WO2016098413A1 - 装置及び方法 - Google Patents
装置及び方法 Download PDFInfo
- Publication number
- WO2016098413A1 WO2016098413A1 PCT/JP2015/076941 JP2015076941W WO2016098413A1 WO 2016098413 A1 WO2016098413 A1 WO 2016098413A1 JP 2015076941 W JP2015076941 W JP 2015076941W WO 2016098413 A1 WO2016098413 A1 WO 2016098413A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- codeword
- adjustment
- layers
- unit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
- H04B7/046—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
- H04B7/0473—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking constraints in layer or codeword to antenna mapping into account
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/707—Spread spectrum techniques using direct sequence modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
- H04B7/0482—Adaptive codebooks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J11/00—Orthogonal multiplex systems, e.g. using WALSH codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J13/00—Code division multiplex systems
- H04J13/0074—Code shifting or hopping
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J13/00—Code division multiplex systems
- H04J13/10—Code generation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J99/00—Subject matter not provided for in other groups of this subclass
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/0071—Use of interleaving
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/02—Arrangements for detecting or preventing errors in the information received by diversity reception
- H04L1/04—Arrangements for detecting or preventing errors in the information received by diversity reception using frequency diversity
Definitions
- the present disclosure relates to an apparatus and a method.
- Non-Patent Document 1 discloses SCMA. Further, for example, Patent Document 1 discloses an example of a code word generation method using an SCAM code book and a design method of the code book.
- SCMA SCMA
- a code word including a plurality of signal elements is generated based on a code book.
- Each signal element in the codewords of multiple layers is then mapped to a corresponding radio resource (after multiplexing or before multiplexing).
- a coordinator for each of a plurality of layers to be subjected to non-orthogonal multiplexing using a codebook, generation of generating a codeword of the layer from the data of the layer based on the codebook for the layer And a coordinator for coordinating radio resources used for transmission of signal elements in the multiplexed codeword obtained by multiplexing the codewords of the plurality of layers.
- a code of the layer is obtained from the data of the layer based on the codebook for the layer.
- a method includes generating a word and adjusting radio resources used to transmit signal elements in the multiplexed codeword obtained by multiplexing the codewords of the plurality of layers. .
- an acquisition unit that acquires information on adjustment of radio resources used for transmission of signal elements in a multiplexed codeword obtained by multiplexing codewords of a plurality of layers, and the information And a control unit that performs a reception process in the terminal device.
- the plurality of layers are layers to be subjected to non-orthogonal multiplexing using a codebook.
- Each of the codewords of the plurality of layers is a codeword generated from data of the layer based on a codebook for the layer.
- a generation unit that generates a code word of the layer from data of the layer, and the code And a coordinator for coordinating radio resources used to transmit signal elements in the word.
- FIG. 2 is an explanatory diagram illustrating an example of a schematic configuration of a system according to an embodiment of the present disclosure.
- FIG. It is a block diagram which shows an example of a structure of the base station which concerns on 1st Embodiment. It is a block diagram which shows an example of a structure of the terminal device which concerns on 1st Embodiment.
- FIG. 1 is an explanatory diagram for explaining an example of a schematic process for SCMA.
- code word is generated from data (binary data) after error correction encoding based on a code book.
- the code book is information indicating correspondence between data candidates and code words, and the data is converted into code words corresponding to the data in the code book.
- a codebook for each layer is prepared for layer separation.
- each signal element in the generated codeword is mapped to a corresponding radio resource.
- code words of a plurality of layers are multiplexed, and then each signal element in the multiplexed code word is mapped to a corresponding radio resource.
- each signal element in a layer codeword is mapped to a corresponding radio resource, and then two or more signal elements (ie, different) mapped to the same radio resource.
- Layer signal elements may be multiplexed.
- the signal element mapped to the radio resource is transmitted.
- SCMA is not an orthogonal access method like OFDMA, but a non-orthogonal access method.
- FIG. 2 is an explanatory diagram for explaining an example of code word generation based on a code book.
- data candidates b i and codewords x j are shown.
- the size of the code book that is, the number of data candidates b i and the number of code words x j are each M.
- data that is input information is a vector including bits as elements, and has a length of log 2 M.
- the code word that is output information is a vector that includes a complex number as a signal element, and has the same length as the number K of radio resources used for transmitting the code word. Therefore, it can be said that the code book is a function whose input information and output information are vectors.
- the code word that is output information is required to satisfy a desired condition suitable for layer multiplexing.
- FIG. 3 is an explanatory diagram for explaining an example of a codebook.
- codebooks 1 to 6 are shown.
- Codebooks 1 to 6 are codebooks for layers 1 to 6.
- the data as input information is 2-bit data
- the number of data candidates is four. Therefore, the number of code words in each code book is four.
- two of the four signal elements ie complex numbers
- the two different codewords are sparse.
- two of the four signal elements are not zero. That is, the number N of non-zero signal elements among the four signal elements is 2.
- FIG. 4 is an explanatory diagram for explaining an example of code book resource mapping. Referring to FIG. 4, six layers and four radio resources are shown. In this example, since the number of signal elements in the codeword of each layer is 4, four radio resources are prepared. For example, non-zero signal elements (that is, two signal elements) among four signal elements included in the codeword of each layer are mapped to corresponding radio resources, respectively. Specifically, for example, the first signal element in the layer 1 codeword is mapped to the radio resource 1, and the second signal element in the layer 1 codeword is mapped to the radio resource 2. For example, the first signal element in the layer 3 codeword is mapped to radio resource 1, and the third signal element in the layer 3 codeword is mapped to radio resource 3.
- the overload realized is 150%.
- J layer codewords are mapped to K radio resources.
- the received signal yk in the kth radio resource is expressed as follows.
- h k is a channel characteristic in the k-th radio resource
- n k is a noise component added in the k-th radio resource.
- SIC Successessive Interference Cancellation
- a receiving apparatus sequentially cancels reception signals of other layers as interference components in the process of demodulating a reception signal of a certain layer. By such processing, the received signal of the layer is separated, and the received signal of the desired layer is obtained.
- K and N which are codeword parameters, are set to large values, the amount of calculation required for selecting the optimum combination becomes extremely large, and the selection becomes difficult.
- the SCMA codebook is designed using a large-scale computer during system design. Therefore, when the SCMA system is operated, a code word is generated based on the code book designed in advance as described above.
- the number of subcarriers included in the entire carrier frequency band may be the codeword length.
- the codeword length may be the codeword length.
- FIG. 5 is an explanatory diagram for explaining an example of a case where the number of subcarriers included in the entire carrier frequency band is the length of the codeword.
- the carrier frequency band is shown.
- the carrier frequency band includes a large number of subcarriers.
- the number of subcarriers included in the carrier frequency band is the length of the codeword, and is the number K of radio resources used for transmitting the codeword.
- a codeword of a certain layer is mapped to N subcarriers (hatched portions in FIG. 5) among K subcarriers. That is, non-zero N signal elements in the codeword are mapped to the N subcarriers.
- a sparse codeword is secured by making N sufficiently smaller than K.
- N is smaller than K. Therefore, the communication speed per layer can be significantly restricted in the carrier frequency band.
- FIG. 6 is an explanatory diagram for explaining an example of a case where the number of subcarriers included in a block is the length of a code word.
- the carrier frequency band includes a plurality of blocks 10 each including a predetermined number of subcarriers.
- the block 10 is a resource block and includes 12 subcarriers.
- the length of the code word is 12, and the number of radio resources used for transmitting the code word is also 12.
- four non-zero signal elements in each layer codeword are mapped to four of the twelve subcarriers. For example, a codeword of a certain layer is mapped to the first, third, sixth, and twelfth subcarriers (hatched portions in FIG. 6) among the twelve subcarriers in the block 10.
- FIG. 7 is an explanatory diagram for explaining an example in which a three-layer codeword is mapped to a block radio resource.
- the layer 1 codeword is mapped to the first, third, sixth, and twelfth subcarriers of the twelve subcarriers in the block 10.
- the layer 2 codeword is mapped to the second, seventh, eighth and ninth subcarriers of the twelve subcarriers in the block 10.
- the layer 3 codeword is mapped to the fourth, fifth, tenth and eleventh subcarriers of the twelve subcarriers in the block 10.
- radio resources do not overlap between codewords of different layers. Therefore, interference between layers can be avoided.
- FIG. 8 is an explanatory diagram for explaining an example in which a 4-layer codeword is mapped to a radio resource of a block.
- the layer 4 codeword is further mapped to the first, second, third, and fourth subcarriers of the twelve subcarriers in the block 10.
- radio resources overlap between a codeword of layer 4 and a codeword of another layer. Therefore, interference occurs between layers, but an increase in the number of layers enables accommodation of a larger number of terminal devices.
- mapping to only the blocks 10A and 10B is described. However, for example, the mapping to other blocks 10 is also performed.
- mapping of codewords to radio resources for example, first, codewords of a plurality of layers are multiplexed, and then multiplexed codewords are mapped to radio resources.
- mapping of codewords to radio resources first, for each of a plurality of layers, a codeword of a layer is mapped to radio resources, and then two or more signal elements mapped to the same radio resource ( That is, signal elements of different layers) may be multiplexed.
- a code word including a plurality of signal elements is generated based on a code book.
- Each signal element in the codewords of multiple layers is then mapped to a corresponding radio resource (after multiplexing or before multiplexing).
- FIG. 9 is an explanatory diagram for explaining an example of the influence of fading in SCMA.
- received power in 12 subcarriers included in block 10 is shown.
- fading is performed in, for example, the second subcarrier to which the signal elements of the codewords of layers 2 and 4 are mapped and the fourth subcarrier to which the signal elements of the codewords of layers 3 and 4 are mapped.
- the influence on the data of layer 4 becomes large.
- interference cancellation eg, removal of layer 4 signal elements
- decoding eg, decoding of layer 4 data
- FIG. 10 is an explanatory diagram illustrating an example of a schematic configuration of the system 1 according to the embodiment of the present disclosure.
- the system 1 includes a base station 100 and a terminal device 200.
- Base station 100 is a base station of a mobile communication system (or cellular system).
- the base station 100 performs wireless communication with a terminal device (for example, the terminal device 200) located in the cell 101.
- a terminal device for example, the terminal device 200
- the base station 100 transmits a downlink signal to the terminal device and receives an uplink signal from the terminal device.
- Terminal device 200 is a terminal device that can communicate in the mobile communication system (or cellular system).
- the terminal device 200 performs wireless communication with a base station (for example, the base station 100).
- the terminal device 200 receives a downlink signal from the base station and transmits an uplink signal to the base station.
- Non-orthogonal multiplexing using a code book In particular, in the embodiment of the present disclosure, non-orthogonal multiplexing / non-orthogonal multiple access using a code book is performed.
- the code book is an SC (Sparse Code) code book.
- SC Separatse Code
- the non-orthogonal multiple access using the code book is SCMA
- the non-orthogonal multiplexing using the code book is SCMA multiplexing.
- non-orthogonal multiplexing / non-orthogonal multiple access using a codebook is performed for the downlink.
- non-orthogonal multiplexing / non-orthogonal multiple access using a codebook is performed for the uplink.
- FIG. 11 is a block diagram illustrating an example of a configuration of the base station 100 according to the first embodiment.
- the base station 100 includes an antenna unit 110, a wireless communication unit 120, a network communication unit 130, a storage unit 140, and a processing unit 150.
- Antenna unit 110 The antenna unit 110 radiates a signal output from the wireless communication unit 120 to the space as a radio wave. Further, the antenna unit 110 converts radio waves in space into a signal and outputs the signal to the wireless communication unit 120.
- the wireless communication unit 120 transmits and receives signals.
- the radio communication unit 120 transmits a downlink signal to the terminal device and receives an uplink signal from the terminal device.
- the network communication unit 130 transmits and receives information.
- the network communication unit 130 transmits information to other nodes and receives information from other nodes.
- the other nodes include other base stations and core network nodes.
- Storage unit 140 The storage unit 140 temporarily or permanently stores a program for operating the base station 100 and various data.
- Processing unit 150 provides various functions of the base station 100.
- the processing unit 150 includes a code word generation unit 151, an adjustment unit 153, an information acquisition unit 155, and a notification unit 157.
- the processing unit 150 may further include other components other than these components. That is, the processing unit 150 can perform operations other than the operations of these components.
- the codeword generation unit 151 the adjustment unit 153, the information acquisition unit 155, and the notification unit 157 will be described in detail later.
- FIG. 12 is a block diagram illustrating an example of a configuration of the terminal device 200 according to the first embodiment.
- the terminal device 200 includes an antenna unit 210, a wireless communication unit 220, a storage unit 230, and a processing unit 240.
- Antenna unit 210 The antenna unit 210 radiates the signal output from the wireless communication unit 220 to the space as a radio wave. Further, the antenna unit 210 converts a radio wave in the space into a signal and outputs the signal to the wireless communication unit 220.
- the wireless communication unit 220 transmits and receives signals.
- the radio communication unit 220 receives a downlink signal from the base station and transmits an uplink signal to the base station.
- Storage unit 230 The storage unit 230 temporarily or permanently stores a program for operating the terminal device 200 and various data.
- the processing unit 240 provides various functions of the terminal device 200.
- the processing unit 240 includes an information acquisition unit 241 and a control unit 243.
- the processing unit 240 may further include other components other than these components. That is, the processing unit 240 can perform operations other than the operations of these components.
- the information acquisition unit 241 and the control unit 243 will be described in detail later.
- the base station 100 (codeword generation unit 151), for each of a plurality of layers to be subjected to non-orthogonal multiplexing using a codebook, based on the codebook for the layer, A codeword of the layer is generated from the layer data.
- Non-orthogonal multiplexing using a code book As described above, for example, the code book is an SC (Sparse Code) code book, and the non-orthogonal multiplexing using the code book is an SCMA code book. Multiplexing.
- SC Separatse Code
- the codebook is information indicating correspondence between data candidates and codewords.
- the code book is the code book shown in FIG.
- the base station 100 (code word generation unit 151) generates a code word corresponding to the data in the code book.
- the base station 100 (code word generation unit 151) converts the data into a code word corresponding to the data in the code book.
- the base station 100 (coordinator 153) adjusts radio resources used for transmission of signal elements in the multiplexed codeword obtained by multiplexing the codewords of the plurality of layers. .
- Radio resource (a-1) Frequency resource
- the radio resource is a frequency resource. That is, the base station 100 (coordinator 153) adjusts frequency resources used for transmission of signal elements in the multiplexed codeword.
- the frequency resource is a subcarrier. That is, the base station 100 (coordinator 153) adjusts subcarriers used for transmission of signal elements in the multiplexed codeword.
- the subcarriers are carriers arranged at intervals of 12 kHz.
- the radio resource is a time resource. That is, the base station 100 (coordinator 153) adjusts time resources used for transmission of signal elements in the multiplexed codeword.
- the time resource is a symbol, a slot, a subframe, or a radio frame. That is, the base station 100 (coordinator 153) adjusts symbols, slots, subframes, or radio frames used for transmission of signal elements in the multiplexed codeword.
- each of the codewords is a vector including a complex number as a signal element
- the multiplexing is addition of the codewords that are vectors.
- the multiplexed codeword is a vector obtained by the addition.
- (B-2) Timing of multiplexing For example, the base station 100 first performs the multiplexing of the codewords of the plurality of layers, and then converts each signal element in the multiplexed codeword to a corresponding radio Map to resource.
- the base station 100 may first map each signal element (for example, a signal element that is not 0) in each codeword of the plurality of layers to a corresponding radio resource. Thereafter, the base station 100 multiplexes (for example, adds) signal elements (that is, signal elements of different layers) mapped to the same radio resource, thereby performing the multiplexing of the codewords of the plurality of layers. You may go.
- each signal element for example, a signal element that is not 0
- the base station 100 multiplexes (for example, adds) signal elements (that is, signal elements of different layers) mapped to the same radio resource, thereby performing the multiplexing of the codewords of the plurality of layers. You may go.
- Example of adjustment (exchange of radio resources between signal elements)
- the adjustment includes exchanging radio resources used for transmission between at least two signal elements in one or more multiplexed codewords each generated from a plurality of layer codewords.
- (C-1) Signal element -Signal element included in two or more multiplexed codewords
- the one or more multiplexed codewords are two or more multiplexed codewords. That is, the base station 100 (coordinator 153) exchanges radio resources used for transmission between at least two signal elements in two or more multiplexed codewords.
- the one or more multiplexed codewords may be a single multiplexed codeword. That is, the base station 100 (coordinator 153) may exchange radio resources used for transmission between at least two signal elements in a single multiplexed codeword.
- FIG. 13 is an explanatory diagram for explaining a first example of exchange of radio resources between signal elements.
- the carrier frequency band is shown.
- the carrier frequency band includes a plurality of blocks 10 each including 12 subcarriers.
- a multiplexed codeword is usually transmitted as shown in FIG.
- transmissions are made between signal elements in the first multiplexed codeword normally transmitted in block 10A and signal elements in the second multiplexed codeword normally transmitted in block 10B.
- the radio resources used for are exchanged.
- radio resources subcarriers or resource elements
- Radio resources are also exchanged between the second signal elements of these multiplexed codewords.
- FIG. 14 is an explanatory diagram for explaining a second example of exchange of radio resources between signal elements.
- the carrier frequency band is shown.
- the carrier frequency band includes a plurality of blocks 10 each including 12 subcarriers.
- a multiplexed codeword is usually transmitted as shown in FIG.
- radio resources used for transmission are exchanged between two signal elements in the first multiplexed codeword transmitted in block 10A.
- radio resources (subcarriers or resource elements) are exchanged between the first signal element and the twelfth signal element in the first codeword.
- Radio resources are exchanged between the second signal element and the eleventh signal element in the first codeword.
- the adjustment may include exchanging the radio resources used for transmission between the at least two signal elements by a cyclic shift.
- FIG. 15 is an explanatory diagram for explaining a third example of exchange of radio resources between signal elements.
- the carrier frequency band is shown.
- the carrier frequency band includes a plurality of blocks 10 each including 12 subcarriers.
- a multiplexed codeword is usually transmitted as shown in FIG.
- radio resources used for transmission are exchanged between the twelve signal elements in the first multiplexed codeword transmitted in block 10A.
- the first signal element in the first multiplexed codeword is transmitted on the second subcarrier of block 10A.
- the second signal element in the first multiplexed codeword is transmitted on the third subcarrier of block 10A
- the twelfth signal element in the first multiplexed codeword is block. It is transmitted on the first subcarrier of 10A.
- the cyclic shift may be performed continuously in the time direction.
- the first signal element in the first multiplexed codeword may be transmitted on the third subcarrier of the block 10A.
- the second signal element in the first multiplexed codeword is transmitted on the fourth subcarrier of block 10A, and the twelfth signal element in the first multiplexed codeword is block. It is transmitted on the second subcarrier of 10A.
- the cyclic shift may be a shift of two or more radio resources (for example, two or more subcarriers) instead of a shift of one radio resource (for example, one subcarrier).
- Radio resources may be exchanged between signal elements by cyclic shift.
- the adjustment may include exchanging the radio resources used for transmission between the at least two signal elements according to an interleave pattern.
- FIG. 16 is an explanatory diagram for explaining a third example of exchange of radio resources between signal elements.
- the carrier frequency band is shown.
- the carrier frequency band includes a plurality of blocks 10 each including 12 subcarriers.
- a multiplexed codeword is usually transmitted as shown in FIG.
- radio resources used for transmission are exchanged between the twelve signal elements in the first multiplexed codeword transmitted in block 10A according to the interleave pattern.
- the first signal element in the first multiplexed codeword is transmitted on the fourth subcarrier of block 10A.
- the second signal element in the first multiplexed codeword is transmitted on the seventh subcarrier of block 10A.
- the interleave pattern may be an interleave pattern determined by the base station 100 (or another node) (for example, based on the channel state). Alternatively, the interleave pattern may be a predetermined interleave pattern.
- the base station 100 may notify the terminal device 200 of the interleave pattern. Thereby, for example, the terminal device 200 can know the interleave pattern.
- Radio resources may be exchanged between signal elements according to an interleave pattern.
- the adjustments involve exchanging radio resources used for transmission between the two signal elements in the one or more multiplexed codewords. including.
- the adjustment is not limited to this exchange.
- the adjustment may include exchanging radio resources used for transmission between signal elements in the multiplexed codeword and other signal elements that are not signal elements in the multiplexed codeword. Good.
- the adjustment may include changing a radio resource used for transmission of a signal element in a multiplexed codeword to a free radio resource (eg, subcarrier or resource element).
- a radio resource used for transmission of a signal element in a multiplexed codeword to a free radio resource (eg, subcarrier or resource element).
- FIG. 17 is an explanatory diagram for describing a first example of the operation of the base station 100 according to the first embodiment.
- the base station 100 (processing unit 150) performs error correction coding for each of the plurality of layers. Furthermore, the base station 100 (codeword generation unit 151) generates a codeword from data (binary data) after erroneous correction encoding.
- the base station 100 (coordinator 153) adjusts radio resources used for transmission of signal elements in the multiplexed codeword obtained by multiplexing the codewords of the plurality of layers. For example, the base station 100 (coordinator 153) changes the signal element mapping destination in the resource mapping.
- base station 100 performs resource mapping based on the result of the adjustment. That is, the base station 100 (processing unit 150) maps each signal element to a corresponding radio resource based on the adjustment result. Then, the base station 100 (the processing unit 150 and the wireless communication unit 120) transmits the multiplexed codeword.
- FIG. 18 is an explanatory diagram for describing a second example of the operation of the base station 100 according to the first embodiment.
- the base station 100 (processing unit 150) performs error correction coding for each of the plurality of layers. Furthermore, the base station 100 (codeword generation unit 151) generates a codeword from data (binary data) after erroneous correction encoding.
- the base station 100 may perform resource mapping. That is, the base station 100 (processing unit 150) may map each signal element to a corresponding radio resource.
- the base station 100 may adjust radio resources used for transmission of signal elements in the multiplexed codeword obtained by multiplexing the codewords of the plurality of layers. For example, the base station 100 (coordinator 153) may re-map a signal element that has already been mapped to a radio resource to another radio resource.
- the base station 100 (the processing unit 150 and the wireless communication unit 120) transmits a multiplexed codeword.
- the base station 100 may first multiplex the codewords of the plurality of layers. Thereafter, the base station 100 maps each signal element in the multiplexed codeword to a corresponding radio resource.
- the base station 100 may map each signal element (for example, a signal element that is not 0) in the codeword of the plurality of layers to a corresponding radio resource. Thereafter, the base station 100 may perform the multiplexing of the codewords of the plurality of layers by multiplexing signal elements mapped to the same radio resource (that is, signal elements of different layers). .
- the base station 100 (adjustment unit 153) performs the above adjustment dynamically or semi-statically in the time direction.
- the base station 100 (the adjustment unit 153) performs the above adjustment at a predetermined period.
- the base station 100 (adjustment unit 153) performs the above adjustment in the period of the symbol, slot, subframe, or radio frame.
- the base station 100 performs the above adjustment based on channel characteristics.
- the base station 100 performs the above adjustment according to deterioration of channel characteristics (for example, deterioration of characteristics of some subcarriers). Thereby, for example, the above adjustment is performed as necessary, and a decrease in communication quality is suppressed.
- the channel characteristics are measured by the terminal device 200 and reported to the base station 100.
- the base station 100 may perform the adjustment when the number of layers included in the plurality of layers exceeds a predetermined number. Thereby, for example, when the interference between layers becomes large, the above adjustment is performed, and a decrease in communication quality is suppressed.
- the base station 100 may perform the adjustment when a predetermined combination of code words is included in the plurality of code words.
- the base station 100 may perform adjustment according to the predetermined combination when the predetermined combination is included in the plurality of codewords.
- the adjustment according to the predetermined combination may be to exchange radio resources between signal elements according to a pattern predetermined for the predetermined combination.
- the base station 100 acquires information related to the adjustment (hereinafter referred to as “resource adjustment related information”). Then, the base station 100 (notification unit 157) notifies the terminal device 200 of the resource adjustment related information.
- the base station 100 (notification unit 157) notifies the terminal apparatus 200 of the resource adjustment related information in downlink control information (Downlink Control Information: DCI).
- DCI Downlink Control Information
- the base station 100 may notify the resource adjustment related information to the terminal device 200 by individual signaling to the terminal device 200.
- the base station 100 (notification unit 157) may notify the resource adjustment related information to the terminal device 200 in the system information (SI).
- SI system information
- Resource adjustment related information includes information indicating the presence or absence of the adjustment. More specifically, for example, the resource related information includes information indicating whether or not the adjustment has been performed on the radio resource allocated to the terminal device 200.
- the resource-related information includes information indicating the adjustment method. More specifically, for example, the resource-related information includes information indicating a radio resource exchange pattern between signal elements.
- the pattern may be the above-described interleave pattern.
- the terminal device 200 (information acquisition unit 241) acquires the resource adjustment related information. And the terminal device 200 (control part 243) performs the reception process in the terminal device 200 based on the said resource adjustment related information.
- the terminal device 200 determines whether the adjustment has been performed from the resource adjustment related information. Then, when the adjustment is performed, the terminal device 200 (the control unit 243) takes out the multiplexed codeword from the received signal in consideration of the adjustment. And the terminal device 200 (control part 243) acquires the data of a desired layer by SIC.
- the terminal device 200 transmits the signal elements of the first and second subcarriers of the block 10B and the third to twelfth subcarriers of the block 10A.
- a multiplexed codeword is extracted from the signal element.
- the terminal device 200 (control part 243) acquires the data of a desired layer by SIC.
- FIG. 19 is a flowchart illustrating an example of a schematic flow of a first process of the base station 100 according to the first embodiment.
- the first process is a process related to notification of resource adjustment related information.
- the base station 100 acquires resource adjustment related information (S301).
- the resource adjustment related information is information on adjustment of radio resources used for transmission of signal elements in a multiplexed codeword obtained by multiplexing codewords of a plurality of layers.
- the base station 100 (notifying unit 157) notifies the terminal device 200 of the resource adjustment related information (S303). Then, the process ends.
- FIG. 20 is a flowchart illustrating an example of a schematic flow of a second process of the base station 100 according to the first embodiment.
- the second process is a process related to data transmission.
- the base station 100 (processing unit 150) performs error correction coding for each of the plurality of layers (S321).
- the base station 100 (codeword generation unit 151) generates a codeword from the data (binary data) after erroneous correction encoding for each of the plurality of layers (S323).
- the base station 100 (processing unit 150) generates a multiplexed codeword by multiplexing the codewords of the plurality of layers (S325).
- the base station 100 adjusts radio resources used for transmission of signal elements in the multiplexed codeword (S327). For example, the base station 100 (coordinator 153) changes the signal element mapping destination in the resource mapping.
- the base station 100 performs resource mapping based on the result of the adjustment (S329). That is, the base station 100 (processing unit 150) maps each signal element in the multiplexed codeword to a corresponding radio resource based on the adjustment result.
- the base station 100 (the processing unit 150 and the wireless communication unit 120) transmits the multiplexed codeword (S331). Then, the process ends.
- FIG. 21 is a flowchart illustrating an example of a schematic flow of processing of the terminal device 200 according to the first embodiment. This processing is processing related to data reception.
- the terminal device 200 acquires resource adjustment related information (S341).
- the resource adjustment related information is information on adjustment of radio resources used for transmission of signal elements in a multiplexed codeword obtained by multiplexing codewords of a plurality of layers.
- control part 243 performs a reception process based on the said resource adjustment related information (S343). Then, the process ends.
- the first embodiment has been described above. According to the first embodiment, as described above, it is possible to perform better communication when, for example, non-orthogonal multiplexing using a codebook is used. More specifically, for example, concentration of influence on a specific layer due to fading can be avoided without changing the code book, and deterioration of communication quality in the specific layer can be suppressed. As a result, retransmission of data of a specific layer is reduced, and an increase in transmission delay and / or a decrease in throughput can be suppressed.
- the radio resource used for transmission of each signal element of the codeword can be uniquely determined.
- a specific radio resource for example, a specific frequency resource
- the influence on data of a specific layer may increase. Therefore, as described above, by performing adjustment of radio resources between signal elements, it is possible to avoid unique determination of radio resources used for transmission of each signal element of the codeword. Therefore, concentration of influence on a specific layer due to fading can be avoided.
- FIG. 22 is a block diagram illustrating an example of a configuration of the base station 100 according to the second embodiment.
- the base station 100 includes an antenna unit 110, a radio communication unit 120, a network communication unit 130, a storage unit 140, and a processing unit 160.
- the description of the antenna unit 110, the wireless communication unit 120, the network communication unit 130, and the storage unit 140 is not particularly different between the first embodiment and the second embodiment. Therefore, the description is omitted here.
- Processing unit 160 provides various functions of the base station 100.
- the processing unit 160 includes an information acquisition unit 161 and a notification unit 163.
- the processing unit 160 may further include other components other than these components. That is, the processing unit 160 can perform operations other than the operations of these components.
- FIG. 23 is a block diagram illustrating an example of a configuration of the terminal device 200 according to the second embodiment.
- the terminal device 200 includes an antenna unit 210, a wireless communication unit 220, a storage unit 230, and a processing unit 250.
- the description of the antenna unit 210, the wireless communication unit 220, and the storage unit 230 is not particularly different between the first embodiment and the second embodiment. Therefore, the description is omitted here.
- Processing unit 250 provides various functions of the terminal device 200.
- the processing unit 250 includes an information acquisition unit 251, a codeword generation unit 253, and an adjustment unit 255.
- the processing unit 250 may further include other components other than these components. That is, the processing unit 250 can perform operations other than the operations of these components.
- the terminal device 200 (codeword generation unit 253), based on the codebook for the layer to be subjected to non-orthogonal multiplexing using the codebook, from the data of the layer, Generate a codeword.
- the layer is a layer assigned to the terminal device 200.
- a plurality of layers to be subjected to non-orthogonal multiplexing using a code book are allocated to the terminal device 200.
- the terminal device 200 (codeword generation unit 253) generates the codeword of the layer from the data of the layer based on the codebook for the layer.
- the detailed description regarding the generation of the codeword is the same as that of the first example except for the difference of the subjects (that is, the subject is the base station 100 in the first embodiment and the subject is the terminal device 200 in the second embodiment). There is no particular difference between this embodiment and the second embodiment. Therefore, the detailed description is omitted here.
- the terminal device 200 adjusts radio resources used for transmission of signal elements in the codeword.
- the plurality of layers are assigned to the terminal device 200.
- terminal apparatus 200 (coordinator 255) adjusts radio resources used for transmission of signal elements in the multiplexed codeword obtained by multiplexing the codewords of the plurality of layers.
- the detailed description regarding the adjustment of radio resources is the first except for the difference between the subjects (that is, the subject is the base station 100 in the first embodiment and the subject is the terminal device 200 in the second embodiment). There is no particular difference between this embodiment and the second embodiment. Therefore, the detailed description is omitted here.
- the terminal device 200 acquires information related to the adjustment (that is, resource adjustment related information). Then, the terminal device 200 (the adjustment unit 255) performs the adjustment based on the resource adjustment related information.
- the base station 100 (information acquisition unit 155) acquires the resource adjustment related information. Then, the base station 100 (notification unit 157) notifies the terminal device 200 of the resource adjustment related information.
- the detailed description regarding the notification of the resource adjustment related information to the terminal device is not particularly different between the first embodiment and the second embodiment. Therefore, the detailed description is omitted here.
- FIG. 24 is a flowchart illustrating an example of a schematic flow of processing of the terminal device 200 according to the second embodiment. This processing is processing related to data transmission.
- the terminal device 200 (processing unit 250) performs error correction coding (S361).
- the terminal device 200 (code word generation unit 253) generates a code word from data (binary data) after erroneous correction encoding (S363).
- the terminal device 200 adjusts radio resources used for transmission of signal elements in the codeword (S365). For example, the terminal device 200 (coordinator 255) changes the signal element mapping destination in the resource mapping.
- the terminal device 200 performs resource mapping based on the result of the adjustment (S367). That is, the terminal device 200 (processing unit 250) maps each signal element in the codeword to a corresponding radio resource based on the adjustment result.
- the terminal device 200 (the processing unit 250 and the wireless communication unit 220) transmits the multiplexed codeword (S369). Then, the process ends.
- the second embodiment has been described above. According to the second embodiment, for example, better communication can be performed when non-orthogonal multiplexing using a codebook is used. More specifically, for example, concentration of influence on a specific layer due to fading can be avoided without changing the code book, and deterioration of communication quality in the specific layer can be suppressed. As a result, retransmission of data of a specific layer is reduced, and an increase in transmission delay and / or a decrease in throughput can be suppressed.
- the base station 100 may be realized as any type of eNB (evolved Node B) such as a macro eNB or a small eNB.
- the small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB, or a home (femto) eNB.
- the base station 100 may be realized as another type of base station such as a NodeB or a BTS (Base Transceiver Station).
- Base station 100 may include a main body (also referred to as a base station apparatus) that controls radio communication, and one or more RRHs (Remote Radio Heads) that are arranged at locations different from the main body. Further, various types of terminals described later may operate as the base station 100 by temporarily or semi-permanently executing the base station function. Furthermore, at least some components of the base station 100 may be realized in a base station apparatus or a module for the base station apparatus.
- RRHs Remote Radio Heads
- the terminal device 200 is a smartphone, a tablet PC (Personal Computer), a notebook PC, a portable game terminal, a mobile terminal such as a portable / dongle type mobile router or a digital camera, or an in-vehicle terminal such as a car navigation device. It may be realized as.
- the terminal device 200 may be realized as a terminal (also referred to as an MTC (Machine Type Communication) terminal) that performs M2M (Machine To Machine) communication.
- MTC Machine Type Communication
- M2M Machine To Machine
- at least a part of the components of the terminal device 200 may be realized in a module (for example, an integrated circuit module configured by one die) mounted on these terminals.
- FIG. 25 is a block diagram illustrating a first example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied.
- the eNB 800 includes one or more antennas 810 and a base station device 820. Each antenna 810 and the base station apparatus 820 can be connected to each other via an RF cable.
- Each of the antennas 810 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission and reception of radio signals by the base station apparatus 820.
- the eNB 800 includes a plurality of antennas 810 as illustrated in FIG. 25, and the plurality of antennas 810 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example. Note that although FIG. 25 illustrates an example in which the eNB 800 includes a plurality of antennas 810, the eNB 800 may include a single antenna 810.
- the base station apparatus 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
- the controller 821 may be a CPU or a DSP, for example, and operates various functions of the upper layer of the base station apparatus 820. For example, the controller 821 generates a data packet from the data in the signal processed by the wireless communication interface 825, and transfers the generated packet via the network interface 823. The controller 821 may generate a bundled packet by bundling data from a plurality of baseband processors, and may transfer the generated bundled packet. In addition, the controller 821 is a logic that executes control such as radio resource control, radio bearer control, mobility management, inflow control, or scheduling. May have a typical function. Moreover, the said control may be performed in cooperation with a surrounding eNB or a core network node.
- the memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various control data (for example, terminal list, transmission power data, scheduling data, and the like).
- the network interface 823 is a communication interface for connecting the base station device 820 to the core network 824.
- the controller 821 may communicate with the core network node or other eNB via the network interface 823.
- the eNB 800 and the core network node or another eNB may be connected to each other by a logical interface (for example, an S1 interface or an X2 interface).
- the network interface 823 may be a wired communication interface or a wireless communication interface for wireless backhaul.
- the network interface 823 may use a frequency band higher than the frequency band used by the wireless communication interface 825 for wireless communication.
- the wireless communication interface 825 supports any cellular communication scheme such as LTE (Long Term Evolution) or LTE-Advanced, and provides a wireless connection to terminals located in the cell of the eNB 800 via the antenna 810.
- the wireless communication interface 825 may typically include a baseband (BB) processor 826, an RF circuit 827, and the like.
- the BB processor 826 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and each layer (for example, L1, MAC (Medium Access Control), RLC (Radio Link Control), and PDCP).
- Various signal processing of Packet Data Convergence Protocol
- Packet Data Convergence Protocol is executed.
- the BB processor 826 may have some or all of the logical functions described above instead of the controller 821.
- the BB processor 826 may be a module that includes a memory that stores a communication control program, a processor that executes the program, and related circuits. The function of the BB processor 826 may be changed by updating the program. Good.
- the module may be a card or a blade inserted into a slot of the base station apparatus 820, or a chip mounted on the card or the blade.
- the RF circuit 827 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 810.
- the wireless communication interface 825 includes a plurality of BB processors 826 as shown in FIG. 25, and the plurality of BB processors 826 may correspond to a plurality of frequency bands used by the eNB 800, for example.
- the wireless communication interface 825 includes a plurality of RF circuits 827 as illustrated in FIG. 25, and the plurality of RF circuits 827 may correspond to, for example, a plurality of antenna elements, respectively.
- FIG. 25 shows an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827.
- the wireless communication interface 825 includes a single BB processor 826 or a single RF circuit 827. But you can.
- the eNB 800 illustrated in FIG. 25 one or more components (codeword generation unit 151, adjustment unit 153, information acquisition unit 155, and / or notification unit 157) included in the processing unit 150 described with reference to FIG. May be implemented in the wireless communication interface 825. Alternatively, at least some of these components may be implemented in the controller 821. As an example, the eNB 800 includes a module including a part (for example, the BB processor 826) or all of the wireless communication interface 825 and / or the controller 821, and the one or more components are mounted in the module. Good. In this case, the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components).
- the program may be executed.
- a program for causing a processor to function as the one or more components is installed in the eNB 800, and the radio communication interface 825 (eg, the BB processor 826) and / or the controller 821 executes the program.
- the eNB 800, the base station apparatus 820, or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components is provided. May be.
- a readable recording medium in which the program is recorded may be provided.
- the information acquisition unit 161 and / or the notification unit 163 described with reference to FIG. 22 also includes the one or more components (codeword generation unit 151, adjustment unit 153, information acquisition unit 155, and / or Or it is the same as the notification unit 157).
- the wireless communication unit 120 described with reference to FIG. 11 may be implemented in the wireless communication interface 825 (for example, the RF circuit 827). Further, the antenna unit 110 may be mounted on the antenna 810. The network communication unit 130 may be implemented in the controller 821 and / or the network interface 823.
- FIG. 26 is a block diagram illustrating a second example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied.
- the eNB 830 includes one or more antennas 840, a base station apparatus 850, and an RRH 860. Each antenna 840 and RRH 860 may be connected to each other via an RF cable. Base station apparatus 850 and RRH 860 can be connected to each other via a high-speed line such as an optical fiber cable.
- Each of the antennas 840 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of radio signals by the RRH 860.
- the eNB 830 includes a plurality of antennas 840 as illustrated in FIG. 26, and the plurality of antennas 840 may respectively correspond to a plurality of frequency bands used by the eNB 830, for example. 26 shows an example in which the eNB 830 has a plurality of antennas 840, but the eNB 830 may have a single antenna 840.
- the base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
- the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
- the wireless communication interface 855 supports a cellular communication method such as LTE or LTE-Advanced, and provides a wireless connection to a terminal located in a sector corresponding to the RRH 860 via the RRH 860 and the antenna 840.
- the wireless communication interface 855 may typically include a BB processor 856 and the like.
- the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 25 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
- the wireless communication interface 855 includes a plurality of BB processors 856 as illustrated in FIG.
- the plurality of BB processors 856 may correspond to a plurality of frequency bands used by the eNB 830, for example.
- 26 illustrates an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 may include a single BB processor 856.
- connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
- the connection interface 857 may be a communication module for communication on the high-speed line that connects the base station apparatus 850 (wireless communication interface 855) and the RRH 860.
- the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
- connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
- the connection interface 861 may be a communication module for communication on the high-speed line.
- the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
- the wireless communication interface 863 may typically include an RF circuit 864 and the like.
- the RF circuit 864 may include a mixer, a filter, an amplifier, and the like, and transmits and receives wireless signals via the antenna 840.
- the wireless communication interface 863 includes a plurality of RF circuits 864 as illustrated in FIG. 26, and the plurality of RF circuits 864 may correspond to, for example, a plurality of antenna elements, respectively.
- FIG. 26 illustrates an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, but the wireless communication interface 863 may include a single RF circuit 864.
- one or more components included in the processing unit 150 described with reference to FIG. May be implemented in the wireless communication interface 855 and / or the wireless communication interface 863. Alternatively, at least some of these components may be implemented in the controller 851.
- the eNB 830 includes a module including a part (for example, the BB processor 856) or the whole of the wireless communication interface 855 and / or the controller 851, and the one or more components are mounted in the module. Good.
- the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components).
- the program may be executed.
- a program for causing a processor to function as the one or more components is installed in the eNB 830, and the wireless communication interface 855 (eg, the BB processor 856) and / or the controller 851 executes the program.
- the eNB 830, the base station apparatus 850, or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components is provided. May be.
- the information acquisition unit 161 and / or the notification unit 163 described with reference to FIG. 22 also includes the one or more components (codeword generation unit 151, adjustment unit 153, information acquisition unit 155, and / or Or it is the same as the notification unit 157).
- the wireless communication unit 120 described with reference to FIG. 11 may be implemented in the wireless communication interface 863 (for example, the RF circuit 864).
- the antenna unit 110 may be mounted on the antenna 840.
- the network communication unit 130 may be implemented in the controller 851 and / or the network interface 853.
- FIG. 27 is a block diagram illustrating an example of a schematic configuration of a smartphone 900 to which the technology according to the present disclosure can be applied.
- the smartphone 900 includes a processor 901, a memory 902, a storage 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more antenna switches 915.
- One or more antennas 916, a bus 917, a battery 918 and an auxiliary controller 919 are provided.
- the processor 901 may be, for example, a CPU or a SoC (System on Chip), and controls the functions of the application layer and other layers of the smartphone 900.
- the memory 902 includes a RAM and a ROM, and stores programs executed by the processor 901 and data.
- the storage 903 can include a storage medium such as a semiconductor memory or a hard disk.
- the external connection interface 904 is an interface for connecting an external device such as a memory card or a USB (Universal Serial Bus) device to the smartphone 900.
- the camera 906 includes, for example, an image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor), and generates a captured image.
- the sensor 907 may include a sensor group such as a positioning sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
- the microphone 908 converts sound input to the smartphone 900 into an audio signal.
- the input device 909 includes, for example, a touch sensor that detects a touch on the screen of the display device 910, a keypad, a keyboard, a button, or a switch, and receives an operation or information input from a user.
- the display device 910 has a screen such as a liquid crystal display (LCD) or an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
- the speaker 911 converts an audio signal output from the smartphone 900 into audio.
- the wireless communication interface 912 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication.
- the wireless communication interface 912 may typically include a BB processor 913, an RF circuit 914, and the like.
- the BB processor 913 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication.
- the RF circuit 914 may include a mixer, a filter, an amplifier, and the like, and transmits and receives radio signals via the antenna 916.
- the wireless communication interface 912 may be a one-chip module in which the BB processor 913 and the RF circuit 914 are integrated.
- the wireless communication interface 912 may include a plurality of BB processors 913 and a plurality of RF circuits 914 as illustrated in FIG.
- FIG. 27 illustrates an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914.
- the wireless communication interface 912 includes a single BB processor 913 or a single RF circuit 914. But you can.
- the wireless communication interface 912 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN (Local Area Network) method in addition to the cellular communication method.
- a BB processor 913 and an RF circuit 914 for each wireless communication method may be included.
- Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits (for example, circuits for different wireless communication systems) included in the wireless communication interface 912.
- Each of the antennas 916 includes a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 912.
- the smartphone 900 may include a plurality of antennas 916 as illustrated in FIG. Note that although FIG. 27 illustrates an example in which the smartphone 900 includes a plurality of antennas 916, the smartphone 900 may include a single antenna 916.
- the smartphone 900 may include an antenna 916 for each wireless communication method.
- the antenna switch 915 may be omitted from the configuration of the smartphone 900.
- the bus 917 connects the processor 901, memory 902, storage 903, external connection interface 904, camera 906, sensor 907, microphone 908, input device 909, display device 910, speaker 911, wireless communication interface 912, and auxiliary controller 919 to each other.
- the battery 918 supplies electric power to each block of the smartphone 900 shown in FIG. 27 via a power supply line partially shown by a broken line in the drawing.
- the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900 in the sleep mode.
- the information acquisition unit 241 and / or the control unit 243 described with reference to FIG. 12 may be implemented in the wireless communication interface 912.
- the smartphone 900 illustrated in FIG. Alternatively, at least some of these components may be implemented in the processor 901 or the auxiliary controller 919.
- the smartphone 900 includes a module including a part (for example, the BB processor 913) or the whole of the wireless communication interface 912, the processor 901, and / or the auxiliary controller 919, and the information acquisition unit 241 and / or the module is included in the module.
- the control unit 243 may be mounted.
- the module is a program for causing the processor to function as the information acquisition unit 241 and / or the control unit 243 (in other words, a program for causing the processor to execute the operation of the information acquisition unit 241 and / or the control unit 243).
- the program may be executed.
- a program for causing a processor to function as the information acquisition unit 241 and / or the control unit 243 is installed in the smartphone 900, and the wireless communication interface 912 (for example, the BB processor 913), the processor 901, and / or the auxiliary controller is installed. 919 may execute the program.
- the smartphone 900 or the module may be provided as a device including the information acquisition unit 241 and / or the control unit 243, and a program for causing the processor to function as the information acquisition unit 241 and / or the control unit 243 is provided. May be provided.
- a readable recording medium in which the program is recorded may be provided.
- one or more components included in the processing unit 250 described with reference to FIG. 23 are also included in the information acquisition unit 241. And / or the same as the control unit 243.
- the wireless communication unit 220 described with reference to FIG. 12 may be implemented in the wireless communication interface 912 (for example, the RF circuit 914).
- the antenna unit 210 may be mounted on the antenna 916.
- FIG. 28 is a block diagram illustrating an example of a schematic configuration of a car navigation device 920 to which the technology according to the present disclosure can be applied.
- the car navigation device 920 includes a processor 921, a memory 922, a GPS (Global Positioning System) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, and wireless communication.
- the interface 933 includes one or more antenna switches 936, one or more antennas 937, and a battery 938.
- the processor 921 may be a CPU or SoC, for example, and controls the navigation function and other functions of the car navigation device 920.
- the memory 922 includes RAM and ROM, and stores programs and data executed by the processor 921.
- the GPS module 924 measures the position (for example, latitude, longitude, and altitude) of the car navigation device 920 using GPS signals received from GPS satellites.
- the sensor 925 may include a sensor group such as a gyro sensor, a geomagnetic sensor, and an atmospheric pressure sensor.
- the data interface 926 is connected to the in-vehicle network 941 through a terminal (not shown), for example, and acquires data generated on the vehicle side such as vehicle speed data.
- the content player 927 reproduces content stored in a storage medium (for example, CD or DVD) inserted into the storage medium interface 928.
- the input device 929 includes, for example, a touch sensor, a button, or a switch that detects a touch on the screen of the display device 930, and receives an operation or information input from the user.
- the display device 930 has a screen such as an LCD or an OLED display, and displays a navigation function or an image of content to be reproduced.
- the speaker 931 outputs the navigation function or the audio of the content to be played back.
- the wireless communication interface 933 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication.
- the wireless communication interface 933 may typically include a BB processor 934, an RF circuit 935, and the like.
- the BB processor 934 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication.
- the RF circuit 935 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 937.
- the wireless communication interface 933 may be a one-chip module in which the BB processor 934 and the RF circuit 935 are integrated.
- the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935 as shown in FIG. 28 illustrates an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 includes a single BB processor 934 or a single RF circuit 935. But you can.
- the wireless communication interface 933 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN method in addition to the cellular communication method.
- a BB processor 934 and an RF circuit 935 may be included for each communication method.
- Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933 (for example, circuits for different wireless communication systems).
- Each of the antennas 937 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 933.
- the car navigation device 920 may include a plurality of antennas 937 as shown in FIG. FIG. 28 shows an example in which the car navigation device 920 includes a plurality of antennas 937, but the car navigation device 920 may include a single antenna 937.
- the car navigation device 920 may include an antenna 937 for each wireless communication method.
- the antenna switch 936 may be omitted from the configuration of the car navigation device 920.
- the battery 938 supplies power to each block of the car navigation device 920 shown in FIG. 28 via a power supply line partially shown by broken lines in the drawing. Further, the battery 938 stores electric power supplied from the vehicle side.
- the car navigation device 920 includes a module including a part (for example, the BB processor 934) or the whole of the wireless communication interface 933 and / or the processor 921, and the information acquisition unit 241 and / or the control unit 243 in the module. May be implemented.
- the module is a program for causing the processor to function as the information acquisition unit 241 and / or the control unit 243 (in other words, a program for causing the processor to execute the operation of the information acquisition unit 241 and / or the control unit 243).
- the program may be executed.
- a program for causing a processor to function as the information acquisition unit 241 and / or the control unit 243 is installed in the car navigation device 920, and the wireless communication interface 933 (for example, the BB processor 934) and / or the processor 921 The program may be executed.
- the car navigation device 920 or the module may be provided as a device including the information acquisition unit 241 and / or the control unit 243, and the processor functions as the information acquisition unit 241 and / or the control unit 243.
- a program may be provided.
- a readable recording medium in which the program is recorded may be provided.
- one or more components included in the processing unit 250 described with reference to FIG. 23 are also included in the information acquisition unit 241. And / or the same as the control unit 243.
- the radio communication unit 220 described with reference to FIG. 12 may be implemented in the radio communication interface 933 (for example, the RF circuit 935).
- the antenna unit 210 may be mounted on the antenna 937.
- the technology according to the present disclosure may be realized as an in-vehicle system (or vehicle) 940 including one or more blocks of the car navigation device 920 described above, an in-vehicle network 941, and a vehicle side module 942. That is, the in-vehicle system (or vehicle) 940 may be provided as a device including the information acquisition unit 241 and / or the control unit 243 (or the information acquisition unit 251, the codeword generation unit 253, and / or the adjustment unit 255).
- the vehicle-side module 942 generates vehicle-side data such as vehicle speed, engine speed, or failure information, and outputs the generated data to the in-vehicle network 941.
- the base station 100 determines, for each of a plurality of layers to be subjected to non-orthogonal multiplexing using a code book, from the data of the layer based on the code book for the layer.
- a codeword generation unit 151 that generates a codeword of a layer
- an adjustment unit 153 that adjusts radio resources used to transmit signal elements in the multiplexed codeword obtained by multiplexing the codewords of the plurality of layers And comprising.
- the terminal device 200 generates a codeword of the layer from the data of the layer based on the codebook for the layer to be subjected to non-orthogonal multiplexing using the codebook.
- An apparatus comprising: a codeword generation unit 253; and an adjustment unit 255 that adjusts radio resources used for transmission of signal elements in the codeword.
- processing steps in the processing of the present specification may not necessarily be executed in time series in the order described in the flowchart or the sequence diagram.
- processing steps in the processing may be executed in an order different from the order described as a flowchart or a sequence diagram, or may be executed in parallel.
- a processor for example, a CPU, a DSP, or the like included in a device of the present specification (for example, a base station, a base station device, a module for a base station device, or a terminal device or a module for a terminal device) is provided.
- a computer program for functioning as a component of the device for example, a codeword generation unit, an adjustment unit, an information acquisition unit, a notification unit, and / or a control unit
- the processor performs the configuration of the component of the device
- a computer program for executing the operation can also be created.
- a recording medium on which the computer program is recorded may be provided.
- An apparatus for example, a base station, a base station apparatus, a module for a base station apparatus, a terminal apparatus, or a device including a memory for storing the computer program and one or more processors capable of executing the computer program
- a module for a terminal device may also be provided.
- a method including the operation of the components of the apparatus for example, a codeword generation unit, an adjustment unit, an information acquisition unit, a notification unit, and / or a control unit is also included in the technology according to the present disclosure.
- the following configurations also belong to the technical scope of the present disclosure.
- a generation unit that generates a code word of the layer from the data of the layer.
- An adjustment unit that adjusts radio resources used for transmission of signal elements in a multiplexed codeword obtained by multiplexing codewords of the plurality of layers;
- a device comprising: (2) The adjustment includes exchanging radio resources used for transmission between at least two signal elements in one or more multiplexed codewords each generated from a plurality of layer codewords.
- the apparatus as described in 1).
- the radio resource is a frequency resource.
- the frequency resource is a subcarrier.
- the radio resource is a time resource.
- the time resource is a symbol, a slot, a subframe, or a radio frame.
- the adjustment unit performs the adjustment dynamically or semi-statically in a time direction.
- the adjustment unit performs the adjustment at a predetermined cycle.
- a generating unit that generates a codeword of the layer from the data of the layer based on the codebook for the layer to be subjected to non-orthogonal multiplexing using the codebook;
- a coordinator for coordinating radio resources used for transmission of signal elements in the codeword;
- a device comprising: (21) For each of a plurality of layers to be subjected to non-orthogonal multiplexing using a codebook, based on the codebook for the layer, generating a codeword of the layer from the data of the layer; Adjusting radio resources used for transmission of signal elements in a multiplexed codeword obtained by multiplexing the codewords of the plurality of layers;
- a program that causes a processor to execute.
- 1 system 10 block 100 base station 101 cell 151 code word generation unit 153 adjustment unit 155, 161 information acquisition unit 157, 163 notification unit 200 base station 241, 251 information acquisition unit 243 control unit 253 code word generation unit 255 adjustment unit
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
1.はじめに
1.1.SCMA
1.2.技術的課題
2.システムの概略的な構成
3.第1の実施形態
3.1.基地局の構成
3.2.端末装置の構成
3.3.技術的特徴
3.4.処理の流れ
4.第2の実施形態
4.1.基地局の構成
4.2.端末装置の構成
4.3.技術的特徴
4.4.処理の流れ
5.応用例
5.1.基地局に関する応用例
5.2.端末装置に関する応用例
6.まとめ
はじめに、図1~図9を参照して、SCMA及び技術的課題を説明する。
まず、図1~図8を参照して、SCMAを説明する。
(a)概略的な処理の流れ
図1は、SCMAについての概略的な処理の一例を説明するための説明図である。
図2は、コードブックに基づくコードワードの生成の例を説明するための説明図である。図2を参照すると、データ候補bi及びコードワードxjが示されている。コードブックの大きさ、即ち、データ候補biの数、及びコードワードxjの数が、それぞれMである。この場合に、例えば、入力情報であるデータは、ビットを要素として含むベクトルであり、log2Mの長さを有する。また、出力情報であるコードワードは、複素数を信号要素として含むベクトルであり、コードワードの送信に用いられる無線リソースの数Kと同じ長さを有する。したがって、コードブックは、入力情報及び出力情報がそれぞれベクトルである関数であるとも言える。出力情報であるコードワードは、レイヤ多重に適した所望の条件を満たすことが求められる。
図3は、コードブックの例を説明するための説明図である。図3を参照すると、コードブック1~6が示さている。コードブック1~6は、レイヤ1~6のためのコードブックである。このように、SCMAでは、レイヤごとにコードブックが用意される。この例では、入力情報であるデータは2ビットのデータであり、データ候補の数は4である。そのため、各コードブック内におけるコードワードの数も4である。各コードブック内のコードワードでは、4つの信号要素(即ち、複素数)のうちの2つが0であり、異なる2つのコードワードは互いに疎である。また、各コードブック内のコードワードでは、4つの信号要素のうちの2つが0ではない。即ち、4つの信号要素のうちの0ではない信号要素の数Nは、2である。
図4は、コードブックのリソースマッピングの例を説明するための説明図である。図4を参照すると、6つのレイヤと4つの無線リソースとが示されている。この例では、各レイヤのコードワード内の信号要素の数が4であるため、4つの無線リソースが用意される。例えば、各レイヤのコードワードに含まれる4つの信号要素のうちの、0ではない信号要素(即ち、2つの信号要素)が、対応する無線リソースにそれぞれマッピングされる。具体的には、例えば、レイヤ1のコードワード内の1番目の信号要素は、無線リソース1にマッピングされ、レイヤ1のコードワード内の2番目の信号要素は、無線リソース2にマッピングされる。例えば、レイヤ3のコードワード内の1番目の信号要素は、無線リソース1にマッピングされ、レイヤ3のコードワード内の3番目の信号要素は、無線リソース3にマッピングされる。
SCMAでは、上述したように、送信側では、疎なコードワードの多重化が行われる。一方、受信側では、例えば、反復演算を用いたメッセージ伝達法(Message Passing Algorithm)と呼ばれる手法が用いられる。メッセージ伝達法によれば、例えば、受信装置は、4つの無線リソースの受信信号を参照し、当該受信信号の事後確率を最大にする入力ベクトルを推定する。
SCMAの難点の1つとして、最適なコードブックの設計が挙げられる。最適なコードブックを設計するには、信号間距離と信号エネルギーのトレードオフを考慮して、コンスタレーションの極めて多数の組合せの中から最適な組合せを選択する必要がある。
一般に、多数の端末装置を収容するために、レイヤ数Jは、より大きいことが望ましい。レイヤ数Jをより大きくするためには、K及びNを大きくする必要がある。
例えば、キャリア周波数帯域全体に含まれるサブキャリアの数を、コードワードの長さとすることが考えられる。以下、図5を参照して具体例を説明する。
上述したような懸念を考慮すると、例えば、所定数のサブキャリアを含むブロックにコードワードをマッピングすることが考えられる。即ち、当該ブロックに含まれるサブキャリアの数をコードワードの長さとすることが考えられる。以下、図6を参照して具体例を説明する。
例えば、ブロックの無線リソースに、複数のレイヤのコードワードがマッピングされる。以下、この点について図7及び図8を参照して具体例を説明する。
次に、図9を参照して、本開示の実施形態に係る技術的課題を説明する。
図10を参照して、本開示の実施形態に係るシステム1の概略的な構成を説明する。図10は、本開示の実施形態に係るシステム1の概略的な構成の一例を示す説明図である。図10を参照すると、システム1は、基地局100及び端末装置200を含む。
基地局100は、移動体通信システム(又はセルラーシステム)の基地局である。基地局100は、セル101内に位置する端末装置(例えば、端末装置200)との無線通信を行う。例えば、基地局100は、端末装置へのダウンリンク信号を送信し、端末装置からのアップリンク信号を受信する。
端末装置200は、上記移動体通信システム(又はセルラーシステム)において通信可能な端末装置である。端末装置200は、基地局(例えば、基地局100)との無線通信を行う。例えば、端末装置200は、基地局からのダウンリンク信号を受信し、基地局へのアップリンク信号を送信する。
とりわけ本開示の実施形態では、コードブックを用いた非直交多重化/非直交多元接続が行われる。
続いて、図11~図21を参照して、本開示の第1の実施形態を説明する。第1の実施形態では、ダウンリンクについて、コードブックを用いた非直交多重化/非直交多元接続が行われる。
まず、図11を参照して、第1の実施形態に係る基地局100の構成の一例を説明する。図11は、第1の実施形態に係る基地局100の構成の一例を示すブロック図である。図11を参照すると、基地局100は、アンテナ部110、無線通信部120、ネットワーク通信部130、記憶部140及び処理部150を備える。
アンテナ部110は、無線通信部120により出力される信号を電波として空間に放射する。また、アンテナ部110は、空間の電波を信号に変換し、当該信号を無線通信部120へ出力する。
無線通信部120は、信号を送受信する。例えば、無線通信部120は、端末装置へのダウンリンク信号を送信し、端末装置からのアップリンク信号を受信する。
ネットワーク通信部130は、情報を送受信する。例えば、ネットワーク通信部130は、他のノードへの情報を送信し、他のノードからの情報を受信する。例えば、上記他のノードは、他の基地局及びコアネットワークノードを含む。
記憶部140は、基地局100の動作のためのプログラム及び様々なデータを一時的に又は恒久的に記憶する。
処理部150は、基地局100の様々な機能を提供する。処理部150は、コードワード生成部151、調整部153、情報取得部155及び通知部157を含む。なお、処理部150は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部150は、これらの構成要素の動作以外の動作も行い得る。
次に、図12を参照して、第1の実施形態に係る端末装置200の構成の一例を説明する。図12は、第1の実施形態に係る端末装置200の構成の一例を示すブロック図である。図12を参照すると、端末装置200は、アンテナ部210、無線通信部220、記憶部230及び処理部240を備える。
アンテナ部210は、無線通信部220により出力される信号を電波として空間に放射する。また、アンテナ部210は、空間の電波を信号に変換し、当該信号を無線通信部220へ出力する。
無線通信部220は、信号を送受信する。例えば、無線通信部220は、基地局からのダウンリンク信号を受信し、基地局へのアップリンク信号を送信する。
記憶部230は、端末装置200の動作のためのプログラム及び様々なデータを一時的に又は恒久的に記憶する。
処理部240は、端末装置200の様々な機能を提供する。処理部240は、情報取得部241及び制御部243を含む。なお、処理部240は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部240は、これらの構成要素の動作以外の動作も行い得る。
次に、図13~図18を参照して、第1の実施形態に係る技術的特徴を説明する。
基地局100(コードワード生成部151)は、コードブックを用いた非直交多重化の対象となる複数のレイヤの各々について、レイヤのためのコードブックに基づいて、当該レイヤのデータから当該レイヤのコードワードを生成する。
上述したように、例えば、上記コードブックは、SC(Sparse Code)のコードブックであり、上記コードブックを用いた上記非直交多重化は、SCMAの多重化である。
例えば、上記コードブックは、データ候補とコードワードとの対応を示す情報である。一例として、上記コードブックは、図3に示されるコードブックである。
例えば、基地局100(コードワード生成部151)は、上記コードブックにおいて上記データに対応するコードワードを生成する。換言すると、基地局100(コードワード生成部151)は、上記データを、上記コードブックにおいて上記データに対応するコードワードに変換する。
基地局100(調整部153)は、上記複数のレイヤのコードワードの多重化により得られる多重化コードワード内の信号要素の送信に使用される無線リソースの調整を行う。
(a-1)周波数リソース
例えば、上記無線リソースは、周波数リソースである。即ち、基地局100(調整部153)は、上記多重化コードワード内の信号要素の送信に使用される周波数リソースの調整を行う。
例えば、上記無線リソースは、時間リソースである。即ち、基地局100(調整部153)は、上記多重化コードワード内の信号要素の送信に使用される時間リソースの調整を行う。
(b-1)多重化の例
例えば、上記複数のレイヤの上記コードワードの上記多重化は、上記複数のレイヤの上記コードワードの加算である。上記多重化コードワードは、上記加算により得られるものである。
例えば、基地局100は、まず、上記複数のレイヤの上記コードワードの上記多重化を行い、その後、上記多重化コードワード内の各信号要素を、対応する無線リソースへマッピングする。
例えば、上記調整は、複数のレイヤのコードワードからそれぞれ生成される1つ以上の多重化コードワード内の少なくとも2つの信号要素の間で、送信に使用される無線リソースを交換することを含む。
-2つ以上の多重化コードワードに含まれる信号要素
例えば、上記1つ以上の多重化コードワードは、2つ以上の多重化コードワードである。即ち、基地局100(調整部153)は、2つ以上の多重化コードワード内の少なくとも2つの信号要素の間で、送信に使用される無線リソースを交換する。
上記1つ以上の多重化コードワードは、単一の多重化コードワードであってもよい。即ち、基地局100(調整部153)は、単一の多重化コードワード内の少なくとも2つの信号要素の間で、送信に使用される無線リソースを交換してもよい。
-第1の例
例えば、上記調整は、上記1つ以上の多重化コードワード内の信号要素のペアの間で、送信に使用される無線リソースを交換することを含む。以下、図13及び図14を参照して、具体例を説明する。
上記調整は、巡回シフトにより、上記少なくとも2つの信号要素の間で、送信に使用される上記無線リソースを交換することを含んでもよい。以下、図15を参照して、具体例を説明する。
上記調整は、インターリーブパターンに従って、上記少なくとも2つの信号要素の間で、送信に使用される上記無線リソースを交換することを含んでもよい。以下、図16を参照して、具体例を説明する。
上述したように、例えば、上記調整は、上記1つ以上の多重化コードワード内の上記2つの信号要素の間で、送信に使用される無線リソースを交換することを含む。しかしながら、上記調整は、この交換に限られない。
(e-1)第1の例
図17は、第1の実施形態に係る基地局100の動作の第1の例を説明するための説明図である。
図18は、第1の実施形態に係る基地局100の動作の第2の例を説明するための説明図である。
上述したように、例えば、基地局100は、まず、上記複数のレイヤのコードワードの多重化を行ってもよい。その後、基地局100は、上記多重化コードワード内の各信号要素を、対応する無線リソースにマッピングする。
例えば、基地局100(調整部153)は、時間方向において動的に又は準静的に上記調整を行う。
例えば、基地局100(情報取得部155)は、上記調整に関する情報(以下、「リソース調整関連情報」と呼ぶ)を取得する。そして、基地局100(通知部157)は、上記リソース調整関連情報を端末装置200に通知する。
例えば、基地局100(通知部157)は、ダウンリンク制御情報(Downlink Control Information:DCI)の中で、上記リソース調整関連情報を端末装置200に通知する。
例えば、上記リソース関連情報は、上記調整の有無を示す情報を含む。より具体的には、例えば、上記リソース関連情報は、端末装置200に割り当てられた無線リソースについて上記調整が行われたか否かを示す情報を含む。
端末装置200(情報取得部241)は、上記リソース調整関連情報を取得する。そして、端末装置200(制御部243)は、上記リソース調整関連情報に基づいて、端末装置200における受信処理を行う。
次に、図19~図21を参照して、第1の実施形態に係る処理の例を説明する。
(a)第1の処理
図19は、第1の実施形態に係る基地局100の第1の処理の概略的な流れの一例を示すフローチャートである。当該第1の処理は、リソース調整関連情報の通知に係る処理である。
図20は、第1の実施形態に係る基地局100の第2の処理の概略的な流れの一例を示すフローチャートである。当該第2の処理は、データの送信に係る処理である。
図21は、第1の実施形態に係る端末装置200の処理の概略的な流れの一例を示すフローチャートである。当該処理は、データの受信に係る処理である。
続いて、図22~図24を参照して、本開示の第2の実施形態を説明する。第2の実施形態では、アップリンクについて、コードブックを用いた非直交多重化/非直交多元接続が行われる。
まず、図22を参照して、第2の実施形態に係る基地局100の構成の一例を説明する。図22は、第2の実施形態に係る基地局100の構成の一例を示すブロック図である。図22を参照すると、基地局100は、アンテナ部110、無線通信部120、ネットワーク通信部130、記憶部140及び処理部160を備える。
処理部160は、基地局100の様々な機能を提供する。処理部160は、情報取得部161及び通知部163を含む。なお、処理部160は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部160は、これらの構成要素の動作以外の動作も行い得る。
次に、図23を参照して、第2の実施形態に係る端末装置200の構成の一例を説明する。図23は、第2の実施形態に係る端末装置200の構成の一例を示すブロック図である。図23を参照すると、端末装置200は、アンテナ部210、無線通信部220、記憶部230及び処理部250を備える。
処理部250は、端末装置200の様々な機能を提供する。処理部250は、情報取得部251、コードワード生成部253及び調整部255を含む。なお、処理部250は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部250は、これらの構成要素の動作以外の動作も行い得る。
次に、第2の実施形態に係る技術的特徴を説明する。
端末装置200(コードワード生成部253)は、コードブックを用いた非直交多重化の対象となるレイヤのためのコードブックに基づいて、当該レイヤのデータから当該レイヤのコードワードを生成する。上記レイヤは、端末装置200に割り当てられたレイヤである。
端末装置200(調整部255)は、上記コードワード内の信号要素の送信に使用される無線リソースの調整を行う。
例えば、基地局100(情報取得部155)は、上記リソース調整関連情報を取得する。そして、基地局100(通知部157)は、上記リソース調整関連情報を端末装置200に通知する。
次に、図24を参照して、第2の実施形態に係る処理の例を説明する。
基地局100の第1の処理についての説明(図19を参照した説明)は、第1の実施形態と第2の実施形態との間に特段の差異はない。よって、ここでは上記詳細な説明を省略する。
図24は、第2の実施形態に係る端末装置200の処理の概略的な流れの一例を示すフローチャートである。当該処理は、データの送信に係る処理である。
本開示に係る技術は、様々な製品へ応用可能である。例えば、基地局100は、マクロeNB又はスモールeNBなどのいずれかの種類のeNB(evolved Node B)として実現されてもよい。スモールeNBは、ピコeNB、マイクロeNB又はホーム(フェムト)eNBなどの、マクロセルよりも小さいセルをカバーするeNBであってよい。その代わりに、基地局100は、NodeB又はBTS(Base Transceiver Station)などの他の種類の基地局として実現されてもよい。基地局100は、無線通信を制御する本体(基地局装置ともいう)と、本体とは別の場所に配置される1つ以上のRRH(Remote Radio Head)とを含んでもよい。また、後述する様々な種類の端末が一時的に又は半永続的に基地局機能を実行することにより、基地局100として動作してもよい。さらに、基地局100の少なくとも一部の構成要素は、基地局装置又は基地局装置のためのモジュールにおいて実現されてもよい。
(第1の応用例)
図25は、本開示に係る技術が適用され得るeNBの概略的な構成の第1の例を示すブロック図である。eNB800は、1つ以上のアンテナ810、及び基地局装置820を有する。各アンテナ810及び基地局装置820は、RFケーブルを介して互いに接続され得る。
図26は、本開示に係る技術が適用され得るeNBの概略的な構成の第2の例を示すブロック図である。eNB830は、1つ以上のアンテナ840、基地局装置850、及びRRH860を有する。各アンテナ840及びRRH860は、RFケーブルを介して互いに接続され得る。また、基地局装置850及びRRH860は、光ファイバケーブルなどの高速回線で互いに接続され得る。
(第1の応用例)
図27は、本開示に係る技術が適用され得るスマートフォン900の概略的な構成の一例を示すブロック図である。スマートフォン900は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912、1つ以上のアンテナスイッチ915、1つ以上のアンテナ916、バス917、バッテリー918及び補助コントローラ919を備える。
図28は、本開示に係る技術が適用され得るカーナビゲーション装置920の概略的な構成の一例を示すブロック図である。カーナビゲーション装置920は、プロセッサ921、メモリ922、GPS(Global Positioning System)モジュール924、センサ925、データインタフェース926、コンテンツプレーヤ927、記憶媒体インタフェース928、入力デバイス929、表示デバイス930、スピーカ931、無線通信インタフェース933、1つ以上のアンテナスイッチ936、1つ以上のアンテナ937及びバッテリー938を備える。
ここまで、図9~図28を参照して、本開示の実施形態に係る装置及び各処理を説明した。
(1)
コードブックを用いた非直交多重化の対象となる複数のレイヤの各々について、レイヤのためのコードブックに基づいて、当該レイヤのデータから当該レイヤのコードワードを生成する生成部と、
前記複数のレイヤのコードワードの多重化により得られる多重化コードワード内の信号要素の送信に使用される無線リソースの調整を行う調整部と、
を備える装置。
(2)
前記調整は、複数のレイヤのコードワードからそれぞれ生成される1つ以上の多重化コードワード内の少なくとも2つの信号要素の間で、送信に使用される無線リソースを交換することを含む、前記(1)に記載の装置。
(3)
前記1つ以上の多重化コードワードは、2つ以上の多重化コードワードである、前記(2)に記載の装置。
(4)
前記1つ以上の多重化コードワードは、単一の多重化コードワードである、前記(2)に記載の装置。
(5)
前記調整は、巡回シフトにより、前記少なくとも2つの信号要素の間で、送信に使用される前記無線リソースを交換することを含む、前記(2)~(4)のいずれか1項に記載の装置。
(6)
前記調整は、インターリーブパターンに従って、前記少なくとも2つの信号要素の間で、送信に使用される前記無線リソースを交換することを含む、前記(2)~(5)のいずれか1項に記載の装置。
(7)
前記インターリーブパターンを端末装置に通知する通知部をさらに備える、前記(6)に記載の装置。
(8)
前記無線リソースは、周波数リソースである、前記(1)~(7)のいずれか1項に記載の装置。
(9)
前記周波数リソースは、サブキャリアである、前記(8)に記載の装置。
(10)
前記無線リソースは、時間リソースである、前記(1)~(7)のいずれか1項に記載の装置。
(11)
前記時間リソースは、シンボル、スロット、サブフレーム又は無線フレームである、前記(10)に記載の装置。
(12)
前記調整部は、時間方向において動的に又は準静的に前記調整を行う、前記(1)~(11)のいずれか1項に記載の装置。
(13)
前記調整部は、所定の周期で前記調整を行う、前記(12)に記載の装置。
(14)
前記調整部は、チャネル特性に基づいて前記調整を行う、前記(12)又は(13)に記載の装置。
(15)
前記調整部は、前記複数のレイヤに含まれるレイヤの数が所定数を超える場合に、前記調整を行う、前記(12)~(14)のいずれか1項に記載の装置。
(16)
前記調整部は、コードワードの所定の組合せが前記複数のコードワードに含まれる場合に、前記調整を行う、前記(1)~(15)のいずれか1項に記載の装置。
(17)
前記調整に関する情報を端末装置に通知する通知部をさらに備える、前記(1)~(16)のいずれか1項に記載の装置。
(18)
プロセッサにより、
コードブックを用いた非直交多重化の対象となる複数のレイヤの各々について、レイヤのためのコードブックに基づいて、当該レイヤのデータから当該レイヤのコードワードを生成することと、
前記複数のレイヤのコードワードの多重化により得られる多重化コードワード内の信号要素の送信に使用される無線リソースの調整を行うことと、
を含む方法。
(19)
複数のレイヤのコードワードの多重化により得られる多重化コードワード内の信号要素の送信に使用される無線リソースの調整に関する情報を取得する取得部と、
前記情報に基づいて、端末装置における受信処理を行う制御部と、
を備え、
前記複数のレイヤは、コードブックを用いた非直交多重化の対象となるレイヤであり、
前記複数のレイヤの前記コードワードの各々は、レイヤのためのコードブックに基づいて当該レイヤのデータから生成されるコードワードである、
装置。
(20)
コードブックを用いた非直交多重化の対象となるレイヤのためのコードブックに基づいて、当該レイヤのデータから当該レイヤのコードワードを生成する生成部と、
前記コードワード内の信号要素の送信に使用される無線リソースの調整を行う調整部と、
を備える装置。
(21)
コードブックを用いた非直交多重化の対象となる複数のレイヤの各々について、レイヤのためのコードブックに基づいて、当該レイヤのデータから当該レイヤのコードワードを生成することと、
前記複数のレイヤのコードワードの多重化により得られる多重化コードワード内の信号要素の送信に使用される無線リソースの調整を行うことと、
をプロセッサに実行させるためのプログラム。
(22)
コードブックを用いた非直交多重化の対象となる複数のレイヤの各々について、レイヤのためのコードブックに基づいて、当該レイヤのデータから当該レイヤのコードワードを生成することと、
前記複数のレイヤのコードワードの多重化により得られる多重化コードワード内の信号要素の送信に使用される無線リソースの調整を行うことと、
をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体。
(23)
プロセッサにより、
複数のレイヤのコードワードの多重化により得られる多重化コードワード内の信号要素の送信に使用される無線リソースの調整に関する情報を取得することと、
前記情報に基づいて、端末装置における受信処理を行うことと、
を含み、
前記複数のレイヤは、コードブックを用いた非直交多重化の対象となるレイヤであり、
前記複数のレイヤの前記コードワードの各々は、レイヤのためのコードブックに基づいて当該レイヤのデータから生成されるコードワードである、
方法。
(24)
複数のレイヤのコードワードの多重化により得られる多重化コードワード内の信号要素の送信に使用される無線リソースの調整に関する情報を取得することと、
前記情報に基づいて、端末装置における受信処理を行うことと、
をプロセッサに実行させるためのプログラムであり、
前記複数のレイヤは、コードブックを用いた非直交多重化の対象となるレイヤであり、
前記複数のレイヤの前記コードワードの各々は、レイヤのためのコードブックに基づいて当該レイヤのデータから生成されるコードワードである、
プログラム。
(25)
複数のレイヤのコードワードの多重化により得られる多重化コードワード内の信号要素の送信に使用される無線リソースの調整に関する情報を取得することと、
前記情報に基づいて、端末装置における受信処理を行うことと、
をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体であり、
前記複数のレイヤは、コードブックを用いた非直交多重化の対象となるレイヤであり、
前記複数のレイヤの前記コードワードの各々は、レイヤのためのコードブックに基づいて当該レイヤのデータから生成されるコードワードである、
記録媒体。
(26)
プロセッサにより、
コードブックを用いた非直交多重化の対象となるレイヤのためのコードブックに基づいて、当該レイヤのデータから当該レイヤのコードワードを生成することと、
前記コードワード内の信号要素の送信に使用される無線リソースの調整を行うことと、
を含む方法。
(27)
コードブックを用いた非直交多重化の対象となるレイヤのためのコードブックに基づいて、当該レイヤのデータから当該レイヤのコードワードを生成することと、
前記コードワード内の信号要素の送信に使用される無線リソースの調整を行うことと、
をプロセッサに実行させるためのプログラム。
(28)
コードブックを用いた非直交多重化の対象となるレイヤのためのコードブックに基づいて、当該レイヤのデータから当該レイヤのコードワードを生成することと、
前記コードワード内の信号要素の送信に使用される無線リソースの調整を行うことと、
をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体。
10 ブロック
100 基地局
101 セル
151 コードワード生成部
153 調整部
155、161 情報取得部
157、163 通知部
200 基地局
241、251 情報取得部
243 制御部
253 コードワード生成部
255 調整部
Claims (20)
- コードブックを用いた非直交多重化の対象となる複数のレイヤの各々について、レイヤのためのコードブックに基づいて、当該レイヤのデータから当該レイヤのコードワードを生成する生成部と、
前記複数のレイヤのコードワードの多重化により得られる多重化コードワード内の信号要素の送信に使用される無線リソースの調整を行う調整部と、
を備える装置。 - 前記調整は、複数のレイヤのコードワードからそれぞれ生成される1つ以上の多重化コードワード内の少なくとも2つの信号要素の間で、送信に使用される無線リソースを交換することを含む、請求項1に記載の装置。
- 前記1つ以上の多重化コードワードは、2つ以上の多重化コードワードである、請求項2に記載の装置。
- 前記1つ以上の多重化コードワードは、単一の多重化コードワードである、請求項2に記載の装置。
- 前記調整は、巡回シフトにより、前記少なくとも2つの信号要素の間で、送信に使用される前記無線リソースを交換することを含む、請求項2に記載の装置。
- 前記調整は、インターリーブパターンに従って、前記少なくとも2つの信号要素の間で、送信に使用される前記無線リソースを交換することを含む、請求項2に記載の装置。
- 前記インターリーブパターンを端末装置に通知する通知部をさらに備える、請求項6に記載の装置。
- 前記無線リソースは、周波数リソースである、請求項1に記載の装置。
- 前記周波数リソースは、サブキャリアである、請求項8に記載の装置。
- 前記無線リソースは、時間リソースである、請求項1に記載の装置。
- 前記時間リソースは、シンボル、スロット、サブフレーム又は無線フレームである、請求項10に記載の装置。
- 前記調整部は、時間方向において動的に又は準静的に前記調整を行う、請求項1に記載の装置。
- 前記調整部は、所定の周期で前記調整を行う、請求項12に記載の装置。
- 前記調整部は、チャネル特性に基づいて前記調整を行う、請求項12に記載の装置。
- 前記調整部は、前記複数のレイヤに含まれるレイヤの数が所定数を超える場合に、前記調整を行う、請求項12に記載の装置。
- 前記調整部は、コードワードの所定の組合せが前記複数のコードワードに含まれる場合に、前記調整を行う、請求項1に記載の装置。
- 前記調整に関する情報を端末装置に通知する通知部をさらに備える、請求項1に記載の装置。
- プロセッサにより、
コードブックを用いた非直交多重化の対象となる複数のレイヤの各々について、レイヤのためのコードブックに基づいて、当該レイヤのデータから当該レイヤのコードワードを生成することと、
前記複数のレイヤのコードワードの多重化により得られる多重化コードワード内の信号要素の送信に使用される無線リソースの調整を行うことと、
を含む方法。 - 複数のレイヤのコードワードの多重化により得られる多重化コードワード内の信号要素の送信に使用される無線リソースの調整に関する情報を取得する取得部と、
前記情報に基づいて、端末装置における受信処理を行う制御部と、
を備え、
前記複数のレイヤは、コードブックを用いた非直交多重化の対象となるレイヤであり、
前記複数のレイヤの前記コードワードの各々は、レイヤのためのコードブックに基づいて当該レイヤのデータから生成されるコードワードである、
装置。 - コードブックを用いた非直交多重化の対象となるレイヤのためのコードブックに基づいて、当該レイヤのデータから当該レイヤのコードワードを生成する生成部と、
前記コードワード内の信号要素の送信に使用される無線リソースの調整を行う調整部と、
を備える装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15869621.1A EP3236604B1 (en) | 2014-12-17 | 2015-09-24 | Device and method |
KR1020177012053A KR20170098793A (ko) | 2014-12-17 | 2015-09-24 | 장치 및 방법 |
US15/531,986 US10355806B2 (en) | 2014-12-17 | 2015-09-24 | Control device and control method for sparse code multiple access |
JP2016564709A JP6635046B2 (ja) | 2014-12-17 | 2015-09-24 | 装置及び方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014255038 | 2014-12-17 | ||
JP2014-255038 | 2014-12-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016098413A1 true WO2016098413A1 (ja) | 2016-06-23 |
Family
ID=56126315
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/076941 WO2016098413A1 (ja) | 2014-12-17 | 2015-09-24 | 装置及び方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10355806B2 (ja) |
EP (1) | EP3236604B1 (ja) |
JP (1) | JP6635046B2 (ja) |
KR (1) | KR20170098793A (ja) |
WO (1) | WO2016098413A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018028387A1 (zh) * | 2016-08-12 | 2018-02-15 | 华为技术有限公司 | 数据传输方法和装置 |
JP2019530384A (ja) * | 2016-09-14 | 2019-10-17 | 華為技術有限公司Huawei Technologies Co.,Ltd. | 非直交多元接続送信 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011517391A (ja) * | 2008-03-11 | 2011-06-02 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 多重サブキャリア協調変調ofdm送信機の柔軟性のある構造 |
WO2014075637A1 (en) * | 2012-11-16 | 2014-05-22 | Huawei Technologies Co., Ltd. | Systems and methods for sparse code multiple access |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9715396D0 (en) * | 1997-07-23 | 1997-09-24 | Philips Electronics Nv | Radio communication system |
CN102281086A (zh) * | 2010-06-10 | 2011-12-14 | 华为技术有限公司 | 参考信号的传输方法及装置 |
US20120127869A1 (en) * | 2010-11-22 | 2012-05-24 | Sharp Laboratories Of America, Inc. | Multiple channel state information (csi) reporting on the physical uplink shared channel (pusch) with carrier aggregation |
IN2012DE00954A (ja) * | 2012-03-29 | 2015-09-11 | Samsung India Electronics Pvt Ltd | |
CN103297189B (zh) * | 2013-05-09 | 2015-12-09 | 清华大学 | 用于ofdm系统旋转调制的自适应频域交织方法 |
CN107979455B (zh) * | 2013-08-07 | 2020-11-27 | 华为技术有限公司 | 用于具有自适应系统参数的可扩展数字通信的系统和方法 |
US10003486B2 (en) * | 2014-04-28 | 2018-06-19 | Intel IP Corporation | Non-orthogonal multiple access (NOMA) wireless systems and methods |
US10700803B2 (en) * | 2014-08-15 | 2020-06-30 | Huawei Technologies Co., Ltd. | System and method for generating codebooks with small projections per complex dimension and utilization thereof |
-
2015
- 2015-09-24 EP EP15869621.1A patent/EP3236604B1/en active Active
- 2015-09-24 KR KR1020177012053A patent/KR20170098793A/ko unknown
- 2015-09-24 JP JP2016564709A patent/JP6635046B2/ja not_active Expired - Fee Related
- 2015-09-24 WO PCT/JP2015/076941 patent/WO2016098413A1/ja active Application Filing
- 2015-09-24 US US15/531,986 patent/US10355806B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011517391A (ja) * | 2008-03-11 | 2011-06-02 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 多重サブキャリア協調変調ofdm送信機の柔軟性のある構造 |
WO2014075637A1 (en) * | 2012-11-16 | 2014-05-22 | Huawei Technologies Co., Ltd. | Systems and methods for sparse code multiple access |
Non-Patent Citations (1)
Title |
---|
See also references of EP3236604A4 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018028387A1 (zh) * | 2016-08-12 | 2018-02-15 | 华为技术有限公司 | 数据传输方法和装置 |
US10560175B2 (en) | 2016-08-12 | 2020-02-11 | Huawei Technologies Co., Ltd. | Data transmission method and apparatus |
JP2019530384A (ja) * | 2016-09-14 | 2019-10-17 | 華為技術有限公司Huawei Technologies Co.,Ltd. | 非直交多元接続送信 |
US10736081B2 (en) | 2016-09-14 | 2020-08-04 | Huawei Technologies Co., Ltd. | Non-orthogonal multiple access transmission |
Also Published As
Publication number | Publication date |
---|---|
JP6635046B2 (ja) | 2020-01-22 |
EP3236604A1 (en) | 2017-10-25 |
JPWO2016098413A1 (ja) | 2017-09-28 |
KR20170098793A (ko) | 2017-08-30 |
EP3236604B1 (en) | 2022-10-26 |
US10355806B2 (en) | 2019-07-16 |
EP3236604A4 (en) | 2019-04-03 |
US20170331582A1 (en) | 2017-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10659985B2 (en) | Base station side device and method for wireless communication, and user side device and method for wireless communication | |
US10645700B2 (en) | Communication apparatus and a method for communication | |
US20190207657A1 (en) | Electronic device and communication method | |
EP4060926B1 (en) | Wireless communication electronic device and method, and computer readable storage medium | |
CN110337789A (zh) | 用于基于非正交资源的多址接入的电子设备和通信方法 | |
US10652066B2 (en) | Device, method, and program for identifying a preferred codebook for non-orthogonal multiplexing/non-orthogonal multiple access | |
US20200220605A1 (en) | Electronic device, wireless communication method and computer readable storage medium | |
US10477555B2 (en) | Device and method for non-orthogonal multiplexing | |
JP2016201599A (ja) | 受信装置、送信装置、受信方法、送信方法及びプログラム | |
CN113261360A (zh) | 用于无线通信的电子设备和方法、计算机可读存储介质 | |
KR20180120697A (ko) | 복수의 안테나를 갖춘 통신 디바이스를 위한 전자 디바이스 및 통신 방법 | |
WO2018128029A1 (ja) | 端末装置、基地局装置、方法及び記録媒体 | |
CN113678381B (zh) | 基站设备、通信方法和存储介质 | |
JP6635046B2 (ja) | 装置及び方法 | |
US20200127715A1 (en) | Electronic device and wireless communication method | |
US11190381B2 (en) | Apparatus and method | |
CN117859393A (zh) | 电子设备、通信方法和计算机程序产品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15869621 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016564709 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20177012053 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15531986 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2015869621 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |