WO2016098032A1 - Procédé et dispositif d'évaluation de paramètres de fonctionnement ainsi que processus et systeme de commande d'une machine synchrone - Google Patents

Procédé et dispositif d'évaluation de paramètres de fonctionnement ainsi que processus et systeme de commande d'une machine synchrone Download PDF

Info

Publication number
WO2016098032A1
WO2016098032A1 PCT/IB2015/059705 IB2015059705W WO2016098032A1 WO 2016098032 A1 WO2016098032 A1 WO 2016098032A1 IB 2015059705 W IB2015059705 W IB 2015059705W WO 2016098032 A1 WO2016098032 A1 WO 2016098032A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
value
components
stator
speed
Prior art date
Application number
PCT/IB2015/059705
Other languages
English (en)
Inventor
Mohamed Khanchoul
Zaatar MAKNI
Pierre-Alexandre CHAUVENET
Original Assignee
Valeo Japan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Japan Co., Ltd. filed Critical Valeo Japan Co., Ltd.
Priority to EP15832955.7A priority Critical patent/EP3235117A1/fr
Publication of WO2016098032A1 publication Critical patent/WO2016098032A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/13Observer control, e.g. using Luenberger observers or Kalman filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • H02P21/28Stator flux based control

Definitions

  • the present invention relates to the field of synchronous machines and, more specifically, to a method and a device for evaluation of operating parameters as well as a process and a control system for a synchronous machine. It also relates to an assembly comprising said control system and a synchronous machine such as a compressor adapted to be used within an air conditioning system of a motor vehicle.
  • a synchronous electric machine comprises two concentric parts.
  • the synchronous electric machine comprises a first fixed part such as a stator.
  • the stator comprises several windings also called stator windings or winding phases located on the periphery of said stator.
  • stator windings also called stator windings or winding phases located on the periphery of said stator.
  • the synchronous electric machine comprises a second fixed part, such as a rotor, capable of rotating.
  • the rotor comprises either a plurality of rotor windings or permanent magnets for producing a magnetic field.
  • stator and the rotor are separated by a gap. In the presence of the rotating magnetic field generated by the stator and the magnetic field of the rotor, the rotor is rotated. In order, in particular, to control the energy consumed by a synchronous machine, it is necessary to determine the angular position of the rotor. Thus, the supply of the stator winding phases can be optimized to produce maximum torque.
  • position sensors to determine the angular position of the rotor.
  • These position sensors are, for example, Hall effect sensors fixed to the stator. Hall effect sensors are adapted to operate with a magnetic target to switch current in the stator winding phases during magnetic field reversals.
  • Hall effect sensors are adapted to operate with a magnetic target to switch current in the stator winding phases during magnetic field reversals.
  • the use of such position sensors is relatively expensive and complex given the size of said position sensors within the synchronous machine.
  • the invention relates to a method of evaluating operating parameters of a synchronous machine comprising, on the one hand, a stator, configured to generate an electromagnetic field rotating relative to said stator, and, secondly, a rotor such that the rotating electromagnetic field drives the rotor in rotation, said evaluation method comprising, for a measurement cycle N, the following steps: receiving the value of first and second current components and first and second voltage components of a current applied to said stator;
  • the step of determining an estimated value of the rotor speed comprises determining the value of the acceleration of the rotor.
  • said method comprises a step of determining the value of the angular position of the rotor.
  • said method comprises a step of correcting the value of the angular position of the rotor as a function of the result of the comparison of the value of the first and second components of the counter-electromotive force with the value of the first and second components of the rotor. the intensity I of a measuring cycle N to correct the angular position of the rotor for a measurement cycle N + 1.
  • the invention relates to a process for controlling a synchronous machine comprising the following steps:
  • the invention relates to a device for evaluating operating parameters of a synchronous machine comprising, on the one hand, a stator, configured to generate a field electromagnetic rotating relative to said stator, and, secondly, a rotor so that the rotating electromagnetic field drives the rotor in rotation, said device comprising a first observation device and a second observation device for carrying out the method of evaluation of operating parameters described above.
  • the invention relates to a control system of a synchronous machine comprising a device for evaluating operating parameters as described above and a device for adapting the current applied to the stator in function. the estimated value of the rotor speed.
  • the invention relates to an assembly comprising a control system as described above and a compressor controlled by said control system, said compressor being adapted to operate within an air conditioning system. 'a motor vehicle.
  • FIG. 1 shows a schematic representation of a control system comprising a control device. control according to the invention and used for a synchronous machine, according to one embodiment of the invention;
  • FIG. 2 shows a diagram of the steps of the control method performed by the control device according to FIG. 1;
  • Figure 3 shows a graphical representation of the estimated values of the rotor speed using an observation device, for an initial speed of 600 rpm, according to one embodiment of the invention;
  • FIG. 4 shows a graphical representation of the estimated velocity values using the observation device and a regulating device, for an initial speed of 600 revolutions per minute, according to one embodiment of the invention;
  • FIG. 5 shows a graphical representation of a first and a second phase subjected to a load and regulated by means of the control method, according to one embodiment of the invention.
  • Fig. 1 shows a control system 10 for controlling a synchronous machine 12 such as a synchronous machine with permanent magnets.
  • the synchronous machine 12 is a three-phase synchronous machine comprising a stator (not shown) provided with three stator windings and a rotor (not shown) provided with a plurality of permanent magnets.
  • the rotor and the stator are separated by an air gap (not shown).
  • the rotor is rotated according to an initial speed determined under the influence of the rotating magnetic field generated by the stator.
  • the number of rotations of the rotor corresponds to a plurality of measurement cycles.
  • a measurement cycle corresponds to a duration of the order of 100 ⁇ (microsecond).
  • the control system 10 comprises a speed control device 14 for receiving and transmitting information relating to a predetermined threshold speed or initial speed of rotation of the rotor of the synchronous machine 12.
  • control receives as input an information corresponding to the difference between a setpoint value and an estimated value of the rotor speed. It outputs a torque setpoint value for matching the current applied to the stator.
  • the control system 10 also includes an intensity control device 16 for receiving the information from the speed control device 14 and producing the voltages to be applied to the three stator windings.
  • the control system 10 comprises a first conversion device 18 for converting a set of values of the voltage V relating to the direct and quadrature components Vd, Vq into a rotating reference mark (d, q) into a set of values relating to the corresponding components. Va, ⁇ in a fixed reference ( ⁇ , ⁇ ).
  • the control system 10 comprises a second conversion device 20 for converting the set of values of the components Va, ⁇ into a set of values relating to the corresponding components Va, Vb, Vc of the voltage V.
  • the control system 10 comprises an electronic power device 22, such as an inverter, capable of receiving, as input, all the values of the components Va, Vb, Vc of the voltage V in order to provide, at the output, a set of values relative to the corresponding components of the intensity la, Ib, the.
  • an electronic power device 22 such as an inverter
  • the control system 10 also comprises a third measuring and conversion device 24 for measuring the set of values relating to the components Ia, Ib, and of the intensity and converting said values to obtain a set of values relating to the corresponding components ⁇ , ⁇ in the fixed reference ( ⁇ , ⁇ ).
  • the control system 10 also comprises a fourth conversion device 26 for converting the values of the components ⁇ , ⁇ into a set of corresponding component values Id, Iq in the rotating marker (d, q).
  • a storage device (not shown) makes it possible to store the different values obtained for the set of values of the components Va, ⁇ of the voltage V and the set of values of the components ⁇ , ⁇ of the intensity I.
  • Control system 10 according to the invention also includes an operating parameter evaluation device 28.
  • the operating parameter evaluation device 28 comprises a first observation device 30, such as a sliding mode observer.
  • the first observation device 30 receives, as input, the values stored in the storage device.
  • the first observation device 30 makes it possible to calculate the estimated values ea, ⁇ of the first and the second component of the counter-electromotive force of the stator for a given measurement cycle N.
  • the first observation device 30 also determines the value of the angular position ⁇ of the rotor for the measurement cycle N.
  • the estimated values ea, ⁇ of the back EMF are stored within the storage device.
  • the operating parameter evaluation device 28 also comprises a second observation device 32 comprising an integral proportional type controller 34, said PI controller 34, and a speed observer 36.
  • the PI controller 34 receives as input the estimated value of the rotor acceleration transmitted by the speed observer 36 described below in order to calculate the corresponding value of the rotor speed.
  • the PI controller 34 makes it possible to control the convergence dynamics of the estimated value of the rotational speed of the rotor.
  • the speed observer 36 receives, as input, the estimated values of the first and second components ea, ⁇ of the counter-electromotive force of the stator for a measuring cycle N.
  • the speed observer 36 also has the values of the first and second components ea, ⁇ of the counter-electromotive force of the stator for a measurement cycle N1 available within the storage device.
  • the speed observer 36 can compare the values of the first and second components ea, ⁇ of the back electromotive force measured during a cycle N and during a cycle N1 to calculate a corrected value of said first and second components ea, ⁇ .
  • the speed observer 36 also makes it possible to calculate, at the output, the estimated value of the rotor acceleration for a measurement cycle N.
  • FIG. 2 shows the various steps of the method according to the invention relating to the operation of the device of FIG. evaluation of operating parameters 28 within the control system 10.
  • the observation device 30 receives as input the values measured and stored in the memory device relating to the first and the second intensity component ⁇ , ⁇ , and the first and second voltage component Va, ⁇ for a measurement cycle N.
  • the observation device 30 estimates the value of the first and second components ea, ⁇ of the back electromotive force as well as the angular position of the rotor for a measurement cycle N.
  • a step 220 the values of the first and second components ea, ⁇ of the counter-electromotive force are transmitted to the second observation device 32, intended for the observer of speed 36.
  • step 230 the speed observer 36 calculates the value of the acceleration of the rotor by using the values of the first and second components ea, ⁇ of the counter-electromotive force of the measurement cycle N and those estimated during a previous measurement cycle Nl.
  • the speed observer 36 transmits the value of the acceleration of the rotor to the controller PI 34.
  • a step 240 the speed observer 36 calculates the corrected values of the first and second components of the counter electromotive force ea, ⁇ .
  • the PI controller 34 calculates the estimated value fiest of the rotor speed.
  • the PI controller 34 transmits the estimated value Oest of the rotor speed to the speed observer 36 and the first observation device 30.
  • a correction step (not shown) is applied, so that iterative for each measurement cycle N, to the components ea, ⁇ of the counter-electromotive force to calculate the corrected values of said first and second components ea, ⁇ .
  • the first observation device 30 calculates a corrected value of the position of the rotor.
  • the first observation device 30 uses on the one hand the estimated value fiest of the rotor speed and, on the other hand, the result of the comparison of the values of the first and second components ea, ⁇ of the counter-electromotive force for a measurement cycle N with the values of the first and second components ⁇ , ⁇ of the intensity for a measurement cycle Nl.
  • the value of the corrected rotor position thus obtained is then transmitted, as shown in FIG.
  • Figure 3 shows a graphical representation of the estimated values of the rotor speed using only the observation device 30, for a determined initial speed of 600 rpm.
  • the signal shown in FIG. 3 shows the presence of a large number of oscillations when determining the estimated speed of the rotor.
  • the synchronous machine 12 may be a compressor of a hybrid, electric or thermal motor vehicle.
  • the compressor is adapted to operate within an air conditioning system of a motor vehicle, in particular to cool the passenger compartment of said motor vehicle.
  • the compressor also provides the functions of defrosting the windshield of the motor vehicle and cooling the electric battery.
  • the control method according to the invention enables said compressor to operate by managing the large load variations, that is to say by rejecting the load variations, to start with a significant load which represents for example 80% of the maximum torque. , operating at low speed and with a large load, and operating, between a start phase and a slowdown phase, at a relatively fast transition speed.
  • Figure 5 shows a graph showing the variations of a first phase at low speed and a second phase relating to a transition speed.
  • a load S of a value of 2.5 Nm (Newton meter) which represents about 50% of the maximum torque is introduced during the first phase and during the second phase.
  • the response speed of the control system according to the invention is relatively high, which means that the disturbance introduced by the load S is quickly rejected.
  • this speed of adaptation of the control system according to the invention demonstrates the stability of the control provided by the control method according to the invention as well as the robustness of the system according to the invention in the presence of disturbances.
  • the control method according to the invention is therefore an iterative process which makes it possible, in real time, to correct the position of the rotor for a measurement cycle N + 1, by using the data measured during a measurement cycle N and Nl.
  • the invention includes algorithms of low complexity within the operating parameter evaluation device 28. Therefore, the method of control according to the invention can be used, advantageously, for embedded systems.
  • control system according to the invention does not require specific hardware.
  • manufacturing cost of such a control system is relatively small.
  • control method according to the invention can be applied on a large scale of speed values, ranging for example from a few hundred to a few thousand revolutions per minute.
  • control system according to the invention remains reliable for large phase transitions and does not depend on the variation of the parameters of the synchronous machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

Procédé d'évaluation de paramètres de fonctionnement d'une machine synchrone (12) comprenant, d'une part, un stator, configuré pour générer un champ électromagnétique tournant par rapport audit stator, et, d'autre part, un rotor de sorte que le champ électromagnétique tournant entraîne le rotor en rotation, ledit procédé d'évaluation comprenant, pour un cycle de mesure N, les étapes suivantes : - réception de la valeur de premières et deuxième composantes (la, Ip) d'intensité et de premières et deuxième composantes (Va, Vβ) de tension d'un courant appliqué audit stator; - détermination de la valeur de première et deuxième composantes (ea, ep) d'une force contre-électromotrice, associée audit champ électromagnétique tournant, à partir desdites composantes d'intensité et de tension; - comparaison de la valeur des première et deuxième composantes (ea, ep) de la force contre-électromotrice avec la valeur des première et deuxième composantes (ea, ep) de la force contre-électromotrice du cycle de mesure N-1; - détermination d'une valeur estimée de la vitesse du rotor (Ωest).

Description

PROCEDE ET DISPOSITIF D'EVALUATION DE PARAMETRES DE FONCTIONNEMENT AINSI QUE PROCESSUS ET SYSTEME DE COMMANDE D'UNE MACHINE SYNCHRONE
Domaine technique
La présente invention concerne le domaine des machines synchrones et, plus spécifiquement, un procédé et un dispositif d'évaluation de paramètres de fonctionnement ainsi qu'un processus et un système de commande pour une machine synchrone. Elle concerne également un ensemble comprenant ledit système de commande et une machine synchrone telle qu'un compresseur adapté pour être utilisé au sein d'un système de climatisation d'un véhicule automobile.
Etat de la technique
De nos jours, il est connu d'utiliser des machines électriques synchrones au sein d'un grand nombre de dispositifs tels que des machines à laver, des lecteurs de disques durs d'ordinateur, des dispositifs médicaux ou encore des compresseurs. De manière connue, une machine électrique synchrone comprend deux parties concentriques. Ainsi, la machine électrique synchrone comprend une première partie fixe telle qu'un stator. Le stator comprend plusieurs bobinages également nommés enroulements statoriques ou phases d'enroulement localisés sur la périphérie dudit stator. Lorsqu'une source d'énergie électrique alimente successivement les phases d'enroulement du stator, un champ magnétique tournant est généré. La machine électrique synchrone comprend une deuxième partie fixe, telle qu'un rotor, apte à entrer en rotation. Le rotor comprend soit plusieurs enroulements rotoriques, soit des aimants permanents pour produire un champ magnétique. Le stator et le rotor sont séparés par un entrefer. En présence du champ magnétique tournant généré par le stator et du champ magnétique du rotor, le rotor est entraîné en rotation. Afin, notamment, de maîtriser l'énergie consommée par une machine synchrone, il est nécessaire de déterminer la position angulaire du rotor. Ainsi, l'alimentation des phases d'enroulements du stator peut être optimisée pour produire un couple maximal.
Il est connu d'utiliser des capteurs de position afin de déterminer la position angulaire du rotor. Ces capteurs de position sont par exemple des capteurs à effet Hall fixé au stator. Les capteurs à effet Hall sont adaptés pour fonctionner avec une cible magnétique afin de commuter le courant dans les phases d'enroulement du stator lors des inversions de champ magnétique. Cependant, l'utilisation de tels capteurs de position est relativement onéreuse et complexe compte tenu de l'encombrement desdits capteurs de position au sein de la machine synchrone.
Par conséquent, dans l'état de l'art, des machines synchrones dépourvues de capteurs de position ont été développées afin de surmonter ces inconvénients. Cependant, il apparaît que les procédés de commande de ces machines synchrones ne permettent pas d'obtenir des estimations précises concernant la vitesse et la position du rotor lorsque la vitesse du rotor est relativement faible. Ainsi, il s'avère nécessaire d'améliorer les procédés et systèmes de commande tels que connus dans l'état de l'art afin d'obtenir, à partir d'une estimation, des valeurs fiables concernant la vitesse et la position du rotor, quelles que soient les conditions de fonctionnement de la machine synchrone. Objet de l'invention
A cet effet, selon un premier aspect de l'invention, l'invention concerne un procédé d'évaluation de paramètres de fonctionnement d'une machine synchrone comprenant, d'une part, un stator, configuré pour générer un champ électromagnétique tournant par rapport audit stator, et, d'autre part, un rotor de sorte que le champ électromagnétique tournant entraine le rotor en rotation, ledit procédé d'évaluation comprenant, pour un cycle de mesure N, les étapes suivantes : réception de la valeur de premières et deuxième composantes d'intensité et de premières et deuxième composantes de tension d'un courant appliqué audit stator;
détermination de la valeur de première et deuxième composantes d'une force contre-électromotrice, associée audit champ électronique tournant, à partir desdites composantes d'intensité et de tension;
comparaison de la valeur des première et deuxième composantes de la force contre-électromotrice avec la valeur des première et deuxième composantes de la force contre-électromotrice d'un cycle de mesure N-l ;
- détermination d'une valeur estimée de la vitesse du rotor.
Avantageusement, l'étape de détermination d'une valeur estimée de la vitesse du rotor comprend la détermination de la valeur de l'accélération du rotor. Avantageusement, ledit procédé comprend une étape de détermination de la valeur de la position angulaire du rotor.
Encore plus avantageusement, ledit procédé comprend une étape de correction de la valeur de la position angulaire du rotor en fonction du résultat de la comparaison de la valeur des première et deuxième composantes de la force contre-électromotrice avec la valeur des première et deuxième composantes de l'intensité I d'un cycle de mesure N pour corriger la position angulaire du rotor pour un cycle de mesure N+l.
Selon un second aspect de l'invention, l'invention concerne un processus de commande d'une machine synchrone comprenant les étapes suivantes :
évaluation d'une vitesse estimée d'un rotor de la machine conformément au procédé décrit plus haut,
adaptation du courant appliqué au stator en fonction de la valeur estimée de la vitesse du rotor.
Selon un troisième aspect de l'invention, l'invention concerne un dispositif d'évaluation de paramètres de fonctionnement d'une machine synchrone comprenant, d'une part, un stator, configuré pour générer un champ électromagnétique tournant par rapport audit stator, et, d'autre part, un rotor de sorte que le champ électromagnétique tournant entraine le rotor en rotation, ledit dispositif comprenant un premier dispositif d'observation et un deuxième dispositif d'observation pour réaliser le procédé d'évaluation de paramètres de fonctionnement décrit plus haut.
Selon un quatrième aspect de l'invention, l'invention concerne un système de commande d'une machine synchrone comprenant un dispositif d'évaluation de paramètres de fonctionnement tel que décrit plus haut et un dispositif d'adaptation du courant appliqué au stator en fonction de la valeur estimée de la vitesse du rotor.
Selon un cinquième aspect de l'invention, l'invention concerne un ensemble comprenant un système de commande tel que décrit plus haut et un compresseur commandé par ledit système de commande, ledit compresseur étant adapté pour fonctionner au sein d'un système de climatisation d'un véhicule automobile.
Brève description des dessins
L'invention, sa fonctionnalité, ses applications ainsi que ses avantages seront mieux appréhendés à la lecture de la présente description, faite en référence aux figures, dans lesquelles : la figure 1 montre une représentation schématique d'un système de commande comprenant un dispositif de commande selon l'invention et utilisé pour une machine synchrone, selon un mode de réalisation de l'invention ;
la figure 2 montre un diagramme des étapes du procédé de commande effectué par le dispositif de commande selon la figure 1 ; la figure 3 montre une représentation graphique des valeurs estimées de la vitesse du rotor en utilisant un dispositif d'observation, pour une vitesse initiale de 600 tours par minute, selon un mode de réalisation de l'invention ; la figure 4 montre une représentation graphique des valeurs estimées de la vitesse en utilisant le dispositif d'observation et un dispositif de régulation, pour une vitesse initiale de 600 tours par minute, selon un mode de réalisation de l'invention ;
- la figure 5 montre une représentation graphique d'une première et d'une deuxième phase soumises à une charge et régulées au moyen du procédé de commande, selon un mode de réalisation de l'invention.
Description détaillée des modes de réalisation
La description ci-après a pour but d'exposer l'invention de manière suffisamment claire et complète, notamment à l'aide d'exemples, mais ne doit pas être considérée comme limitant l'étendue de la protection aux modes de réalisation particuliers et aux exemples présentés ci-après.
La figure 1 montre un système de commande 10 pour contrôler une machine synchrone 12 telle qu'une machine synchrone à aimants permanent. La machine synchrone 12 est une machine synchrone triphasée comprenant un stator (non montré) pourvu de trois enroulements statoriques et un rotor (non montré) pourvu d'une pluralité d'aimants permanents. Le rotor et le stator sont séparés par un entrefer (non montré). Selon le mode de fonctionnement connu d'une machine synchrone triphasée, le rotor est entraîné en rotation selon une vitesse initiale déterminée sous l'influence du champ magnétique tournant généré par le stator. Au sein de la présente invention, le nombre de rotations du rotor correspond à une pluralité de cycles de mesure. Un cycle de mesure correspond à une durée de l'ordre de 100 με (microseconde).
Le système de commande 10 comprend un dispositif de contrôle de vitesse 14 pour recevoir et transmettre des informations relatives à une vitesse seuil ou vitesse initiale déterminée de rotation du rotor de la machine synchrone 12. Ce dispositif de contrôle reçoit en entrée une information correspondant à la différence entre une valeur de consigne et une valeur estimée de la vitesse du rotor. Il fournit en sortie une valeur de consigne de couple servant à adapter le courant appliqué au stator. Le système de commande 10 comprend également un dispositif de contrôle d'intensité 16 pour recevoir les informations en provenance du dispositif de contrôle de vitesse 14 et produire les tensions à appliquer aux trois enroulements statoriques. Le système de commande 10 comprend un premier dispositif de conversion 18 pour convertir un ensemble de valeurs de la tension V relatives aux composantes directe et en quadrature Vd, Vq dans un repère tournant (d, q) en un ensemble de valeurs relatives aux composantes correspondantes Va, νβ dans un repère fixe (α, β).
Le système de commande 10 comprend un deuxième dispositif de conversion 20 pour convertir l'ensemble des valeurs des composantes Va, νβ en un ensemble de valeurs relatives aux composantes correspondantes Va, Vb, Vc de la tension V.
Le système de commande 10 comprend un dispositif électronique de puissance 22, tel qu'un onduleur, capable de recevoir, en entrée, l'ensemble des valeurs des composantes Va, Vb, Vc de la tension V afin de fournir, en sortie, un ensemble de valeurs relatives au composantes correspondantes de l'intensité la, Ib, le.
Le système de commande 10 comprend également un troisième dispositif de mesure et de conversion 24 pour mesurer l'ensemble de valeurs relatives aux composantes la, Ib, le de l'intensité et convertir lesdites valeurs pour obtenir un ensemble de valeurs relatives aux composantes correspondantes Ια, Ιβ dans le repère fixe (α, β).
Le système de commande 10 comprend aussi un quatrième dispositif de conversion 26 pour convertir les valeurs des composantes Ια, Ιβ en un ensemble de valeurs de composantes correspondantes Id, Iq dans le repère tournant (d, q). Un dispositif de mise en mémoire (non montré) permet de stocker les différentes valeurs obtenues pour l'ensemble de valeurs des composantes Va, νβ de la tension V et l'ensemble de valeurs des composantes Ια, Ιβ de l'intensité I. Le système de commande 10 selon l'invention comprend également un dispositif d'évaluation de paramètres de fonctionnement 28. Le dispositif d'évaluation de paramètres de fonctionnement 28 comprend un premier dispositif d'observation 30, tel qu'un observateur en mode glissant. Le premier dispositif d'observation 30 reçoit, en entrée, les valeurs stockées au sein du dispositif de mise en mémoire. Le premier dispositif d'observation 30 permet de calculer les valeurs estimées ea, εβ de la première et de la deuxième composante de la force contre-électromotrice du stator pour un cycle de mesure N donné. Le premier dispositif d'observation 30 détermine également la valeur de la position angulaire Θ du rotor pour le cycle de mesure N. Les valeurs estimées ea, εβ de la force contre-électromotrice sont stockées au sein du dispositif de mise en mémoire.
Le dispositif d'évaluation de paramètres de fonctionnement 28 comprend aussi un deuxième dispositif d'observation 32 comprenant un contrôleur de type proportionnel intégral 34 dit contrôleur PI 34 et un observateur de vitesse 36.
Le contrôleur PI 34 reçoit en entrée la valeur estimée de l'accélération du rotor transmise par l'observateur de vitesse 36 décrit ci-dessous afin de calculer la valeur correspondante de la vitesse du rotor. Ainsi, le contrôleur PI 34 permet de contrôler la dynamique de convergence de la valeur estimée de la vitesse de rotation du rotor.
L'observateur de vitesse 36 reçoit, en entrée, les valeurs estimées de la première et de la deuxième composante ea, εβ de la force contre-électromotrice du stator pour un cycle de mesure N. L'observateur de vitesse 36 dispose également des valeurs de la première et de la deuxième composante ea, εβ de la force contre-électromotrice du stator pour un cycle de mesure N-l disponibles au sein du dispositif de mise en mémoire. Ainsi, l'observateur de vitesse 36 peut comparer les valeurs des première et deuxième composantes ea, εβ de la force contre-électromotrice mesurées lors d'un cycle N et lors d'un cycle N-l pour calculer une valeur corrigée desdites première et deuxième composantes ea, εβ. L'observateur de vitesse 36 permet aussi de calculer, en sortie, la valeur estimée de l'accélération du rotor pour un cycle de mesure N. La figure 2 montre les différentes étapes du procédé selon l'invention concernant le fonctionnement du dispositif d'évaluation de paramètres de fonctionnement 28 au sein du système de commande 10. Comme montré sur la figure 2, dans une étape 200 le dispositif d'observation 30 reçoit en entrée les valeurs mesurées et stockées au sein du dispositif de mise en mémoire concernant la première et la deuxième composante d'intensité Ια, Ιβ, et la première et la deuxième composante de tension Va, νβ pour un cycle de mesure N.
Dans une étape 210, le dispositif d'observation 30 estime la valeur des première et deuxième composantes ea, εβ de la force contre-électromotrice ainsi que la position angulaire du rotor pour un cycle de mesure N.
Ensuite, dans une étape 220, les valeurs des première et deuxième composantes ea, εβ de la force contre-électromotrice sont transmises au deuxième dispositif d'observation 32, à destination de l'observateur de vitesse 36.
Dans une étape 230, l'observateur de vitesse 36 calcule la valeur de l'accélération du rotor en utilisant les valeurs des première et deuxième composantes ea, εβ de la force contre-électromotrice du cycle de mesure N et celles estimées lors d'un cycle de mesure précédent N-l. A l'issue de l'étape 230, l'observateur de vitesse 36 transmet la valeur de l'accélération du rotor au contrôleur PI 34.
Dans une étape 240, l'observateur de vitesse 36 calcule les valeurs corrigées des première et deuxième composantes de la force contre-électromotrice ea, εβ. Dans une étape 250, le contrôleur PI 34 calcule la valeur estimée fiest de la vitesse du rotor. Dans une étape 260, le contrôleur PI 34 transmet la valeur estimée Oest de la vitesse du rotor à l'observateur de vitesse 36 et au premier dispositif d'observation 30. Ainsi, une étape de correction (non montrée) est appliquée, de manière itérative pour chaque cycle de mesure N, aux composantes ea, εβ de la force contre- électromotrice pour calculer les valeurs corrigées desdites premières et deuxièmes composantes ea, εβ.
Dans une étape 270, le premier dispositif d'observation 30 calcule une valeur corrigée de la position du rotor. A cette fin, le premier dispositif d'observation 30 utilise d'une part, la valeur estimée fiest de la vitesse du rotor et, d'autre part, le résultat de la comparaison des valeurs des première et deuxième composantes ea, εβ de la force contre-électromotrice pour un cycle de mesure N avec les valeurs des première et deuxième composantes Ια, Ιβ de l'intensité pour un cycle de mesure N-l. La valeur de la position corrigée du rotor ainsi obtenue est ensuite transmise, comme montré sur la figure 1, au premier dispositif de conversion 18 et au quatrième dispositif de conversion 26 afin d'optimiser le procédé de conversion des composantes Ια, Ιβ, Va, νβ en un ensemble de composantes Id, Iq, Vd, Vq. La figure 3 montre une représentation graphique des valeurs estimées de la vitesse du rotor en utilisant seulement le dispositif d'observation 30, pour une vitesse initiale déterminée de 600 tours par minute. Le signal montré sur la figure 3 montre la présence d'un grand nombre d'oscillations lors de la détermination de la vitesse estimée du rotor.
L'application du procédé selon l'invention, en combinant le premier dispositif d'observation 30 et le deuxième dispositif d'observation 32, permet d'obtenir un signal amélioré tel que montré sur la figure 4, dans lequel les oscillations présentes sur le signal montré sur la figure 3 ont disparu. Ainsi, l'estimation de la valeur de la vitesse peut être réalisé à faible vitesse et lors d'une phase de transition, afin d'obtenir une estimation fiable de la valeur de la vitesse de transition. Ces caractéristiques de fonctionnement et d'application du procédé de commande selon l'invention démontrent la stabilité du système de commande selon l'invention. Selon une application spécifique, la machine synchrone 12 peut être un compresseur d'un véhicule automobile hybride, électrique ou thermique. Le compresseur est adapté pour fonctionner au sein d'un système de climatisation d'un véhicule automobile, afin, notamment de refroidir l'habitacle dudit véhicule automobile. Le compresseur assure également les fonctions de dégivrage des pare- brise du véhicule automobile et de refroidissement de la batterie électrique.
Le procédé de commande selon l'invention permet audit compresseur de fonctionner en gérant les variations de charge importantes, c'est-à-dire en rejetant les variations de charge, de démarrer avec une charge significative qui représente par exemple 80% du couple maximal, de fonctionner à vitesse faible et à charge importante, et d'opérer, entre une phase de démarrage et une phase de ralentissement, selon une vitesse de transition relativement rapide.
La figure 5 montre un graphique représentant les variations d'une première phase à faible vitesse et une deuxième phase relative à une vitesse de transition. Comme montré sur le graphique, une charge S d'une valeur de 2,5 Nm (Newton mètre) qui représente environ 50% du couple maximal est introduite lors de la première phase et lors de la deuxième phase. Pour chaque phase, postérieurement à l'introduction de la charge, la vitesse de réponse du système de commande selon l'invention est relativement élevée, ce qui signifie que la perturbation introduite par la charge S est rapidement rejetée. Ainsi, cette rapidité d'adaptation du système de commande selon l'invention démontre la stabilité du contrôle fourni par le procédé de commande selon l'invention ainsi que la robustesse du système selon l'invention en présence de perturbations.
Le procédé de commande selon l'invention est donc un procédé itératif qui permet, en temps réel, de corriger la position du rotor pour un cycle de mesure N+l, en utilisant les données mesurées lors d'un cycle de mesure N et N-l. De plus, l'invention comprend des algorithmes de faible complexité au sein du dispositif d'évaluation de paramètres de fonctionnement 28. Par conséquent, le procédé de commande selon l'invention peut être utilisé, de manière avantageuse, pour des systèmes embarqués.
Par ailleurs, le système de commande selon l'invention ne nécessite pas de matériel spécifique. Ainsi, le coût de fabrication d'un tel système de commande est relativement réduit.
Le procédé de commande selon l'invention peut être appliqué sur une grande échelle de valeurs de vitesse, allant par exemple de quelques centaines à quelques milliers de tours par minute.
Enfin, le système de commande selon l'invention reste fiable pour des grandes transitions de phase et ne dépend pas de la variation des paramètres de la machine synchrone.

Claims

Revendications
1. Procédé d'évaluation de paramètres de fonctionnement d'une machine synchrone (12) comprenant, d'une part, un stator, configuré pour générer un champ électromagnétique tournant par rapport audit stator, et, d'autre part, un rotor de sorte que le champ électromagnétique tournant entraine le rotor en rotation, ledit procédé d'évaluation comprenant, pour un cycle de mesure N, les étapes suivantes :
réception de la valeur de premières et deuxième composantes (Ια, Ιβ) d'intensité et de premières et deuxième composantes (Va, νβ) de tension d'un courant appliqué audit stator;
détermination de la valeur de première et deuxième composantes (ea, εβ) d'une force contre-électromotrice, associée audit champ électronique tournant, à partir desdites composantes d'intensité et de tension;
comparaison de la valeur des première et deuxième composantes (ea, εβ) de la force contre-électromotrice avec la valeur des première et deuxième composantes (ea, εβ) de la force contre-électromotrice d'un cycle de mesure N-l ;
détermination d'une valeur estimée de la vitesse du rotor.
2. Procédé selon la revendication 1, dans lequel l'étape de détermination d'une valeur estimée de la vitesse du rotor comprend la détermination de la valeur de l'accélération du rotor.
3. Procédé selon l'une quelconque des revendications 1 ou 2, comprenant une étape de détermination de la valeur de la position angulaire du rotor.
4. Procédé selon la revendication 3, comprenant une étape de correction de la valeur de la position angulaire du rotor en fonction du résultat de la comparaison de la valeur des première et deuxième composantes (ea, εβ) de la force contre-électromotrice avec la valeur des première et deuxième composantes (Ια, Ιβ) de l'intensité I d'un cycle de mesure N pour corriger la position angulaire du rotor pour un cycle de mesure N+l.
5. Processus de commande d'une machine synchrone comprenant les étapes suivantes :
évaluation d'une vitesse estimée d'un rotor de la machine conformément au procédé selon l'une quelconque des revendications précédentes, adaptation du courant appliqué au stator en fonction de la valeur estimée de la vitesse du rotor.
6. Dispositif d'évaluation de paramètres de fonctionnement d'une machine synchrone (12) comprenant, d'une part, un stator, configuré pour générer un champ électromagnétique tournant par rapport audit stator, et, d'autre part, un rotor de sorte que le champ électromagnétique tournant entraine le rotor en rotation, ledit dispositif comprenant un premier dispositif d'observation (30) et un deuxième dispositif d'observation (32) pour réaliser le procédé d'évaluation de paramètres de fonctionnement selon l'une des revendications 1 à 4.
Système de commande d'une machine synchrone comprenant un dispositif d'évaluation de paramètres de fonctionnement selon la revendication 6 et un dispositif d'adaptation du courant appliqué au stator en fonction de la valeur estimée de la vitesse du rotor.
Ensemble (10), comprenant un système de commande (28) selon la revendication 7 et un compresseur commandé par ledit système de commande (28), ledit compresseur étant adapté pour fonctionner au sein d'un système de climatisation d'un véhicule automobile.
PCT/IB2015/059705 2014-12-18 2015-12-17 Procédé et dispositif d'évaluation de paramètres de fonctionnement ainsi que processus et systeme de commande d'une machine synchrone WO2016098032A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15832955.7A EP3235117A1 (fr) 2014-12-18 2015-12-17 Procédé et dispositif d'évaluation de paramètres de fonctionnement ainsi que processus et systeme de commande d'une machine synchrone

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1462831 2014-12-18
FR14/62831 2014-12-18

Publications (1)

Publication Number Publication Date
WO2016098032A1 true WO2016098032A1 (fr) 2016-06-23

Family

ID=55349885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2015/059705 WO2016098032A1 (fr) 2014-12-18 2015-12-17 Procédé et dispositif d'évaluation de paramètres de fonctionnement ainsi que processus et systeme de commande d'une machine synchrone

Country Status (2)

Country Link
EP (1) EP3235117A1 (fr)
WO (1) WO2016098032A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030233200A1 (en) * 2002-03-20 2003-12-18 Vladan Petrovic Saliency-based position estimation in permanent magnet synchronous motors
CN102437813B (zh) * 2011-12-26 2014-04-09 中国东方电气集团有限公司 一种基于无速度传感器的永磁同步电机的转子角度、转速估计方法
CN104135206A (zh) * 2014-07-15 2014-11-05 邯郸美的制冷设备有限公司 用于电机控制系统的电流调节器及电机控制系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030233200A1 (en) * 2002-03-20 2003-12-18 Vladan Petrovic Saliency-based position estimation in permanent magnet synchronous motors
CN102437813B (zh) * 2011-12-26 2014-04-09 中国东方电气集团有限公司 一种基于无速度传感器的永磁同步电机的转子角度、转速估计方法
CN104135206A (zh) * 2014-07-15 2014-11-05 邯郸美的制冷设备有限公司 用于电机控制系统的电流调节器及电机控制系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KONRAD URBANSKI: "Sensorless control of PMSM high dynamic drive at low speed range", INDUSTRIAL ELECTRONICS (ISIE), 2011 IEEE INTERNATIONAL SYMPOSIUM ON, IEEE, 27 June 2011 (2011-06-27), pages 728 - 732, XP032019155, ISBN: 978-1-4244-9310-4, DOI: 10.1109/ISIE.2011.5984247 *
QIU A ET AL: "Sensorless control of permanent magnet synchronous motor using extended Kalman filter", ELECTRICAL AND COMPUTER ENGINEERING, 2004. CANADIAN CONFERENCE ON NIAGARA FALLS, ONT., CANADA 2-5 MAY 2004, PISCATAWAY, NJ, USA,IEEE, US, 2 May 2004 (2004-05-02), pages 1557, XP010734455, ISBN: 978-0-7803-8253-4, DOI: 10.1109/CCECE.2004.1349704 *

Also Published As

Publication number Publication date
EP3235117A1 (fr) 2017-10-25

Similar Documents

Publication Publication Date Title
FR2901647A1 (fr) Dispositif et procede de commande de puissance pour une machine dynamo electrique du type a enroulement de champ
EP2997654B1 (fr) Procédé d'estimation de la position angulaire du rotor d'une machine électrique tournante polyphasée et application à la commande d'un onduleur polyphasé pour une telle machine
WO2011070165A2 (fr) Dispositif de commande d'une msap
EP1972051B1 (fr) Procédé de détermination de la position d'un rotor d'une machine synchrone muni d'au moins un enroulement d'excitation
WO2013087451A1 (fr) Procede de charge sans contact d'une batterie d'un vehicule automobile electrique
FR3062762A1 (fr) Procede d'estimation de la position angulaire d’un rotor d’un systeme d’entrainement electrique
EP3069441A1 (fr) Procede et systeme de commande d'une machine electrique triphasee de vehicule automobile alimentee par des tensions hachees
EP3382886A1 (fr) Moteur électrique, moto-réducteur, système d'essuyage et procédé de commande associé
WO2016098032A1 (fr) Procédé et dispositif d'évaluation de paramètres de fonctionnement ainsi que processus et systeme de commande d'une machine synchrone
WO2009007416A1 (fr) Procede de commande d'un moteur synchrone a aimants permanents enterres
EP3167543B1 (fr) Procédé de génération de signaux de commande pour gérer le fonctionnement d'un moteur synchrone, dispositif de contrôle et actionneur
FR3035755A1 (fr) Procede de commande d'une machine electrique synchrone a aimants permanents pour vehicule automobile.
FR3022709A1 (fr) Procede de controle de la position d'un rotor de machine electrique
FR3027748A1 (fr) Procede et dispositif de commande d'une machine electrique tournante synchrone polyphasee, et machine electrique reversible de vehicule automobile correspondant
EP3382887A1 (fr) Procede de demarrage pour une machine synchrone, dispositif de commande, machine synchrone et compresseur associes
FR3027746A1 (fr) Procede de commande d'une machine electrique triphasee synchrone a rotor bobine
FR3025672A1 (fr) Systeme et procede de commande d'une machine electrique asynchrone
FR3028362A1 (fr) Procede et systeme de commande d'une machine electrique synchrone a aimants permanents.
EP2992602B1 (fr) Procede de verification du fonctionnement d'un groupe motopropulseur equipant un vehicule automobile et systeme correspondant
EP4101065B1 (fr) Procédé d'estimation du couple électromagnétique d'une machine électrique synchrone
FR2974465A1 (fr) Procede de detection d'une position angulaire d'un rotor de machine synchrone ; application a la mise en position et au maintien en position d'un rotor de machine synchrone, et a la commande d'un rotor de machine synchrone ; et dispositifs correspondants
FR3049410A1 (fr) Procede de demarrage pour une machine synchrone, dispositif de commande, machine synchrone, et compresseur associes.
WO2023135374A1 (fr) Dispositif et procédé de commande d'une machine synchrone et d'estimation de la position rotor, du démarrage à une faible vitesse prédéterminée
WO2023222980A1 (fr) Dispositif de contrôle pour une machine tournante triphasée synchrone à aimants permanents
FR3092214A1 (fr) Système de commande d’un moteur synchrone à aimants permanents avec détermination de démagnétisation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15832955

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015832955

Country of ref document: EP