WO2016093629A1 - Biomarker for predicting hepatoma-targeted drug response, and use thereof - Google Patents

Biomarker for predicting hepatoma-targeted drug response, and use thereof Download PDF

Info

Publication number
WO2016093629A1
WO2016093629A1 PCT/KR2015/013481 KR2015013481W WO2016093629A1 WO 2016093629 A1 WO2016093629 A1 WO 2016093629A1 KR 2015013481 W KR2015013481 W KR 2015013481W WO 2016093629 A1 WO2016093629 A1 WO 2016093629A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
sorafenib
nucleic acid
marker
cd5l
Prior art date
Application number
PCT/KR2015/013481
Other languages
French (fr)
Korean (ko)
Inventor
김영수
윤정환
김현수
여인준
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150174914A external-priority patent/KR101832039B1/en
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Publication of WO2016093629A1 publication Critical patent/WO2016093629A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/533Production of labelled immunochemicals with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer

Definitions

  • It relates to techniques that can predict a patient's response to a targeted therapy for liver cancer.
  • Liver cancer is one of the cancers with a poor prognosis and ranks fifth among cancers worldwide.
  • the Asian region including Korea, which has a high rate of hepatitis virus, has a high incidence and the second highest mortality rate compared to cancer.
  • liver cancer is a disease that appears only when the disease progresses considerably, which often leads to missed the appropriate treatment time, and treatment is very poor in prognosis.
  • surgical resection is a serious disease that dies within a year. Considering this clinical reality, early diagnosis and prognosis of cancer are the most realistic alternatives to cancer treatment and guidelines for next-generation liver cancer care. .
  • liver cancer is known to occur in patients with risk factors such as hepatitis virus, alcohol, and cirrhosis of the liver, and it is clear that the early diagnosis markers will be used for selective surveillance of high risk groups. Indeed, early diagnosis at six-month intervals has been shown to increase survival rates (reduced by 37%) in liver cancer patients.
  • liver cancer patients in Korea are diagnosed in the advanced stage. Since these patients are not subject to radical treatment such as surgery or radiofrequency thermal therapy, they are treated based on chemotherapy.
  • sorafenib is limited in that the tumor size decreases only 3.3% and the survival time is about 2-3 months, which is not effective for price.
  • the use of sorafenib is expected in advanced liver cancer. In Korea, it is estimated that at least 5% of liver cancer patients are already using sorafenib (more than 1.6 per 100,000 people / year).
  • Sorafenib's medical benefit criteria (Stage III and above, Child-Pugh class A, ECOG ECOG: Eastern Cooperative Oncology Group performance status 0-2)
  • ECOG ECOG Eastern Cooperative Oncology Group performance status 0-2
  • sorafenib acts on various signal transduction pathways, it is urgent to develop markers that can predict the drug response effect of sorafenib.
  • Japanese Laid-Open Patent Publication No. 2011-103821 relates to the identification of genes in response to sorafenib, and discloses a method for predicting a reaction by detecting polymorphisms of dihydropyrimidine dehydrogenase, CD247 gene, and the like. .
  • the present application seeks to provide a biomarker capable of predicting a patient's response to sorafenib, a target therapeutic agent for liver cancer.
  • the present application provides C163A, C1QB, CIQC, CATB, CD5L, CH3L1, CO7, FA11, FBLN1, FBLN3, from a biological sample from a subject in need of administration of sorafenib to provide information necessary for predicting sorafenib drug response.
  • the markers according to the present invention may be used alone or in combination to detect blood samples and are differentially expressed in sorafenib-compliant and non-competent patients, thereby enabling personalized drug prescription of liver cancer patients requiring chemotherapy.
  • the biomarker according to the present invention can distinguish between patients who are compliant with sorafenib and those who do not with high discrimination, thereby enabling the use of personalized drugs by patients in need of administration of sorafenib.
  • the marker according to the present invention acts on various signal transduction pathways, the combination of the multiple markers disclosed herein may contribute to more efficient prognostic prediction, thereby reducing drug side effects and greatly contributing to the reconstruction of health insurance.
  • FIG 1 schematically shows the MRM analysis process used for biomarker discovery and analysis.
  • Figure 2 shows the coelution (coelution) of the blood endogenous peptide and the synthetic peptide.
  • FIG. 5 shows the results as a dynamic range distribution after measuring blood endogenous peptide levels.
  • FIG. 6 shows the concentration in blood for low and high abundance targets.
  • Figure 7 shows a schematic diagram of the SIS peptide injection concentration determination method.
  • FIG. 8 shows a schematic diagram of drug response sample configuration.
  • Figure 10 shows the results of Western blotting analysis for validation of drug response prognostic markers
  • CO7 Complement component
  • Figure 11 shows the results of ELISA analysis for verification of drug response prognostic markers
  • IGHG1 Ig gamma-1 C region
  • IGHG3 Ig gamma-3 C region
  • LG3BP Galectin-3-binding protein).
  • Figure 12 shows the results of constructing multiple protein marker panels (complied vs. non-conformed groups before sorafenib treatment).
  • MRM technology is used to sequentially screen and verify differentially expressed proteins / peptides in normal liver cancer patients and Sorafenib compliance group patients, and show significant differences between groups to determine compliance with Sorafenib. This is based on the discovery of useful proteins / peptides as biomarkers .
  • the present disclosure provides a scavenger receptor cysteine-rich type 1 protein M130, C1QB (Complement C1q subcomponent subunit B), CIQC (Complement C1q subcomponent subunit C), CATB (Cathepsin B), CD5L (CD5 antigen-like), CH3L1 (Chitinase-3-like protein 1), CO7 (Complement component C7), FA11 (Coagulation factor XI), FBLN1 (Fibulin-1), FBLN3 (EGF-containing fibulin-like extracellular matrix protein 1), FCG3A (Low affinity immunoglobulin gamma Fc region receptor III-A), FSTL1 (Follistatin-related protein 1), GPX3 (Glutathione peroxidase 3), IGHG1 (Ig gamma-1 chain C region), IGHG3 (Ig gamma-3 chain C region), IGJ ( Immunoglobulin J chain), ISLR (I
  • Sorafenib ⁇ 4-[[4-chloro-3- (trifluoromethyl) phenyl] carbamoylamino] phenoxy] -N-methyl-pyridine-2 arboxamide ⁇ was developed by Bayer and Onyx Pharmaceutical and sold under the trade name Nexavar. It is a drug based on kinase inhibitors and is used for the treatment of hepatocellular carcinoma and advanced thyroid cancer that is incompatible with radioiodine therapy.
  • Liver cancer or hepatocellular carcinoma refers to primary malignant tumors that occur in the liver tissue itself in patients with risk factors such as alcohol abuse, viral hepatitis, and metabolic liver disease. According to Line (Korean Society for Liver Cancer, pp17-19, 2014), it can be divided into stage I, II, III, IV A and IV B.
  • Markers according to the invention can be used to predict whether a liver cancer patient in need of treatment with sorafenib responds to sorafenib.
  • the markers according to the present disclosure may be used for the reduction or removal of tumor tissue, removal of tumor cells before or after surgical resection of the tumor, regardless of stage of liver cancer, or even without surgical surgery of the tumor. It can be used to predict whether a patient in need of administration will respond to this drug.
  • Liver cancer is diagnosed in advanced stages (stage III and above), despite the efforts for early diagnosis, because these patients are not subject to radical treatment such as surgery or radiofrequency ablation. Treatment will be based on chemotherapy. Until recently, almost no systemic chemotherapy has been effective, but it has been used in liver cancer patients since the therapeutic effect of sorafenib, an oral anticancer target drug, has recently been demonstrated in the first phase 3 randomized controlled study of chemotherapy. come.
  • sorafenib in another embodiment according to the present application is a sorafenib drug in a subject in need of administration that requires chemotherapy that is not subject to curative treatment, such as surgery or radiofrequency thermal therapy, for example, patients with stage III or higher liver cancer. It can be used to predict the response to.
  • the criteria for evaluating response to sorafenib are based on the best overall survival (BOR) that was seen during the first start of the administration of sorafenib drug and the discontinuation of the drug due to progressive disease (PD) or adverse events. It followed the modified Response Evaluation Criteria in Solid Tumors (mRECIST) guidelines. mRECIST divides the response into four groups with changes in the sum of the tumor diameters as compared to before treatment.
  • CR Complete response
  • PR partial response
  • PR partial response
  • PR partial response
  • PD progressive disease
  • CR, SD, and PR are defined as drug compliance group and PD as drug non-compliance (or incapacity) group.
  • biomarker is a marker that can distinguish between the refractory group and the compliance group for sorafenib before treatment, and includes a protein, a polypeptide derived from the protein, a gene encoding the protein, That fragment.
  • the biomarker according to the present invention has an increased amount in the blood of the compliant group compared to the samples of the control group such as the non-condensed group, and the protein or nucleic acid sequence is, for example, the UniProt DB (ID) described in Tables 3-1 and 3-2. www.uniprot.org).
  • one or more markers selected from the group consisting of CD5L, IGHG1, IGHG3, IGJ, LG3BP, and QSOX1 having a high AUC value alone are used, wherein the markers are described in the Examples herein.
  • Higher AUC values in both primary and secondary sample groups as shown showed differential expression compared to the control.
  • Markers according to the invention can be used in one or two or more combinations, for example two, three, four, five combinations. Those skilled in the art will be able to select combinations of markers that meet the desired sensitivity and specificity through methods such as assays using biological samples of subjects, including normal individuals and / or patients, and / or logistic regression assays, such as the methods described herein. could be.
  • the combination of markers according to the present application is C163A, C1QB, CIQC, CATB, CH3L1 and any one selected from the group consisting of CD5L, IGHG1, IGHG3, IGJ, LG3BP and QSOX1 having a high AUC value as described above. And combinations of one or more markers selected from the group consisting of, CO7, FA11, FBLN1, FBLN3, FCG3A, FSTL1, GPX3, IGHG1, ISLR, LUM, NRP1, SHBG, SODE and THBG.
  • the markers according to the invention can be detected at the level of the detection of the presence of nucleic acids, in particular of proteins and / or mRNA, and / or the amount of expression thereof, changes in the amount of expression, difference in the amount of expression through quantitative or qualitative analysis.
  • Detection herein includes quantitative and / or qualitative analysis, including the detection of presence, absence, and expression level detection. Such methods are well known in the art and those skilled in the art will select appropriate methods for carrying out the present application. Can be.
  • Detection of such markers according to the present application may be based on functional and / or antigenic characteristics of the marker.
  • the marker according to the present application can be detected using the detection of the activity or function of the marker, or using a nucleic acid encoding a protein, in particular an agent that specifically interacts at the mRNA level and / or protein level.
  • the detection of a marker according to the present invention is a mass spectrometry method such as MRM as described herein which detects and quantifies a peptide derived from each marker protein, eg, the corresponding peptide for each marker described in Tables 3-1 and 3-2. It can be carried out through, one or more peptides may be used for one protein. Peptides that can be used for such MRM analysis may not match the antigen recognized by the antibody in the antibody analysis, detection using the peptide and antibody analysis can be used complementary to each other.
  • MRM mass spectrometry method
  • the detection reagent included in the composition according to the present invention is a reagent capable of detecting the marker according to the present invention through quantitative or qualitative analysis in various ways at the protein or nucleic acid level.
  • Qualitative or quantitative detection methods at the protein level include, for example, Western blot, ELISA, radioimmunoassay, immunodiffusion, immunoelectrophoresis, tissue immunostaining, immunoprecipitation assay, complement fixation assay, antibody labeled in solution / suspension Methods using binding with, mass spectrometry or protein arrays with antibodies can be used.
  • a method using a nucleic acid transcription and amplification method, an eTag system, a system based on labeled beads, an array system such as a nucleic acid array, and the like can be used.
  • the marker may be detected using mass spectrometry, which may be analyzed for example in the manner described in the Examples herein after separating the protein or peptide from the sample. See, eg, Kim, et al. 2010 J Proteome Res. 9: 689-99; Anderson, L et al. 2006. Mol Cell Proteomics 5: 573-88.
  • mass spectrometry e.g., Kim, et al. 2010 J Proteome Res. 9: 689-99; Anderson, L et al. 2006. Mol Cell Proteomics 5: 573-88.
  • MRM multiple reaction monitoring
  • MRM is a method that can quantitatively and accurately measure multiple substances such as traces of biomarkers in a biological sample.
  • the first mass filter (Q1) is used to detect protons or moions among ion fragments generated from ionization sources. Optionally pass to the crash tube. Proton ions that reach the impingement tube then collide with the internal impingement gas, split and form product or daughter ions to be sent to the second mass filter Q2, where only the characteristic ions are transferred to the detector. In this way, it is a high selectivity and sensitivity analysis method that can detect only the information of the desired component. See, for example, those described in Gillette et al., 2013, Nature Methods 10: 28-34.
  • a binding agent or array comprising binding agents that specifically binds to each protein or mRNA from a gene encoding the protein is used.
  • a sandwich-type immunoassay such as Enzyme Linked Immuno Sorbent Assay (ELISA) or Radio Immuno Assay (RIA) may be used.
  • ELISA Enzyme Linked Immuno Sorbent Assay
  • RIA Radio Immuno Assay
  • This method involves a biological sample on a first antibody bound to a solid substrate such as beads, membranes, slides or microtiterplates made of glass, plastic (eg polystyrene), polysaccharides, nylon or nitrocellulose.
  • a label capable of direct or indirect detection may be labeled with a radioactive substance such as 3 H or 125 I, a fluorescent substance, a chemiluminescent substance, hapten, biotin, digoxygenin, or the like, or the action of a substrate.
  • Proteins can be detected qualitatively or quantitatively through binding of conjugated antibodies with enzymes such as horseradish peroxidase, alkaline phosphatase, and malate dehydrogenase, which are capable of
  • immunoelectrophoresis such as Ouchterlony plates, Western blots, Crossed IE, Rocket IE, Fused Rocket IE, Affinity IE, which can simply detect markers through antigen antibody binding
  • the immunoassay or method of immunostaining is described in Enzyme Immunoassay, ET Maggio, ed., CRC Press, Boca Raton, Florida, 1980; Gaastra, W., Enzyme-linked immunosorbent assay (ELISA), in Methods in Molecular Biology, Vol. 1, Walker, JM ed., Humana Press, NJ, 1984 and the like.
  • Reagents or materials used in such methods include, for example, antibodies, substrates, nucleic acids or peptide aptamers that specifically bind to the marker, or receptors or ligands or cofactors that specifically interact with the marker. And the like can be used. Reagents or materials that specifically interact with or bind to the markers of the present disclosure may be used with chip or nanoparticles.
  • Markers herein can also be detected quantitatively and / or qualitatively using a variety of methods known at the nucleic acid level, particularly at the mRNA level.
  • RT-PCR reverse transcriptase polymerase chain reaction
  • polymerase chain reaction competitive RT-PCR
  • NPA Nuclease Protection Assays
  • RNase RNase, S1 nuclease assays, in situ hybridization, DNA microarrays or chips or Northern blots
  • RNase S1 nuclease assays
  • in situ hybridization DNA microarrays or chips
  • Northern blots can be used, such assays are known and also known. It may be carried out using commercially available kits and one skilled in the art will be able to select the appropriate one for the practice herein.
  • Northern blots can be used to determine the size of transcripts present in a cell, have the advantage of using a variety of probes, NPAs are useful for multiple marker analysis, and in situ hybridization can be used for cells of transcripts such as mRNA. Or, it is easy to locate in the tissue, and reverse transcription polymerase chain reaction is useful for detecting a small amount of sample.
  • an array including a binding agent or a binding agent that specifically binds to a nucleic acid such as mRNA or cRNA from a gene encoding a biomarker protein according to the present application can be used.
  • Reagents or substances used in the method for detecting the biomarker at the nucleic acid level are known, for example, as a detection reagent in a method for measuring the presence and amount of mRNA by RT-PCR, for example, a polymerase.
  • Primary or “probe” refers to a nucleic acid sequence having a free 3 'hydroxyl group capable of complementarily binding to a template and allowing reverse transcriptase or DNA polymerase to initiate replication of the template. do.
  • the detection reagent may be labeled with a colorant, luminescent or fluorescent substance as described above for signal detection.
  • Northern blot or reverse transcription PCR polymerase chain reaction
  • RNA of a sample is specifically isolated from mRNA, and then cDNA is synthesized therefrom, and then a specific gene or a combination of primers and probes is used to detect a specific gene in the sample.
  • a method which can determine the expression amount is described, for example, in Han, H. et al, 2002. Cancer Res. 62: 2890-6.
  • the detection reagent included in the composition according to the present application may be labeled directly or indirectly in a sandwich form for detection depending on the specific method used for detection.
  • serum samples used for arrays and the like are labeled with fluorescent labels such as Cy3 and Cy5.
  • fluorescent labels such as Cy3 and Cy5.
  • an unlabeled serum sample is first detected by reacting with an array to which a detection reagent is attached, followed by binding to a target protein with a labeled detection antibody.
  • the sensitivity and specificity can be increased, and thus the detection can be performed up to pg / mL level.
  • radioactive materials, coloring materials, magnetic particles and high-density electron particles may be used as the labeling material. Fluorescence luminosity can be used with scanning confocal microscopy, for example Affymetrix, Inc. Or Agilent Technologies, Inc.
  • compositions herein may further comprise one or more additional ingredients required for analysis, and may further include, for example, buffers, reagents for sample preparation, blood sampling syringes or negative and / or positive controls.
  • composition of the present invention comprising various detection reagents as described above is for ELISA analysis, dip stick rapid kit analysis, MRM analysis kit, microarray, gene amplification, or immunity depending on the assay. It may be provided for analysis and the like, and an appropriate detection reagent may be selected according to the analysis mode.
  • an ELISA or dipstick rapid kit wherein an antibody that recognizes one or more markers according to the present application is attached to a substrate, such as the surface of a well or glass slide of a multiwell plate or nitrocellulose.
  • a substrate such as the surface of a well or glass slide of a multiwell plate or nitrocellulose.
  • POCT point of care test
  • one or more antibodies recognizing a biomarker according to the present invention is bound to a substrate such as nitrocellulose, which is in contact with a sample such as serum.
  • POCT point of care test
  • the sample detects the marker in such a manner that the sample moves by the capillary phenomenon and develops color upon binding to the antibody in the substrate.
  • an MRM kit is provided based on peptide detection and / or quantification, and the MRM scheme is as described above.
  • the MRM method uses a peptide that selectively recognizes a specific protein, and can more stably detect a marker in a biological sample as compared with a conventional method using an antibody sensitive to the environment such as temperature and humidity.
  • the peptides described in Tables 3-1 and 3-2 herein may be used, and one or two or more peptides may be used in one marker.
  • the peptide corresponding to each protein marker is Scavenger receptor cysteine-rich type 1 protein M130 (C163A)-LVDGVTECSGR; Complement C1q subcomponent subunit B (C1QB) -IAFSATR, LEQGENVFLQATDK; Complement C1q subcomponent subunit C (C1QC) -FQSVFTVTR, TNQVNSGGVLLR, etc.
  • Detection reagents may be attached to the surface of a substrate such as glass or nitrocellulose, and array fabrication techniques are described, for example, in Schena et al., 1996, Proc Natl Acad Sci USA. 93 (20): 10614-9; Schena et al., 1995, Science 270 (5235): 467-70; And U.S. Pat. Nos. 5,599,695, 5,556,752 or 5,631,734. Detection reagents that can be attached to an array include, for example, antibodies, antibody fragments, aptamers, aviders, or peptidomimetics capable of specific binding to a protein.
  • the present invention relates to a kit or system for predicting sorafenib response comprising a reagent for detecting a biomarker.
  • a kit or system for predicting sorafenib response comprising a reagent for detecting a biomarker.
  • Detection reagents and methods in which such reagents are used are described above.
  • Reagents capable of detecting such markers of the present application may be separately dispensed in a compartment in which the compartment is divided, and in this sense, the present application also relates to an apparatus / apparatus comprising compartmentally containing the marker detection reagent of the present application.
  • the kit may also include additional instructions for use.
  • the present disclosure provides C163A, C1QB, CIQC, CATB, CD5L, CH3L1, CO7, FA11, FBLN1, from a biological sample from a subject in need of administration or treatment of sorafenib to provide information necessary for predicting sorafenib response.
  • a method for detecting a sorafenib response predictive marker in vitro comprising detecting an amount.
  • This method further comprises comparing the results of detecting the concentration or expression of said nucleic acid or protein with a corresponding result of the corresponding biomarker of the control sample; And comparing the control sample with a change in nucleic acid or protein concentration of the subject sample or when there is a change in the presence or absence of the nucleic acid or protein. It includes.
  • control sample is a sample from a non-reactive group patient who is previously administered sorafenib but has no therapeutic effect.
  • the subject when the expression level of the marker according to the present invention is increased compared to the control group (non-conforming group), the subject is determined to be a sorafenib compliant group.
  • the methods herein include mammals, in particular humans.
  • Human subjects include those deemed necessary, expected or in need of treatment with sorafenib due to liver cancer.
  • Subjects in need of administration or treatment of sorafenib include those who need or are expected to need treatment with sorafenib.
  • the method according to the present application is used in patients with liver cancer who are not subject to radical treatment such as surgery or radiofrequency thermal therapy and need to treat chemotherapy based on chemotherapy (advanced stage-stage III or above).
  • radical treatment such as surgery or radiofrequency thermal therapy
  • chemotherapy based on chemotherapy (advanced stage-stage III or above).
  • it is not limited thereto.
  • the biological sample used in the method according to the present invention may be whole blood, serum or plasma.
  • biological samples refer to substances or mixtures of substances that include one or more components capable of detecting a biomarker and include, but are not limited to, organisms, particularly body fluids, in particular whole blood, plasma, serum or urine.
  • the biomarker detection method used in the present method, the reagents used in the method, and the data analysis method for the determination may refer to the above and the following.
  • the method according to the invention can be carried out in particular by protein or nucleic acid microarray analysis, nucleic acid amplification, antigen-antibody reactions, or by mass spectrometry including MRM.
  • Markers, or combinations of markers, used in the methods according to the present disclosure may be referred to above.
  • a dataset can be generated that includes a profile, ie, quantitative information related to the expression of marker proteins in a sample.
  • a profile ie, quantitative information related to the expression of marker proteins in a sample.
  • Profiles obtained through marker detection according to the present application can be processed using known data analysis methods. Examples include nearest neighbor classifiers, partial-least squares, SVM, AdaBoost, and clustering-based classification methods, for example Ben-Dor et al (2007, J. Comput. Biol. 7: 559-83), Nguyen et al (2002, Bioinformatics 18: 39-50), Wang et al (2003, BMC Bioinformatics 4:60), Liu et al (2001, Genome Inform. Ser. Workshop Genome Inform. 12: 14-23), Yeang et al (2001, Bioinformatics 17 Suppl 1: S316-22) and Xiong (2000, Biotechniques 29 (6): 1264-8, 1270) and the like.
  • nearest neighbor classifiers 2007, J. Comput. Biol. 7: 559-83
  • Nguyen et al 2002, Bioinformatics 18: 39-50
  • Wang et al 2003, BMC Bioinformatic
  • various statistical processing methods may be used to determine that the result detected through the marker of the present application is significant in determining compliance.
  • a logic regression method is used in one embodiment, and may be referred to Ruczinski, 2003, Journal of Computational and Graphical Statistics 12: 475-512.
  • the method is similar to the CART method in which a classifier is presented as a binary tree, but each node uses a more general Boolean operator associated with the property, compared to the "and" operator generated by CART.
  • Examples of other analysis methods include nearest shrunken centroids (Tibshirani. 2002 PNAS. 99: 6567-72), random forests (Breiman. 2001. Machine Learning 45: 5-32, and MART (Hastie. 2001. The Elements of Statistical Learning, Springer). ).
  • statistical processing may determine the level of confidence in the significant difference between the test substance and the control to determine compliance.
  • the raw data used for statistical processing are the values analyzed in duplicate, triple or multiple for each marker.
  • This statistical analysis method is very useful for making clinically meaningful judgments through statistical processing of biomarkers as well as clinical and genetic data.
  • the primary sample group was treated with 21 sorafenib drug-response groups (CR-2, PR-3, SD-16) and 44 sorafenib drug-responsive groups (PD-44).
  • the latter pair was used, and the secondary sample group consisted of 20 sorafenib drug-response groups (CR-2, PR-2, SD-16) and 31 sorafenib drug-resistant groups ( Pair samples before / after treatment of PD-44 patients) were used.
  • the candidate group of the target was selected as follows. Sorafenib drug response protein marker candidates were obtained using the LiverAtlas database, the most comprehensive resource currently associated with liver disease. A total of 50,265 proteins known to be related to liver disease in the LiverAtlas database are selected from among the proteins that can be secreted or secreted into the blood (Uniprot database). A total of 1,683 proteins were selected. Finally, peptide MS / MS using four different peptide MS / MS library sources (NIST Ion-Trap, NIST Q-TOF, ISB human plasma, Home made library) to select only proteins that can be detected by mass spectrometry. As a result, only 960 proteins were selected.
  • detection target group selection was performed as follows. In order to select only targets that can be detected by the actual mass spectrometry equipment, only peptides with proper signal detection through MRM analysis were selected from 60 normal groups and 60 HCC groups. 1316 peptides were selected.
  • PMSF Phenylmethyl sulfonyl fluoride
  • a depletion process was first performed to remove 6 proteins (albumin, IgG, IgA, haptoglobin, transferrin, alpha-1-antitrypsin) present in the blood at high-abundant levels. .
  • 6 proteins albumin, IgG, IgA, haptoglobin, transferrin, alpha-1-antitrypsin
  • MARS Multiple affinity removal system
  • Serum samples obtained after the depletion process were concentrated (w / 3K filter), and protein concentration was quantified by BCA (Bicinchoninic acid) analysis.
  • 100 ⁇ g serum samples were taken and then treated with a final concentration of 6M urea / 20mM DTT (Tris pH 8.0), followed by incubation at 37 ° C. for 60 minutes. The final concentration was treated with 50 mM IAA, and then incubated at room temperature for 30 minutes.
  • 100 mM Tris pH 8.0 was treated so that the concentration of urea was 0.6 M or less. Trypsin treatment was performed so that the ratio of trypsin and serum was 1:50, and then incubated at 37 ° C. for 16 hours.
  • the formic acid solution was treated to a final concentration of 5% and then subjected to the following desalting process.
  • Activation was performed by pouring 1 mL of 60% ACN / 0.1% formic acid three times on an OASIS column (Waters, USA). Equilibration was performed by pouring 1 mL of 0.1% formic acid five times into an OASIS column. Peptide samples were added and washed 5 times with 1 mL of 0.1% formic acid. Peptides were eluted with 1 mL of 40% ACN / 0.1% formic acid and 1 mL of 60% ACN / 0.1% formic acid. It was frozen at ⁇ 70 ° C. for at least 1 hour and then dried by Speed-vac. The dried peptide samples were dissolved in 50 ⁇ l of Sol A buffer (3% ACN / 0.1% formic acid), centrifuged at 15,000 rpm for 60 min, and only 40 ⁇ l was transferred to the vials for analysis.
  • MRM analysis In the first screening step, in order to select targets that can be reproducibly detected in 537 proteins and 1316 peptides selected as in Example 2 and show differences between the sorafenib conformation and non-compliance groups.
  • Samples from 60 normal patients and 60 liver cancer patients were used.
  • the primary sample was a sample of 21 pairs of patients (pre / post-treatment) and 44 non-treatment groups (pre / post-treatment) who were compliant with Sorafenib drug.
  • a 20-pair patient group and a disabled patient group 31-pair sample which comply with the sorafenib drug were confirmed, and 24 protein markers which can distinguish whether the patient adhered or not to sorafenib drug were finally confirmed.
  • the analysis was repeated with MRM three times per set.
  • MRM analysis was performed using Skyline (http://proteome.gs.washington.edu/software/skyline) for each target protein to select peptide and fragment ions for MRM analysis.
  • Skyline is open source software for MRM method development and analysis (Stergachis AB, et al., 2011, Nat Methods 8: 1041-1043).
  • peptide maximum length was 30, minimum length was 6 amino acids and did not include repeated arginine (Arg, R) or lysine (Lys, K). If methionine (Met, M) was also included in the peptide, it was removed due to the possibility of modification. It was also not used when proline came after arginine or lysine, but when histidine (His, H) was included, the charge was changed but used.
  • Quadruple 1 served as a filter that can pass only certain Q1 m / z.
  • Precursor ions that passed through the Q1 filter were fragmented by electrical energy in Quadruple 2 (collision cells), which were broken down into product ions.
  • This product ion can pass only certain product ions through Quadruple 3 (Q3), which acts as a filter as in Quadruple 1 (Q1).
  • the ions that passed through Quadruple 3 (Q3) were converted into digital signals at the detector and shown as peak chromatograms. The area of these peaks was analyzed for relative and absolute quantitative analysis.
  • all peptides are known to have a concentration that is normalized to the peak area of the peptide when the MRM is analyzed.
  • This peptide is called an internal standard peptide, which is a stable isotope. It is a peptide having an amino acid containing.
  • LNVENPK a heavy-labeled peptide from beta-galactosidase (lacZ) derived from E. coli, which does not exist in the human proteome.
  • lacZ beta-galactosidase
  • candidate protein marker groups were further selected that showed a pattern of increase or decrease in fold-change levels between the normal and HCC groups of 1.5-fold or more.
  • 195 proteins and 443 peptides with a p-value of 0.05 or less were identified between the normal group and the HCC group, and 191 proteins and 389 peptides with 1.5 fold-change or more were identified. 492 peptides were selected as target candidates.
  • Example 3 Whether the proteins and peptides selected in Example 3 were present in actual blood was confirmed as follows.
  • SIS protein-stable-isotope labeled standard
  • the Q3 intensity pattern of the SIS peptide and the peptide in the blood was analyzed to determine whether the complex blood sample exhibited signal interference by a peptide other than the target peptide. It confirmed (FIG. 3).
  • the automated detection of inaccurate and imprecise transitions (AuDIT) programs are used to compare the relative generated ion intensities of the peptides in the blood and the SIS peptide (P-value threshold: 0.05). And whether the peak area value of the SIS peptide is constantly detected during repeated measurements (CV threshold: 0.2) was confirmed.
  • Example 4 the endogenous level present in the blood was confirmed for the quantifiable blood endogenous target (123-protein protein, 231-peptide).
  • the signal for and the complementary synthetic (SIS) peptide signal were identified.
  • the lowest concentration found in the serum was ISLR (Immunoglobulin superfamily containing leucine-rich repeat protein) and the concentration was 0.15-fmol / ⁇ g.
  • the highest concentration of protein was A2MG (Alpha 2 macroglobulin), and the concentration was found to be 5.57-pmol / ⁇ g (Dynamic range: 3.7 ⁇ 10 4 orders) (FIG. 5).
  • the low-abundance targets determined to be below 20-fmol / ⁇ g in blood were 34-protein, 36-peptide, and 20-fmol / ⁇ g and 2000-fmol / ⁇ g Middle-abundance targets measured between 93-protein, 174-peptide, and high-abundance targets measured above 2000-fmol / ⁇ g were 11-protein, 22-peptide. It was confirmed (FIG. 6).
  • Validated blood endogenous peptides were determined for SIS peptide injection concentrations complementary thereto. For low abundance targets (level in blood ⁇ 20-fmol / ⁇ g), all were injected with 20-fmol SIS-peptides in batch, and middle-abundance targets (20-fmol / ⁇ g ⁇ For blood level ⁇ 2000-fmol / ⁇ g), the amount of SIS peptide was injected equal to the amount of peptide in the blood, and for high-abundance targets (blood level> 2000-fmol / ⁇ g) all 2000-fmol amount of SIS-peptide was injected.
  • mRECIST Modified Response Evaluation Criteria in Solid Tumors
  • BOR overall survival
  • liver cancer patient who received sorafenib treatment as the primary sample for the early diagnosis of the final validated target candidate group (123 proteins, 231 peptides) was used (Table 1).
  • Drug response compliance group 21-paired and drug non-response groups 44-Paired samples were used, and the primary sample used 51-Paired samples (Table 2), which was the drug response compliance group 20-paired sample and drug non-response group Markers were derived using 31-Paired samples.
  • the MRM analysis sequence was randomly analyzed so that the experimenter could not identify the patient group, and the analysis was repeated three times per sample.
  • the peak area values of the target peptides thus obtained are normalized to the peak area values of the SIS peptides complementary to each other, and then IBM SPSS statistics (version 21.0) and GraphPad (version 6.00) are obtained. I went through the analysis.
  • Sorafenib a liver cancer targeted drug, is useful as an early treatment for advanced liver cancer, but has a limit of less than 5% in tumor size reduction and an increase in survival time of less than 3 months, which is not effective for price. .
  • Predicting the prognosis of sorafenib drug response was analyzed by prioritizing the targets showing differences in expression between the drug-responsive and drug-responsive patients prior to sorafenib treatment. The schematic diagram is shown in FIG.
  • a highly diagnostic (AUC-value> 0.700) target was identified as 32-protein, 44-peptide before the sorafenib treatment.
  • a target with a high diagnostic difference (AUC-value ⁇ 0.700) between the acclimatized patient group and the non-accepted patient group was identified as 46-protein, 7-peptide before treatment with sorafenib.
  • red shows that the AUC value differs by more than 0.7, increasing the expression level in the case group.
  • blue the AUC value is more than 0.7, and the expression level is decreased in the case group.
  • Black indicates that the difference between the two groups is less than or equal to the AUC value of 0.7.
  • Multivariate analysis was performed on 24 proteins and 40 peptides with high diagnostic ability in both the acclimatized and non-complied patients before and after sorafenib treatment in the training set and test set results.
  • -variate analysis was used to build and compare multiple protein marker panels.
  • the AUC value of the five peptide panels was 0.980 as compared between the drug response compliance group and the non-compliance group, and 37 of the 41 sorafenib treatment compliance groups were adapted through the five peptide panels. (Accracy 90.2%), 71 out of 75 Sorafenib-treated non-competents (Accuracy 94.7%) can be diagnosed, and the accuracy of diagnosis using the 5-peptide (4-protein) marker panel was 93.1%. (FIG. 9). When the remaining 20-protein (35-peptide) is added to the 4-protein (5-peptide), it was confirmed that it is possible to make a myriad of protein combinations of AUC 0.980 or more.
  • Markers according to the present application can be detected at the protein level
  • the detection method at the protein level may include the analysis using the MRM analysis and the antibody used in the present embodiment, only one, that is, the MRM analysis alone provides the desired result according to the present application. You can either get it or use both methods for reconfirmation.
  • Protein Level Western Blotting (Protein Level) was performed on 7 proteins with high AUC values among 24-proteins validated by MRM analysis (Peptide Level) for the purpose of predicting hepatic cancer sorafenib prognosis (Table 4).
  • the antibody selection criteria allowed the peptide portion analyzed by MRM to be included (or as close as possible) in the antibody immunogen portion and for plasma / serum. Those with Western blotting results, and the presence of monoclonal antigens were selected first, and the antibodies used were as described in Tables 3-1 and 3-2, and the antibodies were purchased from Santa Cruz Biotechnology, USA.
  • Peptides not proteins, can be measured and used as markers for quantification by MRM.
  • multi-variate analysis was performed on five targets (CD5L, IGHG1, IGHG3, IgJ and LG3BP) that matched the expression pattern of MRM, and built a multi-protein marker panel. And compared.

Abstract

Disclosed in the present application is a marker or a marker combination enabling excellent discrimination of a patient compliant with sorafenib drug from a patient not compliant with the same. The marker according to the present application enables determination of whether a patient is compliant with sorafenib, simply by a noninvasive test using blood, and thus enables customized drug administration based on the determination, thereby reducing drug side effects and being advantageous in the aspect of cost saving.

Description

간암 표적치료제 반응 예측용 바이오마커 및 그 용도Biomarker and its use for predicting liver cancer target therapy
간암의 표적치료제에 대한 환자의 반응을 예측할 수 있는 기술과 관련된 것이다. It relates to techniques that can predict a patient's response to a targeted therapy for liver cancer.
간암은 예후가 좋지 않은 암 중 하나로 전 세계적으로 암에 의한 사망률이 5위에 속한다. 특히 간염바이러스 보유율이 높은 우리나라를 포함한 아시아권에서는 높은 발생 빈도와 암 발생대비 2위의 사망률을 나타내고 있다. Liver cancer is one of the cancers with a poor prognosis and ranks fifth among cancers worldwide. In particular, the Asian region, including Korea, which has a high rate of hepatitis virus, has a high incidence and the second highest mortality rate compared to cancer.
하지만 간암은 상당히 진행 되서야 증상이 나타나는 질환으로 이로 인해 적절한 치료시기를 놓치는 경우가 빈번하고, 치료를 하는 경우도 예후가 극히 나쁘다. 특히 수술로 절제가 불가능한 경우는 1년 내 사망하는 심각한 질환으로, 이러한 임상적 현실을 고려할 때 암의 조기 진단 및 예후를 예측할 수 있는 기술은 암 치료의 가장 현실적 대안이고 차세대 간암 진료의 가이드라인이다. However, liver cancer is a disease that appears only when the disease progresses considerably, which often leads to missed the appropriate treatment time, and treatment is very poor in prognosis. In particular, surgical resection is a serious disease that dies within a year. Considering this clinical reality, early diagnosis and prognosis of cancer are the most realistic alternatives to cancer treatment and guidelines for next-generation liver cancer care. .
특히 간암은 간염바이러스나 알코올, 간경화와 같은 위험인자를 가지고 있는 환자에게서 호발하는 것으로 알려져있고 조기진단 마커를 이용하여 고위험군에 대한 선별적 감시 검사(surveillance)를 시행할 대상이 명확하다. 실제로, 6개월 간격으로 시행하는 조기진단은 간암 환자의 생존율 증대(사망률 37% 감소)하는 것으로 나타났다. In particular, liver cancer is known to occur in patients with risk factors such as hepatitis virus, alcohol, and cirrhosis of the liver, and it is clear that the early diagnosis markers will be used for selective surveillance of high risk groups. Indeed, early diagnosis at six-month intervals has been shown to increase survival rates (reduced by 37%) in liver cancer patients.
하지만 조기진단을 위한 노력에도 불구하고, 우리나라 전체 간암 환자의 60% 이상은 진행 병기(advanced stage) 에서 진단된다. 이러한 환자들은 수술이나 고주파 열치료와 같은 근치적 치료의 대상이 되지 못하므로 항암 화학 요법을 근간으로 하는 치료 대상이다. However, despite efforts for early diagnosis, more than 60% of all liver cancer patients in Korea are diagnosed in the advanced stage. Since these patients are not subject to radical treatment such as surgery or radiofrequency thermal therapy, they are treated based on chemotherapy.
지금까지는 효과적인 전신 항암 화학 요법은 거의 전무한 실정이었으나, 최근 경구용 항암 표적 치료제인 소라페닙(sorafenib)의 치료 효과가 항암 화학 요법 제제 중 최초로 임상 3상 무작위 대조군 연구를 통해 입증된 후로, 진행성 간암의 초기 치료로 인정되었다. Until now, there has been almost no effective systemic chemotherapy, but since the therapeutic effect of sorafenib, an oral anti-cancer chemotherapy, has recently been demonstrated in the first phase III randomized controlled study of chemotherapy, advanced liver cancer It was recognized as an initial treatment.
하지만 이러한 소라페닙은 종양 크기가 감소하는 비율이 3.3%에 불과하고 생존 기간의 증가가 약 2-3개월에 머물러서 가격 대비 효과가 크지 않다는 한계가 있으나, 진행성 간암에서 소라페닙의 사용 증가가 예상되고, 국내에서도 이미 간암 환자의 최소 5% 이상에서 소라페닙이 사용되고 있는 것으로 추정된다 (10만명 당 1.6명 이상/년). 특히 최근 개정된 소라페닙의 의료 급여 기준에 따르면 투여 조건을 모두 만족하는 대상에서 (stage III 이상, Child-Pugh class A, ECOG ECOG : Eastern Cooperative Oncology Group performance status 0-2) 소라페닙 전체 약값의 95%를 의료 급여로 지원하게 되어, 경제적 진입 장벽이 낮아져 향후 소라페닙의 사용량이 급증하게 될 가능성이 매우 높다. 하지만 소라페닙 사용 문제는 투약 효과에 비하여 과도하게 비싼 약값으로 인하여 (비급여시 300만원/월), 건강보험 재정에 큰 부담이 될 것이 분명하여 효과를 볼 수 있는 환자에의 선별적 치료가 필요하다. 특히 소라페닙은 다양한 신호 전달 경로에 작용하므로 소라페닙의 약물반응 효과를 예측할 수 있는 마커의 개발이 시급하다.However, such sorafenib is limited in that the tumor size decreases only 3.3% and the survival time is about 2-3 months, which is not effective for price. However, the use of sorafenib is expected in advanced liver cancer. In Korea, it is estimated that at least 5% of liver cancer patients are already using sorafenib (more than 1.6 per 100,000 people / year). In particular, according to the recently revised Sorafenib's medical benefit criteria (Stage III and above, Child-Pugh class A, ECOG ECOG: Eastern Cooperative Oncology Group performance status 0-2), As medical aid is used to support the percentage, it is very likely that the barrier to economic entry will be lowered, leading to a sharp increase in the use of sorafenib in the future. The problem of using sorafenib, however, is that it will be a huge burden on the health insurance financing due to the excessively expensive drug price (3 million won per month for non-payment), which requires selective treatment of patients. . In particular, since sorafenib acts on various signal transduction pathways, it is urgent to develop markers that can predict the drug response effect of sorafenib.
일본 공개 특허공보 2011-103821호는 소라페닙에 반응하는 유전자 규명에 관한 것으로, 디하이드로피리미딘 데하이드로게나제 (dihydropyrimidine dehydrogenase), CD247 유전자 등의 다형성 검출을 통해 반응을 예측하는 방법을 개시하고 있다. Japanese Laid-Open Patent Publication No. 2011-103821 relates to the identification of genes in response to sorafenib, and discloses a method for predicting a reaction by detecting polymorphisms of dihydropyrimidine dehydrogenase, CD247 gene, and the like. .
하지만 국내뿐 아니라, 해외에서 현재 소라페닙 약물 반응 예측과 관련된 분자 진단 시장은 거의 전무한 실정이므로, 효율적으로 소라페닙 약물반응 효과를 예측할 수 있는 바이오마커의 개발이 필요하다. However, since there is almost no molecular diagnostic market related to the prediction of sorafenib drug response in Korea as well as abroad, it is necessary to develop a biomarker that can effectively predict the effect of sorafenib drug response.
본원은 간암의 표적 치료제인 소라페닙에 대한 환자의 반응을 예측할 수 있는 바이오마커를 제공하고자 한다. The present application seeks to provide a biomarker capable of predicting a patient's response to sorafenib, a target therapeutic agent for liver cancer.
C163A, C1QB, CIQC, CATB, CD5L, CH3L1, CO7, FA11, FBLN1, FBLN3, FCG3A, FSTL1, GPX3, IGHG1, IGHG3, IGJ, ISLR, LG3BP, LUM, NRP1, QSOX1, SHBG, SODE 및 THBG로 구성되는 군으로부터 선택되는 하나 이상의 바이오마커의 검출시약을 포함하는, 소라페닙 반응 예측용 조성물을 제공한다. Consists of C163A, C1QB, CIQC, CATB, CD5L, CH3L1, CO7, FA11, FBLN1, FBLN3, FCG3A, FSTL1, GPX3, IGHG1, IGHG3, IGJ, ISLR, LG3BP, LUM, NRP1, QSOX1, SHBG, SODE and THDE It provides a composition for predicting sorafenib response, comprising a detection reagent of one or more biomarkers selected from the group.
다른 양태에서 본원은 소라페닙 약물 반응 예측에 필요한 정보를 제공하기 위하여, 소라페닙의 투여가 필요한 대상체 유래의 생물학적 시료로부터 C163A, C1QB, CIQC, CATB, CD5L, CH3L1, CO7, FA11, FBLN1, FBLN3, FCG3A, FSTL1, GPX3, IGHG1, IGHG3, IGJ, ISLR, LG3BP, LUM, NRP1, QSOX1, SHBG, SODE 및 THBG로 구성되는 군으로부터 선택되는 하나 이상 바이오마커의 핵산 및/또는 단백질의 농도를 검출하는 단계; 상기 핵산 또는 단백질의 농도 검출 결과를 대조군 시료의 해당 마커의 상응하는 결과와 비교하는 단계; 및 상기 대조군 시료와 비교하여, 상기 대상체 시료의 핵산 또는 단백질 농도에 변화가 있는 경우, 상기 대상체를 소라페닙 순응군으로 판정하는 단계를 포함하는, 소라페닙 마커를 검출하여 소라페닙에 대한 반응여부를 판단하는 방법을 제공한다. In another embodiment, the present application provides C163A, C1QB, CIQC, CATB, CD5L, CH3L1, CO7, FA11, FBLN1, FBLN3, from a biological sample from a subject in need of administration of sorafenib to provide information necessary for predicting sorafenib drug response. Detecting the concentration of nucleic acid and / or protein of one or more biomarkers selected from the group consisting of FCG3A, FSTL1, GPX3, IGHG1, IGHG3, IGJ, ISLR, LG3BP, LUM, NRP1, QSOX1, SHBG, SODE and THBG ; Comparing the detection result of the concentration of the nucleic acid or protein with the corresponding result of the corresponding marker of the control sample; And comparing with the control sample, when there is a change in nucleic acid or protein concentration of the subject sample, determining the subject as a sorafenib compliant group. Provide a way to judge.
본원에 따른 마커는 단독 또는 조합으로 사용되어 혈액시료를 이용하여 검출이 가능하며, 소라페닙 순응환자와 불응환자에서 차별적으로 발현되어, 화학요법이 필요한 간암 환자의 개인 맞춤형 약물 처방을 가능하게 한다.The markers according to the present invention may be used alone or in combination to detect blood samples and are differentially expressed in sorafenib-compliant and non-competent patients, thereby enabling personalized drug prescription of liver cancer patients requiring chemotherapy.
본원에 따른 바이오마커는 소라페닙 약물에 순응하는 환자와 불응하는 환자를 높은 변별력으로 구분해 낼 수 있어 소라페닙의 투여가 필요한 환자의 개인 맞춤형 약물사용이 가능하게 한다. 아울러 본원에 따른 마커는 다양한 신호 전달 경로에 작용하므로 본원에 개시된 다중 마커의 조합을 사용할 경우, 보다 효율적인 예후 예측에 기여할 수 있어 약물 부작용을 줄이는 것은 물론, 의료 보험 재정의 건전화에 크게 기여할 수 있다. The biomarker according to the present invention can distinguish between patients who are compliant with sorafenib and those who do not with high discrimination, thereby enabling the use of personalized drugs by patients in need of administration of sorafenib. In addition, since the marker according to the present invention acts on various signal transduction pathways, the combination of the multiple markers disclosed herein may contribute to more efficient prognostic prediction, thereby reducing drug side effects and greatly contributing to the reconstruction of health insurance.
도 1은 바이오마커 발굴 및 분석에 사용된 MRM 분석 과정을 도식적으로 나타낸 것이다. Figure 1 schematically shows the MRM analysis process used for biomarker discovery and analysis.
도 2는 혈액 내인성(endogenous) 펩타이드와 합성 펩타이드의 동시-용출(coelution) 여부를 나타낸 것이다.Figure 2 shows the coelution (coelution) of the blood endogenous peptide and the synthetic peptide.
도 3은 혈액 내인성 펩타이드와 합성 펩타이드의 Q3 강도 패턴을 나타낸다.3 shows the Q3 intensity pattern of blood endogenous peptides and synthetic peptides.
도 4는 혈액 내인성 펩타이드 수준 확인방법을 나타낸다.4 shows a method for confirming blood endogenous peptide levels.
도 5는 혈액 내인성 펩타이드 수준 측정 후 그 결과를 다이내믹 레인지(dynamic range) 분포로 나타낸 것이다.FIG. 5 shows the results as a dynamic range distribution after measuring blood endogenous peptide levels. FIG.
도 6은 소량 및 다량(low and high abundance) 타겟에 대한 혈액 내 농도를 나타낸 것이다.FIG. 6 shows the concentration in blood for low and high abundance targets.
도 7은 SIS 펩타이드 주입 농도 결정 방식을 모식도로 나타낸 것이다.Figure 7 shows a schematic diagram of the SIS peptide injection concentration determination method.
도 8은 약물반응 시료 구성의 모식도를 나타낸다.8 shows a schematic diagram of drug response sample configuration.
도 9는 다중 펩타이드 마커 패널 구축 결과(소라페닙 치료전의 순응군 대 불응군)를 나타낸다. 9 shows the results of constructing multiple peptide marker panels (accommodation vs. non-compliance before sorafenib treatment).
도 10은 약물반응 예후 예측 마커 검증을 위한 웨스턴 블랏팅 분석 결과를 나타낸 것으로 (a)단백질-01. C1QC(complement C1q subcomponent subunit C), (b)단백질-02. CD5L(CD5L antigen-like), (c)단백질-03. CO7(Complement component)Figure 10 shows the results of Western blotting analysis for validation of drug response prognostic markers (a) Protein-01. Complement C1q subcomponent subunit C), (b) protein-02. CD5L antigen-like, (c) protein-03. CO7 (Complement component)
도 11은 약물반응 예후 예측 마커 검증을 위한 ELISA 분석 결과를 나타낸 것으로 (a)단백질-01. CD5L(CD5L antigen-like), (b)단백질-02. IGHG1(Ig gamma-1 C region), (C)단백질-03. IGHG3(Ig gamma-3 C region), (d)단백질-04. IgJ(Immunoglobulin J chain), 및 (e)단백질-05. LG3BP(Galectin-3-binding protein)이다. Figure 11 shows the results of ELISA analysis for verification of drug response prognostic markers (a) Protein-01. CD5L antigen-like, (b) protein-02. IGHG1 (Ig gamma-1 C region), (C) protein-03. IGHG3 (Ig gamma-3 C region), (d) Protein-04. Igunoglobulin J chain (IGJ), and (e) protein-05. LG3BP (Galectin-3-binding protein).
도 12는 다중 단백질 마커 패널 구축 결과 (소라페닙 치료 전의 순응군 대 불응군)를 나타낸다.Figure 12 shows the results of constructing multiple protein marker panels (complied vs. non-conformed groups before sorafenib treatment).
본원에서는 MRM 기술을 이용하여, 정상인 간암환자, 소라페닙 순응군 환자를 대상으로 차별적으로 발현되는 단백질/펩타이드를 순차적으로 스크리닝하고 검증하여, 그룹 간에 유의적 차이를 나타내어 소라페닙에 대한 순응 여부를 판단하는 바이오마커로 유용한 단백질/펩타이드 발견을 근거로 한 것이다. Herein, MRM technology is used to sequentially screen and verify differentially expressed proteins / peptides in normal liver cancer patients and Sorafenib compliance group patients, and show significant differences between groups to determine compliance with Sorafenib. This is based on the discovery of useful proteins / peptides as biomarkers .
한 양태에서 본원은 C163A (Scavenger receptor cysteine-rich type 1 protein M130), C1QB (Complement C1q subcomponent subunit B), CIQC (Complement C1q subcomponent subunit C), CATB (Cathepsin B), CD5L (CD5 antigen-like), CH3L1 (Chitinase-3-like protein 1), CO7 (Complement component C7), FA11 (Coagulation factor XI), FBLN1 (Fibulin-1), FBLN3 (EGF-containing fibulin-like extracellular matrix protein 1), FCG3A (Low affinity immunoglobulin gamma Fc region receptor III-A), FSTL1 (Follistatin-related protein 1), GPX3 (Glutathione peroxidase 3), IGHG1 (Ig gamma-1 chain C region), IGHG3 (Ig gamma-3 chain C region), IGJ (Immunoglobulin J chain), ISLR (Immunoglobulin superfamily containing leucine-rich repeat protein), LG3BP (Galectin-3-binding protein), LUM (Lumican), NRP1 (Neuropilin-1), QSOX1 (Sulfhydryl oxidase 1), SHBG (Sex hormone-binding globulin), SODE (Extracellular superoxide dismutase [Cu-Zn]) 및 THBG (Thyroxine-binding globulin)로 구성되는 군으로부터 선택되는 하나 이상의 바이오 마커의 검출시약을 포함하는, 소라페닙 반응 예측용 조성물에 관한 것이다. In one embodiment, the present disclosure provides a scavenger receptor cysteine-rich type 1 protein M130, C1QB (Complement C1q subcomponent subunit B), CIQC (Complement C1q subcomponent subunit C), CATB (Cathepsin B), CD5L (CD5 antigen-like), CH3L1 (Chitinase-3-like protein 1), CO7 (Complement component C7), FA11 (Coagulation factor XI), FBLN1 (Fibulin-1), FBLN3 (EGF-containing fibulin-like extracellular matrix protein 1), FCG3A (Low affinity immunoglobulin gamma Fc region receptor III-A), FSTL1 (Follistatin-related protein 1), GPX3 (Glutathione peroxidase 3), IGHG1 (Ig gamma-1 chain C region), IGHG3 (Ig gamma-3 chain C region), IGJ ( Immunoglobulin J chain), ISLR (Immunoglobulin superfamily containing leucine-rich repeat protein), LG3BP (Galectin-3-binding protein), LUM (Lumican), NRP1 (Neuropilin-1), QSOX1 (Sulfhydryl oxidase 1), SHBG (Sex hormone -binding globulin), extracellular superoxide dismutase [Cu-Zn] (SODE) and THBG (Thyroxine-binding globulin) Containing a detection reagent of the above biomarkers, seashell penip relates to a reaction composition for the prediction.
소라페닙 (Sorafenib) {4-[[4-chloro-3-(trifluoromethyl)phenyl]carbamoylamino]phenoxy]-N-methyl-pyridine-2 arboxamide}은 Bayer와 Onyx Pharmaceutical에서 개발되어 상품명 Nexavar로 판매되는 제품으로, 카이나제 억제제 기반의 약물로 간세포암 및 방사선요오드 요법에 불응하는 진행된 갑상선암의 치료에 사용된다. Sorafenib {4-[[4-chloro-3- (trifluoromethyl) phenyl] carbamoylamino] phenoxy] -N-methyl-pyridine-2 arboxamide} was developed by Bayer and Onyx Pharmaceutical and sold under the trade name Nexavar. It is a drug based on kinase inhibitors and is used for the treatment of hepatocellular carcinoma and advanced thyroid cancer that is incompatible with radioiodine therapy.
본원에서 간암 또는 간세포암(Hepatocellular carcinoma, HCC)은 알콜 남용, 바이러스성 간염 및 대사성 간질환과 같은 위험인자를 갖는 환자에서 발생하는 간조직 자체에서 발생하는 원발성 악성 종양을 일컫는 것으로, 간세포암종 진료 가이드라인(대한간암학회, 국립암센터 발행, pp17-19, 2014)에 따르면 stage I, II, III, IV A 및 IV B로 나눌 수 있다. Liver cancer or hepatocellular carcinoma (HCC) as used herein refers to primary malignant tumors that occur in the liver tissue itself in patients with risk factors such as alcohol abuse, viral hepatitis, and metabolic liver disease. According to Line (Korean Society for Liver Cancer, pp17-19, 2014), it can be divided into stage I, II, III, IV A and IV B.
본원에 따른 마커는 소라페닙의 치료가 필요한 간암 환자가 소라페닙에 반응하는지 여부를 예측하는데 사용될 수 있다. Markers according to the invention can be used to predict whether a liver cancer patient in need of treatment with sorafenib responds to sorafenib.
일 구현예에서 본원에 따른 마커는 간암의 병기와 상관없이 종양의 외과적 절제 전 또는 후에, 또는 종양의 외과적 수술이 없는 경우에도 종양 조직의 축소 또는 제거, 종양세포의 제거를 위해 소라페닙의 투여가 필요한 환자의 이 약물에 대한 반응여부 예측에 사용될 수 있다. In one embodiment, the markers according to the present disclosure may be used for the reduction or removal of tumor tissue, removal of tumor cells before or after surgical resection of the tumor, regardless of stage of liver cancer, or even without surgical surgery of the tumor. It can be used to predict whether a patient in need of administration will respond to this drug.
간암은 조기진단을 위한 노력에도 불구하고 우리나라 전체 간암 환자의 60% 이상은 진행 병기 (stage III 이상) 에서 진단되는데, 이 환자들은 수술이나 고주파 열치료와 같은 근치적 치료의 대상이 되지 못하므로 항암 화학 요법을 근간으로 치료를 하게 된다. 최근까지 효과적인 전신 항암 화학 요법은 거의 전무한 실정이었으나 최근 경구용 항암 표적 치료제인 소라페닙(sorafenib)의 치료 효과가 항암 화학 요법 제제 중 최초로 3상 무작위 대조군 연구를 통해 입증된 이후로 간암 환자에서 사용되어 왔다. Liver cancer is diagnosed in advanced stages (stage III and above), despite the efforts for early diagnosis, because these patients are not subject to radical treatment such as surgery or radiofrequency ablation. Treatment will be based on chemotherapy. Until recently, almost no systemic chemotherapy has been effective, but it has been used in liver cancer patients since the therapeutic effect of sorafenib, an oral anticancer target drug, has recently been demonstrated in the first phase 3 randomized controlled study of chemotherapy. come.
이런 측면에서 본원에 따른 다른 구현예에서 소라페닙은 수술이나 고주파 열치료와 같은 근치적 치료의 대상이 되지 못하는 항암요법이 필요한 투여가 필요한 대상체, 예를 들면 간암 병기 III기 이상의 환자의 소라페닙 약물에 대한 반응을 예측하는데 사용될 수 있다. In this aspect, sorafenib in another embodiment according to the present application is a sorafenib drug in a subject in need of administration that requires chemotherapy that is not subject to curative treatment, such as surgery or radiofrequency thermal therapy, for example, patients with stage III or higher liver cancer. It can be used to predict the response to.
본원에서 소라페닙 대한 반응 평가 기준은, 처음 소라페닙 약물 투여를 시작해서 PD(progressive disease)나 부작용으로 약제를 중단하게 되는 시점 중에 보였던 가장 좋은 반응을 기준(BOR, best overall survival)으로 삼았으며, 이는 mRECIST(modified Response Evaluation Criteria in Solid Tumors) 가이드라인을 따랐다. mRECIST는 치료 전과 비교하여 직경이 가장 큰 종양(tumor diameter)의 합의 변화를 가지고 반응 여부를 4가지 그룹으로 나눈다. 종양이 완전히 제거되는 경우를 CR(complete response), 치료 전에 비하여 최소 30% 이상 감소한 경우를 PR(partial response), 20% 증가 ~ 30% 감소인 경우를 PR(partial response), 그리고 최소 20% 이상 증가한 경우를 PD(progressive disease)로 정의하고, 본원에서는 CR, SD, PR를 약물 순응군으로, PD를 약물 불응(또는 불능)군으로 정의한다.The criteria for evaluating response to sorafenib are based on the best overall survival (BOR) that was seen during the first start of the administration of sorafenib drug and the discontinuation of the drug due to progressive disease (PD) or adverse events. It followed the modified Response Evaluation Criteria in Solid Tumors (mRECIST) guidelines. mRECIST divides the response into four groups with changes in the sum of the tumor diameters as compared to before treatment. Complete response (CR) for complete removal of tumor, partial response (PR) for at least 30% reduction compared to prior treatment, partial response (PR) for 20% to 30% reduction, and at least 20% reduction Increased cases are defined as progressive disease (PD), and herein CR, SD, and PR are defined as drug compliance group and PD as drug non-compliance (or incapacity) group.
본원에서 용어 바이오마커란 소라페닙에 대한 불응군과 순응군을 치료 전에 구분할 수 있는 마커로서, 불응군과 순응군에서 농도 변화를 나타내는 단백질, 상기 단백질 유래의 폴리펩타이드, 상기 단백질을 코딩하는 유전자 또는 그 단편을 포함한다.As used herein, the term biomarker is a marker that can distinguish between the refractory group and the compliance group for sorafenib before treatment, and includes a protein, a polypeptide derived from the protein, a gene encoding the protein, That fragment.
본원에 따른 바이오마커는 불응군과 같은 대조군의 시료와 비교하여 순응군 혈액에서 그 양이 증가한 것으로, 그 단백질 또는 핵산 서열은 예를 들면 표 3-1 및 3-2에 기재된 ID로 UniProt DB (www.uniprot.org)에서 검색가능하다. The biomarker according to the present invention has an increased amount in the blood of the compliant group compared to the samples of the control group such as the non-condensed group, and the protein or nucleic acid sequence is, for example, the UniProt DB (ID) described in Tables 3-1 and 3-2. www.uniprot.org).
본원에 따른 일 구현예에서는 특히 단독으로 높은 AUC 값을 갖는 CD5L, IGHG1, IGHG3, IGJ, LG3BP, 및 QSOX1로 구성되는 군으로부터 선택되는 하나 이상의 마커가 사용되며, 상기 마커는 본원에 실시예에 기재된 바와 같은 일차 및 이차 시료군 모두에서 높은 AUC 값으로 대조군과 비교하여 차별적 발현을 나타냈다. In one embodiment according to the present application in particular one or more markers selected from the group consisting of CD5L, IGHG1, IGHG3, IGJ, LG3BP, and QSOX1 having a high AUC value alone are used, wherein the markers are described in the Examples herein. Higher AUC values in both primary and secondary sample groups as shown showed differential expression compared to the control.
본원에 따른 마커는 하나 또는 두 개 이상의 조합, 예를 들면 두 개, 세 개, 네 개, 다섯 개의 조합으로 사용될 수 있다. 당업자라면 본원 실시예에 기재된 방법과 같은 정상인 및/또는 환자를 포함하는 대상체의 생물학적 시료를 사용한 분석 및/또는 Logistic regression 분석과 같은 방법을 통해 목적하는 민감도 및 특이성을 만족하는 마커의 조합을 선별할 수 있을 것이다.Markers according to the invention can be used in one or two or more combinations, for example two, three, four, five combinations. Those skilled in the art will be able to select combinations of markers that meet the desired sensitivity and specificity through methods such as assays using biological samples of subjects, including normal individuals and / or patients, and / or logistic regression assays, such as the methods described herein. Could be.
일 구현에에서 본원에 따른 마커의 조합은 상술한 바와 같은 높은 AUC 값을 갖는 CD5L, IGHG1, IGHG3, IGJ, LG3BP 및 QSOX1으로 구성되는 군으로부터 선택되는 어느 하나와 C163A, C1QB, CIQC, CATB, CH3L1, CO7, FA11, FBLN1, FBLN3, FCG3A, FSTL1, GPX3, IGHG1, ISLR, LUM, NRP1, SHBG, SODE 및 THBG로 구성되는 군으로부터 선택되는 하나 이상 마커의 조합을 포함한다.In one embodiment the combination of markers according to the present application is C163A, C1QB, CIQC, CATB, CH3L1 and any one selected from the group consisting of CD5L, IGHG1, IGHG3, IGJ, LG3BP and QSOX1 having a high AUC value as described above. And combinations of one or more markers selected from the group consisting of, CO7, FA11, FBLN1, FBLN3, FCG3A, FSTL1, GPX3, IGHG1, ISLR, LUM, NRP1, SHBG, SODE and THBG.
다른 구현예에서는 CD5L, IGHG1, IGHG3, IGJ, LG3BP 및 QSOX1; FBLN1, LG3BP, CO7, 및 CD5L; 또는 LG3BP, IGHG1, IGHG3, CD5L 및 IgJ의 조합으로 사용된다. In other embodiments, CD5L, IGHG1, IGHG3, IGJ, LG3BP, and QSOX1; FBLN1, LG3BP, CO7, and CD5L; Or in combination with LG3BP, IGHG1, IGHG3, CD5L and IgJ.
본원에 따른 마커는 정량적 또는 정성적 분석을 통해 핵산, 특히 단백질 및/또는 mRNA의 존재 여부의 검출 및/또는 이의 발현량 자체, 발현량의 변화, 발현량 차이의 수준에서 검출될 수 있다. The markers according to the invention can be detected at the level of the detection of the presence of nucleic acids, in particular of proteins and / or mRNA, and / or the amount of expression thereof, changes in the amount of expression, difference in the amount of expression through quantitative or qualitative analysis.
본원에서 검출이란, 정량 및/또는 정성 분석을 포함하는 것으로, 존재, 부존재의 검출 및 발현량 검출을 포함하는 것으로 이러한 방법은 당업계에 공지되어 있으며, 당업자라면 본원의 실시를 위해 적절한 방법을 선택할 수 있을 것이다.Detection herein includes quantitative and / or qualitative analysis, including the detection of presence, absence, and expression level detection. Such methods are well known in the art and those skilled in the art will select appropriate methods for carrying out the present application. Could be.
이러한 본원에 따른 마커의 검출은 마커의 기능적 특징 및/또는 항원적 특징에 기반을 둔 것일 수 있다. Detection of such markers according to the present application may be based on functional and / or antigenic characteristics of the marker.
일 구현예에서 본원에 따른 마커는 마커의 활성 또는 기능의 검출, 또는 단백질을 코딩하는 핵산, 특히 mRNA 수준 및/또는 단백질 수준에서 특이적으로 상호작용하는 물질을 사용하여 검출될 수 있다. In one embodiment the marker according to the present application can be detected using the detection of the activity or function of the marker, or using a nucleic acid encoding a protein, in particular an agent that specifically interacts at the mRNA level and / or protein level.
다른 구현예에서 본원에 따른 마커의 검출은 각 마커 단백질 유래의 펩타이드 예를 들면 표 3-1 및 3-2에 기재된 각 마커별로 상응하는 펩타이드를 검출하여 정량하는 본원에 기재된 MRM과 같은 질량분석 방법을 통해 수행될 수 있으며, 하나의 단백질에 대하여 하나 또는 두 개 이상의 펩타이드가 사용될 수 있다. 이러한 MRM 분석에 사용될 수 있는 펩타이드는 항체 분석에서 항체가 인식하는 항원과 일치하지 않을 수도 있으며, 펩타이드를 이용한 검출과 항체 분석은 서로 상호 보완적으로 사용될 수 있다.In another embodiment the detection of a marker according to the present invention is a mass spectrometry method such as MRM as described herein which detects and quantifies a peptide derived from each marker protein, eg, the corresponding peptide for each marker described in Tables 3-1 and 3-2. It can be carried out through, one or more peptides may be used for one protein. Peptides that can be used for such MRM analysis may not match the antigen recognized by the antibody in the antibody analysis, detection using the peptide and antibody analysis can be used complementary to each other.
이런 측면에서 본원에 따른 조성물에 포함되는 검출시약은 본원에 따른 마커를 단백질 또는 핵산 수준에서 다양한 방식으로 정량적 또는 정성적 분석을 통해 검출할 수 있는 시약이다. In this respect, the detection reagent included in the composition according to the present invention is a reagent capable of detecting the marker according to the present invention through quantitative or qualitative analysis in various ways at the protein or nucleic acid level.
본원에 따른 마커의 정량적 및 정성적 분석에는 공지된 단백질 또는 핵산을 정성 또는 정량적으로 검출하는 다양한 방법이 사용될 수 있다.For quantitative and qualitative analysis of the markers according to the present application, various methods for qualitatively or quantitatively detecting known proteins or nucleic acids can be used.
단백질 수준에서의 정성적 또는 정량적 검출 방법으로는 예를 들면 웨스턴블랏, ELISA, 방사선면역분석, 면역확산법, 면역 전기영동, 조직 면역염색, 면역침전 분석법, 보체 고정 분석법, 용액/현탁액 중에서 표지된 항체와의 결합, 질량분석 또는 항체를 이용한 단백질 어레이 등을 이용한 방법이 사용될 수 있다. Qualitative or quantitative detection methods at the protein level include, for example, Western blot, ELISA, radioimmunoassay, immunodiffusion, immunoelectrophoresis, tissue immunostaining, immunoprecipitation assay, complement fixation assay, antibody labeled in solution / suspension Methods using binding with, mass spectrometry or protein arrays with antibodies can be used.
또는 핵산 수준에서의 정성적 또는 정량적 검출 방법으로는 핵산 전사 및 증폭 방법, eTag 시스템, 표지된 비드를 기본으로 하는 시스템, 핵산 어레이와 같은 어레이 시스템 등을 이용한 방법이 사용될 수 있다. Alternatively, as a qualitative or quantitative detection method at the nucleic acid level, a method using a nucleic acid transcription and amplification method, an eTag system, a system based on labeled beads, an array system such as a nucleic acid array, and the like can be used.
이러한 방법은 공지된 것으로 예를 들면 chip-based capillary electrophoresis: Colyer et al. 1997. J Chromatogr A. 781(1-2):271-6; mass spectroscopy: Petricoin et al. 2002. Lancet 359: 572-77; eTag systems: Chan-Hui et al. 2004. Clinical Immunology 111:162-174; microparticle-enhanced nephelometric immunoassay: Montagne et al. 1992. Eur J Clin Chem Clin Biochem. 30:217-22 등을 참조할 수 있다. Such methods are known and are described, for example, in chip-based capillary electrophoresis: Colyer et al. 1997. J Chromatogr A. 781 (1-2): 271-6; mass spectroscopy: Petricoin et al. 2002. Lancet 359: 572-77; eTag systems: Chan-Hui et al. 2004. Clinical Immunology 111: 162-174; microparticle-enhanced nephelometric immunoassay: Montagne et al. 1992. Eur J Clin Chem Clin Biochem. 30: 217-22, and the like.
본원에 따른 일 구현예에서는 질량분석법(Mass spectrometry)를 이용하여 마커를 검출할 수 있으며, 이는 검체로부터 단백질 또는 펩타이드를 분리한 후 예를 들면 본원 실시예에 기재된 방식대로 분석될 수 있으며, 또한 예를 들면 (Kim, et al. 2010 J Proteome Res. 9: 689-99; Anderson, L et al. 2006. Mol Cell Proteomics 5: 573-88.)를 참조할 수 있다. 한 구현예에서는 예를 들면 Triple Quadrupole LC-MS/MS, QTRAP 등을 이용한 다중반응모니터링(Multiple reaction monitoring, MRM) 기술이 사용된다. MRM은 생체 시료 중에 존재하는 미량의 바이오마커와 같은 물질을 정량적으로 정확하게 다중 측정할 수 있는 방법으로 제1 질량필터 (Q1)를 이용하여 이온화원에서 생성된 이온 단편들 중 전구이온 또는 모이온을 선택적으로 충돌관으로 전달한다. 이어 충돌관에 도달한 전구이온은 내부 충돌기체와 충돌하여, 쪼개져 산물이온 또는 딸이온을 생성하여 제2 질량 필터 (Q2)로 보내지고, 여기서 특징적인 이온만이 검출부로 전달된다. 이런 방식으로 목적하는 성분의 정보만을 검출할 수 있는 선택성 및 민감도가 높은 분석방법이다. 예를 들면 Gillette et al., 2013, Nature Methods 10:28-34에 기재된 것을 참조할 수 있다. In one embodiment according to the present disclosure, the marker may be detected using mass spectrometry, which may be analyzed for example in the manner described in the Examples herein after separating the protein or peptide from the sample. See, eg, Kim, et al. 2010 J Proteome Res. 9: 689-99; Anderson, L et al. 2006. Mol Cell Proteomics 5: 573-88. In one embodiment, multiple reaction monitoring (MRM) techniques using, for example, Triple Quadrupole LC-MS / MS, QTRAP, and the like are used. MRM is a method that can quantitatively and accurately measure multiple substances such as traces of biomarkers in a biological sample. The first mass filter (Q1) is used to detect protons or moions among ion fragments generated from ionization sources. Optionally pass to the crash tube. Proton ions that reach the impingement tube then collide with the internal impingement gas, split and form product or daughter ions to be sent to the second mass filter Q2, where only the characteristic ions are transferred to the detector. In this way, it is a high selectivity and sensitivity analysis method that can detect only the information of the desired component. See, for example, those described in Gillette et al., 2013, Nature Methods 10: 28-34.
다른 구현예에서는 각 단백질 또는 상기 단백질을 코딩하는 유전자 유래의 mRNA와 특이적으로 결합하는 결합제제 또는 결합제제를 포함하는 어레이가 사용된다. In another embodiment, a binding agent or array comprising binding agents that specifically binds to each protein or mRNA from a gene encoding the protein is used.
또 다른 구현예에서는 ELISA(Enzyme Linked Immuno Sorbent Assay), RIA(Radio Immuno Assay) 등과 같은 샌드위치 방식의 면역분석법이 사용될 수 있다. 이러한 방법은 고상의 기질 예를 들면 글라스, 플라스틱 (예를 들면 폴리스티렌), 폴리사카라이드, 나일론 또는 나이트로셀룰로스로 제작된 비드, 막, 슬라이드 또는 마이크로타이터플레이트에 결합된 제1 항체에 생물학적 시료를 추가한 후, 직접 또는 간접 검출이 가능한 표지물질 예를 들면 3H 또는 125I와 같은 방사선 물질, 형광물질, 화학발광물질, 햅텐, 바이오틴, 디그옥시제닌 등으로 표지되거나 또는 기질과의 작용을 통해 발색 또는 발광이 가능한 호스래디쉬 퍼옥시다제, 알칼라인 포스파타제, 말레이트 데하이드로게나아제와 같은 효소와 컨쥬게이션된 항체와의 결합을 통해 단백질은 정성 또는 정량적으로 검출할 수 있다. In another embodiment, a sandwich-type immunoassay such as Enzyme Linked Immuno Sorbent Assay (ELISA) or Radio Immuno Assay (RIA) may be used. This method involves a biological sample on a first antibody bound to a solid substrate such as beads, membranes, slides or microtiterplates made of glass, plastic (eg polystyrene), polysaccharides, nylon or nitrocellulose. After the addition of a label, a label capable of direct or indirect detection may be labeled with a radioactive substance such as 3 H or 125 I, a fluorescent substance, a chemiluminescent substance, hapten, biotin, digoxygenin, or the like, or the action of a substrate. Proteins can be detected qualitatively or quantitatively through binding of conjugated antibodies with enzymes such as horseradish peroxidase, alkaline phosphatase, and malate dehydrogenase, which are capable of developing or emitting light.
다른 구현예에서는 항원 항체 결합을 통해 마커를 간단하게 검출할 수 있는 Ouchterlony 플레이트, 웨스턴블랏, Crossed IE, Rocket IE, Fused Rocket IE, Affinity IE와 같은 면역 전기영동(Immuno Electrophoresis)이 사용될 수 있다. 상기 면역분석 또는 면역염색의 방법은 Enzyme Immunoassay, E. T. Maggio, ed., CRC Press, Boca Raton, Florida, 1980; Gaastra, W., Enzyme-linked immunosorbent assay(ELISA), in Methods in Molecular Biology, Vol. 1, Walker, J.M. ed., Humana Press, NJ, 1984 등에 기재되어 있다. 상술한 면역분석 과정에 의한 최종적인 시그널의 세기를 분석하여 즉, 정상 시료와의 시그널 대조를 수행함으로써, 질환 발생 여부를 진단할 수 있다.In other embodiments, immunoelectrophoresis such as Ouchterlony plates, Western blots, Crossed IE, Rocket IE, Fused Rocket IE, Affinity IE, which can simply detect markers through antigen antibody binding, can be used. The immunoassay or method of immunostaining is described in Enzyme Immunoassay, ET Maggio, ed., CRC Press, Boca Raton, Florida, 1980; Gaastra, W., Enzyme-linked immunosorbent assay (ELISA), in Methods in Molecular Biology, Vol. 1, Walker, JM ed., Humana Press, NJ, 1984 and the like. By analyzing the final signal intensity by the above-described immunoassay process, that is, by performing a signal contrast with a normal sample, it is possible to diagnose whether the disease occurs.
이러한 방법에 사용되는 시약 또는 물질은 공지된 것으로서, 예를 들면 상기 마커에 특이적으로 결합하는 항체, 기질, 핵산 또는 펩타이드 앱타머, 또는 상기 마커와 특이적으로 상호작용하는 수용체 또는 리간드 또는 보조인자 등이 사용될 수 있다. 상기 본원의 마커와 특이적으로 상호작용 또는 결합하는 시약 또는 물질은 칩 방식 또는 나노입자(nanoparticle)와 함께 사용될 수 있다. Reagents or materials used in such methods are known and include, for example, antibodies, substrates, nucleic acids or peptide aptamers that specifically bind to the marker, or receptors or ligands or cofactors that specifically interact with the marker. And the like can be used. Reagents or materials that specifically interact with or bind to the markers of the present disclosure may be used with chip or nanoparticles.
본원의 마커는 또한 핵산 수준 특히 mRNA 수준에서의 공지된 다양한 방법을 사용하여 정량적 및/또는 정성적으로 검출될 수 있다.Markers herein can also be detected quantitatively and / or qualitatively using a variety of methods known at the nucleic acid level, particularly at the mRNA level.
핵산 수준에서의 정성적 또는 정량적 검출 방법으로는 예를 들면 mRNA 수준에서의 검출, 발현량 또는 패턴의 검출을 위해 역전사 중합효소연쇄반응(RT-PCR)/중합효소연쇄반응, 경쟁적 RT-PCR, 실시간 RT-PCR, Nuclease 보호 분석(NPA) 예를 들면 RNase, S1 nuclease 분석, in situ 교잡법, DNA 마이크로어레이 또는 칩 또는 노던블랏 등을 이용한 방식이 사용될 수 있으며, 이러한 분석법은 공지된 것이며, 또한 시중의 키트를 사용하여 수행될 수 있으며, 당업자라면 본원의 실시를 위해 적절한 것을 선택할 수 있을 것이다. 예를 들면 노던블랏은 세포에 존재하는 전사체의 크기를 알 수 있으며, 다양한 프로브를 사용할 수 있는 장점이 있으며, NPA는 다중 마커 분석에 유용하며, in situ 교잡법은 mRNA와 같은 전사체의 세포 또는 조직내 위치 파악에 용이하며, 역전사 중합효소연쇄반응은 적은 량의 시료 검출에 유용하다. 또한 본원에 따른 바이오마커 단백질을 코딩하는 유전자 유래의 mRNA 또는 cRNA와 같은 핵산과 특이적으로 결합하는 결합제제 또는 결합제제를 포함하는 어레이가 사용될 수 있다. Qualitative or quantitative detection methods at the nucleic acid level include, for example, reverse transcriptase polymerase chain reaction (RT-PCR) / polymerase chain reaction, competitive RT-PCR, for detection of mRNA levels, expression levels or patterns. Real-Time RT-PCR, Nuclease Protection Assays (NPA) For example, RNase, S1 nuclease assays, in situ hybridization, DNA microarrays or chips or Northern blots can be used, such assays are known and also known. It may be carried out using commercially available kits and one skilled in the art will be able to select the appropriate one for the practice herein. For example, Northern blots can be used to determine the size of transcripts present in a cell, have the advantage of using a variety of probes, NPAs are useful for multiple marker analysis, and in situ hybridization can be used for cells of transcripts such as mRNA. Or, it is easy to locate in the tissue, and reverse transcription polymerase chain reaction is useful for detecting a small amount of sample. In addition, an array including a binding agent or a binding agent that specifically binds to a nucleic acid such as mRNA or cRNA from a gene encoding a biomarker protein according to the present application can be used.
상기 핵산 수준에서의 바이오마커의 검출 방법에 사용되는 시약 또는 물질은 공지된 것으로서, 예를 들면 mRNA의 존재 여부와 그 양을 RT-PCR로 측정하기 위한 방법에서 검출시약으로는 예를 들면 중합효소, 본원 마커의 mRNA에 특이적인 프로브 및/또는 프라이머쌍를 포함한다. “프라이머” 또는 “프로브”는 주형과 상보적으로 결합할 수 있고 역전사효소 또는 DNA 중합효소가 주형의 복제를 개시할 수 있도록 하는 자유 3말단 수산화기(free 3' hydroxyl group)를 가지는 핵산 서열을 의미한다. 본원에 사용되는 상기 검출 시약은 신호검출을 위해 상술한 바와 같은 발색, 발광 또는 형광물질과 같은 것으로 표지될 수 있다. 일구현예에서는 mRNA 검출을 위해 노던블랏 또는 역전사 PCR(중합효소연쇄반응)이 사용된다. 후자의 경우 검체의 RNA를 특히 mRNA를 분리한 후, 이로부터 cDNA를 합성한 후, 특정 프라이머, 또는 프라이머 및 프로브의 조합을 사용하여, 검체 중의 특정 유전자를 검출하는 것으로, 특정 유전자의 존재/부존재 또는 발현량을 결정할 수 있는 방법이다. 이러한 방법은 예를 들면 (Han, H. et al, 2002. Cancer Res. 62: 2890-6)에 기재되어 있다. Reagents or substances used in the method for detecting the biomarker at the nucleic acid level are known, for example, as a detection reagent in a method for measuring the presence and amount of mRNA by RT-PCR, for example, a polymerase. , Probes and / or primer pairs specific for the mRNA of a marker herein. "Primer" or "probe" refers to a nucleic acid sequence having a free 3 'hydroxyl group capable of complementarily binding to a template and allowing reverse transcriptase or DNA polymerase to initiate replication of the template. do. As used herein, the detection reagent may be labeled with a colorant, luminescent or fluorescent substance as described above for signal detection. In one embodiment, Northern blot or reverse transcription PCR (polymerase chain reaction) is used for mRNA detection. In the latter case, the RNA of a sample is specifically isolated from mRNA, and then cDNA is synthesized therefrom, and then a specific gene or a combination of primers and probes is used to detect a specific gene in the sample. Or it is a method which can determine the expression amount. Such methods are described, for example, in Han, H. et al, 2002. Cancer Res. 62: 2890-6.
본원에 따른 조성물에 포함되는 검출시약은 검출에 사용되는 구체적 방법에 따라 검출을 위해 직접적 또는 샌드위치 형태로 간접적으로 표지될 수 있다. 직접적 표지방법의 경우, 어레이 등에 사용되는 혈청 시료는 Cy3, Cy5와 같은 형광 표지로 표지된다. 샌드위치의 경우, 표지되지 않은 혈청 시료를 먼저 검출시약이 부착된 어레이와 반응시켜 결합시킨 후, 표적 단백질을 표지된 검출 항체와 결합시켜 검출한다. 샌드위치 방식의 경우, 민감도와 특이성을 높일 수 있어, pg/mL 수준까지 검출이 가능하다. 그 외 방사능 물질, 발색물질, 자기성입자 및 고밀도전자입자 등이 표지물질로 사용될 수 있다. 형광 광도는 스캐닝 콘포칼 현미경이 사용될 수 있으며, 예를 들면 Affymetrix, Inc. 또는 Agilent Technologies, Inc 등에서 입수할 수 있다. The detection reagent included in the composition according to the present application may be labeled directly or indirectly in a sandwich form for detection depending on the specific method used for detection. In the case of the direct labeling method, serum samples used for arrays and the like are labeled with fluorescent labels such as Cy3 and Cy5. In the case of a sandwich, an unlabeled serum sample is first detected by reacting with an array to which a detection reagent is attached, followed by binding to a target protein with a labeled detection antibody. In the case of the sandwich method, the sensitivity and specificity can be increased, and thus the detection can be performed up to pg / mL level. In addition, radioactive materials, coloring materials, magnetic particles and high-density electron particles may be used as the labeling material. Fluorescence luminosity can be used with scanning confocal microscopy, for example Affymetrix, Inc. Or Agilent Technologies, Inc.
본원의 조성물은 추가로 분석에 필요한 하나 이상의 부가 성분을 포함할 수 있으며, 예를 들면 완충액, 시료 준비에 필요한 시약, 혈액채취용 주사기 또는 음성 및/또는 양성대조군을 추가로 포함할 수 있다. The compositions herein may further comprise one or more additional ingredients required for analysis, and may further include, for example, buffers, reagents for sample preparation, blood sampling syringes or negative and / or positive controls.
상술한 바와 같은 다양한 검출시약을 포함하는 본원의 조성물은 분석양태에 따라 ELISA 분석용, 딥스틱 래피드 키트(dip stick rapid kit) 분석용, MRM 분석용 키트, 마이크로어레이용, 유전자증폭용, 또는 면역분석용 등으로 제공될 수 있으며, 분석 양태에 맞추어 적절한 검출시약을 선별할 수 있을 것이다. The composition of the present invention comprising various detection reagents as described above is for ELISA analysis, dip stick rapid kit analysis, MRM analysis kit, microarray, gene amplification, or immunity depending on the assay. It may be provided for analysis and the like, and an appropriate detection reagent may be selected according to the analysis mode.
일 구현예에서는 ELISA 또는 딥스틱 래피드 키트가 사용되며, 이 경우 본원에 따른 하나 이상의 마커를 인식하는 항체가 기질, 예를 들면 다중웰 플레이트의 웰 또는 유리 슬라이드의 표면 또는 나이트로셀룰로스에 부착되어 제공될 수 있다. 딥스틱의 경우, POCT (Point of Care Test) 분야에서 널리 이용되는 기술로, 본원에 따른 바이오마커를 인식하는 하나 이상의 항체가 나이트로셀룰로스와 같은 기질에 결합되어 있고, 이를 혈청과 같은 시료와 접촉시 예를 들면 딥스틱의 일 말단을 혈청시료에 담그면, 시료가 모세관 현상에 의해 기질을 이동하여, 기질 중의 항체와 결합시 발색하는 방식으로, 마커를 검출하는 것이다. In one embodiment an ELISA or dipstick rapid kit is used, wherein an antibody that recognizes one or more markers according to the present application is attached to a substrate, such as the surface of a well or glass slide of a multiwell plate or nitrocellulose. Can be. In the case of dipsticks, a technique widely used in the field of point of care test (POCT), in which one or more antibodies recognizing a biomarker according to the present invention is bound to a substrate such as nitrocellulose, which is in contact with a sample such as serum. For example, when one end of a dipstick is immersed in a serum sample, the sample detects the marker in such a manner that the sample moves by the capillary phenomenon and develops color upon binding to the antibody in the substrate.
다른 구현예에서는 펩타이드 검출 및/또는 정량을 근간으로 하는 MRM 키트가 제공되며, MRM 방식에 대하여는 앞서 설명한 바와 같다. MRM 방법은 특정 단백질을 선택적으로 인식하는 펩타이드를 이용하는 것으로, 온도, 습도 등 환경에 민감한 항체를 이용하는 기존의 방법과 비교하여, 보다 안정적으로 생체시료에서 마커를 검출할 수 있다. 예를 들면 펩타이드는 본원 표 3-1 및 3-2에 기재된 것이 사용될 수 있으며, 하나의 마커에 하나 또는 두 개이상의 펩타이드가 사용될 수 있다. 예를 들면 각 단백질 마커에 해당하는 펩타이드(단문자 아미노산으로 표시)는 Scavenger receptor cysteine-rich type 1 protein M130 (C163A) - LVDGVTECSGR; Complement C1q subcomponent subunit B (C1QB)-IAFSATR, LEQGENVFLQATDK; Complement C1q subcomponent subunit C (C1QC)- FQSVFTVTR, TNQVNSGGVLLR 등과 같다. In another embodiment, an MRM kit is provided based on peptide detection and / or quantification, and the MRM scheme is as described above. The MRM method uses a peptide that selectively recognizes a specific protein, and can more stably detect a marker in a biological sample as compared with a conventional method using an antibody sensitive to the environment such as temperature and humidity. For example, the peptides described in Tables 3-1 and 3-2 herein may be used, and one or two or more peptides may be used in one marker. For example, the peptide corresponding to each protein marker (indicated by a short amino acid) is Scavenger receptor cysteine-rich type 1 protein M130 (C163A)-LVDGVTECSGR; Complement C1q subcomponent subunit B (C1QB) -IAFSATR, LEQGENVFLQATDK; Complement C1q subcomponent subunit C (C1QC) -FQSVFTVTR, TNQVNSGGVLLR, etc.
다른 구현예에서, 마이크로어레이를 포함하는 어레이 또는 칩의 형태로 제공될 수 있다. 유리 또는 나이트로셀룰로스와 같은 기질의 표면에 검출시약이 부착될 수 있으며, 어레이 제조 기술은 예를 들면 Schena et al., 1996, Proc Natl Acad Sci USA. 93(20):10614-9; Schena et al., 1995, Science 270(5235):467-70; 및 U.S. Pat. Nos. 5,599,695, 5,556,752 또는 5,631,734를 참조할 수 있다. 어레이에 부착될 수 있는 검출시약은 예를 들면 한 단백질에 특이적 결합이 가능한 항체, 항체단편, 앱타머(aptamer), 아비머(avidity multimer) 또는 펩티도모방체(peptidomimetics)를 포함한다. In other embodiments, it may be provided in the form of an array or chip comprising a microarray. Detection reagents may be attached to the surface of a substrate such as glass or nitrocellulose, and array fabrication techniques are described, for example, in Schena et al., 1996, Proc Natl Acad Sci USA. 93 (20): 10614-9; Schena et al., 1995, Science 270 (5235): 467-70; And U.S. Pat. Nos. 5,599,695, 5,556,752 or 5,631,734. Detection reagents that can be attached to an array include, for example, antibodies, antibody fragments, aptamers, aviders, or peptidomimetics capable of specific binding to a protein.
다른 양태에서 본원은 바이오 마커의 검출시약을 포함하는 소라페닙 반응 예측용 키트 또는 시스템에 관한 것이다. 검출 시약 및 이러한 시약이 사용되는 방법은 상술한 바와 같다. 이러한 본원의 마커를 검출할 수 있는 시약은 구획이 되어 있는 용기에 개별적으로 분주되어 존재할 수 있으며, 이러한 의미에서 본원은 또한 본원의 마커 검출시약을 구획되어 포함하는 장치/기구에 관한 것이다. 또한 키트는 사용안내서를 추가로 포함할 수 있다.In another aspect the present invention relates to a kit or system for predicting sorafenib response comprising a reagent for detecting a biomarker. Detection reagents and methods in which such reagents are used are described above. Reagents capable of detecting such markers of the present application may be separately dispensed in a compartment in which the compartment is divided, and in this sense, the present application also relates to an apparatus / apparatus comprising compartmentally containing the marker detection reagent of the present application. The kit may also include additional instructions for use.
또다른 양태에서 본원은 소라페닙 반응 예측에 필요한 정보를 제공하기 위하여, 소라페닙의 투여 또는 치료가 필요한 대상체 유래의 생물학적 시료로부터 C163A, C1QB, CIQC, CATB, CD5L, CH3L1, CO7, FA11, FBLN1, FBLN3, FCG3A, FSTL1, GPX3, IGHG1, IGHG3, IGJ, ISLR, LG3BP, LUM, NRP1, QSOX1, SHBG, SODE 및 THBG로 구성되는 군으로부터 선택되는 하나 이상 바이오마커의 핵산 및/또는 단백질의 농도 또는 발현량을 검출하는 단계를 포함하는, 인비트로에서 소라페닙 반응 예측 마커를 검출하는 방법에 관한 것이다.In another embodiment, the present disclosure provides C163A, C1QB, CIQC, CATB, CD5L, CH3L1, CO7, FA11, FBLN1, from a biological sample from a subject in need of administration or treatment of sorafenib to provide information necessary for predicting sorafenib response. Concentration or expression of nucleic acids and / or proteins of one or more biomarkers selected from the group consisting of FBLN3, FCG3A, FSTL1, GPX3, IGHG1, IGHG3, IGJ, ISLR, LG3BP, LUM, NRP1, QSOX1, SHBG, SODE and THBG A method for detecting a sorafenib response predictive marker in vitro, comprising detecting an amount.
이러한 본원은 방법은 추가로 상기 핵산 또는 단백질의 농도 또는 발현량 검출 결과를 대조군 시료의 상응하는 바이오 마커의 상응하는 결과와 비교하는 단계; 및 상기 대조군 시료와 비교하여, 상기 대상체 시료의 핵산 또는 단백질 농도의 변화가 있거나, 또는 상기 핵산 또는 단백질이 존재여부에 변화가 있는 경우, 이를 이용하여 소라페닙에 대한 반응 또는 불응 여부를 판단하는 단계를 포함한다. This method further comprises comparing the results of detecting the concentration or expression of said nucleic acid or protein with a corresponding result of the corresponding biomarker of the control sample; And comparing the control sample with a change in nucleic acid or protein concentration of the subject sample or when there is a change in the presence or absence of the nucleic acid or protein. It includes.
본원에 따른 일 구현예에서 대조군 시료는 기존에 소라페닙을 투여하였으나 치료효과가 없는 불응군 환자 유래의 시료이다. In one embodiment according to the present application, the control sample is a sample from a non-reactive group patient who is previously administered sorafenib but has no therapeutic effect.
본원에 따른 일 구현에서는 본원에 따른 마커의 발현량이 대조군(불응군)과 비교하여 증가한 경우, 대상체를 소라페닙 순응군으로 판단한다. In one embodiment according to the present application, when the expression level of the marker according to the present invention is increased compared to the control group (non-conforming group), the subject is determined to be a sorafenib compliant group.
본원의 방법은 포유류 특히 인간을 대상으로 포함한다. 인간 대상체는 간암으로 인해 소라페닙으로 치료가 필요하거나 필요할 것으로 예상되는, 필요한 것으로 판단된 사람을 포함한다. 소라페닙의 투여 또는 치료가 필요한 대상체는 소라페닙으로 치료가 필요하거나 필요할 것으로 예상되는 사람을 포함하는 것이다. The methods herein include mammals, in particular humans. Human subjects include those deemed necessary, expected or in need of treatment with sorafenib due to liver cancer. Subjects in need of administration or treatment of sorafenib include those who need or are expected to need treatment with sorafenib.
본원에 따른 일 구현예에서 본원에 따른 방법은 간암 환자 중 수술이나 고주파 열치료와 같은 근치적 치료의 대상이 되지 못하여 항암 화학 요법을 근간으로 치료해야 되는 환자 (진행 병기 - stage III 이상)에 사용되나, 이로 제한되는 것은 아니다.In one embodiment according to the present invention, the method according to the present application is used in patients with liver cancer who are not subject to radical treatment such as surgery or radiofrequency thermal therapy and need to treat chemotherapy based on chemotherapy (advanced stage-stage III or above). However, it is not limited thereto.
본원에 따른 방법에 사용되는 생물학적 시료는 전혈, 혈청 또는 혈장이 사용된다. The biological sample used in the method according to the present invention may be whole blood, serum or plasma.
본원에서 생물학적 시료란 바이오마커 검출이 가능한 하나 이상의 성분을 포함하는 물질 또는 물질의 혼합물을 일컫는 것으로 생물체, 특히 체액, 특히 전혈, 혈장, 혈청 또는 뇨를 포함하나 이로 제한하는 것은 아니다. As used herein, biological samples refer to substances or mixtures of substances that include one or more components capable of detecting a biomarker and include, but are not limited to, organisms, particularly body fluids, in particular whole blood, plasma, serum or urine.
본 방법에 사용되는 바이오마커 검출 방법 및 이에 사용되는 시약 및 판정을 위한 데이터 분석 방법은 앞서 설명한 것 및 후술하는 것을 참고할 수 있다. 일 구현예에서 본원에 따른 방법은 특히 단백질 또는 핵산 마이크로어레이 분석법, 핵산증폭, 항원-항체 반응, 또는 MRM을 포함하는 질량분석 방식으로 실시될 수 있다. The biomarker detection method used in the present method, the reagents used in the method, and the data analysis method for the determination may refer to the above and the following. In one embodiment the method according to the invention can be carried out in particular by protein or nucleic acid microarray analysis, nucleic acid amplification, antigen-antibody reactions, or by mass spectrometry including MRM.
본원에 따른 방법에 사용되는 마커, 또는 마커의 조합은 앞서 기재한 바를 참고할 수 있다. Markers, or combinations of markers, used in the methods according to the present disclosure may be referred to above.
본원에 따른 방법을 사용하여 두 개 이상을 포함하는 마커의 조합을 사용하는 경우 프로파일, 즉 시료 중 마커 단백질 발현과 관련된 정량적 정보를 포함하는 데이터세트가 생성될 수 있다. 마커를 이용하여 프로파일을 수득한 후에, 참조군 또는 대조군과의 결과 비교를 통해 대상체의 시료의 순응 여부를 판별한다. 대조군 또는 참조군으로는 앞서 기재한 바를 참고할 수 있다. When using a combination of markers comprising two or more using the method according to the invention, a dataset can be generated that includes a profile, ie, quantitative information related to the expression of marker proteins in a sample. After obtaining a profile using the marker, the subject's sample is determined to be compliant by comparing the results with the reference or control group. As a control or reference group, reference may be made to the above description.
대조군과 시료를 이용한 시험군 사이의 마커 프로파일의 비교에는 공지된 방법이 사용될 수 있다. 예를 들면 발현 프로파일의 디지털 영상 비교, 발현 데이터에 대한 DB를 이용한 비교, 또는 U.S. 특허 6,308,170 및 6,228,575에 기재된 것을 참조할 수 있다. Known methods can be used to compare marker profiles between control groups and test groups using samples. For example, digital image comparison of expression profiles, comparisons using DB for expression data, or U.S. See patents 6,308,170 and 6,228,575.
본원에 따른 마커 검출을 통하여 수득된 프로파일은 공지의 데이터 분석방법을 이용하여 처리될 수 있다. 예로는 nearest neighbor classifier, partial-least squares, SVM, AdaBoost 및 clustering-based classification 방법이 사용될 수 있으며, 예를 들면 Ben-Dor et al (2007, J. Comput. Biol. 7: 559-83), Nguyen et al (2002, Bioinformatics 18:39-50), Wang et al (2003, BMC Bioinformatics 4:60), Liu et al (2001, Genome Inform. Ser. Workshop Genome Inform.12:14-23), Yeang et al (2001, Bioinformatics 17 Suppl 1:S316-22) 및 Xiong (2000, Biotechniques 29(6):1264-8, 1270) 등을 포함하는 문헌을 참조할 수 있다. Profiles obtained through marker detection according to the present application can be processed using known data analysis methods. Examples include nearest neighbor classifiers, partial-least squares, SVM, AdaBoost, and clustering-based classification methods, for example Ben-Dor et al (2007, J. Comput. Biol. 7: 559-83), Nguyen et al (2002, Bioinformatics 18: 39-50), Wang et al (2003, BMC Bioinformatics 4:60), Liu et al (2001, Genome Inform. Ser. Workshop Genome Inform. 12: 14-23), Yeang et al (2001, Bioinformatics 17 Suppl 1: S316-22) and Xiong (2000, Biotechniques 29 (6): 1264-8, 1270) and the like.
또한 본원의 마커를 통하여 검출된 결과가 순응여부 판단에 유의한 것으로 판정하기 위해 다양한 통계처리 방법이 사용될 수 있다. 통계적 처리 방법으로 일 구현예에서는 logic regression 방법이 사용되며, Ruczinski, 2003, Journal of Computational and Graphical Statistics 12:475-512를 참조할 수 있다. 상기 방법은 클래시파이어가 바이너리 트리로 제시되는 CART 방법과 유사하나, 각 노드는 CART에 의해 생성되는 "and" 연산자와 비교하여 보다 일반적인, 특성과 관련된 불린(Boolean) 연산자가 사용된다. 다른 분석 방법의 예로는 nearest shrunken centroids (Tibshirani. 2002 PNAS. 99:6567-72), random forests (Breiman. 2001. Machine Learning 45:5-32 및 MART (Hastie. 2001. The Elements of Statistical Learning, Springer)을 들 수 있다. In addition, various statistical processing methods may be used to determine that the result detected through the marker of the present application is significant in determining compliance. As a statistical processing method, a logic regression method is used in one embodiment, and may be referred to Ruczinski, 2003, Journal of Computational and Graphical Statistics 12: 475-512. The method is similar to the CART method in which a classifier is presented as a binary tree, but each node uses a more general Boolean operator associated with the property, compared to the "and" operator generated by CART. Examples of other analysis methods include nearest shrunken centroids (Tibshirani. 2002 PNAS. 99: 6567-72), random forests (Breiman. 2001. Machine Learning 45: 5-32, and MART (Hastie. 2001. The Elements of Statistical Learning, Springer). ).
일 구현예에서, 통계처리를 통해 순응여부를 판단하기 위해 시험물질과 대조군간의 유의한 차이에 관한 신뢰수준을 결정할 수 있다. 통계 처리에 사용되는 원 데이터는 각 마커에 대하여 이중, 삼중 또는 다중으로 분석된 값이다. In one embodiment, statistical processing may determine the level of confidence in the significant difference between the test substance and the control to determine compliance. The raw data used for statistical processing are the values analyzed in duplicate, triple or multiple for each marker.
이러한 통계적 분석 방법은 바이오마커는 물론, 임상 및 유전적 데이터의 통계적 처리를 통하여 임상적으로 유의한 판단을 하는데 매우 유용하다. This statistical analysis method is very useful for making clinically meaningful judgments through statistical processing of biomarkers as well as clinical and genetic data.
이하, 본 발명의 이해를 돕기 위해서 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐 본 발명이 하기의 실시예에 한정되는 것은 아니다.Hereinafter, examples are provided to help understand the present invention. However, the following examples are provided only to more easily understand the present invention, and the present invention is not limited to the following examples.
실 시 예Example
실시예 1. 본원에 사용된 임상 시료 정보Example 1. Clinical Sample Information Used herein
본 실험은 서울대학교의 의학연구윤리심의위원회의 허가된 프로토콜에 따라 수행되었으며, 각 환자로부터 충분한 설명에 근거한 서면동의를 수득하였으며, 임상정보는 다음과 같다. The experiment was conducted in accordance with the protocol approved by the Medical Research Ethics Review Board of Seoul National University.
마커 후보군 선정을 위해 정상인과 간암 환자의 통합(pooling) 시료에서 발현차이를 보이는 단백질 후보군 선정을 위해, 정상인 60명(남/여=41/19) 과 간암 환자 60명(남/여=42/18) 의 시료를 가지고 초기 연구를 진행했다. 시료는 BOR (Best Overall Survival)기준으로 처음 소라페닙 약물치료를 시작해서 진행 상태(Progressive disease = PD)나 부작용(S/E)으로 약제를 중단하게 되는 시점 중에 보였던 가장 좋은 치료 반응을 기준으로 치료 반응이 소실(Clearance=CR)과 부분 관해(Partial response=PR) 그리고 안정 상태(Stable disease=SD) 인 경우를 모두 약물반응 순응군으로 진행 상태(Progressive disease=PD)인 경우를 약물반응 불응군으로 지정했다. 이를 통해서, 1차 시료군은 21명의 소라페닙 약물반응 순응군(CR-2명, PR-3명, SD-16명)과 44명의 소라페닙 약물반응 불응군(PD-44명)의 치료 전/후의 페어(pair) 시료를 사용했고, 2차 시료군은 20명의 소라페닙 약물반응 순응군(CR-2명, PR-2명, SD-16명)과 31명의 소라페닙 약물반응 불응군(PD-44명) 의 치료 전/후의 페어(pair) 시료를 사용했다. To select marker candidates, 60 healthy subjects (male / female = 41/19) and 60 liver cancer patients (male / female = 42 / The initial study was conducted with the sample of 18). Samples are treated based on the best therapeutic response seen during the first start of Sorafenib medication on a BOR (Best Overall Survival) basis and withdrawal of the drug due to progressive disease (PD) or adverse events (S / E). Drug response non-responders were all cases of progression to drug response compliance (Clearance = CR), partial response (PR), and stable (Stable disease = SD). Specified. Through this, the primary sample group was treated with 21 sorafenib drug-response groups (CR-2, PR-3, SD-16) and 44 sorafenib drug-responsive groups (PD-44). The latter pair was used, and the secondary sample group consisted of 20 sorafenib drug-response groups (CR-2, PR-2, SD-16) and 31 sorafenib drug-resistant groups ( Pair samples before / after treatment of PD-44 patients) were used.
실시예 2. 표적 후보군 선정을 위한 데이터 마이닝Example 2 Data Mining for Target Candidate Selection
타겟의 후보군은 다음과 같이 선정하였다. 현재 간 질환과 관련된, 가장 포괄적 자원(comprehensive resource)인 LiverAtlas 데이타베이스를 이용해서, 소라페닙 약물반응 단백질 마커 후보군을 확보했다. LiverAtlas 데이타베이스 상에서 간질환과 관련 있다고 알려진 단백질은 총 50,265개인데, 이 중에서 혈액 내에서 검출 가능한 단백질만을 선정하기 위해, 혈액 내로 분비되거나 분비될 가능성이 있는 단백질(Uniprot database 기준) 만을 선별한 결과, 총 1,683개 단백질이 선정 되었다. 최종, 질량 분석 장비로 검출이 가능한 단백질만을 선정하기 위해서 4개의 서로 다른 펩타이드 MS/MS 라이브러리 소스(NIST Ion-Trap, NIST Q-TOF, ISB human plasma, Home made library) 를 이용해서 펩타이드 MS/MS 데이타가 존재하는 단백질만을 선정한 결과, 총 960개 단백질이 최종 선정되었다. 이어 검출 가능한 타겟 후보군 선정은 다음과 같이 수행하였다. 실제 질량분석 장비로 검출이 가능한 타겟 만을 선정하기 위해서, 정상 그룹 60명, HCC 그룹 60명을 통합한 시료를 대상으로, MRM 분석을 통해 시그널이 제대로 검출되는 펩타이드 만을 선정한 결과, 최종 537개 단백질, 1316개 펩타이드가 선정되었다. The candidate group of the target was selected as follows. Sorafenib drug response protein marker candidates were obtained using the LiverAtlas database, the most comprehensive resource currently associated with liver disease. A total of 50,265 proteins known to be related to liver disease in the LiverAtlas database are selected from among the proteins that can be secreted or secreted into the blood (Uniprot database). A total of 1,683 proteins were selected. Finally, peptide MS / MS using four different peptide MS / MS library sources (NIST Ion-Trap, NIST Q-TOF, ISB human plasma, Home made library) to select only proteins that can be detected by mass spectrometry. As a result, only 960 proteins were selected. Subsequently, detection target group selection was performed as follows. In order to select only targets that can be detected by the actual mass spectrometry equipment, only peptides with proper signal detection through MRM analysis were selected from 60 normal groups and 60 HCC groups. 1316 peptides were selected.
실시예 3. MRM 분석을 통한 타켓 마커 후보군 도출Example 3. Derivation of target marker candidate group through MRM analysis
실시예 3-1. 혈청 시료 준비Example 3-1. Serum Sample Preparation
실험에 사용한 혈청 시료는 다음과 같이 준비하였다. BD Vacutainer 혈청 분리관(serum separation tube)(BD, USA)을 이용하여 채혈하였다(Silica clot activator, 10 mL, 16 X 100 mm ; Product number = #367820). 채혈된 혈액에 페닐메틸 설포닐 플루오라이드(PMSF)를 최종 1.0 mM 되도록 첨가하였다. 10번 정도 인버팅 믹싱(inverting mix)을 한 후, 3000 rpm 에서 10분간 원심분리(4℃ 유지)하여 상층액을 수집하였다(색깔 관찰 후, 용혈된 붉은색 샘플은 사용하지 않았다). Serum samples used in the experiment were prepared as follows. Blood was collected using a BD Vacutainer serum separation tube (BD, USA) (Silica clot activator, 10 mL, 16 × 100 mm; Product number = # 367820). Phenylmethyl sulfonyl fluoride (PMSF) was added to the final blood to 1.0 mM. After 10 times of inverting mix, the supernatant was collected by centrifugation (maintaining 4 ° C.) at 3000 rpm for 10 minutes (after color observation, hemolyzed red sample was not used).
1.5 mL 에펜도르프 튜브에 100 μL 씩 분주하였고, 분주 즉시 얼음에 두었고, 튜브에 라벨링하였다 (라벨링할 때 시료군에 해당하는 코드 기입하였다(예: NC-01, MC-01, PD-01등). 그후 -80℃에 즉시 보관하였다. 상기 절차는 얼음에서 실시하며 채혈 후 1시간 이내에 모두 종료하였다.Dispense 100 μL into a 1.5 mL Eppendorf tube, place on ice immediately after dispensing, and label the tube (code label corresponding to sample group when labeling (eg NC-01, MC-01, PD-01, etc.) It was then immediately stored at −80 ° C. The procedure was performed on ice and was all finished within 1 hour after blood collection.
실시예 3-2. 혈청 단백질 감손(depletion) 처리Example 3-2. Serum Protein Depletion Treatment
혈액 내에 저농도로 존재하는 마커 발굴을 위해 우선 혈액 내에 고량(high-abundant)으로 존재하는 단백질 6종 (albumin, IgG, IgA, haptoglobin, transferrin, alpha-1-antitrypsin)을 제거하는 감손 과정을 실시하였다. 6개의 다량 단백질 제거를 통해서, 혈액 내에는 총 단백질 매스(mass)의 85% 정도가 제거 되고, 나머지 15% 단백질 매스에 해당되는 단백질만 남게 되어 이를 분석에 사용하였다. 감손은 MARS (Multiple affinity removal system)(Agilent, USA) 을 제조사의 방법대로 이용하여 혈액에서 양이 가장 많은 6개의 단백질은 컬럼에 결합시켜 제거하고, 결합하지 않은, 소량으로 존재하는 단백질은 용출시켜 분석에 사용하였다. In order to discover the markers present in the blood at low concentrations, a depletion process was first performed to remove 6 proteins (albumin, IgG, IgA, haptoglobin, transferrin, alpha-1-antitrypsin) present in the blood at high-abundant levels. . By removing six large proteins, about 85% of the total protein mass was removed from the blood, and only the proteins corresponding to the remaining 15% protein mass were used for analysis. Depletion uses MARS (Multiple affinity removal system) (Agilent, USA) according to the manufacturer's method to remove the six most abundant proteins from the blood by binding them to the column and eluting small amounts of unbound proteins. Used for analysis.
실시예 3-3. 혈청 단백질의 펩타이드화 Example 3-3. Peptides of Serum Proteins
상기 감손 과정 후 얻어진 혈청 시료는 농축(w/ 3K filter)한 다음, BCA (Bicinchoninic acid) 분석 방식으로 단백질 농도를 정량하였다. 100㎍ 혈청 시료를 취한 다음, 최종 농도 6M 유레아/20mM DTT로 처리 (Tris pH 8.0)한 다음, 37℃에서 60분 동안 인큐베이션을 진행하였다. 최종 농도 50 mM IAA 처리 한 다음, 상온에서 30분 동안 인큐베이션을 진행하였다. 유레아의 농도가 0.6M 이하가 되도록 100 mM Tris pH 8.0 처리하였다. 트립신과 혈청 농도 비율이 1:50 이 되도록 트립신 처리 후, 37℃에서 16시간 동안 인큐베이션을 진행하였다. 포름산 용액을 최종농도 5% 가 되도록 처리한 다음, 하기 탈염 과정을 시행하였다.Serum samples obtained after the depletion process were concentrated (w / 3K filter), and protein concentration was quantified by BCA (Bicinchoninic acid) analysis. 100 μg serum samples were taken and then treated with a final concentration of 6M urea / 20mM DTT (Tris pH 8.0), followed by incubation at 37 ° C. for 60 minutes. The final concentration was treated with 50 mM IAA, and then incubated at room temperature for 30 minutes. 100 mM Tris pH 8.0 was treated so that the concentration of urea was 0.6 M or less. Trypsin treatment was performed so that the ratio of trypsin and serum was 1:50, and then incubated at 37 ° C. for 16 hours. The formic acid solution was treated to a final concentration of 5% and then subjected to the following desalting process.
실시예 3-4. 혈청 단백질의 탈염Example 3-4. Desalination of serum proteins
OASIS 컬럼(Waters, USA)에 60% ACN / 0.1% 포름산 1mL를 3번 흘려줘서 활성화를 시행하였다. OASIS 컬럼에 0.1% 포름산 1mL를 5번 흘려줘서 평형화(equilibration)를 시행하였다. 펩타이드 시료를 넣어주고, 0.1% 포름산 1mL로 5번 흘려줘서 세척하였다. 40% ACN / 0.1% 포름산 1mL와 60% ACN / 0.1% 포름산 1mL 처리해서 펩타이드를 용출(elution)시켰다. 1시간 이상 -70℃에서 얼린 다음, Speed-vac으로 건조시켰다. 건조된 펩타이드 시료는 Sol A 버퍼(3% ACN / 0.1% formic acid) 50㎕에 녹인 다음, 15,000 rpm 에서 60 min 동안 원심분리 하고, 이 중에서 40㎕ 만 바이알에 옮겨서 분석을 시행하였다.Activation was performed by pouring 1 mL of 60% ACN / 0.1% formic acid three times on an OASIS column (Waters, USA). Equilibration was performed by pouring 1 mL of 0.1% formic acid five times into an OASIS column. Peptide samples were added and washed 5 times with 1 mL of 0.1% formic acid. Peptides were eluted with 1 mL of 40% ACN / 0.1% formic acid and 1 mL of 60% ACN / 0.1% formic acid. It was frozen at −70 ° C. for at least 1 hour and then dried by Speed-vac. The dried peptide samples were dissolved in 50 μl of Sol A buffer (3% ACN / 0.1% formic acid), centrifuged at 15,000 rpm for 60 min, and only 40 μl was transferred to the vials for analysis.
실시예 3-5. MRM 분석Example 3-5. MRM Analysis
MRM 분석을 위해 실시예 2에서와 같이 선정된 537개 단백질, 1316개 펩타이드를 대상으로 재현성 있게 검출(Technical reproducibility)이 가능하고, 소라페닙 순응 및 불응 군간에 차이를 나타내는 타겟을 선정하기 위해서, 1차 스크리닝 단계에서 정상인 60명과 간암환자 60명의 시료를 사용하였고, 1차 시료로 소라페닙 약물에 순응하는 환자군 21쌍(치료 전/후), 불응하는 환자군 44쌍(치료 전/후) 시료를 사용했으며, 2차 시료로 소라페닙 약물에 순응하는 환자군 20-pair, 불능 하는 환자군 31-pair 시료를 하여, 해당 환자가 소라페닙 약물에 순응할지 불능할지 구분 가능한 단백질 마커 24개를 최종 확인했다. 세트 당 3번씩 MRM으로 반복 분석을 진행했다. For MRM analysis In the first screening step, in order to select targets that can be reproducibly detected in 537 proteins and 1316 peptides selected as in Example 2 and show differences between the sorafenib conformation and non-compliance groups. Samples from 60 normal patients and 60 liver cancer patients were used. The primary sample was a sample of 21 pairs of patients (pre / post-treatment) and 44 non-treatment groups (pre / post-treatment) who were compliant with Sorafenib drug. As a sample, a 20-pair patient group and a disabled patient group 31-pair sample which comply with the sorafenib drug were confirmed, and 24 protein markers which can distinguish whether the patient adhered or not to sorafenib drug were finally confirmed. The analysis was repeated with MRM three times per set.
MRM 분석은 각 표적 단백질에 대하여, Skyline (http://proteome.gs.washington.edu/software/skyline)을 사용하여 MRM 분석용 펩타이드 및 단편 이온을 선별하였다. Skyline은 MRM 방법 개발 및 분석용의 오픈 소스 소프트웨어이다 (Stergachis AB, et al., 2011, Nat Methods 8: 1041-1043).MRM analysis was performed using Skyline (http://proteome.gs.washington.edu/software/skyline) for each target protein to select peptide and fragment ions for MRM analysis. Skyline is open source software for MRM method development and analysis (Stergachis AB, et al., 2011, Nat Methods 8: 1041-1043).
요약하면, 전장의 단백질 서열을 FASTA 포맷으로 Skyline에 입력한 후, 이를 펩타이드로 디자인하여 산물 이온 리스트를 생성하였고, 이를 MRM으로 모니터링하였다. 트랜지션 선택에 사용된 펩타이드 필터 조건은 다음과 같다: 펩타이드 최대 길이는 30, 최소 길이는 6개 아미노산으로, 반복되는 알지닌(Arg, R) 또는 라이신(Lys, K)은 포함시키지 않았다. 메티오닌(Met, M)도 펩타이드에 포함되면, 변형가능성으로 인해 제거하였다. 프롤린이 알지닌 또는 라이신 다음에 오는 경우도 사용하지 않았으며, 히스티딘(His, H)이 포함되는 경우에는 전하가 변경되지만 사용되었다.In summary, full-length protein sequences were entered into Skyline in FASTA format and then designed as peptides to generate a product ion list, which was monitored by MRM. Peptide filter conditions used for transition selection were as follows: peptide maximum length was 30, minimum length was 6 amino acids and did not include repeated arginine (Arg, R) or lysine (Lys, K). If methionine (Met, M) was also included in the peptide, it was removed due to the possibility of modification. It was also not used when proline came after arginine or lysine, but when histidine (His, H) was included, the charge was changed but used.
이러한 조건을 만족하는 펩타이드를 Q1 트랜지션으로 사용하였다. 쿼드러플(Quadruple) 1 (Q1) 은 특정 Q1 m/z 만을 통과시킬 수 있는 필터 역할을 수행하였다. Q1 필터를 통과한 전구 이온(precursor ion)은 쿼드러플(Quadruple) 2 (collision cell)에서 전기적인 에너지에 의해 단편화(fragmentation)가 일어나 생성 이온(product ion)으로 분해되었다. 이 생성 이온은 쿼드러플 1 (Q1)에서처럼 필터 역할을 수행하는 쿼드러플 3 (Q3)을 통해 특정 생성 이온만이 통과될 수 있다. 쿼드러플 3 (Q3)을 통과한 이온은 검출기(detector)에서 디지털 시그널로 전환되어 피크 크로마토그램으로 보여지게 되며, 이 피크의 면적을 분석하여 상대 및 절대 정량 분석을 수행하였다. 이러한 정보를 포함하는 파일을 MRM 분석을 위해 Analyst (AB SCIEX, USA)에 입력한 후 nonscheduled MRM 방법으로 분석하였다. MRM 결과는 wiff 및 wiff.scan 파일로 생성되었으며, 이를 mzWiff를 사용하여 mzXML 포맷으로 변환하여 MRM 데이터 처리를 위해 Skyline에 입력하여, MRM 트랜지션의 피크 강도를 구하였다. 도 1은 그 과정을 도식적으로 나타낸 것이다. Peptides satisfying these conditions were used as the Q1 transition. Quadruple 1 (Q1) served as a filter that can pass only certain Q1 m / z. Precursor ions that passed through the Q1 filter were fragmented by electrical energy in Quadruple 2 (collision cells), which were broken down into product ions. This product ion can pass only certain product ions through Quadruple 3 (Q3), which acts as a filter as in Quadruple 1 (Q1). The ions that passed through Quadruple 3 (Q3) were converted into digital signals at the detector and shown as peak chromatograms. The area of these peaks was analyzed for relative and absolute quantitative analysis. A file containing this information was entered into Analyst (AB SCIEX, USA) for MRM analysis and analyzed using nonscheduled MRM method. The MRM results were generated as wiff and wiff.scan files, which were converted into mzXML format using mzWiff and inputted into Skyline for MRM data processing to obtain peak intensities of MRM transitions. Figure 1 shows the process diagrammatically.
정량성 확보를 목적으로 농도를 이미 알고 있는 특정 펩타이드를 사용해서 모든 MRM 분석 시, 해당 펩타이드의 피크 면적 값으로 표준화하는 작업을 거치게 되는데, 여기에 해당되는 펩타이드를 내부 표준 펩타이드라 하는데 이는 안정한 동위원소가 포함된 아미노산을 갖고 있는 펩타이드이다. 본 연구에서는 인간 프로테옴에서는 존재하지 않는 E.coli 유래인 beta-갈락토시다아제(lacZ)의 heavy-labeled 펩타이드인 LNVENPK를 이용해서 모든 시료 분석 시, 5-fmol의 동일한 내부 표준 펩타이드를 주입해서, MRM 분석으로부터 나온 모든 타겟 펩타이드의 피크 면적 값을 해당 내부 표준 펩타이드의 피크 면적 값으로 표준화하는 작업을 거쳤다.For the purpose of ensuring quantitation, all peptides are known to have a concentration that is normalized to the peak area of the peptide when the MRM is analyzed. This peptide is called an internal standard peptide, which is a stable isotope. It is a peptide having an amino acid containing. In this study, all samples were injected with LNVENPK, a heavy-labeled peptide from beta-galactosidase (lacZ) derived from E. coli, which does not exist in the human proteome. The peak area values of all target peptides from the MRM analysis were normalized to the peak area values of the corresponding internal standard peptides.
상기와 같이 반정량(Semi-quantitative) MRM 분석을 통해서, 질량 분석 장비(MRM-technique)를 통해서 재현성있게 검출이 가능한 단백질/펩타이드 만을 선정하기 위해 세트 당 3번 반복 분석한 다음, 두 그룹 중에서 적어도 한쪽 그룹에서 %CV 값이 20 이내인 타겟 만을 선정한 결과, 재현성 있는 타겟으로 347개 단백질, 754개 펩타이드가 선정되었다.Through semi-quantitative MRM analysis as above, it was repeated three times per set to select only proteins / peptides reproducibly detectable by mass spectrometry (MRM-technique), and then at least As a result, only 347 proteins and 754 peptides were selected as reproducible targets.
이어 재현성 있게 검출되는 타겟 대상으로 정상 그룹과 HCC 그룹 간 발현 차이를 보이는 타겟을 선정하기 위해서 그룹 간 p-value 및 fold-change level을 확인했다. 재현성있는(Reproducible) 타겟(347-단백질, 754-peptides)을 대상으로 정규성 검정(Normality test, Shaipro-Wilk)을 통해서 정규분포를 따르는 경우 (p-value > 0.05)는 모수 방법인 독립적 T-test 로, 정규분포를 따르지 않는 경우 (p-value ≤ 0.05) 는 비모수 방법인 Mann-Whitney test 로 분석을 진행했다. 독립적 T-test의 경우, 등분산성 검정(Levenes test)을 통해 등분산성을 따르는 경우 (p-value > 0.05)와 따르지 않는 경우 (p-value ≤ 0.05)로 나눠서 p-value 값을 확인했고, 이를 통해서 독립적 T-test와 Mann-Whitney test로 정상 그룹과 HCC 그룹 간에 유의적인 차이 (p-value ≤ 0.05)를 보이는 타겟 단백질/펩타이드임을 확인했다.Then, the p-value and fold-change levels between the groups were checked to select targets with reproducible detection of expression differences between normal and HCC groups. Following a normal distribution (Normality test, Shaipro-Wilk) for a reproducible target (347-protein, 754-peptides) (p-value> 0.05) is an independent T-test parameter. In case of not following the normal distribution (p-value ≤ 0.05), the analysis was performed by the nonparametric Mann-Whitney test. In the case of the independent T-test, the p-value value was determined by dividing it by the equal dispersion (P-value> 0.05) and the non-uniformity (p-value ≤ 0.05) through the Lebenes test. Independent T-test and Mann-Whitney test confirmed that the target protein / peptide showed a significant difference (p-value ≤ 0.05) between the normal group and the HCC group.
여기에 더하여, 정상 그룹과 HCC 그룹 간 fold-change 수준이 1.5-fold 이상으로 증가 또는 감소의 패턴을 보이는 단백질 마커 후보군을 추가로 선정하였다. 이를 통해서, 정상 그룹과 HCC 그룹 간 p-value 0.05 이하인 단백질은 195개, 펩타이드는 443개로 확인되었고, 1.5 fold-change 이상인 단백질은 191개, 펩타이드는 389개로 확인 되었으며, 이를 통해서 최종 227개 단백질과 492개 펩타이드가 타겟 후보군으로 선정되었다.In addition, candidate protein marker groups were further selected that showed a pattern of increase or decrease in fold-change levels between the normal and HCC groups of 1.5-fold or more. As a result, 195 proteins and 443 peptides with a p-value of 0.05 or less were identified between the normal group and the HCC group, and 191 proteins and 389 peptides with 1.5 fold-change or more were identified. 492 peptides were selected as target candidates.
선정된 227개 단백질, 492개 펩타이드가 전체 인간 프로테옴 상에서 특이(unique) 펩타이드인지 여부를 확인하기 위해 NCBI의 BlastP search program 을 이용해서 unique 펩타이드 여부를 확인했다. 이를 통해서, unique 하지 않은 37개 펩타이드에 해당되는 15개 단백질이 제외되었고, 최종 정상 그룹과 HCC 그룹 간에 유의적인 차이를 보이면서 unique 펩타이드인 타겟 후보군으로 216개 단백질, 460개 펩타이드가 최종 선정되었다. To determine whether the selected 227 proteins and 492 peptides were unique peptides on the entire human proteome, unique peptides were identified using NCBI's BlastP search program. Through this, 15 proteins corresponding to 37 non-unique peptides were excluded, and 216 proteins and 460 peptides were finally selected as target candidate groups, which are unique peptides, with significant differences between the final normal group and the HCC group.
실시예 4. 타겟 후보군 마커의 혈액 내인성 펩타이드 여부 확인Example 4. Confirmation of Blood Endogenous Peptides of Target Candidate Markers
실시예 3에서 선정된 단백질 및 펩타이드가 실세 혈액내에 존재하는지 여부를 다음과 같이 확인하였다. Whether the proteins and peptides selected in Example 3 were present in actual blood was confirmed as follows.
이를 위해 216개 단백질에 해당되는 SIS (stable-isotope labeled standard) 펩타이드를 가지고 정상 그룹 60명, HCC 그룹 60명을 함께 통합(pooling)한 시료를 이용해서, 선정된 펩타이드가 실제 혈액 내에 존재하는 펩타이드가 맞는지 여부를 재확인했다. SIS 펩타이드는 펩타이드 C-말단의 라이신(Lys, K)이나 아르기닌Arg, R) 아미노산에 있는 12C 와 14N를 13C 와 15N로 치환한 펩타이드이다. 이는 혈액 내에 존재하는 펩타이드(endogenous peptide)와는 질량 값이 차이가 나지만, 동일한 서열을 갖기 때문에, 펩타이드 소수성(hydrophobicity)이 동일하므로, 크로마토그램 상에서 혈액 내 펩타이드와 동일한 시간(RT)에 용출(elution)된다(도 2 참조).To this end, peptides containing selected peptides in real blood were sampled using a sample of 216 protein-stable-isotope labeled standard (SIS) peptides pooled together with 60 normal groups and 60 HCC groups. Double-checked whether The SIS peptide is a peptide obtained by substituting 13 C and 15 N for 12 C and 14 N in amino acids of lysine (Lys, K) or arginine Arg, R) of the peptide C-terminus. It differs from the endogenous peptide in the blood, but because it has the same sequence, the peptide hydrophobicity is the same, so it elutes at the same time (RT) as the peptide in the blood on the chromatogram. (See FIG. 2).
MRM 분석 시, 복합(Complex) 혈액 시료에서 타겟 펩타이드 이외의 다른 펩타이드에 의해서 시그널 간섭(interference) 현상을 보이는지 확인하기 위해서, SIS 펩타이드와 혈액 내 펩타이드의 생성 이온(Q3) 강도 패턴(intensity pattern)을 확인했다(도 3). In the MRM analysis, the Q3 intensity pattern of the SIS peptide and the peptide in the blood was analyzed to determine whether the complex blood sample exhibited signal interference by a peptide other than the target peptide. It confirmed (FIG. 3).
시그널 간섭현상 여부를 판단하기 위해서, AuDIT (Automated detection of inaccurate and imprecise transitions) 프로그램을 이용해서, 혈액 내 펩타이드 와 SIS 펩타이드의 상대적인 생성이온 강도를 비교하고(P-value threshold : 0.05), 혈액 내 펩타이드와 SIS 펩타이드의 피크 면적 값이 반복 측정 시 일정하게 검출되는지 여부(CV threshold : 0.2)를 확인했다.To determine whether or not signal interference occurs, the automated detection of inaccurate and imprecise transitions (AuDIT) programs are used to compare the relative generated ion intensities of the peptides in the blood and the SIS peptide (P-value threshold: 0.05). And whether the peak area value of the SIS peptide is constantly detected during repeated measurements (CV threshold: 0.2) was confirmed.
이를 통해서, 시그널 간섭현상이 없이 정량 가능한 혈액 내 타겟 단백질/펩타이드로 최종적으로 123-단백질, 231-펩타이드가 선정되었다.Through this, 123-protein and 231-peptide were finally selected as quantifiable target proteins / peptides without signal interference.
실시예 5. 혈액 내인성 펩타이드의 수준 확인Example 5. Identification of Levels of Blood Endogenous Peptides
실시예 4에서와 같이 정량 가능한 혈액 내인성 타겟 (123-단백질protein, 231-펩타이드)을 대상으로 혈액 내에 존재하는 농도 수준(Endogenous level)을 확인했다. 정상 그룹 60명, HCC 그룹 60명을 모두 통합한 시료 10 μg 에 231-SIS 펩타이드 혼합물을 3-포인트(20nM, 200nM, 2000nM)로 순차적으로 희석한 것을 서로 섞은 시료를, MRM 분석해서 혈액 내 펩타이드에 대한 시그널과 이에 상보적인 합성 (SIS) 펩타이드의 시그널을 함께 확인했다.As in Example 4, the endogenous level present in the blood was confirmed for the quantifiable blood endogenous target (123-protein protein, 231-peptide). MRM analysis of a sample in which 231-SIS peptide mixture was sequentially diluted to 3-point (20 nM, 200 nM, 2000 nM) in 10 μg of a sample in which 60 normal groups and 60 HCC groups were combined was mixed. The signal for and the complementary synthetic (SIS) peptide signal were identified.
간섭현상(Interference)이 존재하지 않는 생성 이온(Q3) 만을 대상으로 혈액 내 펩타이드의 피크 면적 값과 이와 상보적인 SIS 펩타이드(3-points)에 대한 피크 면적 값을 각각 구해서 상대적인 비율(ratio)을 계산하고, 여기에, 주입한 SIS-펩타이드 양을 곱해서 타겟 펩타이드에 대한 혈액 내 수준을 최종 확인했다(도 4).Calculate the relative ratios of the peak area values of peptides in the blood and the peak area values of complementary SIS peptides (3-points) for only the generated ions (Q3) without interference. And, by multiplying the injected SIS-peptide amount, the level of blood in the target peptide was finally confirmed (FIG. 4).
231개 펩타이드에 대해 혈액 내 수준을 확인한 결과, 혈액(serum) 내에서 가장 낮은 농도로 확인된 단백질은 ISLR (Immunoglobulin superfamily containing leucine-rich repeat protein)이고, 농도는 0.15-fmol/μg인 것으로 확인되었으며, 가장 높은 농도로 확인된 단백질은 A2MG (Alpha 2 macroglobulin)이며, 농도는 5.57-pmol/μg인 것으로 확인되었다 (Dynamic range : 3.7×10^4 order)(도 5). In blood levels of 231 peptides, the lowest concentration found in the serum was ISLR (Immunoglobulin superfamily containing leucine-rich repeat protein) and the concentration was 0.15-fmol / μg. The highest concentration of protein was A2MG (Alpha 2 macroglobulin), and the concentration was found to be 5.57-pmol / μg (Dynamic range: 3.7 × 10 4 orders) (FIG. 5).
혈액 내 레벨 측정 결과, 혈액 내 레벨이 20-fmol/㎍이하인 것으로 측정된 소량(Low-abundance) 타겟은 34-단백질, 36-펩타이드인 것으로 확인되었고, 20-fmol/㎍과 2000-fmol/㎍ 사이로 측정된 중간량(Middle-abundance) 타겟은 93-단백질, 174-펩타이드인 것으로 측정되었으며, 2000-fmol/㎍ 이상으로 측정된 다량(High-abundance) 타겟은 11-단백질, 22-펩타이드인 것으로 확인되었다(도 6).As a result of the level measurement in blood, the low-abundance targets determined to be below 20-fmol / μg in blood were 34-protein, 36-peptide, and 20-fmol / μg and 2000-fmol / μg Middle-abundance targets measured between 93-protein, 174-peptide, and high-abundance targets measured above 2000-fmol / μg were 11-protein, 22-peptide. It was confirmed (FIG. 6).
실시예 6. 실제 개별 시료 적용을 통한 간암 조기진단 마커 후보군 도출Example 6 Derivation of Liver Cancer Early Diagnosis Marker Candidates through Actual Individual Sample Application
검증된 혈액 내인성 펩타이드를 대상으로 이에 상보적인 SIS 펩타이드 주입 농도를 결정했다. 소량(low abundance) 타겟(혈액 내 수준 < 20-fmol/㎍)의 경우, 모두 일괄적으로 20-fmol의 SIS-펩타이드를 주입했고, 중간량(Middle-abundance) 타겟 (20-fmol/μg < 혈액 내 수준 < 2000-fmol/μg)의 경우, 혈액 내 펩타이드 양과 동일하게 SIS 펩타이드 양을 주입했으며, 다량(High-abundance) 타겟(혈액 내 수준 > 2000-fmol/μg)의 경우, 모두 일괄적으로 2000-fmol 양의 SIS-펩타이드를 주입했다. Validated blood endogenous peptides were determined for SIS peptide injection concentrations complementary thereto. For low abundance targets (level in blood <20-fmol / μg), all were injected with 20-fmol SIS-peptides in batch, and middle-abundance targets (20-fmol / μg < For blood level <2000-fmol / μg), the amount of SIS peptide was injected equal to the amount of peptide in the blood, and for high-abundance targets (blood level> 2000-fmol / μg) all 2000-fmol amount of SIS-peptide was injected.
혈액 내 수준이 가장 낮게 측정된 ISLR 단백질의 경우, 20-fmol의 SIS-펩타이드를 주입할 경우, 혈액 내 수준에 비해 최대 13배 만큼 높은 양으로 주입했고, 혈액 내 수준이 가장 높게 측정된 A2MG 단백질의 경우, 2000-fmol의 SIS-펩타이드를 주입할 경우, 혈액 내 수준에 비해 최대 1/28 배 만큼 희석된 낮은 양으로 주입했다(도 7).For the ISLR protein with the lowest level in blood, 20-fmol of SIS-peptide was injected up to 13 times higher than the level in the blood, with the highest level of A2MG protein. In the case of injecting 2000-fmol of SIS-peptide, a low amount diluted up to 1/28 times compared to the level in blood was injected (FIG. 7).
약물반응 평가 기준을 치료 반응(Treatment Response)으로 할때, 마지막으로 가면 궁극적으로 소수의 CR, PR 또는 SD(약물 부작용으로 중단한 경우)로 되고 대부분은 PD로 구별되므로, 최종 반응(Final Response)은 약제 효과 판단에 전혀 도움이 되지 않는다. 따라서 처음 화학요법을 시작해서 PD 나 S/E(Side Effect)으로 약제를 중단하게 되는 시점 중에 보였던 가장 좋은 반응(Best Overall Survival, BOR)을 기준으로, mRECIST (Modified Response Evaluation Criteria in Solid Tumors) 평가 척도를 기반으로 하여 2개의 그룹으로 구분해서 선별하였다.When the drug response criterion is treated as a treatment response, the final response is ultimately ultimately due to a small number of CR, PR or SD (if discontinued due to drug side effects) and most are classified as PD. Does not help determine the effectiveness of the drug. Therefore, mRECIST (Modified Response Evaluation Criteria in Solid Tumors) based on the best overall survival (BOR) that occurred during the first chemotherapy and discontinuation of the drug with PD or S / E (Side Effect). The screening was divided into two groups based on the scale.
약물 치료 후, 종양이 완전히 사라진 그룹(CR, Complete response)을 약물반응 순응군(Responders)으로 선정하였고, 그 외 종양의 크기가 30% 이상 줄어든 그룹(PR, Partial response), 변화가 거의 없는 그룹(SD, Stable disease) 그리고 20% 이상 증가한 그룹(PD, Progressive disease) 등 3개의 그룹을 모아 약물반응 불응군(Non-Responders) 으로 선정하였다.After drug treatment, the complete disappearance of the tumor (CR) was selected as the response response group, and the other group in which the tumor size was reduced by more than 30% (PR, partial response), with little change Three groups (SD, Stable disease) and more than 20% increased (PD) were selected as non-responders.
최종 검증된 타겟 후보군(123개 단백질, 231 펩타이드)을 대상으로 조기진단 목적으로 1차 시료로 소라페닙 치료를 받은 간암 환자 65-Paired(치료 전/후) 시료를 사용했고(표 1), 이는 약물반응 순응 그룹 21-paired 시료와 약물반응 불응 그룹 44-Paired 시료로 구성되고, 차 시료는 51-Paired 시료를 사용했고(표 2), 이는 약물반응 순응 그룹 20-paired 시료와 약물반응 불응 그룹 31-Paired 시료를 이용해서 마커를 도출하였다. A 65-Paired (pre- and post-treatment) liver cancer patient who received sorafenib treatment as the primary sample for the early diagnosis of the final validated target candidate group (123 proteins, 231 peptides) was used (Table 1). Drug response compliance group 21-paired and drug non-response groups 44-Paired samples were used, and the primary sample used 51-Paired samples (Table 2), which was the drug response compliance group 20-paired sample and drug non-response group Markers were derived using 31-Paired samples.
실험자가 환자 군을 확인할 수 없도록 블라인딩 후 MRM 분석 순서는 무작위로 하여 분석하였으며, 분석은 시료 당 3번씩 반복 분석했다. 이를 통해서 얻어진 타겟 펩타이드에 대한 피크 면적 값을 혈액 내 펩타이드의 피크 면적 값을 이와 상보적인 SIS 펩타이드의 피크 면적 값으로 표준화(normalization) 한 다음, IBM SPSS statistics (version 21.0) 및 GraphPad (version 6.00)을 통해서 분석을 진행했다.After blinding, the MRM analysis sequence was randomly analyzed so that the experimenter could not identify the patient group, and the analysis was repeated three times per sample. The peak area values of the target peptides thus obtained are normalized to the peak area values of the SIS peptides complementary to each other, and then IBM SPSS statistics (version 21.0) and GraphPad (version 6.00) are obtained. I went through the analysis.
[표 1] 약물반응 예후 예측 마커 선정을 위하여 사용된 임상 시료 정보(1차 시료)[Table 1] Clinical sample information (primary sample) used for the selection of markers for predicting drug response prognosis
Figure PCTKR2015013481-appb-I000001
Figure PCTKR2015013481-appb-I000001
[표 2] 약물반응 예후 예측 마커 선정을 위하여 사용된 임상 시료 정보(2차 시료)[Table 2] Clinical Sample Information (Secondary Sample) Used to Select Prognostic Markers for Drug Response Prognosis
Figure PCTKR2015013481-appb-I000002
Figure PCTKR2015013481-appb-I000002
실시예 7. 소라페닙 반응 여부를 예측하는 단일 마커 도출Example 7 Derivation of a Single Marker Predicting Sorafenib Response
간암 표적 치료제인 소라페닙 약물의 경우, 진행성 간암의 초기 치료제로서 유용하지만, 종양 크기가 감소하는 비율이 5% 미만이고, 생존 기간의 증가가 3개월 미만에 머물러서 가격 대비 효과가 크지 않다는 한계가 있다. 소라페닙 약물반응 예후의 예측을 통해, 낭비되는 의료비를 절감하기 위하여 소라페닙 치료 전, 약물반응 순응 환자 그룹과 약물반응 불응 환자 그룹간 발현 차이를 보이는 타겟을 우선순위로 두고 분석을 진행했다. 도 8에 모식도를 나타내었다.Sorafenib, a liver cancer targeted drug, is useful as an early treatment for advanced liver cancer, but has a limit of less than 5% in tumor size reduction and an increase in survival time of less than 3 months, which is not effective for price. . Predicting the prognosis of sorafenib drug response was analyzed by prioritizing the targets showing differences in expression between the drug-responsive and drug-responsive patients prior to sorafenib treatment. The schematic diagram is shown in FIG.
1차 분석(Training set) 결과, 소라페닙 치료 전, 순응 환자군과 불응 환자군 간 진단력이 높은 (AUC-value ≥ 0.700) 타겟은 32-단백질, 44-펩타이드로 확인되었다. 2차 분석(Test set) 한 결과, 소라페닙 치료 전, 순응 환자군과 불응 환자군 간 진단력이 높은 (AUC-value ≥ 0.700) 차이를 보이는 타겟은 46-단백질, 7-펩타이드로 확인되었다.As a result of the training set, a highly diagnostic (AUC-value> 0.700) target was identified as 32-protein, 44-peptide before the sorafenib treatment. As a result of the secondary analysis (Test set), a target with a high diagnostic difference (AUC-value ≥ 0.700) between the acclimatized patient group and the non-accepted patient group was identified as 46-protein, 7-peptide before treatment with sorafenib.
1차 분석(Training set) 결과와 2차 분석(Test set) 결과에서 공통적으로, 소라페닙 치료 전 순응군과 불응군간 유의적인 차이 (P-value ≤ 0.05) 를 보이고, 진단력이 높은 (AUC-velue ≥ 0.700) Target 은 24개 단백질, 40개 펩타이드로 최종 확인하였다 (표 3-1, 3-2).Common in the results of the training set and the test set, there was a significant difference (P-value ≤ 0.05) between the acclimatized and non-complied groups before the sorafenib treatment and high diagnostic ability (AUC- velue ≥ 0.700) Target was finally identified with 24 proteins and 40 peptides (Tables 3-1 and 3-2).
표 3-1, 3-2에서 두 군 (control vs. case) 비교 시, 적색은 AUC 값이 0.7 이상 차이를 보이면서, case 군에서 발현량이 증가되는 것. 파란색은 AUC 값이 0.7 이상 차이를 보이면서, case 군에서 발현량이 감소되는 것. 검은색은 두 군 간 차이가 AUC 값 0.7 이하인 것을 나타낸다. When comparing the two groups (control vs. case) in Tables 3-1 and 3-2, red shows that the AUC value differs by more than 0.7, increasing the expression level in the case group. In blue, the AUC value is more than 0.7, and the expression level is decreased in the case group. Black indicates that the difference between the two groups is less than or equal to the AUC value of 0.7.
[표 3-1] 약물반응 개별시료 분석 후 AUC 값 0.700 이상 타겟 목록 [Table 3-1] Target List of AUC Values Above 0.700 after Analysis of Drug Response Individual Samples
Figure PCTKR2015013481-appb-I000003
Figure PCTKR2015013481-appb-I000003
[표 3-2] 약물반응 개별시료 분석 후 AUC 값 0.700 이상 타겟 목록 [Table 3-2] Target List of AUC Values Above 0.700 after Analysis of Drug Response Individual Samples
Figure PCTKR2015013481-appb-I000004
Figure PCTKR2015013481-appb-I000004
실시예 8. 소라페닙 반응 예측용 다중 마커 도출Example 8 Derivation of Multiple Markers for Predicting Sorafenib Response
1차 분석(Training set) 결과와 2차 분석(Test set) 결과에서 소라페닙 치료 전, 순응 환자군과 불응 환자군에서 공통적으로 높은 진단력을 보인 24개 단백질, 40개 펩타이드를 대상으로 다변량 분석(Multi-variate Analysis, MA)을 통해 다중 단백질 마커 패널 구축 및 비교를 진행했다.Multivariate analysis was performed on 24 proteins and 40 peptides with high diagnostic ability in both the acclimatized and non-complied patients before and after sorafenib treatment in the training set and test set results. -variate analysis (MA) was used to build and compare multiple protein marker panels.
통계 분석법 중 하나인 로지스틱 회귀법을 이용하여 하나의 패널로 결합하는 분석을 수행한 결과, 소라페닙 치료 전, 약물반응 순응군과 불응군 간 비교 시 5개의 펩타이드 패널(FBLN1 + LG3BP + CO7 + CO7 + CD5L)이 가장 높은 진단력을 보이는 조합으로 확인되었다.As a result of analysis of binding to one panel using logistic regression, one of the statistical methods, five peptide panels (FBLN1 + LG3BP + CO7 + CO7 +) were compared between the drug response compliance group and the non-drug response group before sorafenib treatment. CD5L) was identified as the combination with the highest diagnostic power.
소라페닙 치료 전, 약물반응 순응군과 불응군 간 비교 시 상기 5개의 펩타이드 패널의 AUC 값은 0.980으로 확인되었고, 상기 5개의 펩타이드 패널을 통해 전체 41명 소라페닙 치료 순응군 중에서 37명을 순응군(Accracy 90.2%)으로, 75명 소라페닙 치료 불응군 중에서 71명을 불응군(Accuracy 94.7%)으로 진단할 수 있으므로, 5-펩타이드(4-단백질) 마커 패널을 이용한 진단 정확도는 93.1%로 확인되었다(도 9). 상기 4-단백질(5-펩타이드)에 나머지 20-단백질(35-펩타이드)을 추가할 경우, AUC 0.980 이상 되는 단백질 조합을 무수히 만드는 것이 가능함을 확인하였다. Before the sorafenib treatment, the AUC value of the five peptide panels was 0.980 as compared between the drug response compliance group and the non-compliance group, and 37 of the 41 sorafenib treatment compliance groups were adapted through the five peptide panels. (Accracy 90.2%), 71 out of 75 Sorafenib-treated non-competents (Accuracy 94.7%) can be diagnosed, and the accuracy of diagnosis using the 5-peptide (4-protein) marker panel was 93.1%. (FIG. 9). When the remaining 20-protein (35-peptide) is added to the 4-protein (5-peptide), it was confirmed that it is possible to make a myriad of protein combinations of AUC 0.980 or more.
실시예 9. 간암 약물반응 예후를 예측하는 마커에 대한 항체를 이용한 추가 검증Example 9 Further Validation with Antibodies to Markers Predicting Liver Cancer Drug Response Prognosis
본원에 따른 마커는 단백질 수준에서 검출될 수 있으며, 단백질 수준에서의 검출방법은 본 실시예에서 사용한 MRM 분석 및 항체를 사용한 분석을 들 수 있으며, 한 가지 즉 MRM 분석만으로도 본원에 따른 목적하는 결과를 얻을 수 있거나, 또는 재확인을 위해 두 가지 방법을 모두 사용할 수도 있다. Markers according to the present application can be detected at the protein level, the detection method at the protein level may include the analysis using the MRM analysis and the antibody used in the present embodiment, only one, that is, the MRM analysis alone provides the desired result according to the present application. You can either get it or use both methods for reconfirmation.
간암 소라페닙 예후 예측 목적으로 MRM 분석(Peptide Level)으로 검증된 24-단백질 중에서 상위 AUC 값을 갖는 7개의 단백질을 대상으로 웨스턴 블랏팅(Protein Level) 을 진행했다 (표 4).Western Blotting (Protein Level) was performed on 7 proteins with high AUC values among 24-proteins validated by MRM analysis (Peptide Level) for the purpose of predicting hepatic cancer sorafenib prognosis (Table 4).
항체는 전체 단백질(whole protein) 중 일부 잔기로 구성되는 항원을 인식하기 때문에, 항체 선정 기준은 MRM으로 분석한 펩타이드 부분이 항체 면역원 부분에 포함(또는 가능하면 근접)되도록 하였고, 혈장/혈청에 대한 웨스턴 블랏팅 결과가 있는 것, 그리고 단일클론 항원이 존재하는 것을 우선으로 선정했으며, 사용된 항체는 표 3-1 및 표 3-2에 기재된 바와 같고, 항체는 Santa Cruz Biotechnology, USA에서 구입하였다. Since antibodies recognize antigens consisting of some residues in the whole protein, the antibody selection criteria allowed the peptide portion analyzed by MRM to be included (or as close as possible) in the antibody immunogen portion and for plasma / serum. Those with Western blotting results, and the presence of monoclonal antigens were selected first, and the antibodies used were as described in Tables 3-1 and 3-2, and the antibodies were purchased from Santa Cruz Biotechnology, USA.
웨스턴 블랏팅을 수행하기 위하여 4개 그룹 (약물반응 순응군 및 불응군에 대한 치료 전/후) 당 12명의 시료를 선별했으며, 이는 1차와 2차 MRM 분석에서 사용한 시료를 대상으로 무작위 선별을 통해, 간암 약물반응 예후 예측 마커 발굴을 위한 단백질 수준의 검증(Protein Level Validation)을 진행했다. 선별된 모든 군에 대한 통합된 시료를 통해 측정된 O.D 강도로 표준화(Normalization) 해서 SDS-PAGE 겔 간 편차(Variation) 보정을 진행했다. 대조군으로는 베타엑틴과 트렌스페린에 대한 mouse monoclonal 항체를 사용하였다. To perform western blotting, 12 samples were selected per four groups (before and after treatment for drug compliance and non-drug) and randomized to samples used in primary and secondary MRM analysis. Protein Level Validation was conducted to identify markers for predicting liver cancer drug response. SDS-PAGE gel-to-Variation corrections were performed by normalizing to the O.D intensity measured through the integrated samples for all selected groups. As a control, mouse monoclonal antibodies against betaactin and transferrin were used.
결과는 도 10에 기재되어 있다. 이러한 결과는 본원에 따른 마커는 다양한 단백질 분석 방법을 통해 분석이 가능함을 나타낸다. The results are described in FIG. These results indicate that the marker according to the present application can be analyzed through various protein analysis methods.
[표 4] 간암 약물반응 예후 예측 마커 항체 정보 목록[Table 4] Antibody Information List
Figure PCTKR2015013481-appb-I000005
Figure PCTKR2015013481-appb-I000005
이어 소라페닙 예후 예측 목적으로 MRM 분석(Peptide Level)으로 검증된 24-단백질 중에서 그룹 간 구분력이 가장 높은 타겟 단백질 7종에 대해 실제 임상 영역(병원)에 곧바로 적용/이용하기 위한 목적으로 ELISA 분석(Protein Level, Native form) 을 추가 진행했다. ELISA 분석을 수행하기 위하여 2-그룹 (소라페닙 치료 전,약물반응 순응군 및 불응군) 당 40명의 시료를 선별했으며, 1차와 2차 MRM 분석에 사용한 시료를 대상으로 무작위 선별을 통해, 최종 약물 반응 예측마커 발굴을 위한 단백질 수준 검증(Protein Level Validation)(Native Form)을 진행했다.ELISA analysis for the purpose of immediately applying / utilizing 7 target proteins with the highest distinction among groups among 24-proteins verified by MRM analysis (Peptide Level) for the purpose of predicting sorafenib prognosis. We added (Protein Level, Native form). For the ELISA analysis, 40 samples were selected per 2-group (prior to drug sorafenib, drug compliance and refractory), and randomized selection of samples used in the first and second MRM analysis was performed. Protein Level Validation (Native Form) was conducted to identify drug response prediction markers.
해당 ELISA 타겟 7종에 대한 ELISA 분석 결과, MRM 분석과 발현양상이 일치하는 타겟은 5종 (CD5L, IGHG1, IGHG3, IgJ 및 LG3BP)으로 확인되었고, 이 중에서 AUC 0.700 이상은 3종 [IGHG3(0.704), CD5L(0.764), 및 IgJ(0.779)]으로 최종 확인되었다(도 11).As a result of ELISA analysis on the seven ELISA targets, five targets (CD5L, IGHG1, IGHG3, IgJ, and LG3BP) that matched the expression pattern of MRM were identified. Among them, three or more of AUC 0.700 [IGHG3 (0.704) were identified. ), CD5L (0.764), and IgJ (0.779)] (FIG. 11).
실시예 10. 약물반응 예후 예측 ELISA 결과, 다중 마커 검증Example 10 Predicting Drug Response Prognosis ELISA Results, Multiple Marker Verification
단백질이 아닌 펩타이드를 측정하여 MRM 으로 정량 시 마커로 이용가능하다. Peptides, not proteins, can be measured and used as markers for quantification by MRM.
ELISA 분석 결과, MRM 분석과 발현양상이 일치하는 타겟 5종 (CD5L, IGHG1, IGHG3, IgJ and LG3BP)을 대상으로 다변량 분석(Multi-variate Analysis, MA)을 수행하여 이를 통해 다중 단백질 마커 패널을 구축하고 비교하였다.As a result of ELISA analysis, multi-variate analysis (MA) was performed on five targets (CD5L, IGHG1, IGHG3, IgJ and LG3BP) that matched the expression pattern of MRM, and built a multi-protein marker panel. And compared.
통계 분석법 중 하나인 로지스틱 회귀법을 이용하여 하나의 패널로 결합하는 분석을 수행한 결과, 5개의 단백질 패널 구축시 AUC 값은 0.811로 확인되었고, 이는 전체 40명 소라페닙 치료 순응군 중에서 29명을 순응군 (Accracy 72.5%)으로, 40명 소라페닙 치료 불응군 중에서 28명을 불응군 (Accuracy 70.0%)으로 진단할 수 있으므로, 5-단백질 마커 패널을 이용한 진단 정확도는 71.25%인 것으로 확인되었다(도 12).A panel analysis using logistic regression, one of the statistical methods, showed that the AUC value was 0.811 when constructing five protein panels, which was 29 acclimatized among the 40 sorafenib treatment compliance groups. In the group (Accracy 72.5%), 28 out of 40 Sorafenib-treated groups were diagnosed as non-accumulated (Accuracy 70.0%), and the accuracy of diagnosis using the 5-protein marker panel was 71.25% (Fig. 7). 12).

Claims (16)

  1. C163A (Scavenger receptor cysteine-rich type 1 protein M130), C1QB (Complement C1q subcomponent subunit B), CIQC (Complement C1q subcomponent subunit C), CATB (Cathepsin B), CD5L (CD5 antigen-like), CH3L1 (Chitinase-3-like protein 1), CO7 (Complement component C7), FA11 (Coagulation factor XI), FBLN1 (Fibulin-1), FBLN3 (EGF-containing fibulin-like extracellular matrix protein 1), FCG3A (Low affinity immunoglobulin gamma Fc region receptor III-A), FSTL1 (Follistatin-related protein 1), GPX3 (Glutathione peroxidase 3), IGHG1 (Ig gamma-1 chain C region), IGHG3 (Ig gamma-3 chain C region), IGJ (Immunoglobulin J chain), ISLR (Immunoglobulin superfamily containing leucine-rich repeat protein), LG3BP (Galectin-3-binding protein), LUM (Lumican), NRP1 (Neuropilin-1), QSOX1 (Sulfhydryl oxidase 1), SHBG (Sex hormone-binding globulin), SODE (Extracellular superoxide dismutase [Cu-Zn]) 및 THBG (Thyroxine-binding globulin)로 구성되는 군으로부터 선택되는 하나 이상의 바이오 마커의 검출시약을 포함하는, 소라페닙 반응 예측용 조성물. Scavenger receptor cysteine-rich type 1 protein M130, C1QB (Complement C1q subcomponent subunit B), CIQC (Complement C1q subcomponent subunit C), CATB (Cathepsin B), CD5L (CD5 antigen-like), CH3L1 (Chitinase-3 -like protein 1), CO7 (Complement component C7), FA11 (Coagulation factor XI), FBLN1 (Fibulin-1), FBLN3 (EGF-containing fibulin-like extracellular matrix protein 1), FCG3A (Low affinity immunoglobulin gamma Fc region receptor III-A), FSTL1 (Follistatin-related protein 1), GPX3 (Glutathione peroxidase 3), IGHG1 (Ig gamma-1 chain C region), IGHG3 (Ig gamma-3 chain C region), IGJ (Immunoglobulin J chain), Immunoglobulin superfamily containing leucine-rich repeat protein (ISLR), LG3BP (Galectin-3-binding protein), LUM (Lumican), NRP1 (Neuropilin-1), QSOX1 (Sulfhydryl oxidase 1), SHBG (Sex hormone-binding globulin), One or more biomarkers selected from the group consisting of extracellular superoxide dismutase [Cu-Zn] (SODE) and thyroxine-binding globulin (THBG) Of containing the detection reagent, seashell penip reaction composition for the prediction.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 마커는 CD5L, IGHG1, IGHG3, IGJ, LG3BP 및 QSOX1으로 구성되는 군으로부터 선택되는 것인, 소라페닙 반응 예측용 조성물.The marker is selected from the group consisting of CD5L, IGHG1, IGHG3, IGJ, LG3BP and QSOX1, composition for predicting sorafenib response.
  3. 제 1 항에 있어서, The method of claim 1,
    상기 마커는 CD5L, IGHG1, IGHG3, IGJ, LG3BP 및 QSOX1으로 구성되는 군으로부터 선택되는 어느 하나 및 C163A, C1QB, CIQC, CATB, CH3L1, CO7, FA11, FBLN1, FBLN3, FCG3A, FSTL1, GPX3, IGHG1, ISLR, LUM, NRP1, SHBG, SODE 및 THBG로 구성되는 군으로부터 선택되는 하나 이상 마커의 조합인, 소라페닙 반응 예측용 조성물.The marker is any one selected from the group consisting of CD5L, IGHG1, IGHG3, IGJ, LG3BP and QSOX1 and C163A, C1QB, CIQC, CATB, CH3L1, CO7, FA11, FBLN1, FBLN3, FCG3A, FSTL1, GPX3, IGHG1, A composition for predicting sorafenib response, which is a combination of one or more markers selected from the group consisting of ISLR, LUM, NRP1, SHBG, SODE, and THBG.
  4. 제 1 항에 있어서, The method of claim 1,
    상기 하나 이상의 마커는 CD5L, IGHG1, IGHG3, IGJ, LG3BP 및 QSOX1; FBLN1, LG3BP, CO7 및 CD5L, 또는 LG3BP, IGHG1, IGHG3, CD5L 및 IGJ인, 소라페닙 반응 예측용 조성물.Said one or more markers include CD5L, IGHG1, IGHG3, IGJ, LG3BP and QSOX1; FBLN1, LG3BP, CO7 and CD5L, or LG3BP, IGHG1, IGHG3, CD5L and IGJ, composition for predicting sorafenib response.
  5. 제 1 항에 있어서, The method of claim 1,
    상기 검출 시약은 상기 마커를 단백질 또는 핵산 수준에서 검출할 수 있는 시약인, 소라페닙 반응 예측용 조성물. The detection reagent is a reagent that can detect the marker at the protein or nucleic acid level, composition for predicting sorafenib reaction.
  6. 제 5 항에 있어서, The method of claim 5, wherein
    상기 단백질 수준의 검출 시약은 웨스턴블랏, ELISA, 방사선면역분석, 면역확산법, 면역 전기영동, 조직 면역염색, 면역침전 분석법, 보체 고정 분석법, FACS, 질량분석, 또는 단백질 마이크로어레이용 시약이고, The reagent for detecting the protein level is Western blot, ELISA, radioimmunoassay, immunodiffusion, immunoelectrophoresis, tissue immunostaining, immunoprecipitation assay, complement fixation assay, FACS, mass spectrometry, or a reagent for protein microarray,
    상기 핵산 수준의 검출 시약은 핵산증폭반응, 중합효소연쇄반응, 역전사 중합효소연쇄반응, 경쟁적 중합효소연쇄반응, Nuclease 보호 분석(RNase, S1 nuclease assay), in situ 교잡법, 핵산 마이크로어레이 또는 노던블랏용 시약인, 소라페닙 반응 예측용 조성물. The detection reagent of the nucleic acid level is nucleic acid amplification reaction, polymerase chain reaction, reverse transcription polymerase chain reaction, competitive polymerase chain reaction, Nuclease protection assay (RNase, S1 nuclease assay), in situ hybridization, nucleic acid microarray or northern A composition for predicting sorafenib reaction, which is a reagent for lot.
  7. 제 6 항에 있어서,The method of claim 6,
    상기 단백질 수준의 검출 시약은 상기 마커의 단백질 전장 또는 그 단편을 특이적으로 인식하는 항체, 항체단편, 앱타머(aptamer), 아비머(avidity multimer) 또는 펩티도모방체(peptidomimetics), 수용체, 리간드를 포함하고,The protein level detection reagent is an antibody, antibody fragment, aptamer, avider or peptidomimetics, receptor, ligand that specifically recognizes the full length or fragment thereof of the marker. Including,
    상기 핵산 수준 검출 시약은 상기 마커의 핵산서열, 상기 핵산서열에 상보적인 핵산서열, 상기 핵산서열 및 상기 상보적인 서열의 단편을 특이적으로 인식하는 프라미어, 또는 프로브, 또는 프라이머 및 프로브를 포함하는, 소라페닙 반응 예측용 조성물. The nucleic acid level detecting reagent includes a nucleic acid sequence of the marker, a nucleic acid sequence complementary to the nucleic acid sequence, a primer or a probe or a primer and a probe specifically recognizing the nucleic acid sequence and fragments of the complementary sequence. , Composition for predicting sorafenib reaction.
  8. 제 1 항에 있어서, The method of claim 1,
    상기 조성물은 ELISA 분석용, 딥스틱 래피드 키트(dip stick rapid kit) 분석용, MRM 분석용, 마이크로어레이용, 핵산증폭용, 또는 면역분석용인, 소라페닙 반응 예측용 조성물. The composition is for ELISA analysis, dip stick rapid kit (dip stick rapid kit) analysis, MRM analysis, microarray, nucleic acid amplification, or immunoassay, composition for predicting sorafenib response.
  9. 제 8 항에 있어서, The method of claim 8,
    상기 조성물은 MRM 분석용이며, 상기 MRM 분석에 사용되는 각 마커의 펩타이드는 표 3-1 및 표 3-2에 기재된 것인, 소라페닙 반응 예측용 조성물. The composition is for MRM analysis, the peptide of each marker used in the MRM analysis is a composition for predicting sorafenib response, which are described in Table 3-1 and Table 3-2.
  10. 소라페닙의 치료가 필요한 대상체의 생물학적 시료로부터 C163A, C1QB, CIQC, CATB, CD5L, CH3L1, CO7, FA11, FBLN1, FBLN3, FCG3A, FSTL1, GPX3, IGHG1, IGHG3, IGJ, ISLR, LG3BP, LUM, NRP1, QSOX1, SHBG, SODE 및 THBG로 구성되는 군으로부터 선택되는 하나 이상 바이오마커의 핵산 및/또는 단백질의 농도를 검출하는 단계; C163A, C1QB, CIQC, CATB, CD5L, CH3L1, CO7, FA11, FBLN1, FBLN3, FCG3A, FSTL1, GPX3, IGHG1, IGHG3, IGJ, ISLR, LG3BP, LUM, NRP1 from biological samples of subjects in need of sorafenib Detecting the concentration of nucleic acid and / or protein of at least one biomarker selected from the group consisting of QSOX1, SHBG, SODE and THBG;
    상기 핵산 또는 단백질의 농도 검출 결과를 대조군 시료의 상응하는 마커의 결과와 비교하는 단계; 및Comparing the result of detecting the concentration of the nucleic acid or protein with the result of the corresponding marker of the control sample; And
    상기 대조군 시료와 비교하여, 상기 대상체 시료의 핵산 또는 단백질 농도에 변화가 있는 경우, 상기 대상체를 소라페닙 순응군으로 판정하는 단계를 포함하는, 소라페닙에 대한 반응여부를 판단하는 방법. Comparing with the control sample, if there is a change in the nucleic acid or protein concentration of the subject sample, comprising the step of determining the subject to the sorafenib compliance group, how to determine the response to sorafenib.
  11. 제 10 항에 있어서, The method of claim 10,
    상기 대상체는 간암 환자이고, The subject is a liver cancer patient,
    상기 생물학적 시료는 전혈, 혈청 또는 혈장인, 방법. The biological sample is whole blood, serum or plasma.
  12. 제 10 항 또는 제 11 항에 있어서, The method of claim 10 or 11,
    상기 바이오마커는 CD5L, IGHG1, IGHG3, IGJ, LG3BP 및 QSOX1으로 구성되는 군으로부터 선택되는 것인, 방법. Wherein said biomarker is selected from the group consisting of CD5L, IGHG1, IGHG3, IGJ, LG3BP, and QSOX1.
  13. 제 10 항 내지 제 12 항 중 어느 한 항에 있어서, The method according to any one of claims 10 to 12,
    상기 마커는 CD5L, IGHG1, IGHG3, IGJ, LG3BP 및 QSOX1으로 구성되는 군으로부터 선택되는 어느 하나 및 C163A, C1QB, CIQC, CATB, CH3L1, CO7, FA11, FBLN1, FBLN3, FCG3A, FSTL1, GPX3, IGHG1, ISLR, LUM, NRP1, SHBG, SODE 및 THBG로 구성되는 군으로부터 선택되는 하나 이상 마커의 조합인, 방법. The marker is any one selected from the group consisting of CD5L, IGHG1, IGHG3, IGJ, LG3BP and QSOX1 and C163A, C1QB, CIQC, CATB, CH3L1, CO7, FA11, FBLN1, FBLN3, FCG3A, FSTL1, GPX3, IGHG1, And a combination of one or more markers selected from the group consisting of ISLR, LUM, NRP1, SHBG, SODE, and THBG.
  14. 제 10 항 내지 제 13 항 중 어느 한 항에 있어서, The method according to any one of claims 10 to 13,
    상기 하나 이상의 마커는 CD5L, IGHG1, IGHG3, IGJ, LG3BP 및 QSOX1; FBLN1, LG3BP, CO7 및 CD5L, 또는 LG3BP, IGHG1, IGHG3, CD5L 및 IGJ인, 방법. Said one or more markers include CD5L, IGHG1, IGHG3, IGJ, LG3BP and QSOX1; FBLN1, LG3BP, CO7 and CD5L, or LG3BP, IGHG1, IGHG3, CD5L and IGJ.
  15. 제 10 항 내지 제 14 항 중 어느 한 항에 있어서, The method according to any one of claims 10 to 14,
    상기 검출하는 단계는 단백질 또는 핵산 마이크로어레이 분석법, 핵산증폭, 항원-항체 반응, 또는 질량분석 방식으로 수행되는, 방법.The detecting step is performed by protein or nucleic acid microarray analysis, nucleic acid amplification, antigen-antibody reaction, or mass spectrometry.
  16. 제 10 항 내지 제 15 항 중 어느 한 항에 있어서, The method according to any one of claims 10 to 15,
    상기 검출하는 단계는 MRM 분석으로 수행되며, 상기 MRM 분석에 사용되는 각 마커의 펩타이드는 표 3-1 및 표 3-2에 기재된 것인, 방법. The detecting step is performed by MRM analysis, wherein the peptides of each marker used in the MRM analysis are those described in Tables 3-1 and 3-2.
PCT/KR2015/013481 2014-12-12 2015-12-10 Biomarker for predicting hepatoma-targeted drug response, and use thereof WO2016093629A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0179100 2014-12-12
KR20140179100 2014-12-12
KR1020150174914A KR101832039B1 (en) 2014-12-12 2015-12-09 Biomarker to predict target drug efficacy for hepatocellular carcinoma and its use
KR10-2015-0174914 2015-12-09

Publications (1)

Publication Number Publication Date
WO2016093629A1 true WO2016093629A1 (en) 2016-06-16

Family

ID=56107734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/013481 WO2016093629A1 (en) 2014-12-12 2015-12-10 Biomarker for predicting hepatoma-targeted drug response, and use thereof

Country Status (1)

Country Link
WO (1) WO2016093629A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011103821A (en) * 2009-11-18 2011-06-02 Haplo Pharma:Kk Identification of gene with variable expression, responding by stimulation of sorafenib
US20110257035A1 (en) * 2008-10-21 2011-10-20 Bayer Healthcare Llc Identification of signature genes associated with hepatocellular carcinoma
KR20140128865A (en) * 2013-04-25 2014-11-06 씨비에스바이오사이언스 주식회사 Analytical method for increasing susceptibility of molecular targeted therapy in hepatocellular carcinoma

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110257035A1 (en) * 2008-10-21 2011-10-20 Bayer Healthcare Llc Identification of signature genes associated with hepatocellular carcinoma
JP2011103821A (en) * 2009-11-18 2011-06-02 Haplo Pharma:Kk Identification of gene with variable expression, responding by stimulation of sorafenib
KR20140128865A (en) * 2013-04-25 2014-11-06 씨비에스바이오사이언스 주식회사 Analytical method for increasing susceptibility of molecular targeted therapy in hepatocellular carcinoma

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE GENBANK [online] 16 March 2014 (2014-03-16), "NEUROPILIN-1 ISOFORM D PRECURSOR [HOMO SAPIENS", XP055349096, accession no. NCBI Database accession no. NP_001231901 *
MEHTA.S.: "PREDICTIVE FACTORS IN PATIENTS WITH ADVANCED AND METASTATIC QUAMOUS CELL CARCINOMA OF THE HEAD AND NECK A STUDY BASED ON SWOG PROTOCOL S0420", ONCOLOGY REPORTS, vol. 29, no. 6, June 2013 (2013-06-01), pages 2095 - 2100, XP055349106 *

Similar Documents

Publication Publication Date Title
CN107110867B (en) Biomarker for liver cancer diagnosis and application thereof
WO2018208091A2 (en) Biomarker for monitoring or diagnosing onset of liver cancer in high-risk group for liver cancer and use thereof
WO2014148780A1 (en) Biomarker for diagnosing liver cancer
US20160209415A1 (en) Method to predict or diagnose a colorectal cancer
WO2009113814A2 (en) Protein marker for early diagnosis of liver cancer
JP7285215B2 (en) Biomarkers for detecting colorectal cancer
Lesur et al. Screening protein isoforms predictive for cancer using immunoaffinity capture and fast LC‐MS in PRM mode
WO2021076036A1 (en) Apparatuses and methods for detection of pancreatic cancer
Pesciotta et al. In-depth, label-free analysis of the erythrocyte cytoplasmic proteome in diamond blackfan anemia identifies a unique inflammatory signature
Ma et al. Leukotriene A4 hydrolase is a candidate predictive biomarker for successful allergen immunotherapy
WO2013009146A2 (en) Marker for diagnosing diabetic retinopathy
WO2016093567A1 (en) Biomarker for diagnosis of hepatoma and use thereof
WO2020256526A1 (en) Urinary exosome biomarker for diagnosing antibody-mediated rejection after kidney transplantation or predicting prognosis of patient after kidney transplantation
WO2013009143A9 (en) Marker for diagnosing diabetic retinopathy
WO2015023068A1 (en) Cancer marker screening method through detection of deglycosylation of glycoprotein and hepatocellular cancer marker
KR100925147B1 (en) Markers for the diagnosis of lung cancer
WO2016093629A1 (en) Biomarker for predicting hepatoma-targeted drug response, and use thereof
KR101832039B1 (en) Biomarker to predict target drug efficacy for hepatocellular carcinoma and its use
WO2018169251A1 (en) Biomarker for measurement of response and prognosis of triple-negative breast cancer to anticancer agent
KR101390543B1 (en) Markers for diagnosing pancreatic cancer and its use
KR102000387B1 (en) Protein biomarkers for distinguishing malignancy of intraductal papillary mucinous neoplasm and their use
AU2021414296A1 (en) Circulating transcription factor analysis
Hardouin et al. Usefulness of autoantigens depletion to detect autoantibody signatures by multiple affinity protein profiling
Rezeli et al. Inflammatory markers in Huntington's disease plasma—a robust nanoLC–MRM-MS assay development
Liu et al. Tandem mass tag‐based quantitative proteomic profiling of the serum of patients with abnormal uterine bleeding associated with copper intrauterine device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866551

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15866551

Country of ref document: EP

Kind code of ref document: A1