
 その後、摩耗量算出部32は爪6aの摩耗量を算出する(ステップST24)。本実施例では、摩耗量算出部32は、予め記憶された(爪6aが摩耗していない新品のときの)先端距離L3AとステップST23で算出した先端距離L3Bとに基づいて爪6aの摩耗量を算出する。先端距離L3Aは、操作者が事前に入力する爪の種類に応じて自動的に設定されてもよい。
 具体的には、摩耗量算出部32は、図6Bに示すように、先端距離L3Aと先端距離L3Bと現在のバケットピン位置P3の座標(X3C、Y3C、Z3C)とに基づき、爪6aが摩耗していない新品のときのバケット先端位置P4C1の座標(X4C1、Y4C1、Z4C1)と爪6aが摩耗した現在のバケット先端位置P4C2の座標(X4C2、Y4C2、Z4C2)とを導き出す。そして、上述の式(9)を用いてバケット6の爪6aの摩耗量Wを算出する。
 この構成により、コントローラ30は、図7の先端情報導出処理よりも低い演算負荷で摩耗した爪6aの先端の座標及びその摩耗量を導き出すことができる。
 次に、図11及び図12を参照し、先端情報導出処理のさらに別の例について説明する。図11は先端情報導出処理のさらに別の例の流れを示すフローチャートである。図12は図11の先端情報導出処理に関する座標を示すバケット6の側面図である。具体的には、図12は2つの異なる姿勢でバケット6の爪6aを同じ一つの参照点SPに接触させたときの図である。太実線は第1姿勢をとるバケット6を示し、太点線は第2姿勢をとるバケット6を示す。
 最初に、座標算出部31は第1姿勢をとるバケット6の爪6aの先端を参照点SPに接触させときに座標取得部51が取得するバケットピン位置P3Aの座標(X3A、Y3A、Z3A)を取得する(ステップST31)。
 その後、座標算出部31は第2姿勢をとるバケット6の爪6aの先端を参照点SPに接触させときに座標取得部51が取得するバケットピン位置P3Bの座標(X3B、Y3B、Z3B)を取得する(ステップST32)。
 その後、座標算出部31は爪6aの先端の座標を算出する(ステップST33)。本実施例では、座標算出部31は、バケットピン位置P3Aの座標(X3A、Y3A、Z3A)と、バケットピン位置P3Bの座標(X3B、Y3B、Z3B)と、線分P3A-SPの長さが線分P3B-SPの長さに等しいという事実とに基づいて、バケットピン位置P3A又はバケットピン位置P3Bと参照点SP(バケット先端位置P4A)との先端距離L3Bを以下の式(14)を用いて算出する。そして、座標算出部31は、バケットピン位置P3A又はバケットピン位置P3Bの座標と、バケット角度センサS3が検出するバケット角度と、先端距離L3Bとに基づいて爪6aの先端の座標を算出する。
Figure JPOXMLDOC01-appb-M000014
 第1姿勢をとるバケット6の爪6aの先端を接触させる参照点のX座標の値は、第2姿勢をとるバケット6の爪6aの先端を接触させる参照点のX座標の値と異なっていてもよい。すなわち、2つの参照点は同じ高さの水平面上の異なる位置にあってもよい。
 その後、摩耗量算出部32は爪6aの摩耗量を算出する(ステップST34)。本実施例では、摩耗量算出部32は、予め記憶された(爪6aが摩耗していない新品のときの)先端距離L3AとステップST33で算出した先端距離L3Bとに基づいて爪6aの摩耗量を算出する。
 具体的には、摩耗量算出部32は、図13に示すように、先端距離L3Aと先端距離L3Bと現在のバケットピン位置P3Cの座標(X3C、Y3C、Z3C)とに基づき、爪6aが摩耗していない新品のときのバケット先端位置P4C1の座標(X4C1、Y4C1、Z4C1)と爪6aが摩耗した現在のバケット先端位置P4C2の座標(X4C2、Y4C2、Z4C2)とを導き出す。そして、上述の式(9)を用いてバケット6の爪6aの摩耗量Wを算出する。図13は摩耗量算出部32が摩耗量Wを算出する摩耗量算出処理に関する座標を示すバケット6の側面図である。また、図13の例では、コントローラ30は爪6aの延在方向が地面(水平面)に対して垂直となるように、掘削アタッチメントの姿勢を自動的に制御して爪6aの先端を地面に接触させる。そのため、コントローラ30は、バケット先端位置P4C1のZ座標の値Z4C1とバケット先端位置P4C2のZ座標の値Z4C2との差を算出するだけで摩耗量Wを算出できる。
 この構成により、コントローラ30は、図7の先端情報導出処理よりも低い演算負荷で摩耗した爪6aの先端の座標及びその摩耗量を導き出すことができる。
 次に、図14を参照し、コントローラ30の別の構成例について説明する。図14は、コントローラ30の別の構成例を示す機能ブロック図である。
 図14の構成は、マシンガイダンス装置50がコントローラ30に統合された点で図3の構成と相違するが各構成要素の機能は同じである。
 図14の構成では、マシンガイダンス装置50における座標取得部51、偏差計算部52、音声出力処理部53、及び表示処理部54の4つ全ての機能要素がコントローラ30に統合されているが、4つの機能要素のうちの一部のみがコントローラ30に統合されてもよい。この場合、4つの機能要素のうちの統合されていない残りの部分を有するマシンガイダンス装置がコントローラ30に接続される。
 この構成により、図14のコントローラ30は、図3のコントローラ30と同様の効果を実現できる。
 以上、いくつかの先端情報導出処理を説明したが、ショベルの操作者は、これら先端情報導出処理の何れかを実施することで、特別な道具を要することなく簡単にバケット6の爪6aの摩耗量を測定できる。
 また、操作者は、摩耗した爪6aの先端に対応するバケット先端位置P4の座標に基づくマシンガイダンスを受けることができる。そのため、施工面の仕上がり精度を向上させることができる。
 以上、本発明の好ましい実施例について詳説したが、本発明は、上述した実施例に制限されることはなく、本発明の範囲を逸脱することなしに上述した実施例に種々の変形及び置換を加えることができる。
 例えば、上述の実施例では、接地点P5は地面上の一点であるが本発明はこの構成に限定されるものではない。具体的には、接地点P5は、掘削アタッチメントの非消耗部と消耗部(爪6a)の双方を接触させることができる地物であればよく、例えば、垂直壁の表面上の一点であってもよい。
 また、上述の実施例では、参照点SPは地面上の一点であるが本発明はこの構成に限定されるものではない。具体的には、参照点SPは、掘削アタッチメントの消耗部(爪6a)を接触させることができる地物であればよく、例えば、垂直壁の表面上の一点であってもよい。
 また、基準点RP、接地点P5、参照点SPは実在の点である必要はなく、光学的、磁気的、或いは電気的に設定される仮想点であってもよい。
 また、上述の実施例では、座標取得部51は、ショベルを基準とする基準座標系を回転させて基準座標系の3軸を世界測地系の3軸に合わせることで基準座標系における任意の点に対応する世界測地系における座標を導き出す。例えば、座標取得部51は、世界測地系1984、日本測地系2000、国際地球基準座標系等の全地球的測地系における座標(緯度、経度、高度)を導き出す。但し、座標取得部51は、局所座標系(地域座標系)等のより狭い範囲の測地系の座標を導き出してもよい。
 また、上述の実施例では、摩耗量算出部32は地面(水平面)に対する爪6aの延在方向の角度が既知であるか否かにかかわらずバケット6の爪6aの摩耗量を算出する。しかし、地面(水平面)に対する爪6aの延在方向の角度が既知の場合、摩耗量算出部32はより簡易に爪6aの摩耗量を算出できる。例えば、入力装置D1等を通じてバケット6の形状に関する情報が予めコントローラ30に入力されている場合、コントローラ30は地面(水平面)に対する爪6aの延在方向の角度を制御できる。具体的には、コントローラ30は、操作者がバケット6の爪6aを地面(水平面)に接触させるべく掘削アタッチメントを操作する場合に、爪6aの延在方向が地面(水平面)に対して垂直となるようにバケット6の開閉度合いを自動的に調整する。この場合、コントローラ30は、図15に示すように、バケットピン位置P3Aの高さ(Z座標の値)とバケットピン位置P3Bの高さ(Z座標の値)の差HDを摩耗量Wとして算出する。バケットピン位置P3Aは爪6aの先端が摩耗していないときに爪6aを地面(水平面)に対して垂直に接触させたときのバケットピン位置であり、バケットピン位置P3Bは爪6aの先端が摩耗したときに爪6aを同じ地面(水平面)に対して垂直に接触させたときのバケットピン位置である。このように、コントローラ30は、爪6aを地面(水平面)に対して垂直に接触させることができる場合には、バケットピン位置の高さの変動のみに基づいて爪6aの摩耗量を算出できる。
 また、本願は、2014年12月16日に出願した日本国特許出願2014-254050号に基づく優先権を主張するものであり、この日本国特許出願の全内容を本願に参照により援用する。
 1・・・下部走行体 1A、1B・・・走行用油圧モータ 2・・・旋回機構 3・・・上部旋回体 4・・・ブーム 5・・・アーム 6・・・バケット 6a・・・爪 7・・・ブームシリンダ 8・・・アームシリンダ 9・・・バケットシリンダ 10・・・キャビン 11・・・エンジン 14・・・メインポンプ 15・・・パイロットポンプ 16・・・高圧油圧ライン 17・・・コントロールバルブ 21・・・旋回用油圧モータ 25・・・パイロットライン 26・・・操作装置 26A、26B・・・レバー 26C・・・ペダル 27、28・・・油圧ライン 29・・・圧力センサ 30・・・コントローラ 31・・・座標算出部 32・・・摩耗量算出部 50・・・マシンガイダンス装置 51・・・座標取得部 52・・・偏差計算部 53・・・音声出力処理部 54・・・表示処理部 S1・・・ブーム角度センサ S2・・・アーム角度センサ S3・・・バケット角度センサ S4・・・機体傾斜センサ S5・・・測位センサ D1・・・入力装置 D2・・・音声出力装置 D3・・・表示装置 D4・・・記憶装置

Claims (12)

  1.  下部走行体と、
     前記下部走行体に旋回可能に搭載された上部旋回体と、
     前記上部旋回体に搭載され、先端に消耗部が取り付けられるアタッチメントと、
     前記消耗部を所定地物に接触させたときに前記消耗部の座標を取得し、異なる条件の下で取得した少なくとも2つの座標に基づいて前記消耗部の摩耗量を算出するコントローラと、
     を有するショベル。
  2.  前記コントローラは、
     ショベルの位置とアタッチメントの姿勢とに基づいて前記アタッチメントの所定部位の座標を取得する座標取得部と、
     異なる条件の下で取得した少なくとも2つの座標に基づいて前記消耗部の摩耗量を算出する摩耗量算出部と、を有する
     請求項1に記載のショベル。
  3.  前記少なくとも2つの座標は、第1座標取得期間中に前記座標取得部が取得する座標と、第2座標取得期間中に前記座標取得部が取得する座標とを含む、
     請求項2に記載のショベル。
  4.  前記少なくとも2つの座標は、第1座標取得期間中に前記消耗部の先端を所定位置に位置付けたときに前記座標取得部が取得する座標と、第2座標取得期間中に前記消耗部の先端を前記所定位置に位置付けたときに前記座標取得部が取得する座標とを含む、
     請求項2に記載のショベル。
  5.  前記摩耗量算出部は、第1座標取得期間中に前記アタッチメントの非消耗部の所定部位を第1所定地物に接触させたときに前記座標取得部が取得する前記非消耗部の所定部位の座標と、第1座標取得期間中に前記消耗部を前記第1所定地物に接触させたときに前記座標取得部が取得する前記アタッチメントの所定部位の座標と、第2座標取得期間中に前記アタッチメントの前記非消耗部の所定部位を第2所定地物に接触させたときに前記座標取得部が取得する前記非消耗部の所定部位の座標と、第2座標取得期間中に前記消耗部を前記第2所定地物に接触させたときに前記座標取得部が取得する前記アタッチメントの所定部位の座標とに基づいて前記消耗部の摩耗量を算出する、
     請求項2に記載のショベル。
  6.  前記少なくとも2つの座標は、前記アタッチメントが第1姿勢にあるときに前記座標取得部が取得する座標と、前記アタッチメントが前記第1姿勢とは異なる第2姿勢にあるときに前記座標取得部が取得する座標とを含む、
     請求項2に記載のショベル。
  7.  前記摩耗量算出部は、前記第1姿勢で前記アタッチメントの非消耗部の所定部位を前記所定地物に接触させたときに前記座標取得部が取得する前記非消耗部の所定部位の座標と、前記第2姿勢で前記消耗部を前記所定地物に接触させたときに前記座標取得部が取得する前記アタッチメントの所定部位の座標とに基づいて前記消耗部の摩耗量を算出する、
     請求項6に記載のショベル。
  8.  前記第1姿勢は少なくとも前記消耗部の姿勢の点で前記第2姿勢と異なる、
     請求項6に記載のショベル。
  9.  下部走行体と、前記下部走行体に旋回可能に搭載された上部旋回体と、前記上部旋回体に搭載され、先端に消耗部が取り付けられるアタッチメントと、前記消耗部を所定地物に接触させたときに前記消耗部の座標を取得するコントローラとを有するショベルの制御方法であって、
     前記コントローラは、異なる条件の下で取得した少なくとも2つの座標に基づいて前記消耗部の摩耗量を算出する、
     ショベルの制御方法。
  10.  前記コントローラは、ショベルの位置とアタッチメントの姿勢とに基づいて前記アタッチメントの所定部位の座標を取得する、
     請求項9に記載のショベルの制御方法。
  11.  前記少なくとも2つの座標は、第1座標取得期間中に取得された座標と、第2座標取得期間中に取得された座標とを含む、
     請求項9に記載のショベルの制御方法。
  12.  前記少なくとも2つの座標は、第1座標取得期間中に前記消耗部の先端を所定位置に位置付けたときに取得された座標と、第2座標取得期間中に前記消耗部の先端を前記所定位置に位置付けたときに取得された座標とを含む、
     請求項9に記載のショベルの制御方法。
PCT/JP2015/084976 2014-12-16 2015-12-14 ショベル及びショベルの制御方法 WO2016098741A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202010264507.3A CN111441401B (zh) 2014-12-16 2015-12-14 挖土机
KR1020177017214A KR102447168B1 (ko) 2014-12-16 2015-12-14 쇼벨 및 쇼벨의 제어방법
CN201580068756.2A CN107109825B (zh) 2014-12-16 2015-12-14 挖土机及挖土机的控制方法
EP15869946.2A EP3235960B1 (en) 2014-12-16 2015-12-14 Controller and method for determining wear of a component of a shovel
JP2016564848A JP6401296B2 (ja) 2014-12-16 2015-12-14 ショベル及びショベルの制御方法
US15/621,278 US10584466B2 (en) 2014-12-16 2017-06-13 Shovel and method of controlling shovel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014254050 2014-12-16
JP2014-254050 2014-12-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/621,278 Continuation US10584466B2 (en) 2014-12-16 2017-06-13 Shovel and method of controlling shovel

Publications (1)

Publication Number Publication Date
WO2016098741A1 true WO2016098741A1 (ja) 2016-06-23

Family

ID=56126630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084976 WO2016098741A1 (ja) 2014-12-16 2015-12-14 ショベル及びショベルの制御方法

Country Status (6)

Country Link
US (1) US10584466B2 (ja)
EP (1) EP3235960B1 (ja)
JP (2) JP6401296B2 (ja)
KR (1) KR102447168B1 (ja)
CN (2) CN107109825B (ja)
WO (1) WO2016098741A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018164152A1 (ja) 2017-03-07 2018-09-13 住友建機株式会社 ショベル
WO2019035427A1 (ja) 2017-08-14 2019-02-21 住友建機株式会社 ショベル、及び、ショベルと協働する支援装置
KR20190055099A (ko) 2016-09-29 2019-05-22 스미토모 겐키 가부시키가이샤 쇼벨

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113073692B (zh) * 2015-09-16 2023-07-04 住友重机械工业株式会社 挖土机以及挖土机用控制装置
EP3428350B1 (en) * 2016-03-11 2021-03-03 Hitachi Construction Machinery Co., Ltd. Control device for construction machinery
US10517238B2 (en) * 2017-09-18 2019-12-31 Deere & Company Implement optimization by automated adjustments
JP6878226B2 (ja) * 2017-09-19 2021-05-26 日立建機株式会社 作業機械
US10533306B2 (en) 2017-11-01 2020-01-14 Deere & Company Joint wear device for a work vehicle
US10480155B2 (en) 2017-12-19 2019-11-19 Caterpillar Trimble Control Technologies Llc Excavator implement teeth grading offset determination
US11686067B2 (en) * 2019-05-15 2023-06-27 Deere & Company Motor grader cutting edge wear calibration and warning system
US11702818B2 (en) * 2019-05-15 2023-07-18 Deere & Company Motor grader cutting edge wear calibration and warning system
US11138718B2 (en) 2019-08-09 2021-10-05 Caterpillar Inc. Methods and systems for determining part wear using a bounding model
WO2021054416A1 (ja) * 2019-09-19 2021-03-25 住友重機械工業株式会社 ショベル、ショベルの管理装置
JP7324100B2 (ja) * 2019-09-25 2023-08-09 日立建機株式会社 作業機械

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07299726A (ja) * 1994-04-28 1995-11-14 Hitachi Constr Mach Co Ltd 研削ロボット
JPH09253979A (ja) * 1996-03-25 1997-09-30 Okuma Mach Works Ltd 刃先位置計測装置
JP2001098585A (ja) * 1999-10-01 2001-04-10 Komatsu Ltd 建設機械の掘削作業ガイダンス装置および掘削制御装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763934B2 (ja) * 1987-12-28 1995-07-12 株式会社安川電機 摩耗する工具の摩耗補正方法
IT1245006B (it) 1991-01-25 1994-09-13 Itw Fastex Italia Spa Dispositivo di comando per un portello di un elettrodomestico, in particolare per l'oblo' di una lavatrice
JPH0571259U (ja) 1992-02-26 1993-09-28 株式会社小松製作所 掘削刃
SE0203856L (sv) * 2002-12-23 2004-02-10 Combi Wear Parts Ab Slitdelssystem för lösbar montering av slitdelar till en markberedningsmaskins verktyg
US20060042734A1 (en) * 2004-08-24 2006-03-02 Turner Douglas D Wear component and warning system
US8590180B2 (en) * 2005-07-13 2013-11-26 Harnischfeger Technologies, Inc. Dipper door latch with locking mechanism
SE532815C2 (sv) * 2007-11-09 2010-04-13 Combi Wear Parts Ab Självskärpande, autosignalerande slitdel
CN102869839B (zh) * 2010-12-24 2014-05-07 株式会社小松制作所 轮式装载机的行驶减振器控制装置
DE102011016271A1 (de) * 2011-04-06 2012-10-11 Wirtgen Gmbh Walzengehäuse für eine Arbeitswalze einer Baumaschine oder Abbaumaschine, Baumaschine oder Abbaumaschine, sowie Verfahren zum Überwachen des Zustandes einer Arbeitswalze einer Baumaschine oder Abbaumaschine
CL2012000933A1 (es) * 2011-04-14 2014-07-25 Harnischfeger Tech Inc Un metodo y una pala de cable para la generacion de un trayecto ideal, comprende: un motor de oscilacion, un motor de izaje, un motor de avance, un cucharon para excavar y vaciar materiales y, posicionar la pala por medio de la operacion del motor de izaje, el motor de avance y el motor de oscilacion y; un controlador que incluye un modulo generador de un trayecto ideal.
JP2014527133A (ja) * 2011-08-26 2014-10-09 ボルボ コンストラクション イクイップメント アーベー 掘削歯の摩耗インジケータ及び方法
US8890672B2 (en) * 2011-08-29 2014-11-18 Harnischfeger Technologies, Inc. Metal tooth detection and locating
US20130082846A1 (en) * 2011-09-30 2013-04-04 Timothy Allen McKinley Sensor system and method
US8843282B2 (en) * 2011-11-02 2014-09-23 Caterpillar Inc. Machine, control system and method for hovering an implement
US8972120B2 (en) * 2012-04-03 2015-03-03 Harnischfeger Technologies, Inc. Extended reach crowd control for a shovel
JP5597222B2 (ja) * 2012-04-11 2014-10-01 株式会社小松製作所 油圧ショベルの掘削制御システム
KR200470463Y1 (ko) * 2012-04-19 2013-12-18 문병윤 유압 브레이커
US9411325B2 (en) * 2012-10-19 2016-08-09 Komatsu Ltd. Excavation control system for hydraulic excavator
WO2014093625A1 (en) * 2012-12-12 2014-06-19 Vermeer Manufacturing Company Systems and methods for sensing wear of reducing elements of a material reducing machine
CN103543693B (zh) * 2013-10-31 2016-06-08 常州工学院 一种实时测量阴极磨损量的装置及方法
EA202191815A1 (ru) * 2016-06-13 2022-03-31 ЭСКО ГРУП ЛЛСи Манипуляционная система для изнашиваемых грунтозацепляющих элементов, прикрепленных к землеройному оборудованию
US10119232B2 (en) * 2016-06-24 2018-11-06 Antonio Raymundo Herrera Illuminated shovel assembly
EP3521522A4 (en) * 2016-09-29 2020-01-29 Sumitomo (S.H.I.) Construction Machinery Co., Ltd. SHOVEL

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07299726A (ja) * 1994-04-28 1995-11-14 Hitachi Constr Mach Co Ltd 研削ロボット
JPH09253979A (ja) * 1996-03-25 1997-09-30 Okuma Mach Works Ltd 刃先位置計測装置
JP2001098585A (ja) * 1999-10-01 2001-04-10 Komatsu Ltd 建設機械の掘削作業ガイダンス装置および掘削制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3235960A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190055099A (ko) 2016-09-29 2019-05-22 스미토모 겐키 가부시키가이샤 쇼벨
US11001992B2 (en) 2016-09-29 2021-05-11 Sumitomo(S.H.I.) Construction Machinery Co., Ltd. Shovel, display method, and mobile terminal
WO2018164152A1 (ja) 2017-03-07 2018-09-13 住友建機株式会社 ショベル
KR20190122662A (ko) 2017-03-07 2019-10-30 스미토모 겐키 가부시키가이샤 쇼벨
US11519158B2 (en) 2017-03-07 2022-12-06 Sumitomo(S.H.I.) Construction Machinery Co., Ltd. Shovel
WO2019035427A1 (ja) 2017-08-14 2019-02-21 住友建機株式会社 ショベル、及び、ショベルと協働する支援装置
KR20200040695A (ko) 2017-08-14 2020-04-20 스미토모 겐키 가부시키가이샤 쇼벨, 및 쇼벨과 협동하는 지원장치
US11566401B2 (en) 2017-08-14 2023-01-31 Sumitomo Construction Machinery Co., Ltd. Shovel and assist device to work together with shovel

Also Published As

Publication number Publication date
JPWO2016098741A1 (ja) 2017-09-28
JP6401296B2 (ja) 2018-10-10
JP2018188958A (ja) 2018-11-29
JP6728286B2 (ja) 2020-07-22
CN107109825A (zh) 2017-08-29
EP3235960A1 (en) 2017-10-25
CN107109825B (zh) 2020-05-05
KR20170095890A (ko) 2017-08-23
KR102447168B1 (ko) 2022-09-23
EP3235960A4 (en) 2018-01-10
CN111441401B (zh) 2022-06-07
US20170275854A1 (en) 2017-09-28
US10584466B2 (en) 2020-03-10
CN111441401A (zh) 2020-07-24
EP3235960B1 (en) 2019-11-13

Similar Documents

Publication Publication Date Title
JP6728286B2 (ja) ショベル及びショベルの制御方法
JP6162807B2 (ja) 作業機械の制御システム及び作業機械
US9598845B2 (en) Posture computing apparatus for work machine, work machine, and posture computation method for work machine
CN105339759B (zh) 作业机械的控制系统以及作业机械的控制方法
US9739038B2 (en) Posture computing apparatus for work machine, work machine, and posture computation method for work machine
JP6058217B2 (ja) 作業車両、バケット装置及びチルト角度の取得方法
WO2018062374A1 (ja) ショベル
JP6289534B2 (ja) 作業機械の制御システム及び作業機械
US9689145B1 (en) Work vehicle and method for obtaining tilt angle
JP2019525039A (ja) 掘削器具の機首方位制御
CN109196168B (zh) 工作装置控制装置及作业机械
JP7143117B2 (ja) ショベル
JP2023176800A (ja) ショベル及びショベルの管理システム
JP7324100B2 (ja) 作業機械
JP7065002B2 (ja) 作業機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869946

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016564848

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015869946

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177017214

Country of ref document: KR

Kind code of ref document: A