WO2016095409A1 - 应用于ofdm-pon的通信方法、装置及系统 - Google Patents

应用于ofdm-pon的通信方法、装置及系统 Download PDF

Info

Publication number
WO2016095409A1
WO2016095409A1 PCT/CN2015/078394 CN2015078394W WO2016095409A1 WO 2016095409 A1 WO2016095409 A1 WO 2016095409A1 CN 2015078394 W CN2015078394 W CN 2015078394W WO 2016095409 A1 WO2016095409 A1 WO 2016095409A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
optical network
optical
network units
frequency band
Prior art date
Application number
PCT/CN2015/078394
Other languages
English (en)
French (fr)
Inventor
曹攀
马壮
黄新刚
那婷
苏翼凯
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016095409A1 publication Critical patent/WO2016095409A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems

Definitions

  • This document relates to the field of communications technologies, and in particular, to a communication method, apparatus, and system for OFDM-PON.
  • a frequency division multiplexing technology is generally introduced in an OFDM (Orthogonal Frequency Division Multiplexing) optical access network system, and each ONU (Optical Network Unit) is to be transmitted.
  • the VPN (Virtual Private Network) data is transmitted to an OLT (optical line terminal), and the downlink data is respectively transmitted to the target user terminal by the reflected part signal.
  • a drawback of the related art is that mutual communication between multiple sets of user terminals cannot be achieved at the same time.
  • the main purpose of the embodiments of the present invention is to provide a communication method, apparatus, and system for OFDM-PON, which aims to solve the technical problem that the mutual communication between multiple groups of user terminals cannot be simultaneously implemented in the OFDM-PON.
  • an embodiment of the present invention provides a communication method applied to an OFDM-PON, where the communication method includes the following steps:
  • each of the optical network units as the sender transmits the first data to each of the optical network units as the receiver according to the preset first carrier frequency band;
  • Each of the optical network units as receivers receives first data from the optical network unit as a sender according to the preset first carrier frequency band;
  • the first carrier preset by the optical network unit to transmit or receive data is The frequency bands are different.
  • the communication method further includes the following steps:
  • each of the optical network units sends the second data to the optical line terminal according to the preset second carrier frequency band, and each of the optical network units is preset.
  • the second carrier frequency band is different;
  • each optical network unit When the plurality of optical network units receive the third data from the optical line terminal, each optical network unit receives the first to-be-extracted data sent by the optical line terminal according to a third carrier frequency band preset by each optical network unit. ;
  • Each optical network unit extracts corresponding third data in the first data to be extracted according to a third carrier frequency band preset by each optical network unit, and a third carrier frequency band preset by each of the optical network units Not the same.
  • the step of each of the optical network units transmitting the second data to the optical line terminal according to the preset second carrier frequency band includes:
  • each of the optical network units respectively modulates the second data to be sent according to the preset second carrier frequency band
  • Each of the optical network units transmits the modulated second data to the first optical splitter for the first optical splitter to combine the modulated second data from the plurality of optical network units Send to the optical line terminal.
  • each of the optical network units as the sender sends the first data according to the preset first carrier frequency band to each of the receivers as the receiver.
  • the steps of the optical network unit include:
  • each of the optical network units that are the senders transmits the first data to the plurality of optical network units that are the receivers, each of the optical network units that are the senders are respectively sent according to the preset first carrier frequency band.
  • Data modulation
  • Each of the optical network units as a sender transmits the modulated first data to a first beam splitter for the first beam splitter to combine the received plurality of the modulated first data for processing
  • the second generated data to be generated is sent to the optical line terminal, and is terminated by the optical line
  • the terminal reflects the second data to be extracted to each of the optical network units that are receivers.
  • the step of receiving, by the each optical network unit as the receiver, the first data from the optical network unit that is the sender according to the preset first carrier frequency band includes:
  • Each of the optical network units as the receiver extracts corresponding first data in the second to-be-extracted data according to a first carrier frequency band preset by each of the optical network units as a receiver.
  • the present invention further provides a communication device applied to an OFDM-PON, the communication device comprising:
  • a first sending module configured to: when transmitting data between the plurality of optical network units, transmit the first data to each of the receivers according to a first carrier frequency band preset by each of the optical network units as a sender Optical network unit;
  • a first receiving module configured to receive first data from the optical network unit as a sender according to the first carrier frequency band preset by each of the optical network units as a receiver;
  • the first carrier frequency band preset by transmitting or receiving data between the optical network units is different .
  • the communication device further includes:
  • a second sending module configured to: when the plurality of optical network units send the second data to the optical line terminal, send the second data to the optical line terminal according to the second carrier frequency band preset by each of the optical network units, where each The second carrier frequency band preset by the optical network unit is different;
  • a second receiving module configured to receive, when the plurality of optical network units receive the third data from the optical line terminal, receive the first to be sent by the optical line terminal according to a third carrier frequency band preset by each optical network unit Extract data;
  • the extracting module is configured to extract corresponding third data in the first to-be-extracted data according to a third carrier frequency band preset by each optical network unit, and the third carrier frequency band preset by each of the optical network units is Not the same.
  • the second sending module includes:
  • the second modulating unit is configured to, when the plurality of optical network units send the second data to the optical line terminal, respectively modulate the second data to be sent according to the second carrier frequency band preset by each of the optical network units;
  • a second transmitting unit configured to transmit second data modulated by each of the optical network units to a first optical splitter, wherein the first optical splitter will modulate a plurality of the optical network units The two data are combined and sent to the optical line terminal.
  • the first sending module includes:
  • a first modulating unit configured to: when the plurality of optical network units as the transmitting unit transmit the first data to the plurality of optical network units that are the receiving parties, respectively, according to the first preset by each of the optical network units as the transmitting side Modulating the first data to be transmitted in the carrier frequency band;
  • a first transmitting unit configured to transmit first data modulated by each of the optical network units as a sender to a first optical splitter, wherein the first optical splitter will receive the plurality of the modulated Sending, to the optical line terminal, the second to-be-extracted data generated after the first data is combined, and reflecting the second to-be-extracted data by the optical line terminal to each of the optical networks as receivers unit.
  • the first receiving module is configured to extract corresponding first data in the second to-be-extracted data according to a first carrier frequency band preset by each of the optical network units as a receiving side.
  • the present invention also provides a communication system applied to an OFDM-PON, the communication system comprising an optical line terminal, a plurality of optical network units, and a connection to the optical line terminal and each of the optical networks Optical distribution network between units,
  • the optical line terminal includes a reflective module
  • the optical distribution network includes a first optical splitter
  • the optical network unit includes a first sending module and a first receiving module
  • the first sending module is configured to: when the data is transmitted between the plurality of optical network units, send the first data to the first splitting according to a first carrier frequency band preset by each of the optical network units as a sender Device
  • the first beam splitter is configured to combine the received first data to generate a second to be extracted Data, and sending the generated second to-be-extracted data to the reflection module;
  • the reflection module is configured to partially reflect the received signal to the first beam splitter
  • the first optical splitter is further configured to split the received second to-be-extracted data and send the data to each of the optical network units as receivers;
  • the first receiving module is configured to receive first data from the optical network unit as a sender according to the first carrier frequency band preset by each of the optical network units as a receiver;
  • the first carrier frequency band preset by transmitting or receiving data between the optical network units is different .
  • the optical network unit further includes a second sending module, a second receiving module, and an extracting module,
  • the second sending module is configured to: when the plurality of optical network units send the second data to the optical line terminal, send the second data to the first according to the second carrier frequency band preset by each of the optical network units a beam splitter, wherein the second carrier frequency band preset by each of the optical network units is different;
  • the first optical splitter is further configured to combine the received second data, or the second data and the first data, to the optical line terminal;
  • the optical line terminal is further configured to: when transmitting the third data to the plurality of optical network units, send the first to-be-extracted data to the first optical splitter according to a third carrier frequency band preset by each of the optical network units ;
  • the first optical splitter is further configured to split the received first to-be-extracted data and send the data to a second receiving module of each of the optical network units;
  • the second receiving module is configured to receive the first to-be-extracted data
  • the extracting module is configured to extract corresponding third data in the first to-be-extracted data according to a third carrier frequency band preset by each optical network unit, and a third carrier preset by each of the optical network units
  • the frequency bands are all different.
  • the second sending module includes:
  • the second modulating unit is configured to, when the plurality of optical network units send the second data to the optical line terminal, respectively modulate the second data to be sent according to the second carrier frequency band preset by each of the optical network units;
  • a second transmitting unit configured to transmit second data modulated by each of the optical network units to a first optical splitter, wherein the first optical splitter will modulate a plurality of the optical network units The two data are combined and sent to the optical line terminal.
  • the first sending module includes:
  • a first modulating unit configured to: when the plurality of optical network units as the transmitting unit transmit the first data to the plurality of optical network units that are the receiving parties, respectively, according to the first preset by each of the optical network units as the transmitting side Modulating the first data to be transmitted in the carrier frequency band;
  • a first sending unit configured to send first data modulated by each of the optical network units as a sender to the first optical splitter, where the first optical splitter will receive the plurality of the passed
  • the modulated first data is combined to generate second to-be-extracted data, and the generated second to-be-extracted data is sent to the reflection module.
  • the first receiving module is configured to extract corresponding first data in the second to-be-extracted data according to a first carrier frequency band preset by each of the optical network units as a receiving side.
  • the present invention also provides a computer storage medium having stored therein computer executable instructions for performing the above method.
  • a communication method, apparatus, and system for an OFDM-PON when transmitting data between a plurality of optical network units, each of the optical network units as a sender according to a preset first carrier frequency band Transmitting the first data to each of the optical network units as the receiver, each of the optical network units as the receiver receiving the optical network unit from the sender according to the preset first carrier frequency band First data, thereby enabling simultaneous realization between multiple sets of user terminals Intercommunication increases the flexibility of optical network communication and the efficiency and speed of optical network communication, and reduces costs.
  • FIG. 1 is a schematic flowchart of a first embodiment of a communication method applied to an OFDM-PON according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a refinement process of step S10 in FIG. 1;
  • FIG. 3 is a schematic flowchart of a second embodiment of a communication method applied to an OFDM-PON according to an embodiment of the present invention
  • step S30 in FIG. 3 is a schematic diagram of a refinement process of step S30 in FIG. 3;
  • FIG. 5 is a schematic diagram of a principle of transmitting data by an optical network unit
  • FIG. 6 is a schematic diagram of a principle of receiving data by an optical network unit
  • FIG. 7 is a schematic diagram of functional modules of a first embodiment of a communication device applied to an OFDM-PON according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a refinement function module of the second sending module in FIG. 7;
  • FIG. 9 is a schematic diagram of functional modules of a second embodiment of a communication device applied to an OFDM-PON according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a refinement function module of the second sending module in FIG. 9;
  • FIG. 11 is a schematic structural diagram of a communication system applied to an OFDM-PON according to an embodiment of the present invention.
  • the embodiment of the invention provides a communication method applied to an OFDM-PON (Orthogonal Frequency Division multiplexing-passive optical network).
  • OFDM-PON Orthogonal Frequency Division multiplexing-passive optical network
  • FIG. 1 is applied to an OFDM-PON according to an embodiment of the present invention.
  • the communication method applied to the OFDM-PON includes the following steps:
  • Step S10 when data is transmitted between the plurality of optical network units, each of the optical network units as the sender respectively transmits the first data according to the preset first carrier frequency band to each of the optical networks as the receiver. unit;
  • an optical network unit is represented by an ONU (Optical Network Unit), and an optical line terminal is represented by an OLT (optical line terminal).
  • the first carrier frequency band is a frequency band range in which a carrier used for transmitting the first data between the pair of optical network units is located.
  • the first carrier frequency band preset by each pair of optical network units may be set according to actual needs, and the first carrier frequency bands preset by each pair of optical network units do not overlap each other, so as to be received by the optical network unit as the receiving side.
  • the first data is sent from the optical network unit that is the sender, the first data corresponding to the optical network unit that is the sender may be extracted according to the first carrier frequency band.
  • the first carrier frequency band may be preset before the ONU transmits data, or may be dynamically allocated when the ONU transmits data.
  • FIG. 2 is a schematic diagram of the refinement process of step S10 in FIG. 1, and step S10 includes:
  • Step S11 when the plurality of optical network units that are the senders transmit the first data to the plurality of optical network units that are the receivers, each of the optical network units that are the senders are respectively sent according to the preset first carrier frequency band.
  • the first data is modulated
  • each of the optical network units ONUs has a built-in modulator, such as MZM (Mach-Zehnder Modulator).
  • MZM Machine-Zehnder Modulator
  • the first data to be sent is first modulated by its built-in MZM, that is, the first data to be sent is loaded into its preset first carrier frequency range. On the carrier.
  • Step S12 each of the optical network units as the sender sends the modulated first data to the first optical splitter, so that the first optical splitter performs the received plurality of the modulated first data.
  • the second to-be-extracted data generated after the combining process is sent to the optical line terminal, and the second to-be-extracted data is reflected by the optical line terminal to each of the optical network units as receivers.
  • each ONU performs E/O (electrical to optical conversion) conversion on the modulated first data, and then sends the first data to the first optical splitter.
  • the first beam splitter may be an N:1 first beam splitter.
  • the first optical splitter combines the modulated first data from the plurality of ONUs, and finally combines one optical signal (ie, the second data to be extracted), and then the first optical splitter further extracts the second to be extracted
  • the data is sent to the OLT.
  • a light reflector and an uplink detector are disposed on the OLT side.
  • the light reflector may be a partial mirror or a FBG (fiber-brag-grating) and a second beam splitter.
  • the OLT After receiving the second data to be extracted, the OLT allocates energy entering the FBG and energy entering the uplink detector according to an actual situation by the second optical splitter, and reflects the received second data to be extracted back through the FBG.
  • the reflected second data to be extracted is split at a remote node by an optical splitter with a split ratio of 1:N, and sent to each ONU side, that is, each ONU receives a copy.
  • the second data to be extracted that is reflected.
  • the FBG can reflect each of the uplink data separately, and the reflected second data to be extracted needs to be amplified to increase its power, thereby ensuring that its power can support the error-free transmission after reflection.
  • Step S20 each optical network unit as a receiver receives first data from the optical network unit as a sender according to the preset first carrier frequency band;
  • the optical network unit as the sender when the optical network unit as the sender is different or the optical network unit as the receiver is different, the optical network unit is preset to transmit or receive data.
  • the first carrier frequency bands are all different. That is to say, for a pair of optical network units respectively acting as a sender and a receiver, the frequency band used for transmitting data between them is different from the other pair of two optical networks respectively serving as a sender and a receiver. unit.
  • step S20 includes: each of the optical network units as receivers respectively extract corresponding correspondences in the second to-be-extracted data according to a first carrier frequency band preset by each of the optical network units as a receiver The first data.
  • each of the ONUs After each of the ONUs receives the second to-be-extracted data, an O/E (optical to electrical) conversion is performed on the received second reflected data to be received, and each ONU is received as a receiver.
  • the first carrier frequency band corresponding to the data is different. Therefore, the first data corresponding to each ONU can be extracted on the ONU side according to the first carrier frequency band corresponding to each ONU.
  • each of the optical network units as the sender transmits the first data to each of the optical network units as the receiver according to the preset first carrier frequency band, as each of the receivers
  • the optical network unit receives the first data from the optical network unit as a sender according to the preset first carrier frequency band, so that mutual communication between multiple groups of user terminals can be simultaneously implemented, and optical network communication is improved. Flexibility and efficiency and speed of optical network communications, and reduced costs.
  • FIG. 3 is a schematic flowchart diagram of a second embodiment of a communication method applied to an OFDM-PON according to an embodiment of the present invention.
  • the communication method applied to the OFDM-PON further includes the following steps:
  • Step S30 when the plurality of optical network units send the second data to the optical line terminal, each of the optical network units sends the second data to the optical line terminal according to the preset second carrier frequency band, where each of the optical network units The preset second carrier frequency bands are different;
  • the second carrier frequency band is a frequency band range in which the carrier used by the optical network unit to transmit the second data to the optical line terminal.
  • the second carrier frequency band preset by each of the optical network units may be set according to actual needs, and the second carrier frequency bands preset by each optical network unit do not overlap each other, thereby receiving each from the optical line terminal.
  • the second data corresponding to each optical network unit may be extracted according to the second carrier frequency band.
  • the second carrier frequency band may be preset before the ONU transmits data, or may be dynamically allocated when the ONU transmits data.
  • FIG. 4 is a schematic flowchart of the refinement of step S30 in FIG. 3, where step S30 includes:
  • Step S31 when the plurality of optical network units send the second data to the optical line terminal, each of the optical network units respectively modulates the second data to be sent according to the preset second carrier frequency band;
  • each of the optical network units ONUs has a built-in modulator, such as MZM (Mach-Zehnder Modulator).
  • MZM Machine-Zehnder Modulator
  • the uplink data or VPN data to be transmitted is first modulated by its built-in MZM, that is, the uplink data to be transmitted.
  • the VPN data is loaded onto its preset carrier in the second carrier frequency range.
  • Step S32 each of the optical network units sends the modulated second data to the first optical splitter, where the first optical splitter combines the modulated second data from the plurality of optical network units.
  • the road is processed and sent to the optical line terminal.
  • each ONU performs E/O (electrical to optical conversion) conversion on the modulated second data, and then sends the data to the first optical splitter.
  • the first beam splitter may be an N:1 first beam splitter.
  • the first optical splitter combines the modulated second data from the plurality of ONUs, and finally combines one optical signal, and then the first optical splitter transmits the combined optical signal to the OLT.
  • O/E (optical to electrical) conversion is performed on the received optical signal to generate an integrated electrical signal, and an uplink is provided on the OLT side.
  • the link detector receives the combined electrical signal through the uplink detector.
  • the optical line terminal may separately extract the corresponding number of each ONU according to the second carrier frequency band corresponding to each ONU. Two data. Therefore, the communication method provided by the embodiment can enable multiple optical network units to simultaneously transmit data to the optical line terminal, that is, can realize uplink data transmission of multiple user terminals, effectively improving the flexibility of the optical network communication, and improving the flexibility. The efficiency and speed of optical network communication and reduced costs.
  • Step S40 when the plurality of optical network units receive the third data from the optical line terminal, each optical network unit receives the first one sent by the optical line terminal according to a third carrier frequency band preset by each optical network unit. Data to be extracted;
  • the third carrier frequency band is a frequency band range corresponding to when the optical network unit extracts the third data from the optical line terminal.
  • the third carrier frequency band preset by each of the optical network units may be set according to actual needs, and the third carrier frequency bands preset by each optical network unit do not overlap each other, so that each optical network unit receives the received from each optical network unit.
  • the third data corresponding to the optical line terminal may be extracted according to the third carrier frequency band.
  • the third carrier frequency band may be preset before the OLT transmits data, or may be dynamically allocated when the OLT transmits data.
  • each ONU when the OLT needs to separately send multiple sets of downlink data (that is, the foregoing third data) to multiple ONUs, each ONU correspondingly receives a third data, and firstly each third on the OLT side.
  • the data is modulated according to the third carrier frequency band preset by the ONU corresponding to the third data, and then the plurality of modulated third data are subjected to E/O conversion and then combined.
  • the final combination is the first data to be extracted, and the OLT sends the first data to be extracted.
  • the optical splitter with a split ratio of 1:N at the remote node is used.
  • the branching is performed and sent to each ONU, that is, each ONU receives one copy of the first data to be extracted.
  • each optical network unit extracts corresponding third data in the first to-be-extracted data according to a third carrier frequency band preset by each optical network unit, and each of the optical network units presets a third.
  • the carrier frequency bands are all different.
  • each ONU After receiving the first data to be extracted, each ONU performs O/E (optical to electrical) conversion on the received first to-be-extracted data, and sets a downlink detector on the OUN side, and passes the downlink.
  • the link detector receives the first data to be extracted.
  • the third carrier frequency band corresponding to each ONU is different. Therefore, the third data corresponding to each ONU can be extracted on the ONU side according to the third carrier frequency band corresponding to each ONU.
  • the communication method applied to the OFDM-PON provided by the embodiment of the present invention when the plurality of optical network units send the second data to the optical line terminal, each of the optical network units sends the second data according to the preset second carrier frequency band.
  • the optical line terminal can enable multiple optical network units to simultaneously transmit data to the optical line terminal, that is, enable uplink data transmission of multiple user terminals; when multiple optical network units receive the third data from the optical line terminal
  • Each optical network unit receives the first data to be extracted sent by the optical line terminal according to a third carrier frequency band preset by each optical network unit, and each optical network unit is respectively preset according to each optical network unit.
  • the carrier frequency band extracts corresponding third data in the first to-be-extracted data, so that multiple optical network units can simultaneously receive data from the optical line terminal, that is, downlink data transmission of multiple user terminals can be implemented.
  • the communication method applied to the OFDM-PON provided by the embodiment of the invention effectively improves the flexibility of the optical network communication, improves the efficiency and speed of the optical network communication, and reduces the cost.
  • FIG. 5 is a schematic diagram of the principle of transmitting data by the optical network unit
  • FIG. 6 is a schematic diagram of the principle of receiving data by the optical network unit
  • the following is an example of setting n ONUs as an example.
  • Each ONU is preset with a different first carrier frequency band.
  • the carriers used by different ONU users to transmit data occupy different frequency bands (ie, do not overlap).
  • the i-th ONU terminal ONUi is For example, when it is used as the transmitting end, the corresponding set carrier frequency band is ⁇ i , and for the frequency band ⁇ i , it is further divided into n sub-bands, which are respectively set to ⁇ i-1 ... ⁇ ik ... ⁇ in , where ⁇ Ik indicates the frequency band occupied by the carrier used by the ONUi as the transmitting end and the ONUk as the receiving end.
  • ⁇ Ik indicates the frequency band occupied by the carrier used by the ONUi as the transmitting end and the ONUk as the receiving end.
  • the corresponding first carrier frequency band can be reassigned to other ONU terminals for VPN communication, and the number of first carrier frequency bands can be dynamically determined according to actual conditions. Flexible adjustments are required.
  • the ONUk When the ONUk receives the data reflected from the OLT end as the receiving end, the ONUk receives the entire signal from the OLT end, and the signal includes all the VPN signals, and only needs to extract the first carrier frequency band preset by the ONUk end in the received data.
  • the data can be.
  • the uplink data, the downlink data, and the VPN data are converted into binary data and OFDM data by digital signal processing before or after transmission, and the operations of the process include: serial-to-parallel conversion SP, Parallel-to-serial conversion PS, Fourier transform FFT, inverse Fourier transform IFFT, mapping mapping, digital-to-analog conversion ADC, analog-to-digital conversion DAC, insertion and removal of cyclic prefix Cyclic prefix, and equalization Equalization.
  • the embodiment of the invention further provides a communication device applied to an OFDM-PON.
  • FIG. 7 is applied to an OFDM-PON according to an embodiment of the present invention.
  • the communication device applied to the OFDM-PON includes:
  • the first sending module 10 is configured to, when transmitting data between the plurality of optical network units, transmit the first data to each of the receivers according to a first carrier frequency band preset by each of the optical network units as a sender The optical network unit;
  • an optical network unit is represented by an ONU (Optical Network Unit), and an optical line terminal is represented by an OLT (optical line terminal).
  • An optical network unit acting as a sender transmits the first data to an optical network unit as a receiver
  • the optical network unit as the sender and the optical network unit as the receiver are referred to as a pair of optical network units.
  • the first carrier frequency band is a frequency band range in which a carrier used for transmitting the first data between the pair of optical network units is located.
  • the first carrier frequency band preset by each pair of optical network units may be set according to actual needs, and the first carrier frequency bands preset by each pair of optical network units do not overlap each other, so as to be received by the optical network unit as the receiving side.
  • the first data corresponding to the optical network unit that is the sender may be extracted according to the first carrier frequency band.
  • the first carrier frequency band may be preset before the ONU transmits data, or may be dynamically allocated when the ONU transmits data.
  • FIG. 8 is a schematic diagram of a refinement function module of the first sending module in FIG. 7, where the first sending module 10 includes:
  • the first modulating unit 11 is configured to, when the plurality of optical network units that are the transmitting parties transmit the first data to the plurality of optical network units that are the receiving parties, respectively, according to the presets of each of the optical network units that are the transmitting parties Modulating the first data to be transmitted in a carrier frequency band;
  • each of the optical network units ONUs has a built-in modulator, such as MZM (Mach-Zehnder Modulator).
  • MZM Machine-Zehnder Modulator
  • the first data to be sent is first modulated by its built-in MZM, that is, the first data to be sent is loaded into its preset first carrier frequency range. On the carrier.
  • the first transmitting unit 12 is configured to send first data modulated by each of the optical network units as a sender to the first optical splitter, where the first optical splitter will receive the plurality of the modulated
  • the second data to be extracted generated after the first data is combined and sent to the optical line terminal, and the second data to be extracted is reflected by the optical line terminal to each of the light as a receiver Network unit.
  • each ONU performs E/O (electrical to optical conversion) conversion on the modulated first data, and then sends the first data to the first optical splitter.
  • the first beam splitter may be an N:1 first beam splitter.
  • the first optical splitter combines the modulated first data from the plurality of ONUs, and finally combines one optical signal (ie, the second data to be extracted), and then the first optical splitter further extracts the second to be extracted
  • the data is sent to the OLT.
  • a light reflector and an uplink detector are disposed on the OLT side.
  • the light reflector may be a partial mirror or a FBG (fiber-brag-grating) and a second beam splitter.
  • the energy entering the FBG and the energy entering the uplink detector are allocated according to the actual situation by the second optical splitter, and the received second data to be extracted is reflected back to the transmission fiber by the FBG.
  • the reflected second data to be extracted is split at a remote node by an optical splitter with a split ratio of 1:N, and sent to each ONU side, that is, each ONU receives a reflected one.
  • the second data to be extracted can reflect each of the uplink data separately, and the reflected second data to be extracted needs to be amplified to increase its power, thereby ensuring that its power can support the error-free transmission after reflection.
  • the first receiving module 20 is configured to receive, according to the first carrier frequency band preset by each of the optical network units as a receiver, first data from the optical network unit as a sender;
  • the optical network unit as the sender when the optical network unit as the sender is different or the optical network unit as the receiver is different, the optical network unit is preset to transmit or receive data.
  • the first carrier frequency bands are all different. That is to say, for a pair of optical network units respectively acting as a sender and a receiver, the frequency band used for transmitting data between them is different from the other pair of two optical networks respectively serving as a sender and a receiver. unit.
  • the first receiving module 20 is configured to extract corresponding first data in the second to-be-extracted data according to a first carrier frequency band preset by each of the optical network units as a receiving side.
  • each of the ONUs After each of the ONUs receives the second to-be-extracted data, an O/E (optical to electrical) conversion is performed on the received second reflected data to be received, and each ONU is received as a receiver.
  • the first carrier frequency band corresponding to the data is different. Therefore, the first data corresponding to each ONU can be extracted on the ONU side according to the first carrier frequency band corresponding to each ONU.
  • each of the optical network units as the sender when transmitting data between the plurality of optical network units, each of the optical network units as the sender transmits the first data according to the preset first carrier frequency band. Up to each of the optical network units as receivers, each of the optical network units as receivers receives first data from the optical network unit as a sender according to the preset first carrier frequency band, Thereby, mutual communication between multiple groups of user terminals can be realized at the same time, the flexibility of optical network communication and the efficiency and speed of optical network communication are improved, and the cost is reduced.
  • FIG. 9 is a communication device applied to an OFDM-PON according to an embodiment of the present invention.
  • the communications device applied to the OFDM-PON further includes:
  • the second sending module 30 is configured to, when the plurality of optical network units send the second data to the optical line terminal, send the second data to the optical line terminal according to the second carrier frequency band preset by each of the optical network units, and each The second carrier frequency band preset by the optical network unit is different;
  • the second carrier frequency band is a frequency band range in which the carrier used by the optical network unit to transmit the second data to the optical line terminal.
  • the second carrier frequency band preset by each of the optical network units may be set according to actual needs, and the second carrier frequency bands preset by each optical network unit do not overlap each other, thereby receiving each from the optical line terminal.
  • the second data corresponding to each optical network unit may be extracted according to the second carrier frequency band.
  • the second carrier frequency band may be preset before the ONU transmits data, or may be dynamically allocated when the ONU transmits data.
  • FIG. 10 is a schematic diagram of a refinement function module of the second sending module in FIG. 9, and the second sending module 30 includes:
  • the second modulating unit 31 is configured to, when the plurality of optical network units send the second data to the optical line terminal, respectively modulate the second data to be sent according to the second carrier frequency band preset by each of the optical network units;
  • each of the optical network units ONUs has a built-in modulator, such as MZM (Mach-Zehnder Modulator).
  • MZM Machine-Zehnder Modulator
  • the uplink data or VPN data to be transmitted is first modulated by its built-in MZM, that is, the uplink data to be transmitted.
  • the VPN data is loaded onto its preset carrier in the second carrier frequency range.
  • a second transmitting unit 32 configured to transmit second data modulated by each of the optical network units to a first optical splitter for the first optical splitter to modulate from a plurality of the optical network units The second data is combined and sent to the optical line terminal.
  • each ONU performs E/O (electrical to optical conversion) conversion on the modulated second data, and then sends the data to the first optical splitter.
  • the first beam splitter may be an N:1 first beam splitter.
  • the first beam splitter will adjust the tone from multiple ONUs
  • the processed second data is combined and finally combined to form an optical signal, and then the first optical splitter transmits the combined optical signal to the OLT.
  • O/E (optical to electrical) conversion is performed on the received optical signal to generate an integrated electrical signal, and an uplink is provided on the OLT side.
  • the link detector receives the combined electrical signal through the uplink detector.
  • the optical line terminal may separately extract the corresponding number of each ONU according to the second carrier frequency band corresponding to each ONU. Two data. Therefore, the communication method provided by the embodiment can enable multiple optical network units to simultaneously transmit data to the optical line terminal, that is, can realize uplink data transmission of multiple user terminals, effectively improving the flexibility of the optical network communication, and improving the flexibility. The efficiency and speed of optical network communication and reduced costs.
  • the second receiving module 40 is configured to receive, when the plurality of optical network units receive the third data from the optical line terminal, the first one that is sent by the optical line terminal according to a third carrier frequency band preset by each optical network unit. Data to be extracted;
  • the third carrier frequency band is a frequency band range corresponding to when the optical network unit extracts the third data from the optical line terminal.
  • the third carrier frequency band preset by each of the optical network units may be set according to actual needs, and the third carrier frequency bands preset by each optical network unit do not overlap each other, so that each optical network unit receives the received from each optical network unit.
  • the third data corresponding to the optical line terminal may be extracted according to the third carrier frequency band.
  • the third carrier frequency band may be preset before the OLT transmits data, or may be dynamically allocated when the OLT transmits data.
  • each ONU when the OLT needs to separately send multiple sets of downlink data (that is, the foregoing third data) to multiple ONUs, each ONU correspondingly receives a third data, and firstly each third on the OLT side.
  • the data is modulated according to the third carrier frequency band preset by the ONU corresponding to the third data, and then the plurality of modulated third data are subjected to E/O conversion and combined processing, and finally the combined path is one way.
  • the first data to be extracted is described by the OLT, and the OLT sends the first data to be extracted, and after the first data to be extracted is transmitted through the optical fiber, the optical node is split at a remote node by a splitting ratio of 1:N, and is sent. To each ONU, that is, each ONU receives a copy of the first to-be-extracted data.
  • the extracting module 50 is configured to extract corresponding third data in the first to-be-extracted data according to a third carrier frequency band preset by each optical network unit, and each of the optical network units is preset to a third The carrier frequency bands are all different.
  • each ONU After receiving the first data to be extracted, each ONU performs O/E (optical to electrical) conversion on the received first to-be-extracted data, and sets a downlink detector on the OUN side, and passes the downlink.
  • the link detector receives the first data to be extracted.
  • the third carrier frequency band corresponding to each ONU is different. Therefore, the third data corresponding to each ONU can be extracted on the ONU side according to the third carrier frequency band corresponding to each ONU.
  • the communication device applied to the OFDM-PON according to the embodiment of the present invention when the plurality of optical network units send the second data to the optical line terminal, each of the optical network units sends the second data according to the preset second carrier frequency band.
  • the optical line terminal can enable multiple optical network units to simultaneously transmit data to the optical line terminal, that is, enable uplink data transmission of multiple user terminals; when multiple optical network units receive the third data from the optical line terminal
  • Each optical network unit receives the first data to be extracted sent by the optical line terminal according to a third carrier frequency band preset by each optical network unit, and each optical network unit is respectively preset according to each optical network unit.
  • the carrier frequency band extracts corresponding third data in the first to-be-extracted data, so that multiple optical network units can simultaneously receive data from the optical line terminal, that is, downlink data transmission of multiple user terminals can be implemented.
  • the communication method applied to the OFDM-PON provided by the embodiment of the invention effectively improves the flexibility of the optical network communication, improves the efficiency and speed of the optical network communication, and reduces the cost.
  • first sending module 10 and the second sending module 30 may be the same module, and the first receiving module 20 and the second receiving module 40 may be the same module.
  • each ONU is preset with a different first carrier frequency band.
  • the carriers used by different ONU users to transmit data occupy different frequency bands (ie, do not overlap), as shown in FIG. 5 and FIG. 6, the i-th ONU end ONUi is For example, when it is used as the transmitting end, the corresponding set carrier frequency band is ⁇ i , and for the frequency band ⁇ i , it is further divided into n sub-bands, which are respectively set to ⁇ i-1 ... ⁇ ik ...
  • ⁇ Ik indicates the frequency band occupied by the carrier used by the ONUi as the transmitting end and the ONUk as the receiving end.
  • the ONUk When the ONUk receives the data reflected from the OLT side as the receiving end, the ONUk receives the data from the ONUk.
  • the entire signal at the OLT end, the signal contains all the VPN signals, and only needs to extract the data corresponding to the first carrier frequency band preset by the ONUk end in the received data.
  • the uplink data, the downlink data, and the VPN data are converted into binary data and OFDM data by digital signal processing before or after transmission, and the operations of the process include: serial-to-parallel conversion SP, Parallel-to-serial conversion PS, Fourier transform FFT, inverse Fourier transform IFFT, mapping mapping, digital-to-analog conversion ADC, analog-to-digital conversion DAC, insertion and removal of cyclic prefix Cyclic prefix, and equalization Equalization.
  • An embodiment of the present invention further provides a communication system applied to an OFDM-PON, as shown in FIG. 11, the communication system includes an optical line terminal, a plurality of optical network units, and the optical line terminal and each of the light An optical distribution network between network elements, the optical line terminal comprising a reflection module; the optical distribution network comprising a first optical splitter; the optical network unit comprising a first transmitting module and a first receiving module; in a plurality of optical networks
  • the first sending module is configured to send first data to the first optical splitter according to a first carrier frequency band preset by each of the optical network units as a sender;
  • the first The optical splitter is configured to combine the received first data to generate second to-be-extracted data, and send the generated second to-be-extracted data to the reflective module;
  • the reflective module is configured to receive the second to-be-received Extracting data is reflected to the first beam splitter; the first beam splitter is further configured to split the received second data to be extracted and send it to each
  • the optical network unit further includes a second sending module, a second receiving module, and an extracting module.
  • the second sending module is configured to Transmitting second data to the first optical splitter according to a second carrier frequency band preset by each of the optical network units, wherein a second carrier frequency band preset by each of the optical network units is different;
  • a splitter is further configured to send the received second data, or the second data and the first data, to the optical line terminal; when the optical line terminal sends the third data to the plurality of optical network units, Transmitting, by the optical line terminal, a third carrier frequency band preset by each of the optical network units First to extract data to the first optical splitter; the first optical splitter splits the received first to-be-extracted data and sends the data to a second receiving module of each of the optical network units; the second receiving The module is configured to receive the first data to be extracted; the extracting module is configured to extract corresponding third data in the first data to be
  • the second sending module includes: a second modulating unit, configured to: when the plurality of optical network units send the second data to the optical line terminal, respectively, according to the second carrier preset by each of the optical network units The frequency band is modulated by the second data to be transmitted; the second transmitting unit is configured to send the second data modulated by each of the optical network units to the first optical splitter, wherein the first optical splitter will be from multiple The modulated second data of the optical network unit is combined and transmitted to the optical line terminal.
  • a second modulating unit configured to: when the plurality of optical network units send the second data to the optical line terminal, respectively, according to the second carrier preset by each of the optical network units The frequency band is modulated by the second data to be transmitted
  • the second transmitting unit is configured to send the second data modulated by each of the optical network units to the first optical splitter, wherein the first optical splitter will be from multiple The modulated second data of the optical network unit is combined and transmitted to the optical line terminal.
  • the first sending module includes: a first modulating unit configured to: when the plurality of optical network units that are the transmitting parties send the first data to the plurality of optical network units that are the receiving parties, respectively, according to the sending side
  • the first carrier frequency band preset by each of the optical network units is modulated by the first data to be transmitted
  • the first sending unit is configured to send the first data modulated by each of the optical network units as the sender to The first optical splitter, for the first optical splitter to combine the received plurality of the modulated first data to generate a second to-be-extracted data, and send the generated second to-be-extracted data To the reflection module.
  • first sending module and the second sending module may be the same module, and the first receiving module and the second receiving module may be the same module.
  • the first receiving module is configured to extract corresponding first data in the second to-be-extracted data according to a first carrier frequency band preset by each of the optical network units as a receiving side.
  • optical network unit the optical line terminal, and the optical distribution network in the OFDM-PON-based communication system provided by this embodiment may refer to each of the foregoing embodiments, and details are not described herein again.
  • the optical reflector of the optical line terminal is the optical reflector in the above embodiment
  • the optical distribution network is an optical transmission path between the optical network unit and the optical line terminal
  • the first optical splitter of the optical distribution network is the above implementation.
  • the OFDM-PON-based communication system is configured by providing a light reflection module, and the light reflection module may be a partial mirror or an FBG and a second beam splitter, thereby
  • the data sent by the ONU to the OLT can be sent to the reflection module for the reflection module to partially reflect the received data to the ONU to implement communication between each ONU.
  • the data sent by the ONU to the OLT can also be partially passed through the reflection module. It is sent to the uplink receiver for the OLT to transmit the data received by the uplink receiver to the peripheral device, thereby implementing communication between each ONU and the peripheral device.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • each device/function module/functional unit in the above embodiment When each device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the above technical solution can simultaneously realize mutual communication between multiple groups of user terminals, improve flexibility of optical network communication, efficiency and speed of optical network communication, and reduce cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

一种应用于OFDM-PON的通信方法、通信装置和系统,包括以下步骤:在多个光网络单元之间传输数据时,作为发送方的每个所述光网络单元根据预置的第一载波频带发送第一数据至作为接收方的每个所述光网络单元;作为接收方的每个所述光网络单元根据预置的所述第一载波频带接收来自作为发送方的所述光网络单元的第一数据;其中,在作为发送方的所述光网络单元不同或在作为接收方的所述光网络单元不同时,所述光网络单元之间发送或接收数据所预置的所述第一载波频带均不同。上述技术方案能够同时实现多组用户终端之间的相互通信,提高了光网络通信的灵活性以及光网络通信的效率和速度。

Description

应用于OFDM-PON的通信方法、装置及系统 技术领域
本文涉及通信技术领域,尤其涉及一种应用于OFDM-PON的通信方法、装置及系统。
背景技术
相关技术中通常在OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)的光接入网络系统中引入频分复用的技术,将每个ONU(Optical Network Unit,光网络单元)要传输的VPN(Virtual Private Network,虚拟专用网络)数据传输到OLT(optical line terminal,光线路终端)中,通过反射部分信号将下行数据分别传递到目标用户终端。相关技术的缺陷在于无法同时实现多组用户终端之间的相互通信。
发明内容
本发明实施例的主要目的在于提供一种应用于OFDM-PON的通信方法、装置及系统,旨在解决OFDM-PON中无法同时实现多组用户终端之间的相互通信的技术问题。
为了实现上述目的,本发明实施例提供一种应用于OFDM-PON的通信方法,所述通信方法包括以下步骤:
在多个光网络单元之间传输数据时,作为发送方的每个所述光网络单元根据预置的第一载波频带发送第一数据至作为接收方的每个所述光网络单元;
作为接收方的每个所述光网络单元根据预置的所述第一载波频带接收来自作为发送方的所述光网络单元的第一数据;
其中,在作为发送方的所述光网络单元不同或在作为接收方的所述光网络单元不同时,所述光网络单元之间发送或接收数据所预置的所述第一载波 频带均不同。
可选地,所述通信方法还包括以下步骤:
在多个光网络单元发送第二数据至光线路终端时,每个所述光网络单元根据预置的第二载波频带发送第二数据至光线路终端,每个所述光网络单元预置的第二载波频带均不相同;
在多个光网络单元接收来自所述光线路终端的第三数据时,每个光网络单元接收所述光线路终端按照每个光网络单元预置的第三载波频带发送的第一待提取数据;
每个光网络单元分别按照每个光网络单元预置的第三载波频带在所述第一待提取数据中提取对应的第三数据,每个所述光网络单元预置的第三载波频带均不相同。
可选地,所述在多个光网络单元发送第二数据至光线路终端时,每个所述光网络单元根据预置的第二载波频带发送第二数据至光线路终端的步骤包括:
在多个光网络单元发送第二数据至光线路终端时,每个所述光网络单元分别根据预置的第二载波频带对待发送的第二数据进行调制;
每个所述光网络单元将经过调制的第二数据发送至第一分光器,以供所述第一分光器将来自多个所述光网络单元的经过调制的第二数据进行合路处理后发送至所述光线路终端。
可选地,所述在多个光网络单元之间传输数据时,作为发送方的每个所述光网络单元根据预置的第一载波频带发送第一数据至作为接收方的每个所述光网络单元的步骤包括:
在多个作为发送方的光网络单元发送第一数据至多个作为接收方的光网络单元时,作为发送方的每个所述光网络单元分别根据预置的第一载波频带对待发送的第一数据进行调制;
作为发送方的每个所述光网络单元将经过调制的第一数据发送至第一分光器,以供所述第一分光器将接收的多个所述经过调制的第一数据进行合路处理后生成的第二待提取数据发送至所述光线路终端,并通过所述光线路终 端将所述第二待提取数据反射至作为接收方的每个所述光网络单元。
可选地,所述作为接收方的每个所述光网络单元根据预置的所述第一载波频带接收来自作为发送方的所述光网络单元的第一数据的步骤包括:
作为接收方的每个所述光网络单元分别按照作为接收方的每个所述光网络单元预置的第一载波频带在所述第二待提取数据中提取对应的第一数据。
此外,为了实现上述目的,本发明还提供一种应用于OFDM-PON的通信装置,所述通信装置包括:
第一发送模块,设置为在多个光网络单元之间传输数据时,根据作为发送方的每个所述光网络单元预置的第一载波频带发送第一数据至作为接收方的每个所述光网络单元;
第一接收模块,设置为根据作为接收方的每个所述光网络单元预置的所述第一载波频带接收来自作为发送方的所述光网络单元的第一数据;
其中,在作为发送方的所述光网络单元不同或在作为接收方的所述光网络单元不同时,所述光网络单元之间发送或接收数据所预置的所述第一载波频带均不同。
可选地,所述通信装置还包括:
第二发送模块,设置为在多个光网络单元发送第二数据至光线路终端时,根据每个所述光网络单元预置的第二载波频带发送第二数据至光线路终端,每个所述光网络单元预置的第二载波频带均不相同;
第二接收模块,设置为在多个光网络单元接收来自所述光线路终端的第三数据时,接收所述光线路终端按照每个光网络单元预置的第三载波频带发送的第一待提取数据;
提取模块,设置为分别按照每个光网络单元预置的第三载波频带在所述第一待提取数据中提取对应的第三数据,每个所述光网络单元预置的第三载波频带均不相同。
可选地,所述第二发送模块包括:
第二调制单元,设置为在多个光网络单元发送第二数据至光线路终端时,分别根据每个所述光网络单元预置的第二载波频带对待发送的第二数据进行调制;
第二发送单元,设置为将经过每个所述光网络单元调制的第二数据发送至第一分光器,以供所述第一分光器将来自多个所述光网络单元的经过调制的第二数据进行合路处理后发送至所述光线路终端。
可选地,所述第一发送模块包括:
第一调制单元,设置为在多个作为发送方的光网络单元发送第一数据至多个作为接收方的光网络单元时,分别根据作为发送方的每个所述光网络单元预置的第一载波频带对待发送的第一数据进行调制;
第一发送单元,设置为将经过作为发送方的每个所述光网络单元调制的第一数据发送至第一分光器,以供所述第一分光器将接收的多个所述经过调制的第一数据进行合路处理后生成的第二待提取数据发送至所述光线路终端,并通过所述光线路终端将所述第二待提取数据反射至作为接收方的每个所述光网络单元。
可选地,所述第一接收模块设置为分别按照作为接收方的每个所述光网络单元预置的第一载波频带在所述第二待提取数据中提取对应的第一数据。
此外,为了实现上述目的,本发明还提供一种应用于OFDM-PON的通信系统,所述通信系统包括光线路终端、若干光网络单元和连接于所述光线路终端和每个所述光网络单元之间的光分配网络,
所述光线路终端包括反射模块;
所述光分配网络包括第一分光器;
所述光网络单元包括第一发送模块和第一接收模块;
所述第一发送模块,设置为在多个光网络单元之间传输数据时,根据作为发送方的每个所述光网络单元预置的第一载波频带发送第一数据至所述第一分光器;
所述第一分光器设置为将接收的第一数据进行合路,以生成第二待提取 数据,并将生成的第二待提取数据发送至所述反射模块;
所述反射模块设置为将接收的信号部分反射至所述第一分光器;
所述第一分光器还设置为将接收的第二待提取数据进行分光后发送至作为接收方的每个所述光网络单元;
所述第一接收模块设置为根据作为接收方的每个所述光网络单元预置的所述第一载波频带接收来自作为发送方的所述光网络单元的第一数据;
其中,在作为发送方的所述光网络单元不同或在作为接收方的所述光网络单元不同时,所述光网络单元之间发送或接收数据所预置的所述第一载波频带均不同。
可选地,
所述光网络单元还包括第二发送模块、第二接收模块和提取模块,
所述第二发送模块,设置为在多个光网络单元发送第二数据至所述光线路终端时,根据每个所述光网络单元预置的第二载波频带发送第二数据至所述第一分光器,其中,每个所述光网络单元预置的第二载波频带均不相同;
所述第一分光器还设置为将接收的第二数据,或者第二数据和第一数据进行合路后发送至所述光线路终端;
在所述光线路终端,还设置为在发送第三数据至多个光网络单元时,按照每个所述光网络单元预置的第三载波频带发送第一待提取数据至所述第一分光器;
所述第一分光器,还设置为对接收的第一待提取数据进行分光后发送至每个所述光网络单元的第二接收模块;
所述第二接收模块,设置为接收所述第一待提取数据;
所述提取模块,设置为分别按照每个光网络单元预置的第三载波频带在所述第一待提取数据中提取对应的第三数据,每个所述光网络单元预置的第三载波频带均不相同。
可选地,
所述第二发送模块包括:
第二调制单元,设置为在多个光网络单元发送第二数据至光线路终端时,分别根据每个所述光网络单元预置的第二载波频带对待发送的第二数据进行调制;
第二发送单元,设置为将经过每个所述光网络单元调制的第二数据发送至第一分光器,以供所述第一分光器将来自多个所述光网络单元的经过调制的第二数据进行合路后发送至所述光线路终端。
可选地,
所述第一发送模块包括:
第一调制单元,设置为在多个作为发送方的光网络单元发送第一数据至多个作为接收方的光网络单元时,分别根据作为发送方的每个所述光网络单元预置的第一载波频带对待发送的第一数据进行调制;
第一发送单元,设置为将经过作为发送方的每个所述光网络单元调制的第一数据发送至所述第一分光器,以供所述第一分光器将接收的多个所述经过调制的第一数据进行合路,以生成第二待提取数据,并将生成的第二待提取数据发送至所述反射模块。
可选地,所述第一接收模块是设置为分别按照作为接收方的每个所述光网络单元预置的第一载波频带在所述第二待提取数据中提取对应的第一数据。
为了实现上述目的,本发明还提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行上述的方法。
本发明实施例提供的应用于OFDM-PON的通信方法、装置及系统,在多个光网络单元之间传输数据时,作为发送方的每个所述光网络单元根据预置的第一载波频带发送第一数据至作为接收方的每个所述光网络单元,作为接收方的每个所述光网络单元根据预置的所述第一载波频带接收来自作为发送方的所述光网络单元的第一数据,从而能够同时实现多组用户终端之间的 相互通信,提高了光网络通信的灵活性以及光网络通信的效率和速度,并降低了成本。
附图概述
图1为本发明实施例应用于OFDM-PON的通信方法第一实施例的流程示意图;
图2为图1中步骤S10的细化流程示意图;
图3为本发明实施例应用于OFDM-PON的通信方法第二实施例的流程示意图;
图4为图3中步骤S30的细化流程示意图;
图5为光网络单元发送数据的原理示意图;
图6为光网络单元接收数据的原理示意图;
图7为本发明实施例应用于OFDM-PON的通信装置第一实施例的功能模块示意图;
图8为图7中第二发送模块的细化功能模块示意图;
图9为本发明实施例应用于OFDM-PON的通信装置第二实施例的功能模块示意图;
图10为图9中第二发送模块的细化功能模块示意图;
图11为本发明实施例中应用于OFDM-PON的通信系统的结构示意图。
本发明的较佳实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例提供一种应用于OFDM-PON(Orthogonal frequency division multiplexing-passive optical network,正交频分复用的无源光网络)的通信方法。
为了同时实现多组用户终端之间的相互通信,提高光网络通信的灵活性以及光网络通信的效率和速度,并降低成本,参照图1,图1为本发明实施例应用于OFDM-PON的通信方法第一实施例的流程示意图,在本实施例中,所述应用于OFDM-PON的通信方法包括以下步骤:
步骤S10,在多个光网络单元之间传输数据时,作为发送方的每个所述光网络单元分别根据预置的第一载波频带发送第一数据至作为接收方的每个所述光网络单元;
应当说明的是,在本实施例及以下实施例中,以ONU(Optical Network Unit,光网络单元)表示光网络单元,以OLT(optical line terminal,光线路终端)表示光线路终端。
一作为发送方的光网络单元发送第一数据至一作为接收方的光网络单元时,该作为发送方的光网络单元与该所为接收方的光网络单元称为一对光网络单元。所述第一载波频带即为所述一对光网络单元之间传输第一数据所采用的载波所处的频带范围。上述每对光网络单元所预置的第一载波频带可以根据实际需要进行设置,每对光网络单元所预置的第一载波频带彼此之间不重叠,从而在作为接收方的光网络单元接收到来自作为发送方的光网络单元发送的第一数据时,可以根据第一载波频带提取出该作为发送方的光网络单元所对应发送的第一数据。应当说明的是,第一载波频带可以在ONU传输数据之前预先设置,也可以在ONU传输数据时动态的分配。
可选地,参照图2,图2为图1中步骤S10的细化流程示意图,步骤S10包括:
步骤S11,在多个作为发送方的光网络单元发送第一数据至多个作为接收方的光网络单元时,作为发送方的每个所述光网络单元分别根据预置的第一载波频带对待发送的第一数据进行调制;
本实施例中,每一所述光网络单元ONU均内置有一调制器,例如可以为MZM(Mach-ZehnderModulator,马赫增德尔调制器)。在一ONU需要发送第一数据至另一ONU时,先将要发送的第一数据通过其内置的MZM进行调制,即将其要发送的第一数据加载到其预置的处于第一载波频带范围的载波上。
步骤S12,作为发送方的每个所述光网络单元将经过调制的第一数据发送至第一分光器,以供所述第一分光器将接收的多个所述经过调制的第一数据进行合路处理后生成的第二待提取数据发送至所述光线路终端,并通过所述光线路终端将所述第二待提取数据反射至作为接收方的每个所述光网络单元。
在本实施例中,每个ONU将经过调制的第一数据进行E/O(electrical to optical,电光转换)转换后发送至第一分光器。例如,若ONU的数量为N个,则第一分光器可以为N:1第一分光器。第一分光器将来自多个ONU的经过调制后的第一数据进行合路,并最终合成一路光信号(即上述第二待提取数据),然后第一分光器再将所述第二待提取数据发送至OLT。在OLT侧设置有光反射器和上行链路探测器,例如,所述光反射器可以为部分反射镜,或由FBG(fiber-brag-grating,光纤布拉格光栅)和第二分光器组成。当OLT接收到所述第二待提取数据后,通过第二分光器根据实际情况分配进入FBG的能量和进入上行链路探测器的能量,通过FBG将接收的所述第二待提取数据反射回传输光纤中,经过反射的所述第二待提取数据在远程节点被分光比为1:N的光分路器进行分路,并发送至每个ONU侧,即每个ONU均接收到一份经过反射的所述第二待提取数据。FBG可以分别反射上行的每个数据,反射的所述第二待提取数据需要经过放大处理以提升其功率,从而确保其功率可以支持反射后的无误码传输。
步骤S20,作为接收方的每个所述光网络单元根据预置的所述第一载波频带接收来自作为发送方的所述光网络单元的第一数据;
应当说明的是,在本实施例中,在作为发送方的所述光网络单元不同或在作为接收方的所述光网络单元不同时,所述光网络单元之间发送或接收数据所预置的所述第一载波频带均不同。也就是说,对于一对分别作为发送方和接收方的两光网络单元来说,其之间传输数据所采用载波所处的频带不同于另一对分别作为发送方和接收方的两光网络单元。
可选地,步骤S20包括:作为接收方的每个所述光网络单元分别按照作为接收方的每个所述光网络单元预置的第一载波频带在所述第二待提取数据中提取对应的第一数据。
在每个ONU接收到上述第二待提取数据后,先对接收到的经过反射的第二待提取数据进行O/E(optical to electrical,光电转换)转换,由于每个作为接收方的ONU接收数据时所对应的第一载波频带均不相同,因此在ONU侧可以按照每个ONU所对应的第一载波频带分别提取出每个ONU所对应的第一数据。
本发明实施例提供的应用于OFDM-PON的通信方法,在多个光网络单 元之间传输数据时,作为发送方的每个所述光网络单元根据预置的第一载波频带发送第一数据至作为接收方的每个所述光网络单元,作为接收方的每个所述光网络单元根据预置的所述第一载波频带接收来自作为发送方的所述光网络单元的第一数据,从而能够同时实现多组用户终端之间的相互通信,提高了光网络通信的灵活性以及光网络通信的效率和速度,并降低了成本。
可选地,为了实现多个用户终端同时进行上行或下行数据传输,并进一步提高光网络通信的灵活性,以及提高光网络通信的效率和速度,在本发明某一或所有实施例中,参照图3,图3为本发明实施例应用于OFDM-PON的通信方法第二实施例的流程示意图。
在该实施例中,该应用于OFDM-PON的通信方法还包括以下步骤:
步骤S30,在多个光网络单元发送第二数据至光线路终端时,每个所述光网络单元根据预置的第二载波频带发送第二数据至光线路终端,每个所述光网络单元预置的第二载波频带均不相同;
所述第二载波频带即为光网络单元向光线路终端发送第二数据时所采用的载波所处的频带范围。上述每个光网络单元所预置的第二载波频带可以根据实际需要进行设置,每个光网络单元所预置的第二载波频带彼此之间不重叠,从而在光线路终端接收到来自每个光网络单元发送的第二数据时,可以根据第二载波频带提取出每个光网络单元所对应发送的第二数据。应当说明的是,第二载波频带可以在ONU传输数据之前预先设置,也可以在ONU传输数据时动态的分配。
可选地,在本发明实施例某一或所有实施例中,参照图4,图4为图3中步骤S30的细化流程示意图,步骤S30包括:
步骤S31,在多个光网络单元发送第二数据至光线路终端时,每个所述光网络单元分别根据预置的第二载波频带对待发送的第二数据进行调制;
本实施例中,每一所述光网络单元ONU均内置有一调制器,例如可以为MZM(Mach-ZehnderModulator,马赫增德尔调制器)。在每个ONU需要发送上行链路数据或VPN数据(即上述第二数据)时,先将要发送的上行链路数据或VPN数据通过其内置的MZM进行调制,即将其要发送的上行链路数据或VPN数据加载到其预置的处于第二载波频带范围的载波上。
步骤S32,每个所述光网络单元将经过调制的第二数据发送至第一分光器,以供所述第一分光器将来自多个所述光网络单元的经过调制的第二数据进行合路处理后发送至所述光线路终端。
在本实施例中,每个ONU将经过调制的第二数据进行E/O(electrical to optical,电光转换)转换后发送至第一分光器。例如,若ONU的数量为N个,则第一分光器可以为N:1第一分光器。第一分光器将来自多个ONU的经过调制后的第二数据进行合路处理,并最终合成一路光信号,然后第一分光器再将合路后的光信号发送至OLT。在OLT侧接收到上述合路后的光信号后,先对接收到的光信号进行O/E(optical to electrical,光电转换)转换,以生成合路后的电信号,在OLT侧设置有上行链路探测器,通过上行链路探测器接收合路后的电信号。由于每个ONU发送的经过调制的第二数据所对应的第二载波频带均不相同,因此在光线路终端可以按照每个ONU所对应的第二载波频带分别提取出每个ONU所对应的第二数据。因此,本实施例提供的通信方法,能够实现多个光网络单元同时发送数据至光线路终端,即能够实现多个用户终端的上行数据传输,有效地提高了光网络通信的灵活性,提高了光网络通信的效率和速度,并降低了成本。
步骤S40,在多个光网络单元接收来自所述光线路终端的第三数据时,每个光网络单元接收所述光线路终端按照每个光网络单元预置的第三载波频带发送的第一待提取数据;
所述第三载波频带即为光网络单元提取来自光线路终端的第三数据时所对应的频带范围。上述每个光网络单元所预置的第三载波频带可以根据实际需要进行设置,每个光网络单元所预置的第三载波频带彼此之间不重叠,从而在每个光网络单元接收到来自光线路终端发送的第三数据时,可以根据第三载波频带提取出光线路终端所对应发送的第三数据。应当说明的是,第三载波频带可以在OLT传输数据之前预先设置,也可以在OLT传输数据时动态的分配。
在本实施例中,在OLT需要分别发送多组下行链路数据(即上述第三数据)至多个ONU时,其中,每个ONU对应接收一第三数据,在OLT侧先将每个第三数据分别按照与该第三数据对应的ONU所预置的第三载波频带进行调制,然后再将多个经过调制的第三数据进行E/O转换后进行合路处理, 最终合路为一路所述第一待提取数据,OLT将所述第一待提取数据发送出去,第一待提取数据经过光纤传输之后,在远程节点被分光比为1:N的光分路器进行分路,并发送至每个ONU,即每个ONU均接收到一份所述第一待提取数据。
步骤S50,每个光网络单元分别按照每个光网络单元预置的第三载波频带在所述第一待提取数据中提取对应的第三数据,每个所述光网络单元预置的第三载波频带均不相同。
在每个ONU接收到第一待提取数据后,先对接收到的第一待提取数据进行O/E(optical to electrical,光电转换)转换,在OUN侧设置有下行链路探测器,通过下行链路探测器接收第一待提取数据。由于每个ONU接收下行数据时所对应的第三载波频带均不相同,因此在ONU侧可以按照每个ONU所对应的第三载波频带分别提取出每个ONU所对应的第三数据。
应当说明的是,上述步骤S30、步骤S40与步骤S10在执行时不分先后顺序。
本发明实施例提供的应用于OFDM-PON的通信方法,在多个光网络单元发送第二数据至光线路终端时,每个所述光网络单元根据预置的第二载波频带发送第二数据至光线路终端,能够实现多个光网络单元同时发送数据至光线路终端,即能够实现多个用户终端的上行数据传输;在多个光网络单元接收来自所述光线路终端的第三数据时,每个光网络单元接收所述光线路终端按照每个光网络单元预置的第三载波频带发送的第一待提取数据,每个光网络单元分别按照每个光网络单元预置的第三载波频带在所述第一待提取数据中提取对应的第三数据,能够实现多个光网络单元同时接收来自光线路终端的数据,即能够实现多个用户终端的下行数据传输。本发明实施例提供的应用于OFDM-PON的通信方法有效地提高了光网络通信的灵活性,提高了光网络通信的效率和速度,并降低了成本。
可选地,基于上述实施例,参照图5和图6,图5为光网络单元发送数据的原理示意图,图6为光网络单元接收数据的原理示意图,以下以设置n个ONU为例进行说明。每个ONU预置有不同的第一载波频带,不同ONU用户发送数据时所采用的载波占用不同(即不重叠)的频带,如图5和图6 所示,以第i个ONU端ONUi为例,其作为发送端时,对应设置的载波频带为λi,对于频带λi来说,其进一步被划分为n个子频带,分别设为λi-1…λi-k…λi-n,其中,λi-k表示ONUi作为发送端,且ONUk作为接收端时所采用载波所占用的频带范围。应当说明的是,如果在同一时刻两个ONU端之间没有进行VPN通信,则相应的第一载波频带可以被重新分配给其他ONU端进行VPN通信,第一载波频带的数目可以动态的根据实际需要进行灵活的调整。
在ONUk作为接收端接收来自OLT端反射的数据时,ONUk接收来自OLT端的整个信号,该信号包含所有的VPN信号,只需要在接收的数据中提取该ONUk端预置的第一载波频带所对应的数据即可。
对于上述步骤S10、S20、S30、S40和S50的具体原理可参照上述说明,在此不再赘述。
应当说明的是,上述上行链路数据、下行链路数据和VPN数据在传输之前或之后由数字信号处理实现二进制数据与OFDM数据之间的相互转换,该过程的运算包括:串并转换S-P、并串转换P-S、傅里叶变换FFT、反傅里叶变换IFFT、映射Mapping、数模转换ADC、模数转换DAC、插入和去除循环前缀Cyclic prefix以及均衡Equalization。
本发明实施例进一步提供一种应用于OFDM-PON的通信装置。
为了同时实现多组用户终端之间的相互通信,提高光网络通信的灵活性以及光网络通信的效率和速度,并降低成本,参照图7,图7为本发明实施例应用于OFDM-PON的通信装置第一实施例的功能模块示意图。
在一实施例中,该应用于OFDM-PON的通信装置包括:
第一发送模块10,设置为在多个光网络单元之间传输数据时,根据作为发送方的每个所述光网络单元预置的第一载波频带发送第一数据至作为接收方的每个所述光网络单元;
应当说明的是,在本实施例及以下实施例中,以ONU(Optical Network Unit,光网络单元)表示光网络单元,以OLT(optical line terminal,光线路终端)表示光线路终端。
一作为发送方的光网络单元发送第一数据至一作为接收方的光网络单元 时,该作为发送方的光网络单元与该所为接收方的光网络单元称为一对光网络单元。所述第一载波频带即为所述一对光网络单元之间传输第一数据所采用的载波所处的频带范围。上述每对光网络单元所预置的第一载波频带可以根据实际需要进行设置,每对光网络单元所预置的第一载波频带彼此之间不重叠,从而在作为接收方的光网络单元接收到来自作为发送方的光网络单元发送的第一数据时,可以根据第一载波频带提取出该作为发送方的光网络单元所对应发送的第一数据。应当说明的是,第一载波频带可以在ONU传输数据之前预先设置,也可以在ONU传输数据时动态的分配。
可选地,参照图8,图8为图7中第一发送模块的细化功能模块示意图,第一发送模块10包括:
第一调制单元11,设置为在多个作为发送方的光网络单元发送第一数据至多个作为接收方的光网络单元时,分别根据作为发送方的每个所述光网络单元预置的第一载波频带对待发送的第一数据进行调制;
本实施例中,每一所述光网络单元ONU均内置有一调制器,例如可以为MZM(Mach-ZehnderModulator,马赫增德尔调制器)。在一ONU需要发送第一数据至另一ONU时,先将要发送的第一数据通过其内置的MZM进行调制,即将其要发送的第一数据加载到其预置的处于第一载波频带范围的载波上。
第一发送单元12,设置为将经过作为发送方的每个所述光网络单元调制的第一数据发送至第一分光器,以供所述第一分光器将接收的多个所述经过调制的第一数据进行合路处理后生成的第二待提取数据发送至所述光线路终端,并通过所述光线路终端将所述第二待提取数据反射至作为接收方的每个所述光网络单元。
在本实施例中,每个ONU将经过调制的第一数据进行E/O(electrical to optical,电光转换)转换后发送至第一分光器。例如,若ONU的数量为N个,则第一分光器可以为N:1第一分光器。第一分光器将来自多个ONU的经过调制后的第一数据进行合路,并最终合成一路光信号(即上述第二待提取数据),然后第一分光器再将所述第二待提取数据发送至OLT。在OLT侧设置有光反射器和上行链路探测器,例如,所述光反射器可以为部分反射镜,或由FBG(fiber-brag-grating,光纤布拉格光栅)和第二分光器组成。当OLT接收到所 述第二待提取数据后,通过第二分光器根据实际情况分配进入FBG的能量和进入上行链路探测器的能量,通过FBG将接收的所述第二待提取数据反射回传输光纤中,经过反射的所述第二待提取数据在远程节点被分光比为1:N的光分路器进行分路,并发送至每个ONU侧,即每个ONU均接收到一份经过反射的所述第二待提取数据。FBG可以分别反射上行的每个数据,反射的所述第二待提取数据需要经过放大处理以提升其功率,从而确保其功率可以支持反射后的无误码传输。
第一接收模块20,设置为根据作为接收方的每个所述光网络单元预置的所述第一载波频带接收来自作为发送方的所述光网络单元的第一数据;
应当说明的是,在本实施例中,在作为发送方的所述光网络单元不同或在作为接收方的所述光网络单元不同时,所述光网络单元之间发送或接收数据所预置的所述第一载波频带均不同。也就是说,对于一对分别作为发送方和接收方的两光网络单元来说,其之间传输数据所采用载波所处的频带不同于另一对分别作为发送方和接收方的两光网络单元。
可选地,所述第一接收模块20是设置为分别按照作为接收方的每个所述光网络单元预置的第一载波频带在所述第二待提取数据中提取对应的第一数据。
在每个ONU接收到上述第二待提取数据后,先对接收到的经过反射的第二待提取数据进行O/E(optical to electrical,光电转换)转换,由于每个作为接收方的ONU接收数据时所对应的第一载波频带均不相同,因此在ONU侧可以按照每个ONU所对应的第一载波频带分别提取出每个ONU所对应的第一数据。
本发明实施例提供的应用于OFDM-PON的通信装置,在多个光网络单元之间传输数据时,作为发送方的每个所述光网络单元根据预置的第一载波频带发送第一数据至作为接收方的每个所述光网络单元,作为接收方的每个所述光网络单元根据预置的所述第一载波频带接收来自作为发送方的所述光网络单元的第一数据,从而能够同时实现多组用户终端之间的相互通信,提高了光网络通信的灵活性以及光网络通信的效率和速度,并降低了成本。
可选地,为了实现多个用户终端同时进行上行或下行数据传输,并进一 步提高光网络通信的灵活性,以及提高光网络通信的效率和速度,在本发明某一或所有实施例中,参照图9,图9为本发明实施例应用于OFDM-PON的通信装置第二实施例的功能模块示意图,本实施例中,该应用于OFDM-PON的通信装置还包括:
第二发送模块30,设置为在多个光网络单元发送第二数据至光线路终端时,根据每个所述光网络单元预置的第二载波频带发送第二数据至光线路终端,每个所述光网络单元预置的第二载波频带均不相同;
所述第二载波频带即为光网络单元向光线路终端发送第二数据时所采用的载波所处的频带范围。上述每个光网络单元所预置的第二载波频带可以根据实际需要进行设置,每个光网络单元所预置的第二载波频带彼此之间不重叠,从而在光线路终端接收到来自每个光网络单元发送的第二数据时,可以根据第二载波频带提取出每个光网络单元所对应发送的第二数据。应当说明的是,第二载波频带可以在ONU传输数据之前预先设置,也可以在ONU传输数据时动态的分配。
可选地,在本发明某一或所有实施例中,参照图10,图10为图9中第二发送模块的细化功能模块示意图,第二发送模块30包括:
第二调制单元31,设置为在多个光网络单元发送第二数据至光线路终端时,分别根据每个所述光网络单元预置的第二载波频带对待发送的第二数据进行调制;
本实施例中,每一所述光网络单元ONU均内置有一调制器,例如可以为MZM(Mach-ZehnderModulator,马赫增德尔调制器)。在每个ONU需要发送上行链路数据或VPN数据(即上述第二数据)时,先将要发送的上行链路数据或VPN数据通过其内置的MZM进行调制,即将其要发送的上行链路数据或VPN数据加载到其预置的处于第二载波频带范围的载波上。
第二发送单元32,设置为将经过每个所述光网络单元调制的第二数据发送至第一分光器,以供所述第一分光器将来自多个所述光网络单元的经过调制的第二数据进行合路处理后发送至所述光线路终端。
在本实施例中,每个ONU将经过调制的第二数据进行E/O(electrical to optical,电光转换)转换后发送至第一分光器。例如,若ONU的数量为N个,则第一分光器可以为N:1第一分光器。第一分光器将来自多个ONU的经过调 制后的第二数据进行合路处理,并最终合成一路光信号,然后第一分光器再将合路后的光信号发送至OLT。在OLT侧接收到上述合路后的光信号后,先对接收到的光信号进行O/E(optical to electrical,光电转换)转换,以生成合路后的电信号,在OLT侧设置有上行链路探测器,通过上行链路探测器接收合路后的电信号。由于每个ONU发送的经过调制的第二数据所对应的第二载波频带均不相同,因此在光线路终端可以按照每个ONU所对应的第二载波频带分别提取出每个ONU所对应的第二数据。因此,本实施例提供的通信方法,能够实现多个光网络单元同时发送数据至光线路终端,即能够实现多个用户终端的上行数据传输,有效地提高了光网络通信的灵活性,提高了光网络通信的效率和速度,并降低了成本。
第二接收模块40,设置为在多个光网络单元接收来自所述光线路终端的第三数据时,接收所述光线路终端按照每个光网络单元预置的第三载波频带发送的第一待提取数据;
所述第三载波频带即为光网络单元提取来自光线路终端的第三数据时所对应的频带范围。上述每个光网络单元所预置的第三载波频带可以根据实际需要进行设置,每个光网络单元所预置的第三载波频带彼此之间不重叠,从而在每个光网络单元接收到来自光线路终端发送的第三数据时,可以根据第三载波频带提取出光线路终端所对应发送的第三数据。应当说明的是,第三载波频带可以在OLT传输数据之前预先设置,也可以在OLT传输数据时动态的分配。
在本实施例中,在OLT需要分别发送多组下行链路数据(即上述第三数据)至多个ONU时,其中,每个ONU对应接收一第三数据,在OLT侧先将每个第三数据分别按照与该第三数据对应的ONU所预置的第三载波频带进行调制,然后再将多个经过调制的第三数据进行E/O转换后进行合路处理,最终合路为一路所述第一待提取数据,OLT将所述第一待提取数据发送出去,第一待提取数据经过光纤传输之后,在远程节点被分光比为1:N的光分路器进行分路,并发送至每个ONU,即每个ONU均接收到一份所述第一待提取数据。
提取模块50,设置为分别按照每个光网络单元预置的第三载波频带在所述第一待提取数据中提取对应的第三数据,每个所述光网络单元预置的第三 载波频带均不相同。
在每个ONU接收到第一待提取数据后,先对接收到的第一待提取数据进行O/E(optical to electrical,光电转换)转换,在OUN侧设置有下行链路探测器,通过下行链路探测器接收第一待提取数据。由于每个ONU接收下行数据时所对应的第三载波频带均不相同,因此在ONU侧可以按照每个ONU所对应的第三载波频带分别提取出每个ONU所对应的第三数据。
本发明实施例提供的应用于OFDM-PON的通信装置,在多个光网络单元发送第二数据至光线路终端时,每个所述光网络单元根据预置的第二载波频带发送第二数据至光线路终端,能够实现多个光网络单元同时发送数据至光线路终端,即能够实现多个用户终端的上行数据传输;在多个光网络单元接收来自所述光线路终端的第三数据时,每个光网络单元接收所述光线路终端按照每个光网络单元预置的第三载波频带发送的第一待提取数据,每个光网络单元分别按照每个光网络单元预置的第三载波频带在所述第一待提取数据中提取对应的第三数据,能够实现多个光网络单元同时接收来自光线路终端的数据,即能够实现多个用户终端的下行数据传输。本发明实施例提供的应用于OFDM-PON的通信方法有效地提高了光网络通信的灵活性,提高了光网络通信的效率和速度,并降低了成本。
应当说明的是,上述第一发送模块10和第二发送模块30可以为同一模块,上述第一接收模块20和第二接收模块40可以为同一模块。
可选地,基于上述实施例,参照图5和图6,以下以设置n个ONU为例进行说明。每个ONU预置有不同的第一载波频带,不同ONU用户发送数据时所采用的载波占用不同(即不重叠)的频带,如图5和图6所示,以第i个ONU端ONUi为例,其作为发送端时,对应设置的载波频带为λi,对于频带λi来说,其进一步被划分为n个子频带,分别设为λi-1…λi-k…λi-n,其中,λi-k表示ONUi作为发送端,且ONUk作为接收端时所采用载波所占用的频带范围。应当说明的是,如果在同一时刻两个ONU端之间没有进行VPN通信,则相应的第一载波频带可以被重新分配给其他ONU端进行VPN通信,第一载波频带的数目可以动态的根据实际需要进行灵活的调整。
在ONUk作为接收端接收来自OLT端反射的数据时,ONUk接收来自 OLT端的整个信号,该信号包含所有的VPN信号,只需要在接收的数据中提取该ONUk端预置的第一载波频带所对应的数据即可。
应当说明的是,上述上行链路数据、下行链路数据和VPN数据在传输之前或之后由数字信号处理实现二进制数据与OFDM数据之间的相互转换,该过程的运算包括:串并转换S-P、并串转换P-S、傅里叶变换FFT、反傅里叶变换IFFT、映射Mapping、数模转换ADC、模数转换DAC、插入和去除循环前缀Cyclic prefix以及均衡Equalization。
本发明实施例进一步提供一种应用于OFDM-PON的通信系统,如图11所示,所述通信系统包括光线路终端、若干光网络单元和连接于所述光线路终端和每个所述光网络单元之间的光分配网络,所述光线路终端包括反射模块;所述光分配网络包括第一分光器;所述光网络单元包括第一发送模块和第一接收模块;在多个光网络单元之间传输数据时,所述第一发送模块设置为根据作为发送方的每个所述光网络单元预置的第一载波频带发送第一数据至所述第一分光器;所述第一分光器设置为将接收的第一数据进行合路,以生成第二待提取数据,并将生成的第二待提取数据发送至所述反射模块;所述反射模块设置为将接收的第二待提取数据反射至所述第一分光器;所述第一分光器还设置为将接收的第二待提取数据进行分光后发送至作为接收方的每个所述光网络单元;所述第一接收模块设置为根据作为接收方的每个所述光网络单元预置的所述第一载波频带接收来自作为发送方的所述光网络单元的第一数据;其中,在作为发送方的所述光网络单元不同或在作为接收方的所述光网络单元不同时,所述光网络单元之间发送或接收数据所预置的所述第一载波频带均不同。
可选地,所述光网络单元还包括第二发送模块、第二接收模块和提取模块,在多个光网络单元发送第二数据至所述光线路终端时,所述第二发送模块设置为根据每个所述光网络单元预置的第二载波频带发送第二数据至所述第一分光器,其中,每个所述光网络单元预置的第二载波频带均不相同;所述第一分光器还设置为将接收的第二数据,或者第二数据和第一数据进行合路后发送至所述光线路终端;在所述光线路终端发送第三数据至多个光网络单元时,所述光线路终端按照每个所述光网络单元预置的第三载波频带发送 第一待提取数据至所述第一分光器;所述第一分光器对接收的第一待提取数据进行分光后发送至每个所述光网络单元的第二接收模块;所述第二接收模块设置为接收所述第一待提取数据;所述提取模块,设置为分别按照每个光网络单元预置的第三载波频带在所述第一待提取数据中提取对应的第三数据,每个所述光网络单元预置的第三载波频带均不相同。
可选地,所述第二发送模块包括:第二调制单元,设置为在多个光网络单元发送第二数据至光线路终端时,分别根据每个所述光网络单元预置的第二载波频带对待发送的第二数据进行调制;第二发送单元,设置为将经过每个所述光网络单元调制的第二数据发送至第一分光器,以供所述第一分光器将来自多个所述光网络单元的经过调制的第二数据进行合路后发送至所述光线路终端。
可选地,所述第一发送模块包括:第一调制单元,设置为在多个作为发送方的光网络单元发送第一数据至多个作为接收方的光网络单元时,分别根据作为发送方的每个所述光网络单元预置的第一载波频带对待发送的第一数据进行调制;第一发送单元,设置为将经过作为发送方的每个所述光网络单元调制的第一数据发送至所述第一分光器,以供所述第一分光器将接收的多个所述经过调制的第一数据进行合路,以生成第二待提取数据,并将生成的第二待提取数据发送至所述反射模块。
应当说明的是,上述第一发送模块和第二发送模块可以为同一模块,上述第一接收模块和第二接收模块可以为同一模块。
可选地,所述第一接收模块是设置为分别按照作为接收方的每个所述光网络单元预置的第一载波频带在所述第二待提取数据中提取对应的第一数据。
应当说明的是,本实施例提供的基于OFDM-PON的通信系统中的光网络单元、光线路终端和光分配网络的结构可以参照上述每个实施例,在此不再赘述。其中,光线路终端的光反射模块即为上述实施例中的光反射器,光分配网络为光网络单元与光线路终端之间的光传输通路,光分配网络的第一分光器即为上述实施例中的光分路器。
本实施例提供的基于OFDM-PON的通信系统,通过设置光反射模块,且光反射模块可以为部分反射镜,或由FBG和第二分光器组成,从而使得由 ONU发送至OLT的数据既可以发送至反射模块,以供反射模块将接收的数据部分反射至ONU,以实现每个ONU之间的通信;还可以使得ONU发送至OLT的数据同时部分通过反射模块发送至上行链路接收器,以供OLT将上行链路接收器接收的数据发送至外围设备,从而实现每个ONU与外围设备之间的通信。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如系统、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。
上述实施例中的各装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的各装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
工业实用性
上述技术方案能够同时实现多组用户终端之间的相互通信,提高了光网络通信的灵活性以及光网络通信的效率和速度,并降低了成本。

Claims (16)

  1. 一种应用于正交频分复用-无源光网络OFDM-PON的通信方法,所述通信方法包括以下步骤:
    在多个光网络单元之间传输数据时,作为发送方的各每个光网络单元根据预置的第一载波频带发送第一数据至作为接收方的每个光网络单元;
    作为接收方的每个所述光网络单元根据预置的所述第一载波频带接收来自作为发送方的所述光网络单元的第一数据;
    其中,在作为发送方的所述光网络单元不同或在作为接收方的所述光网络单元不同时,所述光网络单元之间发送或接收数据所预置的所述第一载波频带均不同。
  2. 如权利要求1所述的通信方法,所述通信方法还包括以下步骤:
    在多个光网络单元发送第二数据至光线路终端时,每个光网络单元根据预置的第二载波频带发送第二数据至光线路终端,每个光网络单元预置的第二载波频带均不相同;
    在多个光网络单元接收来自所述光线路终端的第三数据时,每个光网络单元接收所述光线路终端按照每个光网络单元预置的第三载波频带发送的第一待提取数据;
    每个光网络单元分别按照每个光网络单元预置的第三载波频带在所述第一待提取数据中提取对应的第三数据,每个光网络单元预置的第三载波频带均不相同。
  3. 如权利要求2所述的通信方法,其中,所述在多个光网络单元发送第二数据至光线路终端时,每个光网络单元根据预置的第二载波频带发送第二数据至光线路终端的步骤包括:
    在多个光网络单元发送第二数据至光线路终端时,每个光网络单元分别根据预置的第二载波频带对待发送的第二数据进行调制;
    每个光网络单元将经过调制的第二数据发送至第一分光器,以供所述第一分光器将来自多个所述光网络单元的经过调制的第二数据进行合路处理后发送至所述光线路终端。
  4. 如权利要求2所述的通信方法,其中,所述在多个光网络单元之间传输数据时,作为发送方的每个所述光网络单元根据预置的第一载波频带发送第一数据至作为接收方的每个所述光网络单元的步骤包括:
    在多个作为发送方的光网络单元发送第一数据至多个作为接收方的光网络单元时,作为发送方的每个光网络单元分别根据预置的第一载波频带对待发送的第一数据进行调制;
    作为发送方的每个光网络单元将经过调制的第一数据发送至第一分光器,以供所述第一分光器将接收的多个所述经过调制的第一数据进行合路后生成的第二待提取数据发送至所述光线路终端,并通过所述光线路终端将所述第二待提取数据反射至作为接收方的每个所述光网络单元。
  5. 如权利要求4所述的通信方法,其中,所述作为接收方的每个所述光网络单元根据预置的所述第一载波频带接收来自作为发送方的所述光网络单元的第一数据的步骤包括:
    作为接收方的每个所述光网络单元分别按照作为接收方的每个所述光网络单元预置的第一载波频带在所述第二待提取数据中提取对应的第一数据。
  6. 一种应用于正交频分复用-无源光网络OFDM-PON的通信装置,所述通信装置包括:
    第一发送模块,设置为在多个光网络单元之间传输数据时,根据作为发送方的每个所述光网络单元预置的第一载波频带发送第一数据至作为接收方的每个所述光网络单元;
    第一接收模块,设置为根据作为接收方的每个所述光网络单元预置的所述第一载波频带接收来自作为发送方的所述光网络单元的第一数据;
    其中,在作为发送方的所述光网络单元不同或在作为接收方的所述光网络单元不同时,所述光网络单元之间发送或接收数据所预置的所述第一载波频带均不同。
  7. 如权利要求6所述的通信装置,所述通信装置还包括:
    第二发送模块,设置为在多个光网络单元发送第二数据至光线路终端时,根据每个所述光网络单元预置的第二载波频带发送第二数据至光线路终端,每个所述光网络单元预置的第二载波频带均不相同;
    第二接收模块,设置为在多个光网络单元接收来自所述光线路终端的第三数据时,接收所述光线路终端按照每个光网络单元预置的第三载波频带发送的第一待提取数据;
    提取模块,设置为分别按照每个光网络单元预置的第三载波频带在所述第一待提取数据中提取对应的第三数据,每个光网络单元预置的第三载波频带均不相同。
  8. 如权利要求7所述的通信装置,其中,所述第二发送模块包括:
    第二调制单元,设置为在多个光网络单元发送第二数据至光线路终端时,分别根据每个所述光网络单元预置的第二载波频带对待发送的第二数据进行调制;
    第二发送单元,设置为将经过每个所述光网络单元调制的第二数据发送至第一分光器,以供所述第一分光器将来自多个所述光网络单元的经过调制的第二数据进行合路处理后发送至所述光线路终端。
  9. 如权利要求7所述的通信装置,其中,所述第一发送模块包括:
    第一调制单元,设置为在多个作为发送方的光网络单元发送第一数据至多个作为接收方的光网络单元时,分别根据作为发送方的每个光网络单元预置的第一载波频带对待发送的第一数据进行调制;
    第一发送单元,设置为将经过作为发送方的每个光网络单元调制的第一数据发送至第一分光器,以供所述第一分光器将接收的多个所述经过调制的第一数据进行合路后生成的第二待提取数据发送至所述光线路终端,并通过所述光线路终端将所述第二待提取数据反射至作为接收方的每个所述光网络单元。
  10. 如权利要求9所述的通信装置,其中,
    所述第一接收模块,是设置为分别按照作为接收方的每个所述光网络单 元预置的第一载波频带在所述第二待提取数据中提取对应的第一数据。
  11. 一种应用于正交频分复用-无源光网络OFDM-PON的通信系统,所述通信系统包括光线路终端、若干光网络单元和连接于所述光线路终端和每个所述光网络单元之间的光分配网络,
    所述光线路终端包括反射模块;
    所述光分配网络包括第一分光器;
    所述光网络单元包括第一发送模块和第一接收模块;
    所述第一发送模块,设置为在多个光网络单元之间传输数据时,根据作为发送方的每个所述光网络单元预置的第一载波频带发送第一数据至所述第一分光器;
    所述第一分光器,设置为将接收的第一数据进行合路,以生成第二待提取数据,并将生成的第二待提取数据发送至所述反射模块;
    所述反射模块,设置为将接收的信号部分反射至所述第一分光器;
    所述第一分光器,还设置为将接收的第二待提取数据进行分光后发送至作为接收方的每个所述光网络单元;
    所述第一接收模块,设置为根据作为接收方的每个所述光网络单元预置的所述第一载波频带接收来自作为发送方的所述光网络单元的第一数据;
    其中,在作为发送方的所述光网络单元不同或在作为接收方的所述光网络单元不同时,所述光网络单元之间发送或接收数据所预置的所述第一载波频带均不同。
  12. 如权利要求11所述的通信系统,
    所述光网络单元还包括第二发送模块、第二接收模块和提取模块,
    所述第二发送模块,设置为在多个光网络单元发送第二数据至所述光线路终端时,根据每个所述光网络单元预置的第二载波频带发送第二数据至所述第一分光器,其中,每个所述光网络单元预置的第二载波频带均不相同;
    所述第一分光器,还设置为将接收的第二数据,或者第二数据和第一数据进行合路后发送至所述光线路终端;
    所述光线路终端,还设置为在发送第三数据至多个光网络单元时,按照 每个所述光网络单元预置的第三载波频带发送第一待提取数据至所述第一分光器;
    所述第一分光器,还设置为对接收的第一待提取数据进行分光后发送至每个所述光网络单元的第二接收模块;
    所述第二接收模块,设置为接收所述第一待提取数据;
    所述提取模块,设置为分别按照每个光网络单元预置的第三载波频带在所述第一待提取数据中提取对应的第三数据,每个所述光网络单元预置的第三载波频带均不相同。
  13. 如权利要求12所述的通信系统,其中,
    所述第二发送模块包括:
    第二调制单元,设置为在多个光网络单元发送第二数据至光线路终端时,分别根据每个所述光网络单元预置的第二载波频带对待发送的第二数据进行调制;
    第二发送单元,设置为将经过每个所述光网络单元调制的第二数据发送至第一分光器,以供所述第一分光器将来自多个所述光网络单元的经过调制的第二数据进行合路后发送至所述光线路终端。
  14. 如权利要求13所述的通信系统,其中,
    所述第一发送模块包括:
    第一调制单元,设置为在多个作为发送方的光网络单元发送第一数据至多个作为接收方的光网络单元时,分别根据作为发送方的每个所述光网络单元预置的第一载波频带对待发送的第一数据进行调制;
    第一发送单元,设置为将经过作为发送方的每个所述光网络单元调制的第一数据发送至所述第一分光器,以供所述第一分光器将接收的多个所述经过调制的第一数据进行合路,以生成第二待提取数据,并将生成的第二待提取数据发送至所述反射模块。
  15. 如权利要求14所述的通信系统,其中,
    所述第一接收模块,是设置为分别按照作为接收方的每个所述光网络单 元预置的第一载波频带在所述第二待提取数据中提取对应的第一数据。
  16. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1~5中任一项所述的方法。
PCT/CN2015/078394 2014-12-19 2015-05-06 应用于ofdm-pon的通信方法、装置及系统 WO2016095409A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410802054.X 2014-12-19
CN201410802054.XA CN105763964B (zh) 2014-12-19 2014-12-19 应用于ofdm-pon的通信方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2016095409A1 true WO2016095409A1 (zh) 2016-06-23

Family

ID=56125762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/078394 WO2016095409A1 (zh) 2014-12-19 2015-05-06 应用于ofdm-pon的通信方法、装置及系统

Country Status (2)

Country Link
CN (1) CN105763964B (zh)
WO (1) WO2016095409A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080138072A1 (en) * 2006-12-08 2008-06-12 Kenichi Sakamoto Passive optical network system, optical line terminal, and optical network unit
CN102379105A (zh) * 2009-04-07 2012-03-14 株式会社日立制作所 光多路复用终端装置、无源光网系统、波长分配方法
CN102439998A (zh) * 2011-10-25 2012-05-02 华为技术有限公司 无源光网络系统及其下行传输方法
CN104218997A (zh) * 2013-05-30 2014-12-17 上海贝尔股份有限公司 光网络单元与光线路终端

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101330764B (zh) * 2008-06-20 2010-09-08 北京邮电大学 一种光网络单元之间直接通信的方法和无源光网络系统
CN101924963B (zh) * 2010-09-21 2012-11-28 上海交通大学 基于ofdma的混合无源光网络传输系统
CN103051983B (zh) * 2011-10-12 2017-05-10 中兴通讯股份有限公司 上行数据异常处理方法及装置
WO2013091238A1 (zh) * 2011-12-23 2013-06-27 华为技术有限公司 光正交频分复用无源光网络的信号处理方法、设备及系统
CN103812565B (zh) * 2012-11-14 2016-08-10 上海贝尔股份有限公司 远程节点设备、光网络单元、系统及其通信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080138072A1 (en) * 2006-12-08 2008-06-12 Kenichi Sakamoto Passive optical network system, optical line terminal, and optical network unit
CN102379105A (zh) * 2009-04-07 2012-03-14 株式会社日立制作所 光多路复用终端装置、无源光网系统、波长分配方法
CN102439998A (zh) * 2011-10-25 2012-05-02 华为技术有限公司 无源光网络系统及其下行传输方法
CN104218997A (zh) * 2013-05-30 2014-12-17 上海贝尔股份有限公司 光网络单元与光线路终端

Also Published As

Publication number Publication date
CN105763964B (zh) 2020-04-21
CN105763964A (zh) 2016-07-13

Similar Documents

Publication Publication Date Title
CN110140308B (zh) 光传输系统、无源光网络系统以及传输方法
US8897648B2 (en) Orthogonal frequency division multiple access time division multiple access-passive optical networks OFDMA TDMA PON architecture for 4G and beyond mobile backhaul
US20090097852A1 (en) 10 Gbps OFDMA-PON
US9197357B2 (en) Method, apparatus, and system for processing optical network signal
US20140133870A1 (en) Optical transmitter for generating multi-level optical signal and method therefor
Ishimura et al. Broadband IF-over-fiber transmission with parallel IM/PM transmitter overcoming dispersion-induced RF power fading for high-capacity mobile fronthaul links
CN103109476B (zh) 无源光网络通信方法和系统、光线路终端
Lin et al. Experimental demonstration of an NOMA-PON with single carrier transmission
US11777774B2 (en) Systems and methods for asymmetrical digital prefix transmissions
Qian et al. Optical OFDM transmission in metro/access networks
US10505636B2 (en) Methods and apparatuses for sending and receiving signal, and system
Qiu et al. OFDM-PON optical fiber access technologies
WO2013091238A1 (zh) 光正交频分复用无源光网络的信号处理方法、设备及系统
WO2016095409A1 (zh) 应用于ofdm-pon的通信方法、装置及系统
WO2015131843A1 (en) System and method for chromatic dispersion tolerant direct optical detection
EP3484168B1 (en) Signal processing method and device in optic fibre communication system
CN107306153B (zh) 光纤通信系统中的信号处理的方法和设备
Zhou et al. A novel multi-band OFDMA-PON architecture using signal-to-signal beat interference cancellation receivers based on balanced detection
Tyagi et al. Real-Time Demonstration of Concurrent Upstream and Inter-ONU Communications in Hybrid OFDM DFMA PONs
CN107431681A (zh) 一种非线性补偿的调制方法、装置以及光发射机
WO2023030164A1 (zh) 通信方法、装置及系统
Saljoghei et al. Hybrid wired/wireless OFDM-PON with direct modulation of integrated lasers employing optical injection
Nadal et al. Adaptive bit loading in FHT-based OFDM transponders for flexi-grid optical networks
Al Halabi Optical OFDM with Multiple Information-carrying Dimensions for Elastic Access Networks
Hu et al. Increasing transmission capacity of long-reach OFDM-PON by using hierarchical modulation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15868922

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15868922

Country of ref document: EP

Kind code of ref document: A1