WO2016098653A1 - 検出方法および検出装置 - Google Patents

検出方法および検出装置 Download PDF

Info

Publication number
WO2016098653A1
WO2016098653A1 PCT/JP2015/084492 JP2015084492W WO2016098653A1 WO 2016098653 A1 WO2016098653 A1 WO 2016098653A1 JP 2015084492 W JP2015084492 W JP 2015084492W WO 2016098653 A1 WO2016098653 A1 WO 2016098653A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal film
light
angle
substance
incident
Prior art date
Application number
PCT/JP2015/084492
Other languages
English (en)
French (fr)
Inventor
貴紀 村山
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2016564806A priority Critical patent/JP6717201B2/ja
Publication of WO2016098653A1 publication Critical patent/WO2016098653A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Definitions

  • the present invention relates to a detection method and a detection apparatus for detecting the presence or amount of a substance to be detected contained in a specimen using surface plasmon resonance.
  • SPFS Surface Plasmon-field enhanced Fluorescence Spectroscopy
  • the surface plasmon excitation enhanced fluorescence analysis method described in Patent Literature 1 irradiates excitation light while changing the incident angle on the metal thin film so that the metal thin film is totally reflected on the prism on which the metal thin film is formed.
  • the step of measuring the plasmon scattered light generated on the surface of the metal thin film when the excitation light is totally reflected by the thin film, and the incident angle (intensification angle) at which the intensity of the measured plasmon scattered light is maximized is the metal thin film of the excitation light
  • a second capture labeled with a detection substance and a fluorescent substance on a metal thin film on which a first capture body (for example, a primary antibody) capable of specifically binding to the detection substance is fixed.
  • a reaction step for providing a body (for example, a secondary antibody) and a detection step for irradiating excitation light at a determined enhancement angle and measuring the fluorescence intensity of the fluorescence emitted from the fluorescent substance labeled with the target substance on the metal thin film When, Including.
  • the enhancement angle used in the surface plasmon excitation enhanced fluorescence analysis method described in Patent Document 1 varies depending on the temperature. Specifically, the enhancement angle is changed by increasing or decreasing the refractive index of the metal thin film due to a temperature change of the metal thin film, or by expanding or contracting the prism due to a temperature change. In particular, in an analysis method that does not adjust the temperature, the temperature at the time of determination of the enhancement angle may be different from the temperature at the time of detection of the detection target substance. There was a problem that detection could not be performed and the detection accuracy would decrease.
  • An object of the present invention is to provide a detection method and a detection apparatus using surface plasmon resonance, which can detect a substance to be detected with higher sensitivity.
  • a detection method is a detection method for detecting the presence or amount of a substance to be detected contained in a specimen using surface plasmon resonance.
  • the incident angle of the incident light is determined based on the information on the relationship between the enhancement angle that is the angle or the resonance angle that is the incident angle of the incident light when the amount of reflected light of the incident light irradiated on the metal film is minimized.
  • Determine the enhancement angle or the resonance angle After the second step and the second step, the metal film is irradiated with incident light at the enhancement angle or the resonance angle, and the detected substance is detected by detecting a signal generated by the incident light. 3 steps.
  • a detection apparatus for detecting the presence or amount of a target substance contained in a specimen using surface plasmon resonance.
  • a light irradiation unit for irradiating incident light to the metal film of a chip having a metal film and a capturing body fixed on the metal film, and the metal film is irradiated
  • a light detection unit that detects a signal generated by incident light, a temperature measurement unit that directly or indirectly measures the temperature of the metal film, a temperature of the metal film, and a plasmon generated from the metal film by incident light
  • An enhancement angle that is an incident angle of incident light when the intensity of scattered light is maximum, or a resonance angle that is an incident angle of incident light when the amount of reflected light of incident light irradiated on the metal film is minimized.
  • Relationship information Based on the stored storage unit, the temperature of the metal film measured by the temperature measurement unit, and the information stored in the storage unit, the incident angle of incident light is changed to the enhancement angle or the resonance angle.
  • a processing unit to determine, the light irradiation unit irradiates the metal film with incident light at the enhancement angle or the resonance angle determined by the processing unit, the light detection unit, A signal generated by incident light irradiated on the metal film at the enhancement angle or the resonance angle determined by the processing unit is detected.
  • the present invention it is possible to detect a substance to be detected with higher sensitivity in a detection method and a detection apparatus using surface plasmon resonance.
  • FIG. 1 is a schematic diagram illustrating a configuration of a detection device according to Embodiment 1.
  • 2A to 2C are diagrams showing the configuration of the chip.
  • FIG. 3 is a flowchart showing the operation of the detection apparatus according to the first embodiment.
  • FIG. 4 is a flowchart showing a method of adjusting the incident angle.
  • FIG. 5 is a graph showing the relationship between the temperature difference of the metal film and the correction angle of the incident angle.
  • FIG. 6 is a schematic diagram illustrating a configuration of the detection device according to the second embodiment.
  • 7A and 7B are perspective views of the diffraction grating.
  • 8A and 8B are diagrams schematically showing a second aspect of the chip.
  • FIG. 9 is a flowchart showing the operation of the detection apparatus according to the second embodiment.
  • FIG. 10 is a flowchart showing another operation of the detection device according to the first and second embodiments.
  • FIG. 11 is a flowchart showing a method for correcting the fluorescence intensity.
  • FIG. 12 is a graph showing the relationship between the temperature difference of the metal film and the correction coefficient of fluorescence intensity.
  • FIG. 13 is a schematic diagram illustrating a configuration of a detection device according to the third embodiment.
  • FIG. 14 is a flowchart showing the operation of the detection apparatus according to the third embodiment.
  • FIG. 1 is a schematic diagram showing a configuration of a detection apparatus 100 according to Embodiment 1 of the present invention.
  • the detection apparatus 100 includes a chip holder 70, a light irradiation unit 110, a light detection unit 120, a temperature measurement unit 130, and a control unit 140 including a storage unit 141 and a processing unit 142.
  • the detection device 100 is used in a state where the chip 10 having the prism 20 is mounted on the chip holder 70.
  • the detection apparatus 100 according to Embodiment 1 is a prism coupling (PC) -SPFS apparatus that uses a prism 20. Therefore, the chip 10 having the prism 20 will be described first, and then the detection apparatus 100 will be described.
  • FIG. 2 is a schematic diagram showing the configuration of the chip.
  • 2A is a perspective view of the chip 10
  • FIG. 2B is a cross-sectional view of the chip 10
  • FIG. 2C is a cross-sectional view of another form of the chip 10 ′.
  • the chip 10 includes a prism 20, a metal film 30, and a channel lid 40. Usually, the chip 10 is replaced for each detection.
  • the prism 20 is made of a dielectric that is transparent to the excitation light ⁇ .
  • the prism 20 has an incident surface 21, a film forming surface 22, and an exit surface 23.
  • the incident surface 21 causes the excitation light ⁇ from the light irradiation unit 110 to enter the prism 20.
  • a metal film 30 is disposed on the film formation surface 22.
  • the excitation light ⁇ incident on the inside of the prism 20 is reflected on the back surface of the metal film 30. More specifically, the excitation light ⁇ is reflected at the interface (deposition surface 22) between the prism 20 and the metal film 30.
  • the emission surface 23 emits the reflected light ⁇ of the excitation light ⁇ reflected by the back surface of the metal film 30 to the outside of the prism 20.
  • the shape of the prism 20 is not particularly limited.
  • the shape of the prism 20 is a column having a trapezoidal bottom surface.
  • the surface corresponding to one base of the trapezoid is the film formation surface 22, the surface corresponding to one leg is the incident surface 21, and the surface corresponding to the other leg is the emission surface 23.
  • the incident surface 21 is formed so that the excitation light ⁇ does not return to the light irradiation unit 110.
  • the light source of the excitation light ⁇ is a laser diode (hereinafter also referred to as “LD”)
  • LD laser diode
  • the angle of the incident surface 21 is set so that the excitation light ⁇ does not enter the incident surface 21 perpendicularly within a predetermined scanning range.
  • the angle formed by the incident surface 21 and the film forming surface 22 and the angle formed by the film forming surface 22 and the output surface 23 are both about 80 °.
  • the angle of enhancement is generally determined by the design of the chip 10.
  • the design factors are the refractive index of the prism 20, the refractive index of the metal film 30, the film thickness of the metal film 30, the extinction coefficient of the metal film 30, the wavelength of the excitation light ⁇ , and the like.
  • the enhancement angle is shifted by the substance to be detected immobilized on the metal film 30, but the amount is less than a few degrees.
  • the “enhancement angle” is an incident angle of the excitation light ⁇ that maximizes the amount of plasmon scattered light generated in the metal film 30 when the metal film 30 is irradiated with the excitation light ⁇ .
  • the prism 20 has a considerable amount of birefringence.
  • Examples of the material of the prism 20 include resin and glass.
  • the material of the prism 20 is preferably a resin having a refractive index of 1.4 to 1.6 and a small birefringence.
  • the metal film 30 is disposed on the film formation surface 22 of the prism 20.
  • an interaction (surface plasmon resonance) occurs between the photon of the excitation light ⁇ incident on the film formation surface 22 under the total reflection condition and free electrons in the metal film 30, and is locally on the surface of the metal film 30. In-situ light can be generated.
  • the material of the metal film 30 is not particularly limited as long as it is a metal that can cause surface plasmon resonance.
  • Examples of the material of the metal film 30 include gold, silver, copper, aluminum, and alloys thereof.
  • the metal film 30 is a gold thin film.
  • the method for forming the metal film 30 is not particularly limited. Examples of the method for forming the metal film 30 include sputtering, vapor deposition, and plating.
  • the thickness of the metal film 30 is not particularly limited, but is preferably in the range of 30 to 70 nm.
  • a capturing body for capturing a substance to be detected is fixed to the metal film 30 (reaction field).
  • the capturing body specifically binds to the substance to be detected.
  • the capturing body is fixed substantially uniformly on the surface of the metal film 30.
  • the type of capturing body is not particularly limited as long as it can capture the substance to be detected.
  • the capturing body is an antibody (primary antibody) or a fragment thereof specific to the substance to be detected, an enzyme that can specifically bind to the substance to be detected, or the like.
  • the method for immobilizing the capturing body is not particularly limited.
  • a self-assembled monomolecular film hereinafter referred to as “SAM”
  • SAMs include films formed with substituted aliphatic thiols such as HOOC— (CH 2 ) 11 —SH.
  • the material constituting the polymer film include polyethylene glycol and MPC polymer.
  • a polymer having a reactive group that can be bound to the capturing body (or a functional group that can be converted into a reactive group) may be immobilized on the metal film 30 and the capturing body may be bound to the polymer.
  • the flow path lid 40 is disposed on the metal film 30.
  • the flow path lid 40 may be disposed on the film formation surface 22.
  • a channel groove is formed on the back surface of the channel lid 40, and the channel lid 40 forms a channel 43 through which a liquid flows together with the metal film 30 (and the prism 20).
  • the liquid include a sample solution containing a substance to be detected, a labeled solution containing an antibody labeled with a fluorescent material, and a washing solution. Both ends of the channel 43 are connected to an inlet 41 and an outlet 42 formed on the upper surface of the channel lid 40, respectively.
  • a contact-type temperature sensor 131 described later is inserted from the inlet 41 or the outlet 42 and measures the temperature of the metal film 30 (see FIG. 2B).
  • the channel lid 40 is preferably made of a material transparent to the fluorescent ⁇ and plasmon scattered light ⁇ emitted from the metal film 30.
  • An example of the material of the flow path lid 40 includes a resin.
  • the other portion of the channel lid 40 may be formed of an opaque material.
  • the flow path lid 40 is bonded to the metal film 30 or the prism 20 by, for example, adhesion using a double-sided tape or an adhesive, laser welding, ultrasonic welding, or pressure bonding using a clamp member.
  • the chip 10 ′ may have a well 44 instead of the flow path 43.
  • a specimen is provided from the opening of the well 44 (through hole formed in the flow path lid 40 ′), or the temperature of the metal film 30 is measured by the temperature sensor 131.
  • the excitation light ⁇ enters the prism 20 from the incident surface 21.
  • the excitation light ⁇ incident on the prism 20 is incident on the metal film 30 at a total reflection angle (an angle at which surface plasmon resonance occurs).
  • localized field light (generally also referred to as “evanescent light” or “near field light”) is applied to the metal film 30.
  • This localized field light excites a fluorescent substance that labels the substance to be detected present on the metal film 30, and emits fluorescence ⁇ .
  • the detection apparatus 100 detects the presence or amount of the substance to be detected by detecting the amount of fluorescence ⁇ emitted from the fluorescent substance.
  • the detection apparatus 100 includes the chip holder 70, the light irradiation unit 110, the light detection unit 120, the temperature measurement unit 130, and the control unit 140 including the storage unit 141 and the processing unit 142.
  • the chip holder 70 holds the chip 10.
  • the shape of the chip holder 70 is not particularly limited as long as it can hold the chip 10 and does not block the optical path of the excitation light ⁇ .
  • the chip holder 70 is configured to hold the chip 10 by gripping the channel lid 40 from the side.
  • the light irradiation unit 110 emits excitation light ⁇ to the chip 10 (the back surface of the metal film 30) held by the chip holder 70. At the time of measuring the fluorescence ⁇ , the light irradiation unit 110 emits the excitation light ⁇ toward the incident surface 21 so that the incident angle with respect to the metal film 30 is an angle that causes surface plasmon resonance.
  • the “excitation light” is light that directly or indirectly excites the fluorescent material.
  • the excitation light ⁇ is light that generates localized field light on the surface of the metal film 30 that excites the fluorescent material when the metal film 30 is irradiated through the prism 20 at an angle at which surface plasmon resonance occurs. is there.
  • the light irradiation unit 110 includes a light source unit 111, a first angle adjustment mechanism 112, and a light source control unit 113.
  • the light source unit 111 emits the collimated excitation light ⁇ having a constant wavelength and light amount so that the shape of the irradiation spot on the back surface of the metal film 30 is substantially circular.
  • the light source unit 111 includes, for example, a light source of excitation light ⁇ , a beam shaping optical system, an APC mechanism, and a temperature adjustment mechanism (all not shown).
  • the type of the light source is not particularly limited, and is, for example, a laser diode (LD).
  • Other examples of light sources include light emitting diodes, mercury lamps, and other laser light sources.
  • the light emitted from the light source is not a beam, the light emitted from the light source is converted into a beam by a lens, a mirror, a slit, or the like.
  • the light emitted from the light source is not monochromatic light, the light emitted from the light source is converted into monochromatic light by a diffraction grating or the like.
  • the light emitted from the light source is not linearly polarized light, the light emitted from the light source is converted into linearly polarized light by a polarizer or the like.
  • the beam shaping optical system may include, for example, a collimator, a band pass filter, a linear polarization filter, a half-wave plate, a slit, a zoom means, and the like.
  • the collimator collimates the excitation light ⁇ emitted from the light source.
  • the band-pass filter turns the excitation light ⁇ emitted from the light source into narrowband light having only the center wavelength. This is because the excitation light ⁇ from the light source has a slight wavelength distribution width.
  • the linear polarization filter turns the excitation light ⁇ emitted from the light source into completely linearly polarized light.
  • the half-wave plate adjusts the polarization direction of the excitation light ⁇ so that the P-wave component is incident on the metal film 30.
  • the slit and zoom means adjust the beam diameter, contour shape, and the like of the excitation light ⁇ so that the shape of the irradiation spot on the back surface of the metal film 30 is a circle of a predetermined size.
  • the APC mechanism controls the light source so that the output of the light source is constant. More specifically, the APC mechanism detects the amount of light branched from the excitation light ⁇ with a photodiode (not shown) or the like.
  • the APC mechanism controls the input energy by a regression circuit, thereby controlling the output of the light source to be constant.
  • the temperature adjustment mechanism is, for example, a heater or a Peltier element.
  • the wavelength and energy of the light emitted from the light source may vary depending on the temperature. For this reason, the wavelength and energy of the light emitted from the light source are controlled to be constant by keeping the temperature of the light source constant by the temperature adjusting mechanism.
  • the first angle adjusting mechanism 112 adjusts the incident angle of the excitation light ⁇ to the back surface of the metal film 30 (the interface between the prism 20 and the metal film 30 (film formation surface 22)).
  • the first angle adjusting mechanism 112 irradiates the excitation light ⁇ at a predetermined incident angle toward a predetermined position on the back surface of the metal film 30 via the prism 20, and the optical axis of the excitation light ⁇ and the chip 10 (metal film). 30) are rotated relative to each other.
  • the first angle adjustment mechanism 112 rotates the light source unit 111 about an axis orthogonal to the optical axis of the excitation light ⁇ (an axis perpendicular to the paper surface of FIG.
  • the position of the rotation axis is set so that the position of the irradiation spot on the metal film 30 hardly changes even if the incident angle is changed.
  • the angle at which the maximum amount of plasmon scattered light ⁇ can be obtained is the enhancement angle.
  • the basic incident condition of the excitation light ⁇ is determined by the material and shape of the prism 20 of the chip 10, the film thickness of the metal film 30, the refractive index of the liquid in the flow path 43, and the like.
  • the optimum incident condition varies slightly depending on the type and amount of the substance, the shape error of the prism 20, and the like.
  • a suitable emission angle of the excitation light ⁇ with respect to the normal line N of the metal film 30 is about 70 °.
  • the light source control unit 113 controls various devices included in the light source unit 111 to control the emission of the emitted light (excitation light ⁇ ) of the light source unit 111.
  • the light source control unit 113 includes, for example, a known computer or microcomputer including an arithmetic device, a control device, a storage device, an input device, and an output device.
  • the light detection unit 120 irradiates the back surface of the metal film 30 with the excitation light ⁇ when the detection target substance is detected, and the back surface of the metal film 30 with the excitation light ⁇ when the enhancement angle is measured.
  • the plasmon scattered light ⁇ generated by the above is detected.
  • the light detection unit 120 includes, for example, a light receiving unit 121, a position switching mechanism 122, and a light receiving sensor control unit 123.
  • the light receiving unit 121 is arranged in the normal Z direction with respect to the surface of the metal film 30 of the chip 10.
  • the light receiving unit 121 includes a first lens 124, an optical filter 125, a second lens 126, and a light receiving sensor 127.
  • the first lens 124 is, for example, a condensing lens, and condenses light emitted from the metal film 30.
  • the second lens 126 is an imaging lens, for example, and forms an image of the light collected by the first lens 124 on the light receiving surface of the light receiving sensor 127.
  • the optical path between both lenses is a substantially parallel optical path.
  • the optical filter 125 is disposed between both lenses.
  • the optical filter 125 guides only the fluorescence component to the light receiving sensor 127 and removes the excitation light component (plasmon scattered light ⁇ ) in order to detect the fluorescence ⁇ with a high S / N ratio.
  • the optical filter 125 include an excitation light reflection filter, a short wavelength cut filter, and a band pass filter.
  • the optical filter 125 is, for example, a filter including a multilayer film that reflects a predetermined light component, but may be a colored glass filter that absorbs the predetermined light component.
  • the light receiving sensor 127 detects fluorescence ⁇ or plasmon scattered light ⁇ .
  • the light receiving sensor 127 has a high sensitivity capable of detecting weak fluorescence ⁇ or plasmon scattered light ⁇ from a minute amount of a substance to be detected.
  • the light receiving sensor 127 is, for example, a photomultiplier tube (PMT) or an avalanche photodiode (APD).
  • the position switching mechanism 122 switches the position of the optical filter 125 on or off the optical path in the light receiving unit 121. Specifically, the position switching mechanism 122 arranges the optical filter 125 on the optical path of the light receiving unit 121 when the light receiving sensor 127 detects fluorescence ⁇ , and optically detects when the light receiving sensor 127 detects plasmon scattered light ⁇ .
  • the filter 125 is disposed outside the light path of the light receiving unit 121.
  • the position switching mechanism 122 includes, for example, a rotation drive unit and a known mechanism (such as a turntable or a rack and pinion) that moves the optical filter 125 in the horizontal direction using a rotational motion.
  • the light receiving sensor control unit 123 controls detection of the output value of the light receiving sensor 127, management of sensitivity of the light receiving sensor 127 based on the detected output value, change of sensitivity of the light receiving sensor 127 for obtaining an appropriate output value, and the like.
  • the light receiving sensor control unit 123 includes, for example, a known computer or microcomputer including an arithmetic device, a control device, a storage device, an input device, and an output device.
  • the temperature measuring unit 130 measures the temperature of the metal film 30 directly or indirectly.
  • the temperature measurement unit 130 includes a temperature sensor 131 and a temperature sensor adjustment mechanism 132.
  • the type of the temperature sensor 131 is not particularly limited as long as the temperature of the metal film 30 can be measured, and may be a contact type or a non-contact type.
  • Examples of the contact-type temperature sensor 131 include a thermistor thermometer, a resistance temperature detector thermometer, a thermocouple thermometer, and the like.
  • Examples of the non-contact type temperature sensor 131 include a radiation thermometer, a two-color thermometer, and a thermography. In the present embodiment, the temperature sensor 131 is a contact-type thermometer.
  • the temperature sensor adjustment mechanism 132 sends the position of the temperature sensor 131 and the detected output value to the control unit 140 (storage unit 141).
  • the control unit 140 includes, for example, a known computer or microcomputer including a storage unit 141, a processing unit 142, an arithmetic device, a control device, an input device, and an output device, and includes a first angle adjustment mechanism 112, a light source control unit, and the like. 113, the position switching mechanism 122, the temperature sensor adjustment mechanism 132, and the light receiving sensor control unit 123 are controlled.
  • the storage unit 141 stores information on the relationship between the temperature of the metal film 30 and the optimal incident angle of incident light. Specifically, in the present embodiment, the storage unit 141 has a relationship between the temperature of the metal film 30 and the enhancement angle at which the intensity of the plasmon scattered light ⁇ generated from the metal film 30 by the irradiated incident light is maximized.
  • the processing unit 142 determines the incident angle of incident light as an optimal incident angle (enhancement angle).
  • FIG. 3 is a flowchart illustrating an example of an operation procedure of the detection apparatus 100.
  • the primary antibody is immobilized on the metal film 30 as a capturing body.
  • a secondary antibody labeled with a fluorescent substance is used as a capturing body used for fluorescent labeling.
  • step S110 preparation for measurement is performed (step S110). Specifically, the chip 10 is prepared and the chip 10 is installed in the chip holder 70. When a humectant is present on the metal film 30 of the chip 10, the humectant is removed by washing the metal film 30 so that the primary antibody can appropriately capture the substance to be detected.
  • the substance to be detected in the specimen is reacted with the primary antibody (primary reaction, step S120). Specifically, a specimen is provided on the metal film 30, and the specimen and the primary antibody are brought into contact with each other. When a substance to be detected exists in the sample, at least a part of the substance to be detected binds to the primary antibody. Thereafter, the metal film 30 is washed with a buffer solution or the like to remove substances that did not bind to the primary antibody.
  • the specimen include body fluids such as blood, serum, plasma, urine, nasal fluid, saliva, semen, and diluted solutions thereof.
  • substances to be detected include nucleic acids (such as DNA and RNA), proteins (such as polypeptides and oligopeptides), amino acids, carbohydrates, lipids, and modified molecules thereof.
  • the target substance bound to the primary antibody is labeled with a fluorescent substance (secondary reaction, step S130).
  • a fluorescent labeling solution containing a secondary antibody labeled with a fluorescent substance is provided on the metal film 30, and the target substance bound to the primary antibody is brought into contact with the fluorescent labeling liquid.
  • the fluorescent labeling solution is, for example, a buffer solution containing a secondary antibody labeled with a fluorescent substance.
  • the substance to be detected is bound to the primary antibody, at least a part of the substance to be detected is labeled with a fluorescent substance.
  • step S120 the order of the primary reaction (step S120) and the secondary reaction (step S130) is not limited to this.
  • a liquid containing these complexes may be provided on the metal film 30 after the substance to be detected is bound to the secondary antibody.
  • the specimen and the fluorescent labeling solution may be provided on the metal film 30 at the same time.
  • the incident angle is adjusted (step S140). Specifically, the control unit 140 causes the plasmon scattering generated from the metal film 30 by the temperature of the metal film 30 measured by the temperature measurement unit 130 and the excitation light ⁇ irradiated on the back surface of the metal film 30 via the prism 20.
  • the incident angle of the excitation light ⁇ is determined as the enhancement angle in the metal film 30 based on the information on the relationship with the enhancement angle at which the light intensity is maximum.
  • FIG. 4 is a flowchart for explaining a method of adjusting the incident angle.
  • FIG. 5 is a graph showing the relationship between the temperature difference of the metal film and the correction angle of the enhancement angle.
  • the horizontal axis in FIG. 5 is the temperature difference (° C.) of the metal film, and the vertical axis is the incident angle correction angle (°).
  • the enhancement angle is known to change slightly with temperature. Therefore, in the present embodiment, the incident angle is set to an enhancement angle at the temperature according to the temperature of the metal film 30, and the excitation light ⁇ is irradiated at the incident angle, and the fluorescence emitted from the excited fluorescent material is emitted.
  • the detection accuracy of the substance to be detected is improved. Specifically, the temperature difference (° C.) between the reference temperature of the metal film 30 (for example, 20 °) and the temperature of the arbitrary metal film 30 in the storage unit 141 in advance, and the incident angle correction angle (°) ) Is stored.
  • the correction angle (°) of the incident angle is the difference between the reference temperature of the metal film 30 and the temperature of the metal film 30 at the time of detection (temperature difference) in the temperature of the metal film at the time of detection. It is the difference value of the enhancement angle from the enhancement angle at the reference temperature in order to match the enhancement angle.
  • the temperature difference of the metal film 30 and the correction angle of the incident angle in order to obtain the relationship between the temperature difference of the metal film 30 and the correction angle of the incident angle, first, the temperature of any of the plurality of metal films 30 and the metal film 30.
  • the enhancement angle at the temperature is measured (step S141).
  • the temperature sensor 131 When directly measuring the temperature of the metal film 30, the temperature sensor 131 is inserted into the inlet 41 or the outlet 42 of the flow path lid 40, and the temperature sensor 131 is brought into contact with the metal film 30 for measurement.
  • the temperature of the metal film 30 is measured jointly, the temperature of the channel lid 40 or the specimen is measured with the temperature sensor 131 being moved onto the channel lid 40. At this time, the temperature of the metal film 30 approximates the temperature of the channel lid 40 or the specimen.
  • a difference value between the reference temperature and the temperature of the arbitrary metal film 30 is obtained (step S142).
  • a difference value between the enhancement angle at the reference temperature and the enhancement angle at the temperature of the arbitrary metal film 30 is obtained (step S143).
  • the plasmon scattered light ⁇ is detected by the light receiving sensor 127 while scanning the angle of the optical axis of the excitation light ⁇ by the first angle adjusting mechanism 112.
  • the incident angle of the excitation light ⁇ that maximizes the amount of plasmon scattered light ⁇ is defined as the enhancement angle.
  • control unit 140 drives the temperature measurement unit 130 to measure the temperature of the metal film 30 (step S144).
  • control unit 140 obtains a difference value (temperature difference) between the temperature of the metal film 30 and the reference temperature.
  • the control unit 140 determines the enhancement angle corresponding to the temperature of the metal film 30 at the time of detection.
  • the first angle adjustment mechanism 112 is driven to adjust the incident angle of the excitation light ⁇ so as to be an enhancement angle (step S145).
  • a substance to be detected is detected (step S150). Specifically, the control unit 140 drives the light receiving sensor control unit 123 while driving the light source control unit 113 to irradiate the predetermined position of the metal film 30 with the excitation light ⁇ at the incident angle determined in step S140. Then, the light receiving sensor 127 is controlled so as to detect the intensity of the fluorescence ⁇ emitted from the metal film 30 (the surface of the metal film 30 and its vicinity). At this time, the control unit 140 operates the position switching mechanism 122 to place the optical filter 125 on the optical path of the light receiving unit 121. At this time, since the optical filter 125 does not transmit the plasmon scattered light ⁇ , only the fluorescence ⁇ is detected by the light receiving sensor 127. The fluorescence intensity is converted into the amount or concentration of the substance to be detected as necessary.
  • the detection apparatus 100 may measure a blank value before the secondary reaction (step S130).
  • the amount of fluorescence ⁇ indicating the amount of the substance to be detected in the sample is calculated by subtracting the blank value from the detected value of fluorescence ⁇ .
  • the control unit 140 irradiates the excitation light ⁇ on the metal film 30 while scanning the incident angle of the incident light. And the control part 140 obtains the maximum value of the intensity
  • the detection apparatus 100 can detect a detected substance at an enhancement angle regardless of the temperature of the metal film 30, and thus can detect the detected substance with higher sensitivity. Can do.
  • the detection apparatus 200 according to the second embodiment is different from the detection apparatus 100 according to the first embodiment in that it is a grating coupling (GC) -SPFS apparatus that uses the diffraction grating 50. Therefore, the same components as those of the detection device 100 according to Embodiment 1 are denoted by the same reference numerals, and the description thereof is omitted.
  • GC grating coupling
  • FIG. 6 is a diagram illustrating a configuration of the detection apparatus 200 according to the second embodiment.
  • the detection apparatus 200 includes a chip holder 80, a light irradiation unit 110, a light detection unit 220, a temperature measurement unit 130, and a control unit 140 including a storage unit 141 and a processing unit 142.
  • the detection device 200 is used in a state where the chip 90 having the diffraction grating 50 is mounted on the chip holder 80.
  • FIGS. 8A and 8B are schematic diagrams showing the configuration of the chip 90.
  • FIG. FIG. 7A is a perspective view of a one-dimensional diffraction grating
  • FIG. 7B is a perspective view of a two-dimensional diffraction grating.
  • FIG. 8A is a diagram schematically illustrating a first aspect of the chip 90
  • FIG. 8B is a diagram schematically illustrating a second aspect of the chip 90 ′.
  • the chip 90 includes a substrate 60, a metal film 30, and a flow path lid 40.
  • a diffraction grating 50 is formed on the metal film 30.
  • a capture body (for example, a primary antibody) is immobilized on the diffraction grating 50, and the surface of the diffraction grating 50 also functions as a reaction field for binding the capture body and the substance to be detected. In FIG. 6, the capturing body and the substance to be detected are omitted.
  • the substrate 60 is a support member for the metal film 30.
  • the material of the substrate 60 is not particularly limited as long as it has mechanical strength capable of supporting the metal film 30.
  • Examples of the material of the substrate 60 include inorganic materials such as glass, quartz, and silicon, and resins such as polymethyl methacrylate, polycarbonate, polystyrene, and polyolefin.
  • the metal film 30 is disposed on the substrate 60. As described above, the diffraction grating 50 is formed on the metal film 30. When the metal film 30 is irradiated with light, surface plasmons generated in the metal film 30 and evanescent waves generated by the diffraction grating 50 are combined to generate surface plasmon resonance.
  • the material, the formation method, and the thickness of the metal film 30 in the present embodiment are the same material, the same formation method, and the same thickness as the metal film 30 in the first embodiment.
  • the diffraction grating 50 generates an evanescent wave when the metal film 30 is irradiated with light.
  • the shape of the diffraction grating 50 is not particularly limited as long as an evanescent wave can be generated.
  • the diffraction grating 50 may be a one-dimensional diffraction grating as shown in FIG. 7A or a two-dimensional diffraction grating as shown in FIG. 7B.
  • the one-dimensional diffraction grating shown in FIG. 7A a plurality of ridges parallel to each other are formed on the surface of the metal film 30 at a predetermined interval.
  • convex portions having a predetermined shape are periodically arranged on the surface of the metal film 30.
  • Examples of the arrangement of the convex portions include a square lattice, a triangular (hexagonal) lattice, and the like.
  • Examples of the cross-sectional shape of the diffraction grating 50 include a rectangular wave shape, a sine wave shape, a sawtooth shape, and the like.
  • the method for forming the diffraction grating 50 is not particularly limited.
  • the metal film 30 may be provided with an uneven shape.
  • the metal film 30 may be formed on the substrate 60 that has been previously provided with an uneven shape.
  • the metal film 30 including the diffraction grating 50 can be formed.
  • the excitation light ⁇ is irradiated onto the metal film 30 (diffraction grating 50) at a predetermined incident angle.
  • the surface plasmon generated in the metal film 30 and the evanescent wave generated by the diffraction grating 50 are combined to generate SPR.
  • the fluorescent substance is excited by the enhanced electric field formed by SPR, and fluorescent ⁇ is emitted.
  • the fluorescence ⁇ is emitted with directivity in a specific direction. Note that almost no reflected light of the excitation light ⁇ is generated.
  • the chip 90 may have a well 44 instead of the flow path 43, as shown in FIG. 8B.
  • the chip 90 ′ provides a sample from the opening of the well 44 (through hole formed in the flow path lid 40 ′) or measures the temperature of the metal film 30 by the temperature sensor 131.
  • the detection apparatus 200 includes the diffraction grating 50 including the chip holder 80, the light irradiation unit 110, the light detection unit 220, the temperature measurement unit 130, and the control unit 140 including the storage unit 141 and the processing unit 142.
  • Lattice coupling (GC) -SPFS device to be used.
  • the chip holder 80 is formed in a box shape whose upper surface is open.
  • the chip holder 80 accommodates the chip 90 therein.
  • the light irradiation unit 110 irradiates the metal film 30 (diffraction grating 50) of the chip 90 with excitation light ⁇ having a constant wavelength and light amount. At this time, the light irradiation unit 110 irradiates the metal film 30 (diffraction grating 50) with the excitation light ⁇ so that diffracted light that can be combined with surface plasmons in the metal film 30 is generated in the diffraction grating 50.
  • the optical axis of the excitation light ⁇ is along the arrangement direction of the periodic structure in the diffraction grating 50 (x-axis direction in FIGS. 7A and 7B).
  • the light irradiation unit 110 includes a light source unit 111, a first angle adjustment mechanism 112, and a light source control unit 113.
  • the first angle adjusting mechanism 112 adjusts the incident angle of the excitation light ⁇ to the diffraction grating 50.
  • the first angle adjustment mechanism 112 passes through the intersection of the optical axis of the excitation light ⁇ and the metal film 30 and the optical axis of the excitation light ⁇ and the chip 10 (metal film 30 with the straight line on the surface of the metal film 30 as the rotation axis. ) And rotate relative to each other.
  • the first angle adjustment mechanism 112 rotates the light irradiation unit 110 passing through the intersection of the optical axis of the excitation light ⁇ and the metal film 30 and using a straight line on the surface of the metal film 30 as a rotation axis.
  • the incident angle of the excitation light ⁇ is appropriately selected according to the pitch of the diffraction grating 50, the wavelength of the excitation light ⁇ , the type of metal constituting the metal film 30, and the like.
  • the light detection unit 220 is disposed so as to pass through the intersection of the optical axis of the excitation light ⁇ and the metal film 30 with respect to the light irradiation unit 110 and sandwich the normal N to the surface of the metal film 30.
  • the light detection unit 220 detects plasmon scattered light ⁇ generated in the metal film 30 or fluorescence ⁇ emitted from the fluorescent material on the diffraction grating 50 (reaction field).
  • the light detection unit 220 includes, for example, a light reception sensor 127, a second angle adjustment mechanism 221, and a light reception sensor control unit 123.
  • the light detection unit 220 may further include a condenser lens group, an aperture stop, a fluorescent filter, and the like.
  • the light receiving sensor 127 detects plasmon scattered light ⁇ or fluorescence ⁇ .
  • the second angle adjusting mechanism 221 adjusts the optical axis of the light receiving sensor 127 so that the light receiving sensor 127 can detect the fluorescence ⁇ .
  • the second angle adjusting mechanism 221 rotates the light receiving sensor 127 about the axis passing through the intersection of the optical axis of the fluorescent ⁇ and the metal film 30 and orthogonal to the optical axis of the fluorescent ⁇ .
  • the light receiving sensor 127 detects the fluorescent ⁇ and detects the fluorescent image on the metal film 30.
  • the light receiving sensor 127 is a photomultiplier tube with high sensitivity and high S / N ratio.
  • the light receiving sensor 127 may be an avalanche photodiode (APD), a photodiode (PD), a CCD image sensor, or the like.
  • the condensing lens group (not shown) is arranged between the chip 90 and the light receiving sensor 127 and constitutes a conjugate optical system that is not easily affected by stray light.
  • the condenser lens group forms a fluorescent image on the metal film 30 on the light receiving surface of the light receiving sensor 127.
  • Fluorescent filter (not shown) is disposed between the chip 90 and the light receiving sensor 127.
  • the fluorescent filter includes, for example, a cut filter and a neutral density (ND) filter, and removes noise components other than the fluorescent ⁇ from the light reaching the light receiving sensor 127 (for example, excitation light ⁇ and external light), or a light receiving sensor. The amount of light reaching 127 is adjusted.
  • ND neutral density
  • the control unit 140 includes, for example, a known computer or microcomputer including a storage unit 141, a processing unit 142, a control device, an input device, and an output device.
  • the sensor adjustment mechanism 132, the light receiving sensor control unit 123, and the second angle adjustment mechanism 221 are controlled.
  • the storage unit 141 stores information on the relationship between the temperature of the metal film 30 and the optimal incident angle of incident light. Specifically, in the present embodiment, the storage unit 141 has a relationship between the temperature of the metal film 30 and the enhancement angle at which the intensity of the plasmon scattered light ⁇ generated from the metal film 30 by the irradiated incident light is maximized. I remember information.
  • This information may be created before detection of the substance to be detected, or may be created externally.
  • the processing unit 142 determines the incident angle of incident light as an optimal incident angle (enhancement angle).
  • FIG. 9 is a flowchart illustrating an example of an operation procedure of the detection apparatus 200.
  • the primary antibody is immobilized on the metal film 30 (diffraction grating 50) as a capturing body.
  • a secondary antibody labeled with a fluorescent substance is used as a capturing body used for fluorescent labeling.
  • step S110 preparation for measurement is performed (step S110).
  • step S120 the substance to be detected in the specimen is reacted with the primary antibody (primary reaction, step S120).
  • step S130 the target substance bound to the primary antibody is labeled with a fluorescent substance.
  • the incident angle is adjusted (step S240). Specifically, the control unit 140 plasmon scattering generated from the metal film 30 by the temperature of the metal film 30 measured by the temperature measurement unit 130 and the excitation light ⁇ irradiated on the surface of the metal film 30 (diffraction grating 50).
  • the incident angle of the excitation light ⁇ is determined as the enhancement angle based on information on the relationship with the enhancement angle at which the intensity of the light ⁇ is maximized.
  • the method for obtaining the relationship between the temperature of the metal film 30 and the enhancement angle is the same as that in step S140 in the first embodiment except that the excitation light ⁇ is irradiated on the surface of the metal film 30 (diffraction grating 50). Since there is, explanation is omitted.
  • a substance to be detected is detected (step S150). Specifically, the control unit 140 irradiates the metal film 30 (the surface of the metal film 30 and the vicinity thereof) while irradiating the predetermined position of the metal film 30 with the enhancement angle determined in step S240 by the light source control unit 113. ) The light receiving sensor control unit 123 is controlled so as to detect the intensity of the fluorescence ⁇ emitted from above. The fluorescence intensity is converted into the amount or concentration of the substance to be detected as necessary.
  • the blank value may be measured before the secondary reaction (step S130) even in the detection apparatus 200.
  • the amount of fluorescence ⁇ indicating the amount of the substance to be detected in the sample is calculated by subtracting the blank value from the detected value of fluorescence ⁇ .
  • the detection device 200 according to the present embodiment has the same effects as the detection device 100 according to the first embodiment.
  • the intensity of the fluorescent ⁇ emitted from the fluorescent material may differ depending on the temperature. Therefore, in the detection method according to the modification of the first embodiment, the intensity of the fluorescence ⁇ is corrected.
  • Other detection operations of the detection apparatuses 100 and 200 according to Embodiments 1 and 2 may further include a step S160 of correcting the intensity of the detected fluorescence ⁇ . Note that the same steps as the detection operations of the detection devices 100 and 200 according to Embodiments 1 and 2 are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 10 is a flowchart showing another example of the operation procedure of the detection devices 100 and 200 according to the first and second embodiments.
  • step S110 preparation for measurement is performed (step S110).
  • step S120 the substance to be detected in the specimen is reacted with the primary antibody (primary reaction, step S120).
  • step S130 the target substance bound to the primary antibody is labeled with a fluorescent substance.
  • step S140 the enhancement angle is adjusted (step S140, step S240).
  • step S150 a substance to be detected is detected (step S150). Specifically, the control unit 140 causes the light source control unit 113 to irradiate a predetermined position of the metal film 30 with the excitation light ⁇ at the enhancement angle determined in step S140 or step S240, while the metal film 30 (metal film 30 The light receiving sensor control unit 123 is controlled so as to detect the intensity of the fluorescence ⁇ emitted from the surface and its vicinity.
  • the detected fluorescence intensity is corrected (step S160). Specifically, the control unit 140 adjusts the fluorescence intensity detected by the light receiving sensor 127 based on information on the relationship between the temperature of the metal film 30 and the intensity of fluorescence ⁇ generated by the irradiated excitation light.
  • FIG. 11 is a flowchart for explaining a fluorescent intensity correction method.
  • FIG. 12 is a graph showing the relationship between the temperature difference of the metal film and the correction coefficient of the fluorescence intensity.
  • the horizontal axis of FIG. 12 is the temperature difference (° C.) of the metal film, and the vertical axis is the fluorescence. It is an intensity correction coefficient.
  • the storage unit 141 has a temperature difference (° C.) between the reference temperature (for example, 20 °) of the metal film 30 and the temperature of the arbitrary metal film 30, and the temperature difference.
  • Information on the relationship with the correction coefficient of fluorescence intensity is stored.
  • the correction coefficient of the fluorescence intensity is an appropriate fluorescence at the temperature of the metal film at the time of detection with respect to the difference value (temperature difference) between the reference temperature of the metal film 30 and the temperature of the metal film 30 at the time of detection. It is the ratio of the fluorescence intensity at an arbitrary temperature to the fluorescence intensity at the reference temperature for matching the intensity.
  • step S161 the temperature of an arbitrary plurality of metal films 30 and the fluorescence intensity at the temperature of the metal film 30 are measured (step S161). At this time, the incident angle of the excitation light ⁇ is preferably an enhancement angle. Next, the ratio of the fluorescence intensity at an arbitrary temperature with respect to the fluorescence intensity at the reference temperature is obtained (step S162).
  • control unit 140 obtains a difference value (temperature difference) between the temperature of the metal film 30 and the reference temperature when detecting the detection target substance (step S150) (step S163). Then, the control unit 140 obtains a fluorescence intensity correction coefficient corresponding to the difference value, and then determines an appropriate fluorescence intensity by using the correction coefficient for the detected fluorescence intensity (step S164). The fluorescence intensity is converted into the amount or concentration of the substance to be detected as necessary.
  • the enhancement angle is adjusted based on information stored in advance in the storage unit 141.
  • the information is obtained in the detection operation of the detection apparatuses 100 and 200. You may do it. In this case, acquisition of the information is performed before the primary reaction (step S120).
  • the metal film 30 is heated or cooled, and the excitation light ⁇ is applied to a predetermined position of the metal film 30 at the temperature of the metal film 30 and the temperature of the metal film 30.
  • the incident angle of the excitation light ⁇ with respect to the metal film 30 is scanned by the first angle adjusting mechanism 112 while irradiating the light.
  • the control unit 140 controls the light detection units 120 and 220 to detect the plasmon scattered light ⁇ from the metal film 30.
  • the reflected light ⁇ of the excitation light ⁇ reflected by the metal film 30 reaches the light receiving sensor 127. Thereby, the control unit 140 obtains data including the relationship between the incident angle of the excitation light ⁇ and the light amount of the plasmon scattered light ⁇ .
  • control unit 140 analyzes the data to obtain the enhancement angle. Next, information on the relationship between the temperature difference (° C.) between the reference temperature of the metal film 30 and the temperature of the arbitrary metal film 30 and the correction angle (°) of the enhancement angle in the temperature difference may be obtained. The obtained information may be used in step S140 and step S240.
  • Detection device 300 according to Embodiment 3 is different from detection device 100 according to Embodiment 1 in that it is an SPR device. Therefore, the same components as those of the detection device 100 according to Embodiment 1 are denoted by the same reference numerals, and the description thereof is omitted.
  • FIG. 13 is a schematic diagram illustrating a configuration of the detection apparatus 300 according to the third embodiment.
  • the detection device 300 includes a chip holder 70, a light irradiation unit 110, a light detection unit 320, a temperature measurement unit 130, and a control unit 140 including a storage unit 141 and a processing unit 142. .
  • the detection device 300 is used in a state where the chip 10 is mounted on the chip holder 70.
  • the same chip holder 70 and chip 10 can be used. It should be noted that the chip holder 70 in the present embodiment does not disturb the optical path of the excitation light ⁇ and the optical path of the reflected light ⁇ .
  • the light detection unit 320 is disposed so as to pass through the intersection of the optical axis of the excitation light ⁇ and the metal film 30 with respect to the light irradiation unit 110 and sandwich the normal N to the surface of the metal film 30.
  • the light detection unit 320 detects the reflected light ⁇ of the excitation light ⁇ incident from the incident surface 21, reflected from the back surface of the metal film 30 and emitted from the emission surface 23.
  • the light detection unit 320 includes, for example, a light receiving sensor 127, a second angle adjustment mechanism 321, and a light receiving sensor control unit 123.
  • the light detection unit 320 may further include a condenser lens group, an aperture stop, a fluorescent filter, and the like.
  • the second angle adjustment mechanism 321 adjusts the optical axis of the light receiving sensor 127 so that the light receiving sensor 127 can detect the reflected light ⁇ .
  • the second angle adjusting mechanism 321 rotates the light receiving sensor 127 about the axis passing through the intersection of the optical axis of the reflected light ⁇ and the back surface of the metal film 30 and orthogonal to the optical axis of the reflected light ⁇ .
  • the light receiving sensor 127 detects the reflected light ⁇ .
  • the light receiving sensor 127 is a photomultiplier tube with high sensitivity and high S / N ratio.
  • the control unit 140 includes, for example, a known computer or microcomputer including a storage unit 141, a processing unit 142, an arithmetic device, a control device, an input device, and an output device, and includes a first angle adjustment mechanism 112, a light source control unit, and the like. 113, the second angle adjusting mechanism 321, the light receiving sensor control unit 123, and the temperature sensor adjusting mechanism 132 are controlled.
  • the storage unit 141 stores information on the relationship between the temperature of the metal film 30 and the optimal incident angle of incident light. Specifically, in the present embodiment, the storage unit 141 reflects the temperature of the metal film 30 and the incident light incident on the metal film 30, and the amount of reflected light ⁇ emitted from the emission surface 23 is minimized.
  • the processing unit 142 determines the incident angle of the incident light as an optimum resonance angle based on the temperature of the metal film 30 measured by the temperature measuring unit 130 and the information stored in the storage unit 141.
  • FIG. 14 is a flowchart illustrating another example of the operation procedure of the detection apparatus 300 according to the third embodiment.
  • step S110 preparation for measurement is performed (step S110).
  • step S120 the substance to be detected in the specimen is reacted with the primary antibody (primary reaction, step S120).
  • step S130 the target substance bound to the primary antibody is labeled with a fluorescent substance.
  • the incident angle is adjusted (step S340). Specifically, the control unit 140 causes the temperature of the metal film 30 to be measured, and the amount of the reflected light ⁇ of the excitation light ⁇ irradiated to the temperature of the metal film 30 and the back surface of the metal film 30 via the prism 20.
  • the incident angle of the excitation light ⁇ is determined as the resonance angle on the basis of the information on the relationship with the resonance angle at which is minimum.
  • the method for obtaining the relationship between the temperature of the metal film 30 and the enhancement angle is the same as that in step S140 in Embodiment 1 except that the resonance angle is obtained instead of the enhancement angle.
  • the reflected light ⁇ is detected by the light receiving sensor 127 while scanning the angle of the optical axis of the excitation light ⁇ by the first angle adjusting mechanism 112.
  • the incident angle of the excitation light ⁇ that minimizes the amount of reflected light ⁇ is taken as the resonance angle.
  • a substance to be detected is detected (step S150). Specifically, the control unit 140 detects the reflected light ⁇ of the excitation light ⁇ while irradiating the predetermined position of the metal film 30 with the resonance angle determined in step S340 by the light source control unit 113. The light sensor control unit 123 is controlled. The amount of light is converted into the amount and concentration of the substance to be detected as necessary.
  • a blank value may be measured before the secondary reaction (step S130).
  • the amount of fluorescence ⁇ indicating the amount of the substance to be detected in the sample is calculated by subtracting the blank value from the detected value of fluorescence ⁇ .
  • the control unit 140 irradiates the metal film 30 with the excitation light ⁇ through the prism 20 while scanning the incident angle of the incident light. Then, the control unit 140 obtains the minimum value of the reflected light ⁇ of the excitation light ⁇ reflected by the metal film 30 as a blank value.
  • the detection device 300 according to the present embodiment has the same effects as the detection device 100 according to the first embodiment.
  • the detection method and the detection apparatus according to the present invention can also measure a substance to be detected with high reliability. Therefore, it is expected to contribute to the development, spread and development of a very simple quantitative immunoassay system.
  • Detection device 110 Light irradiation unit 111 Light source unit 112 First angle adjustment mechanism 113 Light source control unit 120, 220, 320 Light detection unit 121 Light reception unit 122 Position switching mechanism 123 Light reception sensor control unit 124 First lens 125 Optical filter 126 Second lens 127 Light receiving sensor 130 Temperature measurement unit 131 Temperature sensor 132 Temperature sensor adjustment mechanism 140 Control unit 141 Storage unit 142 Processing units 221 and 321 Second angle adjustment mechanism ⁇ excitation light ⁇ reflected light ⁇ fluorescence ⁇ plasmon scattered light

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

 測定装置は、金属膜と、金属膜上に固定された捕捉体とを有するチップの金属膜上に検体を提供して、捕捉体と被検出物質とを結合させる(第1工程)。第1工程の後、測定装置は、金属膜の温度を測定し、金属膜の温度と増強角または共鳴角との関係の情報に基づいて、入射光の入射角を増強角または共鳴角に決定する(第2工程)。第2の工程の後、測定装置は、増強角または共鳴角で金属膜に対して入射光を照射させ、入射光によって生じたシグナルを検出することで被検出物質を検出する(第3工程)。

Description

検出方法および検出装置
 本発明は、表面プラズモン共鳴を利用して検体に含まれる被検出物質の存在またはその量を検出する検出方法および検出装置に関する。
 臨床検査などにおいて、タンパク質やDNAなどの微量の被検出物質を高感度かつ定量的に検出することができれば、患者の状態を迅速に把握して治療を行うことが可能となる。このため、微量の被検出物質を高感度かつ定量的に検出できる方法が求められている。
 被検出物質を高感度に検出できる方法として、表面プラズモン励起増強蛍光分光法(Surface Plasmon-field enhanced Fluorescence Spectroscopy):以下「SPFS」と略記する)が知られている(例えば、特許文献1参照)。
 特許文献1に記載の表面プラズモン励起増強蛍光分析法は、金属薄膜が形成されたプリズムに対して金属薄膜で全反射するように金属薄膜への入射角を変化させながら励起光を照射し、金属薄膜で励起光が全反射されることにより金属薄膜の表面に生じるプラズモン散乱光を測定する工程と、測定されたプラズモン散乱光の強度が最大となる入射角(増強角)を励起光の金属薄膜に対する入射角に決定する工程と、被検出物質に特異的に結合できる第1捕捉体(例えば1次抗体)が固定された金属薄膜上に、被検出物質および蛍光物質で標識された第2捕捉体(例えば2次抗体)を提供する反応工程と、決定した増強角で励起光を照射し、金属薄膜上の被検出物質を標識した蛍光物質から放出された蛍光の蛍光強度を測定する検出工程と、を含む。
 特許文献1に記載の表面プラズモン励起増強蛍光分析法では、金属薄膜上に被検出物質を提供すると、第1捕捉体に被検出物質が結合する。次いで、被検出物質が結合した金属薄膜上に第2捕捉体および蛍光物質を提供すると、被検出物質が蛍光物質で標識される。この状態で金属薄膜に励起光を照射すると、被検出物質を標識する蛍光物質は、表面プラズモン共鳴(Surface Plasmon Resonance:以下「SPR」と略記する)により増強された電場により励起され、蛍光を放出する。したがって、蛍光物質から放出された蛍光を検出することで、被検出物質の存在またはその量を検出することができる。
国際公開第2011/152064号
 しかしながら、特許文献1に記載の表面プラズモン励起増強蛍光分析法で用いられる増強角は、温度により異なることが知られている。具体的には、増強角は、金属薄膜の温度変化によって当該金属薄膜の屈折率が増加または減少することや、プリズムが温度変化により膨張または収縮することなどによって変化してしまう。特に、温度を調整しない分析方法では、増強角の決定時と、被検出物質の検出時との温度が異なる場合があるため、被検出物質の検出時において、最適な増強角で被検出物質を検出できず、検出精度が低下してしまうという問題があった。
 本発明の目的は、表面プラズモン共鳴を利用する検出方法および検出装置であって、被検出物質をより高感度に検出することができる検出方法および検出装置を提供することである。
 上記課題を解決するため、本発明の一実施の形態に係る検出方法は、表面プラズモン共鳴を利用して、検体に含まれる被検出物質の存在またはその量を検出するための検出方法であって、金属膜と、前記金属膜上に固定された捕捉体とを有するチップの前記金属膜上に前記検体を提供して、前記捕捉体と前記被検出物質とを結合させる第1工程と、前記第1工程の後、前記金属膜の温度を直接的または間接的に測定し、前記金属膜の温度と入射光によって前記金属膜から生じるプラズモン散乱光の強度が最大となるときの入射光の入射角である増強角または前記金属膜に照射された入射光の反射光の光量が最小となるときの入射光の入射角である共鳴角との関係の情報に基づいて、入射光の入射角を前記増強角または前記共鳴角に決定する第2工程と、前記第2工程の後、前記増強角または前記共鳴角で前記金属膜に対して入射光を照射させ、入射光によって生じたシグナルを検出することで前記被検出物質を検出する第3工程と、を含む。
 また、上記課題を解決するため、本発明の一実施の形態に係る検出装置は、表面プラズモン共鳴を利用して、検体に含まれる被検出物質の存在またはその量を検出するための検出装置であって、表面プラズモン共鳴が生じるように、金属膜と、前記金属膜上に固定された捕捉体とを有するチップの前記金属膜に入射光を照射する光照射部と、前記金属膜に照射された入射光によって生じたシグナルを検出する光検出部と、前記金属膜の温度を直接的または間接的に測定する温度測定部と、前記金属膜の温度と、入射光によって前記金属膜から生じるプラズモン散乱光の強度が最大となるときの入射光の入射角である増強角または前記金属膜に照射された入射光の反射光の光量が最小となるときの入射光の入射角である共鳴角との関係の情報を記憶している記憶部と、前記温度測定部で測定した前記金属膜の温度と、前記記憶部に記憶された情報とに基づいて、入射光の前記入射角を前記増強角または前記共鳴角に決定する処理部と、を有し、前記光照射部は、前記処理部により決定された前記増強角または前記共鳴角で前記金属膜に対して入射光を照射し、前記光検出部は、前記処理部により決定された前記増強角または前記共鳴角で前記金属膜に照射された入射光によって生じたシグナルを検出する。
 本発明によれば、表面プラズモン共鳴を利用する検出方法および検出装置において、被検出物質をより高感度に検出することができる。
図1は、実施の形態1に係る検出装置の構成を示す模式図である。 図2A~Cは、チップの構成を示す図である。 図3は、実施の形態1に係る検出装置の動作を示すフローチャートである。 図4は、入射角の調整方法を示すフローチャートである。 図5は、金属膜の温度差と、入射角の補正角度との関係を示すグラフである。 図6は、実施の形態2に係る検出装置の構成を示す模式図である。 図7A、Bは、回折格子の斜視図である。 図8A、Bは、チップの第2の態様を模式的に示す図である。 図9は、実施の形態2に係る検出装置の動作を示すフローチャートである。 図10は、実施の形態1、2に係る検出装置の他の動作を示すフローチャートである。 図11は、蛍光強度の補正方法を示すフローチャートである。 図12は、金属膜の温度差と、蛍光強度の補正係数との関係を示すグラフである。 図13は、実施の形態3に係る検出装置の構成を示す模式図である。 図14は、実施の形態3に係る検出装置の動作を示すフローチャートである。
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。
 [実施の形態1]
 図1は、本発明の実施の形態1に係る検出装置100の構成を示す模式図である。
 図1に示されるように、検出装置100は、チップホルダー70と、光照射部110と、光検出部120と、温度測定部130と、記憶部141および処理部142を含む制御部140とを有する。検出装置100は、チップホルダー70にプリズム20を有するチップ10を装着した状態で使用される。実施の形態1に係る検出装置100は、プリズム20を利用するプリズムカップリング(PC)-SPFS装置である。そこで、プリズム20を有するチップ10について先に説明し、その後に検出装置100について説明する。
 (チップの構成)
 図2は、チップの構成を示す模式図である。図2Aは、チップ10の斜視図であり、図2Bは、チップ10の断面図であり、図2Cは、チップ10’の他の形態の断面図である。
 図2A、Bに示されるように、チップ10は、プリズム20、金属膜30および流路蓋40を有する。通常、チップ10は、検出ごとに交換される。
 プリズム20は、励起光αに対して透明な誘電体からなる。プリズム20は、入射面21、成膜面22および出射面23を有する。入射面21は、光照射部110からの励起光αをプリズム20の内部に入射させる。成膜面22上には、金属膜30が配置されている。プリズム20の内部に入射した励起光αは、金属膜30の裏面で反射する。より具体的には、励起光αは、プリズム20と金属膜30との界面(成膜面22)で反射する。出射面23は、金属膜30の裏面で反射した励起光αの反射光βをプリズム20の外部に出射させる。
 プリズム20の形状は、特に限定されない。本実施の形態では、プリズム20の形状は、台形を底面とする柱体である。台形の一方の底辺に対応する面が成膜面22であり、一方の脚に対応する面が入射面21であり、他方の脚に対応する面が出射面23である。
 入射面21は、励起光αが光照射部110に戻らないように形成される。励起光αの光源がレーザーダイオード(以下「LD」ともいう)である場合、励起光αがLDに戻ると、LDの励起状態が乱れてしまい、励起光αの波長や出力が変動してしまう。そこで、所定の走査範囲において、励起光αが入射面21に垂直に入射しないように、入射面21の角度が設定される。本実施の形態では、入射面21と成膜面22とのなす角度および成膜面22と出射面23とのなす角度は、いずれも約80°である。
 なお、チップ10の設計により、増強角が概ね決まる。設計要素は、プリズム20の屈折率、金属膜30の屈折率、金属膜30の膜厚、金属膜30の消衰係数、励起光αの波長などである。金属膜30に固定化された被検出物質によって増強角がシフトするが、その量は数度未満である。ここで「増強角」とは、金属膜30に励起光αを照射したことにより、金属膜30で生じるプラズモン散乱光の光量が最大となる励起光αの入射角である。
 プリズム20は、複屈折特性を少なからず有する。プリズム20の材料の例には、樹脂およびガラスが含まれる。プリズム20の材料は、好ましくは、屈折率が1.4~1.6であり、かつ複屈折が小さい樹脂である。
 金属膜30は、プリズム20の成膜面22上に配置されている。これにより、成膜面22に全反射条件で入射した励起光αの光子と、金属膜30中の自由電子との間で相互作用(表面プラズモン共鳴)が生じ、金属膜30の表面上に局在場光を生じさせることができる。
 金属膜30の材料は、表面プラズモン共鳴を生じさせうる金属であれば特に限定されない。金属膜30の材料の例には、金、銀、銅、アルミ、これらの合金が含まれる。本実施の形態では、金属膜30は、金薄膜である。金属膜30の形成方法は、特に限定されない。金属膜30の形成方法の例には、スパッタリング、蒸着、メッキが含まれる。金属膜30の厚みは、特に限定されないが、30~70nmの範囲内が好ましい。
 金属膜30(反応場)には、被検出物質を捕捉するための捕捉体が固定されている。捕捉体は、被検出物質に特異的に結合する。本実施の形態では、金属膜30の表面に、捕捉体が略均一に固定化されている。捕捉体の種類は、被検出物質を捕捉することができれば特に限定されない。たとえば、捕捉体は、被検出物質に特異的な抗体(1次抗体)またはその断片、被検出物質に特異的に結合可能な酵素などである。
 捕捉体の固定化方法は、特に限定されない。たとえば、金属膜30の上に、捕捉体を結合させた自己組織化単分子膜(以下「SAM」という)または高分子膜を形成すればよい。SAMの例には、HOOC-(CH11-SHなどの置換脂肪族チオールで形成された膜が含まれる。高分子膜を構成する材料の例には、ポリエチレングリコールおよびMPCポリマーが含まれる。また、捕捉体に結合可能な反応性基(または反応性基に変換可能な官能基)を有する高分子を金属膜30に固定化し、この高分子に捕捉体を結合させてもよい。
 流路蓋40は、金属膜30上に配置されている。金属膜30がプリズム20の成膜面22の一部にのみ形成されている場合は、流路蓋40は、成膜面22上に配置されていてもよい。流路蓋40の裏面には、流路溝が形成されており、流路蓋40は、金属膜30(およびプリズム20)と共に、液体が流れる流路43を形成する。液体の例には、被検出物質を含む試料液や、蛍光物質で標識された抗体を含む標識液、洗浄液などが含まれる。流路43の両端は、流路蓋40の上面に形成された注入口41および排出口42にそれぞれ接続されている。なお、後述の接触式の温度センサー131は、注入口41または排出口42から挿入され、金属膜30の温度を測る(図2B参照)。
 流路蓋40は、金属膜30上から放出される蛍光γおよびプラズモン散乱光δに対して透明な材料からなることが好ましい。流路蓋40の材料の例には、樹脂が含まれる。蛍光γおよびプラズモン散乱光δを外部に取り出す部分が蛍光γおよびプラズモン散乱光δに対して透明であれば、流路蓋40の他の部分は、不透明な材料で形成されていてもよい。流路蓋40は、例えば、両面テープや接着剤などによる接着や、レーザー溶着、超音波溶着、クランプ部材を用いた圧着などにより金属膜30またはプリズム20に接合されている。
 なお、図2Cに示されるように、チップ10’は、流路43に代えてウェル44を有していてもよい。このチップ10’では、ウェル44の開口部(流路蓋40’に形成された貫通孔)から検体を提供したり、温度センサー131によって金属膜30の温度を測定したりする。
 図1に示されるように、励起光αは、入射面21からプリズム20内に入射する。プリズム20内に入射した励起光αは、金属膜30に全反射角度(表面プラズモン共鳴が生じる角度)で入射する。このように金属膜30に対して励起光αを表面プラズモン共鳴が生じる角度で照射することで、金属膜30上に局在場光(一般に「エバネッセント光」または「近接場光」とも呼ばれる)を発生させることができる。この局在場光により、金属膜30上に存在する被検出物質を標識する蛍光物質が励起され、蛍光γが出射される。検出装置100は、蛍光物質から放出された蛍光γの光量を検出することで、被検出物質の存在または量を検出する。
 (SPFS装置の構成)
 次に、検出装置100の各構成要素について説明する。前述のとおり、検出装置100は、チップホルダー70と、光照射部110と、光検出部120と、温度測定部130と、記憶部141および処理部142を含む制御部140とを有する。
 チップホルダー70は、チップ10を保持する。チップホルダー70の形状は、チップ10を保持することができ、かつ励起光αの光路を妨げなければ特に限定されない。本実施の形態では、チップホルダー70は、流路蓋40を側方から把持することでチップ10を保持するように構成されている。
 光照射部110は、チップホルダー70に保持されたチップ10(金属膜30の裏面)に励起光αを出射する。蛍光γの測定時には、光照射部110は、金属膜30に対する入射角が表面プラズモン共鳴を生じさせる角度となるように、励起光αを入射面21に向けて出射する。ここで「励起光」とは、蛍光物質を直接または間接的に励起させる光である。たとえば、励起光αは、プリズム20を介して金属膜30に表面プラズモン共鳴が生じる角度で照射されたときに、蛍光物質を励起させる局在場光を金属膜30の表面上に生じさせる光である。
 光照射部110は、光源ユニット111、第1角度調整機構112および光源制御部113を含む。
 光源ユニット111は、コリメートされ、かつ波長および光量が一定の励起光αを、金属膜30裏面における照射スポットの形状が略円形となるように出射する。光源ユニット111は、例えば、励起光αの光源、ビーム整形光学系、APC機構および温度調整機構(いずれも不図示)を含む。
 光源の種類は、特に限定されず、例えばレーザーダイオード(LD)である。光源の他の例には、発光ダイオード、水銀灯、その他のレーザー光源が含まれる。光源から出射される光がビームでない場合は、光源から出射される光は、レンズや鏡、スリットなどによりビームに変換される。また、光源から出射される光が単色光でない場合は、光源から出射される光は、回折格子などにより単色光に変換される。さらに、光源から出射される光が直線偏光でない場合は、光源から出射される光は、偏光子などにより直線偏光の光に変換される。
 ビーム整形光学系は、例えば、コリメーターやバンドパスフィルター、直線偏光フィルター、半波長板、スリット、ズーム手段などを含んでいてもよい。コリメーターは、光源から出射された励起光αをコリメートする。バンドパスフィルターは、光源から出射された励起光αを中心波長のみの狭帯域光にする。光源からの励起光αは、若干の波長分布幅を有しているためである。直線偏光フィルターは、光源から出射された励起光αを完全な直線偏光の光にする。半波長板は、金属膜30にP波成分が入射するように励起光αの偏光方向を調整する。スリットおよびズーム手段は、金属膜30の裏面における照射スポットの形状が所定サイズの円形となるように、励起光αのビーム径や輪郭形状などを調整する。APC機構は、光源の出力が一定となるように光源を制御する。より具体的には、APC機構は、励起光αから分岐させた光の光量を不図示のフォトダイオードなどで検出する。そして、APC機構は、回帰回路で投入エネルギーを制御することで、光源の出力を一定に制御する。温度調整機構は、例えば、ヒーターやペルチェ素子などである。光源から出射される光の波長およびエネルギーは、温度によって変動することがある。このため、温度調整機構で光源の温度を一定に保つことにより、光源から出射される光の波長およびエネルギーを一定に制御する。
 第1角度調整機構112は、金属膜30の裏面(プリズム20と金属膜30との界面(成膜面22))への励起光αの入射角を調整する。第1角度調整機構112は、プリズム20を介して金属膜30裏面の所定の位置に向けて所定の入射角で励起光αを照射するために、励起光αの光軸とチップ10(金属膜30)とを相対的に回転させる。本実施の形態では、第1角度調整機構112は、励起光αの光軸と直交する軸(図1の紙面に対して垂直な軸)を回転軸として光源ユニット111を回動させる。このとき、入射角を変化させても金属膜30上での照射スポットの位置がほとんど変化しないように、回転軸の位置を設定する。回転中心の位置を、入射角の走査範囲の両端における2つの励起光αの光軸の交点近傍(成膜面22上の照射位置と入射面21との間)に設定することで、照射位置のズレを極小化することができる。
 前述したように、金属膜30の裏面に対する励起光αの入射角のうち、プラズモン散乱光δの最大光量を得られる角度が増強角である。増強角の角度に励起光αの入射角を設定することで、高強度の蛍光γを測定することが可能となる。なお、チップ10のプリズム20の材料および形状、金属膜30の膜厚、流路43内の液体の屈折率などにより、励起光αの基本的な入射条件が決まるが、流路43内の蛍光物質の種類および量、プリズム20の形状誤差などにより、最適な入射条件はわずかに変動する。本実施の形態では、金属膜30の法線Nに対する励起光αの好適な出射角は、約70°である。
 光源制御部113は、光源ユニット111に含まれる各種機器を制御して、光源ユニット111の出射光(励起光α)の出射を制御する。光源制御部113は、例えば、演算装置、制御装置、記憶装置、入力装置および出力装置を含む公知のコンピュータやマイコンなどによって構成される。
 光検出部120は、被検出物質の検出時において金属膜30の裏面への励起光αの照射によって生じた蛍光γと、増強角の測定時において金属膜30の裏面への励起光αの照射によって生じたプラズモン散乱光δとを検出する。光検出部120は、例えば、受光ユニット121、位置切替機構122および受光センサー制御部123を含む。
 受光ユニット121は、チップ10の金属膜30の表面に対する法線Z方向に配置される。受光ユニット121は、第1レンズ124、光学フィルター125、第2レンズ126および受光センサー127を含む。
 第1レンズ124は、例えば、集光レンズであり、金属膜30上から出射される光を集光する。第2レンズ126は、例えば、結像レンズであり、第1レンズ124で集光された光を受光センサー127の受光面に結像させる。両レンズの間の光路は、略平行な光路になっている。光学フィルター125は、両レンズの間に配置されている。
 光学フィルター125は、蛍光成分のみを受光センサー127に導き、高いS/N比で蛍光γを検出するために、励起光成分(プラズモン散乱光δ)を除去する。光学フィルター125の例には、励起光反射フィルター、短波長カットフィルターおよびバンドパスフィルターが含まれる。光学フィルター125は、例えば、所定の光成分を反射する多層膜を含むフィルターであるが、所定の光成分を吸収する色ガラスフィルターであってもよい。
 受光センサー127は、蛍光γまたはプラズモン散乱光δを検出する。受光センサー127は、微小量の被検出物質からの微弱な蛍光γまたはプラズモン散乱光δを検出することが可能な高い感度を有する。受光センサー127は、例えば、光電子増倍管(PMT)やアバランシェフォトダイオード(APD)などである。
 位置切替機構122は、光学フィルター125の位置を、受光ユニット121における光路上または光路外に切り替える。具体的には、位置切替機構122は、受光センサー127が蛍光γを検出する時には、光学フィルター125を受光ユニット121の光路上に配置し、受光センサー127がプラズモン散乱光δを検出する時には、光学フィルター125を受光ユニット121の光路外に配置する。位置切替機構122は、例えば、回転駆動部と、回転運動を利用して光学フィルター125を水平方向に移動させる公知の機構(ターンテーブルやラックアンドピニオンなど)とによって構成される。
 受光センサー制御部123は、受光センサー127の出力値の検出や、検出した出力値による受光センサー127の感度の管理、適切な出力値を得るための受光センサー127の感度の変更などを制御する。受光センサー制御部123は、例えば、演算装置、制御装置、記憶装置、入力装置および出力装置を含む公知のコンピュータやマイコンなどによって構成される。
 温度測定部130は、金属膜30の温度を直接的または間接的に測定する。温度測定部130は、温度センサー131および温度センサー調整機構132を有する。温度センサー131の種類は、金属膜30の温度を測定することができれば、特に限定されず、接触式であってもよいし、非接触式であってもよい。接触式の温度センサー131の例には、サーミスタ温度計、測温抵抗体温度計、熱電対温度計などが含まれる。また、非接触式の温度センサー131の例には、放射温度計、二色温度計、サーモグラフィーなどが含まれる。本実施の形態では、温度センサー131は、接触式の温度計である。温度センサー調整機構132は、温度センサー131の位置や、検出した出力値を制御部140(記憶部141)に送る。
 制御部140は、例えば、記憶部141、処理部142、演算装置、制御装置、入力装置および出力装置を含む公知のコンピュータやマイコンなどによって構成されており、第1角度調整機構112、光源制御部113、位置切替機構122、温度センサー調整機構132および受光センサー制御部123を制御する。記憶部141は、金属膜30の温度と、最適な入射光の入射角との関係の情報を記憶している。具体的には、本実施の形態では、記憶部141は、金属膜30の温度と、照射された入射光によって金属膜30から生じるプラズモン散乱光δの強度が最大となる増強角との関係の情報を記憶している。この情報は、被検出物質の検出前に作成してもよいし、外部で作成されたものであってもよい。処理部142は、温度測定部130で測定した金属膜30の温度と、記憶部141に記憶された情報とに基づいて、入射光の入射角を最適な入射角(増強角)に決定する。
 (検出装置の検出動作)
 次に、検出装置100の検出動作(実施の形態1に係る検出方法)について説明する。図3は、検出装置100の動作手順の一例を示すフローチャートである。この例では、捕捉体として1次抗体が金属膜30上に固定化されている。また、蛍光標識に使用する捕捉体として、蛍光物質で標識された2次抗体を使用している。
 まず、測定の準備をする(工程S110)。具体的には、チップ10を準備して、チップホルダー70にチップ10を設置する。また、チップ10の金属膜30上に保湿剤が存在する場合は、1次抗体が適切に被検出物質を捕捉できるように、金属膜30上を洗浄して保湿剤を除去する。
 次いで、検体中の被検出物質と一次抗体とを反応させる(1次反応、工程S120)。具体的には、金属膜30上に検体を提供して、検体と1次抗体とを接触させる。検体中に被検出物質が存在する場合は、被検出物質の少なくとも一部は1次抗体に結合する。この後、金属膜30上を緩衝液などで洗浄して、1次抗体に結合しなかった物質を除去する。検体および被検出物質の種類は、特に限定されない。検体の例には、血液や血清、血漿、尿、鼻孔液、唾液、精液などの体液およびその希釈液が含まれる。また、被検出物質の例には、核酸(DNAやRNAなど)、タンパク質(ポリペプチドやオリゴペプチドなど)、アミノ酸、糖質、脂質およびこれらの修飾分子が含まれる。
 次いで、1次抗体に結合した被検出物質を蛍光物質で標識する(2次反応、工程S130)。具体的には、蛍光物質で標識された2次抗体を含む蛍光標識液を金属膜30上に提供して、1次抗体に結合した被検出物質と蛍光標識液とを接触させる。蛍光標識液は、例えば、蛍光物質で標識された2次抗体を含む緩衝液である。被検出物質が1次抗体に結合している場合は、被検出物質の少なくとも一部は、蛍光物質で標識される。蛍光物質で標識した後は、金属膜30上を緩衝液などで洗浄し、遊離の2次抗体などを除去することが好ましい。
 なお、1次反応(工程S120)と2次反応(工程S130)との順番は、これに限定されない。たとえば、被検出物質を2次抗体に結合させた後に、これらの複合体を含む液体を金属膜30上に提供してもよい。また、金属膜30上に検体と蛍光標識液を同時に提供してもよい。
 次いで、入射角を調整する(工程S140)。具体的には、制御部140は、温度測定部130に測定させた金属膜30の温度と、プリズム20を介して金属膜30の裏面に照射された励起光αによって金属膜30から生じるプラズモン散乱光の強度が最大となる増強角との関係の情報に基づいて、励起光αの入射角をその金属膜30における増強角に決定する。
 ここで、図4および図5を参照して、金属膜30の温度と、入射角の補正角度との関係の求め方について詳細に説明する。図4は、入射角の調整方法を説明するためのフローチャートである。図5は、金属膜の温度差と、増強角の補正角度との関係を示すグラフである。図5の横軸は、金属膜の温度差(℃)であり、縦軸は入射角の補正角度(°)である。
 増強角は、温度によりわずかに変化することが知られている。そこで、本実施の形態では、金属膜30の温度に応じて入射角をその温度における増強角に設定し、当該入射角で励起光αを照射して、励起された蛍光物質から放出された蛍光γを検出することで、被検出物質の検出精度を向上させている。具体的には、予め記憶部141に金属膜30の基準温度(例えば、20°)と任意の金属膜30の温度との温度差(℃)と、その温度差における入射角の補正角度(°)との関係の情報を記憶しておく。ここで、入射角の補正角度(°)とは、金属膜30の基準温度と、検出時の金属膜30の温度との差分値(温度差)に対して、検出時の金属膜の温度における増強角に合わせるための、基準温度における増強角からの増強角の差分値である。図4および図5に示されるように、金属膜30の温度差と、入射角の補正角度との関係を求めるためには、まず、任意の複数の金属膜30の温度と、当該金属膜30の温度における増強角を測定する(工程S141)。金属膜30の温度を直接的に測定する場合には、温度センサー131を流路蓋40の注入口41または排出口42に挿入し、温度センサー131を金属膜30に接触させて測定する。また、金属膜30の温度を関節的に測定する場合には、温度センサー131を流路蓋40上に移動させた状態で流路蓋40または検体の温度を測定する。このとき、金属膜30の温度は、流路蓋40または検体の温度に近似している。次いで、基準温度と前記任意の金属膜30の温度との差分値をそれぞれ求める(工程S142)。そして、基準温度における増強角と前記任意の金属膜30の温度における増強角の差分値をそれぞれ求める(工程S143)。なお、増強角を求めるためには、第1角度調整機構112により励起光αの光軸の角度を走査しながら、受光センサー127によりプラズモン散乱光δを検出する。そして、プラズモン散乱光δの光量が最大となる励起光αの入射角を増強角とする。
 次いで、制御部140は、温度測定部130を駆動して、金属膜30の温度を測定する(工程S144)。次いで、制御部140は、当該金属膜30の温度と基準温度との差分値(温度差)を求める。そして、制御部140は、当該差分値に対応する入射角の補正角度を求めた後、検出時の金属膜30の温度に対応する増強角を決定する。最後に、第1角度調整機構112を駆動して、励起光αの入射角を増強角となるように調整する(工程S145)。
 次いで、被検出物質を検出する(工程S150)。具体的には、制御部140は、光源制御部113を駆動して励起光αを工程S140で決定した入射角で金属膜30の所定の位置に照射させながら、受光センサー制御部123を駆動して金属膜30(金属膜30表面およびその近傍)上から放出される蛍光γの強度を検出するように受光センサー127を制御する。このとき、制御部140は、位置切替機構122を操作して、光学フィルター125を受光ユニット121の光路上に配置する。このとき、光学フィルター125はプラズモン散乱光δを透過させないため、蛍光γのみが受光センサー127に検出される。蛍光強度は、必要に応じて、被検出物質の量や濃度などに換算される。
 なお、検出装置100は、2次反応(工程S130)の前にブランク値を測定してもよい。この場合、被検出物質を検出する工程(工程S150)では、蛍光γの検出値からブランク値を引くことで、検体中の被検出物質の量を示す蛍光γの量を算出する。ブランク値の測定では、制御部140は、入射光の入射角を走査しながら、金属膜30上に励起光αを照射する。そして、制御部140は、励起光αの照射により金属膜30から生じたプラズモン散乱光の強度の最大値をブランク値として得る。
 以上のように、本実施の形態に係る検出装置100は、金属膜30の温度に関わらず、増強角で被検出物質を検出することができるため、被検出物質をより高感度に検出することができる。
 [実施の形態2]
 実施の形態2に係る検出装置200は、回折格子50を利用する格子カップリング(GC)-SPFS装置である点において、実施の形態1に係る検出装置100と異なる。そこで、実施の形態1に係る検出装置100と同様の構成については同一の符号を付してその説明を省略する。
 図6は、実施の形態2に係る検出装置200の構成を示す図である。
 図6に示されるように、検出装置200は、チップホルダー80と、光照射部110と、光検出部220と、温度測定部130と、記憶部141および処理部142を含む制御部140とを有する。検出装置200は、チップホルダー80に回折格子50を有するチップ90を装着した状態で使用される。
 (チップの構成)
 図7A、Bおよび図8A、Bは、チップ90の構成を示す模式図である。図7Aは、1次元回折格子の斜視図であり、図7Bは、2次元回折格子の斜視図である。図8Aは、チップ90の第1の態様を模式的に示す図であり、図8Bは、チップ90’の第2の態様を模式的に示す図である。
 図6~図8に示されるように、チップ90は、基板60、金属膜30および流路蓋40を有する。金属膜30には、回折格子50が形成されている。回折格子50には捕捉体(例えば1次抗体)が固定化されており、回折格子50の表面は、捕捉体と被検出物質とが結合するための反応場としても機能する。なお、図6では、捕捉体および被検出物質を省略している。
 基板60は、金属膜30の支持部材である。基板60の材料は、金属膜30を支持できる機械的強度を有するものであれば特に限定されない。基板60の材料の例には、ガラスや石英、シリコンなどの無機材料、ポリメタクリル酸メチルやポリカーボネート、ポリスチレン、ポリオレフィンなどの樹脂が含まれる。
 金属膜30は、基板60上に配置されている。前述のとおり、金属膜30には、回折格子50が形成されている。金属膜30に光を照射すると、金属膜30中に生じる表面プラズモンと、回折格子50により生じるエバネッセント波とが結合して、表面プラズモン共鳴が生じる。本実施の形態のおける金属膜30の材料、形成方法および厚みは、実施の形態1における金属膜30と同じ材料、同じ形成方法および同じ厚みである。
 回折格子50は、金属膜30に光を照射された時に、エバネッセント波を生じさせる。回折格子50の形状は、エバネッセント波を生じさせることができれば特に限定されない。たとえば、回折格子50は、図7Aに示されるように1次元回折格子であってもよいし、図7Bに示されるように2次元回折格子であってもよい。図7Aに示される1次元回折格子では、金属膜30の表面に、互いに平行な複数の凸条が所定の間隔で形成されている。図7Bに示される2次元回折格子では、金属膜30の表面に、所定形状の凸部が周期的に配置されている。凸部の配列の例には、正方格子、三角(六方)格子などが含まれる。回折格子50の断面形状の例には、矩形波形状、正弦波形状、鋸歯形状などが含まれる。
 回折格子50の形成方法は、特に限定されない。たとえば、平板状の基板60の上に金属膜30を形成した後、金属膜30に凹凸形状を付与してもよい。また、予め凹凸形状を付与された基板60の上に、金属膜30を形成してもよい。いずれの方法であっても、回折格子50を含む金属膜30を形成することができる。
 図6に示されるように、励起光αは、所定の入射角で金属膜30(回折格子50)に照射される。照射領域では、金属膜30で生じた表面プラズモンと、回折格子50により生じたエバネッセント波が結合し、SPRが生じる。照射領域に蛍光物質が存在する場合は、SPRにより形成された増強電場により、蛍光物質が励起され、蛍光γが放出される。GC-SPFSでは、蛍光γは特定の方向に指向性を持って出射される。なお、励起光αの反射光は、ほとんど生じない。
 なお、チップ90は、図8Bに示されるように、流路43に変えてウェル44を有していてもよい。この場合、チップ90’は、ウェル44の開口部(流路蓋40’に形成された貫通孔)から検体を提供したり、温度センサー131によって金属膜30の温度を測定したりする。
 (検出装置の構成)
 次に、検出装置200の各構成要素について説明する。前述のとおり、検出装置200は、チップホルダー80と、光照射部110と、光検出部220と、温度測定部130と、記憶部141および処理部142を含む制御部140と有する回折格子50を利用する格子カップリング(GC)-SPFS装置である。
 チップホルダー80は、上面が開放された箱状に形成されている。チップホルダー80は、その内部にチップ90を収容する。
 光照射部110は、波長および光量が一定の励起光αを、チップ90の金属膜30(回折格子50)に照射する。このとき、光照射部110は、金属膜30中の表面プラズモンと結合できる回折光が回折格子50で生じるように、励起光αを金属膜30(回折格子50)に照射する。励起光αの光軸は、回折格子50における周期的構造の配列方向(図7A、Bにおけるx軸方向)に沿う。
 光照射部110は、光源ユニット111、第1角度調整機構112および光源制御部113を含む。
 第1角度調整機構112は、回折格子50への励起光αの入射角を調整する。第1角度調整機構112は、励起光αの光軸と金属膜30との交点を通り、かつ金属膜30の表面上の直線を回転軸として励起光αの光軸とチップ10(金属膜30)とを相対的に回転させる。本実施の形態では、第1角度調整機構112は、励起光αの光軸と金属膜30との交点を通り、かつ金属膜30の表面上の直線を回転軸として光照射部110を回転させる。励起光αの入射角は、回折格子50のピッチや励起光αの波長、金属膜30を構成する金属の種類などに応じて適切に選択される。
 光検出部220は、光照射部110に対して、励起光αの光軸と金属膜30との交点を通り、かつ金属膜30の表面に対する法線Nを挟むように配置されている。光検出部220は、金属膜30に生じるプラズモン散乱光δまたは回折格子50(反応場)上の蛍光物質から放出される蛍光γを検出する。
 光検出部220は、例えば、受光センサー127、第2角度調整機構221および受光センサー制御部123を含む。光検出部220は、さらに集光レンズ群や開口絞り、蛍光フィルターなどを有していてもよい。受光センサー127は、プラズモン散乱光δまたは蛍光γを検出する。
 第2角度調整機構221は、受光センサー127が蛍光γを検出できるように、受光センサー127の光軸を調整する。第2角度調整機構221は、蛍光γの光軸と金属膜30の交点を通り、かつ蛍光γの光軸に直交する軸を回転軸として受光センサー127を回動させる。
 受光センサー127は、蛍光γを検出して、金属膜30上の蛍光像を検出する。たとえば、受光センサー127は、感度およびSN比が高い光電子増倍管である。受光センサー127は、アバランシェ・フォトダイオード(APD)やフォトダイオード(PD)、CCDイメージセンサなどであってもよい。
 集光レンズ群(図示省略)は、チップ90と受光センサー127との間に配置され、迷光の影響を受けにくい共役光学系を構成する。集光レンズ群は、金属膜30上の蛍光像を受光センサー127の受光面上に結像させる。
 蛍光フィルター(図示省略)は、チップ90と受光センサー127との間に配置される。蛍光フィルターは、例えば、カットフィルターおよび減光(ND)フィルターを含み、受光センサー127に到達する光から蛍光γ以外のノイズ成分(例えば、励起光αや外光など)を除去したり、受光センサー127に到達する光の光量を調整したりする。
 制御部140は、例えば、記憶部141、処理部142、制御装置、入力装置および出力装置を含む公知のコンピュータやマイコンなどによって構成されており、第1角度調整機構112、光源制御部113、温度センサー調整機構132、受光センサー制御部123、第2角度調整機構221を制御する。記憶部141は、金属膜30の温度と、最適な入射光の入射角との関係の情報を記憶している。具体的には、本実施の形態では、記憶部141は、金属膜30の温度と、照射された入射光によって金属膜30から生じるプラズモン散乱光δの強度が最大となる増強角との関係の情報を記憶している。この情報は、被検出物質の検出前に作成してもよいし、外部で作成されたものであってもよい。処理部142は、温度測定部130で測定した金属膜30の温度と、記憶部141に記憶された情報とに基づいて、入射光の入射角を最適な入射角(増強角)に決定する。
 (検出装置の検出動作)
 次に、実施の形態2に係る検出装置200の検出動作(検出方法)について説明する。なお、実施の形態1に係る検出装置100の検出動作と同じ工程は、同じ符号を付してその説明を省略する。
 図9は、検出装置200の動作手順の一例を示すフローチャートである。この例では、捕捉体として1次抗体が金属膜30(回折格子50)上に固定化されている。また、蛍光標識に使用する捕捉体として、蛍光物質で標識された2次抗体を使用している。
 まず、測定の準備をする(工程S110)。
 次いで、検体中の被検出物質と一次抗体とを反応させる(1次反応、工程S120)。
 次いで、1次抗体に結合した被検出物質を蛍光物質で標識する(2次反応、工程S130)。
 次いで、入射角を調整する(工程S240)。具体的には、制御部140は、温度測定部130に測定させた金属膜30の温度と、金属膜30の表面(回折格子50)に照射された励起光αによって金属膜30から生じるプラズモン散乱光δの強度が最大となる増強角との関係の情報に基づいて、励起光αの入射角を増強角に決定する。なお、金属膜30の温度と、増強角との関係の求め方は、励起光αを金属膜30の表面(回折格子50)に照射する点以外は、実施の形態1における工程S140と同様であるので、その説明を省略する。
 次いで、被検出物質を検出する(工程S150)。具体的には、制御部140は、光源制御部113により励起光αを工程S240で決定した増強角で金属膜30の所定の位置に照射させながら、金属膜30(金属膜30表面およびその近傍)上から放出される蛍光γの強度を検出するように受光センサー制御部123を制御する。蛍光強度は、必要に応じて、被検出物質の量や濃度などに換算される。
 なお、検出装置200でも、2次反応(工程S130)の前にブランク値を測定してもよい。この場合、被検出物質を検出する工程(工程S150)では、蛍光γの検出値からブランク値を引くことで、検体中の被検出物質の量を示す蛍光γの量を算出する。
 以上のように、本実施の形態に係る検出装置200は、実施の形態1に係る検出装置100と同様の効果を有する。
 (変形例)
 同じ量の蛍光物質であっても、温度の違いによって当該蛍光物質から放出される蛍光γの強度が異なる場合がある。そこで、実施の形態1の変形例に係る検出方法では、蛍光γの強度を補正している。実施の形態1、2に係る検出装置100、200の他の検出動作は、検出された蛍光γの強度を補正する工程S160をさらに有していてもよい。なお、実施の形態1、2に係る検出装置100、200の検出動作と同じ工程は、同じ符号を付してその説明を省略する。
 図10は、実施の形態1、2に係る検出装置100、200の動作手順の他の一例を示すフローチャートである。
 まず、測定の準備をする(工程S110)。
 次いで、検体中の被検出物質と一次抗体とを反応させる(1次反応、工程S120)。
 次いで、1次抗体に結合した被検出物質を蛍光物質で標識する(2次反応、工程S130)。
 次いで、増強角を調整する(工程S140、工程S240)。
 次いで、被検出物質を検出する(工程S150)。具体的には、制御部140は、光源制御部113により励起光αを工程S140、または工程S240で決定した増強角で金属膜30の所定の位置に照射させながら、金属膜30(金属膜30表面およびその近傍)上から放出される蛍光γの強度を検出するように受光センサー制御部123を制御する。
 次いで、検出した蛍光強度を補正する(工程S160)。具体的には、制御部140は、金属膜30の温度と、照射された励起光によって生じる蛍光γの強度との関係の情報に基づいて、受光センサー127で検出された蛍光強度を調整する。
 ここで、図11および図12を参照して、金属膜30の温度と、蛍光強度の補正係数との関係の求め方について詳細に説明する。図11は、蛍光強度の補正方法を説明するためのフローチャートである。図12は、金属膜の温度差と、蛍光強度の補正係数との関係をグラフに表したものであり、図12の横軸は、金属膜の温度差(℃)であり、縦軸は蛍光強度の補正係数である。
 図11および図12に示されるように、記憶部141には、金属膜30の基準温度(例えば、20°)と任意の金属膜30の温度との温度差(℃)と、その温度差における蛍光強度の補正係数との関係の情報を記憶しておく。ここで、蛍光強度の補正係数とは、金属膜30の基準温度と、検出時の金属膜30の温度との差分値(温度差)に対して、検出時の金属膜の温度における適切な蛍光強度に合わせるための、基準温度における蛍光強度に対する任意の温度における蛍光強度の割合である。金属膜30の温度差と、蛍光強度の補正係数との関係は、まず、任意の複数の金属膜30の温度と、当該金属膜30の温度における蛍光強度を測定する(工程S161)。このとき、励起光αの入射角度は増強角であることが好ましい。次いで、基準温度における蛍光強度に対する任意の温度における蛍光強度の割合をそれぞれ求める(工程S162)。
 次いで、制御部140は、被検出物質の検出時(工程S150)における金属膜30の温度と基準温度との差分値(温度差)を求める(工程S163)。そして、制御部140は、当該差分値に対応する蛍光強度の補正係数を求めた後、検出された蛍光強度に当該補正係数を用いることで適正な蛍光強度を決定する(工程S164)。蛍光強度は、必要に応じて、被検出物質の量や濃度などに換算される。
 なお、実施の形態1、2に係る検出装置100、200では、あらかじめ記憶部141に記憶された情報に基づいて増強角を調整したが、当該情報は、検出装置100、200の検出動作において得るようにしてもよい。この場合、当該情報の取得は、1次反応(工程S120)の前に行われる。
 具体的には、1次反応の前に、金属膜30を加温または冷却して、当該金属膜30の温度と、当該金属膜30の温度において、励起光αを金属膜30の所定の位置に照射させながら、第1角度調整機構112により金属膜30に対する励起光αの入射角度を走査させる。また、制御部140は、光検出部120、220が金属膜30上からのプラズモン散乱光δを検出するように制御する。金属膜30で反射した励起光αの反射光βは、受光センサー127に到達する。これにより、制御部140は、励起光αの入射角度とプラズモン散乱光δの光量との関係を含むデータを得る。そして、制御部140は、データを解析して、増強角を求める。次いで、金属膜30の基準温度と任意の金属膜30の温度との温度差(℃)と、その温度差における増強角の補正角度(°)との関係の情報を得てもよい。そして、得られた情報を工程S140、工程S240で使用してもよい。
 [実施の形態3]
 実施の形態3に係る検出装置300は、SPR装置である点において、実施の形態1に係る検出装置100と異なる。そこで、実施の形態1に係る検出装置100と同様の構成については同一の符号を付してその説明を省略する。
 図13は、実施の形態3に係る検出装置300の構成を示す模式図である。
 図13に示されるように、検出装置300は、チップホルダー70と、光照射部110と、光検出部320と、温度測定部130と、記憶部141および処理部142を含む制御部140と有する。検出装置300は、チップホルダー70にチップ10を装着した状態で使用される。チップホルダー70およびチップ10は、同一のものを使用することができる。なお、本実施の形態におけるチップホルダー70は、励起光αの光路および反射光βの光路も妨げない。
 光検出部320は、光照射部110に対して、励起光αの光軸と金属膜30との交点を通り、かつ金属膜30の表面に対する法線Nを挟むように配置されている。光検出部320は、入射面21から入射し、金属膜30の裏面で反射して出射面23から出射された励起光αの反射光βを検出する。
 光検出部320は、例えば、受光センサー127、第2角度調整機構321および受光センサー制御部123を含む。光検出部320は、さらに集光レンズ群や開口絞り、蛍光フィルターなどを有していてもよい。
 第2角度調整機構321は、受光センサー127が反射光βを検出できるように、受光センサー127の光軸を調整する。第2角度調整機構321は、反射光βの光軸と金属膜30の裏面との交点を通り、かつ反射光βの光軸に直交する軸を回転軸として受光センサー127を回動させる。受光センサー127は、反射光βを検出する。たとえば、受光センサー127は、感度およびSN比が高い光電子増倍管である。
 制御部140は、例えば、記憶部141、処理部142、演算装置、制御装置、入力装置および出力装置を含む公知のコンピュータやマイコンなどによって構成されており、第1角度調整機構112、光源制御部113、第2角度調整機構321、受光センサー制御部123および温度センサー調整機構132を制御する。記憶部141は、金属膜30の温度と、最適な入射光の入射角との関係の情報を記憶する。具体的には、本実施の形態では、記憶部141は、金属膜30の温度と、照射された入射光によって金属膜30で反射し、出射面23から出射した反射光βの光量が最小となる共鳴角との関係の情報を記憶する。この情報は、被検出物質の検出前に作成してもよいし、外部で作成されたものであってもよい。処理部142は、温度測定部130で測定した金属膜30の温度と、記憶部141に記憶された情報とに基づいて、入射光の入射角を最適な共鳴角に決定する。
 (検出装置の検出動作)
 次に、実施の形態3に係る検出装置300の検出動作(検出方法)について説明する。なお、実施の形態1に係る検出装置100の検出動作と同じ工程は、同じ符号を付してその説明を省略する。
 図14は、実施の形態3に係る検出装置300の動作手順の他の一例を示すフローチャートである。
 まず、測定の準備をする(工程S110)。
 次いで、検体中の被検出物質と一次抗体とを反応させる(1次反応、工程S120)。
 次いで、1次抗体に結合した被検出物質を蛍光物質で標識する(2次反応、工程S130)。
 次いで、入射角を調整する(工程S340)。具体的には、制御部140は、金属膜30の温度を測定させて、金属膜30の温度と、プリズム20を介して金属膜30の裏面に照射された励起光αの反射光βの光量が最小となる共鳴角との関係の情報に基づいて、励起光αの入射角を共鳴角に決定する。なお、金属膜30の温度と、増強角との関係の求め方は、増強角でなく共鳴角を求める点以外は、実施の形態1における工程S140と同様である。共鳴角を求めるためには、第1角度調整機構112により励起光αの光軸の角度を走査しながら、受光センサー127により反射光βを検出する。そして、反射光βの光量が最小となる励起光αの入射角を共鳴角とする。
 次いで、被検出物質を検出する(工程S150)。具体的には、制御部140は、光源制御部113により励起光αを工程S340で決定した共鳴角で金属膜30の所定の位置に照射させながら、励起光αの反射光βを検出するように受光センサー制御部123を制御する。光量は、必要に応じて、被検出物質の量や濃度などに換算される。
 なお、検出装置300でも、2次反応(工程S130)の前にブランク値を測定してもよい。この場合、被検出物質を検出する工程(工程S150)では、蛍光γの検出値からブランク値を引くことで、検体中の被検出物質の量を示す蛍光γの量を算出する。ブランク値の測定では、制御部140は、入射光の入射角を走査しながら、プリズム20を介して金属膜30に励起光αを照射する。そして、制御部140は、金属膜30で反射した励起光αの反射光βの最小値をブランク値として得る。
 以上のように、本実施の形態に係る検出装置300は、実施の形態1に係る検出装置100と同様の効果を有する。
 本出願は、2014年12月15日出願の特願2014-253407に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。
 また、本発明に係る検出方法および検出装置は、被検出物質を高い信頼性で測定することもできる。よって、非常に簡易な定量免疫測定システムの開発、普及および発展に寄与することも期待される。
 10、10’、90、90’ チップ
 20 プリズム
 21 入射面
 22 成膜面
 23 出射面
 30 金属膜
 40、40’ 流路蓋
 41 注入口
 42 排出口
 43 流路
 50 回折格子
 60 基板
 70、80 チップホルダー
 100、200、300 検出装置
 110 光照射部
 111 光源ユニット
 112 第1角度調整機構
 113 光源制御部
 120、220、320 光検出部
 121 受光ユニット
 122 位置切替機構
 123 受光センサー制御部
 124 第1レンズ
 125 光学フィルター
 126 第2レンズ
 127 受光センサー
 130 温度測定部
 131 温度センサー
 132 温度センサー調整機構
 140 制御部
 141 記憶部
 142 処理部
 221、321 第2角度調整機構
 α 励起光
 β 反射光
 γ 蛍光
 δ プラズモン散乱光

Claims (9)

  1.  表面プラズモン共鳴を利用して、検体に含まれる被検出物質の存在またはその量を検出するための検出方法であって、
     金属膜と、前記金属膜上に固定された捕捉体とを有するチップの前記金属膜上に前記検体を提供して、前記捕捉体と前記被検出物質とを結合させる第1工程と、
     前記第1工程の後、前記金属膜の温度を直接的または間接的に測定し、前記金属膜の温度と入射光によって前記金属膜から生じるプラズモン散乱光の強度が最大となるときの入射光の入射角である増強角または前記金属膜に照射された入射光の反射光の光量が最小となるときの入射光の入射角である共鳴角との関係の情報に基づいて、入射光の入射角を前記増強角または前記共鳴角に決定する第2工程と、
     前記第2工程の後、前記増強角または前記共鳴角で前記金属膜に対して入射光を照射させ、入射光によって生じたシグナルを検出することで前記被検出物質を検出する第3工程と、を含む、
     検出方法。
  2.  前記第1工程では、入射面および成膜面を有するプリズムと、前記成膜面上に配置された金属膜と、前記金属膜の表面に固定された捕捉体とを有するチップの前記金属膜上に前記検体および前記被検出物質を標識する蛍光物質を提供して、前記捕捉体と前記被検出物質とを結合させ、かつ前記被検出物質を前記蛍光物質で標識させ、
     前記第2工程では、前記金属膜の温度と、前記プリズムを介して前記金属膜の裏面に照射された励起光によって前記金属膜から生じるプラズモン散乱光の強度が最大となる前記増強角との関係の情報に基づいて、励起光の前記入射角を前記増強角に決定し、
     前記第3工程では、前記プリズムを介して前記金属膜の裏面に対して励起光を照射し、前記蛍光物質から放出された蛍光を検出することで前記被検出物質を検出する、
     請求項1に記載の検出方法。
  3.  前記第1工程では、回折格子を形成された金属膜と、前記回折格子に固定され、蛍光物質で標識される被検出物質を捕捉するための捕捉体とを有するチップの前記回折格子に前記検体および前記被検出物質を標識する蛍光物質を提供して、前記捕捉体と前記被検出物質とを結合させ、かつ前記被検出物質を前記蛍光物質で標識させ、
     前記第2工程では、前記金属膜の温度と、前記回折格子に照射された励起光によって前記金属膜から生じるプラズモン散乱光の強度が最大となる前記増強角との関係の情報に基づいて、励起光の前記入射角を前記増強角に決定し、
     前記第3工程では、前記増強角で前記捕捉体が固定された前記回折格子に対して励起光を照射し、前記蛍光物質から放出された蛍光を検出することで前記被検出物質を検出する、
     請求項1に記載の検出方法。
  4.  前記金属膜の温度と、照射された励起光によって生じる蛍光の強度との関係の情報に基づいて、前記第3工程で検出された蛍光の強度を補正する第4工程をさらに有する、請求項2または請求項3に記載の検出方法。
  5.  前記第1工程では、入射面、成膜面および出射面を有するプリズムと、前記成膜面上に配置された金属膜と、前記金属膜上に固定された捕捉体とを有するチップの前記金属膜上に前記検体を提供して、前記捕捉体と前記被検出物質とを結合させ、
     前記第2工程では、前記金属膜の温度と、前記プリズムを介して前記金属膜に照射され、前記金属膜で反射され、かつ前記出射面から出射された励起光の反射光の光量が最小となる前記共鳴角との関係の情報に基づいて、入射光の前記入射角を前記共鳴角に決定し、
     前記第3工程では、反射光を検出することで前記被検出物質を検出する、
     請求項1に記載の検出方法。
  6.  表面プラズモン共鳴を利用して、検体に含まれる被検出物質の存在またはその量を検出するための検出装置であって、
     表面プラズモン共鳴が生じるように、金属膜と、前記金属膜上に固定された捕捉体とを有するチップの前記金属膜に入射光を照射する光照射部と、
     前記金属膜に照射された入射光によって生じたシグナルを検出する光検出部と、
     前記金属膜の温度を直接的または間接的に測定する温度測定部と、
     前記金属膜の温度と、入射光によって前記金属膜から生じるプラズモン散乱光の強度が最大となるときの入射光の入射角である増強角または前記金属膜に照射された入射光の反射光の光量が最小となるときの入射光の入射角である共鳴角との関係の情報を記憶している記憶部と、
     前記温度測定部で測定した前記金属膜の温度と、前記記憶部に記憶された情報とに基づいて、入射光の前記入射角を前記増強角または前記共鳴角に決定する処理部と、を有し、
     前記光照射部は、前記処理部により決定された前記増強角または前記共鳴角で前記金属膜に対して入射光を照射し、
     前記光検出部は、前記処理部により決定された前記増強角または前記共鳴角で前記金属膜に照射された入射光によって生じたシグナルを検出する、
     検出装置。
  7.  前記チップは、入射面および成膜面を有するプリズムと、前記成膜面上に配置された金属膜と、前記金属膜上に固定され、蛍光物質で標識される被検出物質を捕捉するための捕捉体とを有し、
     前記光照射部は、前記金属膜に対して前記プリズムを介して励起光を照射し、
     前記光検出部は、前記金属膜に照射された励起光によって前記被検出物質を標識した前記蛍光物質から放出された蛍光を検出し、
     前記記憶部は、前記金属膜の温度と、照射された入射光によって前記金属膜から生じるプラズモン散乱光の強度が最大となる前記増強角との関係の情報を記憶し、
     前記処理部は、前記温度測定部で測定した前記金属膜の温度と、前記記憶部に記憶された情報とに基づいて、励起光の前記入射角を前記増強角に決定する、
     請求項6に記載の検出装置。
  8.  前記チップは、回折格子を形成された金属膜と、前記回折格子に固定され、蛍光物質で標識される被検出物質を捕捉するための捕捉体とを有し、
     前記光照射部は、前記回折格子に対して励起光を照射し、
     前記光検出部は、前記回折格子に照射された励起光によって前記被検出物質を標識した前記蛍光物質から放出された蛍光を検出し、
     前記記憶部は、前記金属膜の温度と、照射された入射光によって前記金属膜に生じるプラズモン散乱光の強度が最大となる前記増強角との関係の情報を記憶し、
     前記処理部は、前記温度測定部で測定された前記金属膜の温度と、前記記憶部に記憶された情報とに基づいて、励起光の前記入射角を前記増強角に決定する、
     請求項6に記載の検出装置。
  9.  前記チップは、入射面、成膜面および出射面を有するプリズムと、前記成膜面上に配置された金属膜と、前記金属膜上に固定された捕捉体とを有し、
     前記光照射部は、前記金属膜に対して前記プリズムを介して入射光を照射し、
     前記光検出部は、前記金属膜で反射され、かつ前記出射面から出射された入射光の反射光を検出し、
     前記記憶部は、前記金属膜の温度と、励起光の反射光の光量が最小となる前記共鳴角との関係の情報を記憶し、
     前記処理部は、前記温度測定部で測定された前記金属膜の温度と、前記記憶部に記憶された情報とに基づいて、入射光の前記入射角を前記共鳴角に決定する、
     請求項6に記載の検出装置。
PCT/JP2015/084492 2014-12-15 2015-12-09 検出方法および検出装置 WO2016098653A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016564806A JP6717201B2 (ja) 2014-12-15 2015-12-09 検出方法および検出装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-253407 2014-12-15
JP2014253407 2014-12-15

Publications (1)

Publication Number Publication Date
WO2016098653A1 true WO2016098653A1 (ja) 2016-06-23

Family

ID=56126545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084492 WO2016098653A1 (ja) 2014-12-15 2015-12-09 検出方法および検出装置

Country Status (2)

Country Link
JP (1) JP6717201B2 (ja)
WO (1) WO2016098653A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019082637A1 (ja) * 2017-10-25 2019-05-02 株式会社堀場製作所 表面プラズモン共鳴分析装置、及び、表面プラズモン共鳴分析方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07174693A (ja) * 1991-06-08 1995-07-14 Hewlett Packard Co <Hp> 生体分子検出方法および装置
JPH09257699A (ja) * 1996-03-19 1997-10-03 Toto Ltd 表面プラズモン共鳴センサ装置
JP2003065947A (ja) * 2001-08-29 2003-03-05 Matsushita Electric Ind Co Ltd 屈折率測定装置、屈折率測定方法、および定性定量分析装置
JP2004037425A (ja) * 2002-07-08 2004-02-05 Fuji Photo Film Co Ltd 測定装置
JP2012225778A (ja) * 2011-04-20 2012-11-15 Konica Minolta Holdings Inc 検査チップ及び計測装置
JP2013083632A (ja) * 2011-09-28 2013-05-09 Fujifilm Corp 蛍光粒子を用いた検出対象物質の検出方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050186565A1 (en) * 2003-02-10 2005-08-25 American Environmental Systems, Inc. Method and spectral/imaging device for optochemical sensing with plasmon-modified polarization
US20060194346A1 (en) * 2004-02-18 2006-08-31 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Surface plasmon-field-enhanced diffraction sensor
JP2010038624A (ja) * 2008-08-01 2010-02-18 Fujifilm Corp 検出方法及び検出装置
JP5640873B2 (ja) * 2011-04-07 2014-12-17 コニカミノルタ株式会社 表面プラズモン励起蛍光計測装置及び表面プラズモン励起蛍光計測方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07174693A (ja) * 1991-06-08 1995-07-14 Hewlett Packard Co <Hp> 生体分子検出方法および装置
JPH09257699A (ja) * 1996-03-19 1997-10-03 Toto Ltd 表面プラズモン共鳴センサ装置
JP2003065947A (ja) * 2001-08-29 2003-03-05 Matsushita Electric Ind Co Ltd 屈折率測定装置、屈折率測定方法、および定性定量分析装置
JP2004037425A (ja) * 2002-07-08 2004-02-05 Fuji Photo Film Co Ltd 測定装置
JP2012225778A (ja) * 2011-04-20 2012-11-15 Konica Minolta Holdings Inc 検査チップ及び計測装置
JP2013083632A (ja) * 2011-09-28 2013-05-09 Fujifilm Corp 蛍光粒子を用いた検出対象物質の検出方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019082637A1 (ja) * 2017-10-25 2019-05-02 株式会社堀場製作所 表面プラズモン共鳴分析装置、及び、表面プラズモン共鳴分析方法
JPWO2019082637A1 (ja) * 2017-10-25 2020-09-17 株式会社堀場製作所 表面プラズモン共鳴分析装置、及び、表面プラズモン共鳴分析方法

Also Published As

Publication number Publication date
JP6717201B2 (ja) 2020-07-01
JPWO2016098653A1 (ja) 2017-09-21

Similar Documents

Publication Publication Date Title
JP6369533B2 (ja) 測定方法および測定装置
JP6337905B2 (ja) 表面プラズモン共鳴蛍光分析方法および表面プラズモン共鳴蛍光分析装置
JP6991972B2 (ja) 検出チップ、検出システムおよび検出方法
US20200256796A1 (en) Method of manufacturing sensing chip and sensing chip
WO2015182747A1 (ja) 表面プラズモン増強蛍光測定方法、表面プラズモン増強蛍光測定装置および分析チップ
WO2017057136A1 (ja) 表面プラズモン励起増強蛍光分光測定方法、および測定用キット
JP6421821B2 (ja) 検出装置
JP6760384B2 (ja) 測定方法
JP6717201B2 (ja) 検出方法および検出装置
JP2015111063A (ja) 表面プラズモン増強蛍光測定方法および表面プラズモン増強蛍光測定装置
US10976250B2 (en) Position detection method and position detection device for sensor chip in optical sample detection system
JP7121742B2 (ja) 回折光除去スリットを用いた光学式検体検出システム
JP6711285B2 (ja) 検出方法、検出装置およびチップ
JP6954116B2 (ja) 測定方法、測定装置および測定チップ
JP6399089B2 (ja) 表面プラズモン共鳴蛍光分析方法、表面プラズモン共鳴蛍光分析装置および位置合わせ方法
WO2021009995A1 (ja) 検出装置および検出方法
WO2015068813A1 (ja) チップおよび表面プラズモン増強蛍光測定方法
JP6221785B2 (ja) 検出装置および検出方法
JP6493412B2 (ja) 検出装置および検出方法
WO2016147774A1 (ja) 測定方法および測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869858

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016564806

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15869858

Country of ref document: EP

Kind code of ref document: A1