WO2016095610A1 - 一种恢复光层业务的方法和系统 - Google Patents

一种恢复光层业务的方法和系统 Download PDF

Info

Publication number
WO2016095610A1
WO2016095610A1 PCT/CN2015/092728 CN2015092728W WO2016095610A1 WO 2016095610 A1 WO2016095610 A1 WO 2016095610A1 CN 2015092728 W CN2015092728 W CN 2015092728W WO 2016095610 A1 WO2016095610 A1 WO 2016095610A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
link
priority
resource
wavelength resource
Prior art date
Application number
PCT/CN2015/092728
Other languages
English (en)
French (fr)
Inventor
卢刚
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US15/535,412 priority Critical patent/US10447399B2/en
Priority to EP15869120.4A priority patent/EP3220581B1/en
Publication of WO2016095610A1 publication Critical patent/WO2016095610A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/62Wavelength based
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/72Admission control; Resource allocation using reservation actions during connection setup
    • H04L47/724Admission control; Resource allocation using reservation actions during connection setup at intermediate nodes, e.g. resource reservation protocol [RSVP]

Definitions

  • This application relates to, but is not limited to, the field of optical communication technology.
  • the path calculation algorithm (CSPF) (Constrained Shortest Path First) is used to establish the LSP (Label Switched Path).
  • the route calculation unit is a route calculation unit RC (Routing Controller) built in the node or a route calculation unit (PCE) (Path Computation Element), and the route calculation unit is generally based on the route calculation unit.
  • the principle of first-come first-coming that is, the LSP service initiated first needs to occupy the optimal resources in the topology (such as the shortest path, etc.).
  • the available resources of the topology in the network are gradually reduced, which may eventually lead to resources on some paths. If the optical layer or the electrical layer is exhausted, the available LSP path cannot be calculated because the resources on the topology are already occupied. In this case, even a service with a high level of service (such as a diamond-level service) cannot be guaranteed to be successful in the event of a failure, which seriously affects the user experience of a highly reliable service. Therefore, some operators have proposed a resource preemption idea, that is, for this recovery scenario, resources that can preempt other services should be allowed. Of course, since the preemption will cause other business interruptions, it is mainly used only when the service is restored.
  • the G.709V3 routing standard proposes draft-ietf-ccamp-gmpls-ospf-g709v3 in the OSPF (Open Shortest Path First) protocol flooded optical data unit (Optical Data Unit k , ODUk) link resource information defines eight priority levels for each available ODUk time slot (0 to 7, respectively, where 0 is the highest priority and 7 is the lowest priority), as shown in Table 1 below.
  • the sub-TLV (Type Length Value) format is as follows:
  • the Unreserved ODUj at Prio 0 to the Unreserved ODUj at Prio 7 respectively indicate the number of slots of the ODUj that are idle on the priority 0 to the priority 7.
  • a setup priority and a Hold Prior are assigned to each LSP service. If the available resources are insufficient, the resources occupied by other services with lower priority will be preempted to ensure high "establishment priority”.
  • Business priority recovery is successful. For example, as shown in Figure 1, the copper-level ODUk exchange service 1, the "establishment priority" is 2, the "hold priority" is 1; the copper-level ODUk exchange service 2, the "establishment priority" is 4, and the priority is maintained.
  • the recovery of the copper-level service 2 can be achieved by preempting the resources occupied by the copper-level service 2.
  • the OSPF protocol stack floods the available ODU slots on each electrical layer link according to the priority
  • the RC or PCE can select the lowest priority according to the priority method based on the above method. The resources that can be preempted, thus completing the calculation of the path.
  • the priority extension of the available time slots limited to the ODUk link proposed in the standard can only solve the preemption when the ODUk link has no idle resources. This method can only solve the problem of recovery priority preemption of the electrical layer service. However, there is no solution to the LSP recovery priority preemption of the optical layer.
  • This document provides a method and system for restoring optical layer services, which can achieve recovery of optical layer services. Preemption.
  • a method for recovering an optical layer service, applied to a node comprising:
  • the wavelength resource occupation information includes: the resource occupation status information of the wavelength resource corresponding to the retention priority
  • the wavelength resource occupation information of the internal link of the local node and the optical layer link where the local node is located is flooded in the network where the node is located.
  • the method further includes the following features:
  • each of the groups of priority-preserving groups containing all wavelength resources of the link corresponding to the level-of-priority resource occupancy status information of the level;
  • the wavelength resource containing the wavelength in each wavelength group corresponds to all the resource occupancy state information of the prioritized priority.
  • the method further includes the following features:
  • each level is equal to or lower than m.
  • the resource occupancy status of the wavelength resource is set to be occupied; if grouped by wavelength, in the wavelength group in which the wavelength resource is located, the wavelength resource corresponds to the priority of the level equal to or lower than m.
  • the level of resource occupancy is set to occupied.
  • the method further includes the following features:
  • the internal link of the local node is a link resource obtained by abstracting the relevant connection relationship between the optical channel OCh layer and the optical data unit ODUk layer of the node.
  • a method for recovering an optical layer service is applied to a route calculation unit, and the method includes:
  • each node on the recovery path LSP is notified to allocate resources for the recovery service.
  • the method further includes the following features:
  • Preempting the wavelength resources on the recovery LSP according to the wavelength resource occupation information including:
  • the preemption policy is: if the establishment priority of the service A is higher than the retention priority of the service B, the service A can preempt the wavelength resource of the service B when recovering.
  • the method further includes the following features:
  • wavelength resource preemption on the internal link and each optical layer link of each node on the recovery LSP according to the preemption policy and the wavelength resource occupation information including:
  • any internal link or optical layer link on the recovery LSP if one wavelength resource in the link corresponds to all the retention priorities, the occupied state is unoccupied, or all occupied states of a wavelength resource. If the corresponding retention priority is lower than the establishment priority of the recovery service, it is determined that the wavelength resource can be preempted.
  • the method further includes the following features:
  • the path connectivity requirement includes: the wavelength resource can be preempted by the recovery service on each link on the recovery LSP;
  • the link includes: an internal link of the node and an optical layer link.
  • the method further includes the following features:
  • the CSPF algorithm is used to calculate the optimal recovery LSP when the recovery label switching path LSP is determined for the first time.
  • the K-optimal short-path path KSP algorithm is adopted. Recalculate the recovery LSP.
  • a system for recovering optical layer services, applied to nodes including:
  • the wavelength resource statistic module is configured to: determine the wavelength resource occupation information of the internal link of the local node and the optical layer link where the local node is located; and the wavelength resource occupation information includes: the resource occupation status information of the wavelength resource corresponding to the retention priority;
  • the flooding module is configured to flood the internal link of the local node and the wavelength resource occupation information of the optical layer link where the local node is located in the network where the node is located.
  • system further includes the following features:
  • the wavelength resource statistics module is set to:
  • each of the groups of priority-preserving groups containing all wavelength resources of the link corresponding to the level-of-priority resource occupancy status information of the level;
  • the wavelength resource containing the wavelength in each wavelength group corresponds to all the resource occupancy state information of the prioritized priority.
  • system further includes the following features:
  • the wavelength resource statistics module is set to:
  • each level is equal to or lower than m.
  • the resource occupancy status of the wavelength resource is set to be occupied; if grouped by wavelength, in the wavelength group in which the wavelength resource is located, the wavelength resource corresponds to the priority of the level equal to or lower than m.
  • the level of resource occupancy is set to occupied.
  • a system for recovering optical layer services, applied to a route calculation unit comprising:
  • the path calculation module is configured to: when the service needs to be restored, determine a recovery label switching path LSP for restoring the service;
  • the wavelength resource information acquiring module is configured to: obtain the wavelength resource occupation information of the internal link of each node on the recovery LSP, and the wavelength resource occupation information of each optical layer link on the recovery LSP;
  • the wavelength resource preemption module is configured to: preempt the wavelength resources on the restored LSP according to the wavelength resource occupation information
  • the resource allocation module is configured to notify each node on the recovery path LSP to allocate resources for the recovery service after preempting the wavelength resource that meets the path connectivity requirement.
  • system further includes the following features:
  • the wavelength resource preemption module is set to:
  • the preemption policy is: if the establishment priority of the service A is higher than the retention priority of the service B, the service A can preempt the wavelength resource of the service B when recovering.
  • system further includes the following features:
  • the wavelength resource preemption module is set to:
  • any internal link or optical layer link on the recovery LSP if one wavelength resource in the link corresponds to all the retention priorities, the occupied state is unoccupied, or all occupied states of a wavelength resource. If the corresponding retention priority is lower than the establishment priority of the recovery service, it is determined that the wavelength resource can be preempted.
  • system further includes the following features:
  • the path connectivity requirement includes: the wavelength resource can be preempted by the recovery service on each link on the recovery LSP;
  • the link includes: an internal link of the node and an optical layer link.
  • a computer readable storage medium storing computer executable instructions for performing the method of any of the above.
  • a method and system for restoring an optical layer service establishes a priority and maintains a priority for an optical layer service, and associates an inter-node optical layer link and an intra-node abstract link.
  • the wavelength occupancy of the optical layer service is pre-empted according to the priority of maintaining the priority.
  • the optical layer service with the highest priority can be used to preempt the wavelength of the service with the lower priority.
  • FIG. 1 is a schematic diagram of recovery priority preemption of an ODUk service of the related art.
  • FIG. 2 is a flowchart of a method (node side) for recovering an optical layer service according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a method for recovering an optical layer service (a route calculation unit side) according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a system (node side) for restoring an optical layer service according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a system (route calculation unit side) for recovering an optical layer service according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a network topology of a recovery optical layer service according to an application example of the present invention.
  • the calculation of the optical layer path can be divided into path calculation and wavelength assignment.
  • the intra-node link can be abstracted for the actual device, and the connectivity relationship between the optical data unit (ODUk) layer and the optical channel (OCh) layer is abstracted as an intra-node link.
  • the occupancy information of the wavelength of the optical layer link can be flooded according to 0 to 7 priorities.
  • the occupancy status information of the wavelength of the abstract internal link in the node is 0 to 7 priorities.
  • the wavelength resource is preempted according to the priority level, and the recovery priority is preempted. path of.
  • an embodiment of the present invention provides a method for recovering an optical layer service, which is applied to a node, and the method includes:
  • the wavelength resource occupation information includes: the resource occupation status information of the wavelength resource corresponding to the retention priority
  • the method also includes the following features:
  • the node is located in an Automatically Switched Optical Network (ASON);
  • ASON Automatically Switched Optical Network
  • the internal link of the local node is a link resource obtained by abstracting a related connection relationship between an internal optical channel OCh layer and an optical data unit ODUk layer;
  • the retention priority comprises 8 levels
  • the wavelength resource occupation information is flooded in the network where the node is located, including: flooding the wavelength resource occupation information in the network where the node is located by using an open shortest path first OSPF protocol;
  • the information about the wavelength resource occupation of the optical link of the local node and the optical layer of the local node is determined, including:
  • each of the groups of priority-preserving groups containing all wavelength resources of the link corresponding to the level-of-priority resource occupancy status information of the level;
  • the wavelength resource containing the wavelength in each wavelength group corresponds to all the retention The resource usage status information of the first level.
  • the wavelength resource occupation information of the link is determined for any internal link or optical layer link, including:
  • each level is equal to or lower than m.
  • the resource occupancy status of the wavelength resource is set to be occupied; if grouped by wavelength, in the wavelength group in which the wavelength resource is located, the wavelength resource corresponds to the priority of the level equal to or lower than m.
  • the level of resource occupancy is set to occupied.
  • the TLV format of the wavelength occupation information may include the following two types, as shown in Table 2 and Table 3, as follows:
  • 0 means occupied, 1 means unoccupied, or 1 means occupied, 0 means unoccupied.
  • an embodiment of the present invention provides a method for recovering an optical layer service, which is applied to a route calculation unit, and the method includes:
  • each node on the recovery path LSP is notified to allocate resources for the recovery service.
  • the method can also include the following features:
  • the routing calculation unit includes one or more of the following: a RC (Routing Controller) built in the node, and a PCE (Path Computation Element) in the node;
  • the preempting the wavelength resources on the recovery LSP according to the wavelength resource occupation information includes:
  • the preemption policy is: if the establishment priority of the service A is higher than the retention priority of the service B, the service A can preempt the wavelength resource of the service B when recovering.
  • the wavelength resource preemption is performed on the internal link and each optical layer link of each node on the recovery LSP according to the preemption policy and the wavelength resource occupation information, including:
  • any internal link or optical layer link on the recovery LSP if one wavelength resource in the link corresponds to all the retention priorities, the occupied state is unoccupied, or all occupied states of a wavelength resource. If the corresponding retention priority is lower than the establishment priority of the recovery service, it is determined that the wavelength resource can be preempted.
  • the path connectivity requirement includes: the wavelength resource can be preempted by the recovery service on each link on the recovery LSP;
  • the link includes: an internal link of the node and an optical layer link.
  • the CSPF algorithm is used to calculate the optimal recovery LSP when the recovery label switching path LSP is determined for the first time.
  • the K-optimal short path (K) is adopted.
  • the Shortest Paths, KSP) algorithm recalculates the recovery LSP.
  • an embodiment of the present invention provides a system for recovering an optical layer service, which is applied to a node, and the system includes:
  • the wavelength resource statistic module 41 is configured to: determine the wavelength resource occupation information of the internal link of the local node and the optical layer link where the local node is located; the wavelength resource occupation information includes: the resource occupation status information of the wavelength resource corresponding to the retention priority;
  • the flooding module 42 is configured to flood the internal resource of the local node and the wavelength resource occupation information of the optical layer link where the local node is located in the network where the node is located.
  • the system may also include the following features:
  • the wavelength resource statistic module 41 is configured to: determine the wavelength resource occupation information of the internal link of the local node and the optical layer link where the local node is located, including:
  • each of the groups of priority-preserving groups containing all wavelength resources of the link corresponding to the level-of-priority resource occupancy status information of the level;
  • the wavelength resource containing the wavelength in each wavelength group corresponds to all the resource occupancy state information of the prioritized priority.
  • the wavelength resource statistics module 41 is configured to: pair any internal link or optical layer chain Path, determining the wavelength resource occupation information of the link, including:
  • each level is equal to or lower than m.
  • the resource occupancy status of the wavelength resource is set to be occupied; if grouped by wavelength, in the wavelength group in which the wavelength resource is located, the wavelength resource corresponds to the priority of the level equal to or lower than m.
  • the level of resource occupancy is set to occupied.
  • the internal link of the local node is a link resource obtained by abstracting a related connection relationship between an internal optical channel OCh layer and an optical data unit ODUk layer.
  • the retention priority includes 8 levels.
  • the route calculation unit is a route calculation unit RC (Routing Controller) built in the node or a route calculation unit PCE (Path Computation Element).
  • an embodiment of the present invention provides a system for recovering an optical layer service, which is applied to a route calculation unit, and the system includes:
  • the path calculation module 51 is configured to: when the service needs to be restored, determine a recovery label switching path LSP for restoring the service;
  • the wavelength resource information obtaining module 52 is configured to: obtain the wavelength resource occupation information of the internal link of each node on the recovery LSP, and the wavelength resource occupation information of each optical layer link on the recovery LSP;
  • the wavelength resource preemption module 53 is configured to: preempt the wavelength resources on the restored LSP according to the wavelength resource occupation information
  • the resource allocation module 54 is configured to notify each node on the restoration path LSP to allocate resources for the recovery service after preempting the wavelength resource that meets the path connectivity requirement.
  • the system may also include the following features:
  • the wavelength resource preemption module 53 is configured to: according to the wavelength resource occupation information pair The wavelength resource on the recovery LSP is preempted, including:
  • the preemption policy is: if the establishment priority of the service A is higher than the retention priority of the service B, the service A can preempt the wavelength resource of the service B when recovering.
  • the wavelength resource preemption module 53 is configured to perform wavelength resource preemption on the internal link and each optical layer link of each node on the recovery LSP according to the preemption policy and the wavelength resource occupation information, including:
  • any internal link or optical layer link on the recovery LSP if one wavelength resource in the link corresponds to all the retention priorities, the occupied state is unoccupied, or all occupied states of a wavelength resource. If the corresponding retention priority is lower than the establishment priority of the recovery service, it is determined that the wavelength resource can be preempted.
  • the path connectivity requirement includes: the wavelength resource can be preempted by the recovery service on each link on the recovery LSP;
  • the link includes: an internal link of the node and an optical layer link.
  • the path calculation module 51 is configured to: determine a recovery label switching path LSP for restoring services, including:
  • the CSPF algorithm is used to calculate the optimal recovery LSP when the recovery label switching path LSP is determined for the first time.
  • the K-optimal short-path path KSP algorithm is adopted. Recalculate the recovery LSP.
  • N1, N2, N3, N4, and N5 are five device nodes, and the device nodes are connected by optical layer link 1 to optical layer link 7, respectively.
  • the optical layer LSP recovery service 1 needs to be built from N3 to N5. Its service has a priority of 3 and a priority of 3.
  • an electrical subrack is represented as ODUk subnet 1
  • OEP1 belongs to ODUk subnet 1
  • OCh subnet 1 has three optical layer links 3/4/6, OEP (Optical Electric processor, photoelectric processing)
  • the photoelectric conversion unit in the logical sense is an abstract internal link between the OCh subnets 1. The process is described below:
  • the device nodes N1 to N5 flood the wavelength priority occupation of the abstract internal link in each node and the wavelength priority occupancy of each optical layer link.
  • the recovery priority preemption sub-TLV of the abstract link in the flooded node is as follows, wherein the occupancy state of each priority is filled in the fourth wavelength.
  • the states of the other wavelengths are omitted and are not noted in Table 4 below.
  • the optical layer link 6 is taken as an example.
  • the path calculation unit PCE uses the CSPF algorithm to calculate a recovery path LSP from N3 to N5, as shown in the figure, N3-N4-N5;
  • the wavelength preemption of the abstract internal link in the node includes:
  • the wavelength preemption of the optical layer link includes:
  • the wavelength ⁇ 4 on the optical layer link 6 is preempted.
  • Each priority occupancy under ⁇ 4 is:
  • the wavelength preemption of the abstract internal link and the optical layer link in the node is completed, it is determined whether the wavelength ⁇ 4 has connectivity on the path of N3-N4-N5, that is, whether the wavelength is available on each link of the LSP ( It can be preempted by the optical layer service. If the wavelength ⁇ 4 has connectivity, it is judged that the preemption of the wavelength resource ⁇ 4 is successful.
  • the PCE notifies each node on the LSP to allocate wavelength resources for the recovery service and establish a recovery service.
  • the method and system for restoring an optical layer service provided by the foregoing embodiments, by setting priorities and maintaining priorities for optical layer services, and maintaining wavelength priority of optical links between nodes and abstract links within nodes
  • the level is flooded.
  • the policy of maintaining the priority of the optical layer service with high priority can be preempted.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • the device/function module/functional unit in the above embodiment When the device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the priority of the optical layer service is set and the priority is maintained, and the wavelength occupation of the optical link between the nodes and the abstract link in the node is flooded according to the retention priority, and the light with high priority is established according to the priority.
  • the policy of maintaining the wavelength resource of the service with the lower priority is preempted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Optical Communication System (AREA)

Abstract

本文公布一种恢复光层业务的方法和系统,所述方法包括:确定本节点内部链路和本节点所在光层链路的波长资源占用信息;波长资源占用信息包括:波长资源对应于保持优先级的资源占用状态信息;将波长资源占用信息在本节点所在的网络内进行洪泛。

Description

一种恢复光层业务的方法和系统 技术领域
本申请涉及但不限于光通信技术领域。
背景技术
ASON(Automatically Switched Optical Network,自动光网络)中对于传输业务LSP(Label Switched Path,标签交换路径)的建立,需要采用路径计算算法CSPF(Constrained Shortest Path First,基于约束的最短路径优先)基于当前的网络拓扑资源来计算。在路径计算时,路由计算单元为节点内置的路由计算单元RC(Routing Controller,路由控制器)或节点外置的路由计算单元PCE(Path Computation Element,路径计算单元),路由计算单元一般都是根据先来先计算的原则,即先发起建立的LSP业务需优先占用拓扑中的最优资源(比如路径最短等)。
因此,在现网中,随着LSP路径建立的越来越多,而且建立的路径也没有释放的情况下,网络中的拓扑的可用资源会逐渐的减少,最终可能会导致一些路径上的资源(光层或电层)耗尽,无法计算出可用的LSP路径的情况,原因是拓扑上的资源均已经被占用了。在这种情况下,哪怕是业务等级很高的业务(比如钻石级业务),在发生故障时,其恢复重路由也不能保证是成功的,严重影响高可靠等级业务的用户体验。于是,一些运营商提出一种资源抢占的思路,即针对这种恢复场景,应该允许能抢占其他业务的资源。当然,由于抢占会造成其他业务中断,所以主要还只用在业务恢复时。
针对上述的场景,目前G.709V3的路由标准提案draft-ietf-ccamp-gmpls-ospf-g709v3在OSPF(Open Shortest Path First,开放式最短路径优先)协议洪泛的光数据单元(Optical Data Unit k,ODUk)链路资源信息中为每个可用的ODUk时隙定义了8个优先级(分别为0~7,其中0为最高优先级,7为最低优先级),如下表1所示的Bandwidth sub-TLV(Type Length Value,类型长度值)格式如下:
Figure PCTCN2015092728-appb-000001
Figure PCTCN2015092728-appb-000002
表1
其中Unreserved ODUj at Prio 0~Unreserved ODUj at Prio 7分别表示在优先级0~优先级7上空闲的ODUj的时隙个数。在实际使用中,为每个LSP业务指定一个建立优先级(Setup Prior)和一个保持优先级(Hold Prior)。确定规则为当“建立优先级”高的业务进行恢复重路由时,如果可用的空闲资源不足,则可以抢占其他“保持优先级”低的业务所占用的资源,以保证高“建立优先级”业务优先恢复成功。比如,如图1所示,铜级ODUk交换业务1,“建立优先级”为2,“保持优先级”为1;铜级ODUk交换业务2,“建立优先级”为4,“保持优先级为”3,当铜级业务1发生故障而触发动态重路由时,并且没有空闲资源(资源被铜级业务2所占用),由于铜级业务1的“建立优先级”高于铜级业务2的“保持优先级”,则铜级业务1的恢复路径计算中可以通过抢占铜级业务2所占用的资源而实现恢复成功。当OSPF协议栈把每个电层链路上可用的ODU时隙按优先级洪泛出来后,RC或PCE便可以基于上述的方法,在路由计算时根据优先级来从最低优先级逐级选择可被抢占的资源,从而完成路径的计算。
目前标准上提出的仅限于ODUk链路的可用时隙的优先级扩展,即只能解决当ODUk链路没有空闲资源时的抢占。这种方法只能解决电层业务的恢复优先级抢占的问题。但对于光层的LSP恢复优先级抢占,则没有办法解决。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本文提供一种恢复光层业务的方法和系统,能够实现光层业务的恢复优 先级抢占。
一种恢复光层业务的方法,应用于节点,该方法包括:
确定本节点内部链路和本节点所在光层链路的波长资源占用信息;所述波长资源占用信息包括:波长资源对应于保持优先级的资源占用状态信息;
将本节点内部链路和本节点所在光层链路的波长资源占用信息在本节点所在的网络内进行洪泛。
可选地,该方法还包括下述特点:
确定本节点内部链路和本节点所在光层链路的波长资源占用信息,包括:
对任意一条内部链路或光层链路,确定该链路的波长资源占用信息,包括:
按保持优先级分组,每一个保持优先级的组中包含该链路的所有波长资源对应于该等级的保持优先级的资源占用状态信息;或者
按波长分组,每一个波长组中包含该波长的波长资源对应于所有保持优先级的资源占用状态信息。
可选地,该方法还包括下述特点:
对任意一条内部链路或光层链路,确定该链路的波长资源占用信息,包括:
如该链路上一波长资源已经分配给保持优先级为m的业务,则在确定该链路的波长资源占用信息时,如按保持优先级分组,则在等级等于或低于m的每一个保持优先级的组中,将该波长资源的资源占用状态设置为占用;如按波长分组,则在该波长资源所在的波长组中,将该波长资源对应于等级等于或低于m的保持优先级的资源占用状态设置为占用。
可选地,该方法还包括下述特点:
所述本节点内部链路是对节点内部光通道OCh层与光数据单元ODUk层之间相关连通关系进行抽象后得到的链路资源。
一种恢复光层业务的方法,应用于路由计算单元,该方法包括:
在业务需要恢复时,确定恢复业务的恢复标签交换路径LSP;
获取所述恢复LSP上每一个节点的内部链路的波长资源占用信息,以及所述恢复LSP上每一条光层链路的波长资源占用信息;
根据所述波长资源占用信息对所述恢复LSP上的波长资源进行抢占;
在抢占到满足路径连通性要求的波长资源后,通知所述恢复路径LSP上的每个节点为所述恢复业务分配资源。
可选地,该方法还包括下述特点:
根据所述波长资源占用信息对所述恢复LSP上的波长资源进行抢占,包括:
根据抢占策略和所述波长资源占用信息对所述恢复LSP上的每一个节点的内部链路和每一条光层链路进行波长资源抢占;
其中,所述抢占策略为:如业务A的建立优先级高于业务B的保持优先级,则业务A在恢复时能够抢占业务B的波长资源。
可选地,该方法还包括下述特点:
根据抢占策略和所述波长资源占用信息对所述恢复LSP上的每一个节点的内部链路和每一条光层链路进行波长资源抢占,包括:
对所述恢复LSP上的任意一条内部链路或光层链路,如所述链路中的一波长资源对应于所有保持优先级的占用状态均为未占用,或者一波长资源的所有占用状态对应的保持优先级均低于所述恢复业务的建立优先级,则判定该波长资源能够被抢占。
可选地,该方法还包括下述特点:
所述路径连通性要求,包括:波长资源在所述恢复LSP上的每一个链路上均能够被所述恢复业务抢占;
其中,所述链路包括:节点的内部链路和光层链路。
可选地,该方法还包括下述特点:
确定恢复业务的恢复标签交换路径LSP,包括:
采用基于约束的最短路径优先CSPF算法为所述恢复业务计算恢复标签交换路径LSP;或者
首次为所述恢复业务确定恢复标签交换路径LSP时采用CSPF算法计算最优恢复LSP,在所述最优恢复LSP未能抢占到满足路径连通性要求的波长资源时,采用K优最短路径KSP算法重新计算恢复LSP。
一种恢复光层业务的系统,应用于节点,包括:
波长资源统计模块,设置为:确定本节点内部链路和本节点所在光层链路的波长资源占用信息;所述波长资源占用信息包括:波长资源对应于保持优先级的资源占用状态信息;
洪泛模块,设置为:将本节点内部链路和本节点所在光层链路的波长资源占用信息在本节点所在的网络内进行洪泛。
可选地,该系统还包括下述特点:
波长资源统计模块,是设置为:
对任意一条内部链路或光层链路,确定该链路的波长资源占用信息,包括:
按保持优先级分组,每一个保持优先级的组中包含该链路的所有波长资源对应于该等级的保持优先级的资源占用状态信息;或者
按波长分组,每一个波长组中包含该波长的波长资源对应于所有保持优先级的资源占用状态信息。
可选地,该系统还包括下述特点:
波长资源统计模块,是设置为:
如该链路上一波长资源已经分配给保持优先级为m的业务,则在确定该链路的波长资源占用信息时,如按保持优先级分组,则在等级等于或低于m的每一个保持优先级的组中,将该波长资源的资源占用状态设置为占用;如按波长分组,则在该波长资源所在的波长组中,将该波长资源对应于等级等于或低于m的保持优先级的资源占用状态设置为占用。
一种恢复光层业务的系统,应用于路由计算单元,包括:
路径计算模块,设置为:在业务需要恢复时,确定恢复业务的恢复标签交换路径LSP;
波长资源信息获取模块,设置为:获取所述恢复LSP上每一个节点的内部链路的波长资源占用信息,以及所述恢复LSP上每一条光层链路的波长资源占用信息;
波长资源抢占模块,设置为:根据所述波长资源占用信息对所述恢复LSP上的波长资源进行抢占;
资源分配模块,设置为:在抢占到满足路径连通性要求的波长资源后,通知所述恢复路径LSP上的每个节点为所述恢复业务分配资源。
可选地,该系统还包括下述特点:
波长资源抢占模块,是设置为:
根据抢占策略和所述波长资源占用信息对所述恢复LSP上的每一个节点的内部链路和每一条光层链路进行波长资源抢占;
其中,所述抢占策略为:如业务A的建立优先级高于业务B的保持优先级,则业务A在恢复时能够抢占业务B的波长资源。
可选地,该系统还包括下述特点:
波长资源抢占模块,是设置为:
对所述恢复LSP上的任意一条内部链路或光层链路,如所述链路中的一波长资源对应于所有保持优先级的占用状态均为未占用,或者一波长资源的所有占用状态对应的保持优先级均低于所述恢复业务的建立优先级,则判定该波长资源能够被抢占。
可选地,该系统还包括下述特点:
所述路径连通性要求,包括:波长资源在所述恢复LSP上的每一个链路上均能够被所述恢复业务抢占;
其中,所述链路包括:节点的内部链路和光层链路。
一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述任一项的方法。
与相关技术相比,本发明实施例提供的一种恢复光层业务的方法和系统,通过为光层业务设置建立优先级和保持优先级,将节点间光层链路和节点内抽象链路的波长占用情况根据保持优先级进行洪泛,根据建立优先级高的光层业务在恢复时可以抢占保持优先级低的业务的波长资源的策略,实现光层业务的恢复优先级抢占。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为相关技术的ODUk业务的恢复优先级抢占示意图。
图2为本发明实施例的一种恢复光层业务的方法(节点侧)的流程图。
图3为本发明实施例的一种恢复光层业务的方法(路由计算单元侧)的流程图。
图4为本发明实施例的一种恢复光层业务的系统(节点侧)的结构示意图。
图5为本发明实施例的一种恢复光层业务的系统(路由计算单元侧)的结构示意图。
图6为本发明应用示例的恢复光层业务的网络拓扑示意图。
本发明的实施方式
下文中将结合附图对本发明的实施方式进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
光层路径的计算可以分为路径计算和波长分配。其中,节点内链路可以针对实际设备进行抽象,将光数据单元(Optical Data Unit k,ODUk)层和光通道(Optical Channel,OCh)层之间的连通性关系抽象为节点内链路。基于这个思想,可以将光层链路的波长的占用信息按照0~7个优先级进行洪泛, 同时也将节点内抽象的内部链路的波长在0~7个优先级上的占用状态信息洪泛出来;然后,基于洪泛出来信息对波长资源按优先级高低进行抢占,得到恢复优先级抢占的路径。
如图2所示,本发明实施例提供了一种恢复光层业务的方法,应用于节点,该方法包括:
S21,确定本节点内部链路和本节点所在光层链路的波长资源占用信息;所述波长资源占用信息包括:波长资源对应于保持优先级的资源占用状态信息;
S22,将本节点内部链路和本节点所在光层链路的波长资源占用信息在本节点所在的网络内进行洪泛;
所述方法还包括下述特点:
其中,所述节点位于ASON(Automatically Switched Optical Network,自动光网络)中;
其中,所述本节点内部链路是对节点内部光通道OCh层与光数据单元ODUk层之间相关连通关系进行抽象后得到的链路资源;
其中,所述保持优先级包括8个等级;
其中,将所述波长资源占用信息在本节点所在的网络内进行洪泛,包括:通过开放式最短路径优先OSPF协议将所述波长资源占用信息在本节点所在的网络内进行洪泛;
其中,确定本节点内部链路和本节点所在光层链路的波长资源占用信息,包括:
对任意一条内部链路或光层链路,确定该链路的波长资源占用信息,包括:
按保持优先级分组,每一个保持优先级的组中包含该链路的所有波长资源对应于该等级的保持优先级的资源占用状态信息;或者
按波长分组,每一个波长组中包含该波长的波长资源对应于所有保持优 先级的资源占用状态信息。
其中,对任意一条内部链路或光层链路,确定该链路的波长资源占用信息,包括:
如该链路上一波长资源已经分配给保持优先级为m的业务,则在确定该链路的波长资源占用信息时,如按保持优先级分组,则在等级等于或低于m的每一个保持优先级的组中,将该波长资源的资源占用状态设置为占用;如按波长分组,则在该波长资源所在的波长组中,将该波长资源对应于等级等于或低于m的保持优先级的资源占用状态设置为占用。
比如,波长占用信息的TLV格式可以包括如下两种,分别如表2和表3所示,如下:
Figure PCTCN2015092728-appb-000003
表2
Figure PCTCN2015092728-appb-000004
表3
其中,对于每一个bit,0表示占用,1表示未占用,或者1表示占用,0表示未占用。
如图3所示,本发明实施例提供了一种恢复光层业务的方法,应用于路由计算单元,该方法包括:
S31,在业务需要恢复时,确定恢复业务的恢复标签交换路径LSP;
S32,获取所述恢复LSP上每一个节点的内部链路的波长资源占用信息,以及所述恢复LSP上每一条光层链路的波长资源占用信息;
S33,根据所述波长资源占用信息对所述恢复LSP上的波长资源进行抢占;
S34,在抢占到满足路径连通性要求的波长资源后,通知所述恢复路径LSP上的每个节点为所述恢复业务分配资源。
该方法还可以包括下述特点:
其中,所述路由计算单元,包括以下一种或多种:节点内置的RC(Routing Controller,路由控制器),节点外置的PCE(Path Computation Element,路径计算单元);
其中,根据所述波长资源占用信息对所述恢复LSP上的波长资源进行抢占,包括:
根据抢占策略和所述波长资源占用信息对所述恢复LSP上的每一个节点的内部链路和每一条光层链路进行波长资源抢占;
其中,所述抢占策略为:如业务A的建立优先级高于业务B的保持优先级,则业务A在恢复时能够抢占业务B的波长资源。
其中,根据抢占策略和所述波长资源占用信息对所述恢复LSP上的每一个节点的内部链路和每一条光层链路进行波长资源抢占,包括:
对所述恢复LSP上的任意一条内部链路或光层链路,如所述链路中的一波长资源对应于所有保持优先级的占用状态均为未占用,或者一波长资源的所有占用状态对应的保持优先级均低于所述恢复业务的建立优先级,则判定该波长资源能够被抢占。
其中,所述路径连通性要求,包括:波长资源在所述恢复LSP上的每一个链路上均能够被所述恢复业务抢占;
其中,所述链路包括:节点的内部链路和光层链路。
其中,确定恢复业务的恢复标签交换路径LSP,包括:
采用基于约束的最短路径优先CSPF算法为所述恢复业务计算恢复标签交换路径LSP;或者
首次为所述恢复业务确定恢复标签交换路径LSP时采用CSPF算法计算最优恢复LSP,在所述最优恢复LSP未能抢占到满足路径连通性要求的波长资源时,采用K优最短路径(K Shortest Paths,KSP)算法重新计算恢复LSP。
如图4所示,本发明实施例提供了一种恢复光层业务的系统,应用于节点,该系统包括:
波长资源统计模块41,设置为:确定本节点内部链路和本节点所在光层链路的波长资源占用信息;所述波长资源占用信息包括:波长资源对应于保持优先级的资源占用状态信息;
洪泛模块42,设置为:将本节点内部链路和本节点所在光层链路的波长资源占用信息在本节点所在的网络内进行洪泛。
所述系统还可以包括下述特点:
其中,波长资源统计模块41,是设置为:确定本节点内部链路和本节点所在光层链路的波长资源占用信息,包括:
对任意一条内部链路或光层链路,确定该链路的波长资源占用信息,包括:
按保持优先级分组,每一个保持优先级的组中包含该链路的所有波长资源对应于该等级的保持优先级的资源占用状态信息;或者
按波长分组,每一个波长组中包含该波长的波长资源对应于所有保持优先级的资源占用状态信息。
其中,波长资源统计模块41,是设置为:对任意一条内部链路或光层链 路,确定该链路的波长资源占用信息,包括:
如该链路上一波长资源已经分配给保持优先级为m的业务,则在确定该链路的波长资源占用信息时,如按保持优先级分组,则在等级等于或低于m的每一个保持优先级的组中,将该波长资源的资源占用状态设置为占用;如按波长分组,则在该波长资源所在的波长组中,将该波长资源对应于等级等于或低于m的保持优先级的资源占用状态设置为占用。
其中,所述本节点内部链路是对节点内部光通道OCh层与光数据单元ODUk层之间相关连通关系进行抽象后得到的链路资源。
其中,所述保持优先级包括8个等级。
其中,所述路由计算单元为节点内置的路由计算单元RC(Routing Controller,路由控制器)或节点外置的路由计算单元PCE(Path Computation Element,路径计算单元);
如图5所示,本发明实施例提供了一种恢复光层业务的系统,应用于路由计算单元,该系统包括:
路径计算模块51,设置为:在业务需要恢复时,确定恢复业务的恢复标签交换路径LSP;
波长资源信息获取模块52,设置为:获取所述恢复LSP上每一个节点的内部链路的波长资源占用信息,以及所述恢复LSP上每一条光层链路的波长资源占用信息;
波长资源抢占模块53,设置为:根据所述波长资源占用信息对所述恢复LSP上的波长资源进行抢占;
资源分配模块54,设置为:在抢占到满足路径连通性要求的波长资源后,通知所述恢复路径LSP上的每个节点为所述恢复业务分配资源。
所述系统还可以包括下述特点:
其中,波长资源抢占模块53,是设置为:根据所述波长资源占用信息对 所述恢复LSP上的波长资源进行抢占,包括:
根据抢占策略和所述波长资源占用信息对所述恢复LSP上的每一个节点的内部链路和每一条光层链路进行波长资源抢占;
其中,所述抢占策略为:如业务A的建立优先级高于业务B的保持优先级,则业务A在恢复时能够抢占业务B的波长资源。
其中,波长资源抢占模块53,是设置为:根据抢占策略和所述波长资源占用信息对所述恢复LSP上的每一个节点的内部链路和每一条光层链路进行波长资源抢占,包括:
对所述恢复LSP上的任意一条内部链路或光层链路,如所述链路中的一波长资源对应于所有保持优先级的占用状态均为未占用,或者一波长资源的所有占用状态对应的保持优先级均低于所述恢复业务的建立优先级,则判定该波长资源能够被抢占。
其中,所述路径连通性要求,包括:波长资源在所述恢复LSP上的每一个链路上均能够被所述恢复业务抢占;
其中,所述链路包括:节点的内部链路和光层链路。
其中,路径计算模块51,是设置为:确定恢复业务的恢复标签交换路径LSP,包括:
采用基于约束的最短路径优先CSPF算法为所述恢复业务计算恢复标签交换路径LSP;或者
首次为所述恢复业务确定恢复标签交换路径LSP时采用CSPF算法计算最优恢复LSP,在所述最优恢复LSP未能抢占到满足路径连通性要求的波长资源时,采用K优最短路径KSP算法重新计算恢复LSP。
应用示例
如图6所示,N1、N2、N3、N4、N5为五个设备节点,设备节点之间分别由光层链路1~光层链路7相连。光层LSP恢复业务1需从N3建到N5, 其业务的建立优先级为3,保持优先级为3。
在N3节点中包括一个电层子架表示为ODUk子网1,OEP1属于ODUk子网1,OCh子网1上有3条光层链路3/4/6,OEP(Optical Electric processor,光电处理器)为逻辑意义上的光电转换单元,其到OCh子网1之间为抽象的内部链路(inner-link)。下面描述过程:
1)设备节点N1~N5,洪泛每个节点内抽象内部链路的波长优先级占用情况,和每个光层链路的波长优先级占用情况。
以N3节点为例;
对于内部链路,λ4已被之前一个保持优先级为5的业务所占用,λ4的优先级占用情况为:P0/P1/P2/P3/P4=1(未占用),P5/P6/P7=0(占用)。所以洪泛出来的节点内抽象链路的恢复优先级抢占子TLV为如下所示,其中第4个波长中填写了每个优先级下的占用状态。其他波长的状态省略,没有在下表4中注明。
Figure PCTCN2015092728-appb-000005
Figure PCTCN2015092728-appb-000006
表4
对于光层链路,以光层链路6为例。光层链路6的λ4已被之前一个保持优先级为5的业务所占用,因此,λ4的优先级占用情况为:P0/P1/P2/P3/P4=1(未占用),P5/P6/P7=0(占用)。所以洪泛出来的光层链路恢复优先级抢占子TLV为如下表5所示,其中第4个波长中填写了每个优先级下的占用状态。
Figure PCTCN2015092728-appb-000007
表5
2)路径计算单元PCE采用CSPF算法计算一条从N3到N5的恢复路径LSP,如图所示为N3-N4-N5;
3)以节点N3为例,节点内抽象内部链路的波长抢占,包括:
针对抽象内部链路上的波长λ4,λ4的每个优先级占用情况为:
P0=1(未占用),P1=1(未占用),P2=1(未占用),P3=1(未占用),P4=1(未占用),P5=0(占用),P6=0(占用),P7=0(占用)。
由于波长λ4所有处于占用状态的保持优先级P5、P6和P7均低于该光层LSP的建立优先级(3级),因此,λ4可以被抢占;
4)以节点N3为例,光层链路的波长抢占,包括:
对光层链路6上的波长λ4进行抢占。
λ4下的每个优先级占用情况为:
P0=1(空闲),P1=1(空闲),P2=1(空闲),P3=1(空闲),P4=1(空闲),P5=0(占用),P6=0(占用),P7=0(占用);
由于波长λ4所有处于占用状态的保持优先级P5、P6和P7均低于该光层LSP的建立优先级(3级),因此,λ4可以被抢占;
5)完成节点内抽象内部链路和光层链路的波长抢占后,判断波长λ4是否在N3-N4-N5的路径上具有连通性,即在LSP的每一条链路上该波长是否均可用(可被该光层业务抢占),如果波长λ4具有连通性,则判断对波长资源λ4的抢占是成功的。
6)判定该LSP可以用于恢复业务的优先级抢占,PCE通知LSP上的每个节点为恢复业务分配波长资源,建立恢复业务。
上述实施例提供的一种恢复光层业务的方法和系统,通过为光层业务设置建立优先级和保持优先级,将节点间光层链路和节点内抽象链路的波长占用情况根据保持优先级进行洪泛,根据建立优先级高的光层业务在恢复时可以抢占保持优先级低的业务的波长资源的策略,实现光层业务的恢复优先级抢占。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如系统、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。
上述实施例中的装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
工业实用性
本发明实施例通过为光层业务设置建立优先级和保持优先级,将节点间光层链路和节点内抽象链路的波长占用情况根据保持优先级进行洪泛,根据建立优先级高的光层业务在恢复时可以抢占保持优先级低的业务的波长资源的策略,实现光层业务的恢复优先级抢占。

Claims (15)

  1. 一种恢复光层业务的方法,应用于节点,该方法包括:
    确定本节点内部链路和本节点所在光层链路的波长资源占用信息;所述波长资源占用信息包括:波长资源对应于保持优先级的资源占用状态信息;
    将本节点内部链路和本节点所在光层链路的波长资源占用信息在本节点所在的网络内进行洪泛。
  2. 如权利要求1所述的方法,其中:
    确定本节点内部链路和本节点所在光层链路的波长资源占用信息,包括:
    对任意一条内部链路或光层链路,确定该链路的波长资源占用信息,包括:
    按保持优先级分组,每一个保持优先级的组中包含该链路的所有波长资源对应于该等级的保持优先级的资源占用状态信息;或者
    按波长分组,每一个波长组中包含该波长的波长资源对应于所有保持优先级的资源占用状态信息。
  3. 如权利要求2所述的方法,其中:
    对任意一条内部链路或光层链路,确定该链路的波长资源占用信息,包括:
    如该链路上一波长资源已经分配给保持优先级为m的业务,则在确定该链路的波长资源占用信息时,如按保持优先级分组,则在等级等于或低于m的每一个保持优先级的组中,将该波长资源的资源占用状态设置为占用;如按波长分组,则在该波长资源所在的波长组中,将该波长资源对应于等级等于或低于m的保持优先级的资源占用状态设置为占用。
  4. 如权利要求1所述的方法,其中:
    所述本节点内部链路是对节点内部光通道OCh层与光数据单元ODUk层之间相关连通关系进行抽象后得到的链路资源。
  5. 一种恢复光层业务的方法,应用于路由计算单元,该方法包括:
    在业务需要恢复时,确定恢复业务的恢复标签交换路径LSP;
    获取所述恢复LSP上每一个节点的内部链路的波长资源占用信息,以及所述恢复LSP上每一条光层链路的波长资源占用信息;
    根据所述波长资源占用信息对所述恢复LSP上的波长资源进行抢占;
    在抢占到满足路径连通性要求的波长资源后,通知所述恢复路径LSP上的每个节点为所述恢复业务分配资源。
  6. 如权利要求5所述的方法,其中:
    根据所述波长资源占用信息对所述恢复LSP上的波长资源进行抢占,包括:
    根据抢占策略和所述波长资源占用信息对所述恢复LSP上的每一个节点的内部链路和每一条光层链路进行波长资源抢占;
    其中,所述抢占策略为:如业务A的建立优先级高于业务B的保持优先级,则业务A在恢复时能够抢占业务B的波长资源。
  7. 如权利要求6所述的方法,其中:
    根据抢占策略和所述波长资源占用信息对所述恢复LSP上的每一个节点的内部链路和每一条光层链路进行波长资源抢占,包括:
    对所述恢复LSP上的任意一条内部链路或光层链路,如所述链路中的一波长资源对应于所有保持优先级的占用状态均为未占用,或者一波长资源的所有占用状态对应的保持优先级均低于所述恢复业务的建立优先级,则判定该波长资源能够被抢占。
  8. 如权利要求5所述的方法,其中:
    所述路径连通性要求,包括:波长资源在所述恢复LSP上的每一个链路上均能够被所述恢复业务抢占;
    其中,所述链路包括:节点的内部链路和光层链路。
  9. 如权利要求5所述的方法,其中:
    确定恢复业务的恢复标签交换路径LSP,包括:
    采用基于约束的最短路径优先CSPF算法为所述恢复业务计算恢复标签交换路径LSP;或者
    首次为所述恢复业务确定恢复标签交换路径LSP时采用CSPF算法计算最优恢复LSP,在所述最优恢复LSP未能抢占到满足路径连通性要求的波长资源时,采用K优最短路径KSP算法重新计算恢复LSP。
  10. 一种恢复光层业务的系统,应用于节点,包括:
    波长资源统计模块,设置为:确定本节点内部链路和本节点所在光层链路的波长资源占用信息;所述波长资源占用信息包括:波长资源对应于保持优先级的资源占用状态信息;
    洪泛模块,设置为:将本节点内部链路和本节点所在光层链路的波长资源占用信息在本节点所在的网络内进行洪泛。
  11. 如权利要求10所述的系统,其中:
    波长资源统计模块,是设置为:
    对任意一条内部链路或光层链路,确定该链路的波长资源占用信息,包括:
    按保持优先级分组,每一个保持优先级的组中包含该链路的所有波长资源对应于该等级的保持优先级的资源占用状态信息;或者
    按波长分组,每一个波长组中包含该波长的波长资源对应于所有保持优先级的资源占用状态信息。
  12. 如权利要求11所述的系统,其中:
    波长资源统计模块,是设置为:
    如该链路上一波长资源已经分配给保持优先级为m的业务,则在确定该链路的波长资源占用信息时,如按保持优先级分组,则在等级等于或低于m的每一个保持优先级的组中,将该波长资源的资源占用状态设置为占用;如按波长分组,则在该波长资源所在的波长组中,将该波长资源对应于等级等 于或低于m的保持优先级的资源占用状态设置为占用。
  13. 一种恢复光层业务的系统,应用于路由计算单元,包括:
    路径计算模块,设置为:在业务需要恢复时,确定恢复业务的恢复标签交换路径LSP;
    波长资源信息获取模块,设置为:获取所述恢复LSP上每一个节点的内部链路的波长资源占用信息,以及所述恢复LSP上每一条光层链路的波长资源占用信息;
    波长资源抢占模块,设置为:根据所述波长资源占用信息对所述恢复LSP上的波长资源进行抢占;
    资源分配模块,设置为:在抢占到满足路径连通性要求的波长资源后,通知所述恢复路径LSP上的每个节点为所述恢复业务分配资源。
  14. 如权利要求13所述的系统,其中:
    波长资源抢占模块,是设置为:
    根据抢占策略和所述波长资源占用信息对所述恢复LSP上的每一个节点的内部链路和每一条光层链路进行波长资源抢占;
    其中,所述抢占策略为:如业务A的建立优先级高于业务B的保持优先级,则业务A在恢复时能够抢占业务B的波长资源。
  15. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1-9任一项的方法。
PCT/CN2015/092728 2014-12-15 2015-10-23 一种恢复光层业务的方法和系统 WO2016095610A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/535,412 US10447399B2 (en) 2014-12-15 2015-10-23 Method and system for restoring optical layer service
EP15869120.4A EP3220581B1 (en) 2014-12-15 2015-10-23 Method and system for restoring optical layer service

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410779355.5 2014-12-15
CN201410779355.5A CN105763348B (zh) 2014-12-15 2014-12-15 一种恢复光层业务的方法和系统

Publications (1)

Publication Number Publication Date
WO2016095610A1 true WO2016095610A1 (zh) 2016-06-23

Family

ID=56125855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/092728 WO2016095610A1 (zh) 2014-12-15 2015-10-23 一种恢复光层业务的方法和系统

Country Status (4)

Country Link
US (1) US10447399B2 (zh)
EP (1) EP3220581B1 (zh)
CN (1) CN105763348B (zh)
WO (1) WO2016095610A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108512676B (zh) * 2017-02-27 2022-09-09 中兴通讯股份有限公司 一种波道分析方法、装置及存储介质
US10841183B1 (en) * 2019-10-18 2020-11-17 Huawei Technologies Canada Co., Ltd. Method and system for reliability-aware embedding of a virtual network onto an elastic optical network

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1335627A2 (en) * 2002-02-06 2003-08-13 Nippon Telegraph and Telephone Corporation Optical network, optical cross-connect apparatus, photonic-IP network, and node
JP2008245225A (ja) * 2007-03-29 2008-10-09 Kddi Corp 波長パス経路決定装置、波長パス設定制御システム及びプログラム
CN101400005A (zh) * 2007-09-30 2009-04-01 华为技术有限公司 一种节点信息发布方法、系统和装置
CN101453670A (zh) * 2007-09-30 2009-06-10 华为技术有限公司 一种节点信息发布方法、系统和装置
CN102694724A (zh) * 2012-05-17 2012-09-26 南京邮电大学 一种支持区分业务的智能光网络路由波长分配方法
CN102801602A (zh) * 2011-05-26 2012-11-28 中兴通讯股份有限公司 一种实现内部链路洪泛的方法及装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040179472A1 (en) * 2003-03-14 2004-09-16 Farid Khalilzadeh Shared path protection method and system
CN100395991C (zh) * 2005-02-04 2008-06-18 华为技术有限公司 一种ason网络中端到端业务自动配置和恢复的方法
CN100414942C (zh) * 2005-09-27 2008-08-27 华为技术有限公司 业务转发路由的恢复方法
WO2008044646A1 (fr) * 2006-10-06 2008-04-17 Nippon Telegraph And Telephone Corporation Appareil de nœud de communication, systÈme de communication, et procÉDÉ d'affectation de ressources de trajet
CN101350787B (zh) * 2008-08-25 2011-04-20 中兴通讯股份有限公司 一种网络资源的分配方法
CN101677294B (zh) * 2008-09-19 2012-02-15 华为技术有限公司 多层网络资源优化方法、系统及直达光路服务器
CN101534459B (zh) * 2009-04-22 2011-12-28 中兴通讯股份有限公司 一种自动交换光网络中实现保护与恢复的方法及系统
CN101715151B (zh) * 2009-11-02 2012-12-19 北京科技大学 一种基于优先级的域间资源预留方法
CN102136997B (zh) * 2010-08-16 2014-12-24 华为技术有限公司 一种路径的状态更新方法和节点
CN103476074B (zh) * 2013-08-30 2016-02-03 京信通信系统(中国)有限公司 一种资源抢占方法及设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1335627A2 (en) * 2002-02-06 2003-08-13 Nippon Telegraph and Telephone Corporation Optical network, optical cross-connect apparatus, photonic-IP network, and node
JP2008245225A (ja) * 2007-03-29 2008-10-09 Kddi Corp 波長パス経路決定装置、波長パス設定制御システム及びプログラム
CN101400005A (zh) * 2007-09-30 2009-04-01 华为技术有限公司 一种节点信息发布方法、系统和装置
CN101453670A (zh) * 2007-09-30 2009-06-10 华为技术有限公司 一种节点信息发布方法、系统和装置
CN102801602A (zh) * 2011-05-26 2012-11-28 中兴通讯股份有限公司 一种实现内部链路洪泛的方法及装置
CN102694724A (zh) * 2012-05-17 2012-09-26 南京邮电大学 一种支持区分业务的智能光网络路由波长分配方法

Also Published As

Publication number Publication date
EP3220581A4 (en) 2017-11-29
US20170366269A1 (en) 2017-12-21
CN105763348B (zh) 2020-02-14
EP3220581A1 (en) 2017-09-20
CN105763348A (zh) 2016-07-13
US10447399B2 (en) 2019-10-15
EP3220581B1 (en) 2019-12-11

Similar Documents

Publication Publication Date Title
US10547537B1 (en) Batched path computation in resource-constrained networks
CN105743794B (zh) 针对多层网络的管理设备和管理方法
US9602387B2 (en) Network topology optimization
CN111149330B (zh) 软件定义网络中的拓扑感知控制器关联
Huang et al. Survivable multipath provisioning with differential delay constraint in telecom mesh networks
Muñoz et al. Transport network orchestration for end-to-end multilayer provisioning across heterogeneous SDN/OpenFlow and GMPLS/PCE control domains
US8902744B2 (en) Bandwidth advertisement model for shared mesh protection
US10069570B2 (en) Multi-layer modem reclamation systems and methods
US10374935B2 (en) Link discovery method, system, and device
JP2013510459A (ja) 分離的なパス計算アルゴリズム
WO2015196647A1 (zh) 环形拓扑堆叠系统路径选择方法、装置及主设备
WO2017088495A1 (zh) 一种路由信息的获取方法及装置
WO2012019404A1 (zh) 一种计算路径的方法及装置
US11677659B2 (en) Optimization of segment routing-enabled multipath network
EP3244580A1 (en) Network service establishment method, cooperation control centre and network system
US20160156523A1 (en) Method and System for Network Topology
WO2016095610A1 (zh) 一种恢复光层业务的方法和系统
JP2009055357A (ja) ノード装置及び通信網及びパス設定方法及びプログラム
Ahmed et al. Contention-free routing for hybrid photonic mesh-based network-on-chip systems
WO2011020392A1 (zh) 信息传输方法、通信装置及通信系统
Vadrevu et al. Vertical and horizontal circuit/packet integration techniques for the future optical internet
WO2018161754A1 (zh) 一种隧道带宽资源回收方法及装置
CN106453145B (zh) 一种传输链路控制方法及装置
WO2020118505A1 (zh) 一种业务路径建立的方法、网络设备和系统
Li et al. Differentiated recovery in WDM networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869120

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015869120

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15535412

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE