WO2016095444A1 - 无线数据传输的方法、网络侧设备、用户设备和系统 - Google Patents

无线数据传输的方法、网络侧设备、用户设备和系统 Download PDF

Info

Publication number
WO2016095444A1
WO2016095444A1 PCT/CN2015/080288 CN2015080288W WO2016095444A1 WO 2016095444 A1 WO2016095444 A1 WO 2016095444A1 CN 2015080288 W CN2015080288 W CN 2015080288W WO 2016095444 A1 WO2016095444 A1 WO 2016095444A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
rtt
repetitions
processes
frame
Prior art date
Application number
PCT/CN2015/080288
Other languages
English (en)
French (fr)
Inventor
黄雯雯
赵悦莹
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15868956.2A priority Critical patent/EP3226455A4/en
Priority to CN201580006826.1A priority patent/CN105960771A/zh
Priority to KR1020177019704A priority patent/KR20170095354A/ko
Publication of WO2016095444A1 publication Critical patent/WO2016095444A1/zh
Priority to US15/625,774 priority patent/US20170288742A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/46Indirect determination of position data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/0013Rate matching, e.g. puncturing or repetition of code symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/12Arrangements for remote connection or disconnection of substations or of equipment thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0806Configuration setting for initial configuration or provisioning, e.g. plug-and-play
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • H04L43/0864Round trip delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay
    • H04W56/006Synchronisation arrangements determining timing error of reception due to propagation delay using known positions of transmitter and receiver

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a method, a network side device, a user equipment, and a system for wireless data transmission.
  • the data retransmission mechanism includes Hybrid Automatic Repeat Request (HARQ) technology.
  • HARQ Hybrid Automatic Repeat Request
  • the working mode of HARQ technology is generally:
  • the transmission time interval (Transmission) adopted by the user equipment (User Equipment, UE) according to the Enhanced Dedicated Physical Data Channel/Enhanced Dedicated Physical Control Channel (E-DPDCH/E-DPCCH) Time Interval (TTI) determines the number of HARQ processes in each frame of data. For example, if E-DPDCH/E-DPCCH uses a 10 ms TTI, the number of HARQ processes is 4; if E-DPDCH/E-DPCCH takes 2 ms. TTI, then the number of HARQ processes is 8;
  • the user equipment transmits data at a permitted data rate.
  • E-HCH E-DCH hybrid ARQ indicator channel
  • the uplink coverage capability is improved.
  • the TTI bundling technology is included.
  • TTI binding technology multiple consecutive TTIs in the uplink are bound, so that Each time the data of the same number of times is repeated, the probability of the user equipment receiving the data correctly is improved, thereby improving the uplink coverage capability.
  • the inventor has found that in the prior art, the TTI binding technology improves the coverage capability, and the user equipment with large path loss has limited coverage improvement effect, thereby affecting the communication quality of the user equipment.
  • the wireless data transmission method, the network side device, the user equipment, and the system provided by the embodiments of the present invention can improve the coverage capability of the wireless communication terminal.
  • the first aspect provides a wireless data transmission method, including:
  • the determining, according to the obtained repetition quantity information, the process number information, and the transmission time interval TTI of the user equipment, the RTT of the user equipment including:
  • the enhanced dedicated physical data channel E-DPDCH and the enhanced dedicated physics when the hybrid automatic repeat request HARQ process is hybridized includes:
  • RTT number of repetitions * number of processes * TTI.
  • the user is The number of repetitions of the device, the number of processes, and the TTI calculation determine the RTT of the user equipment, including:
  • RTT (N1+N2+padding)*number of processes*TTI;
  • the N1 represents the number of repetitions of the user equipment E-DPCCH
  • the N2 represents the user equipment.
  • the determining, according to the obtained repetition quantity information, the process number information, and the transmission time interval TTI of the user equipment, the RTT of the user equipment including:
  • the maximum number of repetitions is not less than a maximum value of the number of repetitions of the user equipment in the management range of the network side device;
  • the minimum number of processes is the minimum number of processes accommodated within the RTT.
  • the method includes:
  • the maximum number of repetitions is a number of repetitions required for data transmission of all user equipments in a management range of the network side device The maximum value in .
  • the number of repetitions required for the user equipment data transmission is:
  • the number of repetitions determined by the network side device according to the path loss parameter of the user equipment is determined by the network side device according to the path loss parameter of the user equipment.
  • the minimum repetition number and the preset minimum process are performed.
  • the number determines the RTT of the HARQ, including:
  • RTT minimum number of processes * maximum number of repetitions * 10ms.
  • the TTI of the data transmission is a TTI of 10 ms
  • the data transmission required according to each user equipment is required.
  • the number of repetitions and the duration of the RTT determine the maximum number of processes that can be included in each RTT of each user equipment, including:
  • the second aspect provides a wireless data transmission method, including:
  • the number of repetitions required by the user equipment to transmit data transmission to the network side device is the number of repetitions required by the user equipment to transmit data transmission to the network side device
  • the user equipment acquires a round trip time of the hybrid automatic repeat request HARQ of the user equipment The RTT, wherein the RTT is determined by the network side device according to the obtained repetition quantity information of the user equipment, and the process number information of the user equipment and the transmission time interval TTI;
  • the user equipment transmits data to the network side device in the RRT according to the repetition number.
  • the user equipment after receiving the feedback message, acquires a first frame of the sent data frame corresponding to the feedback message according to a preset frame timing relationship. number;
  • the frame timing relationship includes:
  • the first frame number of the transmitted data frame the first frame number of the feedback message - N2 - padding - 2;
  • the frame timing relationship includes:
  • the first frame number of the transmitted data frame the first frame number of the feedback message - N1 - N2 - padding - 2;
  • the N1 indicates the number of repetitions of the user equipment E-DPCCH
  • the N2 indicates the number of repetitions of the user equipment E-DPDCH
  • the method further includes:
  • the process data corresponding to the first frame number of the transmitted data frame is retransmitted in the corresponding process position in the RTT period of the next HARQ.
  • the method further includes:
  • the user equipment acquires a maximum number of processes that the user equipment can include in the RTT of the HARQ, where the RTT is determined by the network side device according to a preset maximum number of repetitions and a preset minimum number of processes.
  • the maximum number of repetitions is not less than a maximum value of the number of repetitions required for the user equipment to transmit data in the management range of the network side device, and the minimum number of processes is the minimum process capacity in the RTT; the duration of the RTT Determining, together with the number of repetitions of the user equipment, a maximum number of processes that can be included in the RTT of the user equipment, according to the number of repetitions of the user equipment. Transmitting data to the network side device in the RRT, including:
  • the user equipment transmits data to the network side device in the RRT according to the maximum number of processes.
  • the obtaining the maximum number of processes includes:
  • the user equipment calculates to generate the maximum number of processes.
  • the maximum number of repetitions is a repetition quantity required for data transmission of all user equipments in a management range of the network side device The maximum value in .
  • the user equipment includes:
  • the road loss parameter obtaining module is configured to determine the number of repetitions according to the path loss parameter of the user equipment.
  • the minimum repetition number and the preset minimum process are performed.
  • the number determines the RTT of the HARQ, including:
  • RTT minimum number of processes * maximum number of repetitions * 10ms.
  • the TTI of the data transmission is a TTI of 10 ms
  • the data transmission required according to each user equipment is required.
  • the number of repetitions and the duration of the RTT determine the maximum number of processes that can be included in each RTT of each user equipment, including:
  • the method further includes:
  • the user equipment After receiving the feedback message, the user equipment acquires a first frame number of the transmitted data frame corresponding to the feedback message according to a preset frame timing relationship;
  • the method further includes:
  • the feedback message corresponding to the first frame number of the sent data frame is a NACK, re-transmitting the process data corresponding to the first frame number of the sent data frame in the preset retransmission position;
  • the preset retransmission location includes:
  • the preset retransmission position is:
  • Retransmit RTT number RTT number +2 corresponding to the transmitted data frame.
  • the wireless data transmission method is applied to a machine Wireless data transmission to the machine M2M service.
  • the third aspect provides a network side device, including:
  • the repetition number acquisition unit is configured to acquire the number of repetitions required for data transmission of each user equipment in the management scope
  • the RTT determining unit is configured to determine a round trip time RTT of the user equipment according to the obtained repetition quantity information of the user equipment, and the process number information of the user equipment and the transmission time interval TTI.
  • the RTT determining unit includes:
  • a process number setting module configured to preset a number of processes of the user equipment
  • the RTT calculation module is configured to determine an RTT of the user equipment according to the number of repetitions of the user equipment, the number of processes, and a TTI calculation.
  • the RTT determining module calculates a formula for determining an RTT of the user equipment, including:
  • RTT number of repetitions * number of processes * TTI.
  • the RTT determining module calculates and determines the user equipment.
  • the formula for RTT includes:
  • RTT (N1+N2+padding)*number of processes*TTI;
  • the N1 indicates the number of repetitions of the user equipment E-DPCCH
  • the N2 indicates the number of repetitions of the user equipment E-DPDCH
  • the RTT determining unit includes: an RTT acquiring unit, configured to determine hybrid automatic according to a preset maximum number of repetitions, a preset minimum number of processes, and a transmission time interval TTI Retransmission request round trip time RTT of the HARQ; the maximum number of repetitions is not less than a maximum value of the number of repetitions required for user equipment data transmission within the management range of the network side device; the minimum number of processes is the smallest process within the RTT The duration of the RTT is used to determine the maximum number of processes that can be included in the RTT of the user equipment together with the number of repetitions of the user equipment.
  • the maximum number of repetitions is a maximum value of the number of repetitions required for data transmission of all user equipments within a management range of the network side device.
  • the number of repetitions required for the user equipment data transmission is:
  • the number of repetitions determined by the network side device according to the path loss parameter of the user equipment is determined by the network side device according to the path loss parameter of the user equipment.
  • the determining the RTT of the HARQ according to the maximum number of repetitions and the preset minimum number of processes includes:
  • RTT minimum number of processes * maximum number of repetitions * 10ms.
  • the determining the number of repetitions required for each user equipment data transmission and the duration of the RTT The maximum number of processes that can be included in each RTT of a user device, including:
  • the fourth aspect provides a user equipment, including:
  • a repetition number sending unit configured to be used by the user equipment to send a data transmission to the network side device
  • An RTT receiving unit configured to acquire a round-trip time RTT of the hybrid automatic repeat request (HARQ) of the user equipment, where the RTT is information that the network side device obtains the number of times of repetition of the user equipment, and the The number of processes of the user equipment and the transmission time interval TTI are determined;
  • HARQ hybrid automatic repeat request
  • a data transmission unit configured to transmit data to the network side device within the RRT according to the repetition quantity.
  • the method further includes:
  • a first frame number obtaining unit of the transmitted data frame configured to acquire, after receiving the feedback message, a first frame number of the transmitted data frame corresponding to the feedback message according to a preset frame timing relationship
  • the frame timing relationship includes:
  • the first frame number of the transmitted data frame the first frame number of the feedback message - N2 - padding - 2;
  • the frame timing relationship includes:
  • the first frame number of the transmitted data frame the first frame number of the feedback message - N1 - N2 - padding - 2;
  • the N1 indicates the number of repetitions of the user equipment E-DPCCH
  • the N2 indicates the number of repetitions of the user equipment E-DPDCH
  • the method further includes:
  • a process data retransmission unit configured to: when the feedback message corresponding to the first frame number of the transmitted data frame is NACK, resend the process corresponding to the first frame number of the sent data frame in the corresponding process position in the RTT period of the next HARQ data.
  • the method further includes:
  • a maximum number of processes obtaining unit configured to obtain a maximum number of processes that the user equipment can include in a round-trip time RTT of the hybrid automatic repeat request (HARQ), wherein the RTT is a maximum repetition of the network side device according to a preset
  • the number of times and the preset minimum number of processes are determined, and the maximum number of repetitions is not less than a maximum value of the number of repetitions required for the user equipment to transmit data within the management range of the network side device, and the minimum number of processes is the minimum within the RTT.
  • the process accommodates the number; the duration of the RTT is used to determine, together with the number of repetitions of the user equipment, a maximum advance that can be included in the RTT of the user equipment Number of passes;
  • the data transmission unit is configured to transmit data to the network side device in the RRT according to the maximum number of processes.
  • the path loss parameter obtaining module is configured to determine the number of repetitions according to the path loss parameter of the user equipment.
  • the maximum process number obtaining unit includes:
  • a maximum number of processes receiving module configured to receive the maximum number of processes sent from the network side device
  • the maximum number of processes calculation module is configured to calculate the maximum number of processes generated.
  • the maximum number of repetitions is a repetition quantity required for data transmission of all user equipments in a management range of the network side device The maximum value in .
  • the number of repetitions required for the user equipment data transmission is:
  • the number of repetitions determined by the network side device according to the path loss parameter of the user equipment is determined by the network side device according to the path loss parameter of the user equipment.
  • the minimum repetition number and the preset minimum process are performed.
  • the number determines the RTT of the HARQ, including:
  • RTT minimum number of processes * maximum number of repetitions * 10ms.
  • a ninth possible implementation manner of the fourth aspect when the TTI of the data transmission is a TTI of 10 ms, the data transmission required according to each user equipment is required.
  • the number of repetitions and the duration of the RTT determine the maximum number of processes that can be included in each RTT of each user equipment, including:
  • the method further includes:
  • a first frame number obtaining unit configured to acquire, after receiving the feedback message, a first frame number of the transmitted data frame corresponding to the feedback message according to a preset frame timing relationship
  • the method further includes:
  • a retransmission unit configured to: when the feedback message corresponding to the first frame number of the sent data frame is a NACK, resend the process data corresponding to the first frame number of the sent data frame in the preset retransmission position ;
  • the preset retransmission location includes:
  • the preset retransmission position is:
  • Retransmit RTT number RTT number +2 corresponding to the transmitted data frame.
  • a fifth aspect provides a wireless data transmission system, including a network side device and a user equipment;
  • the network side device is the network side device in any one of the first to the eighth possible implementation manners of the third aspect, or the third aspect;
  • the user equipment is the user equipment in any of the first to twelfth possible implementations of the fourth aspect, or the fourth aspect.
  • the RTT can be set as needed, so that the length of the RTT can be adjusted within the range allowed by the delay.
  • the number of repetitions required by the user terminal can be known by the number of repetitions of a certain user terminal. In this way, under the premise of satisfying the requirement of the number of repetitions of the user terminal, it is possible to include as few processes as possible in each RTT for the coverage capability of each user terminal. In this way, not only can the probability of successful data decoding be effectively improved, but also the purpose of effectively improving the coverage capability of user equipment in wireless communication can be achieved.
  • the user equipment may also adjust the number of processes of the HARQ according to the number of repetitions required by the current user equipment, thereby ensuring that the user equipment is still guaranteed. Under the premise of making full use of resources, the delay of data transmission is reduced, thereby improving communication efficiency.
  • the RTT can be preset to meet the repetition times required for data transmission of all user equipments in the management scope of the network side device, and then the number of repetitions required for each user equipment data transmission is different. Under the premise of satisfying the number of repetitions required for user equipment data transmission, as many different processes as possible (ie, multiple processes with different process numbers) are accommodated in each RTT.
  • each user equipment determines the current required number of repetitions according to the coverage information such as the path loss of the user equipment, that is, the number of repetitions of the data transmission by the user equipment can be satisfied, so that the data decoding can be effectively improved. Probability, so as to effectively improve the coverage of user equipment in wireless communications.
  • the user equipment may further adjust the number of processes of the HARQ according to the number of repetitions required by the current user equipment, and thus may also be sufficient under the premise of ensuring the coverage capability of the user equipment in the wireless communication.
  • the code resources of the uplink channel are utilized.
  • FIG. 1 is a sequence diagram of a method for transmitting wireless data in an embodiment of the present invention
  • FIG. 2 is still another step diagram of a wireless data transmission method according to an embodiment of the present invention.
  • FIG. 3 is still another step diagram of a method for transmitting wireless data according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a system for wireless data transmission according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a network side device for wireless data transmission according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of user equipment for wireless data transmission according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of hardware of a network side device for wireless data transmission according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of hardware of a user equipment for wireless data transmission according to an embodiment of the present invention.
  • FIG. 9 is still another step diagram of a method for transmitting wireless data according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of process setting of a user equipment of different coverage capabilities in a wireless data transmission method according to an embodiment of the present invention
  • FIG. 11 is a schematic diagram of setting a process of a wireless data transmission method in different scenarios according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of another process setting of a wireless data transmission method in different scenarios according to an embodiment of the present invention.
  • FIG. 13 is still another schematic structural diagram of a system for wireless data transmission according to an embodiment of the present invention.
  • FIG. 14 is still another schematic structural diagram of a network side device for wireless data transmission according to an embodiment of the present invention.
  • FIG. 15 is still another schematic structural diagram of a user equipment for wireless data transmission according to an embodiment of the present disclosure.
  • FIG. 16 is still another schematic structural diagram of a hardware of a network side device for wireless data transmission according to an embodiment of the present disclosure
  • FIG. 17 is still another schematic structural diagram of hardware of a user equipment for wireless data transmission according to an embodiment of the present invention.
  • the wireless data transmission method in the embodiment of the present invention is applicable to a Global System of Mobile communication (GSM) system or a Universal Mobile Telecommunications System (UMTS) or a Long Term Evolution (Long Term Evolution, LTE) system.
  • GSM Global System of Mobile communication
  • UMTS Universal Mobile Telecommunications System
  • LTE Long Term Evolution
  • the wireless data transmission method in the embodiment of the present invention is applicable to an application scenario that is not required for a delay, for example, may be a scenario applied to a Machine to Machine (M2M) service.
  • M2M Machine to Machine
  • the inventor has found through long-term research that although TTI bundling technology has been applied in the prior art by binding multiple duplicate TTIs (Transmission Time Interva) in one RTT (Round trip time).
  • the transmission time interval can improve the coverage capability of the user equipment in the wireless communication to a certain extent.
  • the coverage capability refers to a distance range between the base station and the user equipment that can normally communicate. Wai.
  • the main idea of the embodiment of the present invention includes: designing the duration of the RTT based on the requirement of the user equipment for the number of repeated TTIs in the wireless communication, so that the number of repeated TTIs in each RTT can satisfy the wireless The needs of the user equipment in the communication, in order to achieve the purpose of covering the coverage.
  • Embodiment 1 of a wireless data transmission method in an embodiment of the present invention is shown.
  • the network side device acquires the number of repetitions required for data transmission of each user equipment in the management scope.
  • the number of repetitions required for each user equipment to transmit data is the number of repetitions of the TTI required for each user equipment to obtain a larger coverage.
  • the user equipment sends the number of repetitions to the network side device after determining the number of repetitions required for the data transmission.
  • the network side device may include multiple base stations for implementing interaction with communication data of the user equipment within the management scope.
  • the geographical location of each user equipment in the management scope is different, for example, the distance between each user equipment and the network side device is different, and/or the obstacle in the transmission path between the user equipment and the network side device
  • Different things make the path loss of each user equipment different.
  • the number of repetitions required when sending data is different; by setting the path loss level and The correspondence of the number of repetitions can obtain the number of repetitions required by the user equipment in each case of the path loss in each level when the predetermined coverage capability is reached.
  • the corresponding number of repetitions can be obtained by acquiring the path loss parameter of the user equipment.
  • the signal strength of the user equipment may also be graded as a parameter for calculation. Specifically, when the signal level is high and the signal strength is high, the number of repetitions required by the user equipment with a high signal level is smaller than that of the user with a low signal level. device.
  • S12. Determine, according to a preset maximum number of repetitions, a preset minimum number of processes, and a TTI, a round trip time RTT of the hybrid automatic repeat request HARQ; the maximum number of repetitions is not less than that required for user equipment data transmission within a management range of the network side device.
  • the maximum number of repetitions; the minimum number of processes is the minimum number of processes accommodated in the RTT;
  • the number of repetitions required for each user equipment to transmit data within the management scope of the network side device only represents the number of repetitions required by each user equipment itself.
  • the RTT needs to be set according to the maximum value of the repetition times; that is, the maximum is
  • the number of repetitions is set to be not less than the maximum number of repetitions required for all user equipments in the management range of the network side device to transmit data, thereby ensuring that the number of repetitions required for each user equipment is satisfied.
  • the maximum number of repetitions required for all user equipments in the management range of the network side device to send data is used as the maximum number of repetitions.
  • the network side device receives the number of repetitions sent by the user equipment, and then uses the maximum number of repetitions required by the user equipment to send data as the maximum number of repetitions.
  • an RTT includes a plurality of processes with different process numbers, and each process is formed by repeating the set number of times of the subframe or the frame.
  • the set number of times is the number of repetitions.
  • all subframes or frames having the same process ID in one RTT are referred to as one process, and the number of process numbers that can be included in one RTT is the number of processes in the RTT, and is in the same length.
  • the number of processes is inversely proportional to the number of repetitions. That is, the more the number of repetitions, the fewer the number of processes. Conversely, the fewer the number of repetitions, the more the number of processes.
  • the length of the RTT can also accommodate the number of repetitions required by the user equipment with the largest path loss to make the user equipment The purpose of achieving the set coverage capability.
  • the length of the RTT of the HARQ can be determined according to the difference in TTI.
  • the maximum number of repetitions is 32
  • S13 Determine, according to the number of repetitions required for data transmission of the user equipment and the duration of the RTT, the maximum number of processes that can be included in each RTT of the user equipment.
  • the network side device can determine the maximum number of processes that can be included in each RTT when the user equipment sends data according to the required number of repetitions of each user equipment.
  • the reason for calculating the maximum number of processes per user device is because the minimum number of processes is determined according to the maximum number of repetitions of the user equipment that meets the maximum path loss. If each user equipment uses the minimum number of processes to send data, it is obvious. The bandwidth of the user equipment with relatively small path loss will not be effectively utilized, and the data transmission efficiency.
  • the network side device may calculate the maximum number of processes that can be included in each RTT of each user equipment according to the required number of repetitions, thereby satisfying each user equipment. At the same time as the number of repetitions required, the number of processes is increased as much as possible, so that the bandwidth of each user equipment can be fully utilized, and the data transmission efficiency is improved.
  • the maximum number of processes that can be included in each RTT of each user equipment can also be obtained by calculation of the user equipment itself.
  • the network side device may set the RTT after acquiring the number of repetitions of each user equipment, and instruct each user equipment to send data in the maximum number of processes.
  • the network side device may also send the length of the obtained RTR of the HARQ to the user equipment.
  • Each user equipment determines the maximum number of processes that can be included in each RTT when the user equipment sends data according to its required number of repetitions.
  • the user equipment transmits data to the network side device in the RRT according to the maximum number of processes.
  • each user equipment After each user equipment obtains its own maximum number of processes, it can set the number of processes in each RTT by the maximum number of processes, and repeat the settings according to their required repetition times to construct a process.
  • the complete RRT in turn, can transfer data to the network side device.
  • the user equipment After receiving the feedback message, the user equipment acquires a first frame number of the sent data frame corresponding to the feedback message according to a preset frame timing relationship.
  • the HARQ technology includes the probability of repeatedly sending data.
  • the network side device sends feedback information (ACK/NACK) to indicate the subsequent data transmission behavior of the user equipment. After receiving the feedback information, the user equipment receives feedback information.
  • ACK is ACK
  • the ACK indicates that the network side device has correctly received the data. At this time, the subsequent data can continue to be sent.
  • the feedback information is NACK
  • the network side device does not correctly receive the data (that is, the receiving end decodes the error). , the data that failed to be sent needs to be resent.
  • the user equipment needs to obtain the first frame number of the transmitted data frame corresponding to the feedback message according to the preset frame timing relationship, so as to determine the sent data corresponding to the feedback information.
  • the first frame number of the sent data frame corresponding to the feedback message may be obtained by:
  • the first frame number of the transmitted data frame the first frame number of the feedback message - the number of repetitions - 2.
  • the transmission time of the transmitted data frame, the data processing time, and the feedback need to be calculated.
  • Information feedback time the first frame number of the data frame that the user equipment has sent.
  • the first frame number of the data frame is 0008 and the repetition number is 8 as an example.
  • the first frame number of the corresponding transmitted data may be deduced by the first frame number of the feedback message, that is, the transmitted data is sent.
  • the first frame number of the frame the first frame number of the feedback message - the number of repetitions - 2.
  • the method may further include the following steps:
  • the transmitted data corresponding to the feedback message needs to be retransmitted.
  • the retransmission position needs to be preset for the data that needs to be retransmitted. Retrieving the data corresponding to the first frame number of the transmitted data frame in the preset retransmission position, specifically,
  • the preset retransmission position includes:
  • the number of repetitions is 8 and the number of processes is 2, or when the RTT length is 80 ms, the number of repetitions is 4, and the number of processes is 2, or when the RTT length is 40 ms, the number of repetitions is 2 and the process is
  • the uplink HARQ is a synchronous transmission mechanism.
  • the user equipment receives the feedback message NACK, the data can only be retransmitted on the 0th process of the next RTT
  • the retransmission RTT number the RTT number +1 corresponding to the transmitted data frame.
  • the determination of the preset retransmission position can be as follows:
  • the wireless data transmission method in the embodiment of the present invention can be applied to wireless data transmission of an M2M service; since the M2M service is relatively insensitive to data delay, a long delay can be tolerated, so It can receive RTT with a long set time.
  • the position of the user equipment in most M2M is relatively fixed, so the path loss is also stable, so the calculated number of repetitions can not be frequent due to the change of the position of the user equipment. Variety.
  • the specific steps of the wireless data transmission method may be as shown in FIG. 2, including the steps of:
  • S22 Determine, according to a preset maximum number of repetitions, a preset minimum number of processes, and a transmission time interval TTI, a round trip time RTT of the hybrid automatic repeat request HARQ, where the maximum number of repetitions is not less than a user equipment within a management range of the network side device.
  • the maximum number of the number of repetitions; the minimum number of processes is the minimum number of processes accommodated in the RTT; the duration of the RTT is used to determine the user equipment together with the number of repetitions of the user equipment The maximum number of processes that can be included in the RTT.
  • the specific steps of the wireless data transmission method may be as shown in FIG. 3, including the steps of:
  • the user equipment acquires a maximum number of processes that the user equipment can include in a round-trip time RTT of the hybrid automatic repeat request HARQ, where the RTT is the maximum number of repetitions of the network side device according to a preset
  • the maximum number of repetitions is determined by the preset minimum number of processes, and the maximum number of repetitions is not less than a maximum number of repetitions required for the user equipment to transmit data within the management range of the network side device, and the minimum number of processes is the smallest process in the RTT.
  • the number of times of the RTT is used to determine the maximum number of processes that can be included in the RTT of the user equipment together with the number of repetitions of the user equipment;
  • the user equipment transmits data to the network side device in the RRT according to the maximum number of processes.
  • the wireless data transmission system includes the network side device 01 and the user equipment 02. 5, including the repetition number acquisition unit 11 and the RTT acquisition unit 12, as shown in FIG. 6, the user equipment 02 includes a repetition number transmission unit 21, a maximum process number acquisition unit 22, and a data transmission unit 23, specifically:
  • the repetition number sending unit 21 of the user equipment 02 is configured to send the number of repetitions required for data transmission to the network side device;
  • the path loss parameter acquisition module may be implemented by using the path loss parameter acquisition module, and the path loss parameter of the user equipment 02 may be obtained according to the preset.
  • the correspondence between the path loss level and the number of repetitions determines the number of repetitions required by the user equipment 02 to transmit data.
  • the network side device 01 can obtain the number of repetitions by the repetition number acquisition unit 11.
  • the RTT acquiring unit 12 in the network side device 01 may determine the round trip time RTT of the hybrid automatic repeat request HARQ according to the preset maximum number of repetitions and the preset minimum number of processes; the maximum number of repetitions is not less than that of the network side device 01.
  • the network side device 01 can determine the maximum number of repetitions according to the number of repetitions of all the user devices 02 within its management range.
  • the network side device 01 receives the number of repetitions sent by each user equipment 02, and then uses the maximum value of the number of repetitions of each user equipment 02 as the maximum number of repetitions.
  • the number of processes for transmitting data frames/subframes is also considered; in the embodiment of the present invention, all subframes or frames having the same process number in one RTT are referred to as one process, one RTT.
  • the number of process IDs that can be included is the number of processes in the RTT.
  • the number of processes is inversely proportional to the number of repetitions. That is, the more the number of repetitions, the fewer the number of processes. Conversely, the fewer the number of processes, the fewer the number of processes. more.
  • the length of the RTT can also accommodate the number of repetitions required by the user equipment with the largest path loss to make the user equipment The purpose of achieving the set coverage capability.
  • the length of the RTT of the HARQ may be determined by the RTT determining unit 12; optionally, the RTT determining unit 12 may include an RTT determining mechanism, and the RTT determining mechanism is preset.
  • the maximum number of repetitions is 32
  • the maximum number of processes obtaining unit 22 is configured to obtain the maximum number of processes that the user equipment can include in the round-trip time RTT of the hybrid automatic repeat request HARQ, where the RTT is determined by the RTT acquiring unit 12 according to the preset maximum number of repetitions and the preset Determined by the minimum number of processes, the maximum number of repetitions is not less than the network side
  • the maximum number of repetitions required for the user equipment to transmit data within the management range of the device, and the minimum number of processes is the minimum number of processes accommodated in the RTT;
  • the user equipment 02 can know the maximum number of processes of the user by the maximum number of processes obtaining unit 22.
  • the maximum number of processes of each user equipment is calculated because the minimum number of processes is satisfied.
  • the user equipment with the largest path loss is determined by the maximum number of repetitions. If each user equipment uses the minimum number of processes to transmit data, it will obviously reduce the data transmission efficiency of the user equipment with relatively small path loss.
  • each user equipment can calculate the maximum number of processes that can be included in each RTT of each user according to the required number of repetitions, thereby satisfying the requirements of each user equipment.
  • the number of processes is increased as much as possible, so that the transmission efficiency of data transmitted by each user equipment can be improved.
  • the maximum number of processes in the embodiment of the present invention may be obtained by the maximum process number receiving module included in the maximum process number obtaining unit 22, that is, the network measuring device calculates the maximum number of processes for a certain user equipment.
  • the user equipment receives the maximum number of processes sent from the network side device by using the maximum number of processes, or alternatively, the maximum number of processes included in each user device by the maximum number of processes.
  • the calculation module calculates the maximum number of processes generated.
  • maximum number of processes RTT / (number of repetitions * 10 ms)
  • the data transmission unit 23 is configured to transmit data to the network side device in the RRT according to the maximum number of processes.
  • the data transmission unit 23 can use the maximum number of processes as the number of processes that can be included in each RTT, and repeats the processes according to their required repetition times. To build a complete RRT, which in turn can transfer data to the network side device.
  • the first frame number acquiring unit is further configured to: after receiving the feedback message, acquire the first frame of the sent data frame corresponding to the feedback message according to the preset frame timing relationship.
  • the feedback information (ACK/NACK) is used to indicate the subsequent data transmission behavior of the user equipment.
  • the user equipment receives the feedback information and the feedback information is ACK, the network side device has correctly received the data. Subsequent data; when the feedback information is NACK, it indicates that the network side device does not correctly receive the data (that is, the receiving end decodes the error), and needs to resend the data that failed to be transmitted.
  • the first frame number acquiring unit in the embodiment of the present invention can obtain the first frame number of the transmitted data frame corresponding to the feedback message according to the preset frame timing relationship, thereby To determine the sent data corresponding to the feedback information.
  • the first frame number acquiring unit may obtain the first frame number of the sent data frame corresponding to the feedback message by:
  • the first frame number of the transmitted data frame the first frame number of the feedback message - the number of repetitions - 2.
  • the transmission time of the transmitted data frame, the data processing time, and the feedback need to be calculated.
  • Information feedback time the first frame number of the data frame that the user equipment has sent.
  • the first frame number of the corresponding transmitted data may be deduced by the first frame number of the feedback message, that is, the transmitted data is sent.
  • the first frame number of the frame the first frame number of the feedback message - the number of repetitions - 2.
  • the retransmission unit is further configured to: when the feedback message corresponding to the first frame number of the transmitted data frame is a NACK, resend the first of the sent data frames in the preset retransmission position.
  • the retransmitted unit needs to retransmit the sent data corresponding to the feedback message.
  • the data that needs to be retransmitted needs to be preset. Transmitting location, ie, resending the first of the transmitted data frames at the preset retransmission location.
  • the preset retransmission position includes:
  • the number of repetitions is 8 and the number of processes is 2, or when the RTT length is 80 ms, the number of repetitions is 4, and the number of processes is 2, or when the RTT length is 40 ms, the number of repetitions is 2 and the process is
  • the uplink HARQ is a synchronous transmission mechanism.
  • the user equipment receives the feedback message NACK, the data can only be retransmitted on the 0th process of the next RTT
  • the retransmission RTT number the RTT number +1 corresponding to the transmitted data frame.
  • the determination of the preset retransmission position can be as follows:
  • the wireless data transmission method in the embodiment of the present invention can be applied to wireless data transmission of an M2M service; since the M2M service is relatively insensitive to data delay, a long delay can be tolerated, so It can receive RTT with a long set time.
  • the position of the user equipment in most M2M is relatively fixed, so the path loss is also stable, so the calculated number of repetitions can not be frequent due to the change of the position of the user equipment. Variety.
  • FIG. 7 is a schematic structural diagram of a network side device according to an embodiment of the present invention.
  • the network side device may be used to perform the wireless data transmission method in the first embodiment, where the network side device 700 includes a memory 701 and a receiver 702, and a processor 703 connected to the memory 701 and the receiver 702, respectively, the memory 701 is configured to store a set of program instructions, and the processor 703 is configured to invoke a program stored in the memory 701.
  • the instruction performs the following operations:
  • the maximum number of repetitions is not less than that of the user equipment in the management scope of the network side device
  • the maximum number of repetitions; the minimum number of processes is the minimum number of processes accommodated in the RTT; the duration of the RTT is used to determine the RTT of the user equipment together with the number of repetitions of the user equipment
  • the processor 703 may be a central processing unit (CPU), and the memory 701 may be an internal memory of a random access memory (RAM) type, and the receiver 702 may be The physical interface may be an Ethernet interface or an Asynchronous Transfer Mode (ATM) interface.
  • the processor 703, the receiver 702, and the memory 701 may be integrated into one or more independent circuits or hardware, such as an Application Specific Integrated Circuit (ASIC).
  • ASIC Application Specific Integrated Circuit
  • FIG. 8 is a schematic structural diagram of hardware of a user equipment according to an embodiment of the present invention.
  • the user equipment may be used to perform the wireless data transmission method in Embodiment 1
  • the user equipment 800 includes a memory 801, a receiver 802, and a transmitter 803, and the memory 801, the receiver 802, and the
  • the processor 804 is connected to the processor 804.
  • the memory 801 is configured to store a set of program instructions.
  • the processor 804 is configured to invoke the program instructions stored in the memory 801 to perform the following operations:
  • the RTT is the preset maximum number of repetitions and the preset minimum number of processes by the network side device Determining, the maximum number of repetitions is not less than a maximum value of the number of repetitions required by the user equipment to transmit data within the management range of the network side device, and the minimum number of processes is the minimum process capacity in the RTT; the RTT The duration is used to determine the maximum number of processes that can be included in the RTT of the user equipment together with the number of repetitions of the user equipment;
  • the transmitter 803 is triggered to transmit data to the network side device in the RRT according to the maximum number of processes.
  • the processor 804 may be a central processing unit (CPU), and the memory 801 may be an internal memory of a random access memory (RAM) type, the receiver 802 and The transmitter 803 may include a common physical interface, and the physical interface may be an Ethernet interface or an Asynchronous Transfer Mode (ATM) interface.
  • the processor 804, the transmitter 803, the receiver 802, and the memory 801 may be integrated into one or more independent circuits or hardware, such as an Application Specific Integrated Circuit (ASIC).
  • ASIC Application Specific Integrated Circuit
  • Embodiment 5 of a wireless data transmission method in an embodiment of the present invention is shown.
  • the network side device acquires the number of repetitions required for data transmission of each user equipment in the management scope.
  • the number of repetitions required for each user equipment to transmit data is the number of repetitions of the TTI required for each user equipment to obtain a larger coverage.
  • the user equipment sends the number of repetitions to the network side device, so that the network side device acquires each user equipment in the management scope. The number of repetitions required for data transfer.
  • the network side device may include multiple base stations for implementing interaction with communication data of the user equipment within the management scope.
  • the geographical location of each user equipment in the management scope is different, for example, the distance between each user equipment and the network side device is different, and/or the obstacle in the transmission path between the user equipment and the network side device
  • Different things make the path loss of each user equipment different.
  • the number of repetitions required when sending data is different; by setting the path loss level and The correspondence of the number of repetitions can obtain the number of repetitions required by the user equipment in each case of the path loss in each level when the predetermined coverage capability is reached.
  • the corresponding number of repetitions can be obtained by acquiring the path loss parameter of the user equipment.
  • the signal strength of each user equipment is not necessarily the same, when determining the number of repetitions, the signal strength of the user equipment may be graded as a parameter for calculation. Specifically, the signal level is high, indicating that the signal strength is high. In the case of a user equipment with a high signal level, the number of repetitions required by the user equipment is lower than that of the user equipment with a low signal level.
  • the network side device determines, according to the obtained repetition quantity information of the user equipment, the process number information of the user equipment, and the transmission time interval TTI, the round trip time RTT of the user equipment.
  • the RTT can be set as needed, so that the length of the RTT can be adjusted within the range allowed by the delay.
  • the number of repetitions required by the user terminal can be known by the number of repetitions of a certain user terminal. In this way, under the premise of satisfying the requirement of the number of repetitions of the user terminal, the coverage capability of each user terminal can be determined.
  • the range allowed by the delay is The length of the RTT can be adjusted within the length of the RTT.
  • the number of repetitions required by the user terminal can be known by the number of repetitions of a certain user terminal, so that the user terminal can be customized for each user terminal. Coverage capability, including as few processes as possible in each RTT. In this way, not only can the probability of successful data decoding be effectively improved, but also the purpose of effectively improving the coverage capability of user equipment in wireless communication can be achieved.
  • the user equipment can also adjust the number of processes of the HARQ according to the number of repetitions required by the current user equipment itself, thereby reducing the time of data transmission while ensuring full use of resources. Delay, thereby improving communication efficiency.
  • determining the RTT of the user equipment according to the obtained repetition quantity information of the user equipment, the process number information, and the transmission time interval TTI which may include:
  • the number of processes of the user equipment is preset; the RTT of the user equipment is determined according to the number of repetitions of the user equipment, the number of processes, and the TTI calculation.
  • the length of the RTT of the user equipment may be set according to the number of processes that can be included in each RTT, specifically:
  • the different repetition times N correspond to a process number K
  • the current user terminal determines the length of the HARQ RTT according to N and K, wherein the number of repetitions N can be determined by the user terminal according to the user terminal.
  • the coverage level is determined, and the number of processes K can be sent by the network side device to the user terminal.
  • N1 represents the number of repetitions of the user equipment E-DPCCH
  • N2 represents the number of repetitions of the user equipment E-DPDCH
  • padding represents the number of filled frames
  • padding> 0.
  • C in FIG. 11 and FIG. 12 represents an E-DPCCH channel
  • D represents an E-DPDCH channel
  • numbers 0, 1 and the like represent process numbers
  • shaded portions indicate padding
  • padding portions are not transmitted as padding frames.
  • the number of repetitions of the E-DPCCH of each user terminal is N1
  • the number of repetitions of the E-DPDCH is N2
  • the number of processes is K
  • the user equipment acquires a round-trip time RTT of the user equipment in the HARQ, where the RTT is determined by the network side device according to the obtained repetition quantity information of the user equipment, and the process number information of the user equipment and the transmission time interval TTI;
  • step S102 the network side device determines the round trip time RTT of the user equipment in the HARQ, and can set the number of processes for the user equipment.
  • the user equipment In order to determine the data format of the wireless data transmission, the user equipment needs to obtain the RTT and the number of processes corresponding to the user equipment. .
  • the user equipment transmits data to the network side device in the RRT according to the number of repetitions.
  • each user equipment can use the number of processes set by the network side device as the number of processes that can be included in each RTT, and repeat the processes according to their required repetition times. To build a complete RRT, which in turn can transfer data to the network side device.
  • the user equipment After receiving the feedback message, the user equipment acquires a first frame number of the sent data frame corresponding to the feedback message according to a preset frame timing relationship.
  • the specific manner of obtaining the first frame number of the sent data frame corresponding to the feedback message is different according to different application scenarios, specifically:
  • the user equipment After receiving the feedback message, the user equipment acquires the first of the transmitted data frames corresponding to the feedback message according to the preset frame timing relationship.
  • the E-DPDCH and E-DPCCH of the HARQ process are requested.
  • the frame timing relationship used may include the following two situations: :
  • the frame timing relationship may be: the first frame of the transmitted data frame.
  • the E-DPDCH the first frame number of the feedback message - the number of repetitions - 2; that is, if the HARQ process sends the E-DPCCH first, then the E-DPDCH is sent: the frame number of the E-HICH starting to send the feedback message (ACK/NACK) is SFN#i, then, the starting frame number of the E-DPDCH associated with it should be SFN#(i-N2-padding-2), that is, the E-DPDCH frame number is SFN#(i-N2-padding-2)
  • the location starts to transmit data and is repeatedly transmitted N2 times. After receiving all the data and solving an ACK/NACK, the network side device starts to send a feedback message at the position of the E-HICH frame number SFN#i.
  • the frame timing relationship may be:
  • the first frame number of the transmitted data frame the first frame number of the feedback message - N1 - N2 - padding - 2; that is, if the HARQ process sends the E-DPDCH first, then the E-DPCCH: then, the frame number SFN#i
  • the E-DPDCH frame number associated with the EHICH is SFN#(i-N1-N2-padding-2).
  • the method may further include the following steps:
  • the wireless data transmission method in the embodiment of the present invention can be applied to wireless data transmission of an M2M service; since the M2M service is relatively insensitive to data delay, a long delay can be tolerated, so It can receive RTT with a long set time.
  • the position of the user equipment in most M2M is relatively fixed, so the path loss is also stable, so the calculated number of repetitions can not be frequent due to the change of the position of the user equipment. Variety.
  • the specific step of determining the RTT of the user equipment may be:
  • the specific method for determining the maximum number of processes may be determining the maximum number of processes that can be included in the RTT of the user equipment according to the duration of the RTT and the number of repetitions of the user equipment.
  • the specific steps of determining the RTT of the user equipment and the specific manner of determining the maximum number of processes may refer to the content described in Embodiment 1, and details are not described herein again.
  • a wireless data transmission system in another aspect of the embodiment of the present invention, a wireless data transmission system, the network side device 01 and the user equipment 02 of the wireless data transmission system in this embodiment, and the wireless data transmission method in the first and fifth embodiments are provided.
  • the network side device and the user device operate in the same manner and principle, and play a similar role.
  • the wireless data transmission system includes a network side device 01 and a user device 02, wherein the network side
  • the device 01 includes a repetition number acquisition unit 101 and an RTT determination unit 102.
  • the user equipment 02 includes a repetition number transmission unit 201, an RTT reception unit 202, and a data transmission unit 203, as shown in FIG.
  • the repetition number sending unit 201 of the user equipment 02 is configured to send the number of repetitions required for data transmission to the network side device 01;
  • the path loss parameter acquisition module may be implemented by using the path loss parameter acquisition module, and the path loss parameter of the user equipment 02 may be obtained according to the preset.
  • the correspondence between the path loss level and the number of repetitions determines the number of repetitions required by the user equipment 02 to transmit data.
  • the network side device 01 can obtain the number of repetitions by the repetition number acquisition unit 101.
  • the RTT determining unit 103 in the network side device 01 can be configured to determine the round trip time RTT of the user equipment 02 according to the repetition quantity information of the user equipment 02, and the process number information of the user equipment 02 and the transmission time interval TTI;
  • the RTT can be set as needed, so that the length of the RTT can be adjusted within the range allowed by the delay.
  • the number of repetitions required by the user terminal can be known by the number of repetitions of a certain user terminal. In this way, under the premise of satisfying the requirement of the number of repetitions of the user terminal, it is possible to include as few processes as possible in each RTT for the coverage capability of each user terminal. In this way, not only can the probability of successful data decoding be effectively improved, but the user in wireless communication can be effectively improved. The purpose of equipment coverage.
  • the user equipment can also adjust the number of processes of the HARQ according to the number of repetitions required by the current user equipment itself, thereby reducing the time of data transmission while ensuring full use of resources. Delay, thereby improving communication efficiency.
  • the RTT determining unit 103 in the embodiment of the present invention may specifically include a process number setting module 131 and an RTT calculation module 132, where the process number setting module 131 is configured to preset the number of processes of the user equipment 02; The module 132 is configured to determine the RTT of the user equipment 02 according to the number of repetitions of the user equipment 02, the number of processes, and the TTI calculation.
  • the network side device 01 sets the number of processes that each user terminal 02 can include in each RTT, and calculates the length of the RTT of the user equipment 02 by using the RTT determining module 103. :
  • the different repetition times N correspond to a process number K
  • the RTT determination module 103 determines the length of the HARQ RTT according to N and K, wherein the repetition number N can be determined by the user terminal.
  • the process number K is determined by the network side device 01 and is sent to the user terminal 02 by the network side device 01.
  • N1 represents the number of repetitions of the user equipment E-DPCCH
  • N2 represents the number of repetitions of the user equipment E-DPDCH
  • padding represents the number of filled frames
  • padding> 0.
  • C in FIG. 11 and FIG. 12 represents an E-DPCCH channel
  • D represents an E-DPDCH channel
  • numbers 0, 1 and the like represent process numbers
  • shaded portions indicate padding
  • padding portions are not transmitted as padding frames.
  • the number of repetitions of the E-DPCCH of each user terminal is N1
  • the number of repetitions of the E-DPDCH is N2
  • the number of processes is K
  • the RTT receiving unit 22 obtains the round-trip time RTT of the user equipment in the HARQ, where the RTT is determined by the network-side device according to the acquired number-of-times information of the user equipment, and the number-of-process information of the user equipment and the transmission time interval TTI;
  • the network side device 01 determines the round trip time RTT of the user equipment 02 at the HARQ, and can set the number of processes for the user equipment 02.
  • the RTT receiving unit 22 can obtain the RTT corresponding to the user equipment 02. The number of processes.
  • the data transmission unit 23 transmits data to the network side device within the RRT according to the number of repetitions.
  • the data transmission unit 23 can use the number of processes set by the network side device 01 as the number of processes that can be included in each RTT, and repeat the processes according to their required repetition times. Set to build a complete RRT, which in turn can transfer data to the network side device 01.
  • the user equipment 02 in the embodiment of the present invention may further include a first frame number acquiring unit (not shown) of the transmitted data frame, where the first frame number acquiring unit of the transmitted data frame is used to receive After the message is fed back, the first frame number of the transmitted data frame corresponding to the feedback message is obtained according to a preset frame timing relationship;
  • the specific manner of obtaining the first frame number of the sent data frame corresponding to the feedback message is different according to different application scenarios, specifically:
  • the user equipment After receiving the feedback message, the user equipment acquires the first frame number acquisition unit of the data frame according to the preset frame timing relationship.
  • the E-DPDCH and the E-DPCCH of the HARQ process are sent in a time division manner.
  • the first frame number acquiring unit of the transmitted data frame is configured according to the preset frame timing.
  • the frame timing relationship used may specifically include the following two situations:
  • the frame timing relationship may be: the first frame of the transmitted data frame.
  • the E-DPDCH the first frame number of the feedback message - the number of repetitions - 2; that is, if the HARQ process sends the E-DPCCH first, then the E-DPDCH is sent: the frame number of the E-HICH starting to send the feedback message (ACK/NACK) is SFN#i, then, the starting frame number of the E-DPDCH associated with it should be SFN#(i-N2-padding-2), that is, the E-DPDCH frame number is SFN#(i-N2-padding-2)
  • the location starts to transmit data and is repeatedly transmitted N2 times. After receiving all the data and solving an ACK/NACK, the network side device starts to send a feedback message at the position of the E-HICH frame number SFN#i.
  • the frame timing relationship may be:
  • the first frame number of the transmitted data frame the first frame number of the feedback message - N1 - N2 - padding - 2; that is, if the HARQ process sends the E-DPDCH first, then the E-DPCCH: then, the frame number SFN#i
  • the E-DPDCH frame number associated with the EHICH is SFN#(i-N1-N2-padding-2).
  • the user terminal 02 may further include a process data retransmission unit (not shown), where the process data retransmission unit is configured to correspond to the first frame number of the transmitted data frame.
  • the process data retransmission unit is configured to correspond to the first frame number of the transmitted data frame.
  • the feedback message is NACK
  • the process data corresponding to the first frame number of the transmitted data frame is resent in the corresponding process location in the RTT period of the next HARQ.
  • the wireless data transmission system in the embodiment of the present invention can be applied to wireless data transmission of an M2M service; since the M2M service is relatively insensitive to data delay, a long delay can be tolerated, so Receive RTT with a longer set duration, in addition, most M2M
  • M2M service is relatively insensitive to data delay, a long delay can be tolerated, so Receive RTT with a longer set duration, in addition, most M2M
  • the location of the user equipment is relatively fixed, so the path loss is also relatively stable, so that the calculated number of repetitions may not change frequently due to the change of the location of the user equipment.
  • the RTT determining unit 103 may specifically include an RTT acquiring unit 12 as shown in FIG. 3, and the RTT acquiring unit 12 is configured to preset a minimum number of repetitions according to a preset maximum number of repetitions. And a transmission time interval TTI, determining a round trip time RTT of the hybrid automatic repeat request HARQ; the maximum number of repetitions is not less than a maximum value of the number of repetitions required for user equipment data transmission within a management range of the network side device; The number of processes is the minimum number of processes in the RTT; the duration of the RTT is used to determine the maximum number of processes that can be included in the RTT of the user equipment together with the number of repetitions of the user equipment.
  • the specific working principle of the RTT acquiring unit 12 may refer to the content of the wireless data transmission system described in the second embodiment, and details are not described herein again.
  • FIG. 16 is a schematic diagram of a hardware structure of a network side device according to an embodiment of the present invention.
  • the network side device may be used to perform the wireless data transmission method in Embodiment 1 and Embodiment 5, where the network side device 1600 A memory 1601 and a receiver 602, and a processor 1603 respectively connected to the memory 1601 and the receiver 1602, the memory 1601 is configured to store a set of program instructions, and the processor 1603 is configured to call the memory
  • the 1601 stored program instructions perform the following operations:
  • the round trip time RTT of the user equipment is determined according to the obtained number of times of repetition of the user equipment, and the number of processes of the user equipment and the transmission time interval TTI.
  • the processor 1603 may be a central processing unit (CPU), and the memory 1601 may be an internal memory of a random access memory (RAM) type, and the receiver 1602 may
  • the physical interface may be an Ethernet interface or an Asynchronous Transfer Mode (ATM) interface.
  • the processor 1603, the receiver 1602, and the memory 1601 may be integrated into one or more independent circuits or hardware, such as an Application Specific Integrated Circuit (ASIC).
  • ASIC Application Specific Integrated Circuit
  • FIG. 17 is a schematic diagram of a hardware structure of a user equipment, where the user equipment may be used to perform the wireless data transmission method in Embodiment 1 and Embodiment 5.
  • the user equipment 1700 includes a memory. 1701, a receiver 1702 and a transmitter 1703, and a processor 1704 connected to the memory 1701, the receiver 1702, and the transmitter 1703, respectively, the memory 1701 for storing a set of program instructions, the processing
  • the program 1704 is configured to invoke the program instructions stored by the memory 1701 to perform the following operations:
  • a round-trip time RTT for obtaining the hybrid automatic repeat request (HARQ) of the user equipment where the RTT is information that the network side device obtains the number of times of repetition of the user equipment, and the process of the user equipment Number information and transmission time interval TTI determined;
  • the transmitter 170 is triggered to transmit data to the network side device within the RRT according to the repetition number.
  • the processor 1704 may be a central processing unit (CPU), and the memory 1701 may be an internal memory of a random access memory (RAM) type, the receiver 1702 and The transmitter 1703 may include a common physical interface, and the physical interface may be an Ethernet interface or an Asynchronous Transfer Mode (ATM) interface.
  • the processor 1704, the transmitter 1703, the receiver 1702, and the memory 1701 may be integrated into one or more independent circuits or hardware, such as an Application Specific Integrated Circuit (ASIC).
  • ASIC Application Specific Integrated Circuit
  • each embodiment in the present specification is described in a progressive manner, and the same similar parts between the various embodiments may be referred to each other, and each embodiment focuses on other embodiments.
  • the description is relatively simple, and the relevant parts can be referred to the description of the method embodiment.
  • the apparatus and system embodiments described above are merely illustrative, wherein the units illustrated as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, ie may be located A place, or it can be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those of ordinary skill in the art can understand and implement without any creative effort.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Quality & Reliability (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本发明实施例公开了无线数据传输的方法,包括:获取管理范围内各用户设备数据传输所需的重复次数;根据获取的所述用户设备的重复次数信息,以及,所述用户设备的进程数信息和传输时间间隔TTI确定所述用户设备的往返时间RTT。由于在本发明实施例中RTT可以根据需要来设定,所以在时延允许的范围内可以调节RTT的长度,此外,通过某一用户终端的重复次数信息可以得知该用户终端需要的重复次数,这样,在满足用户终端重复次数需求的前提下,就可以针对每个用户终端的覆盖能力,在每个RTT中包括有尽量少的进程数。这样,不但可以有效的提高数据解码成功的概率,达到有效提高无线通信中用户设备覆盖能力的目的。

Description

无线数据传输的方法、网络侧设备、用户设备和系统
本申请要求于2014年12月18日提交中国国家知识产权局、申请号为PCT/CN2014/094209、发明名称为“无线数据传输的方法、网络侧设备、用户设备和系统”的PCT专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线通信领域,特别是涉及无线数据传输的方法、网络侧设备、用户设备和系统。
背景技术
在无线通信领域中,通过重传数据可以提高数据传输的可靠性;其中,数据的重传机制包括混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)技术,HARQ技术的工作方式一般为:
用户设备(User Equipment,UE)根据增强型专用物理数据信道/增强型专用物理控制信道(Enhanced Dedicated Physical Data Channel/Enhanced Dedicated Physical Control Channel,E-DPDCH/E-DPCCH)所采用传输时间间隔(Transmission Time Interval,TTI)的不同,确定每帧数据中HARQ的进程数量,比如,如E-DPDCH/E-DPCCH采用10ms的TTI,那么HARQ进程数为4;若E-DPDCH/E-DPCCH采用2ms的TTI,那么HARQ进程数为8;
用户设备按照准许的数据速率发送数据。
用户设备监测E-DCH激活的激活集内所有小区发来的E-DCH混合ARQ指示信道(E-DCH hybrid ARQ indicator channel,E-HICH);如果有任何小区给出明确的确认(ACK),则用户设备将处理新的数据,否则就启动重传,以再次传输原数据。
为了提高数据的信噪比,以提升上行覆盖能力,现有技术中,包括有TTI绑定(TTI bundling)技术;在TTI绑定技术中,将上行的多个连续TTI进行绑定,从而可以每次发送重复了设定次数相同的数据,从而提高用户设备正确接收数据的机率,进而达到提升上行覆盖能力的目的。
发明人经过研究发现,现有技术中通过TTI绑定技术提升覆盖能力的技术方案中,对于路损较大的用户设备,覆盖能力的提升效果有限,从而影响用户设备的通信质量。
发明内容
本发明实施例所提供的无线数据传输方法、网络侧设备、用户设备和系统,可以提高无线通信终端的覆盖能力。
第一方面提供了一种无线数据传输方法,包括:
获取管理范围内各用户设备数据传输所需的重复次数;
根据获取的所述用户设备的重复次数信息,以及,所述用户设备的进程数信息和传输时间间隔TTI确定所述用户设备的往返时间RTT。
在第一方面的第一种可能的实现方式中,所述根据获取的所述用户设备的重复次数信息、进程数信息和传输时间间隔TTI确定所述用户设备的RTT,包括:
预设所述用户设备的进程数;
根据所述用户设备的重复次数、进程数和TTI计算确定所述用户设备的RTT。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,当混合自动重传请求HARQ进程的增强型专用物理数据信道E-DPDCH和增强型专用物理控制信道E-DPCCH采用同时发送的方式发送时,所述根据所述用户设备的重复次数、进程数和TTI计算确定所述用户设备的RTT,包括:
RTT=重复次数*进程数*TTI。
结合第一方面的第一种可能的实现方式,在第一方面的第三种可能的实现方式中,当HARQ进程的E-DPDCH和E-DPCCH采用时分方式发送时,所述根据所述用户设备的重复次数、进程数和TTI计算确定所述用户设备的RTT,包括:
RTT=(N1+N2+padding)*进程数*TTI;
其中,所述N1表示用户设备E-DPCCH的重复次数,所述N2表示用户设备 E-DPDCH的重复次数,所述padding表示填充帧数,所述padding>=0。
在第一方面的第四种可能的实现方式中,所述根据获取的所述用户设备的重复次数信息、进程数信息和传输时间间隔TTI确定所述用户设备的RTT,包括:
根据预设的最大重复次数、预设的最小进程数和TTI,确定HARQ的RTT;所述最大重复次数不小于网络侧设备的管理范围内用户设备的所述重复次数中的最大值;所述最小进程数为所述RTT内最小的进程容纳数量。
结合第一方面的第四种可能的实现方式,在第一方面的第五种可能的实现方式中,包括:
根据所述RTT的时长和所述用户设备的所述重复次数确定所述用户设备的RTT中所能包括的最大进程数。
结合第一方面的第四种可能的实现方式,在第一方面的第六种可能的实现方式中,所述最大重复次数为网络侧设备的管理范围内所有用户设备数据传输所需的重复次数中的最大值。
结合第一方面的第四种可能的实现方式,在第一方面的第七种可能的实现方式中,所述用户设备数据传输所需的重复次数为:
所述网络侧设备根据所述用户设备的路径损耗参数确定的重复次数。
结合第一方面的第四种可能的实现方式,在第一方面的第八种可能的实现方式中,当数据传输的TTI为10ms的TTI时,所述根据最大重复次数和预设的最小进程数确定HARQ的RTT,包括:
RTT=最小进程数*最大重复次数*10ms。
结合第一方面的第四种可能的实现方式,在第一方面的第九种可能的实现方式中,当数据传输的TTI为10ms的TTI时,所述根据每个用户设备数据传输所需的重复次数和所述RTT的时长,确定各所述用户设备的每个RTT中所能包括的最大进程数,包括:
最大进程数=RTT/(重复次数*10ms)。
第二方面提供了一种无线数据传输方法,包括:
用户设备向网络侧设备发送数据传输所需的重复次数;
所述用户设备获取所述用户设备在混合自动重传请求HARQ的往返时间 RTT,其中,所述RTT是所述网络侧设备根据获取的所述用户设备的重复次数信息,以及,所述用户设备的进程数信息和传输时间间隔TTI确定的;
所述用户设备根据所述重复次数在所述RRT内向所述网络侧设备传输数据。
在第二方面的第一种可能的实现方式中,还包括:所述用户设备在接收到反馈消息后,根据预设的帧定时关系获取与所述反馈消息对应的已发送数据帧的首帧号;
当混合自动重传请求HARQ进程的增强型专用物理数据信道E-DPDCH和增强型专用物理控制信道E-DPCCH采用同时发送的方式发送时,所述帧定时关系包括:已发送数据帧的首帧号=反馈消息的首帧号—重复次数—2;
当HARQ进程的E-DPDCH和E-DPCCH采用时分方式发送,且信道发送顺序为先发送E-DPCCH再发送E-DPDCH时,所述帧定时关系包括:
已发送数据帧的首帧号=反馈消息的首帧号—N2—padding—2;
当HARQ进程的E-DPDCH和E-DPCCH采用时分方式发送,且信道发送顺序为先发送E-DPDCH再发送E-DPCCH时,所述帧定时关系包括:
已发送数据帧的首帧号=反馈消息的首帧号—N1—N2—padding—2;
其中,所述N1表示用户设备E-DPCCH的重复次数,所述N2表示用户设备E-DPDCH的重复次数,所述padding表示填充帧数,所述padding>=0。
在第二方面的第二种可能的实现方式中,还包括:
当已发送数据帧的首帧号所对应反馈消息为NACK时,在下一HARQ的RTT周期内对应的进程位置重新发送已发送数据帧的首帧号所对应的进程数据。
在第二方面的第三种可能的实现方式中,还包括:
所述用户设备获取所述用户设备在求HARQ的RTT内所能包括的最大进程数,其中,所述RTT是所述网络侧设备根据预设的最大重复次数和预设的最小进程数确定的,所述最大重复次数不小于网络侧设备的管理范围内用户设备发送数据所需的重复次数中的最大值,所述最小进程数为所述RTT内最小的进程容纳数量;所述RTT的时长用于与所述用户设备的所述重复次数共同确定所述用户设备的RTT中所能包括的最大进程数所述用户设备根据所述重复次数 在所述RRT内向所述网络侧设备传输数据,包括:
所述用户设备根据所述最大进程数在所述RRT内向所述网络侧设备传输数据。
结合第二方面的第三种可能的实现方式,在第二方面的第四种可能的实现方式中,获取所述最大进程数,包括:
所述用户设备获取发送自所述网络侧设备的所述最大进程数,或,
所述用户设备计算生成所述最大进程数。
结合第二方面的第三种可能的实现方式,在第二方面的第五种可能的实现方式中,所述最大重复次数为网络侧设备的管理范围内所有用户设备数据传输所需的重复次数中的最大值。
结合第二方面的第三种可能的实现方式,在第二方面的第六种可能的实现方式中,所述用户设备包括:
路损参数获取模块,用于根据所述用户设备的路径损耗参数确定的重复次数。
结合第二方面的第三种可能的实现方式,在第二方面的第七种可能的实现方式中,当数据传输的TTI为10ms的TTI时,所述根据最大重复次数和预设的最小进程数确定HARQ的RTT,包括:
RTT=最小进程数*最大重复次数*10ms。
结合第二方面的第三种可能的实现方式,在第二方面的第八种可能的实现方式中,当数据传输的TTI为10ms的TTI时,所述根据每个用户设备数据传输所需的重复次数和所述RTT的时长,确定各所述用户设备的每个RTT中所能包括的最大进程数,包括:
最大进程数=RTT/(重复次数*10ms)。
结合第二方面的第三种可能的实现方式,在第二方面的第九种可能的实现方式中,还包括:
所述用户设备在接收到反馈消息后,根据预设的帧定时关系获取与所述反馈消息对应的已发送数据帧的首帧号;
所述帧定时关系包括:已发送数据帧的首帧号=反馈消息的首帧号—重复次数—2。
结合第二方面的第就种可能的实现方式,在第二方面的第十种可能的实现方式中,还包括:
当所述已发送数据帧的首帧号所对应所述反馈消息为NACK时,在预设重传位置重新发送所述已发送数据帧的首帧号所对应的进程数据;
所述预设重传位置包括:
当所述RTT长度为160ms,重复次数为8且所述进程数为2时,或,当所述RTT长度为80ms,重复次数为4且所述进程数为2时,或,当所述RTT长度为40ms,重复次数为2且所述进程数为2时,预设重传位置为:
重传RTT号=已发送数据帧所对应的RTT号+2。
结合第二方面,以及,第二方面的第一种至第十种中任一可能的实现方式,在第二方面的第十一种可能的实现方式中,所述无线数据传输方法应用于机器对机器M2M业务的无线数据传输。
第三方面提供了一种网络侧设备,包括:
重复次数获取单元,用于获取管理范围内各用户设备数据传输所需的重复次数;
RTT确定单元,用于根据获取的所述用户设备的重复次数信息,以及,所述用户设备的进程数信息和传输时间间隔TTI确定所述用户设备的往返时间RTT。
在第三方面的第一种可能的实现方式中,所述RTT确定单元,包括:
进程数设定模块,用于预设所述用户设备的进程数;
RTT计算模块,用于根据所述用户设备的重复次数、进程数和TTI计算确定所述用户设备的RTT。
在第三方面的第二种可能的实现方式中,当混合自动重传请求HARQ进程的增强型专用物理数据信道E-DPDCH和增强型专用物理控制信道E-DPCCH采用同时发送的方式发送时,所述RTT确定模块计算确定所述用户设备的RTT的公式包括:
RTT=重复次数*进程数*TTI。
在第三方面的第三种可能的实现方式中,当HARQ进程的E-DPDCH和E-DPCCH采用时分方式发送时,所述RTT确定模块计算确定所述用户设备的 RTT的公式包括:
RTT=(N1+N2+padding)*进程数*TTI;
其中,所述N1表示用户设备E-DPCCH的重复次数,所述N2表示用户设备E-DPDCH的重复次数,所述padding表示填充帧数,所述padding>=0。
在第三方面的第四种可能的实现方式中,所述RTT确定单元包括:RTT获取单元,用于根据预设的最大重复次数、预设的最小进程数和传输时间间隔TTI,确定混合自动重传请求HARQ的往返时间RTT;所述最大重复次数不小于网络侧设备的管理范围内用户设备数据传输所需的重复次数中的最大值;所述最小进程数为所述RTT内最小的进程容纳数量;所述RTT的时长用于与所述用户设备的所述重复次数共同确定所述用户设备的RTT中所能包括的最大进程数。
在第三方面的第五种可能的实现方式中,所述最大重复次数为网络侧设备的管理范围内所有用户设备数据传输所需的重复次数中的最大值。
在第三方面的第六种可能的实现方式中,所述用户设备数据传输所需的重复次数为:
所述网络侧设备根据所述用户设备的路径损耗参数确定的重复次数。
在第三方面的第七种可能的实现方式中,当数据传输的TTI为10ms的TTI时,所述根据最大重复次数和预设的最小进程数确定HARQ的RTT,包括:
RTT=最小进程数*最大重复次数*10ms。
在第三方面的第八种可能的实现方式中,当数据传输的TTI为10ms的TTI时,所述根据每个用户设备数据传输所需的重复次数和所述RTT的时长,确定各所述用户设备的每个RTT中所能包括的最大进程数,包括:
最大进程数=RTT/(重复次数*10ms)。
第四方面提供了一种用户设备,包括:
重复次数发送单元,用于用户设备向网络侧设备发送数据传输所需的重复次数;
RTT接收单元,用于获取所述用户设备在混合自动重传请求HARQ的往返时间RTT,其中,所述RTT是所述网络侧设备根据获取的所述用户设备的重复次数信息,以及,所述用户设备的进程数信息和传输时间间隔TTI确定的;
数据传输单元,用于根据所述重复次数在所述RRT内向所述网络侧设备传输数据。
在第四方面的第一种可能的实现方式中,还包括:
已发送数据帧的首帧号获取单元,用于在接收到反馈消息后,根据预设的帧定时关系获取与所述反馈消息对应的已发送数据帧的首帧号;
当混合自动重传请求HARQ进程的增强型专用物理数据信道E-DPDCH和增强型专用物理控制信道E-DPCCH采用同时发送的方式发送时,所述帧定时关系包括:已发送数据帧的首帧号=反馈消息的首帧号—重复次数—2;
当混合自动重传请求HARQ进程的E-DPDCH和E-DPCCH采用时分方式发送,且信道发送顺序为先发送E-DPCCH再发送E-DPDCH时,所述帧定时关系包括:
已发送数据帧的首帧号=反馈消息的首帧号—N2—padding—2;
当混合自动重传请求HARQ进程的E-DPDCH和E-DPCCH采用时分方式发送,且且信道发送顺序为先发送E-DPDCH再发送E-DPCCH时,所述帧定时关系包括:
已发送数据帧的首帧号=反馈消息的首帧号—N1—N2—padding—2;
其中,所述N1表示用户设备E-DPCCH的重复次数,所述N2表示用户设备E-DPDCH的重复次数,所述padding表示填充帧数,所述padding>=0。
在第四方面的第二种可能的实现方式中,还包括:
进程数据重发单元,用于当已发送数据帧的首帧号所对应反馈消息为NACK时,在下一HARQ的RTT周期内对应的进程位置重新发送已发送数据帧的首帧号所对应的进程数据。
在第四方面的第三种可能的实现方式中,还包括:
最大进程数获取单元,用于获取所述用户设备在混合自动重传请求HARQ的往返时间RTT内所能包括的最大进程数,其中,所述RTT是所述网络侧设备根据预设的最大重复次数和预设的最小进程数确定的,所述最大重复次数不小于网络侧设备的管理范围内用户设备发送数据所需的重复次数中的最大值,所述最小进程数为所述RTT内最小的进程容纳数量;所述RTT的时长用于与所述用户设备的所述重复次数共同确定所述用户设备的RTT中所能包括的最大进 程数;
所述数据传输单元,用于根据所述最大进程数在所述RRT内向所述网络侧设备传输数据。
结合第四方面的第三种可能的实现方式,在第四方面的第四种可能的实现方式中,所述重复次数发送单元包括:
路损参数获取模块,用于根据所述用户设备的路径损耗参数确定重复次数。
结合第四方面的第三种可能的实现方式,在第四方面的第五种可能的实现方式中,所述最大进程数获取单元,包括:
最大进程数接收模块,用于接收发送自所述网络侧设备的所述最大进程数;或,
最大进程数计算模块,用于计算生成所述最大进程数。
结合第四方面的第三种可能的实现方式,在第四方面的第六种可能的实现方式中,所述最大重复次数为网络侧设备的管理范围内所有用户设备数据传输所需的重复次数中的最大值。
结合第四方面的第三种可能的实现方式,在第四方面的第七种可能的实现方式中,所述用户设备数据传输所需的重复次数为:
所述网络侧设备根据所述用户设备的路径损耗参数确定的重复次数。
结合第四方面的第三种可能的实现方式,在第四方面的第八种可能的实现方式中,当数据传输的TTI为10ms的TTI时,所述根据最大重复次数和预设的最小进程数确定HARQ的RTT,包括:
RTT=最小进程数*最大重复次数*10ms。
结合第四方面的第三种可能的实现方式,在第四方面的第九种可能的实现方式中,当数据传输的TTI为10ms的TTI时,所述根据每个用户设备数据传输所需的重复次数和所述RTT的时长,确定各所述用户设备的每个RTT中所能包括的最大进程数,包括:
最大进程数=RTT/(重复次数*10ms)。
结合第四方面的第三种可能的实现方式,在第四方面的第十种可能的实现方式中,还包括:
首帧号获取单元,用于在接收到反馈消息后,根据预设的帧定时关系获取与所述反馈消息对应的已发送数据帧的首帧号;
所述帧定时关系包括:已发送数据帧的首帧号=反馈消息的首帧号—重复次数—2。
结合第四方面的第三种可能的实现方式,在第四方面的第十一种可能的实现方式中,还包括:
重传单元,用于当所述已发送数据帧的首帧号所对应所述反馈消息为NACK时,在预设重传位置重新发送所述已发送数据帧的首帧号所对应的进程数据;
所述预设重传位置包括:
当所述RTT长度为160ms,重复次数为8且所述进程数为2时,或,当所述RTT长度为80ms,重复次数为4且所述进程数为2时,或,当所述RTT长度为40ms,重复次数为2且所述进程数为2时,预设重传位置为:
重传RTT号=已发送数据帧所对应的RTT号+2。
结合第四方面,以及,第四方面的第一种至第十一种中任一可能的实现方式,在第四方面的第十二种可能的实现方式中,所述用户设备应用于机器对机器M2M业务的无线数据传输。第五方面提供了一种无线数据传输系统,包括网络侧设备和用户设备;
所述网络侧设备为如第三方面,或,第三方面的第一种至第八种中任一可能的实现方式中的网络侧设备;
所述用户设备为如第四方面,或,第四方面的第一种至第十二种中任一可能的实现方式中的用户设备。
由于在本发明实施例中RTT可以根据需要来设定,所以在时延允许的范围内可以调节RTT的长度,此外,通过某一用户终端的重复次数信息可以得知该用户终端需要的重复次数,这样,在满足用户终端重复次数需求的前提下,就可以针对每个用户终端的覆盖能力,在每个RTT中包括有尽量少的进程数。这样,不但可以有效的提高数据解码成功的概率,达到有效提高无线通信中用户设备覆盖能力的目的。此外,由于在本发明实施例中,用户设备还可以根据当前用户设备自身所需的重复次数来调整HARQ的进程数量,从而还可以在保证 保证充分利用资源的前提下,降低了数据传输的时延,从而提高通信效率。
在本发明实施例,还可以首先预设了时长能够满足网络侧设备的管理范围内所有用户设备数据传输所需的重复次数的RTT,然后根据每个用户设备数据传输所需的重复次数的不同,在满足用户设备数据传输所需的重复次数的前提下,在每个RTT中尽量多的容纳多个不同的进程(即,多个具有不同进程号的进程)。由于通过本发明实施例,每个用户设备根据自身的路径损耗等覆盖信息所确定当前所需重复次数,即为可以满足该用户设备进行数据传输的重复次数,所以可以有效的提高数据解码成功的概率,从而达到有效提高无线通信中用户设备覆盖能力的目的。
此外,由于在本发明实施例中,用户设备还可以根据当前用户设备自身所需的重复次数来调整HARQ的进程数量,从而还可以在保证无线通信中用户设备的覆盖能力的前提下,充分的利用了上行信道的码资源。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例中无线数据传输方法的步骤图;
图2为本发明实施例中无线数据传输方法的又一步骤图;
图3为本发明实施例中无线数据传输方法的又一步骤图;
图4为本发明实施例中无线数据传输的系统的结构示意图;
图5为本发明实施例中无线数据传输的网络侧设备的结构示意图;
图6为本发明实施例中无线数据传输的用户设备的结构示意图;
图7为本发明实施例中无线数据传输的网络侧设备的硬件结构示意图;
图8为本发明实施例中无线数据传输的用户设备的硬件结构示意图;
图9为本发明实施例中无线数据传输方法的又一步骤图;
图10为本发明实施例中无线数据传输方法对于不同覆盖能力的用户设备的进程设置示意图;
图11为本发明实施例中无线数据传输方法对于不同场景下的进程设置示意图;
图12为本发明实施例中无线数据传输方法对于不同场景下的又一进程设置示意图;
图13为本发明实施例中无线数据传输的系统的又一结构示意图;
图14为本发明实施例中无线数据传输的网络侧设备的又一结构示意图;
图15为本发明实施例中无线数据传输的用户设备的又一结构示意图;
图16为本发明实施例中无线数据传输的网络侧设备的又一硬件结构示意图;
图17为本发明实施例中无线数据传输的用户设备的又一硬件结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本方法方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
可选的,本发明实施例中的无线数据传输方法适用于全球移动通讯(Global System of Mobile communication,GSM)系统或者通用移动通信系统(Universal Mobile Telecommunications System,UMTS)或者长期演进(Long Term Evolution,LTE)系统。可选的,本发明实施例中的无线数据传输方法适用于对于时延要求不高的应用场景,比如,可以是应用于机器对机器(Machine to Machine,M2M)业务的场景。
发明人经过长期的研究发现,虽然现有技术中已有TTI bundling(TTI绑定)技术通过在一个RTT(Round trip time,往返时间)中绑定多个内容相同的重复TTI(Transmission Time Interva,传输时间间隔),可以在一定程度上提高无线通信中用户设备的覆盖能力,但是,由于现有技术的RTT长度有限,所以所能绑定的重复TTI数量有限,从而限制了用户设备的覆盖能力的进一步提高。在本发明的实施例中,覆盖能力是指基站和用户设备之间能够正常通信的距离范 围。
基于上述研究中的发现,本发明实施例的主要思想包括:以无线通信中用户设备对于重复TTI数量的需求为依据,来设计RTT的时长,从而使每个RTT中的重复TTI数量可以满足无线通信中用户设备的需求,进而达到提到覆盖能力的目的。
下面结合附图,通过实施例来详细说明本发明中的无线数据传输方法和系统。
实施例一
参见图1,示出了本发明实施例中无线数据传输方法实施例1的步骤图。
S11、网络侧设备获取管理范围内各用户设备数据传输所需的重复次数;
在本发明的各实施例中,每个用户设备发送数据所需的重复次数即为每个用户设备能够获得较大的覆盖范围所需的TTI的重复次数。可选的,可以是用户设备在确定了自身数据传输所需的重复次数后,将重复次数发送至网络侧设备。
在申请日为2014年9月4号,申请号为PCT/CN2014/085932的PCT申请中,提供了一种获取用户设备发送数据所需的重复次数的技术方案,记载了如何获得用户设备发送数据所需的重复次数的具体技术方案。其中重点记载了如何通过各用户设备的路径损耗参数确定每个用户设备发送数据所需的重复次数。
可选的,网络侧设备可以包括多个基站,用于实现与管理范围内的用户设备的通讯数据的交互。
由于在该管理范围内的各个用户设备的地理位置不同,比如,每个用户设备与该网络侧设备之间的距离不同,和/或,该用户设备与网络侧设备之间传输路径中的障碍物不同,使得每个用户设备的路损也有所不同,这样,也就使得每个用户设备达到设定的覆盖能力时,发送数据时需要的重复次数也不一样;通过设定路损等级与重复次数的对应关系,可以获得每个等级的路损情况下的用户设备在达到预定的覆盖能力时分别所需的重复次数。
一般的,在有了路损等级与重复次数的对应关系的情况下,通过获取用户设备的路损参数,即可得到相应的重复次数。
可选的,由于每个用户设备的信号强度不一定相同,在确定重复次数时, 也可以将用户设备的信号强度分级来作为进行计算的参数,具体的,在信号等级高代表着信号强度高的情况下,信号等级高的用户设备所需的重复次数要小于信号等级低的用户设备。
由于重复次数的具体计算方式本领域技术人员还可以根据实际需要采用其他不同的方式,或是通过实验来得出,所以在此并不做具体限定。本申请以路损与重复次数的对应关系进行举例说明。
S12、根据预设的最大重复次数、预设的最小进程数和TTI,确定混合自动重传请求HARQ的往返时间RTT;最大重复次数不小于网络侧设备的管理范围内用户设备数据传输所需的重复次数中的最大值;最小进程数为RTT内最小的进程容纳数量;
网络侧设备的管理范围内每个用户设备发送数据所需的重复次数,只代表者每个用户设备自身所需的重复次数,在确定统一的HARQ的RTT时,由于在所有的用户设备中,需要重复次数最多的用户设备其路损最大,所以,当以使路损最大的用户设备达到预设的覆盖能力为标准时,就需要根据重复次数中的最大值来设定RTT;即,将最大重复次数设置为不小于网络侧设备的管理范围内所有用户设备发送数据所需的重复次数中的最大值,从而保证满足每个用户设备所需的重复次数。可选的,以网络侧设备的管理范围内所有用户设备发送数据所需的重复次数中的最大值作为最大重复次数。
可选的,网络侧设备接收用户设备所发送的重复次数,然后将用户设备发送数据所需的重复次数中的最大值作为最大重复次数。
此外,在设定RTT时,还要考虑到发送数据帧/子帧的进程数量。可选的,一个RTT会包括多个不同进程号的进程,每个进程由子帧或帧重复设定次数后构成。该设定次数具即为重复次数。以一个RTT的构成:“0000 1111 2222 3333 4444”为例,其中,每个数字代表一个子帧或帧,每个子帧或帧重复4次后构成一个进程,实例中的RTT的进程数为5(0,1,2,3,4,共计5个)。
在本发明实施例中,将在一个RTT中具有相同进程号的所有子帧或帧称为一个进程,一个RTT中所能包括的进程号的数量即为RTT中的进程数量,在相同长度的RTT中,进程数量与重复次数成反比,即重复次数越多进程数量越少,相反的,重复次数越少进程数越多。
这样,通过设定RTT中最小进程数量,从而在保证每个RTT中可以容纳一定进程数量的同时,使RTT的长度还可以容纳路损最大的用户设备所需的重复次数,来使该用户设备达到设定的覆盖能力的目的。
在确定了最大重复次数和最小进程数后,就可以根据TTI的不同,来确定HARQ的RTT的长度。可选的,为了路损最大的用户设备达到设定的覆盖能力,当TTI为10ms的TTI时,HARQ的RTT的长度就可以设定为:RTT=最小进程数*最大重复次数*10ms。比如,当最小进程数为2、最大重复次数为32时,RTT=2*32*10ms=640ms;或者,当最小进程数为4、最大重复次数为4时,RTT=4*4*10ms=160ms;以此类推,从而可以得到HARQ的RTT的长度。
S13、根据用户设备数据传输所需的重复次数和RTT的时长,确定用户设备的每个RTT中所能包括的最大进程数。
在得到了HARQ的RTT的长度后,网络侧设备可以根据每个用户设备自身的所需重复次数,来确定该用户设备发送数据时每个RTT中所能包括的最大进程数。之所以要计算每个用户设备的最大进程数,是因为最小进程数是依据满足路损最大的用户设备达到最大重复次数来确定的,如果每个用户设备都采用最小进程数来发送数据,显然将会使路损相对较小的用户设备的带宽得不到有效的利用,数据传输效率。
基于以上原因,在本发明实施例中,根据所需的重复次数的不同,网络侧设备可以计算每个用户设备的每个RTT中所能包括的最大进程数,从而在满足每个用户设备所需的重复次数的同时,尽量的加大进程数量,从而可以充分的利用每个用户设备的带宽,提高数据的传输效率。
此外,可选的,每个用户设备的每个RTT中所能包括的最大进程数,还可以通过用户设备自身的计算生成而获得。
还是以当TTI为10ms的TTI时为例,在确定各用户设备的每个RTT中所能包括的最多的进程数时,一般的方式可以为:最大进程数=RTT/(重复次数*10ms),比如,当RTT为640ms、重复次数为8时,最大进程数=640ms/(8*10ms)=8,即,最大进程数为8。
在本步骤中,网络侧设备可以在分别获取到各个用户设备的重复次数后,来设定RTT,并指示各个用户设备以各自的最大进程数来发送数据。
可选的,网络侧设备也可以将得到的HARQ的RTT的长度发送给用户设备。每个用户设备根据自身的所需重复次数,来确定该用户设备发送数据时每个RTT中所能包括的最大进程数。
S14、用户设备根据最大进程数在RRT内向网络侧设备传输数据;
每个用户设备在获得了自身的最大进程数后,就可以以最大进程数为每个RTT中所能包括进程数,并将这些进程按照自身的所需重复次数进行重复设定,来构建一个完整的RRT,进而可以向网络侧设备传输数据。
可选的,在本发明实施例中,还可以包括有以下的步骤:
S15、用户设备在接收到反馈消息后,根据预设的帧定时关系获取与反馈消息对应的已发送数据帧的首帧号;
帧定时关系包括:已发送数据帧的首帧号=反馈消息的首帧号—重复次数—2。
由于HARQ技术中,会包括有重复发送数据的几率,需要网络侧设备下发反馈信息(ACK/NACK)来指示用户设备后续的数据发送行为,用户设备端在接收到反馈信息后,当反馈信息为ACK时,说明网络侧设备已经正确的接收到数据,此时可以继续发送后续的数据;当反馈信息为NACK时,说明网络侧设备没有正确的接收到数据(即,接收端译码错误),需要将发送失败的数据重新发送。
为此,用户设备在接收到反馈信息后,还需要根据预设的帧定时关系获取与反馈消息对应的已发送数据帧的首帧号,从而来确定反馈信息所对应的已发送数据。
可选的,可以通过以下的方式来获取与反馈消息对应的已发送数据帧的首帧号:
已发送数据帧的首帧号=反馈消息的首帧号—重复次数—2。具体的,由于反馈消息是后置于发送数据帧的,所以通过反馈消息的首帧号反推已发送数据帧的首帧号时,需要计算已发送数据帧的发送时间,数据处理时间和反馈信息的反馈时间。这样以用户设备已发送数据帧的首帧号为开始,在发送重复次数的进程子帧后完成数据帧的发送,然后在加上2个子帧的反馈消息的反馈时间,从而可以得出用户设备收到已发送数据相应反馈的反馈消息的帧号。以已发送 数据帧的首帧号为0008、重复次数为8为例,收到的反馈消息的首帧号就应该为0008+8+2=0018。在获知了上述反馈消息的首帧号与已发送数据的首帧号之间的关系后,即可由反馈消息的首帧号反推出与其对应的已发送数据的首帧号,即,已发送数据帧的首帧号=反馈消息的首帧号—重复次数—2。
可选的,在本发明实施例中,还可以包括步骤:
S16、当已发送数据帧的首帧号所对应反馈消息为NACK时,在预设重传位置重新发送已发送数据帧的首帧号所对应的进程数据;
预设重传位置包括:当RTT长度为160ms,重复次数为8且进程数为2时,或,当RTT长度为80ms,重复次数为4且进程数为2时,或,当RTT长度为40ms,重复次数为2且进程数为2时,预设重传位置为:重传RTT号=已发送数据帧所对应的RTT号+2。
当用户设备收到的反馈消息其内容为NACK时,需要将该反馈消息所对应的已发送数据重传,为了避免数据的误传,还需要为需要重发的数据预设重传位置,即,需要在预设重传位置重新发送所述已发送数据帧的首帧号所对应的数据,具体的,
在TTI为10ms的情况下,预设重传位置包括:
当RTT长度为160ms,重复次数为8且进程数为2时,或,当RTT长度为80ms,重复次数为4且进程数为2时,或,当RTT长度为40ms,重复次数为2且进程数为2时,预设重传位置为:重传RTT号=已发送数据帧所对应的RTT号+2。
上行的HARQ是一个同步传输机制,(比如,某一数据在第0号进程发送,用户设备收到反馈消息NACK时,该数据只能在下一个RTT的第0个进程上重传),用户设备在下一个RTT的进程之前未收到反馈消息,则需要再延后一个RTT进行重传或新传,即,重传RTT号=已发送数据帧所对应的RTT号+2,除去上述几种情况,一般只需要在已发送数据帧所对应的RTT号的后续一个RTT号进行数据帧的重发即可,即,重传RTT号=已发送数据帧所对应的RTT号+1。
具体的,预设重传位置的确定可以如下表所示:
Figure PCTCN2015080288-appb-000001
Figure PCTCN2015080288-appb-000002
在实际应用中,本发明实施例中的无线数据传输方法,可以应用于M2M业务的无线数据传输;由于M2M业务中,对于数据的延时相对不敏感,可以容忍较长的时延,所以,可以接收设定时长较长的RTT,此外,大多数的M2M中的用户设备位置相对比较固定,所以路损也比较稳定,这样计算得出的重复次数可以不会由于用户设备的位置变化而频繁变化。
在本发明实施例中,当以网络侧设备为执行主体时,无线数据传输方法的具体步骤可以如图2所示,包括步骤:
S21、获取管理范围内各用户设备用户设备数据传输所需的重复次数;
S22、根据预设的最大重复次数、预设的最小进程数和传输时间间隔TTI,确定混合自动重传请求HARQ的往返时间RTT;所述最大重复次数不小于网络侧设备的管理范围内用户设备的所述重复次数中的最大值;所述最小进程数为所述RTT内最小的进程容纳数量;所述RTT的时长用于与所述用户设备的所述重复次数共同确定所述用户设备的RTT中所能包括的最大进程数。
上述各步骤中,网络侧设备的具体运作原理与作用的解释已经在步骤S11至S16中详细记载,在此就不再赘述。
类似的,在本发明实施例中,当以用户设备为执行主体时,无线数据传输方法的具体步骤可以如图3所示,包括步骤:
S31、用户设备向网络侧设备发送数据传输所需的重复次数;
S32、所述用户设备获取所述用户设备在混合自动重传请求HARQ的往返时间RTT内所能包括的最大进程数,其中,所述RTT是所述网络侧设备根据预设的最大重复次数和预设的最小进程数确定的,所述最大重复次数不小于网络侧设备的管理范围内用户设备发送数据所需的重复次数中的最大值,所述最小进程数为所述RTT内最小的进程容纳数量;所述RTT的时长用于与所述用户设备的所述重复次数共同确定所述用户设备的RTT中所能包括的最大进程数;
S33、所述用户设备根据所述最大进程数在所述RRT内向所述网络侧设备传输数据。
同样,上述各步骤中,用户设备的具体运作原理与作用的解释也已经在步骤S11至S16中详细记载,在此就不再赘述。
实施例二
在本发明实施例中另一面,还提供了一种无线数据传输系统,本实施例中的无线数据传输系统的网络侧设备和用户设备,与实施例一中无线数据传输方法中的网络侧设备和用户设备的运作方式和原理相对应,所起到的作用也类似;具体的,如图4所示,无线数据传输系统包括网络侧设备01和用户设备02,其中,网络侧设备01如图5所示,包括重复次数获取单元11和RTT获取单元12,用户设备02如图6所示,包括重复次数发送单元21、最大进程数获取单元22和数据传输单元23,具体的:
用户设备02的重复次数发送单元21,用于向网络侧设备发送数据传输所需的重复次数;
可选的,为了确定各用户设备02的发送数据所需的重复次数,具体可以通过路损参数获取模块来实现,通过路损参数获取模块获取用户设备02的路径损耗参数后,可以根据预设的路损等级与重复次数的对应关系,来确定用户设备02发送数据所需的重复次数。
各个用户设备02通过重复次数发送单元21向网络侧设备01发送各用户设备02自身的重复次数后,网络侧设备01可以通过重复次数获取单元11获取到该重复次数。
网络侧设备01中的RTT获取单元12,可以根据预设的最大重复次数和预设的最小进程数,来确定混合自动重传请求HARQ的往返时间RTT;最大重复次数不小于网络侧设备01的管理范围内用户设备02数据传输所需的重复次数中的最大值;最小进程数为RTT内最小的进程容纳数量;RTT的时长用于与用户设备02的重复次数共同确定用户设备02的RTT中所能包括的最大进程数。
网络侧设备01可以根据其管理范围内所有用户设备02的重复次数来确定最大重复次数。可选的,网络侧设备01接收各个用户设备02所发送的重复次数,然后将各用户设备02的重复次数中的最大值作为最大重复次数。
在设定RTT时,还要考虑到发送数据帧/子帧的进程数量;在本发明实施例中,将在一个RTT中具有相同进程号的所有子帧或帧称为一个进程,一个RTT中所能包括的进程号的数量即为RTT中的进程数量,在相同长度的RTT中,进程数量与重复次数成反比,即重复次数越多进程数量越少,相反的,重复次数越少进程数越多。
这样,通过设定RTT中最小进程数量,从而在保证每个RTT中可以容纳一定进程数量的同时,使RTT的长度还可以容纳路损最大的用户设备所需的重复次数,来使该用户设备达到设定的覆盖能力的目的。
在确定了最大重复次数和最小进程数后,就可以通过RTT确定单元12来确定HARQ的RTT的长度了;可选的,RTT确定单元12可以包括有RTT确定机制,RTT确定机制为预设的计算公式,当TTI为10ms的TTI时,RTT确定机制就可以为:RTT=最小进程数*最大重复次数*10ms。比如,当最小进程数为2、最大重复次数为32时,RTT=2*32*10ms=640ms;或者,当最小进程数为4、最大重复次数为4时,RTT=4*4*10ms=160ms;以此类推,从而可以得到HARQ的RTT的长度。
最大进程数获取单元22,用于获取用户设备在混合自动重传请求HARQ的往返时间RTT内所能包括的最大进程数,其中,RTT是由RTT获取单元12根据预设的最大重复次数和预设的最小进程数确定的,最大重复次数不小于网络侧 设备的管理范围内用户设备发送数据所需的重复次数中的最大值,最小进程数为RTT内最小的进程容纳数量;
在得到了HARQ的RTT的长度后,用户设备02通过最大进程数获取单元22可以得知自身的最大进程数,之所以要计算每个用户设备的最大进程数,是因为最小进程数是依据满足路损最大的用户设备达到最大重复次数来确定的,如果每个用户设备都采用最小进程数来发送数据,显然将会降低路损相对较小的用户设备的数据传输效率。
基于以上原因,在本发明实施例中,根据所需的重复次数的不同,每个用户设备可以计算得到自身每个RTT中所能包括的最大进程数,从而在满足每个用户设备所需的重复次数的同时,尽量的加大进程数量,从而可以提高每个用户设备发送数据的传输效率。
可选的,本发明实施例中的最大进程数可以通过最大进程数获取单元22中所包括的最大进程数接收模块来得到,即,在网络测设备在为某一用户设备计算生成最大进程数后,该用户设备通过最大进程数接收模块接收发送自网络侧设备的所最大进程数;或者,可选的,还可以是各个用户设备通过自身最大进程数获取单元22中所包括的最大进程数计算模块来计算生成最大进程数。
还是以当TTI为10ms的TTI时为例,在确定各用户设备的每个RTT中所能包括的最多的进程数时,一般的可以通过公式:最大进程数=RTT/(重复次数*10ms)来确定最大进程数,比如,当RTT为640ms、重复次数为8时,最大进程数=640ms/(8*10ms)=8,即,最大进程数为8。
数据传输单元23,用于根据最大进程数在RRT内向网络侧设备传输数据。
每个用户设备在获得了自身的最大进程数后,数据传输单元23就可以以最大进程数为每个RTT中所能包括的进程数,并将这些进程按照自身的所需重复次数进行重复设定,来构建一个完整的RRT,进而可以向网络侧设备传输数据。
可选的,在本发明实施例中,还可以包括有首帧号获取单元,用于在接收到反馈消息后,根据预设的帧定时关系获取与反馈消息对应的已发送数据帧的首帧号;其中,帧定时关系可以包括:已发送数据帧的首帧号=反馈消息的首帧号—重复次数—2。
由于HARQ技术中,会包括有重复发送数据的几率,需要网络侧设备下发 反馈信息(ACK/NACK)来指示用户设备后续的数据发送行为,用户设备端在接收到反馈信息后,当反馈信息为ACK时,说明网络侧设备已经正确的接收到数据,此时可以继续发送后续的数据;当反馈信息为NACK时,说明网络侧设备没有正确的接收到数据(即,接收端译码错误),需要将发送失败的数据重新发送。
为此,在用户设备在接收到反馈信息后,可以通过本发明实施例中的首帧号获取单元,根据预设的帧定时关系获取与反馈消息对应的已发送数据帧的首帧号,从而来确定反馈信息所对应的已发送数据。
可选的,首帧号获取单元可以通过以下的方式来获取与反馈消息对应的已发送数据帧的首帧号:
已发送数据帧的首帧号=反馈消息的首帧号—重复次数—2。具体的,由于反馈消息是后置于发送数据帧的,所以通过反馈消息的首帧号反推已发送数据帧的首帧号时,需要计算已发送数据帧的发送时间,数据处理时间和反馈信息的反馈时间。这样以用户设备已发送数据帧的首帧号为开始,在发送重复次数的进程子帧后完成数据帧的发送,然后在加上2个子帧的反馈消息的反馈时间,从而可以得出用户设备收到已发送数据相应反馈的反馈消息的帧号。以已发送数据帧的首帧号为0008、重复次数为8为例,收到的反馈消息的首帧号就应该为0008+8+2=0018。在获知了上述反馈消息的首帧号与已发送数据的首帧号之间的关系后,即可由反馈消息的首帧号反推出与其对应的已发送数据的首帧号,即,已发送数据帧的首帧号=反馈消息的首帧号—重复次数—2。
可选的,在本发明实施例中,还可以重传单元,用于当已发送数据帧的首帧号所对应反馈消息为NACK时,在预设重传位置重新发送已发送数据帧的首帧号所对应的进程数据;其中,预设重传位置可以包括:当RTT长度为160ms,重复次数为8且进程数为2时,或,当RTT长度为80ms,重复次数为4且进程数为2时,或,当RTT长度为40ms,重复次数为2且进程数为2时,预设重传位置为:重传RTT号=已发送数据帧所对应的RTT号+2。
当用户设备收到的反馈消息其内容为NACK时,需要通过重传单元将该反馈消息所对应的已发送数据重传,为了避免数据的误传,还需要为需要重发的数据预设重传位置,即,需要在预设重传位置重新发送所述已发送数据帧的首 帧号所对应的数据,具体的,
在TTI为10ms的情况下,预设重传位置包括:
当RTT长度为160ms,重复次数为8且进程数为2时,或,当RTT长度为80ms,重复次数为4且进程数为2时,或,当RTT长度为40ms,重复次数为2且进程数为2时,预设重传位置为:重传RTT号=已发送数据帧所对应的RTT号+2。
上行的HARQ是一个同步传输机制,(比如,某一数据在第0号进程发送,用户设备收到反馈消息NACK时,该数据只能在下一个RTT的第0个进程上重传),用户设备在下一个RTT的进程之前未收到反馈消息,则需要再延后一个RTT进行重传或新传,即,重传RTT号=已发送数据帧所对应的RTT号+2,除去上述几种情况,一般只需要在已发送数据帧所对应的RTT号的后续一个RTT号进行数据帧的重发即可,即,重传RTT号=已发送数据帧所对应的RTT号+1。
具体的,预设重传位置的确定可以如下表所示:
Figure PCTCN2015080288-appb-000003
Figure PCTCN2015080288-appb-000004
在实际应用中,本发明实施例中的无线数据传输方法,可以应用于M2M业务的无线数据传输;由于M2M业务中,对于数据的延时相对不敏感,可以容忍较长的时延,所以,可以接收设定时长较长的RTT,此外,大多数的M2M中的用户设备位置相对比较固定,所以路损也比较稳定,这样计算得出的重复次数可以不会由于用户设备的位置变化而频繁变化。
实施例三
参阅图7,图7为本发明实施例提供的一种网络侧设备硬件结构示意图,该网络侧设备可以用于执行实施例一中的无线数据传输方法,所述网络侧设备700包括存储器701和接收器702,以及分别与所述存储器701和所述接收器702连接的处理器703,所述存储器701用于存储一组程序指令,所述处理器703用于调用所述存储器701存储的程序指令执行如下操作:
触发所述接收器702获取管理范围内各用户设备数据传输所需的重复次数;
根据预设的最大重复次数、预设的最小进程数和传输时间间隔TTI,确定混合自动重传请求HARQ的往返时间RTT;所述最大重复次数不小于网络侧设备的管理范围内用户设备的所述重复次数中的最大值;所述最小进程数为所述RTT内最小的进程容纳数量;所述RTT的时长用于与所述用户设备的所述重复次数共同确定所述用户设备的RTT中所能包括的最大进程数。
可选地,所述处理器703可以为中央处理器(Central Processing Unit,CPU),所述存储器701可以为随机存取存储器(Random Access Memory,RAM)类型的内部存储器,所述接收器702可以包含普通物理接口,所述物理接口可以为以太(Ethernet)接口或异步传输模式(Asynchronous Transfer Mode,ATM)接口。所述处理器703、接收器702和存储器701可以集成为一个或多个独立的电路或硬件,如:专用集成电路(Application Specific Integrated Circuit,ASIC)。
实施例四
参阅图8,图8为本发明实施例提供的一种用户设备的硬件结构示意图, 该用户设备可以用于执行实施例一中的无线数据传输方法,所述用户设备800包括存储器801、接收器802和发送器803,以及分别与所述存储器801、所述接收器802和所述发送器803连接的处理器804,所述存储器801用于存储一组程序指令,所述处理器804用于调用所述存储器801存储的程序指令执行如下操作:
触发所述接收器802向网络侧设备发送数据传输所需的重复次数;
获取所述用户设备在混合自动重传请求HARQ的往返时间RTT内所能包括的最大进程数,其中,所述RTT是所述网络侧设备根据预设的最大重复次数和预设的最小进程数确定的,所述最大重复次数不小于网络侧设备的管理范围内用户设备发送数据所需的重复次数中的最大值,所述最小进程数为所述RTT内最小的进程容纳数量;所述RTT的时长用于与所述用户设备的所述重复次数共同确定所述用户设备的RTT中所能包括的最大进程数;
触发所述发送器803根据所述最大进程数在所述RRT内向所述网络侧设备传输数据。
可选地,所述处理器804可以为中央处理器(Central Processing Unit,CPU),所述存储器801可以为随机存取存储器(Random Access Memory,RAM)类型的内部存储器,所述接收器802和所述发送器803可以包含普通物理接口,所述物理接口可以为以太(Ethernet)接口或异步传输模式(Asynchronous Transfer Mode,ATM)接口。所述处理器804、发送器803、接收器802和存储器801可以集成为一个或多个独立的电路或硬件,如:专用集成电路(Application Specific Integrated Circuit,ASIC)。
实施例五
参见图9,示出了本发明实施例中无线数据传输方法实施例5的步骤图。
S101、网络侧设备获取管理范围内各用户设备数据传输所需的重复次数;
在本发明的各实施例中,每个用户设备发送数据所需的重复次数即为每个用户设备能够获得较大的覆盖范围所需的TTI的重复次数。可选的,可以是网络侧设备管理范围内的各用户设备在确定了自身数据传输所需的重复次数后,将重复次数发送至网络侧设备,从而使网络侧设备获取管理范围内各用户设备 数据传输所需的重复次数。
在申请日为2014年9月4号,申请号为PCT/CN2014/085932的PCT申请中,提供了一种获取用户设备发送数据所需的重复次数的技术方案,记载了如何获得用户设备发送数据所需的重复次数的具体技术方案。其中重点记载了如何通过各用户设备的路径损耗参数确定每个用户设备发送数据所需的重复次数。
可选的,网络侧设备可以包括多个基站,用于实现与管理范围内的用户设备的通讯数据的交互。
由于在该管理范围内的各个用户设备的地理位置不同,比如,每个用户设备与该网络侧设备之间的距离不同,和/或,该用户设备与网络侧设备之间传输路径中的障碍物不同,使得每个用户设备的路损也有所不同,这样,也就使得每个用户设备达到设定的覆盖能力时,发送数据时需要的重复次数也不一样;通过设定路损等级与重复次数的对应关系,可以获得每个等级的路损情况下的用户设备在达到预定的覆盖能力时分别所需的重复次数。
一般的,在有了路损等级与重复次数的对应关系的情况下,通过获取用户设备的路损参数,即可得到相应的重复次数。
可选的,由于每个用户设备的信号强度不一定相同,在确定重复次数时,也可以将用户设备的信号强度分级来作为进行计算的参数,具体的,在信号等级高代表着信号强度高的情况下,信号等级高的用户设备所需的重复次数要小于信号等级低的用户设备。
由于重复次数的具体计算方式本领域技术人员还可以根据实际需要采用其他不同的方式,或是通过实验来得出,所以在此并不做具体限定。本申请以路损与重复次数的对应关系进行举例说明。
S102、网络侧设备根据获取的用户设备的重复次数信息,以及,用户设备的进程数信息和传输时间间隔TTI确定所述用户设备的往返时间RTT。
由于在本发明实施例中RTT可以根据需要来设定,所以在时延允许的范围内可以调节RTT的长度,此外,通过某一用户终端的重复次数信息可以得知该用户终端需要的重复次数,这样,在满足用户终端重复次数需求的前提下,就可以针对每个用户终端的覆盖能力,
由于在本发明实施例中RTT可以根据需要来设定,所以在时延允许的范围 内可以调节RTT的长度,此外,通过某一用户终端的重复次数信息可以得知该用户终端需要的重复次数,这样,在满足用户终端重复次数需求的前提下,就可以针对每个用户终端的覆盖能力,在每个RTT中包括有尽量少的进程数。这样,不但可以有效的提高数据解码成功的概率,达到有效提高无线通信中用户设备覆盖能力的目的。此外,由于在本发明实施例中,用户设备还可以根据当前用户设备自身所需的重复次数来调整HARQ的进程数量,从而还可以在保证保证充分利用资源的前提下,降低了数据传输的时延,从而提高通信效率。
可选的,在本发明实施例中,根据获取的用户设备的重复次数信息、进程数信息和传输时间间隔TTI确定所述用户设备的RTT,具体可以包括:
预设用户设备的进程数;根据用户设备的重复次数、进程数和TTI计算确定用户设备的RTT。
本发明实施例中可以根据希望在每个RTT所能包括的进程数的数量为目标,来设定用户设备的RTT的长度,具体的:
本发明实施例的应用场景之一,即,当HARQ进程的E-DPDCH和E-DPCCH采用同时发送的方式发送时,在确定用户设备的RTT,可以根据RTT=重复次数*进程数*TTI,这一公式来计算,即RTT等于重复次数和进程数和TTI的乘积;以TTI为10ms为例,假如用户终端所需的重复次数为8,预设定的进程数为4,那么,RTT=8*4*10ms=320ms。
为了保证用户终端能够在下一个HARQ周期重传或初传,不同的重复次数N对应一个进程数K,当前用户终端根据N和K来确定HARQ RTT的长度,其中重复次数N可以由用户终端根据自己的覆盖等级来确定,进程数K则可以由网络侧设备下发给该用户终端。
参考图10,在实际应用中,以TTI为10ms为例,当第一用户终端的覆盖能力很好,只需发送1次即,重复次数为1,那么当进程数K设置为K=4时,RTT=4*1*10=40ms;当第二用户终端的覆盖稍差,重复次数为2,那么当进程数K设置为K=4时,RTT=4*2*10=80ms;当第三用户终端的重复次数为4,那么进程数K可以设置为2,RTT=2*4*10=80ms;当第四用户终端的重复次数为8,那么进程数K可以设置为2,RTT=2*8*10=160ms。
在本发明实施例的另一应用场景中,当HARQ进程的E-DPDCH和 E-DPCCH采用时分方式发送时,在确定用户设备的RTT,可以根据RTT=(N1+N2+padding)*进程数*TTI这一公式来计算;
其中,N1表示用户设备E-DPCCH的重复次数,N2表示用户设备E-DPDCH的重复次数,padding表示填充帧数,且padding>=0。
参考图11和图12,图11和图12中的C表示E-DPCCH信道,D表示E-DPDCH信道,数字0,1等表示进程号,阴影部分表示padding,作为填充帧数padding部分不传任何内容,padding的数目需要大于或等于0(即padding>=0)。每个用户终端的E-DPCCH的重复次数为N1,E-DPDCH的重复次数为N2,进程数为K,RTT=(N1+N2+padding)*K*10ms;padding>=0。
S103、用户设备获取用户设备在HARQ的往返时间RTT,其中,RTT是网络侧设备根据获取的用户设备的重复次数信息,以及,用户设备的进程数信息和传输时间间隔TTI确定的;
在步骤S102中,网络侧设备确定了用户设备在HARQ的往返时间RTT,并可以为用户设备设定进程数,为了确定无线数据传输的数据格式,用户设备需要获得与自身对应的RTT和进程数。
S104、用户设备根据重复次数在RRT内向网络侧设备传输数据。
每个用户设备在获得了自身的进程数后,就可以以网络侧设备所设定的进程数为每个RTT中所能包括进程数,并将这些进程按照自身的所需重复次数进行重复设定,来构建一个完整的RRT,进而可以向网络侧设备传输数据。
可选的,在本发明实施例中,还可以包括有以下的步骤:
S105、用户设备在接收到反馈消息后,根据预设的帧定时关系获取与反馈消息对应的已发送数据帧的首帧号;
获取与反馈消息对应的已发送数据帧的首帧号的具体方式根据不同的应用场景有所不同,具体的:
当应用场景为HARQ进程的E-DPDCH和E-DPCCH采用同时发送的方式发送时,用户设备在接收到反馈消息后,根据预设的帧定时关系获取与反馈消息对应的已发送数据帧的首帧号时,所采用的帧定时关系具体可以是,已发送数据帧的首帧号=反馈消息的首帧号—重复次数—2。
当本应用场景为混合自动重传请求HARQ进程的E-DPDCH和E-DPCCH采 用时分方式发送当用户设备在接收到反馈消息后,根据预设的帧定时关系获取与反馈消息对应的已发送数据帧的首帧号时,所采用的帧定时关系具体可以包括以下两种情况:
其一,当HARQ进程的E-DPDCH和E-DPCCH采用时分方式发送,且信道发送顺序为先发送E-DPCCH,再发送E-DPDCH时,帧定时关系可以是:已发送数据帧的首帧号=反馈消息的首帧号—重复次数—2;也就是说,如果HARQ进程先发送E-DPCCH,再发送E-DPDCH:假设E-HICH开始发送反馈消息(ACK/NACK)的帧号为SFN#i,那么,与其关联的E-DPDCH的起始帧号应为SFN#(i-N2-padding-2),即表示在E-DPDCH帧号为SFN#(i-N2-padding-2)的位置开始发送数据,重复发送N2次,网络侧设备在接收到所有数据并解出一个ACK/NACK后,在E-HICH帧号SFN#i的位置开始发送反馈消息。
其二,当HARQ进程的E-DPDCH和E-DPCCH采用时分方式发送,且信道发送顺序为先发送E-DPDCH再发送E-DPCCH时,帧定时关系可以是:
已发送数据帧的首帧号=反馈消息的首帧号—N1—N2—padding—2;也就是说,如果HARQ进程先发送E-DPDCH,再发E-DPCCH:那么,帧号SFN#i的EHICH与之关联的E-DPDCH帧号为SFN#(i-N1-N2-padding-2)。
可选的,在本发明实施例中,还可以包括步骤:
S106、当已发送数据帧的首帧号所对应反馈消息为NACK时,在下一HARQ的RTT周期内对应的进程位置重新发送已发送数据帧的首帧号所对应的进程数据。
在实际应用中,本发明实施例中的无线数据传输方法,可以应用于M2M业务的无线数据传输;由于M2M业务中,对于数据的延时相对不敏感,可以容忍较长的时延,所以,可以接收设定时长较长的RTT,此外,大多数的M2M中的用户设备位置相对比较固定,所以路损也比较稳定,这样计算得出的重复次数可以不会由于用户设备的位置变化而频繁变化。
在本发明的另一实施例中,确定所述用户设备的RTT的具体步骤可以是:
根据预设的最大重复次数、预设的最小进程数和传输时间间隔TTI,确定混合自动重传请求HARQ的往返时间RTT;最大重复次数不小于网络侧设备的管理范围内用户设备的所述重复次数中的最大值;最小进程数为RTT内最小的 进程容纳数量。此外,确定最大进程数的具体方式还可以是根据RTT的时长和用户设备的重复次数确定用户设备的RTT中所能包括的最大进程数。在本发明实施例中,确定用户设备的RTT的具体步骤和确定最大进程数的具体方式可以参考实施例一所记载的内容,在此就不再赘述。
实施例六
在本发明实施例的另一面,还提供了一种无线数据传输系统,本实施例中的无线数据传输系统的网络侧设备01和用户设备02,与实施例一和五中无线数据传输方法中的网络侧设备和用户设备的运作方式和原理相对应,所起到的作用也类似;具体的,如图13所示,无线数据传输系统包括网络侧设备01和用户设备02,其中,网络侧设备01如图14所示,包括重复次数获取单元101和RTT确定单元102,用户设备02如图15所示,包括重复次数发送单元201、RTT接收单元202和数据传输单元203,具体的:
用户设备02的重复次数发送单元201,用于向网络侧设备01发送数据传输所需的重复次数;
可选的,为了确定各用户设备02的发送数据所需的重复次数,具体可以通过路损参数获取模块来实现,通过路损参数获取模块获取用户设备02的路径损耗参数后,可以根据预设的路损等级与重复次数的对应关系,来确定用户设备02发送数据所需的重复次数。
各个用户设备02通过重复次数发送单元201向网络侧设备01发送各用户设备02自身的重复次数后,网络侧设备01可以通过重复次数获取单元101获取到该重复次数。
网络侧设备01中的RTT确定单元103,可用于根据用户设备02的重复次数信息,以及,用户设备02的进程数信息和传输时间间隔TTI确定用户设备02的往返时间RTT;
由于在本发明实施例中RTT可以根据需要来设定,所以在时延允许的范围内可以调节RTT的长度,此外,通过某一用户终端的重复次数信息可以得知该用户终端需要的重复次数,这样,在满足用户终端重复次数需求的前提下,就可以针对每个用户终端的覆盖能力,在每个RTT中包括有尽量少的进程数。这样,不但可以有效的提高数据解码成功的概率,达到有效提高无线通信中用户 设备覆盖能力的目的。此外,由于在本发明实施例中,用户设备还可以根据当前用户设备自身所需的重复次数来调整HARQ的进程数量,从而还可以在保证保证充分利用资源的前提下,降低了数据传输的时延,从而提高通信效率。
可选的,本发明实施例中的RTT确定单元103具体可以包括进程数设定模块131和RTT计算模块132,其中,进程数设定模块131用于预设用户设备02的进程数;RTT计算模块132用于根据用户设备02的重复次数、进程数和TTI计算确定用户设备02的RTT。
可选的,本发明实施例中,当HARQ进程的E-DPDCH和E-DPCCH采用同时发送的方式发送时,RTT确定模块103计算确定用户设备02的RTT的公式包括:RTT=重复次数*进程数*TTI。当HARQ进程的E-DPDCH和E-DPCCH采用时分方式发送时,RTT确定模块103计算确定用户设备02的RTT的公式包括:RTT=(N1+N2+padding)*进程数*TTI;其中,N1表示用户设备E-DPCCH的重复次数,N2表示用户设备E-DPDCH的重复次数,padding表示填充帧数,且padding>=0。
本发明实施例中,网络侧设备01分别设定各个用户终端02在每个RTT所能包括的进程数的数量,并依此通过RTT确定模块103来计算用户设备02的RTT的长度,具体的:
本发明实施例的应用场景之一,即,当HARQ进程的E-DPDCH和E-DPCCH采用同时发送的方式发送时,RTT确定模块103可以根据RTT=重复次数*进程数*TTI,这一公式来计算用户终端02的RTT,即RTT等于重复次数和进程数和TTI的乘积;以TTI为10ms为例,假如用户终端02所需的重复次数为8,预设定的进程数为4,那么,RTT=8*4*10ms=320ms。
为了保证用户终端02能够在下一个HARQ cycle重传或初传,不同的重复次数N对应一个进程数K,RTT确定模块103根据N和K来确定HARQ RTT的长度,其中重复次数N可以由用户终端02根据自己的覆盖等级来确定,进程数K则可以由网络侧设备01下发给该用户终端02。
参考图10,在实际应用中,以TTI为10ms为例,当第一用户终端的覆盖能力很好,只需发送1次即,重复次数为1,那么当进程数K设置为K=4时,RTT=4*1*10=40ms;当第二用户终端的覆盖稍差,重复次数为2,那么当进程 数K设置为K=4时,RTT=4*2*10=80ms;当第三用户终端的重复次数为4,那么进程数K可以设置为2,RTT=2*4*10=80ms;当第四用户终端的重复次数为8,那么进程数K可以设置为2,RTT=2*8*10=160ms。
在本发明实施例的另一应用场景中,当HARQ进程的E-DPDCH和E-DPCCH采用时分方式发送时,RTT确定模块13可以可以根据RTT=(N1+N2+padding)*进程数*TTI这一公式来计算用户终端的RTT;
其中,N1表示用户设备E-DPCCH的重复次数,N2表示用户设备E-DPDCH的重复次数,padding表示填充帧数,且padding>=0。
参考图11和图12,图11和图12中的C表示E-DPCCH信道,D表示E-DPDCH信道,数字0,1等表示进程号,阴影部分表示padding,作为填充帧数padding部分不传任何内容,padding的数目需要大于或等于0(即padding>=0)。每个用户终端的E-DPCCH的重复次数为N1,E-DPDCH的重复次数为N2,进程数为K,RTT=(N1+N2+padding)*K*10ms;padding>=0。
RTT接收单元22获取用户设备在HARQ的往返时间RTT,其中,RTT是网络侧设备根据获取的用户设备的重复次数信息,以及,用户设备的进程数信息和传输时间间隔TTI确定的;
网络侧设备01确定了用户设备02在HARQ的往返时间RTT,并可以为用户设备02设定进程数,为了确定无线数据传输的数据格式,RTT接收单元22可以获得与用户设备02对应的RTT和进程数。
数据传输单元23根据重复次数在RRT内向网络侧设备传输数据。
在获得了自身的进程数后,数据传输单元23就可以以网络侧设备01所设定的进程数为每个RTT中所能包括进程数,并将这些进程按照自身的所需重复次数进行重复设定,来构建一个完整的RRT,进而可以向网络侧设备01传输数据。
可选的,在本发明实施例中的用户设备02还可以包括已发送数据帧的首帧号获取单元(图中未示出),已发送数据帧的首帧号获取单元用于在接收到反馈消息后,根据预设的帧定时关系获取与反馈消息对应的已发送数据帧的首帧号;
获取与反馈消息对应的已发送数据帧的首帧号的具体方式根据不同的应用场景有所不同,具体的:
当应用场景为HARQ进程的E-DPDCH和E-DPCCH采用同时发送的方式发送时,用户设备在接收到反馈消息后,已发送数据帧的首帧号获取单元根据预设的帧定时关系获取与反馈消息对应的已发送数据帧的首帧号时,所采用的帧定时关系具体可以是,已发送数据帧的首帧号=反馈消息的首帧号—重复次数—2。
当本应用场景为混合自动重传请求HARQ进程的E-DPDCH和E-DPCCH采用时分方式发送当用户设备在接收到反馈消息后,已发送数据帧的首帧号获取单元根据预设的帧定时关系获取与反馈消息对应的已发送数据帧的首帧号时,所采用的帧定时关系具体可以包括以下两种情况:
其一,当HARQ进程的E-DPDCH和E-DPCCH采用时分方式发送,且信道发送顺序为先发送E-DPCCH,再发送E-DPDCH时,帧定时关系可以是:已发送数据帧的首帧号=反馈消息的首帧号—重复次数—2;也就是说,如果HARQ进程先发送E-DPCCH,再发送E-DPDCH:假设E-HICH开始发送反馈消息(ACK/NACK)的帧号为SFN#i,那么,与其关联的E-DPDCH的起始帧号应为SFN#(i-N2-padding-2),即表示在E-DPDCH帧号为SFN#(i-N2-padding-2)的位置开始发送数据,重复发送N2次,网络侧设备在接收到所有数据并解出一个ACK/NACK后,在E-HICH帧号SFN#i的位置开始发送反馈消息。
其二,当HARQ进程的E-DPDCH和E-DPCCH采用时分方式发送,且信道发送顺序为先发送E-DPDCH再发送E-DPCCH时,帧定时关系可以是:
已发送数据帧的首帧号=反馈消息的首帧号—N1—N2—padding—2;也就是说,如果HARQ进程先发送E-DPDCH,再发E-DPCCH:那么,帧号SFN#i的EHICH与之关联的E-DPDCH帧号为SFN#(i-N1-N2-padding-2)。
可选的,在本发明实施例中,用户终端02还可以还可以包括进程数据重发单元(图中未示出),进程数据重发单元用于当已发送数据帧的首帧号所对应反馈消息为NACK时,在下一HARQ的RTT周期内对应的进程位置重新发送已发送数据帧的首帧号所对应的进程数据。
在实际应用中,本发明实施例中的无线数据传输系统可以应用于M2M业务的无线数据传输;由于M2M业务中,对于数据的延时相对不敏感,可以容忍较长的时延,所以,可以接收设定时长较长的RTT,此外,大多数的M2M 中的用户设备位置相对比较固定,所以路损也比较稳定,这样计算得出的重复次数可以不会由于用户设备的位置变化而频繁变化。
在本发明的另一实施例中,所述RTT确定单元103具体可以包括如图3中所示的RTT获取单元12,RTT获取单元12用于根据预设的最大重复次数、预设的最小进程数和传输时间间隔TTI,确定混合自动重传请求HARQ的往返时间RTT;所述最大重复次数不小于网络侧设备的管理范围内用户设备数据传输所需的重复次数中的最大值;所述最小进程数为所述RTT内最小的进程容纳数量;所述RTT的时长用于与所述用户设备的所述重复次数共同确定所述用户设备的RTT中所能包括的最大进程数。在本发明实施例中,RTT获取单元12的具体工作原理可以参考实施例二所记载无线数据传输系统的内容,在此就不再赘述。
实施例七
参阅图16,图16为本发明实施例提供的一种网络侧设备硬件结构示意图,该网络侧设备可以用于执行实施例一和实施例五中的无线数据传输方法,所述网络侧设备1600包括存储器1601和接收器602,以及分别与所述存储器1601和所述接收器1602连接的处理器1603,所述存储器1601用于存储一组程序指令,所述处理器1603用于调用所述存储器1601存储的程序指令执行如下操作:
触发所述接收器1602获取管理范围内各用户设备数据传输所需的重复次数;
据获取的用户设备的重复次数信息,以及,用户设备的进程数信息和传输时间间隔TTI确定用户设备的往返时间RTT。
可选地,所述处理器1603可以为中央处理器(Central Processing Unit,CPU),所述存储器1601可以为随机存取存储器(Random Access Memory,RAM)类型的内部存储器,所述接收器1602可以包含普通物理接口,所述物理接口可以为以太(Ethernet)接口或异步传输模式(Asynchronous Transfer Mode,ATM)接口。所述处理器1603、接收器1602和存储器1601可以集成为一个或多个独立的电路或硬件,如:专用集成电路(Application Specific Integrated Circuit,ASIC)。
实施例八
参阅图17,图17为本发明实施例提供的一种用户设备的硬件结构示意图,该用户设备可以用于执行实施例一和实施例五中的无线数据传输方法,所述用户设备1700包括存储器1701、接收器1702和发送器1703,以及分别与所述存储器1701、所述接收器1702和所述发送器1703连接的处理器1704,所述存储器1701用于存储一组程序指令,所述处理器1704用于调用所述存储器1701存储的程序指令执行如下操作:
触发所述接收器1702向网络侧设备发送数据传输所需的重复次数;
用于获取所述用户设备在混合自动重传请求HARQ的往返时间RTT,其中,所述RTT是所述网络侧设备根据获取的所述用户设备的重复次数信息,以及,所述用户设备的进程数信息和传输时间间隔TTI确定的;
触发所述发送器170根据所述重复次数在所述RRT内向所述网络侧设备传输数据。
可选地,所述处理器1704可以为中央处理器(Central Processing Unit,CPU),所述存储器1701可以为随机存取存储器(Random Access Memory,RAM)类型的内部存储器,所述接收器1702和所述发送器1703可以包含普通物理接口,所述物理接口可以为以太(Ethernet)接口或异步传输模式(Asynchronous Transfer Mode,ATM)接口。所述处理器1704、发送器1703、接收器1702和存储器1701可以集成为一个或多个独立的电路或硬件,如:专用集成电路(Application Specific Integrated Circuit,ASIC)。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质可以是下述介质中的至少一种:只读存储器(Read-Only Memory,ROM)、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实 施例的不同之处。尤其,对于设备及系统实施例而言,由于其基本相似于方法实施例,所以描述得比较简单,相关之处参见方法实施例的部分说明即可。以上所描述的设备及系统实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
以上所述仅是本发明的优选实施方式,并非用于限定本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (45)

  1. 一种无线数据传输方法,其特征在于,包括:
    获取管理范围内各用户设备数据传输所需的重复次数;
    根据获取的所述用户设备的重复次数信息,以及,所述用户设备的进程数信息和传输时间间隔TTI确定所述用户设备的往返时间RTT。
  2. 根据权利要求1所述无线数据传输方法,其特征在于,所述根据获取的所述用户设备的重复次数信息、进程数信息和传输时间间隔TTI确定所述用户设备的RTT,包括:
    预设所述用户设备的进程数;
    根据所述用户设备的重复次数、进程数和TTI计算确定所述用户设备的RTT。
  3. 根据权利要求2所述无线数据传输方法,其特征在于,当混合自动重传请求HARQ进程的增强型专用物理数据信道E-DPDCH和增强型专用物理控制信道E-DPCCH采用同时发送的方式发送时,所述根据所述用户设备的重复次数、进程数和TTI计算确定所述用户设备的RTT,包括:
    RTT=重复次数*进程数*TTI。
  4. 根据权利要求2所述无线数据传输方法,其特征在于,当HARQ进程的E-DPDCH和E-DPCCH采用时分方式发送时,所述根据所述用户设备的重复次数、进程数和TTI计算确定所述用户设备的RTT,包括:
    RTT=(N1+N2+padding)*进程数*TTI;
    其中,所述N1表示用户设备E-DPCCH的重复次数,所述N2表示用户设备E-DPDCH的重复次数,所述padding表示填充帧数,所述padding>=0。
  5. 根据权利要求1所述无线数据传输方法,其特征在于,所述根据获取的所述用户设备的重复次数信息、进程数信息和传输时间间隔TTI确定所述用户设备的RTT,包括:
    根据预设的最大重复次数、预设的最小进程数和TTI,确定HARQ的RTT;所述最大重复次数不小于网络侧设备的管理范围内用户设备的所述重复次数中的最大值;所述最小进程数为所述RTT内最小的进程容纳数量。
  6. 根据权利要求5所述无线数据传输方法,其特征在于,包括:
    根据所述RTT的时长和所述用户设备的所述重复次数确定所述用户设备的RTT中所能包括的最大进程数。
  7. 根据权利要求5所述无线数据传输方法,其特征在于,所述最大重复次数为网络侧设备的管理范围内所有用户设备数据传输所需的重复次数中的最大值。
  8. 根据权利要求5所述无线数据传输方法,其特征在于,所述用户设备数据传输所需的重复次数为:
    所述网络侧设备根据所述用户设备的路径损耗参数确定的重复次数。
  9. 根据权利要求5所述无线数据传输方法,其特征在于,当数据传输的TTI为10ms的TTI时,所述根据最大重复次数和预设的最小进程数确定HARQ的RTT,包括:
    RTT=最小进程数*最大重复次数*10ms。
  10. 根据权利要求5所述无线数据传输方法,其特征在于,当数据传输的TTI为10ms的TTI时,所述根据每个用户设备数据传输所需的重复次数和所述RTT的时长,确定各所述用户设备的每个RTT中所能包括的最大进程数,包括:
    最大进程数=RTT/(重复次数*10ms)。
  11. 一种无线数据传输方法,其特征在于,包括:
    用户设备向网络侧设备发送数据传输所需的重复次数;
    所述用户设备获取所述用户设备在混合自动重传请求HARQ的往返时间RTT,其中,所述RTT是所述网络侧设备根据获取的所述用户设备的重复次数信息,以及,所述用户设备的进程数信息和传输时间间隔TTI确定的;
    所述用户设备根据所述重复次数在所述RRT内向所述网络侧设备传输数据。
  12. 根据权利要求11所述无线数据传输方法,还包括:所述用户设备在接收到反馈消息后,根据预设的帧定时关系获取与所述反馈消息对应的已发送数据帧的首帧号;
    当混合自动重传请求HARQ进程的增强型专用物理数据信道E-DPDCH和增强型专用物理控制信道E-DPCCH采用同时发送的方式发送时,所述帧定时关系包括:已发送数据帧的首帧号=反馈消息的首帧号—重复次数—2;
    当HARQ进程的E-DPDCH和E-DPCCH采用时分方式发送,且信道发送顺序为先发送E-DPCCH再发送E-DPDCH时,所述帧定时关系包括:
    已发送数据帧的首帧号=反馈消息的首帧号—N2—padding—2;
    当HARQ进程的E-DPDCH和E-DPCCH采用时分方式发送,且信道发送顺序为先发送E-DPDCH再发送E-DPCCH时,所述帧定时关系包括:
    已发送数据帧的首帧号=反馈消息的首帧号—N1—N2—padding—2;
    其中,所述N1表示用户设备E-DPCCH的重复次数,所述N2表示用户设备E-DPDCH的重复次数,所述padding表示填充帧数,所述padding>=0。
  13. 根据权利要求11所述无线数据传输方法,还包括:
    当已发送数据帧的首帧号所对应反馈消息为NACK时,在下一HARQ的RTT周期内对应的进程位置重新发送已发送数据帧的首帧号所对应的进程数据。
  14. 根据权利要求11所述无线数据传输方法,其特征在于,还包括:
    所述用户设备获取所述用户设备在求HARQ的RTT内所能包括的最大进程数,其中,所述RTT是所述网络侧设备根据预设的最大重复次数和预设的最小进程数确定的,所述最大重复次数不小于网络侧设备的管理范围内用户设备发送数据所需的重复次数中的最大值,所述最小进程数为所述RTT内最小的进程容纳数量;所述RTT的时长用于与所述用户设备的所述重复次数共同确定所述用户设备的RTT中所能包括的最大进程数所述用户设备根据所述重复次数在所述RRT内向所述网络侧设备传输数据,包括:
    所述用户设备根据所述最大进程数在所述RRT内向所述网络侧设备传输数据。
  15. 根据权利要求14所述无线数据传输方法,其特征在于,获取所述最大进程数,包括:
    所述用户设备获取发送自所述网络侧设备的所述最大进程数,或,
    所述用户设备计算生成所述最大进程数。
  16. 根据权利要求14所述无线数据传输方法,其特征在于,所述最大重复次数为网络侧设备的管理范围内所有用户设备数据传输所需的重复次数中的最大值。
  17. 根据权利要求14所述无线数据传输方法,其特征在于,所述用户设备包括:
    路损参数获取模块,用于根据所述用户设备的路径损耗参数确定的重复次数。
  18. 根据权利要求14所述无线数据传输方法,其特征在于,当数据传输的TTI为10ms的TTI时,所述根据最大重复次数和预设的最小进程数确定HARQ的RTT,包括:
    RTT=最小进程数*最大重复次数*10ms。
  19. 根据权利要求14所述无线数据传输方法,其特征在于,当数据传输的TTI为10ms的TTI时,所述根据每个用户设备数据传输所需的重复次数和所述RTT的时长,确定各所述用户设备的每个RTT中所能包括的最大进程数,包括:
    最大进程数=RTT/(重复次数*10ms)。
  20. 根据权利要求14中所述无线数据传输方法,其特征在于,还包括:
    所述用户设备在接收到反馈消息后,根据预设的帧定时关系获取与所述反馈消息对应的已发送数据帧的首帧号;
    所述帧定时关系包括:已发送数据帧的首帧号=反馈消息的首帧号—重复次数—2。
  21. 根据权利要求20所述无线数据传输方法,其特征在于,还包括:
    当所述已发送数据帧的首帧号所对应所述反馈消息为NACK时,在预设重传位置重新发送所述已发送数据帧的首帧号所对应的进程数据;
    所述预设重传位置包括:
    当所述RTT长度为160ms,重复次数为8且所述进程数为2时,或,当所述RTT长度为80ms,重复次数为4且所述进程数为2时,或,当所述RTT长度为40ms,重复次数为2且所述进程数为2时,预设重传位置为:
    重传RTT号=已发送数据帧所对应的RTT号+2。
  22. 根据权利要求11至21中任一所述无线数据传输方法,其特征在于,所述无线数据传输方法应用于机器对机器M2M业务的无线数据传输。
  23. 一种网络侧设备,其特征在于,包括:
    重复次数获取单元,用于获取管理范围内各用户设备数据传输所需的重复 次数;
    RTT确定单元,用于根据获取的所述用户设备的重复次数信息,以及,所述用户设备的进程数信息和传输时间间隔TTI确定所述用户设备的往返时间RTT。
  24. 根据权利要求23所述网络侧设备,其特征在于,所述RTT确定单元,包括:
    进程数设定模块,用于预设所述用户设备的进程数;
    RTT计算模块,用于根据所述用户设备的重复次数、进程数和TTI计算确定所述用户设备的RTT。
  25. 根据权利要求23所述网络侧设备,其特征在于,当混合自动重传请求HARQ进程的增强型专用物理数据信道E-DPDCH和增强型专用物理控制信道E-DPCCH采用同时发送的方式发送时,所述RTT确定模块计算确定所述用户设备的RTT的公式包括:
    RTT=重复次数*进程数*TTI。
  26. 根据权利要求23所述网络侧设备,其特征在于,当HARQ进程的E-DPDCH和E-DPCCH采用时分方式发送时,所述RTT确定模块计算确定所述用户设备的RTT的公式包括:
    RTT=(N1+N2+padding)*进程数*TTI;
    其中,所述N1表示用户设备E-DPCCH的重复次数,所述N2表示用户设备E-DPDCH的重复次数,所述padding表示填充帧数,所述padding>=0。
  27. 根据权利要求23所述网络侧设备,其特征在于,所述RTT确定单元包括:
    RTT获取单元,用于根据预设的最大重复次数、预设的最小进程数和传输时间间隔TTI,确定混合自动重传请求HARQ的往返时间RTT;所述最大重复次数不小于网络侧设备的管理范围内用户设备数据传输所需的重复次数中的最大值;所述最小进程数为所述RTT内最小的进程容纳数量;所述RTT的时长用于与所述用户设备的所述重复次数共同确定所述用户设备的RTT中所能包括的最大进程数。
  28. 根据权利要求23中所述网络侧设备,其特征在于,所述最大重复次数 为网络侧设备的管理范围内所有用户设备数据传输所需的重复次数中的最大值。
  29. 根据权利要求23所述网络侧设备,其特征在于,所述用户设备数据传输所需的重复次数为:
    所述网络侧设备根据所述用户设备的路径损耗参数确定的重复次数。
  30. 根据权利要求23所述网络侧设备,其特征在于,当数据传输的TTI为10ms的TTI时,所述根据最大重复次数和预设的最小进程数确定HARQ的RTT,包括:
    RTT=最小进程数*最大重复次数*10ms。
  31. 根据权利要求23所述网络侧设备,其特征在于,当数据传输的TTI为10ms的TTI时,所述根据每个用户设备数据传输所需的重复次数和所述RTT的时长,确定各所述用户设备的每个RTT中所能包括的最大进程数,包括:
    最大进程数=RTT/(重复次数*10ms)。
  32. 一种用户设备,其特征在于,包括:
    重复次数发送单元,用于用户设备向网络侧设备发送数据传输所需的重复次数;
    RTT接收单元,用于获取所述用户设备在混合自动重传请求HARQ的往返时间RTT,其中,所述RTT是所述网络侧设备根据获取的所述用户设备的重复次数信息,以及,所述用户设备的进程数信息和传输时间间隔TTI确定的;
    数据传输单元,用于根据所述重复次数在所述RRT内向所述网络侧设备传输数据。
  33. 根据权利要求32所述用户设备,其特征在于,还包括:
    已发送数据帧的首帧号获取单元,用于在接收到反馈消息后,根据预设的帧定时关系获取与所述反馈消息对应的已发送数据帧的首帧号;
    当混合自动重传请求HARQ进程的增强型专用物理数据信道E-DPDCH和增强型专用物理控制信道E-DPCCH采用同时发送的方式发送时,所述帧定时关系包括:已发送数据帧的首帧号=反馈消息的首帧号—重复次数—2;
    当混合自动重传请求HARQ进程的E-DPDCH和E-DPCCH采用时分方式发送,且信道发送顺序为先发送E-DPCCH再发送E-DPDCH时,所述帧定时关系 包括:
    已发送数据帧的首帧号=反馈消息的首帧号—N2—padding—2;
    当混合自动重传请求HARQ进程的E-DPDCH和E-DPCCH采用时分方式发送,且且信道发送顺序为先发送E-DPDCH再发送E-DPCCH时,所述帧定时关系包括:
    已发送数据帧的首帧号=反馈消息的首帧号—N1—N2—padding—2;
    其中,所述N1表示用户设备E-DPCCH的重复次数,所述N2表示用户设备E-DPDCH的重复次数,所述padding表示填充帧数,所述padding>=0。
  34. 根据权利要求32所述用户设备,还包括:
    进程数据重发单元,用于当已发送数据帧的首帧号所对应反馈消息为NACK时,在下一HARQ的RTT周期内对应的进程位置重新发送已发送数据帧的首帧号所对应的进程数据。
  35. 根据权利要求32所述用户设备,其特征在于,还包括:
    最大进程数获取单元,用于获取所述用户设备在混合自动重传请求HARQ的往返时间RTT内所能包括的最大进程数,其中,所述RTT是所述网络侧设备根据预设的最大重复次数和预设的最小进程数确定的,所述最大重复次数不小于网络侧设备的管理范围内用户设备发送数据所需的重复次数中的最大值,所述最小进程数为所述RTT内最小的进程容纳数量;所述RTT的时长用于与所述用户设备的所述重复次数共同确定所述用户设备的RTT中所能包括的最大进程数;
    所述数据传输单元,用于根据所述最大进程数在所述RRT内向所述网络侧设备传输数据。
  36. 根据权利要求35所述用户设备,其特征在于,所述重复次数发送单元包括:
    路损参数获取模块,用于根据所述用户设备的路径损耗参数确定重复次数。
  37. 根据权利要求35所述用户设备,其特征在于,所述最大进程数获取单元,包括:
    最大进程数接收模块,用于接收发送自所述网络侧设备的所述最大进程 数;或,
    最大进程数计算模块,用于计算生成所述最大进程数。
  38. 根据权利要求35所述用户设备,其特征在于,所述最大重复次数为网络侧设备的管理范围内所有用户设备数据传输所需的重复次数中的最大值。
  39. 根据权利要求35所述用户设备,其特征在于,所述用户设备数据传输所需的重复次数为:
    所述网络侧设备根据所述用户设备的路径损耗参数确定的重复次数。
  40. 根据权利要求35所述用户设备,其特征在于,当数据传输的TTI为10ms的TTI时,所述根据最大重复次数和预设的最小进程数确定HARQ的RTT,包括:
    RTT=最小进程数*最大重复次数*10ms。
  41. 根据权利要求35所述用户设备,其特征在于,当数据传输的TTI为10ms的TTI时,所述根据每个用户设备数据传输所需的重复次数和所述RTT的时长,确定各所述用户设备的每个RTT中所能包括的最大进程数,包括:
    最大进程数=RTT/(重复次数*10ms)。
  42. 根据权利要求35所述用户设备,其特征在于,还包括:
    首帧号获取单元,用于在接收到反馈消息后,根据预设的帧定时关系获取与所述反馈消息对应的已发送数据帧的首帧号;
    所述帧定时关系包括:已发送数据帧的首帧号=反馈消息的首帧号—重复次数—2。
  43. 根据权利要求35所述用户设备,其特征在于,还包括:
    重传单元,用于当所述已发送数据帧的首帧号所对应所述反馈消息为NACK时,在预设重传位置重新发送所述已发送数据帧的首帧号所对应的进程数据;
    所述预设重传位置包括:
    当所述RTT长度为160ms,重复次数为8且所述进程数为2时,或,当所述RTT长度为80ms,重复次数为4且所述进程数为2时,或,当所述RTT长度为40ms,重复次数为2且所述进程数为2时,预设重传位置为:
    重传RTT号=已发送数据帧所对应的RTT号+2。
  44. 根据权利要求32至43中任一所述用户设备,其特征在于,所述用户设备应用于机器对机器M2M业务的无线数据传输。
  45. 一种无线数据传输系统,其特征在于,包括:如权利要求23至31中任一所述网络侧设备,和,如权利要求32至44中任一所述用户设备。
PCT/CN2015/080288 2014-12-18 2015-05-29 无线数据传输的方法、网络侧设备、用户设备和系统 WO2016095444A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15868956.2A EP3226455A4 (en) 2014-12-18 2015-05-29 Wireless data transmission method, network side device, user equipment and system
CN201580006826.1A CN105960771A (zh) 2014-12-18 2015-05-29 无线数据传输的方法、网络侧设备、用户设备和系统
KR1020177019704A KR20170095354A (ko) 2014-12-18 2015-05-29 무선 데이터 전송 방법, 네트워크측 장치, 사용자 장비, 및 시스템
US15/625,774 US20170288742A1 (en) 2014-12-18 2017-06-16 Wireless data transmission method, network side device, user equipment, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2014/094209 2014-12-18
CN2014094209 2014-12-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/625,774 Continuation US20170288742A1 (en) 2014-12-18 2017-06-16 Wireless data transmission method, network side device, user equipment, and system

Publications (1)

Publication Number Publication Date
WO2016095444A1 true WO2016095444A1 (zh) 2016-06-23

Family

ID=56125782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/080288 WO2016095444A1 (zh) 2014-12-18 2015-05-29 无线数据传输的方法、网络侧设备、用户设备和系统

Country Status (5)

Country Link
US (1) US20170288742A1 (zh)
EP (1) EP3226455A4 (zh)
KR (1) KR20170095354A (zh)
CN (1) CN105960771A (zh)
WO (1) WO2016095444A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113556217A (zh) * 2021-09-18 2021-10-26 深圳传音控股股份有限公司 通信方法、网络设备、终端设备及存储介质
CN114731495A (zh) * 2019-11-25 2022-07-08 标致雪铁龙汽车股份有限公司 用于车辆的数据传输方法和数据传输装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102665409B1 (ko) * 2018-10-16 2024-05-10 삼성전자주식회사 다중 접속에서 데이터 분할을 위한 방법 및 장치
CN111311039B (zh) * 2018-12-12 2023-04-28 中国移动通信集团四川有限公司 敏感用户的确定方法、装置、设备和介质
CN114257331B (zh) * 2020-09-23 2023-07-14 大唐移动通信设备有限公司 卫星通信系统的调度方法、装置及存储介质
CN114679404B (zh) * 2022-03-22 2024-05-14 北京邮电大学 一种上行VoLTE用户数量检测方法、装置及设备
US20240063947A1 (en) * 2022-08-17 2024-02-22 George W. Kuriyan Method and System for Guaranteeing Reliability and Data Transfer Delay Range for Data Applications requiring Synchronized Data Transfer Between Sender and Receiver Over a Cellular Network

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101369878A (zh) * 2007-08-14 2009-02-18 大唐移动通信设备有限公司 时分双工系统中同步混合自动重传请求方法和装置
CN102246453A (zh) * 2008-12-16 2011-11-16 捷讯研究有限公司 非连续接收中的混合自动重传请求往返时间和肯定应答/否定应答重传
CN102255709A (zh) * 2010-05-17 2011-11-23 中兴通讯股份有限公司 数据重传方法、基站、终端及无线通信系统
WO2012052911A1 (en) * 2010-10-22 2012-04-26 Nokia Corporation Method and apparatus for co-operative reception for network controlled device to device
CN102648598A (zh) * 2009-10-02 2012-08-22 松下电器产业株式会社 中继回程上行链路混合自动重复请求协议

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2426846B1 (en) * 2009-04-30 2016-11-02 Huawei Technologies Co., Ltd. Data retransmission method and user equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101369878A (zh) * 2007-08-14 2009-02-18 大唐移动通信设备有限公司 时分双工系统中同步混合自动重传请求方法和装置
CN102246453A (zh) * 2008-12-16 2011-11-16 捷讯研究有限公司 非连续接收中的混合自动重传请求往返时间和肯定应答/否定应答重传
CN102648598A (zh) * 2009-10-02 2012-08-22 松下电器产业株式会社 中继回程上行链路混合自动重复请求协议
CN102255709A (zh) * 2010-05-17 2011-11-23 中兴通讯股份有限公司 数据重传方法、基站、终端及无线通信系统
WO2012052911A1 (en) * 2010-10-22 2012-04-26 Nokia Corporation Method and apparatus for co-operative reception for network controlled device to device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3226455A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114731495A (zh) * 2019-11-25 2022-07-08 标致雪铁龙汽车股份有限公司 用于车辆的数据传输方法和数据传输装置
CN113556217A (zh) * 2021-09-18 2021-10-26 深圳传音控股股份有限公司 通信方法、网络设备、终端设备及存储介质
CN113556217B (zh) * 2021-09-18 2022-01-25 深圳传音控股股份有限公司 通信方法、网络设备、终端设备及存储介质
WO2023041069A1 (zh) * 2021-09-18 2023-03-23 深圳传音控股股份有限公司 通信方法、网络设备、终端设备及存储介质

Also Published As

Publication number Publication date
EP3226455A1 (en) 2017-10-04
KR20170095354A (ko) 2017-08-22
CN105960771A (zh) 2016-09-21
EP3226455A4 (en) 2017-12-13
US20170288742A1 (en) 2017-10-05

Similar Documents

Publication Publication Date Title
WO2016095444A1 (zh) 无线数据传输的方法、网络侧设备、用户设备和系统
NL2012390C2 (en) Harq reception status determination and transmission.
US8885525B2 (en) Method and apparatus for soft buffer partitioning in time-division duplexing system
US10361823B2 (en) Method and apparatus for transmitting uplink data in licensed-assisted access system
TWI696360B (zh) 反饋ack/nack信息的方法、終端設備和網絡側設備
EP3955601A1 (en) Method and device for retransmitting feedback for direct-connection communication, and storage medium
CN108631953B (zh) 一种数据发送、反馈方法及装置
CN101931514B (zh) 一种混合自动重传请求中的通信方法、系统和设备
EP2835928A1 (en) Method of handling communication operation and related communication device
CN111435885B (zh) 用于传输数据的方法、通信设备和网络设备
US9107214B2 (en) Method of handling hybrid automatic repeat request acknowledgement responses in wireless communication system
EP3416325B1 (en) Device and method of handling code block group-based communication operation
CN103248464A (zh) 上行数据传输方法和装置
WO2016124974A1 (en) Scheduling voice-over-ip users in wireless systems using carrier aggregation
WO2018082679A1 (zh) 重传方法及设备
CN111566961B (zh) 一种信息传输方法及设备
EP3468077A1 (en) Uplink transmission method and apparatus
US20230179343A1 (en) Efficient uplink hybrid automatic repeat request feedback for point to multipoint transmissions
US10749638B2 (en) Soft buffer handling with limited memory access bandwidth
CN109792725B (zh) 载波聚合的消息反馈方法及装置
CN102957521B (zh) 降低终端内共存干扰的drx下行数据传输方法、系统、终端及基站
CN112787775A (zh) 发送反馈信息的方法和装置
US20180132242A1 (en) Grouping of serving cells with shortened transmission time intervals
CN111107671B (zh) 通信方法及终端设备
KR20180108740A (ko) 데이터 송신 방법, 단말 디바이스 및 네트워크 장비

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15868956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015868956

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177019704

Country of ref document: KR

Kind code of ref document: A