JP2011103821A - Identification of gene with variable expression, responding by stimulation of sorafenib - Google Patents

Identification of gene with variable expression, responding by stimulation of sorafenib Download PDF

Info

Publication number
JP2011103821A
JP2011103821A JP2009263219A JP2009263219A JP2011103821A JP 2011103821 A JP2011103821 A JP 2011103821A JP 2009263219 A JP2009263219 A JP 2009263219A JP 2009263219 A JP2009263219 A JP 2009263219A JP 2011103821 A JP2011103821 A JP 2011103821A
Authority
JP
Japan
Prior art keywords
gene
single nucleotide
polymorphism
polymorphisms
nucleotide polymorphism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009263219A
Other languages
Japanese (ja)
Inventor
Yasuhisa Nemoto
靖久 根本
Shunpei Ishikawa
俊平 石川
Yasunori Iwamoto
恭典 岩本
Yasuhiko Yoshida
安彦 吉田
Konosuke Hiramatsu
鉱之介 平松
Shingo Tsuji
真吾 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAPLO PHARMA KK
Original Assignee
HAPLO PHARMA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAPLO PHARMA KK filed Critical HAPLO PHARMA KK
Priority to JP2009263219A priority Critical patent/JP2011103821A/en
Publication of JP2011103821A publication Critical patent/JP2011103821A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for predicting the response to the stimulation of agents by the use of genetic polymorphism and to provide markers used in the method for predicting the response to the stimulation of the agents. <P>SOLUTION: The method includes the prediction of the response to Sorafenib of samples administered with Sorafenib by detecting in vitro genetic polymorphisms which decide the difference in the amount of expression of any one of the following (a)-(h) genes which show the difference between alleles in the amount of expression in response to the stimulation of Sorafenib: (a) dihydropyrimidine dehydrogenase gene, (b) CD247 molecule gene, (c) phospholipase A2, group IVA (cytosolic, calcium-dependent) gene, (d) interleukin 1 receptor, typeII gene, (e) dedicator of cytokinesis 2 gene, (f) estrogen receptor 1 gene, (g) complement component 5 gene, (h) phospholipase C, beta 1 (phosphoinositide-specific) gene, (i) pancreatic lipase-related protein 3 gene, and (j) lipase, hepatic gene. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ソラフェニブ(Sorafenib)刺激で応答する発現量多様性を有する遺伝子及びその遺伝子の多型の同定に関する。   The present invention relates to identification of genes having expression level variability in response to Sorafenib stimulation and polymorphisms of the genes.

ゲノムの同じ位置にある同じ遺伝子であっても、それが異なるアレル上にある場合にその遺伝子発現量に差がみられる現象は、近年報告されている比較的新しい概念である(非特許文献1を参照)。   The phenomenon in which even if the same gene is located at the same position in the genome and is on a different allele, the difference in the gene expression level is a relatively new concept that has been reported in recent years (Non-patent Document 1). See).

アレル間で異なる発現を示す遺伝子は、大きく分けて刷り込みを受ける遺伝子(imprinted gene)と刷り込みを受けない遺伝子(non-imprinted gene)の2種類がある。前者は、刷り込み(imprinting)といって、ある細胞若しくは組織において、両親から片アレルずつ受け継いだ場合にどちらか一方のアレルが生理的にメチル化などの修飾をうけることにより不活化され発現が抑制されるという現象である。後者、すなわち刷り込みを受けていない遺伝子(non-imprinted gene)においても、アレル間で異なる発現差が見られる場合がある。これは、遺伝子内若しくはそれに近接しているアレル間のゲノムの多型が、近接の遺伝子の発現を調節するシス作用領域(cis-acting element)として働き、アレル間の遺伝子発現量の差を生み出すと考えられている。後者に見られる、ゲノムDNAの配列の違いに起因するアレルごとの発現の変化は、世代を超えて引き継がれる性質と考えられ、個体間の遺伝子発現量の差、ひいては個人の体質の差、病態とそのリスク、また薬剤の応答性の違いに影響することが考えられる。従って、このようなアレル間で発現量が異なる遺伝子は疾患又は障害などの表現型と関係する可能性がある。   There are two types of genes that show different expression among alleles: genes that are imprinted (imprinted genes) and genes that are not imprinted (non-imprinted genes). The former is called imprinting. When a single allele is inherited from a parent in one cell or tissue, it is inactivated by expression of either allele being physiologically modified such as methylation. This phenomenon is suppressed. Even in the latter case, that is, in a non-imprinted gene, different expression differences may be observed between alleles. This is because genomic polymorphism within or between alleles within a gene acts as a cis-acting element that regulates the expression of nearby genes, creating differences in gene expression between alleles. It is believed that. Changes in the expression of each allele due to differences in the genomic DNA sequence seen in the latter are considered to be inherited from generation to generation, resulting in differences in gene expression levels among individuals, as well as differences in individual constitutions, pathological conditions. And its risk, and the difference in drug responsiveness. Therefore, genes with different expression levels between alleles may be related to phenotypes such as diseases or disorders.

一方、薬剤に応答する遺伝子の発現量多様性としては、4-β-phorbol-12-myristate-13-acetate(PMA)+ionomycin刺激の条件下において、TNF/LTAがアレル特異的な発現を示すことが報告されている(非特許文献2及び3を参照)。   On the other hand, the diversity of gene expression in response to drugs is that TNF / LTA shows allele-specific expression under conditions of 4-β-phorbol-12-myristate-13-acetate (PMA) + ionomycin stimulation. Has been reported (see Non-Patent Documents 2 and 3).

上述のように、薬剤に応答する遺伝子の発現量多様性の存在は、ファーマコゲノミクス(PGx: Pharmacogenomics)研究に応用できると考えられる。PGx研究とは、遺伝子解析から薬剤の動態・効果・副作用に影響を与える遺伝子多型(SNP: Single Nucleotide Polymorphisms)を探索し、これらのSNPで薬剤に好ましい反応を示す患者と、好ましくない反応を示す患者を層別化することを目的としている。PGx研究には候補を選ばず可能な限り網羅的にゲノムDNAを測定するUnbiased genome-wide approach、あるいは、候補を選択して検証するCandidate gene approachの2つの方法があり、SNPs地図、ハプロタイプマーカー、薬理学的機能や治療効果に関与している遺伝子発現、又は不活化における変異の個体間の多様性などが調査されている。そのため、創薬におけるPGx研究では薬剤に好ましい反応を示す患者と好ましくない反応を示す患者の層別化が試みられている。しかし、Unbiased genome-wide approachでは多数のサンプル・高額な費用が必要であり、Candidate gene approachでは薬剤作用に関わる可能性のある多数の遺伝子多型から事前に候補を選択する必要がある。   As described above, the presence of diversity in the expression level of genes that respond to drugs is considered to be applicable to pharmacogenomics (PGx) studies. With PGx research, we look for genetic polymorphisms (SNP: Single Nucleotide Polymorphisms) that affect the dynamics, effects, and side effects of drugs from genetic analysis. The purpose is to stratify the patients shown. There are two methods of PGx research: Unbiased genome-wide approach that measures genomic DNA as comprehensively as possible without selecting candidates, or Candidate gene approach that selects and verifies candidates, including SNP maps, haplotype markers, The expression of genes involved in pharmacological functions and therapeutic effects, or the diversity among individuals in mutation in inactivation has been investigated. Therefore, in PGx research in drug discovery, an attempt is made to stratify patients who show favorable reactions to drugs and patients who show undesirable reactions. However, the Unbiased genome-wide approach requires a large number of samples and high costs, and the Candidate gene approach requires selection of candidates from a large number of gene polymorphisms that may be involved in drug action.

そこで、最近では事前にex vivoで網羅的にゲノムを測定し、上記両アプローチを組み合わせて候補遺伝子を選択する方法が新たに考えられている。具体的にはex vivoでゲノムDNAとRNA発現を網羅的に測定し、薬剤によりRNA発現変動に影響を与えるSNPを探索する方法である。これまでの報告例はいずれも薬剤によるmRNA発現変動とSNPの関係を調べ、mRNA発現に影響を与えるSNPsを探索したものであり、Expression quantitative trait loci(eQTL)法と呼ばれている(非特許文献4及び5を参照)。   Therefore, recently, a new method has been considered in which genomes are comprehensively measured in advance in advance, and candidate genes are selected by combining both approaches. Specifically, it is a method of exhaustively measuring genomic DNA and RNA expression ex vivo, and searching for SNPs that affect RNA expression fluctuations by drugs. All of the reported examples so far have investigated the relationship between mRNA expression fluctuations caused by drugs and SNP, and searched for SNPs that affect mRNA expression, which is called the Expression quantitative trait loci (eQTL) method (non-patented) (Ref. 4 and 5).

一方、ExpressGenotyping法(特許文献1を参照)ではゲノムDNAのSNPs typingと同時にスプライシングを受けていないPremature RNAのアレルごとの発現量及び総量を網羅的に測定できるため、定性的なアレル頻度だけのデータに比べると信頼性も高く、少ないサンプル数でも発現に影響を与える有効なSNPsを探索できる。従って、このExpressGenotyping法を用いて、薬剤応答性の発現量多様性を有する遺伝子の同定ができれば、創薬において薬剤の副作用を回避し、有効な反応を示す患者と有効でない反応を示す患者を層別化できると考えられる。   On the other hand, the ExpressGenotyping method (see Patent Document 1) can comprehensively measure the expression level and total amount of all premature RNAs that have not undergone splicing at the same time as genomic DNA SNP typing, so only qualitative allele frequency data is available. Compared to, the reliability is high, and effective SNPs that affect the expression can be searched even with a small number of samples. Therefore, if this ExpressGenotyping method can be used to identify genes with diverse expression levels of drug responsiveness, drug side effects can be avoided in drug discovery, and patients with effective responses and patients with ineffective responses can be divided into layers. It is thought that it can be separated.

特許第4111985号公報Japanese Patent No.4111985

Knight JC., Trends Genet. Mar; 20 (3) : 113-6. PMID: 15049300, 2004年Knight JC., Trends Genet. Mar; 20 (3): 113-6. PMID: 15049300, 2004 Knight JC. et al., Nat Genet. Apr;33(4):469-75. PMID: 12627232, 2003年Knight JC. Et al., Nat Genet. Apr; 33 (4): 469-75. PMID: 12627232, 2003 Knight JC. et al, Nat Genet. Apr;36(4):394-9. PMID: 15052269, 2004年Knight JC. Et al, Nat Genet. Apr; 36 (4): 394-9. PMID: 15052269, 2004 Cheung VG. et al., Nature. Oct 27;437(7063):1365-9. PMID: 16251966, 2005年Cheung VG. Et al., Nature. Oct 27; 437 (7063): 1365-9. PMID: 16251966, 2005 Huang RS. et al., Proc Natl Acad Sci U S A. Jun 5;104(23):9758-63. PMID: 17537913, 2007年Huang RS. Et al., Proc Natl Acad Sci U S A. Jun 5; 104 (23): 9758-63. PMID: 17537913, 2007

本発明は、アレル間で発現量が異なる遺伝子を判定することができるExpressGenotyping法を用いて、薬剤刺激における薬剤応答性の発現量多様性を有する遺伝子を同定することを目的とする。また本発明は、当該方法により薬剤刺激応答についての表現型に関与する遺伝子多型を検索する方法を提供することを目的とする。さらに、本発明は、そのようにして検索した、遺伝子多型を利用して、薬剤刺激応答を予測する方法の提供及び該方法に利用する薬剤多型を検出するマーカーの提供を目的とする。   An object of the present invention is to identify genes having a variety of expression levels of drug responsiveness in drug stimulation using ExpressGenotyping, which can determine genes whose expression levels differ between alleles. It is another object of the present invention to provide a method for searching for a gene polymorphism involved in a phenotype of a drug stimulus response by the method. Another object of the present invention is to provide a method for predicting a drug stimulus response using the gene polymorphism thus searched and a marker for detecting the drug polymorphism used in the method.

本発明者は、上記課題を解決するため鋭意検討を行った結果、薬剤として抗がん剤のソラフェニブ(Sorafenib)を利用することによって、効率的にアレル間で発現量が異なる遺伝子を見出せると考え、実際に、ソラフェニブ刺激後にExpressGenotyping法を行ったところ、アレル間の発現量が異なる遺伝子を判定できるSNPsを同定することに成功し、本発明を完成するに至った。ソラフェニブはMultikinase inhibitorとして、腎臓癌の治療に使用されており、副作用として高血圧、皮膚障害、下痢、疼痛が知られている。なかでも、日本人で多く発生する皮膚障害は、治療を行う上でも大きな障害になっている。   As a result of intensive studies to solve the above problems, the present inventor believes that by using the anticancer agent Sorafenib as a drug, a gene whose expression level is different between alleles can be found efficiently. Actually, when ExpressGenotyping was performed after sorafenib stimulation, SNPs that can determine genes with different expression levels between alleles were successfully identified, and the present invention was completed. Sorafenib is used as a multikinase inhibitor in the treatment of kidney cancer, and as side effects, hypertension, skin disorders, diarrhea, and pain are known. In particular, skin disorders that occur frequently in Japanese are a major obstacle to treatment.

すなわち、本発明は以下のとおりである。
[1] ソラフェニブ刺激でアレル間における発現量に違いが生じる以下の(a)〜(j)のいずれかの遺伝子における、発現量の違いを判定することができる遺伝子多型をin vitroで検出し、ソラフェニブを投与する被験体のソラフェニブの応答性を予測する方法:
(a) dihydropyrimidine dehydrogenase(DPYD)遺伝子;
(b) CD247 molecule遺伝子;
(c) phospholipase A2, group IVA (cytosolic, calcium-dependent)(PLA2G4A)遺伝子;
(d) interleukin 1 receptor, type II(IL1R2)遺伝子;
(e) dedicator of cytokinesis 2(DOCK2)遺伝子;
(f) estrogen receptor 1 (ESR1)遺伝子;
(g) complement component 5(C5)遺伝子;
(h) phospholipase C, beta 1 (phosphoinositide-specific)(PLCB1)遺伝子;
(i) pancreatic lipase-related protein 3(PNLIPRP3)遺伝子;及び
(j) lipase, hepatic(LIPC)遺伝子。
That is, the present invention is as follows.
[1] In vitro detection of a gene polymorphism that can determine the difference in expression level in any of the following genes (a) to (j), in which the expression level varies between alleles due to sorafenib stimulation Methods for predicting responsiveness of sorafenib in a subject receiving sorafenib:
(a) the dihydropyrimidine dehydrogenase (DPYD) gene;
(b) the CD247 molecule gene;
(c) phospholipase A2, group IVA (cytosolic, calcium-dependent) (PLA2G4A) gene;
(d) interleukin 1 receptor, type II (IL1R2) gene;
(e) dedicator of cytokinesis 2 (DOCK2) gene;
(f) estrogen receptor 1 (ESR1) gene;
(g) complement component 5 (C5) gene;
(h) phospholipase C, beta 1 (phosphoinositide-specific) (PLCB1) gene;
(i) the pancreatic lipase-related protein 3 (PNLIPRP3) gene; and
(j) lipase, hepatic (LIPC) gene.

[2] (a)〜(j)における、発現量の違いを判定できる遺伝子多型が以下のいずれかである、[1]のソラフェニブを投与する被験体のソラフェニブの応答性を予測する方法:
(i)dihydropyrimidine dehydrogenase(DPYD)遺伝子における、配列番号1〜8のいずれかで表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(ii)CD247 molecule遺伝子における、配列番号9で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(iii)phospholipase A2, group IVA (cytosolic, calcium-dependent)(PLA2G4A)遺伝子における、配列番号10〜12のいずれかで表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(iv)interleukin 1 receptor, type II(IL1R2)遺伝子における、配列番号13〜15のいずれかで表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(v)dedicator of cytokinesis 2(DOCK2)遺伝子における、配列番号16〜23のいずれかで表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(vi)estrogen receptor 1 (ESR1)遺伝子における、配列番号24又は25で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(vii)complement component 5(C5)遺伝子における、配列番号26で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(viii) phospholipase C, beta 1 (phosphoinositide-specific)(PLCB1)遺伝子における、配列番号27〜46で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(ix) pancreatic lipase-related protein 3(PNLIPRP3)遺伝子における、配列番号47で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;又は
(x) lipase, hepatic(LIPC)遺伝子における、配列番号48〜52で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位。
[2] The method for predicting responsiveness of sorafenib in a subject administered with sorafenib according to [1], wherein the gene polymorphism in which the difference in expression level in (a) to (j) can be determined is any of the following:
(i) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by any one of SEQ ID NOs: 1 to 8 in the dihydropyrimidine dehydrogenase (DPYD) gene;
(ii) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NO: 9 in the CD247 molecule gene;
(iii) A single nucleotide polymorphism present at the position of the 16th base in the partial sequence represented by any of SEQ ID NOs: 10 to 12 in the phospholipase A2, group IVA (cytosolic, calcium-dependent) (PLA2G4A) gene Site;
(iv) a single nucleotide polymorphic site present at the position of the 16th base in the partial sequence represented by any of SEQ ID NOs: 13 to 15 in the interleukin 1 receptor, type II (IL1R2) gene;
(v) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by any of SEQ ID NOs: 16 to 23 in the dedicator of cytokinesis 2 (DOCK2) gene;
(vi) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NO: 24 or 25 in the estrogen receptor 1 (ESR1) gene;
(vii) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NO: 26 in the complement component 5 (C5) gene;
(viii) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NOs: 27 to 46 in the phospholipase C, beta 1 (phosphoinositide-specific) (PLCB1) gene;
(ix) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NO: 47 in the pancreatic lipase-related protein 3 (PNLIPRP3) gene; or
(x) A single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NOs: 48 to 52 in the lipase, hepatic (LIPC) gene.

[3] (a)〜(j)における、発現量の違いを判定できる遺伝子多型が以下のいずれかである、[1]のソラフェニブを投与する被験体のソラフェニブの応答性を予測する方法:
(i)dihydropyrimidine dehydrogenase(DPYD)遺伝子における、一塩基多型rs10449721、rs10875047、rs11165805、rs11165867、rs6687374、rs4949952、rs11165887及びrs10875097、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(ii)CD247 molecule遺伝子における、一塩基多型rs864537、該一塩基多型の近傍に存在する遺伝子多型、及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(iii)phospholipase A2, group IVA (cytosolic, calcium-dependent)(PLA2G4A)遺伝子における、一塩基多型rs10752979、rs10798069及びrs10911963、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(iv)interleukin 1 receptor, type II(IL1R2)遺伝子における、一塩基多型rs4851527、rs3218872及びrs3218920、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(v)dedicator of cytokinesis 2(DOCK2)遺伝子における、一塩基多型rs900464、rs264846、rs90213、rs966595、rs4867895、rs11134600、rs2287727及びrs1316638、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(vi)estrogen receptor 1 (ESR1)遺伝子における、一塩基多型rs9371557及びrs3798573、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(vii)complement component 5(C5)遺伝子における、一塩基多型rs10985112、該一塩基多型の近傍に存在する遺伝子多型、及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(viii)phospholipase C, beta 1 (phosphoinositide-specific)(PLCB1)遺伝子における、一塩基多型rs2235212、rs6055624、rs2294257、rs2180532、rs10485723、rs1156958、rs1237829、rs2050090、rs6055925、rs6039215、rs6140677、rs6133610、rs6133621、rs13040543、rs10485727、rs6118343、rs6056198、rs6086627、rs3848831及びrs6086678、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(ix) pancreatic lipase-related protein 3(PNLIPRP3)遺伝子における、一塩基多型rs1431485、該一塩基多型の近傍に存在する遺伝子多型、及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、又は
(x) lipase, hepatic(LIPC)遺伝子における、一塩基多型rs12438071、rs4775047、rs9920144、rs7179747及びrs3751542、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型。
[3] A method for predicting responsiveness of sorafenib in a subject administered with sorafenib according to [1], wherein the gene polymorphism in which the difference in expression level in (a) to (j) can be determined is any of the following:
(i) single nucleotide polymorphisms in the dihydropyrimidine dehydrogenase (DPYD) gene rs10449721, rs10875047, rs11165805, rs11165867, rs6687374, rs4949952, rs11165887 and rs10875097, and the gene polymorphisms in the vicinity of the single nucleotide polymorphism and the single nucleotide polymorphism At least one polymorphism selected from the group consisting of genetic polymorphisms in linkage disequilibrium with the type,
(ii) selected from the group consisting of a single nucleotide polymorphism rs864537, a gene polymorphism present in the vicinity of the single nucleotide polymorphism, and a gene polymorphism in linkage disequilibrium with the single nucleotide polymorphism in the CD247 molecule gene At least one polymorph,
(iii) In the phospholipase A2, group IVA (cytosolic, calcium-dependent) (PLA2G4A) gene, the single nucleotide polymorphisms rs10752979, rs10798069 and rs10911963, the gene polymorphism present in the vicinity of the single nucleotide polymorphism and the single nucleotide polymorphism At least one polymorphism selected from the group consisting of genetic polymorphisms in linkage disequilibrium with the type,
(iv) In the interleukin 1 receptor, type II (IL1R2) gene, the single nucleotide polymorphisms rs4851527, rs3218872 and rs3218920, the gene polymorphisms present in the vicinity of the single nucleotide polymorphisms and linkage disequilibrium with the single nucleotide polymorphisms At least one polymorphism selected from the group consisting of a genetic polymorphism,
(v) single nucleotide polymorphisms in the dedicator of cytokinesis 2 (DOCK2) gene rs900464, rs264846, rs90213, rs966595, rs4867895, rs11134600, rs2287727 and rs1316638, and the gene polymorphism present in the vicinity of the single nucleotide polymorphism and the single nucleotide At least one polymorphism selected from the group consisting of genetic polymorphisms in linkage disequilibrium with the base polymorphism,
(vi) From the single nucleotide polymorphisms rs9371557 and rs3798573 in the estrogen receptor 1 (ESR1) gene, the gene polymorphisms present in the vicinity of the single nucleotide polymorphism, and the gene polymorphism in linkage disequilibrium with the single nucleotide polymorphism At least one polymorphism selected from the group consisting of:
(vii) In the complement component 5 (C5) gene, a group consisting of a single nucleotide polymorphism rs10985112, a gene polymorphism present in the vicinity of the single nucleotide polymorphism, and a gene polymorphism in linkage disequilibrium with the single nucleotide polymorphism At least one polymorph selected from,
(viii) Single nucleotide polymorphisms in phospholipase C, beta 1 (phosphoinositide-specific) (PLCB1) gene Rs10485727, rs6118343, rs6056198, rs6086627, rs3848831 and rs6086678, and a genetic polymorphism present in the vicinity of the single nucleotide polymorphism and at least selected from the group consisting of genetic polymorphisms in linkage disequilibrium with the single nucleotide polymorphism One polymorph,
(ix) In the pancreatic lipase-related protein 3 (PNLIPRP3) gene, the single nucleotide polymorphism rs1431485, the gene polymorphism present in the vicinity of the single nucleotide polymorphism, and the gene polymorphism in linkage disequilibrium with the single nucleotide polymorphism At least one polymorphism selected from the group consisting of
(x) single nucleotide polymorphisms in lipase, hepatic (LIPC) genes rs12438071, rs4775047, rs9920144, rs7179747 and rs3751542, and gene polymorphisms in the vicinity of the single nucleotide polymorphism and linkage disequilibrium with the single nucleotide polymorphism At least one polymorphism selected from the group consisting of genetic polymorphisms in

[4] ソラフェニブの応答性の予測が、被験体におけるソラフェニブの効果の予測又は副作用のタイプ若しくは程度の予測である、[1]〜[3]のいずれかのソラフェニブを投与する被験体のソラフェニブの応答性を予測する方法。 [4] Sorafenib responsiveness prediction is a prediction of the effect of sorafenib in a subject or a prediction of the type or extent of side effects of the subject's sorafenib administered with any of the sorafenibs of [1]-[3] A method of predicting responsiveness.

[5] 以下の(i)〜(x)の一塩基多型部位を含むDNA断片からなるオリゴヌクレオチドのいずれかであって、以下の(i)〜(x)の遺伝子の10から30塩基からなる部分配列もしくはその部分配列に相補的な配列からなるオリゴヌクレオチド又はその標識物からなる、ソラフェニブを投与する被験体のソラフェニブの応答性を予測するためのプローブ:
(i)dihydropyrimidine dehydrogenase(DPYD)遺伝子における、配列番号1〜8のいずれかで表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(ii)CD247 molecule遺伝子における、配列番号9で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(iii)phospholipase A2, group IVA (cytosolic, calcium-dependent)(PLA2G4A)遺伝子における、配列番号10〜12のいずれかで表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(iv)interleukin 1 receptor, type II(IL1R2)遺伝子における、配列番号13〜15のいずれかで表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(v)dedicator of cytokinesis 2(DOCK2)遺伝子における、配列番号16〜23のいずれかで表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(vi)estrogen receptor 1 (ESR1)遺伝子における、配列番号24又は25で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(vii)complement component 5(C5)遺伝子における、配列番号26で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(viii) phospholipase C, beta 1 (phosphoinositide-specific)(PLCB1)遺伝子における、配列番号27〜46で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(ix) pancreatic lipase-related protein 3(PNLIPRP3)遺伝子における、配列番号47で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;又は
(x) lipase, hepatic(LIPC)遺伝子における、配列番号48〜52で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位。
[5] An oligonucleotide consisting of a DNA fragment containing the following single nucleotide polymorphic site of (i) to (x): from 10 to 30 bases of the following genes (i) to (x) A probe for predicting responsiveness of sorafenib in a subject to which sorafenib is administered, comprising an oligonucleotide consisting of a partial sequence or an oligonucleotide complementary to the partial sequence or a label thereof:
(i) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by any of SEQ ID NOs: 1 to 8 in the dihydropyrimidine dehydrogenase (DPYD) gene;
(ii) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NO: 9 in the CD247 molecule gene;
(iii) A single nucleotide polymorphism present at the position of the 16th base in the partial sequence represented by any of SEQ ID NOs: 10 to 12 in the phospholipase A2, group IVA (cytosolic, calcium-dependent) (PLA2G4A) gene Site;
(iv) a single nucleotide polymorphic site present at the position of the 16th base in the partial sequence represented by any of SEQ ID NOs: 13 to 15 in the interleukin 1 receptor, type II (IL1R2) gene;
(v) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by any of SEQ ID NOs: 16 to 23 in the dedicator of cytokinesis 2 (DOCK2) gene;
(vi) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NO: 24 or 25 in the estrogen receptor 1 (ESR1) gene;
(vii) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NO: 26 in the complement component 5 (C5) gene;
(viii) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NOs: 27 to 46 in the phospholipase C, beta 1 (phosphoinositide-specific) (PLCB1) gene;
(ix) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NO: 47 in the pancreatic lipase-related protein 3 (PNLIPRP3) gene; or
(x) A single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NOs: 48 to 52 in the lipase, hepatic (LIPC) gene.

[6] 以下の(i)〜(x)の一塩基多型部位を含むDNA断片からなるオリゴヌクレオチドのいずれかであって、以下の(i)〜(x)の遺伝子の10から30塩基からなる部分配列もしくはその部分配列に相補的な配列からなるオリゴヌクレオチド又はその標識物からなる、ソラフェニブを投与する被験体のソラフェニブの応答性を予測するためのプローブ:
(i)dihydropyrimidine dehydrogenase(DPYD)遺伝子における、一塩基多型rs10449721、rs10875047、rs11165805、rs11165867、rs6687374、rs4949952、rs11165887及びrs10875097、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(ii)CD247 molecule遺伝子における、一塩基多型rs864537、該一塩基多型の近傍に存在する遺伝子多型、及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(iii)phospholipase A2, group IVA (cytosolic, calcium-dependent)(PLA2G4A)遺伝子における、一塩基多型rs10752979、rs10798069及びrs10911963、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(iv)interleukin 1 receptor, type II(IL1R2)遺伝子における、一塩基多型rs4851527、rs3218872及びrs3218920、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(v)dedicator of cytokinesis 2(DOCK2)遺伝子における、一塩基多型rs900464、rs264846、rs90213、rs966595、rs4867895、rs11134600、rs2287727及びrs1316638、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(vi)estrogen receptor 1 (ESR1)遺伝子における、一塩基多型rs9371557及びrs3798573、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(vii)complement component 5(C5)遺伝子における、一塩基多型rs10985112、該一塩基多型の近傍に存在する遺伝子多型、及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(viii)phospholipase C, beta 1 (phosphoinositide-specific)(PLCB1)遺伝子における、一塩基多型rs2235212、rs6055624、rs2294257、rs2180532、rs10485723、rs1156958、rs1237829、rs2050090、rs6055925、rs6039215、rs6140677、rs6133610、rs6133621、rs13040543、rs10485727、rs6118343、rs6056198、rs6086627、rs3848831及びrs6086678、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(ix) pancreatic lipase-related protein 3(PNLIPRP3)遺伝子における、一塩基多型rs1431485、該該一塩基多型の近傍に存在する遺伝子多型、及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、又は
(x) lipase, hepatic(LIPC)遺伝子における、一塩基多型rs12438071、rs4775047、rs9920144、rs7179747及びrs3751542、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型。
[6] Any of the following oligonucleotides comprising a DNA fragment containing a single nucleotide polymorphic site of (i) to (x), comprising 10 to 30 bases of the following genes (i) to (x) A probe for predicting responsiveness of sorafenib in a subject to which sorafenib is administered, comprising an oligonucleotide consisting of a partial sequence or an oligonucleotide complementary to the partial sequence or a label thereof:
(i) single nucleotide polymorphisms in the dihydropyrimidine dehydrogenase (DPYD) gene rs10449721, rs10875047, rs11165805, rs11165867, rs6687374, rs4949952, rs11165887 and rs10875097, and the gene polymorphisms in the vicinity of the single nucleotide polymorphism and the single nucleotide polymorphism At least one polymorphism selected from the group consisting of genetic polymorphisms in linkage disequilibrium with the type,
(ii) selected from the group consisting of a single nucleotide polymorphism rs864537, a gene polymorphism present in the vicinity of the single nucleotide polymorphism, and a gene polymorphism in linkage disequilibrium with the single nucleotide polymorphism in the CD247 molecule gene At least one polymorph,
(iii) In the phospholipase A2, group IVA (cytosolic, calcium-dependent) (PLA2G4A) gene, the single nucleotide polymorphisms rs10752979, rs10798069 and rs10911963, the gene polymorphism present in the vicinity of the single nucleotide polymorphism and the single nucleotide polymorphism At least one polymorphism selected from the group consisting of genetic polymorphisms in linkage disequilibrium with the type,
(iv) In the interleukin 1 receptor, type II (IL1R2) gene, the single nucleotide polymorphisms rs4851527, rs3218872 and rs3218920, the gene polymorphisms present in the vicinity of the single nucleotide polymorphisms and linkage disequilibrium with the single nucleotide polymorphisms At least one polymorphism selected from the group consisting of a genetic polymorphism,
(v) single nucleotide polymorphisms in the dedicator of cytokinesis 2 (DOCK2) gene rs900464, rs264846, rs90213, rs966595, rs4867895, rs11134600, rs2287727 and rs1316638, and the gene polymorphism present in the vicinity of the single nucleotide polymorphism and the single nucleotide At least one polymorphism selected from the group consisting of genetic polymorphisms in linkage disequilibrium with the base polymorphism,
(vi) From the single nucleotide polymorphisms rs9371557 and rs3798573 in the estrogen receptor 1 (ESR1) gene, the gene polymorphisms present in the vicinity of the single nucleotide polymorphism, and the gene polymorphism in linkage disequilibrium with the single nucleotide polymorphism At least one polymorphism selected from the group consisting of:
(vii) In the complement component 5 (C5) gene, a group consisting of a single nucleotide polymorphism rs10985112, a gene polymorphism present in the vicinity of the single nucleotide polymorphism, and a gene polymorphism in linkage disequilibrium with the single nucleotide polymorphism At least one polymorph selected from,
(viii) Single nucleotide polymorphisms in phospholipase C, beta 1 (phosphoinositide-specific) (PLCB1) gene Rs10485727, rs6118343, rs6056198, rs6086627, rs3848831 and rs6086678, and a genetic polymorphism present in the vicinity of the single nucleotide polymorphism and at least selected from the group consisting of genetic polymorphisms in linkage disequilibrium with the single nucleotide polymorphism One polymorph,
(ix) In the pancreatic lipase-related protein 3 (PNLIPRP3) gene, a single nucleotide polymorphism rs1431485, a gene polymorphism present in the vicinity of the single nucleotide polymorphism, and a gene polymorphism in linkage disequilibrium with the single nucleotide polymorphism At least one polymorphism selected from the group consisting of types, or
(x) single nucleotide polymorphisms in lipase, hepatic (LIPC) genes rs12438071, rs4775047, rs9920144, rs7179747 and rs3751542, and gene polymorphisms in the vicinity of the single nucleotide polymorphism and linkage disequilibrium with the single nucleotide polymorphism At least one polymorphism selected from the group consisting of genetic polymorphisms in

[7] ソラフェニブの応答性の予測が、被験体におけるソラフェニブの効果の予測又は副作用のタイプ若しくは程度の予測である、[5]又は[6]のソラフェニブを投与する被験体のソラフェニブの応答性を予測するためのプローブ。 [7] Sorafenib responsiveness prediction is a prediction of the effect of sorafenib in a subject or a prediction of the type or extent of side effects, wherein the responsiveness of sorafenib in a subject administered with [5] or [6] sorafenib Probe for prediction.

[8] 以下の(i)〜(x)の一塩基多型部位を含むDNA断片からなるオリゴヌクレオチドであって、以下の(i)〜(x)の遺伝子の10から30塩基からなる部分配列もしくはその部分配列に相補的な配列からなる少なくとも1つのオリゴヌクレオチド又はその標識物を固定化した、ソラフェニブを投与する被験体のソラフェニブの応答性を予測するための固定化基板:
(i)dihydropyrimidine dehydrogenase(DPYD)遺伝子における、配列番号1〜8のいずれかで表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(ii)CD247 molecule遺伝子における、配列番号9で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(iii)phospholipase A2, group IVA (cytosolic, calcium-dependent)(PLA2G4A)遺伝子における、配列番号10〜12のいずれかで表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(iv)interleukin 1 receptor, type II(IL1R2)遺伝子における、配列番号13〜15のいずれかで表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(v)dedicator of cytokinesis 2(DOCK2)遺伝子における、配列番号16〜23のいずれかで表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(vi)estrogen receptor 1 (ESR1)遺伝子における、配列番号24又は25で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(vii)complement component 5(C5)遺伝子における、配列番号26で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(viii) phospholipase C, beta 1 (phosphoinositide-specific)(PLCB1)遺伝子における、配列番号27〜46で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(ix) pancreatic lipase-related protein 3(PNLIPRP3)遺伝子における、配列番号47で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;又は
(x) lipase, hepatic(LIPC)遺伝子における、配列番号48〜52で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位。
[8] An oligonucleotide consisting of a DNA fragment containing the following single nucleotide polymorphic sites (i) to (x): a partial sequence consisting of 10 to 30 bases of the following genes (i) to (x) Alternatively, an immobilized substrate for predicting responsiveness of sorafenib in a subject to which sorafenib is administered, to which at least one oligonucleotide having a sequence complementary to the partial sequence or a label thereof is immobilized:
(i) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by any of SEQ ID NOs: 1 to 8 in the dihydropyrimidine dehydrogenase (DPYD) gene;
(ii) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NO: 9 in the CD247 molecule gene;
(iii) A single nucleotide polymorphism present at the position of the 16th base in the partial sequence represented by any of SEQ ID NOs: 10 to 12 in the phospholipase A2, group IVA (cytosolic, calcium-dependent) (PLA2G4A) gene Site;
(iv) a single nucleotide polymorphic site present at the position of the 16th base in the partial sequence represented by any of SEQ ID NOs: 13 to 15 in the interleukin 1 receptor, type II (IL1R2) gene;
(v) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by any of SEQ ID NOs: 16 to 23 in the dedicator of cytokinesis 2 (DOCK2) gene;
(vi) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NO: 24 or 25 in the estrogen receptor 1 (ESR1) gene;
(vii) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NO: 26 in the complement component 5 (C5) gene;
(viii) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NOs: 27 to 46 in the phospholipase C, beta 1 (phosphoinositide-specific) (PLCB1) gene;
(ix) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NO: 47 in the pancreatic lipase-related protein 3 (PNLIPRP3) gene; or
(x) A single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NOs: 48 to 52 in the lipase, hepatic (LIPC) gene.

[9] 以下の(i)〜(x)の一塩基多型部位を含むDNA断片からなるオリゴヌクレオチドであって、以下の(i)〜(x)の遺伝子の10から30塩基からなる部分配列もしくはその部分配列に相補的な配列からなる少なくとも1つのオリゴヌクレオチド又はその標識物を固定化した、ソラフェニブを投与する被験体のソラフェニブの応答性を予測するための固定化基板:
(i)dihydropyrimidine dehydrogenase(DPYD)遺伝子における、一塩基多型rs10449721、rs10875047、rs11165805、rs11165867、rs6687374、rs4949952、rs11165887及びrs10875097、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(ii)CD247 molecule遺伝子における、一塩基多型rs864537、該一塩基多型の近傍に存在する遺伝子多型、及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(iii)phospholipase A2, group IVA (cytosolic, calcium-dependent)(PLA2G4A)遺伝子における、一塩基多型rs10752979、rs10798069及びrs10911963、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(iv)interleukin 1 receptor, type II(IL1R2)遺伝子における、一塩基多型rs4851527、rs3218872及びrs3218920、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(v)dedicator of cytokinesis 2(DOCK2)遺伝子における、一塩基多型rs900464、rs264846、rs90213、rs966595、rs4867895、rs11134600、rs2287727及びrs1316638、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(vi)estrogen receptor 1 (ESR1)遺伝子における、一塩基多型rs9371557及びrs3798573、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(vii)complement component 5(C5)遺伝子における、一塩基多型rs10985112、該一塩基多型の近傍に存在する遺伝子多型、及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(viii)phospholipase C, beta 1 (phosphoinositide-specific)(PLCB1)遺伝子における、一塩基多型rs2235212、rs6055624、rs2294257、rs2180532、rs10485723、rs1156958、rs1237829、rs2050090、rs6055925、rs6039215、rs6140677、rs6133610、rs6133621、rs13040543、rs10485727、rs6118343、rs6056198、rs6086627、rs3848831及びrs6086678、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(ix) pancreatic lipase-related protein 3(PNLIPRP3)遺伝子における、一塩基多型rs1431485、該該一塩基多型の近傍に存在する遺伝子多型、及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、又は
(x) lipase, hepatic(LIPC)遺伝子における、一塩基多型rs12438071、rs4775047、rs9920144、rs7179747及びrs3751542、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型。
[9] An oligonucleotide consisting of a DNA fragment containing the following single nucleotide polymorphic sites (i) to (x): a partial sequence consisting of 10 to 30 bases of the following genes (i) to (x) Alternatively, an immobilized substrate for predicting responsiveness of sorafenib in a subject to which sorafenib is administered, to which at least one oligonucleotide having a sequence complementary to the partial sequence or a label thereof is immobilized:
(i) single nucleotide polymorphisms in the dihydropyrimidine dehydrogenase (DPYD) gene rs10449721, rs10875047, rs11165805, rs11165867, rs6687374, rs4949952, rs11165887 and rs10875097, and the gene polymorphisms in the vicinity of the single nucleotide polymorphism and the single nucleotide polymorphism At least one polymorphism selected from the group consisting of genetic polymorphisms in linkage disequilibrium with the type,
(ii) selected from the group consisting of a single nucleotide polymorphism rs864537, a gene polymorphism present in the vicinity of the single nucleotide polymorphism, and a gene polymorphism in linkage disequilibrium with the single nucleotide polymorphism in the CD247 molecule gene At least one polymorph,
(iii) In the phospholipase A2, group IVA (cytosolic, calcium-dependent) (PLA2G4A) gene, the single nucleotide polymorphisms rs10752979, rs10798069 and rs10911963, the gene polymorphism present in the vicinity of the single nucleotide polymorphism and the single nucleotide polymorphism At least one polymorphism selected from the group consisting of genetic polymorphisms in linkage disequilibrium with the type,
(iv) In the interleukin 1 receptor, type II (IL1R2) gene, the single nucleotide polymorphisms rs4851527, rs3218872 and rs3218920, the gene polymorphisms present in the vicinity of the single nucleotide polymorphisms and linkage disequilibrium with the single nucleotide polymorphisms At least one polymorphism selected from the group consisting of a genetic polymorphism,
(v) single nucleotide polymorphisms in the dedicator of cytokinesis 2 (DOCK2) gene rs900464, rs264846, rs90213, rs966595, rs4867895, rs11134600, rs2287727 and rs1316638, and the gene polymorphism present in the vicinity of the single nucleotide polymorphism and the single nucleotide At least one polymorphism selected from the group consisting of genetic polymorphisms in linkage disequilibrium with the base polymorphism,
(vi) From the single nucleotide polymorphisms rs9371557 and rs3798573 in the estrogen receptor 1 (ESR1) gene, the gene polymorphisms present in the vicinity of the single nucleotide polymorphism, and the gene polymorphism in linkage disequilibrium with the single nucleotide polymorphism At least one polymorphism selected from the group consisting of:
(vii) In the complement component 5 (C5) gene, a group consisting of a single nucleotide polymorphism rs10985112, a gene polymorphism present in the vicinity of the single nucleotide polymorphism, and a gene polymorphism in linkage disequilibrium with the single nucleotide polymorphism At least one polymorph selected from,
(viii) Single nucleotide polymorphisms in phospholipase C, beta 1 (phosphoinositide-specific) (PLCB1) gene Rs10485727, rs6118343, rs6056198, rs6086627, rs3848831 and rs6086678, and a genetic polymorphism present in the vicinity of the single nucleotide polymorphism and at least selected from the group consisting of genetic polymorphisms in linkage disequilibrium with the single nucleotide polymorphism One polymorph,
(ix) In the pancreatic lipase-related protein 3 (PNLIPRP3) gene, a single nucleotide polymorphism rs1431485, a gene polymorphism present in the vicinity of the single nucleotide polymorphism, and a gene polymorphism in linkage disequilibrium with the single nucleotide polymorphism At least one polymorphism selected from the group consisting of types, or
(x) single nucleotide polymorphisms in lipase, hepatic (LIPC) genes rs12438071, rs4775047, rs9920144, rs7179747 and rs3751542, and gene polymorphisms in the vicinity of the single nucleotide polymorphism and linkage disequilibrium with the single nucleotide polymorphism At least one polymorphism selected from the group consisting of genetic polymorphisms in

[10] ソラフェニブの応答性の予測が、被験体におけるソラフェニブの効果の予測又は副作用のタイプ若しくは程度の予測である、[8]又は[9]のソラフェニブを投与する被験体のソラフェニブの応答性を予測するための固定化基板。 [10] The prediction of sorafenib responsiveness in a subject who is administered sorafenib according to [8] or [9], wherein the prediction of responsiveness of sorafenib is a prediction of the effect of sorafenib in a subject or a prediction of the type or degree of side effects. Immobilization substrate for prediction.

[11] 以下の(i)〜(x)の一塩基多型部位を含むDNA断片の増幅に用いる少なくとも一対のプライマーセットであって、以下の(i)〜(x)の遺伝子のDNA多型部位のうちの少なくとも1つの多型部位の3’側および5’側に存在する10から30塩基からなる部分配列もしくはその部分配列に相補的な配列からなるオリゴヌクレオチドからなる、ソラフェニブを投与する被験体のソラフェニブの応答性を予測するための一対のプライマーセット:
(i)dihydropyrimidine dehydrogenase(DPYD)遺伝子における、配列番号1〜8のいずれかで表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(ii)CD247 molecule遺伝子における、配列番号9で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(iii)phospholipase A2, group IVA (cytosolic, calcium-dependent)(PLA2G4A)遺伝子における、配列番号10〜12のいずれかで表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(iv)interleukin 1 receptor, type II(IL1R2)遺伝子における、配列番号13〜15のいずれかで表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(v)dedicator of cytokinesis 2(DOCK2)遺伝子における、配列番号16〜23のいずれかで表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(vi)estrogen receptor 1 (ESR1)遺伝子における、配列番号24又は25で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(vii)complement component 5(C5)遺伝子における、配列番号26で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(viii)phospholipase C, beta 1 (phosphoinositide-specific)(PLCB1)遺伝子における、配列番号27〜46で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(ix) pancreatic lipase-related protein 3(PNLIPRP3)遺伝子における、配列番号47で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;又は
(x) lipase, hepatic(LIPC)遺伝子における、配列番号48〜52で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位。
[11] At least a pair of primer sets used for amplification of DNA fragments containing the following single nucleotide polymorphic sites (i) to (x), wherein the DNA polymorphisms of the following genes (i) to (x) A test administered with sorafenib consisting of an oligonucleotide consisting of a partial sequence consisting of 10 to 30 bases present on the 3 ′ side and 5 ′ side of at least one polymorphic site, or a sequence complementary to the partial sequence. A pair of primer sets to predict sorafenib responsiveness in the body:
(i) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by any of SEQ ID NOs: 1 to 8 in the dihydropyrimidine dehydrogenase (DPYD) gene;
(ii) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NO: 9 in the CD247 molecule gene;
(iii) A single nucleotide polymorphism present at the position of the 16th base in the partial sequence represented by any of SEQ ID NOs: 10 to 12 in the phospholipase A2, group IVA (cytosolic, calcium-dependent) (PLA2G4A) gene Site;
(iv) a single nucleotide polymorphic site present at the position of the 16th base in the partial sequence represented by any of SEQ ID NOs: 13 to 15 in the interleukin 1 receptor, type II (IL1R2) gene;
(v) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by any of SEQ ID NOs: 16 to 23 in the dedicator of cytokinesis 2 (DOCK2) gene;
(vi) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NO: 24 or 25 in the estrogen receptor 1 (ESR1) gene;
(vii) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NO: 26 in the complement component 5 (C5) gene;
(viii) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NOs: 27 to 46 in the phospholipase C, beta 1 (phosphoinositide-specific) (PLCB1) gene;
(ix) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NO: 47 in the pancreatic lipase-related protein 3 (PNLIPRP3) gene; or
(x) A single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NOs: 48 to 52 in the lipase, hepatic (LIPC) gene.

[12] 以下の(i)〜(x)の一塩基多型部位を含むDNA断片の増幅に用いる少なくとも一対のプライマーセットであって、以下の(i)〜(x)の遺伝子のDNA多型部位のうちの少なくとも1つの多型部位の3’側および5’側に存在する10から30塩基からなる部分配列もしくはその部分配列に相補的な配列からなるオリゴヌクレオチドからなる、ソラフェニブを投与する被験体のソラフェニブの応答性を予測するための一対のプライマーセット:
(i)dihydropyrimidine dehydrogenase(DPYD)遺伝子における、一塩基多型rs10449721、rs10875047、rs11165805、rs11165867、rs6687374、rs4949952、rs11165887及びrs10875097、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(ii)CD247 molecule遺伝子における、一塩基多型rs864537、該一塩基多型の近傍に存在する遺伝子多型、及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(iii)phospholipase A2, group IVA (cytosolic, calcium-dependent)(PLA2G4A)遺伝子における、一塩基多型rs10752979、rs10798069及びrs10911963、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(iv)interleukin 1 receptor, type II(IL1R2)遺伝子における、一塩基多型rs4851527、rs3218872及びrs3218920、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(v)dedicator of cytokinesis 2(DOCK2)遺伝子における、一塩基多型rs900464、rs264846、rs90213、rs966595、rs4867895、rs11134600、rs2287727及びrs1316638、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(vi)estrogen receptor 1 (ESR1)遺伝子における、一塩基多型rs9371557及びrs3798573、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(vii)complement component 5(C5)遺伝子における、一塩基多型rs10985112、該一塩基多型の近傍に存在する遺伝子多型、及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(viii)phospholipase C, beta 1 (phosphoinositide-specific)(PLCB1)遺伝子における、一塩基多型rs2235212、rs6055624、rs2294257、rs2180532、rs10485723、rs1156958、rs1237829、rs2050090、rs6055925、rs6039215、rs6140677、rs6133610、rs6133621、rs13040543、rs10485727、rs6118343、rs6056198、rs6086627、rs3848831及びrs6086678、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(ix) pancreatic lipase-related protein 3(PNLIPRP3)遺伝子における、一塩基多型rs1431485、該該一塩基多型の近傍に存在する遺伝子多型、及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、又は
(x) lipase, hepatic(LIPC)遺伝子における、一塩基多型rs12438071、rs4775047、rs9920144、rs7179747及びrs3751542、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型。
[12] The following (i) to (x) at least a pair of primer sets used for amplification of a DNA fragment containing a single nucleotide polymorphic site, wherein the DNA polymorphisms of the following genes (i) to (x) A test administered with sorafenib consisting of an oligonucleotide consisting of a partial sequence consisting of 10 to 30 bases present on the 3 ′ side and 5 ′ side of at least one polymorphic site, or a sequence complementary to the partial sequence. A pair of primer sets to predict sorafenib responsiveness in the body:
(i) single nucleotide polymorphisms in the dihydropyrimidine dehydrogenase (DPYD) gene rs10449721, rs10875047, rs11165805, rs11165867, rs6687374, rs4949952, rs11165887 and rs10875097, and the gene polymorphisms in the vicinity of the single nucleotide polymorphism and the single nucleotide polymorphism At least one polymorphism selected from the group consisting of genetic polymorphisms in linkage disequilibrium with the type,
(ii) selected from the group consisting of a single nucleotide polymorphism rs864537, a gene polymorphism present in the vicinity of the single nucleotide polymorphism, and a gene polymorphism in linkage disequilibrium with the single nucleotide polymorphism in the CD247 molecule gene At least one polymorph,
(iii) In the phospholipase A2, group IVA (cytosolic, calcium-dependent) (PLA2G4A) gene, the single nucleotide polymorphisms rs10752979, rs10798069 and rs10911963, the gene polymorphism present in the vicinity of the single nucleotide polymorphism and the single nucleotide polymorphism At least one polymorphism selected from the group consisting of genetic polymorphisms in linkage disequilibrium with the type,
(iv) In the interleukin 1 receptor, type II (IL1R2) gene, the single nucleotide polymorphisms rs4851527, rs3218872 and rs3218920, the gene polymorphisms present in the vicinity of the single nucleotide polymorphisms and linkage disequilibrium with the single nucleotide polymorphisms At least one polymorphism selected from the group consisting of a genetic polymorphism,
(v) single nucleotide polymorphisms in the dedicator of cytokinesis 2 (DOCK2) gene rs900464, rs264846, rs90213, rs966595, rs4867895, rs11134600, rs2287727 and rs1316638, and the gene polymorphism present in the vicinity of the single nucleotide polymorphism and the single nucleotide At least one polymorphism selected from the group consisting of genetic polymorphisms in linkage disequilibrium with the base polymorphism,
(vi) From the single nucleotide polymorphisms rs9371557 and rs3798573 in the estrogen receptor 1 (ESR1) gene, the gene polymorphisms present in the vicinity of the single nucleotide polymorphism, and the gene polymorphism in linkage disequilibrium with the single nucleotide polymorphism At least one polymorphism selected from the group consisting of:
(vii) In the complement component 5 (C5) gene, a group consisting of a single nucleotide polymorphism rs10985112, a gene polymorphism present in the vicinity of the single nucleotide polymorphism, and a gene polymorphism in linkage disequilibrium with the single nucleotide polymorphism At least one polymorph selected from,
(viii) Single nucleotide polymorphisms in phospholipase C, beta 1 (phosphoinositide-specific) (PLCB1) gene Rs10485727, rs6118343, rs6056198, rs6086627, rs3848831 and rs6086678, and a genetic polymorphism present in the vicinity of the single nucleotide polymorphism and at least selected from the group consisting of genetic polymorphisms in linkage disequilibrium with the single nucleotide polymorphism One polymorph,
(ix) In the pancreatic lipase-related protein 3 (PNLIPRP3) gene, a single nucleotide polymorphism rs1431485, a gene polymorphism present in the vicinity of the single nucleotide polymorphism, and a gene polymorphism in linkage disequilibrium with the single nucleotide polymorphism At least one polymorphism selected from the group consisting of types, or
(x) single nucleotide polymorphisms in lipase, hepatic (LIPC) genes rs12438071, rs4775047, rs9920144, rs7179747 and rs3751542, and gene polymorphisms in the vicinity of the single nucleotide polymorphism and linkage disequilibrium with the single nucleotide polymorphism At least one polymorphism selected from the group consisting of genetic polymorphisms in

[13] ソラフェニブの応答性の予測が、被験体におけるソラフェニブの効果の予測又は副作用のタイプ若しくは程度の予測である、[11]又は[12]のソラフェニブを投与する被験体のソラフェニブの応答性を予測するための一対のプライマーセット。
[14] [5]〜[7]のいずれかのプローブ、[8]〜[10]のいずれかの固定化基板、又は[11]〜[13]のいずれかの一対のプライマーセットを含むソラフェニブを投与する被験体のソラフェニブの応答性を予測するためのキット。
[15] ソラフェニブの応答性の予測が、被験体におけるソラフェニブの効果の予測又は副作用のタイプ若しくは程度の予測である、[14]のソラフェニブを投与する被験体のソラフェニブの応答性を判定するためのキット。
[13] Sorafenib responsiveness prediction is a prediction of the effect of sorafenib in a subject or a prediction of the type or extent of side effects, wherein the responsiveness of sorafenib in a subject administered with [11] or [12] sorafenib A pair of primer sets for prediction.
[14] Sorafenib comprising the probe of any one of [5] to [7], the immobilized substrate of any of [8] to [10], or the pair of primer sets of any of [11] to [13] A kit for predicting responsiveness of sorafenib in a subject to be administered.
[15] To determine the responsiveness of sorafenib in a subject administered with sorafenib according to [14], wherein the prediction of responsiveness of sorafenib is a prediction of the effect of sorafenib or a prediction of the type or degree of side effects in the subject kit.

本発明により、ソラフェニブ(Sorafenib)刺激においてアレル間で発現量が異なる遺伝子を判定する遺伝子多型を迅速かつ効率的に検索することができる。また、そのようにして検索された遺伝子多型は、アレル間の発現量を識別することができるため、その遺伝子が関与する表現型について解析するための有効な手段となり得る。さらに、そのように検索された遺伝子多型を検出することにより、ソラフェニブを投与して治療を行おうとする被験体の表現型(薬剤の主作用又は副作用の発症リスク)を予測し、評価し、判定することができ、今後の創薬全般においても薬剤の副作用を回避し、有効な反応を示す患者と有効でない反応を示す患者を層別化することができる。   According to the present invention, it is possible to quickly and efficiently search for gene polymorphisms that determine genes whose expression levels differ between alleles in Sorafenib stimulation. Moreover, since the gene polymorphism searched in this way can identify the expression level between alleles, it can be an effective means for analyzing the phenotype involving the gene. Furthermore, by detecting the genetic polymorphism so searched, predict and evaluate the phenotype of the subject to be treated with sorafenib (main drug action or risk of developing side effects), In the future drug discovery in general, side effects of the drug can be avoided, and patients showing an effective response and patients showing an ineffective response can be stratified.

Human Genome U133 Plus 2.0 Arrayで解析したmRNA発現解析の結果を示す図であるIt is a figure which shows the result of the mRNA expression analysis analyzed by Human Genome U133 Plus 2.0 Array GM18940細胞のDMSO群におけるChromosome 1番の度数分布の結果を示す図である。It is a figure which shows the result of the frequency distribution of Chromosome No. 1 in DMSO group of GM18940 cells. ソラフェニブ刺激に影響する人種間で異なる遺伝子多型を示す図である。It is a figure which shows the gene polymorphism different among races which influence sorafenib stimulation. ソラフェニブ刺激の副作用に関連するアレル間で発現量に差がある10種類の遺伝子(遺伝子多型)EAIリストを示す図である。It is a figure which shows the 10 types of gene (gene polymorphism) EAI list | wrist which has a difference in expression level among alleles relevant to the side effect of sorafenib stimulation. ソラフェニブ刺激の副作用に関連するアレル間で発現量に差がある10種類の遺伝子(遺伝子多型)EAIリストを示す図である(図4−1の続き)。It is a figure which shows the 10 types of gene (gene polymorphism) EAI list | wrist which has a difference in expression level among the alleles relevant to the side effect of sorafenib stimulation (continuation of FIG. 4-1). dihydropyrimidine dehydrogenase(DPYD)遺伝子の塩基配列中の多型の位置を示す図である。It is a figure which shows the position of the polymorphism in the base sequence of a dihydropyrimidine dehydrogenase (DPYD) gene. CD247 molecule遺伝子の塩基配列中の多型の位置を示す図である。It is a figure which shows the position of the polymorphism in the base sequence of CD247 molecule gene. phospholipase A2, group IVA (cytosolic, calcium-dependent)(PLA2G4A)遺伝子の塩基配列中の多型の位置を示す図である。It is a figure which shows the position of the polymorphism in the base sequence of phospholipase A2, group IVA (cytosolic, calcium-dependent) (PLA2G4A) gene. interleukin 1 receptor, type II(IL1R2)遺伝子の塩基配列中の多型の位置を示す図である。It is a figure which shows the position of the polymorphism in the base sequence of interleukin 1 receptor, type II (IL1R2) gene. dedicator of cytokinesis 2(DOCK2)遺伝子の塩基配列中の多型の位置を示す図である。It is a figure which shows the position of the polymorphism in the base sequence of dedicator of cytokinesis 2 (DOCK2) gene. estrogen receptor 1 (ESR1)遺伝子の塩基配列中の多型の位置を示す図である。It is a figure which shows the position of the polymorphism in the base sequence of estrogen receptor 1 (ESR1) gene. complement component 5(C5)遺伝子の塩基配列中の多型の位置を示す図である。It is a figure which shows the position of the polymorphism in the base sequence of complement component 5 (C5) gene. phospholipase C, beta 1 (phosphoinositide-specific)(PLCB1)遺伝子の塩基配列中の多型の位置を示す図である。It is a figure which shows the position of the polymorphism in the base sequence of phospholipase C, beta 1 (phosphoinositide-specific) (PLCB1) gene. pancreatic lipase-related protein 3(PNLIPRP3)遺伝子の塩基配列中の多型の位置を示す図である。It is a figure which shows the position of the polymorphism in the base sequence of pancreatic lipase-related protein 3 (PNLIPRP3) gene. lipase, hepatic(LIPC)遺伝子の塩基配列中の多型の位置を示す図である。It is a figure which shows the position of the polymorphism in the base sequence of a lipase, hepatic (LIPC) gene.

以下、本発明を詳細に説明する。
1. ソラフェニブ(Sorafenib)刺激により、アレル間で発現量が異なる遺伝子そのものについての探索
本発明は、ソラフェニブ刺激に対してアレル間で発現量が異なる遺伝子の探索に関する。ここで、「アレル間で発現量が異なる遺伝子」とは、一方のアレルからの遺伝子発現量ともう一方のアレルからの遺伝子発現量が異なる遺伝子を指す。各アレルからの遺伝子の発現は、特定の遺伝子多型を指標として区別できるが、全ての遺伝子多型がアレル間の発現量の違いを区別できるものではない。しかも、ソラフェニブ刺激でアレル間の発現量に違いが生じることは知られていなかった。本発明においては、ExpressGenotyping法を用いて、ソラフェニブ刺激でアレル間における発現量の違いを判定できる遺伝子多型を迅速かつ効率的に検索することにより、ソラフェニブ刺激に対してアレル間で発現量が異なる遺伝子を探索し、さらにアレル間の遺伝子の発現の差を判別できる遺伝子多型(一塩基多型;SNP)を探索することができる。
Hereinafter, the present invention will be described in detail.
1. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a search for a gene whose expression level is different between alleles in response to sorafenib stimulation. Here, “a gene whose expression level is different between alleles” refers to a gene whose gene expression level from one allele is different from that of the other allele. The gene expression from each allele can be identified using a specific gene polymorphism as an index, but not all gene polymorphisms can distinguish the difference in the expression level between alleles. Moreover, it has not been known that a difference occurs in the expression level between alleles by stimulation with sorafenib. In the present invention, by using ExpressGenotyping method, the expression level differs between alleles against sorafenib stimulation by quickly and efficiently searching for gene polymorphisms that can determine the difference in expression level between alleles by sorafenib stimulation. A gene polymorphism (single nucleotide polymorphism; SNP) capable of discriminating a difference in gene expression between alleles can be searched for by searching for a gene.

この探索は、例えば、培養細胞をin vitroの系においてソラフェニブにより刺激し、ソラフェニブ以外の物質で刺激したものを対照として、前記培養細胞における遺伝子発現を網羅的に解析し、アレル間で発現に差異が認められる遺伝子を選択し、さらにその遺伝子多型のアレル間の発現量の差異に関連したものを選択すれば良い。   In this search, for example, the cultured cells were stimulated with sorafenib in an in vitro system and stimulated with a substance other than sorafenib, and gene expression in the cultured cells was comprehensively analyzed. May be selected, and a gene related to the difference in expression level between alleles of the gene polymorphism may be selected.

これらの方法は、ExpressGenotyping法(特許第4111985号公報に記載の手法)により行うことができる。
以下、遺伝子及び遺伝子多型を探索し、選択するための代表的な手法について説明する。
These methods can be performed by ExpressGenotyping method (the method described in Japanese Patent No. 4111985).
Hereinafter, typical techniques for searching for and selecting genes and gene polymorphisms will be described.

細胞培養
細胞培養は当技術分野で公知の方法であり、例えば、細胞の培養培地(培地RPMI-1640+15%血清FBS)に細胞株を播種し、37℃、5%CO2の条件下にて細胞培養を行うことができる。
Cell culture Cell culture is a method known in the art. For example, a cell line is seeded in a cell culture medium (medium RPMI-1640 + 15% serum FBS), and cells are cultured at 37 ° C. and 5% CO 2 . Culture can be performed.

薬剤刺激
薬剤刺激は当技術分野で公知の方法であり、例えば、対照群(DMSO)及び薬剤(ソラフェニブ)の2群を培養細胞が播種された培養培地に添加し、薬剤刺激を行うことができる。
Drug Stimulation Drug stimulation is a method known in the art. For example, two groups of a control group (DMSO) and a drug (sorafenib) can be added to a culture medium seeded with cultured cells to perform drug stimulation. .

RNA抽出
総RNAの抽出は、当技術分野で公知の方法であり、例えば、総RNAを抽出する場合には、AGPC(酸グアニジウム・フェノール・クロロホルム法など)又は市販キットを用いて行うことができる。
RNA extraction Total RNA extraction is a method known in the art. For example, when total RNA is extracted, AGPC (acid guanidinium, phenol, chloroform method, etc.) or a commercially available kit can be used. .

mRNA発現
DNAチップを用いてmRNAの発現量を検出する具体的な例として、Affymetrix社製のGeneChip(登録商標)Human Genome U133 Plus 2.0 Arrayを用いる方法がある。GeneChip(登録商標)Human Genome U133 Plus 2.0 Arrayは、1枚のアレイであり、ゲノム上に存在する47,000個を超える遺伝子の発現を検出できるアレイである。使用方法は、試料(total RNA、mRNAなど)を1種類のT7-Oligo (dT)プライマーを用いてPCR反応により増幅し、ラベリングを行う。1枚のアレイは各遺伝子の発現ごとに相補的になるように設計されており、ハイブリダイゼーション後、シグナルに基づいて試料の遺伝子の発現を判定し、また、各遺伝子の発現量をシグナル強度又はシグナル比に基づいて比較することができる。このDNAチップの詳細については、http://www.affymetrix.com/products_services/arrays/specific/hgu133plus.affxで公開されている製品情報を参照されたい。
mRNA expression
As a specific example of detecting the expression level of mRNA using a DNA chip, there is a method using GeneChip (registered trademark) Human Genome U133 Plus 2.0 Array manufactured by Affymetrix. The GeneChip (registered trademark) Human Genome U133 Plus 2.0 Array is an array that can detect the expression of more than 47,000 genes present on the genome. The method of use is to amplify a sample (total RNA, mRNA, etc.) by PCR using one T7-Oligo (dT) primer and label it. One array is designed to be complementary for each gene expression, and after hybridization, the gene expression of the sample is determined based on the signal, and the expression level of each gene is determined by the signal intensity or Comparisons can be made based on signal ratio. For details of this DNA chip, refer to the product information published at http://www.affymetrix.com/products_services/arrays/specific/hgu133plus.affx.

また、遺伝子の発現量は上述以外に、当業者に公知のあらゆる方法によって測定できる。そのような方法としては、遺伝子の発現に特異的なプライマーを用いる方法、定量PCR(qPCR)を利用する方法などがある。
本方法においては、簡便かつ迅速に遺伝子の発現を測定できるDNAチップ(マイクロアレイ)を使用するのが好ましい。
In addition to the above, the gene expression level can be measured by any method known to those skilled in the art. Examples of such a method include a method using a primer specific for gene expression and a method using quantitative PCR (qPCR).
In this method, it is preferable to use a DNA chip (microarray) capable of measuring gene expression simply and rapidly.

cDNA合成
核内RNA又はmRNAからのcDNAの合成は、当技術分野で公知の方法(特許第4111985号公報)に従って行うことができる。ここで、「核内RNA」とは、ゲノムDNAから転写された後、スプライシングを受けておらず、そのため細胞質には移行せず、まだ核内に存在している一次転写産物(primary transcript)をいう。すなわち、核内RNAは、ゲノム上のエキソン及びイントロンの両方を含み、長い鎖長を有するものが多い。特定の遺伝子の合成用プライマー又は増幅用プライマーの設計は、当技術分野で公知の一般的なプライマー設計法に従って行うことができる。
cDNA synthesis Synthesis of cDNA from nuclear RNA or mRNA can be performed according to a method known in the art (Japanese Patent No. 4111985). Here, “nuclear RNA” refers to a primary transcript that has not been spliced after being transcribed from genomic DNA, and therefore does not migrate to the cytoplasm and is still present in the nucleus. Say. That is, many nuclear RNAs contain both exons and introns on the genome and have a long chain length. Design of a primer for synthesis or amplification of a specific gene can be performed according to a general primer design method known in the art.

DNA抽出
ゲノムDNAの抽出は、当技術分野で公知の方法(フェノール・クロロホルム法など)又は市販キットを用いて行うことができる。
DNA extraction Genomic DNA can be extracted using a method known in the art (such as a phenol / chloroform method) or a commercially available kit.

cDNA又はゲノムDNAにおける遺伝子多型のタイピング
cDNA又はゲノムDNAにおける遺伝子多型(SNP又はハプロタイプなど)のタイピング(検出)は、当技術分野で公知の手法を用いて行うことができる。例えば、遺伝子多型のタイピングは、一つの遺伝子多型に特異的なプローブとのハイブリダイゼーションにより行うことができる。プローブは、必要に応じて、蛍光物質や放射性物質などの適当な手段により標識することができる。プローブは、遺伝子多型部位を含み、cDNAと特異的にハイブリダイズするものである限りいかなるものでもよく、具体的なプローブの設計は当技術分野で公知である。また、ハイブリダイゼーションの条件も、遺伝子多型を区別するのに十分な条件であればよく、例えば一つの遺伝子多型の場合にはハイブリダイズするが、他の遺伝子多型の場合にはハイブリダイズしないような条件、例えばストリンジェントな条件であり、このような条件は当業者に公知である。
Typing of genetic polymorphism in cDNA or genomic DNA
Typing (detection) of gene polymorphism (SNP or haplotype, etc.) in cDNA or genomic DNA can be performed using techniques known in the art. For example, gene polymorphism typing can be performed by hybridization with a probe specific to one gene polymorphism. The probe can be labeled by an appropriate means such as a fluorescent substance or a radioactive substance, if necessary. The probe may be any probe as long as it contains a gene polymorphic site and specifically hybridizes with cDNA, and specific probe designs are known in the art. The hybridization conditions may be any conditions sufficient to distinguish gene polymorphisms. For example, hybridization occurs in the case of one gene polymorphism, but hybridization occurs in the case of another gene polymorphism. Such as stringent conditions, such conditions are known to those skilled in the art.

プローブは、一端を基板に固定してDNAチップ(マイクロアレイ)として使用できる。この場合、DNAチップには、一つの遺伝子多型に対応するプローブのみが固定されていても、両方の遺伝子多型に対応するプローブが固定されていても良い。このようなDNAチップを用いた遺伝子多型の検出は、例えば「DNAマイクロアレイと最新PCR法」、村松正明及び那波浩之監修、秀潤社、2000年、第10章などに記載されている。   The probe can be used as a DNA chip (microarray) with one end fixed to a substrate. In this case, only a probe corresponding to one gene polymorphism may be immobilized on the DNA chip, or probes corresponding to both gene polymorphisms may be immobilized. The detection of genetic polymorphism using such a DNA chip is described in, for example, “DNA microarray and latest PCR method”, supervised by Masaaki Muramatsu and Hiroyuki Nami, Shujunsha, 2000, Chapter 10.

DNAチップを用いた遺伝子多型の検出の具体的な例として、Affymetrix社製のGeneChip(登録商標)Human Mapping 500K arrayを用いる方法について説明する。GeneChip(登録商標)Human Mapping 500K arrayは、2枚のアレイを含み、ゲノム上に存在する500,000個を超えるSNPの検出を行うことができるアレイである。使用方法は、試料(ゲノム、cDNAなど)を制限酵素(Sty若しくはNsp)で切断し、アダプターをつけて、そのアダプターに特異的な1種類のプライマー(Sty若しくはNspについてそれぞれ1種類ずつ)を用いてPCR反応により増幅し、ラベリングを行う。2枚のアレイは各SNPのアレルごとに相補的になるように設計されており、ハイブリダイゼーション後、シグナルに基づいて試料のSNPを判定し、また各アレルの発現量をシグナル強度又はシグナル比に基づいて比較することができる(詳細な方法は、特許出願(PCT/JP2005/023439 or 上述した「Japanese Patent Number; 4111985, Method for identifying a gene with allellic variation in gene expression. FILING DATA: December 15, 2005年」)に述べている)。このDNAチップの詳細については、http://www.affymetrix.com/jp/products_services/arrays/specific/500k.affxで公開されている製品情報を参照されたい。   As a specific example of gene polymorphism detection using a DNA chip, a method using a GeneChip (registered trademark) Human Mapping 500K array manufactured by Affymetrix will be described. The GeneChip (registered trademark) Human Mapping 500K array is an array that includes two arrays and can detect more than 500,000 SNPs present on the genome. The method of use is to cut the sample (genome, cDNA, etc.) with a restriction enzyme (Sty or Nsp), attach an adapter, and use one type of primer specific to that adapter (one for Sty or Nsp). Amplify by PCR reaction and label. The two arrays are designed to be complementary for each allele of each SNP.After hybridization, the SNP of the sample is judged based on the signal, and the expression level of each allele is converted to the signal intensity or signal ratio. (The detailed method is described in the patent application (PCT / JP2005 / 023439 or the above-mentioned Japanese Patent Number; 4111985, Method for identifying a gene with allellic variation in gene expression. FILING DATA: December 15, 2005 Year))). For details of this DNA chip, refer to the product information published at http://www.affymetrix.com/jp/products_services/arrays/specific/500k.affx.

また、遺伝子多型は、上述した以外にも、当業者に公知のあらゆる方法によってタイピングすることができる。そのような方法としては、遺伝子多型に特異的なプライマーを用いる方法、制限断片長多型(RFLP)を利用する方法、直接配列決定法、変性勾配ゲル電気泳動法(DGGE)、ミスマッチ部位の化学的切断を利用した方法(CCM)、プライマー伸長法(TaqMan法)などを用いることができる。   Moreover, gene polymorphism can be type | molded by all the methods well-known to those skilled in the art besides the above-mentioned. Such methods include using primers specific for gene polymorphism, using restriction fragment length polymorphism (RFLP), direct sequencing, denaturing gradient gel electrophoresis (DGGE), mismatch site A method using chemical cleavage (CCM), a primer extension method (TaqMan method), or the like can be used.

本方法においては、簡便かつ迅速に遺伝子多型をタイピングすることができるDNAチップ(マイクロアレイ)を使用することが好ましい。   In this method, it is preferable to use a DNA chip (microarray) that can type gene polymorphisms simply and quickly.

本発明は、ExpressGenotyping法のデータからソラフェニブ刺激応答性に関与する遺伝子多型を検索する方法を含み、該方法は以下のステップを有する。
(i)(イ)細胞に溶媒のみを曝露したExpressGenotyping法の結果と、(ロ)細胞に薬剤を曝露したExpressGenotyping法の結果を比較することで、薬剤刺激に応答性のマーカー(薬剤曝露によって顕在化する遺伝子発現量のアレル間の違いを示すSNPs)を選び出す。
(ii)(イ)と(ロ)のEG法の結果を比較するコンピュータ上で特定のアルゴリズムを用いてデータ処理を行う。
The present invention includes a method for searching gene polymorphisms involved in sorafenib stimulation responsiveness from data of ExpressGenotyping method, and the method has the following steps.
(i) (b) By comparing the result of ExpressGenotyping method in which only solvent is exposed to cells and the result of ExpressGenotyping method in which drug is exposed to cells (b), markers that are responsive to drug stimulation SNPs that show differences between alleles in the gene expression level to be selected.
(ii) Data processing is performed using a specific algorithm on a computer that compares the results of the EG method of (a) and (b).

上記方法により、探索したソラフェニブ刺激に対してアレル間で発現量が異なる遺伝子、すなわちソラフェニブ刺激特異的にアレル間で発現が異なる遺伝子及びその多型、すなわちソラフェニブ刺激によりアレル間での発現の変動に影響を与える多型を利用して、ソラフェニブを投与する被験体のソラフェニブへの応答性を判定することができる。また、多型を利用して、ソラフェニブ刺激時の被験体の応答性と多型との関係を解析することができる。   By the above method, genes whose expression levels differ between alleles with respect to the searched sorafenib stimulation, that is, genes that differ in expression among alleles specifically for sorafenib stimulation, and polymorphisms thereof, that is, fluctuations in expression between alleles due to sorafenib stimulation. Influencing polymorphisms can be used to determine the responsiveness to sorafenib in a subject receiving sorafenib. In addition, the polymorphism can be used to analyze the relationship between the responsiveness of the subject at the time of stimulation with sorafenib and the polymorphism.

上記方法により、探索したソラフェニブ刺激に対してアレル間で発現量が異なる遺伝子の遺伝子多型は、アレル間で発現量が異なる遺伝子を判定するための遺伝子多型として選択することができる。アレル間で発現量が異なる遺伝子を判定することができる遺伝子多型は、他の遺伝子多型よりも表現型と関係している可能性が高い。その遺伝子多型を検出することのみで、ある検体が発現量の多いアレルを有するか否かなどを調べることが可能となる。アレル間で発現量が異なる遺伝子は、薬剤に対する応答性という表現型と関係している。特定の遺伝子多型を有している頻度が、特定の表現型(ソラフェニブに対する感受性)を示す被験体において有意に高い。その遺伝子多型の差が、表現型に関与する遺伝子の発現量の量的調節に影響している。   According to the above method, a gene polymorphism of a gene whose expression level differs between alleles with respect to the searched sorafenib stimulation can be selected as a gene polymorphism for determining a gene whose expression level differs between alleles. There is a high possibility that a gene polymorphism capable of determining a gene whose expression level differs between alleles is related to a phenotype than other gene polymorphisms. Only by detecting the gene polymorphism, it is possible to examine whether or not a certain specimen has an allele with a high expression level. Genes with different expression levels between alleles are associated with a phenotype of responsiveness to drugs. The frequency of having a particular genetic polymorphism is significantly higher in subjects exhibiting a particular phenotype (sensitivity to sorafenib). The difference in the gene polymorphism affects the quantitative regulation of the expression level of the gene involved in the phenotype.

上記の探索により、3224個の遺伝子(6953プローブ)が、ソラフェニブ刺激によりアレル間で発現量が異なる遺伝子および各遺伝子の一塩基多型として探索された。   As a result of the above search, 3224 genes (6953 probe) were searched as genes having different expression levels between alleles and single nucleotide polymorphisms of each gene by sorafenib stimulation.

これらの3224個の遺伝子の中でも、特に以下の10個の遺伝子がソラフェニブ刺激に対してアレル間で発現量が大きく異なる遺伝子として選択された。
(a) dihydropyrimidine dehydrogenase(DPYD)遺伝子、
(b) CD247 molecule遺伝子、
(c) phospholipase A2, group IVA (cytosolic, calcium-dependent)(PLA2G4A)遺伝子、
(d) interleukin 1 receptor, type II(IL1R2)遺伝子、
(e) dedicator of cytokinesis 2(DOCK2)遺伝子、
(f) estrogen receptor 1 (ESR1)遺伝子、
(g) complement component 5(C5)遺伝子、
(h) phospholipase C, beta 1 (phosphoinositide-specific)(PLCB1)遺伝子、
(i) pancreatic lipase-related protein 3(PNLIPRP3)遺伝子、及び
(j) lipase, hepatic(LIPC)遺伝子。
Among these 3224 genes, the following 10 genes in particular were selected as genes whose expression levels differ greatly between alleles in response to sorafenib stimulation.
(a) dihydropyrimidine dehydrogenase (DPYD) gene,
(b) CD247 molecule gene,
(c) phospholipase A2, group IVA (cytosolic, calcium-dependent) (PLA2G4A) gene,
(d) interleukin 1 receptor, type II (IL1R2) gene,
(e) dedicator of cytokinesis 2 (DOCK2) gene,
(f) estrogen receptor 1 (ESR1) gene,
(g) complement component 5 (C5) gene,
(h) phospholipase C, beta 1 (phosphoinositide-specific) (PLCB1) gene,
(i) the pancreatic lipase-related protein 3 (PNLIPRP3) gene, and
(j) lipase, hepatic (LIPC) gene.

また、(a)〜(j)の遺伝子において、52の多型(SNP)が、各々の遺伝子のアレル間での発現量の差異を判定できる遺伝子多型として選択された。
図5〜14にそれぞれ、上記(a)〜(j)の遺伝子の塩基配列中の多型の位置を示す。
In the genes (a) to (j), 52 polymorphisms (SNPs) were selected as gene polymorphisms that can determine the difference in expression level between alleles of each gene.
5 to 14 show the positions of polymorphisms in the base sequences of the genes (a) to (j), respectively.

本発明において、タイピングすべき上記(a)〜(j)の遺伝子の遺伝子多型としては、以下のものが挙げられる。
(i)dihydropyrimidine dehydrogenase(DPYD)遺伝子における、一塩基多型rs10449721、rs10875047、rs11165805、rs11165867、rs6687374、rs4949952、rs11165887及びrs10875097、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(ii)CD247 molecule遺伝子における、一塩基多型rs864537、該一塩基多型の近傍に存在する遺伝子多型、及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(iii)phospholipase A2, group IVA (cytosolic, calcium-dependent)(PLA2G4A)遺伝子における、一塩基多型rs10752979、rs10798069及びrs10911963、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(iv)interleukin 1 receptor, type II(IL1R2)遺伝子における、一塩基多型rs4851527、rs3218872及びrs3218920、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(v)dedicator of cytokinesis 2(DOCK2)遺伝子における、一塩基多型rs900464、rs264846、rs90213、rs966595、rs4867895、rs11134600、rs2287727及びrs1316638、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(vi)estrogen receptor 1 (ESR1)遺伝子における、一塩基多型rs9371557及びrs3798573、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(vii)complement component 5(C5)遺伝子における、一塩基多型rs10985112、該一塩基多型の近傍に存在する遺伝子多型、及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(viii)phospholipase C, beta 1 (phosphoinositide-specific)(PLCB1)遺伝子における、一塩基多型rs2235212、rs6055624、rs2294257、rs2180532、rs10485723、rs1156958、rs1237829、rs2050090、rs6055925、rs6039215、rs6140677、rs6133610、rs6133621、rs13040543、rs10485727、rs6118343、rs6056198、rs6086627、rs3848831及びrs6086678、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(ix) pancreatic lipase-related protein 3(PNLIPRP3)遺伝子における、一塩基多型rs1431485、該一塩基多型の近傍に存在する遺伝子多型、及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、又は
(x) lipase, hepatic(LIPC)遺伝子における、一塩基多型rs12438071、rs4775047、rs9920144、rs7179747及びrs3751542、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型。
In the present invention, gene polymorphisms of the genes (a) to (j) to be typed include the following.
(i) single nucleotide polymorphisms in the dihydropyrimidine dehydrogenase (DPYD) gene rs10449721, rs10875047, rs11165805, rs11165867, rs6687374, rs4949952, rs11165887 and rs10875097, and the gene polymorphisms in the vicinity of the single nucleotide polymorphism and the single nucleotide polymorphism At least one polymorphism selected from the group consisting of genetic polymorphisms in linkage disequilibrium with the type,
(ii) selected from the group consisting of a single nucleotide polymorphism rs864537, a gene polymorphism present in the vicinity of the single nucleotide polymorphism, and a gene polymorphism in linkage disequilibrium with the single nucleotide polymorphism in the CD247 molecule gene At least one polymorph,
(iii) In the phospholipase A2, group IVA (cytosolic, calcium-dependent) (PLA2G4A) gene, the single nucleotide polymorphisms rs10752979, rs10798069 and rs10911963, the gene polymorphism present in the vicinity of the single nucleotide polymorphism and the single nucleotide polymorphism At least one polymorphism selected from the group consisting of genetic polymorphisms in linkage disequilibrium with the type,
(iv) In the interleukin 1 receptor, type II (IL1R2) gene, the single nucleotide polymorphisms rs4851527, rs3218872 and rs3218920, the gene polymorphisms present in the vicinity of the single nucleotide polymorphisms and linkage disequilibrium with the single nucleotide polymorphisms At least one polymorphism selected from the group consisting of a genetic polymorphism,
(v) single nucleotide polymorphisms in the dedicator of cytokinesis 2 (DOCK2) gene rs900464, rs264846, rs90213, rs966595, rs4867895, rs11134600, rs2287727 and rs1316638, and the gene polymorphism present in the vicinity of the single nucleotide polymorphism and the single nucleotide At least one polymorphism selected from the group consisting of genetic polymorphisms in linkage disequilibrium with the base polymorphism,
(vi) From the single nucleotide polymorphisms rs9371557 and rs3798573 in the estrogen receptor 1 (ESR1) gene, the gene polymorphisms present in the vicinity of the single nucleotide polymorphism, and the gene polymorphism in linkage disequilibrium with the single nucleotide polymorphism At least one polymorphism selected from the group consisting of:
(vii) In the complement component 5 (C5) gene, a group consisting of a single nucleotide polymorphism rs10985112, a gene polymorphism present in the vicinity of the single nucleotide polymorphism, and a gene polymorphism in linkage disequilibrium with the single nucleotide polymorphism At least one polymorph selected from,
(viii) Single nucleotide polymorphisms in phospholipase C, beta 1 (phosphoinositide-specific) (PLCB1) gene Rs10485727, rs6118343, rs6056198, rs6086627, rs3848831 and rs6086678, and a genetic polymorphism present in the vicinity of the single nucleotide polymorphism and at least selected from the group consisting of genetic polymorphisms in linkage disequilibrium with the single nucleotide polymorphism One polymorph,
(ix) In the pancreatic lipase-related protein 3 (PNLIPRP3) gene, the single nucleotide polymorphism rs1431485, the gene polymorphism present in the vicinity of the single nucleotide polymorphism, and the gene polymorphism in linkage disequilibrium with the single nucleotide polymorphism At least one polymorphism selected from the group consisting of
(x) single nucleotide polymorphisms in lipase, hepatic (LIPC) genes rs12438071, rs4775047, rs9920144, rs7179747 and rs3751542, and gene polymorphisms in the vicinity of the single nucleotide polymorphism and linkage disequilibrium with the single nucleotide polymorphism At least one polymorphism selected from the group consisting of genetic polymorphisms in

ここで、上記遺伝子多型の近傍に存在する遺伝子多型とは、上記遺伝子多型から薬30,000kb以内、好ましくは約10,000kb以内に位置する遺伝子多型をいう。このような近傍に位置する遺伝子多型は、染色体組換え時に一緒に組換わる確立が高い。また、上記遺伝子多型と連鎖不均衡にある遺伝子多型とは、上記遺伝子多型と関連性のある遺伝子多型であり、具体的には、上記遺伝子多型がXである場合には、常に別の遺伝子多型がYとなるという関係が成立するようなものである。多型を利用してのソラフェニブ刺激時の被験体の応答性と多型との関係の解析は、例えば、予めソラフェニブ刺激に対して特定の応答性を示すことがわかっている被験体における上記遺伝子の多型を調べれば良い。また、ソラフェニブの投与を予定している被験体における上記遺伝子の多型を予め調べておき、ソラフェニブを投与したときの応答性を調べ、多型と応答性とを関連付けることもできる。これらは、in vivoで行うことができるが、被験体の細胞を採取、単離し、該単離細胞を用いてin vitroで関連付を行うこともできる。さらに、入手可能な培養細胞におけるソラフェニブ刺激への応答性をin vitroで調べ、なおかつ、それぞれの培養細胞の多型を調べることにより関連付けすることもできる。例えば、dihydropyrimidine dehydrogenase遺伝子の、配列番号1で示す塩基配列中の16番目の塩基の多型と、ソラフェニブ刺激の応答性の関係を調べ、前記多型部位がCの被験体において、ソラフェニブの副作用が大きいという表現型が現れる場合、多型部位がCという遺伝子型とソラフェニブの副作用が大きいという表現型が関連付けられ、ソラフェニブを投与しようとする被験体の上記部位の多型を調べ、Cの場合に、ソラフェニブの投与を中止することができる。   Here, the gene polymorphism present in the vicinity of the gene polymorphism refers to a gene polymorphism located within 30,000 kb, preferably within about 10,000 kb of the drug from the gene polymorphism. Such polymorphisms located in the vicinity are highly likely to be recombined together during chromosome recombination. The gene polymorphism in linkage disequilibrium with the gene polymorphism is a gene polymorphism related to the gene polymorphism. Specifically, when the gene polymorphism is X, It is such that the relationship that another genetic polymorphism is always Y is established. Analysis of the relationship between the responsiveness of a subject at the time of sorafenib stimulation using a polymorphism and the polymorphism is, for example, the above gene in a subject known to exhibit a specific responsiveness to the sorafenib stimulation in advance. You can check the polymorphism of. Moreover, the polymorphism of the said gene in the subject which is going to administer sorafenib is investigated beforehand, the responsiveness when sorafenib is administered can be investigated, and a polymorphism and responsiveness can also be linked | related. These can be performed in vivo, but a subject's cells can be collected and isolated, and the isolated cells can be used for association in vitro. Furthermore, the responsiveness to the sorafenib stimulation in the cultured cell which can be obtained can be investigated in vitro, and it can also relate by investigating the polymorphism of each cultured cell. For example, by examining the relationship between the polymorphism of the 16th base in the nucleotide sequence shown in SEQ ID NO: 1 of the dihydropyrimidine dehydrogenase gene and the response to sorafenib stimulation, side effects of sorafenib are observed in subjects whose polymorphic site is C. If a large phenotype appears, the polymorphic site is associated with the genotype C and a phenotype with significant side effects of sorafenib. Sorafenib administration can be discontinued.

本発明は、(イ)細胞に溶媒のみを曝露したExpressGenotyping法の結果と、(ロ)細胞に薬剤を曝露したExpressGenotyping法の結果を比較することで、薬剤刺激に応答性のマーカー(薬剤曝露によって顕在化する遺伝子発現量のアレル間の違いを示すSNPs)と応答性を関連付ける方法も包含する。   The present invention compares (b) the result of ExpressGenotyping method in which only cells are exposed to a solvent and (b) the result of ExpressGenotyping method in which a drug is exposed to cells, thereby providing a marker responsive to drug stimulation (depending on drug exposure). A method of associating responsiveness with SNPs that show differences between alleles in the gene expression level that is manifested is also included.

本発明においては、上記の10種類の遺伝子の少なくとも1種類の遺伝子を利用する。一度に複数の遺伝子を利用してもよく、例えば、上記の10種類の遺伝子のうちの2、3、4、5、6、7、8、9又は10種類を利用すれば良い。また、遺伝子の多型に関しては、10種類の遺伝子の52の多型の少なくとも1つの多型を利用して判定することができ、一度に複数の多型を利用しても良い。例えば、52の多型のうち、2以上、3以上、4以上、5以上、10以上、15以上、20以上、25以上、30以上、35以上、40以上、45以上、50以上、51以上又は52を利用して判定することができる。   In the present invention, at least one of the above 10 genes is used. A plurality of genes may be used at once, for example, 2, 3, 4, 5, 6, 7, 8, 9 or 10 of the above 10 types of genes may be used. In addition, gene polymorphism can be determined using at least one polymorphism of 52 polymorphisms of 10 types of genes, and a plurality of polymorphisms may be used at once. For example, among 52 polymorphisms, 2 or more, 3 or more, 4 or more, 5 or more, 10 or more, 15 or more, 20 or more, 25 or more, 30 or more, 35 or more, 40 or more, 45 or more, 50 or more, 51 or more Alternatively, determination can be made using 52.

遺伝子及びその多型を利用して判定するとは、ソラフェニブを投与しようとする被験体における上記遺伝子の多型を予め測定し、多型部位の塩基の種類により、ソラフェニブへの応答性を予測し又は評価し、判定することをいう。ソラフェニブへの応答性とは、ソラフェニブによる発症し得る副作用のタイプ、発症し得る副作用の程度、ソラフェニブの薬効の程度をいう。これらの応答性には個人差があることがわかっており、従来はその個人差を予測及び評価することができなかったが、本発明の方法により予測及び評価することが可能になる。   The determination using the gene and its polymorphism means that the polymorphism of the gene in a subject to be administered sorafenib is measured in advance, and the response to sorafenib is predicted by the type of base at the polymorphic site, or It means to evaluate and judge. Responsiveness to sorafenib refers to the type of side effects that can occur due to sorafenib, the degree of side effects that can occur, and the degree of efficacy of sorafenib. It has been known that there is an individual difference in these responsiveness, and conventionally, the individual difference could not be predicted and evaluated, but can be predicted and evaluated by the method of the present invention.

すなわち、上記遺伝子の多型は、ソラフェニブを投与する前の被験体のソラフェニブへの応答性を判定するためのバイオマーカーとして用いることができる。   That is, the polymorphism of the gene can be used as a biomarker for determining the responsiveness of a subject to sorafenib before administration of sorafenib.

多型の検出は、1対の染色体上の一方の染色体について検出する場合も両方の染色体について検出する場合も包含され、両方の染色体について検出する場合にも、一塩基多型部位においてホモ接合性かヘテロ接合性かの検出を含む。   Polymorphism detection includes detection of one chromosome on a pair of chromosomes as well as detection of both chromosomes, and even when detecting both chromosomes, homozygosity at a single nucleotide polymorphism site. Or detection of heterozygosity.

さらに、本発明は上記の多型を検出するのに用いるオリゴヌクレオチド又はその標識物を包含し、該オリゴヌクレオチド又はその標識物はプローブ又はプライマーとして用いることができる。これらのオリゴヌクレオチドは、上記遺伝子の一塩基多型部位を含む塩基配列又は該塩基配列に相補的な塩基配列からなるDNA断片からなり、このようなオリゴヌクレオチドは一塩基多型を検出するためのプローブとして利用できる。また、上記遺伝子多型部位の近傍あるいは離れた部位の塩基配列を、遺伝子多型部位を含む塩基配列を増幅するためのプライマーとして用いることができる。この際、多型部位の3'側および5'側に存在する2種類の配列をプライマー対として用いることができる。多型の検出に用いるオリゴヌクレオチドを構成する塩基の数は5〜50、好ましくは10〜30、さらに好ましくは15〜25であり、上記遺伝子の塩基配列の多型部位を含む連続した塩基配列からなる。また、上記遺伝子の塩基配列の多型部位を含む連続した塩基配列において、数個、好ましくは1〜5個、さらに好ましくは1個又は2個、特に好ましくは1個のミスマッチを有するオリゴヌクレオチドも用いることができる。多型の検出はプローブを用いたハイブリダイゼーションアッセイにより行うことができる。本発明のオリゴヌクレオチドは化学合成により作製することもできるし、上記プライマーを用いてPCRにより遺伝子を増幅させた増幅産物として作製することもできる。本発明のプローブは、検出のために蛍光物質、酵素、放射性同位体、化学発光物質等で標識されていても良い。標識に用いる標識物質は、公知のものを用い、公知の方法で標識することができる。蛍光物質としては、例えば、Cy3、Cy5、ローダミン、フルオレセイン等が挙げられる。   Furthermore, the present invention includes an oligonucleotide or a label thereof used for detecting the above polymorphism, and the oligonucleotide or the label thereof can be used as a probe or a primer. These oligonucleotides consist of a DNA fragment comprising a base sequence containing the single nucleotide polymorphic site of the above gene or a base sequence complementary to the base sequence, and such oligonucleotides are used for detecting single nucleotide polymorphisms. Can be used as a probe. In addition, a base sequence in the vicinity of or away from the gene polymorphic site can be used as a primer for amplifying the base sequence containing the gene polymorphic site. In this case, two types of sequences existing on the 3 ′ side and 5 ′ side of the polymorphic site can be used as primer pairs. The number of bases constituting the oligonucleotide used for detecting the polymorphism is 5 to 50, preferably 10 to 30, more preferably 15 to 25. From the continuous base sequence including the polymorphic site of the base sequence of the above gene, Become. In addition, oligonucleotides having several mismatches, preferably 1 to 5, more preferably 1 or 2, and particularly preferably 1 mismatch in the continuous base sequence including the polymorphic site of the base sequence of the above gene. Can be used. Polymorphism can be detected by a hybridization assay using a probe. The oligonucleotide of the present invention can be prepared by chemical synthesis or can be prepared as an amplification product obtained by amplifying a gene by PCR using the above primers. The probe of the present invention may be labeled with a fluorescent substance, an enzyme, a radioisotope, a chemiluminescent substance or the like for detection. As a labeling substance used for labeling, a known substance can be used and labeled by a known method. Examples of the fluorescent substance include Cy3, Cy5, rhodamine, fluorescein and the like.

さらに、本発明は上記オリゴヌクレオチドを固定化した固定化基板を含む。オリゴヌクレオチドを固定化する基板としては、スライドガラス、ニトロセルロース膜、マイクロビーズ等種々のものを用いることができる。固定化基板上に複数のオリゴヌクレオチドを整列固定化した場合、該固定化基板は、DNAマイクロアレイ又はDNAチップとして用いることができる。また、オリゴヌクレオチドは基板上で合成しても良いし、また合成したオリゴヌクレオチドを基板上に固定化しても良い。基板上への固定化は、例えば市販のスポッターやアレイヤーを用いて行うことができ、オリゴヌクレオチドの固定化は吸着や共有結合を介した結合により行うことができ、共有結合を介した結合により固定化する場合は、基板表面及びオリゴヌクレオチドに共有結合用のアミノ基、SH基等の官能基を導入すれば良い。   Furthermore, the present invention includes an immobilized substrate on which the oligonucleotide is immobilized. Various substrates such as a slide glass, a nitrocellulose membrane, and microbeads can be used as the substrate on which the oligonucleotide is immobilized. When a plurality of oligonucleotides are aligned and immobilized on an immobilized substrate, the immobilized substrate can be used as a DNA microarray or a DNA chip. The oligonucleotide may be synthesized on a substrate, or the synthesized oligonucleotide may be immobilized on the substrate. Immobilization on a substrate can be performed using, for example, a commercially available spotter or arrayer, and oligonucleotides can be immobilized by adsorption or binding via covalent bond, and by covalent bond binding. In the case of immobilization, functional groups such as an amino group for covalent bonding and an SH group may be introduced into the substrate surface and the oligonucleotide.

オリゴヌクレオチドを固定化した固定化基板を用いる多型の検出は公知の方法で行うことができる。   Polymorphism detection using an immobilized substrate on which an oligonucleotide is immobilized can be performed by a known method.

本発明を以下の実施例によって具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。   The present invention will be specifically described by the following examples, but the present invention is not limited to these examples.

実施例1 アレル間で発現量が異なる遺伝子の検索
本実施例においては、ソラフェニブ(Sorafenib)刺激において、アレル間で発現量が異なる遺伝子の検索を行った。
Example 1 Search for Genes with Different Expression Levels Between Alleles In this example, genes with different expression levels between alleles were searched for by sorafenib stimulation.

EBウイルスにて株化した10検体のリンパ球(表1)を用いて、ソラフェニブ刺激を行った。10検体のリンパ球はCoriell Institute for Medical Research(Coriell社)から購入し、1回継代した後、細胞保管庫(-80℃保存)にて保管したリンパ球である。ソラフェニブ刺激における群構成は、1)対照群(DMSO)、2)ソラフェニブ刺激群の2群で行い(薬剤刺激on/off の2群)、ソラフェニブの濃度は10μMとし、溶媒のDMSO濃度は0.01%である(mRNA発現解析の結果から最適な曝露条件を決定した(図1))。   Sorafenib stimulation was performed using 10 lymphocytes (Table 1) established by EB virus. Ten specimens of lymphocytes were purchased from Coriell Institute for Medical Research (Coriell), passaged once, and then stored in a cell storage (-80 ° C storage). The group composition in the sorafenib stimulation was 1) the control group (DMSO), 2) the sorafenib stimulation group (2 groups of drug stimulation on / off), the concentration of sorafenib was 10 μM, and the DMSO concentration of the solvent was 0.01% (The optimal exposure conditions were determined from the results of mRNA expression analysis (FIG. 1)).

Figure 2011103821
Figure 2011103821

ソラフェニブ刺激の開始:細胞数が試験に使用できる数(1.25×10cells以上)になるまで15% Fetal Bovine Serum(Invitrogen社)を添加したRPMI medium 1640(Invitrogen社)培地で37℃、5%CO2の条件下で細胞培養した。ソラフェニブ刺激ができる細胞数に達したら10-20ml用の培養デッシュ(Nalge Nunc International社)を2つ準備し、それぞれに、1デッシュあたりが5×106cellsになるように播種した。次に、細胞を播種した一方のデッシュにDMSO 濃度が0.1%になるようにDMSOを添加し、もう一方のデッシュにソラフェニブの刺激濃度が10μMになるようにソラフェニブを加えた。その後、RPMI medium 1640培地(Fetal Bovine Serumなし)中の37℃、5%CO2条件下で4時間培養した。表2にソラフェニブ刺激における刺激条件の群分けを示す。 Start of sorafenib stimulation: 5% at 37 ° C in RPMI medium 1640 (Invitrogen) medium supplemented with 15% Fetal Bovine Serum (Invitrogen) until the number of cells reaches the number that can be used in the test (1.25 x 10 7 cells or more) The cells were cultured under CO 2 conditions. When the number of cells capable of stimulating sorafenib was reached, two culture dishes (Nalge Nunc International) for 10-20 ml were prepared and seeded so that each dish had 5 × 10 6 cells. Next, DMSO was added to one dish where cells were seeded so that the DMSO concentration was 0.1%, and sorafenib was added to the other dish so that the stimulating concentration of sorafenib was 10 μM. Thereafter, the cells were cultured in RPMI medium 1640 medium (without Fetal Bovine Serum) at 37 ° C. and 5% CO 2 for 4 hours. Table 2 shows the grouping of stimulation conditions for sorafenib stimulation.

Figure 2011103821
Figure 2011103821

DMSO群及びソラフェニブ刺激群からのRNAの抽出は、TRIzol Reagent(Invitrogen社)で行った。抽出したRNAの濃度は、NanoDrop ND-1000(NanoDrop Technologies社)で測定し、Agilent 2100 バイオアナライザー(Agilent Technologies社)で純度を評価した。   RNA extraction from the DMSO group and the sorafenib-stimulated group was performed with TRIzol Reagent (Invitrogen). The concentration of the extracted RNA was measured with NanoDrop ND-1000 (NanoDrop Technologies), and the purity was evaluated with an Agilent 2100 bioanalyzer (Agilent Technologies).

このDMSO群及びソラフェニブ刺激群から抽出したRNAは、Premature RNAのアレルごとの発現量及び総量の網羅的な測定に使用した。
DMSO群及びソラフェニブ刺激群からのDNAの抽出は、QIAamp DNA Mini Kit(QIAGEN社)で行った。抽出したDNAの濃度は、NanoDrop ND-1000(NanoDrop Technologies社)で測定した。このDMSO群及びソラフェニブ刺激群から抽出したDNAは、DNAのSNPs typingに使用した。
RNA extracted from the DMSO group and the sorafenib-stimulated group was used for comprehensive measurement of the expression level and total amount of all Premature RNA alleles.
DNA extraction from the DMSO group and the sorafenib-stimulated group was performed with the QIAamp DNA Mini Kit (QIAGEN). The concentration of the extracted DNA was measured with NanoDrop ND-1000 (NanoDrop Technologies). DNA extracted from this DMSO group and sorafenib-stimulated group was used for SNP typing of DNA.

10検体のリンパ球のDMSO群及びソラフェニブ刺激群のRNAを用いてWO2006/068111号公報に記載の方法で、ソラフェニブ刺激群特異的にアレル間で発現量が異なる遺伝子を判定した。   Using the RNA of DMSO group and sorafenib-stimulated group of 10 lymphocytes, genes having different expression levels between alleles were determined specifically by the sorafenib-stimulated group by the method described in WO2006 / 068111.

その結果、シグナル比の低いところにはノイズと考えられる正規分布曲線に近い形があらわれ、そこでは遺伝子のない領域に存在する遺伝子多型に基づくシグナル(プローブ)が多かった。この度数分布の形及びプローブとゲノム上の遺伝子との位置関係からこのアッセイによって遺伝子(cDNA)由来のシグナルとノイズが分離できており、cDNAとゲノムとのシグナル比の測定によって、シグナル比の高い部分を発現した遺伝子(主に核内RNA由来のcDNA)によるシグナルであると考えて良いことがわかった。   As a result, a shape close to a normal distribution curve considered to be noise appeared at a low signal ratio, and there were many signals (probes) based on gene polymorphisms existing in a region without a gene. From this frequency distribution and the positional relationship between the probe and the gene on the genome, the signal and noise derived from the gene (cDNA) can be separated by this assay, and the signal ratio is high by measuring the signal ratio between the cDNA and the genome. It was found that the signal may be considered as a signal from the gene that expressed the part (mainly cDNA derived from nuclear RNA).

DMSO群及びソラフェニブ刺激群の発現量に影響するcDNAシグナル強度からソラフェニブ刺激群特異的にアレル間で発現量が異なる遺伝子を判定する遺伝子多型を検索するため、ソラフェニブ刺激群のcDNAの正確なシグナル強度/DMSO群のcDNAの正確なシグナル強度の比(EAI; Expression Allelic Imbalance、アレル間の発現レベルがアンバランスであること/異なっていること)を取り、その比が1.5倍以上のプローブをソラフェニブ刺激群特異的にアレル間で発現量が異なる遺伝子(遺伝子多型)として絞り込んだ(詳細は[実施例2]に述べる)。   Accurate signal of cDNA of Sorafenib stimulation group to search for gene polymorphisms that determine genes whose expression level differs among alleles specifically from Sorafenib stimulation group from cDNA signal intensity that affects the expression level of DMSO group and Sorafenib stimulation group Take the ratio of intensity / accurate signal intensity of cDNA in the DMSO group (EAI; Expression Allelic Imbalance, expression level between alleles is unbalanced / different), and probe with a ratio of 1.5 times or more sorafenib It was narrowed down as genes (gene polymorphisms) whose expression levels differed between alleles specifically for the stimulation group (details are described in [Example 2]).

このようにして、一方のアレルと他方のアレルとの間の発現量の差異をソラフェニブ刺激群のEAIを利用して比較したところ、3224個(6953プローブ)の遺伝子がソラフェニブ刺激群特異的に有意差を示した。その中から、下記の10種類の遺伝子をソラフェニブ刺激の副作用に関連するアレル間で発現量に差がある遺伝子多型として選択した(図4)。   Thus, when the difference in the expression level between one allele and the other allele was compared using the EAI of the sorafenib-stimulated group, 3224 genes (6953 probe) were significantly significant in the sorafenib-stimulated group. Showed the difference. Among them, the following 10 genes were selected as gene polymorphisms having different expression levels among alleles related to the side effect of sorafenib stimulation (FIG. 4).

(1) DPYD:dihydropyrimidine dehydrogenase
DPYD遺伝子のタンパク質はピリミジン代謝酵素であり、5-フルオロウラシル(5-FU)の化学療法において、この遺伝子の変異が癌患者の副作用のリスクを増加させることが報告されている。5-FU 系抗がん薬と抗帯状疱疹薬ソリブジンとで発生した致死的薬物相互作用「ソリブジン薬害」は有名である(Watabe T. et al., Yakugaku Zasshi. 2002 Aug;122(8):527-35. PMID: 12187768, 2002年)。
(1) DPYD: dihydropyrimidine dehydrogenase
The protein of the DPYD gene is a pyrimidine-metabolizing enzyme, and it has been reported that mutations in this gene increase the risk of side effects in cancer patients in 5-fluorouracil (5-FU) chemotherapy. The fatal drug interaction "soribudine toxic injury" that occurred between the 5-FU anticancer drug and the anti-herpetic drug sorivudine is well known (Watabe T. et al., Yakugaku Zasshi. 2002 Aug; 122 (8): 527-35. PMID: 12187768, 2002).

ソラフェニブ刺激でEAIを示したDPYD遺伝子の一塩基多型rs10449721、rs10875047、rs11165805、rs11165867、rs6687374、rs4949952、rs11165887及びrs10875097の配列情報(GeneChip(登録商標)Human Mapping 500K array(Affymetrix社製))は下記である。
rs10449721:
agcagcttcaatggaa[C/T]gatgagaagtagaatc(配列番号1)
rs10875047:
cgtgacaaggaagacc[A/G]agatggaatatatgag(配列番号2)
rs11165805:
ggaataatagtcattg[C/G]agtctcaaaacggtgg(配列番号3)
rs11165867:
ataatctgctcttaga[A/G]gactataaccccataa(配列番号4)
rs6687374:
ccacaccaccctaaac[A/G]agtcatcatagtagaa(配列番号5)
rs4949952:
ggagcccagttacgaa[A/G]ggccgtttatgcttgc(配列番号6)
rs11165887:
aatccatgagtgagaa[A/G]aactaatatcatgtga(配列番号7)
rs10875097:
ctatagtaagtgtcca[C/T]gttaaggtgtttgata(配列番号8)
Single nucleotide polymorphisms of DPYD gene that showed EAI by sorafenib stimulation rs10449721, rs10875047, rs11165805, rs11165867, rs6687374, rs4949952, rs11165887, and rs10875097 sequence information (GeneChip (registered trademark) Human Mapping 500K array (Affymetrix)) It is.
rs10449721:
agcagcttcaatggaa [C / T] gatgagaagtagaatc (SEQ ID NO: 1)
rs10875047:
cgtgacaaggaagacc [A / G] agatggaatatatgag (SEQ ID NO: 2)
rs11165805:
ggaataatagtcattg [C / G] agtctcaaaacggtgg (SEQ ID NO: 3)
rs11165867:
ataatctgctcttaga [A / G] gactataaccccataa (SEQ ID NO: 4)
rs6687374:
ccacaccaccctaaac [A / G] agtcatcatagtagaa (SEQ ID NO: 5)
rs4949952:
ggagcccagttacgaa [A / G] ggccgtttatgcttgc (SEQ ID NO: 6)
rs11165887:
aatccatgagtgagaa [A / G] aactaatatcatgtga (SEQ ID NO: 7)
rs10875097:
ctatagtaagtgtcca [C / T] gttaaggtgtttgata (SEQ ID NO: 8)

(2) CD247:CD247 molecule
CD247遺伝子のタンパク質はT細胞レセプター(zeta)であり、抗原を認識する重要な役割を果たしている(Minguet S. et al., Immunol Lett. Mar 15;116(2):195-202. Dec 20;7(14):1909-23. PMID: 18207249, 2008年)。
(2) CD247: CD247 molecule
The protein of the CD247 gene is a T cell receptor (zeta) and plays an important role in recognizing antigens (Minguet S. et al., Immunol Lett. Mar 15; 116 (2): 195-202. Dec 20; 7 (14): 1909-23. PMID: 18207249, 2008).

ソラフェニブ刺激でEAIを示したCD247遺伝子の一塩基多型rs864537の配列情報(GeneChip(登録商標)Human Mapping 500K array(Affymetrix社製))は下記である。
rs864537:
agtgtttttatttgga[A/G]catcattgcactgtga(配列番号9)
The sequence information of the single nucleotide polymorphism rs864537 (GeneChip (registered trademark) Human Mapping 500K array (manufactured by Affymetrix)) of the CD247 gene that showed EAI upon stimulation with sorafenib is as follows.
rs864537:
agtgtttttatttgga [A / G] catcattgcactgtga (SEQ ID NO: 9)

(3) PLA2G4A:phospholipase A2, group IVA (cytosolic, calcium-dependent)
PLA2G4A遺伝子のタンパク質は、ホスホリパーゼA2のグループIVのファミリーに属しており、膜リン脂質からアラキドン酸を放出するための触媒である(アラキドン酸のように脂質由来の物質は、血行動態の調節や炎症反応などに関与している)(Rubin BB. et al., J Biol Chem. Mar 4;280(9):7519-29. Epub 2004 Oct 8. PMID: 15475363, 2005年)。
(3) PLA2G4A: phospholipase A2, group IVA (cytosolic, calcium-dependent)
The protein of the PLA2G4A gene belongs to the group IV family of phospholipase A2 and is a catalyst for releasing arachidonic acid from membrane phospholipids (lipid-derived substances such as arachidonic acid regulate hemodynamics and inflammation (Rubin BB. Et al., J Biol Chem. Mar 4; 280 (9): 7519-29. Epub 2004 Oct 8. PMID: 15475363, 2005).

ソラフェニブ刺激でEAIを示したPLA2G4A遺伝子の一塩基多型rs10752979、rs10798069及びrs10911963の配列情報(GeneChip(登録商標)Human Mapping 500K array(Affymetrix社製))は下記である。
rs10752979:
tgggcctgaaatacaa[C/T]gagaaaatgctcttga(配列番号10)
rs10798069:
catcctgccagagaga[A/C]aatttttgtgtaaagg(配列番号11)
rs10911963:
agaagcttaacaatga[A/G]ggttaatgatgcacca(配列番号12)
The sequence information (GeneChip (registered trademark) Human Mapping 500K array (Affymetrix)) of single nucleotide polymorphisms rs10752979, rs10798069, and rs10911963 of the PLA2G4A gene that showed EAI by sorafenib stimulation is as follows.
rs10752979:
tgggcctgaaatacaa [C / T] gagaaaatgctcttga (SEQ ID NO: 10)
rs10798069:
catcctgccagagaga [A / C] aatttttgtgtaaagg (SEQ ID NO: 11)
rs10911963:
agaagcttaacaatga [A / G] ggttaatgatgcacca (SEQ ID NO: 12)

(4) IL1R2:interleukin 1 receptor, type II
IL1R2遺伝子のタンパク質はサイトカインレセプターとして有名であり、インターロイキンalpha (IL1A)、インターロイキンbeta (IL1B)、インターロイキン1レセプターI型(IL1R1/IL1RA)に結合して、リガンドの活性を阻害するデコイとして働いている(Re F. et al., J Exp Med. Feb 1;179(2):739-43. PMID: 8294881, 1994年)。
(4) IL1R2: interleukin 1 receptor, type II
The IL1R2 gene protein is well known as a cytokine receptor, and binds to interleukin alpha (IL1A), interleukin beta (IL1B), and interleukin 1 receptor type I (IL1R1 / IL1RA) as a decoy that inhibits the activity of the ligand. Working (Re F. et al., J Exp Med. Feb 1; 179 (2): 739-43. PMID: 8294881, 1994).

ソラフェニブ刺激でEAIを示したIL1R2遺伝子の一塩基多型rs4851527、rs3218872及びrs3218920の配列情報(GeneChip(登録商標)Human Mapping 500K array(Affymetrix社製))は下記である。
rs4851527:
acagctagtaagcaga[C/T]gttgaaatttaaaccc(配列番号13)
rs3218872:
tcctactccttcttga[C/T]ggatgaagttttaggc(配列番号14)
rs3218920:
cggtctacataagcaa[C/T]atctaatgacaatatc(配列番号15)
The sequence information of the single nucleotide polymorphisms rs4851527, rs3218872 and rs3218920 (GeneChip (registered trademark) Human Mapping 500K array (manufactured by Affymetrix)) of the IL1R2 gene that showed EAI by stimulation with sorafenib is as follows.
rs4851527:
acagctagtaagcaga [C / T] gttgaaatttaaaccc (SEQ ID NO: 13)
rs3218872:
tcctactccttcttga [C / T] ggatgaagttttaggc (SEQ ID NO: 14)
rs3218920:
cggtctacataagcaa [C / T] atctaatgacaatatc (SEQ ID NO: 15)

(5) DOCK2:dedicator of cytokinesis 2
DOCK2遺伝子のタンパク質は、リンパ球の走化性に不可欠な造血細胞のCDMファミリーである(Reif K. et al., Trends Cell Biol. Aug;12(8):368-73. PMID: 12191913, 2002年)。
(5) DOCK2: dedicator of cytokinesis 2
DOCK2 gene protein is a CDM family of hematopoietic cells essential for lymphocyte chemotaxis (Reif K. et al., Trends Cell Biol. Aug; 12 (8): 368-73. PMID: 12191913, 2002) Year).

ソラフェニブ刺激でEAIを示したDOCK2遺伝子の一塩基多型rs900464、rs264846、rs90213、rs966595、rs4867895、rs11134600、rs2287727及びrs1316638の配列情報(GeneChip(登録商標)Human Mapping 500K array(Affymetrix社製))は下記である。
rs900464:
gttttaaagatggaaa[C/G]gatgtggatatgtaga(配列番号16)
rs264846:
aggcctggattaagaa[A/T]gaaatcaaacaaggta(配列番号17)
rs90213:
ctaaatagtgttagga[C/T]gttcagttattcagtt(配列番号18)
rs966595:
gccataaaattgacta[C/T]agccagtgtccttcaa(配列番号19)
rs4867895:
ctgctgcctaccaaat[G/T]aagtcataaatgcatt(配列番号20)
rs11134600:
atgaggtaccaatacc[A/G]catactgggaaatata(配列番号21)
rs2287727:
ggatggagaagccaat[G/T]agccgtctcatgtccc(配列番号22)
rs1316638
ctttcttcttcttacc[A/G]tcctatgtacagcttc(配列番号23)
Single nucleotide polymorphisms of DOCK2 gene that showed EAI by sorafenib stimulation rs900464, rs264846, rs90213, rs966595, rs4867895, rs11134600, rs2287727 and rs1316638 sequence information (GeneChip (registered trademark) Human Mapping 500K array (Affymetrix)) It is.
rs900464:
gttttaaagatggaaa [C / G] gatgtggatatgtaga (SEQ ID NO: 16)
rs264846:
aggcctggattaagaa [A / T] gaaatcaaacaaggta (SEQ ID NO: 17)
rs90213:
ctaaatagtgttagga [C / T] gttcagttattcagtt (SEQ ID NO: 18)
rs966595:
gccataaaattgacta [C / T] agccagtgtccttcaa (SEQ ID NO: 19)
rs4867895:
ctgctgcctaccaaat [G / T] aagtcataaatgcatt (SEQ ID NO: 20)
rs11134600:
atgaggtaccaatacc [A / G] catactgggaaatata (SEQ ID NO: 21)
rs2287727:
ggatggagaagccaat [G / T] agccgtctcatgtccc (SEQ ID NO: 22)
rs1316638
ctttcttcttcttacc [A / G] tcctatgtacagcttc (SEQ ID NO: 23)

さらに、このDOCK2遺伝子の遺伝子多型(rs11134600)の表現型を検討した。一般的に、ソラフェニブの副作用は人種間で異なり(日本人>白人>黒人の順に発症頻度が高い)、このDOCK2遺伝子の遺伝子多型で人種間に違いがあるのか検討した。ソラフェニブ刺激で特異的に得られた遺伝子多型を人種間のアレル頻度データ(Entrez SNPの公開データ:http://www.ncbi.nlm.nih.gov/sites/entrez?db=snp&cmd=search&term=を参照)をリスト化した。その結果、上述したDOCK2のrs11134600がソラフェニブ刺激で影響度が異なる遺伝子多型であることがわかった(図3)。   Furthermore, the phenotype of this DOCK2 gene polymorphism (rs11134600) was examined. In general, the side effects of sorafenib differed between races (increased in the order of Japanese> Caucasian> black), and we examined whether there are differences between races due to this DOCK2 gene polymorphism. Allele frequency data between races (specific data of Entrez SNP: http://www.ncbi.nlm.nih.gov/sites/entrez?db=snp&cmd=search&term) (See =). As a result, it was found that the above-mentioned DOCK2 rs11134600 is a genetic polymorphism having different degrees of influence by sorafenib stimulation (FIG. 3).

この結果から、将来的な展望としては、本発明で見つかった遺伝子多型を臨床検体のDNA でSNPsタイピングすることにより、ソラフェニブ刺激で起こる副作用遺伝子を明確化できると考えた。   From this result, it was considered that a side effect gene caused by sorafenib stimulation could be clarified as a future prospect by typing SNPs of DNA polymorphisms found in the present invention with DNA of clinical specimens.

(6) ESR1:estrogen receptor 1
ESR1遺伝子のタンパク質はエストロゲンレセプターであり、ホルモンやDNAの結合、転写活性で重要な役割を果たしているリガンド活性化転写因子である。また、このエストロゲンレセプターは、乳癌、子宮体癌及び骨粗鬆症の発症にも関係している(Ali S. et al., J Mammary Gland Biol Neoplasia. Jul;5(3):271-81. PMID: 14973389, 2000年; Wedren S. et al., BMC Cancer. Nov 6;8:322. PMID: 18990228, 2008年 ; Ferrari S. et al., Best Pract Res Clin Endocrinol Metab. Oct;22(5):723-35. PMID: 19028354, 2008年)。
(6) ESR1: estrogen receptor 1
The ESR1 protein is an estrogen receptor, a ligand-activated transcription factor that plays an important role in hormone and DNA binding and transcriptional activity. This estrogen receptor has also been implicated in the development of breast cancer, endometrial cancer and osteoporosis (Ali S. et al., J Mammary Gland Biol Neoplasia. Jul; 5 (3): 271-81. PMID: 14973389 , 2000; Wedren S. et al., BMC Cancer. Nov 6; 8: 322.PMID: 18990228, 2008; Ferrari S. et al., Best Pract Res Clin Endocrinol Metab. Oct; 22 (5): 723 -35. PMID: 19028354, 2008).

ソラフェニブ刺激でEAIを示したESR1遺伝子の一塩基多型rs9371557及びrs3798573の配列情報(GeneChip(登録商標)Human Mapping 500K array(Affymetrix社製))は、下記である。
rs9371557:
gggtacatggtacaga[C/T]gaagatcactatgaag(配列番号24)
rs3798573:
tgccaaatccaaatga[C/T]ggacgttgcagaacac(配列番号25)
The sequence information of the single nucleotide polymorphisms rs9371557 and rs3798573 of the ESR1 gene that showed EAI by sorafenib stimulation (GeneChip (registered trademark) Human Mapping 500K array (manufactured by Affymetrix)) is as follows.
rs9371557:
gggtacatggtacaga [C / T] gaagatcactatgaag (SEQ ID NO: 24)
rs3798573:
tgccaaatccaaatga [C / T] ggacgttgcagaacac (SEQ ID NO: 25)

(7) C5:complement component 5
C5遺伝子のタンパク質は補体の構成成分であり、炎症や細胞死の過程において重要な役割をしている(DiScipio RG. et al., Int Immunopharmacol. Dec 20;7(14):1909-23. PMID: 18039528, 2007年)。
(7) C5: complement component 5
The protein of the C5 gene is a component of complement and plays an important role in the process of inflammation and cell death (DiScipio RG. Et al., Int Immunopharmacol. Dec 20; 7 (14): 1909-23. PMID: 18039528, 2007).

ソラフェニブ刺激でEAIを示したC5遺伝子の一塩基多型rs10985112の配列情報(GeneChip(登録商標)Human Mapping 500K array(Affymetrix社製))は下記である。
rs10985112:
ggatgctggcacataa[A/G]acaagaaaacaaacag(配列番号26)
The sequence information of the single nucleotide polymorphism rs10985112 (GeneChip (registered trademark) Human Mapping 500K array (manufactured by Affymetrix)) of the C5 gene that showed EAI by sorafenib stimulation is as follows.
rs10985112:
ggatgctggcacataa [A / G] acaagaaaacaaacag (SEQ ID NO: 26)

(8) PLCB1:phospholipase C, beta 1 (phosphoinositide-specific)
PLCB1遺伝子のタンパク質は、ホスファチジルイノシトール-4,5-二リン酸からのイノシトール1,4,5-三リン酸及びジアシルグリセロールの形成における触媒として機能している。細胞外の刺激を細胞内に伝えるシグナル伝達において、重要な役割をしている(Fantuzzi L. et al., Blood. Apr 1; 111(7): 3355-63. PMID: 18203956, 2008年)。
(8) PLCB1: phospholipase C, beta 1 (phosphoinositide-specific)
The protein of the PLCB1 gene functions as a catalyst in the formation of inositol 1,4,5-triphosphate and diacylglycerol from phosphatidylinositol-4,5-diphosphate. It plays an important role in signal transduction of extracellular stimuli into cells (Fantuzzi L. et al., Blood. Apr 1; 111 (7): 3355-63. PMID: 18203956, 2008).

ソラフェニブ刺激でEAIを示したPLCB1遺伝子の一塩基多型rs2235212、rs6055624、rs2294257、rs2180532、rs10485723、rs1156958、rs1237829、rs2050090、rs6055925、rs6039215、rs6140677、rs6133610、rs6133621、rs13040543、rs10485727、rs6118343、rs6056198、rs6086627、rs3848831及びrs6086678の配列情報(GeneChip(登録商標)Human Mapping 500K array(Affymetrix社製))は下記である。
rs2235212:
ttaccagaaattaaag[C/T]caccagagtggttgct(配列番号27)
rs6055624:
cttgattagcttacta[C/T]gtactggctgactaca(配列番号28)
rs2294257:
cccttctagccaaaaa[C/T]gtgttcagttagacat(配列番号29)
rs2180532:
aaaaaagccatgaaag[A/T]ctgatatttcctagaa(配列番号30)
rs10485723:
catagaaggttaccta[C/T]atcattgccttgacct(配列番号31)
rs1156958:
tattttaccggtaccc[C/T]atagtcctcaaaatca(配列番号32)
rs1237829:
tctggtgtaatttcaa[C/T]gtaaatccaatttgtt(配列番号33)
rs2050090:
caggtcaggttttgac[A/G]gctaatgaattataga(配列番号34)
rs6055925:
gaggggtattaatgaa[C/G]tgtcaaatatacatag(配列番号35)
rs6039215
gaaagcagttcgacaa[A/T]cttaaaactgcattac(配列番号36)
rs6140677:
taaagaaatgcgttca[A/G]taagcatcaggtactt(配列番号37)
rs6133610:
gcttgaaaaccactgc[A/G]attgattaaggtaagt(配列番号38)
rs6133621:
catctagacagcttga[C/T]aaatggcatgactaca(配列番号39)
rs13040543:
tgtactgctaagcctc[A/G]aaaatccaagctgaaa(配列番号40)
rs10485727:
taaaggctattgccaa[C/T]gtttccagagctttca(配列番号41)
rs6118343:
ctgtaaaaaactaata[C/T]gctaacaacgaattct(配列番号42)
rs6056198:
caggacaggctagtaa[A/C]acaagatatgcctgga(配列番号43)
rs6086627:
atggagagtaacatgg[A/G]aagtttaaccaggtgg(配列番号44)
rs3848831:
atttggatctacttag[C/T]attttgcctacctcgt(配列番号45)
rs6086678:
tacccagtcccaataa[A/T]ttaaagcaaaaactgt(配列番号46)
Single nucleotide polymorphisms of PLCB1 gene that showed EAI by sorafenib stimulation rs2235212, rs6055624, rs2294257, rs2180532, rs10485723, rs1156958, rs1237829, rs2050090, rs6055925, rs6039215, rs6140677, rs6133610, rs6133621, rs13040543, rs10485727, 605 The sequence information of rs3848831 and rs6086678 (GeneChip (registered trademark) Human Mapping 500K array (manufactured by Affymetrix)) is as follows.
rs2235212:
ttaccagaaattaaag [C / T] caccagagtggttgct (SEQ ID NO: 27)
rs6055624:
cttgattagcttacta [C / T] gtactggctgactaca (SEQ ID NO: 28)
rs2294257:
cccttctagccaaaaa [C / T] gtgttcagttagacat (SEQ ID NO: 29)
rs2180532:
aaaaaagccatgaaag [A / T] ctgatatttcctagaa (SEQ ID NO: 30)
rs10485723:
catagaaggttaccta [C / T] atcattgccttgacct (SEQ ID NO: 31)
rs1156958:
tattttaccggtaccc [C / T] atagtcctcaaaatca (SEQ ID NO: 32)
rs1237829:
tctggtgtaatttcaa [C / T] gtaaatccaatttgtt (SEQ ID NO: 33)
rs2050090:
caggtcaggttttgac [A / G] gctaatgaattataga (SEQ ID NO: 34)
rs6055925:
gaggggtattaatgaa [C / G] tgtcaaatatacatag (SEQ ID NO: 35)
rs6039215
gaaagcagttcgacaa [A / T] cttaaaactgcattac (SEQ ID NO: 36)
rs6140677:
taaagaaatgcgttca [A / G] taagcatcaggtactt (SEQ ID NO: 37)
rs6133610:
gcttgaaaaccactgc [A / G] attgattaaggtaagt (SEQ ID NO: 38)
rs6133621:
catctagacagcttga [C / T] aaatggcatgactaca (SEQ ID NO: 39)
rs13040543:
tgtactgctaagcctc [A / G] aaaatccaagctgaaa (SEQ ID NO: 40)
rs10485727:
taaaggctattgccaa [C / T] gtttccagagctttca (SEQ ID NO: 41)
rs6118343:
ctgtaaaaaactaata [C / T] gctaacaacgaattct (SEQ ID NO: 42)
rs6056198:
caggacaggctagtaa [A / C] acaagatatgcctgga (SEQ ID NO: 43)
rs6086627:
atggagagtaacatgg [A / G] aagtttaaccaggtgg (SEQ ID NO: 44)
rs3848831:
atttggatctacttag [C / T] attttgcctacctcgt (SEQ ID NO: 45)
rs6086678:
tacccagtcccaataa [A / T] ttaaagcaaaaactgt (SEQ ID NO: 46)

(9) PNLIPRP3:pancreatic lipase-related protein 3
PNLIPRP3は肝細胞癌で高発現している(Saelee P. et al., Asian Pac J Cancer Prev. Jul-Sep;10(3):501-6. PMID: 19640199, 2009年)。
(9) PNLIPRP3: pancreatic lipase-related protein 3
PNLIPRP3 is highly expressed in hepatocellular carcinoma (Saelee P. et al., Asian Pac J Cancer Prev. Jul-Sep; 10 (3): 501-6. PMID: 19640199, 2009).

ソラフェニブ刺激でEAIを示したPNLIPRP3遺伝子の一塩基多型rs1431485の配列情報(GeneChip(登録商標)Human Mapping 500K array(Affymetrix社製))は下記である。
rs1431485:
tttaagagcctttgca[C/T]ggttccacagttgcat(配列番号47)
The sequence information of the single nucleotide polymorphism rs1431485 (GeneChip (registered trademark) Human Mapping 500K array (manufactured by Affymetrix)) of the PNLIPRP3 gene that showed EAI by stimulation with sorafenib is as follows.
rs1431485:
tttaagagcctttgca [C / T] ggttccacagttgcat (SEQ ID NO: 47)

(10) LIPC:lipase, hepatic
LIPCは肝性トリグリセリドリパーゼであり、肝臓で発現している。LIPCの機能はトリグリセリドの加水分解や、レセプターによりリポタンパク質を取り込む時の配位及び架橋因子として働いている。LIPCは2型糖尿病のリスク因子としても報告されている(Todorova B. et al., J Clin Endocrinol Metab. May;89(5):2019-23. PMID: 15126514, 2004年)。
(10) LIPC: lipase, hepatic
LIPC is a hepatic triglyceride lipase and is expressed in the liver. LIPC functions as a coordinating and crosslinking factor when hydrolyzing triglycerides and taking up lipoproteins by receptors. LIPC has also been reported as a risk factor for type 2 diabetes (Todorova B. et al., J Clin Endocrinol Metab. May; 89 (5): 2019-23. PMID: 15126514, 2004).

ソラフェニブ刺激でEAIを示したLIPC遺伝子の一塩基多型rs12438071、rs4775047、rs9920144、rs7179747及びrs3751542の配列情報(GeneChip(登録商標)Human Mapping 500K array(Affymetrix社製))は下記である。
rs12438071:
tcttgatactactaag[C/T]caccgaggagccgtgg(配列番号48)
rs4775047:
aatgattgagtttcaa[C/T]gtgtccttatttcatt(配列番号49)
rs9920144:
gtggcatatcgtaaac[A/G]gggtgccttgtaggcc(配列番号50)
rs7179747:
gaacttgggcctaaaa[G/T]ctttctgttttatcac(配列番号51)
rs3751542:
gagtattattaggccc[C/T]agtgatggagtacaga(配列番号52)
The sequence information of the single nucleotide polymorphisms rs12438071, rs4775047, rs9920144, rs7179747, and rs3751542 of the LIPC gene that showed EAI by sorafenib stimulation (GeneChip (registered trademark) Human Mapping 500K array (Affymetrix)) is as follows.
rs12438071:
tcttgatactactaag [C / T] caccgaggagccgtgg (SEQ ID NO: 48)
rs4775047:
aatgattgagtttcaa [C / T] gtgtccttatttcatt (SEQ ID NO: 49)
rs9920144:
gtggcatatcgtaaac [A / G] gggtgccttgtaggcc (SEQ ID NO: 50)
rs7179747:
gaacttgggcctaaaa [G / T] ctttctgttttatcac (SEQ ID NO: 51)
rs3751542:
gagtattattaggccc [C / T] agtgatggagtacaga (SEQ ID NO: 52)

実施例2 ソラフェニブ刺激応答性に関与する遺伝子多型を検索する方法
本実施例においては、ExpressGenotyping法のデータからソラフェニブ刺激応答性に関与する遺伝子多型を検索する方法を開発した。
Example 2 Method for Searching for Gene Polymorphisms Involved in Sorafenib Stimulus Responsiveness In this example, a method for searching for gene polymorphisms involved in sorafenib stimulus responsiveness was developed from the data of ExpressGenotyping method.

薬剤曝露によって顕在化する遺伝子発現量のアレル間の違いを示すSNPsを選び出すため、ソラフェニブ刺激群のcDNAの正確なシグナル強度[(ロ)細胞に薬剤を曝露したEG法の結果]/DMSO群のcDNAの正確なシグナル強度[(イ)細胞に溶媒のみを曝露したEG法の結果]の比を算出し、その比が1.5倍以上のプローブをソラフェニブ刺激群特異的にアレル間で発現量が異なる遺伝子(EAIを示す遺伝子多型)として絞り込んだ。下記にそのデータの処理方法を述べる。
(i) EG法のアルゴリズムで処理した(イ)10検体分のDMSO _nsp_sty file及び(ロ)10検体分のSorafenib_nsp_sty fileのそれぞれの結果をtxt fileで収得した。
(ii) (イ)及び(ロ)のそれぞれのfileをProbe IDを利用して、Microsoft Office Access 2007(Microsoft社)上で結合した。
(iii) 結合したそれぞれのfileでgenome callが、ヘテロ(AB call)のプローブのみを収得した(Microsoft Office Excel 2007(Microsoft社)を使用)。
(iv) 結合したそれぞれのfileで遺伝子領域(3UTR、5UTR、CDS、exon及びintron)のみを収得した(Microsoft Office Excel 2007(Microsoft社)を使用)。
(v) 結合したそれぞれのfileで(ロ)Sora AI[adj ratio(upper)/(イ)adj ratio(lower)]/DMSO AI[adj ratio(upper)/adj ratio(lower)]の比を計算し、その比が1.5以上のプローブをソラフェニブ刺激群で特異的なEAIプローブとして収得した(Microsoft Office Excel 2007(Microsoft社)を使用)。
(vi) 10検体分のEAIプローブのfileをMicrosoft Office Access 2007(Microsoft社)上で結合して、EAIプローブの数をカウントした(結合にはProbe IDを利用した)。
In order to select SNPs that show differences between alleles of gene expression levels that are manifested by drug exposure, the exact signal intensity of the cDNA of the sorafenib-stimulated group [(b) Results of the EG method in which the drug was exposed to cells] / DMSO group Calculate the ratio of the exact signal intensity of the cDNA [(b) Result of EG method in which cells were exposed to solvent only], and the expression level of the probe with a ratio of 1.5 times or more differs between alleles specifically for the sorafenib stimulation group Narrowed down as genes (gene polymorphisms showing EAI). The data processing method is described below.
(i) The results of (b) 10 samples of DMSO_nsp_sty file and (b) 10 samples of Sorafenib_nsp_sty file processed by the EG algorithm were obtained as txt files.
(ii) The files (a) and (b) were combined on Microsoft Office Access 2007 (Microsoft) using Probe ID.
(iii) Only probes with a heterozygous call (AB call) were obtained from each of the combined files (using Microsoft Office Excel 2007 (Microsoft)).
(iv) Only the gene regions (3UTR, 5UTR, CDS, exon, and intron) were obtained from each linked file (using Microsoft Office Excel 2007 (Microsoft)).
(v) Calculate the ratio of (b) Sora AI [adj ratio (upper) / (b) adj ratio (lower)] / DMSO AI [adj ratio (upper) / adj ratio (lower)] with each file combined Then, probes with a ratio of 1.5 or more were obtained as specific EAI probes in the sorafenib stimulation group (using Microsoft Office Excel 2007 (Microsoft)).
(vi) The EAI probe files for 10 samples were combined on Microsoft Office Access 2007 (Microsoft), and the number of EAI probes was counted (probe ID was used for binding).

以上の方法により、ソラフェニブ刺激群特異的にアレル間で発現量が異なる遺伝子(遺伝子多型)を収得した。   By the above method, genes (gene polymorphisms) having different expression levels between alleles were obtained specifically for the sorafenib stimulation group.

本発明の方法、プローブ、基板を利用して、ソラフェニブの個人ごとに異なる応答性を予測することが可能である。   Using the method, probe, and substrate of the present invention, it is possible to predict different responsiveness for each individual of sorafenib.

配列番号1〜52 合成 SEQ ID NOs: 1 to 52

Claims (15)

ソラフェニブ刺激でアレル間における発現量に違いが生じる以下の(a)〜(j)のいずれかの遺伝子における、発現量の違いを判定することができる遺伝子多型をin vitroで検出し、ソラフェニブを投与する被験体のソラフェニブの応答性を予測する方法:
(a) dihydropyrimidine dehydrogenase(DPYD)遺伝子;
(b) CD247 molecule遺伝子;
(c) phospholipase A2, group IVA (cytosolic, calcium-dependent)(PLA2G4A)遺伝子;
(d) interleukin 1 receptor, type II(IL1R2)遺伝子;
(e) dedicator of cytokinesis 2(DOCK2)遺伝子;
(f) estrogen receptor 1 (ESR1)遺伝子;
(g) complement component 5(C5)遺伝子;
(h) phospholipase C, beta 1 (phosphoinositide-specific)(PLBC1)遺伝子;
(i) pancreatic lipase-related protein 3(PNLIPRP3)遺伝子;及び
(j) lipase, hepatic(LIPC)遺伝子。
Differences in expression levels between alleles caused by sorafenib stimulation In vitro detection of gene polymorphisms that can determine differences in expression levels in any of the genes (a) to (j) below. Methods for predicting responsiveness of sorafenib in an administered subject:
(a) the dihydropyrimidine dehydrogenase (DPYD) gene;
(b) the CD247 molecule gene;
(c) phospholipase A2, group IVA (cytosolic, calcium-dependent) (PLA2G4A) gene;
(d) interleukin 1 receptor, type II (IL1R2) gene;
(e) dedicator of cytokinesis 2 (DOCK2) gene;
(f) estrogen receptor 1 (ESR1) gene;
(g) complement component 5 (C5) gene;
(h) phospholipase C, beta 1 (phosphoinositide-specific) (PLBC1) gene;
(i) the pancreatic lipase-related protein 3 (PNLIPRP3) gene; and
(j) lipase, hepatic (LIPC) gene.
(a)〜(j)における、発現量の違いを判定できる遺伝子多型が以下のいずれかである、請求項1記載のソラフェニブを投与する被験体のソラフェニブの応答性を予測する方法:
(i)dihydropyrimidine dehydrogenase(DPYD)遺伝子における、配列番号1〜8のいずれかで表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(ii)CD247 molecule遺伝子における、配列番号9で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(iii)phospholipase A2, group IVA (cytosolic, calcium-dependent)(PLA2G4A)遺伝子における、配列番号10〜12のいずれかで表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(iv)interleukin 1 receptor, type II(IL1R2)遺伝子における、配列番号13〜15のいずれかで表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(v)dedicator of cytokinesis 2(DOCK2)遺伝子における、配列番号16〜23のいずれかで表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(vi)estrogen receptor 1 (ESR1)遺伝子における、配列番号24又は25で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(vii)complement component 5(C5)遺伝子における、配列番号26で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(viii) phospholipase C, beta 1 (phosphoinositide-specific)(PLBC)遺伝子における、配列番号27〜46で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(ix) pancreatic lipase-related protein 3(PNLIPRP3)遺伝子における、配列番号47で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;又は
(x) lipase, hepatic(LIPC)遺伝子における、配列番号48〜52で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位。
The method for predicting responsiveness of sorafenib in a subject to which sorafenib is administered according to claim 1, wherein the gene polymorphism capable of determining the difference in expression level in (a) to (j) is any of the following:
(I) a single nucleotide polymorphic site present at the position of the 16th base in the partial sequence represented by any one of SEQ ID NOs: 1 to 8 in the dihydropyrimidine dehydrogenase (DPYD) gene;
(ii) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NO: 9 in the CD247 molecule gene;
(iii) A single nucleotide polymorphism present at the position of the 16th base in the partial sequence represented by any of SEQ ID NOs: 10 to 12 in the phospholipase A2, group IVA (cytosolic, calcium-dependent) (PLA2G4A) gene Site;
(iv) a single nucleotide polymorphic site present at the position of the 16th base in the partial sequence represented by any of SEQ ID NOs: 13 to 15 in the interleukin 1 receptor, type II (IL1R2) gene;
(v) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by any of SEQ ID NOs: 16 to 23 in the dedicator of cytokinesis 2 (DOCK2) gene;
(vi) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NO: 24 or 25 in the estrogen receptor 1 (ESR1) gene;
(vii) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NO: 26 in the complement component 5 (C5) gene;
(viii) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NOs: 27 to 46 in the phospholipase C, beta 1 (phosphoinositide-specific) (PLBC) gene;
(ix) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NO: 47 in the pancreatic lipase-related protein 3 (PNLIPRP3) gene; or
(x) A single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NOs: 48 to 52 in the lipase, hepatic (LIPC) gene.
(a)〜(j)における、発現量の違いを判定できる遺伝子多型が以下のいずれかである、請求項1記載のソラフェニブを投与する被験体のソラフェニブの応答性を予測する方法:
(i)dihydropyrimidine dehydrogenase(DPYD)遺伝子における、一塩基多型rs10449721、rs10875047、rs11165805、rs11165867、rs6687374、rs4949952、rs11165887及びrs10875097、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(ii)CD247 molecule遺伝子における、一塩基多型rs864537、該一塩基多型の近傍に存在する遺伝子多型、及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(iii)phospholipase A2, group IVA (cytosolic, calcium-dependent)(PLA2G4A)遺伝子における、一塩基多型rs10752979、rs10798069及びrs10911963、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(iv)interleukin 1 receptor, type II(IL1R2)遺伝子における、一塩基多型rs4851527、rs3218872及びrs3218920、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(v)dedicator of cytokinesis 2(DOCK2)遺伝子における、一塩基多型rs900464、rs264846、rs90213、rs966595、rs4867895、rs11134600、rs2287727及びrs1316638、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(vi)estrogen receptor 1 (ESR1)遺伝子における、一塩基多型rs9371557及びrs3798573、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(vii)complement component 5(C5)遺伝子における、一塩基多型rs10985112、該一塩基多型の近傍に存在する遺伝子多型、及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(viii)phospholipase C, beta 1 (phosphoinositide-specific)(PLBC)遺伝子における、一塩基多型rs2235212、rs6055624、rs2294257、rs2180532、rs10485723、rs1156958、rs1237829、rs2050090、rs6055925、rs6039215、rs6140677、rs6133610、rs6133621、rs13040543、rs10485727、rs6118343、rs6056198、rs6086627、rs3848831及びrs6086678、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(ix) pancreatic lipase-related protein 3(PNLIPRP3)遺伝子における、一塩基多型rs1431485、該該一塩基多型の近傍に存在する遺伝子多型、及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、又は
(x) lipase, hepatic(LIPC)遺伝子における、一塩基多型rs12438071、rs4775047、rs9920144、rs7179747及びrs3751542、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型。
The method for predicting responsiveness of sorafenib in a subject to which sorafenib is administered according to claim 1, wherein the gene polymorphism capable of determining the difference in expression level in (a) to (j) is any of the following:
(i) single nucleotide polymorphisms in the dihydropyrimidine dehydrogenase (DPYD) gene rs10449721, rs10875047, rs11165805, rs11165867, rs6687374, rs4949952, rs11165887 and rs10875097, and the gene polymorphisms in the vicinity of the single nucleotide polymorphism and the single nucleotide polymorphism At least one polymorphism selected from the group consisting of genetic polymorphisms in linkage disequilibrium with the type,
(ii) selected from the group consisting of a single nucleotide polymorphism rs864537, a gene polymorphism present in the vicinity of the single nucleotide polymorphism, and a gene polymorphism in linkage disequilibrium with the single nucleotide polymorphism in the CD247 molecule gene At least one polymorph,
(iii) In the phospholipase A2, group IVA (cytosolic, calcium-dependent) (PLA2G4A) gene, the single nucleotide polymorphisms rs10752979, rs10798069 and rs10911963, the gene polymorphism present in the vicinity of the single nucleotide polymorphism and the single nucleotide polymorphism At least one polymorphism selected from the group consisting of genetic polymorphisms in linkage disequilibrium with the type,
(iv) In the interleukin 1 receptor, type II (IL1R2) gene, the single nucleotide polymorphisms rs4851527, rs3218872 and rs3218920, the gene polymorphisms present in the vicinity of the single nucleotide polymorphisms and linkage disequilibrium with the single nucleotide polymorphisms At least one polymorphism selected from the group consisting of a genetic polymorphism,
(v) single nucleotide polymorphisms in the dedicator of cytokinesis 2 (DOCK2) gene rs900464, rs264846, rs90213, rs966595, rs4867895, rs11134600, rs2287727 and rs1316638, and the gene polymorphism present in the vicinity of the single nucleotide polymorphism and the single nucleotide At least one polymorphism selected from the group consisting of genetic polymorphisms in linkage disequilibrium with the base polymorphism,
(vi) From the single nucleotide polymorphisms rs9371557 and rs3798573 in the estrogen receptor 1 (ESR1) gene, the gene polymorphisms present in the vicinity of the single nucleotide polymorphism, and the gene polymorphism in linkage disequilibrium with the single nucleotide polymorphism At least one polymorphism selected from the group consisting of:
(vii) In the complement component 5 (C5) gene, a group consisting of a single nucleotide polymorphism rs10985112, a gene polymorphism present in the vicinity of the single nucleotide polymorphism, and a gene polymorphism in linkage disequilibrium with the single nucleotide polymorphism At least one polymorph selected from,
(viii) Single nucleotide polymorphisms in phospholipase C, beta 1 (phosphoinositide-specific) (PLBC) gene Rs10485727, rs6118343, rs6056198, rs6086627, rs3848831 and rs6086678, and a genetic polymorphism present in the vicinity of the single nucleotide polymorphism and at least selected from the group consisting of genetic polymorphisms in linkage disequilibrium with the single nucleotide polymorphism One polymorph,
(ix) In the pancreatic lipase-related protein 3 (PNLIPRP3) gene, a single nucleotide polymorphism rs1431485, a gene polymorphism present in the vicinity of the single nucleotide polymorphism, and a gene polymorphism in linkage disequilibrium with the single nucleotide polymorphism At least one polymorphism selected from the group consisting of types, or
(x) single nucleotide polymorphisms in lipase, hepatic (LIPC) genes rs12438071, rs4775047, rs9920144, rs7179747 and rs3751542, and gene polymorphisms in the vicinity of the single nucleotide polymorphism and linkage disequilibrium with the single nucleotide polymorphism At least one polymorphism selected from the group consisting of genetic polymorphisms in
ソラフェニブの応答性の予測が、被験体におけるソラフェニブの効果の予測又は副作用のタイプ若しくは程度の予測である、請求項1〜3のいずれか1項に記載のソラフェニブを投与する被験体のソラフェニブの応答性を予測する方法。   The response of sorafenib in a subject to which sorafenib is administered according to any one of claims 1 to 3, wherein the prediction of the response of sorafenib is a prediction of the effect of sorafenib or a prediction of the type or degree of side effects in the subject. How to predict gender. 以下の(i)〜(x)の一塩基多型部位を含むDNA断片からなるオリゴヌクレオチドのいずれかであって、以下の(i)〜(x)の遺伝子の10から30塩基からなる部分配列もしくはその部分配列に相補的な配列からなるオリゴヌクレオチド又はその標識物からなる、ソラフェニブを投与する被験体のソラフェニブの応答性を予測するためのプローブ:
(i)dihydropyrimidine dehydrogenase(DPYD)遺伝子における、配列番号1〜8のいずれかで表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(ii)CD247 molecule遺伝子における、配列番号9で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(iii)phospholipase A2, group IVA (cytosolic, calcium-dependent)(PLA2G4A)遺伝子における、配列番号10〜12のいずれかで表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(iv)interleukin 1 receptor, type II(IL1R2)遺伝子における、配列番号13〜15のいずれかで表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(v)dedicator of cytokinesis 2(DOCK2)遺伝子における、配列番号16〜23のいずれかで表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(vi)estrogen receptor 1 (ESR1)遺伝子における、配列番号24又は25で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(vii)complement component 5(C5)遺伝子における、配列番号26で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(viii) phospholipase C, beta 1 (phosphoinositide-specific)(PLBC)遺伝子における、配列番号27〜46で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(ix) pancreatic lipase-related protein 3(PNLIPRP3)遺伝子における、配列番号47で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;又は
(x) lipase, hepatic(LIPC)遺伝子における、配列番号48〜52で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位。
Any of the following oligonucleotides comprising a DNA fragment containing a single nucleotide polymorphic site of (i) to (x), the partial sequence consisting of 10 to 30 bases of the following genes (i) to (x) Alternatively, a probe for predicting the response of sorafenib in a subject to which sorafenib is administered, comprising an oligonucleotide having a sequence complementary to the partial sequence or a label thereof:
(I) a single nucleotide polymorphic site present at the position of the 16th base in the partial sequence represented by any one of SEQ ID NOs: 1 to 8 in the dihydropyrimidine dehydrogenase (DPYD) gene;
(ii) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NO: 9 in the CD247 molecule gene;
(iii) A single nucleotide polymorphism present at the position of the 16th base in the partial sequence represented by any of SEQ ID NOs: 10 to 12 in the phospholipase A2, group IVA (cytosolic, calcium-dependent) (PLA2G4A) gene Site;
(iv) a single nucleotide polymorphic site present at the position of the 16th base in the partial sequence represented by any of SEQ ID NOs: 13 to 15 in the interleukin 1 receptor, type II (IL1R2) gene;
(v) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by any of SEQ ID NOs: 16 to 23 in the dedicator of cytokinesis 2 (DOCK2) gene;
(vi) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NO: 24 or 25 in the estrogen receptor 1 (ESR1) gene;
(vii) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NO: 26 in the complement component 5 (C5) gene;
(viii) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NOs: 27 to 46 in the phospholipase C, beta 1 (phosphoinositide-specific) (PLBC) gene;
(ix) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NO: 47 in the pancreatic lipase-related protein 3 (PNLIPRP3) gene; or
(x) A single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NOs: 48 to 52 in the lipase, hepatic (LIPC) gene.
以下の(i)〜(x)の一塩基多型部位を含むDNA断片からなるオリゴヌクレオチドのいずれかであって、以下の(i)〜(x)の遺伝子の10から30塩基からなる部分配列もしくはその部分配列に相補的な配列からなるオリゴヌクレオチド又はその標識物からなる、ソラフェニブを投与する被験体のソラフェニブの応答性を予測するためのプローブ:
(i)dihydropyrimidine dehydrogenase(DPYD)遺伝子における、一塩基多型rs10449721、rs10875047、rs11165805、rs11165867、rs6687374、rs4949952、rs11165887及びrs10875097、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(ii)CD247 molecule遺伝子における、一塩基多型rs864537、該一塩基多型の近傍に存在する遺伝子多型、及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(iii)phospholipase A2, group IVA (cytosolic, calcium-dependent)(PLA2G4A)遺伝子における、一塩基多型rs10752979、rs10798069及びrs10911963、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(iv)interleukin 1 receptor, type II(IL1R2)遺伝子における、一塩基多型rs4851527、rs3218872及びrs3218920、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(v)dedicator of cytokinesis 2(DOCK2)遺伝子における、一塩基多型rs900464、rs264846、rs90213、rs966595、rs4867895、rs11134600、rs2287727及びrs1316638、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(vi)estrogen receptor 1 (ESR1)遺伝子における、一塩基多型rs9371557及びrs3798573、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(vii)complement component 5(C5)遺伝子における、一塩基多型rs10985112、該一塩基多型の近傍に存在する遺伝子多型、及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(viii)phospholipase C, beta 1 (phosphoinositide-specific)(PLBC)遺伝子における、一塩基多型rs2235212、rs6055624、rs2294257、rs2180532、rs10485723、rs1156958、rs1237829、rs2050090、rs6055925、rs6039215、rs6140677、rs6133610、rs6133621、rs13040543、rs10485727、rs6118343、rs6056198、rs6086627、rs3848831及びrs6086678、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(ix) pancreatic lipase-related protein 3(PNLIPRP3)遺伝子における、一塩基多型rs1431485、該該一塩基多型の近傍に存在する遺伝子多型、及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、又は
(x) lipase, hepatic(LIPC)遺伝子における、一塩基多型rs12438071、rs4775047、rs9920144、rs7179747及びrs3751542、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型。
Any of the following oligonucleotides comprising a DNA fragment containing a single nucleotide polymorphic site of (i) to (x), the partial sequence consisting of 10 to 30 bases of the following genes (i) to (x) Alternatively, a probe for predicting the response of sorafenib in a subject to which sorafenib is administered, comprising an oligonucleotide having a sequence complementary to the partial sequence or a label thereof:
(i) single nucleotide polymorphisms in the dihydropyrimidine dehydrogenase (DPYD) gene rs10449721, rs10875047, rs11165805, rs11165867, rs6687374, rs4949952, rs11165887 and rs10875097, and the gene polymorphisms in the vicinity of the single nucleotide polymorphism and the single nucleotide polymorphism At least one polymorphism selected from the group consisting of genetic polymorphisms in linkage disequilibrium with the type,
(ii) selected from the group consisting of a single nucleotide polymorphism rs864537, a gene polymorphism present in the vicinity of the single nucleotide polymorphism, and a gene polymorphism in linkage disequilibrium with the single nucleotide polymorphism in the CD247 molecule gene At least one polymorph,
(iii) In the phospholipase A2, group IVA (cytosolic, calcium-dependent) (PLA2G4A) gene, the single nucleotide polymorphisms rs10752979, rs10798069 and rs10911963, the gene polymorphism present in the vicinity of the single nucleotide polymorphism and the single nucleotide polymorphism At least one polymorphism selected from the group consisting of genetic polymorphisms in linkage disequilibrium with the type,
(iv) In the interleukin 1 receptor, type II (IL1R2) gene, the single nucleotide polymorphisms rs4851527, rs3218872 and rs3218920, the gene polymorphisms present in the vicinity of the single nucleotide polymorphisms and linkage disequilibrium with the single nucleotide polymorphisms At least one polymorphism selected from the group consisting of a genetic polymorphism,
(v) single nucleotide polymorphisms in the dedicator of cytokinesis 2 (DOCK2) gene rs900464, rs264846, rs90213, rs966595, rs4867895, rs11134600, rs2287727 and rs1316638, and gene polymorphisms present in the vicinity of the single nucleotide polymorphism and the single nucleotide At least one polymorphism selected from the group consisting of genetic polymorphisms in linkage disequilibrium with the base polymorphism,
(vi) From the single nucleotide polymorphisms rs9371557 and rs3798573 in the estrogen receptor 1 (ESR1) gene, the gene polymorphisms present in the vicinity of the single nucleotide polymorphism, and the gene polymorphism in linkage disequilibrium with the single nucleotide polymorphism At least one polymorphism selected from the group consisting of:
(vii) In the complement component 5 (C5) gene, a group consisting of a single nucleotide polymorphism rs10985112, a gene polymorphism present in the vicinity of the single nucleotide polymorphism, and a gene polymorphism in linkage disequilibrium with the single nucleotide polymorphism At least one polymorph selected from,
(viii) Single nucleotide polymorphisms in phospholipase C, beta 1 (phosphoinositide-specific) (PLBC) gene Rs10485727, rs6118343, rs6056198, rs6086627, rs3848831 and rs6086678, and a genetic polymorphism present in the vicinity of the single nucleotide polymorphism and at least selected from the group consisting of genetic polymorphisms in linkage disequilibrium with the single nucleotide polymorphism One polymorph,
(ix) In the pancreatic lipase-related protein 3 (PNLIPRP3) gene, a single nucleotide polymorphism rs1431485, a gene polymorphism present in the vicinity of the single nucleotide polymorphism, and a gene polymorphism in linkage disequilibrium with the single nucleotide polymorphism At least one polymorphism selected from the group consisting of types, or
(x) single nucleotide polymorphisms rs12438071, rs4775047, rs9920144, rs7179747 and rs3751542 in the lipase, hepatic (LIPC) gene, and gene polymorphisms present in the vicinity of the single nucleotide polymorphism and linkage disequilibrium with the single nucleotide polymorphism At least one polymorphism selected from the group consisting of genetic polymorphisms in
ソラフェニブの応答性の予測が、被験体におけるソラフェニブの効果の予測又は副作用のタイプ若しくは程度の予測である、請求項5又は6に記載のソラフェニブを投与する被験体のソラフェニブの応答性を予測するためのプローブ。   7. To predict sorafenib responsiveness in a subject to which sorafenib is administered according to claim 5 or 6, wherein the prediction of sorafenib responsiveness is prediction of the effect of sorafenib in a subject or prediction of the type or degree of side effects. Probe. 以下の(i)〜(x)の一塩基多型部位を含むDNA断片からなるオリゴヌクレオチドであって、以下の(i)〜(x)の遺伝子の10から30塩基からなる部分配列もしくはその部分配列に相補的な配列からなる少なくとも1つのオリゴヌクレオチド又はその標識物を固定化した、ソラフェニブを投与する被験体のソラフェニブの応答性を予測するための固定化基板:
(i)dihydropyrimidine dehydrogenase(DPYD)遺伝子における、配列番号1〜8のいずれかで表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(ii)CD247 molecule遺伝子における、配列番号9で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(iii)phospholipase A2, group IVA (cytosolic, calcium-dependent)(PLA2G4A)遺伝子における、配列番号10〜12のいずれかで表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(iv)interleukin 1 receptor, type II(IL1R2)遺伝子における、配列番号13〜15のいずれかで表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(v)dedicator of cytokinesis 2(DOCK2)遺伝子における、配列番号16〜23のいずれかで表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(vi)estrogen receptor 1 (ESR1)遺伝子における、配列番号24又は25で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(vii)complement component 5(C5)遺伝子における、配列番号26で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(viii) phospholipase C, beta 1 (phosphoinositide-specific)(PLBC)遺伝子における、配列番号27〜46で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(ix) pancreatic lipase-related protein 3(PNLIPRP3)遺伝子における、配列番号47で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;又は
(x) lipase, hepatic(LIPC)遺伝子における、配列番号48〜52で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位。
An oligonucleotide consisting of a DNA fragment containing the following single nucleotide polymorphic sites (i) to (x): a partial sequence consisting of 10 to 30 bases of the following genes (i) to (x) or a portion thereof: An immobilized substrate for predicting responsiveness of sorafenib in a subject to which sorafenib is administered, to which at least one oligonucleotide having a sequence complementary to the sequence or a label thereof is immobilized:
(i) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by any of SEQ ID NOs: 1 to 8 in the dihydropyrimidine dehydrogenase (DPYD) gene;
(ii) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NO: 9 in the CD247 molecule gene;
(iii) A single nucleotide polymorphism present at the position of the 16th base in the partial sequence represented by any of SEQ ID NOs: 10 to 12 in the phospholipase A2, group IVA (cytosolic, calcium-dependent) (PLA2G4A) gene Site;
(iv) a single nucleotide polymorphic site present at the position of the 16th base in the partial sequence represented by any of SEQ ID NOs: 13 to 15 in the interleukin 1 receptor, type II (IL1R2) gene;
(v) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by any of SEQ ID NOs: 16 to 23 in the dedicator of cytokinesis 2 (DOCK2) gene;
(vi) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NO: 24 or 25 in the estrogen receptor 1 (ESR1) gene;
(vii) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NO: 26 in the complement component 5 (C5) gene;
(viii) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NOs: 27 to 46 in the phospholipase C, beta 1 (phosphoinositide-specific) (PLBC) gene;
(ix) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NO: 47 in the pancreatic lipase-related protein 3 (PNLIPRP3) gene; or
(x) A single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NOs: 48 to 52 in the lipase, hepatic (LIPC) gene.
以下の(i)〜(x)の一塩基多型部位を含むDNA断片からなるオリゴヌクレオチドであって、以下の(i)〜(x)の遺伝子の10から30塩基からなる部分配列もしくはその部分配列に相補的な配列からなる少なくとも1つのオリゴヌクレオチド又はその標識物を固定化した、ソラフェニブを投与する被験体のソラフェニブの応答性を予測するための固定化基板:
(i)dihydropyrimidine dehydrogenase(DPYD)遺伝子における、一塩基多型rs10449721、rs10875047、rs11165805、rs11165867、rs6687374、rs4949952、rs11165887及びrs10875097、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(ii)CD247 molecule遺伝子における、一塩基多型rs864537、該一塩基多型の近傍に存在する遺伝子多型、及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(iii)phospholipase A2, group IVA (cytosolic, calcium-dependent)(PLA2G4A)遺伝子における、一塩基多型rs10752979、rs10798069及びrs10911963、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(iv)interleukin 1 receptor, type II(IL1R2)遺伝子における、一塩基多型rs4851527、rs3218872及びrs3218920、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(v)dedicator of cytokinesis 2(DOCK2)遺伝子における、一塩基多型rs900464、rs264846、rs90213、rs966595、rs4867895、rs11134600、rs2287727及びrs1316638、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(vi)estrogen receptor 1 (ESR1)遺伝子における、一塩基多型rs9371557及びrs3798573、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(vii)complement component 5(C5)遺伝子における、一塩基多型rs10985112、該一塩基多型の近傍に存在する遺伝子多型、及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(viii)phospholipase C, beta 1 (phosphoinositide-specific)(PLBC)遺伝子における、一塩基多型rs2235212、rs6055624、rs2294257、rs2180532、rs10485723、rs1156958、rs1237829、rs2050090、rs6055925、rs6039215、rs6140677、rs6133610、rs6133621、rs13040543、rs10485727、rs6118343、rs6056198、rs6086627、rs3848831及びrs6086678、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(ix) pancreatic lipase-related protein 3(PNLIPRP3)遺伝子における、一塩基多型rs1431485、該該一塩基多型の近傍に存在する遺伝子多型、及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、又は
(x) lipase, hepatic(LIPC)遺伝子における、一塩基多型rs12438071、rs4775047、rs9920144、rs7179747及びrs3751542、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型。
An oligonucleotide consisting of a DNA fragment containing the following single nucleotide polymorphic sites (i) to (x): a partial sequence consisting of 10 to 30 bases of the following genes (i) to (x) or a portion thereof: An immobilized substrate for predicting responsiveness of sorafenib in a subject to which sorafenib is administered, to which at least one oligonucleotide having a sequence complementary to the sequence or a label thereof is immobilized:
(i) single nucleotide polymorphisms in the dihydropyrimidine dehydrogenase (DPYD) gene rs10449721, rs10875047, rs11165805, rs11165867, rs6687374, rs4949952, rs11165887 and rs10875097, and the gene polymorphisms in the vicinity of the single nucleotide polymorphism and the single nucleotide polymorphism At least one polymorphism selected from the group consisting of genetic polymorphisms in linkage disequilibrium with the type,
(ii) selected from the group consisting of a single nucleotide polymorphism rs864537, a gene polymorphism present in the vicinity of the single nucleotide polymorphism, and a gene polymorphism in linkage disequilibrium with the single nucleotide polymorphism in the CD247 molecule gene At least one polymorph,
(iii) In the phospholipase A2, group IVA (cytosolic, calcium-dependent) (PLA2G4A) gene, the single nucleotide polymorphisms rs10752979, rs10798069 and rs10911963, the gene polymorphism present in the vicinity of the single nucleotide polymorphism and the single nucleotide polymorphism At least one polymorphism selected from the group consisting of genetic polymorphisms in linkage disequilibrium with the type,
(iv) In the interleukin 1 receptor, type II (IL1R2) gene, the single nucleotide polymorphisms rs4851527, rs3218872 and rs3218920, the gene polymorphisms present in the vicinity of the single nucleotide polymorphisms and linkage disequilibrium with the single nucleotide polymorphisms At least one polymorphism selected from the group consisting of a genetic polymorphism,
(v) single nucleotide polymorphisms in the dedicator of cytokinesis 2 (DOCK2) gene rs900464, rs264846, rs90213, rs966595, rs4867895, rs11134600, rs2287727 and rs1316638, and the gene polymorphism present in the vicinity of the single nucleotide polymorphism and the single nucleotide At least one polymorphism selected from the group consisting of genetic polymorphisms in linkage disequilibrium with the base polymorphism,
(vi) From the single nucleotide polymorphisms rs9371557 and rs3798573 in the estrogen receptor 1 (ESR1) gene, the gene polymorphisms present in the vicinity of the single nucleotide polymorphism, and the gene polymorphism in linkage disequilibrium with the single nucleotide polymorphism At least one polymorphism selected from the group consisting of:
(vii) In the complement component 5 (C5) gene, a group consisting of a single nucleotide polymorphism rs10985112, a gene polymorphism present in the vicinity of the single nucleotide polymorphism, and a gene polymorphism in linkage disequilibrium with the single nucleotide polymorphism At least one polymorph selected from,
(viii) Single nucleotide polymorphisms in phospholipase C, beta 1 (phosphoinositide-specific) (PLBC) gene Rs10485727, rs6118343, rs6056198, rs6086627, rs3848831 and rs6086678, and a genetic polymorphism present in the vicinity of the single nucleotide polymorphism and at least selected from the group consisting of genetic polymorphisms in linkage disequilibrium with the single nucleotide polymorphism One polymorph,
(ix) In the pancreatic lipase-related protein 3 (PNLIPRP3) gene, a single nucleotide polymorphism rs1431485, a gene polymorphism present in the vicinity of the single nucleotide polymorphism, and a gene polymorphism in linkage disequilibrium with the single nucleotide polymorphism At least one polymorphism selected from the group consisting of types, or
(x) single nucleotide polymorphisms in lipase, hepatic (LIPC) genes rs12438071, rs4775047, rs9920144, rs7179747 and rs3751542, and gene polymorphisms in the vicinity of the single nucleotide polymorphism and linkage disequilibrium with the single nucleotide polymorphism At least one polymorphism selected from the group consisting of genetic polymorphisms in
ソラフェニブの応答性の予測が、被験体におけるソラフェニブの効果の予測又は副作用のタイプ若しくは程度の予測である、請求項8又は9に記載のソラフェニブを投与する被験体のソラフェニブの応答性を予測するための固定化基板。   10. To predict sorafenib responsiveness in a subject administered sorafenib according to claim 8 or 9, wherein the prediction of sorafenib responsiveness is a prediction of the effect of sorafenib in a subject or a prediction of the type or extent of side effects. Immobilization board. 以下の(i)〜(x)の一塩基多型部位を含むDNA断片の増幅に用いる少なくとも一対のプライマーセットであって、以下の(i)〜(x)の遺伝子のDNA多型部位のうちの少なくとも1つの多型部位の3’側および5’側に存在する10から30塩基からなる部分配列もしくはその部分配列に相補的な配列からなるオリゴヌクレオチドからなる、ソラフェニブを投与する被験体のソラフェニブの応答性を予測するための一対のプライマーセット:
(i)dihydropyrimidine dehydrogenase(DPYD)遺伝子における、配列番号1〜8のいずれかで表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(ii)CD247 molecule遺伝子における、配列番号9で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(iii)phospholipase A2, group IVA (cytosolic, calcium-dependent)(PLA2G4A)遺伝子における、配列番号10〜12のいずれかで表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(iv)interleukin 1 receptor, type II(IL1R2)遺伝子における、配列番号13〜15のいずれかで表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(v)dedicator of cytokinesis 2(DOCK2)遺伝子における、配列番号16〜23のいずれかで表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(vi)estrogen receptor 1 (ESR1)遺伝子における、配列番号24又は25で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(vii)complement component 5(C5)遺伝子における、配列番号26で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(viii)phospholipase C, beta 1 (phosphoinositide-specific)(PLBC)遺伝子における、配列番号27〜46で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;
(ix) pancreatic lipase-related protein 3(PNLIPRP3)遺伝子における、配列番号47で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位;又は
(x) lipase, hepatic(LIPC)遺伝子における、配列番号48〜52で表される部分配列中の16番目の塩基の位置に存在する一塩基多型部位。
The following (i) to (x) are at least a pair of primer sets used for amplification of a DNA fragment containing a single nucleotide polymorphic site, and among the DNA polymorphic sites of the following genes (i) to (x) Sorafenib of a subject to which sorafenib is administered, comprising an oligonucleotide consisting of a partial sequence consisting of 10 to 30 bases present on the 3 ′ side and 5 ′ side of at least one polymorphic site or a sequence complementary to the partial sequence A pair of primer sets to predict the responsiveness of:
(i) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by any of SEQ ID NOs: 1 to 8 in the dihydropyrimidine dehydrogenase (DPYD) gene;
(ii) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NO: 9 in the CD247 molecule gene;
(iii) A single nucleotide polymorphism present at the position of the 16th base in the partial sequence represented by any of SEQ ID NOs: 10 to 12 in the phospholipase A2, group IVA (cytosolic, calcium-dependent) (PLA2G4A) gene Site;
(iv) a single nucleotide polymorphic site present at the position of the 16th base in the partial sequence represented by any of SEQ ID NOs: 13 to 15 in the interleukin 1 receptor, type II (IL1R2) gene;
(v) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by any of SEQ ID NOs: 16 to 23 in the dedicator of cytokinesis 2 (DOCK2) gene;
(vi) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NO: 24 or 25 in the estrogen receptor 1 (ESR1) gene;
(vii) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NO: 26 in the complement component 5 (C5) gene;
(viii) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NOs: 27 to 46 in the phospholipase C, beta 1 (phosphoinositide-specific) (PLBC) gene;
(ix) a single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NO: 47 in the pancreatic lipase-related protein 3 (PNLIPRP3) gene; or
(x) A single nucleotide polymorphism site present at the position of the 16th base in the partial sequence represented by SEQ ID NOs: 48 to 52 in the lipase, hepatic (LIPC) gene.
以下の(i)〜(x)の一塩基多型部位を含むDNA断片の増幅に用いる少なくとも一対のプライマーセットであって、以下の(i)〜(x)の遺伝子のDNA多型部位のうちの少なくとも1つの多型部位の3’側および5’側に存在する10から30塩基からなる部分配列もしくはその部分配列に相補的な配列からなるオリゴヌクレオチドからなる、ソラフェニブを投与する被験体のソラフェニブの応答性を予測するための一対のプライマーセット:
(i)dihydropyrimidine dehydrogenase(DPYD)遺伝子における、一塩基多型rs10449721、rs10875047、rs11165805、rs11165867、rs6687374、rs4949952、rs11165887及びrs10875097、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(ii)CD247 molecule遺伝子における、一塩基多型rs864537、該一塩基多型の近傍に存在する遺伝子多型、及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(iii)phospholipase A2, group IVA (cytosolic, calcium-dependent)(PLA2G4A)遺伝子における、一塩基多型rs10752979、rs10798069及びrs10911963、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(iv)interleukin 1 receptor, type II(IL1R2)遺伝子における、一塩基多型rs4851527、rs3218872及びrs3218920、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(v)dedicator of cytokinesis 2(DOCK2)遺伝子における、一塩基多型rs900464、rs264846、rs90213、rs966595、rs4867895、rs11134600、rs2287727及びrs1316638、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(vi)estrogen receptor 1 (ESR1)遺伝子における、一塩基多型rs9371557及びrs3798573、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(vii)complement component 5(C5)遺伝子における、一塩基多型rs10985112、該一塩基多型の近傍に存在する遺伝子多型、及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(viii)phospholipase C, beta 1 (phosphoinositide-specific)(PLBC)遺伝子における、一塩基多型rs2235212、rs6055624、rs2294257、rs2180532、rs10485723、rs1156958、rs1237829、rs2050090、rs6055925、rs6039215、rs6140677、rs6133610、rs6133621、rs13040543、rs10485727、rs6118343、rs6056198、rs6086627、rs3848831及びrs6086678、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、
(ix) pancreatic lipase-related protein 3(PNLIPRP3)遺伝子における、一塩基多型rs1431485、該該一塩基多型の近傍に存在する遺伝子多型、及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型、又は
(x) lipase, hepatic(LIPC)遺伝子における、一塩基多型rs12438071、rs4775047、rs9920144、rs7179747及びrs3751542、並びに該一塩基多型の近傍に存在する遺伝子多型及び該一塩基多型と連鎖不均衡にある遺伝子多型からなる群より選択される少なくとも1つの多型。
The following (i) to (x) are at least a pair of primer sets used for amplification of a DNA fragment containing a single nucleotide polymorphic site, and among the DNA polymorphic sites of the following genes (i) to (x) Sorafenib of a subject to which sorafenib is administered, comprising an oligonucleotide consisting of a partial sequence consisting of 10 to 30 bases present on the 3 ′ side and 5 ′ side of at least one polymorphic site or a sequence complementary to the partial sequence A pair of primer sets to predict the responsiveness of:
(i) single nucleotide polymorphisms in the dihydropyrimidine dehydrogenase (DPYD) gene rs10449721, rs10875047, rs11165805, rs11165867, rs6687374, rs4949952, rs11165887 and rs10875097, and the gene polymorphisms in the vicinity of the single nucleotide polymorphism and the single nucleotide polymorphism At least one polymorphism selected from the group consisting of genetic polymorphisms in linkage disequilibrium with the type,
(ii) selected from the group consisting of a single nucleotide polymorphism rs864537, a gene polymorphism present in the vicinity of the single nucleotide polymorphism, and a gene polymorphism in linkage disequilibrium with the single nucleotide polymorphism in the CD247 molecule gene At least one polymorph,
(iii) In the phospholipase A2, group IVA (cytosolic, calcium-dependent) (PLA2G4A) gene, the single nucleotide polymorphisms rs10752979, rs10798069 and rs10911963, the gene polymorphism present in the vicinity of the single nucleotide polymorphism and the single nucleotide polymorphism At least one polymorphism selected from the group consisting of genetic polymorphisms in linkage disequilibrium with the type,
(iv) In the interleukin 1 receptor, type II (IL1R2) gene, the single nucleotide polymorphisms rs4851527, rs3218872 and rs3218920, the gene polymorphisms present in the vicinity of the single nucleotide polymorphisms and linkage disequilibrium with the single nucleotide polymorphisms At least one polymorphism selected from the group consisting of a genetic polymorphism,
(v) single nucleotide polymorphisms in the dedicator of cytokinesis 2 (DOCK2) gene rs900464, rs264846, rs90213, rs966595, rs4867895, rs11134600, rs2287727 and rs1316638, and the gene polymorphism present in the vicinity of the single nucleotide polymorphism and the single nucleotide At least one polymorphism selected from the group consisting of genetic polymorphisms in linkage disequilibrium with the base polymorphism,
(vi) From the single nucleotide polymorphisms rs9371557 and rs3798573 in the estrogen receptor 1 (ESR1) gene, the gene polymorphisms present in the vicinity of the single nucleotide polymorphism, and the gene polymorphism in linkage disequilibrium with the single nucleotide polymorphism At least one polymorphism selected from the group consisting of:
(vii) In the complement component 5 (C5) gene, a group consisting of a single nucleotide polymorphism rs10985112, a gene polymorphism present in the vicinity of the single nucleotide polymorphism, and a gene polymorphism in linkage disequilibrium with the single nucleotide polymorphism At least one polymorph selected from,
(viii) Single nucleotide polymorphisms in phospholipase C, beta 1 (phosphoinositide-specific) (PLBC) gene Rs10485727, rs6118343, rs6056198, rs6086627, rs3848831 and rs6086678, and a genetic polymorphism present in the vicinity of the single nucleotide polymorphism and at least selected from the group consisting of genetic polymorphisms in linkage disequilibrium with the single nucleotide polymorphism One polymorph,
(ix) In the pancreatic lipase-related protein 3 (PNLIPRP3) gene, a single nucleotide polymorphism rs1431485, a gene polymorphism present in the vicinity of the single nucleotide polymorphism, and a gene polymorphism in linkage disequilibrium with the single nucleotide polymorphism At least one polymorphism selected from the group consisting of types, or
(x) single nucleotide polymorphisms in lipase, hepatic (LIPC) genes rs12438071, rs4775047, rs9920144, rs7179747 and rs3751542, and gene polymorphisms in the vicinity of the single nucleotide polymorphism and linkage disequilibrium with the single nucleotide polymorphism At least one polymorphism selected from the group consisting of genetic polymorphisms in
ソラフェニブの応答性の予測が、被験体におけるソラフェニブの効果の予測又は副作用のタイプ若しくは程度の予測である、請求項11又は12に記載のソラフェニブを投与する被験体のソラフェニブの応答性を予測するための一対のプライマーセット。   13. To predict sorafenib responsiveness in a subject to which sorafenib is administered according to claim 11 or 12, wherein the prediction of sorafenib responsiveness is prediction of the effect of sorafenib in a subject or prediction of the type or degree of side effects. A pair of primer sets. 請求項5〜7のいずれか1項に記載のプローブ、請求項8〜10のいずれか1項に記載の固定化基板、又は請求項11〜13のいずれか1項に記載の一対のプライマーセットを含むソラフェニブを投与する被験体のソラフェニブの応答性を予測するためのキット。   The probe according to any one of claims 5 to 7, the immobilized substrate according to any one of claims 8 to 10, or the pair of primer sets according to any one of claims 11 to 13. A kit for predicting responsiveness of sorafenib in a subject to which sorafenib is administered. ソラフェニブの応答性の予測が、被験体におけるソラフェニブの効果の予測又は副作用のタイプ若しくは程度の予測である、請求項14記載のソラフェニブを投与する被験体のソラフェニブの応答性を判定するためのキット。   The kit for determining the responsiveness of sorafenib in a subject to be administered sorafenib according to claim 14, wherein the prediction of responsiveness of sorafenib is a prediction of the effect of sorafenib or a prediction of the type or degree of side effects in the subject.
JP2009263219A 2009-11-18 2009-11-18 Identification of gene with variable expression, responding by stimulation of sorafenib Withdrawn JP2011103821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009263219A JP2011103821A (en) 2009-11-18 2009-11-18 Identification of gene with variable expression, responding by stimulation of sorafenib

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009263219A JP2011103821A (en) 2009-11-18 2009-11-18 Identification of gene with variable expression, responding by stimulation of sorafenib

Publications (1)

Publication Number Publication Date
JP2011103821A true JP2011103821A (en) 2011-06-02

Family

ID=44228090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009263219A Withdrawn JP2011103821A (en) 2009-11-18 2009-11-18 Identification of gene with variable expression, responding by stimulation of sorafenib

Country Status (1)

Country Link
JP (1) JP2011103821A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016093629A1 (en) * 2014-12-12 2016-06-16 서울대학교산학협력단 Biomarker for predicting hepatoma-targeted drug response, and use thereof
KR101832039B1 (en) 2014-12-12 2018-04-04 서울대학교산학협력단 Biomarker to predict target drug efficacy for hepatocellular carcinoma and its use

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016093629A1 (en) * 2014-12-12 2016-06-16 서울대학교산학협력단 Biomarker for predicting hepatoma-targeted drug response, and use thereof
KR101832039B1 (en) 2014-12-12 2018-04-04 서울대학교산학협력단 Biomarker to predict target drug efficacy for hepatocellular carcinoma and its use

Similar Documents

Publication Publication Date Title
Capon et al. Identification of ZNF313/RNF114 as a novel psoriasis susceptibility gene
Tang et al. Association analyses identify three susceptibility Loci for vitiligo in the Chinese Han population
EP1824997B1 (en) Genetic alteration useful for the response prediction of malignant neoplasia to taxane-based medical treatment
US20070148661A1 (en) LSAMP Gene Associated With Cardiovascular Disease
Low et al. Inflammatory bowel disease is linked to 19p13 and associated with ICAM-1
JP5814119B2 (en) Methods of using FOXO3A polymorphisms and haplotypes to predict and promote healthy aging and longevity
Shia et al. Genetic copy number variants in myocardial infarction patients with hyperlipidemia
Sargazi et al. SNPs in the 3′-untranslated region of SLC30A8 confer risk of type 2 diabetes mellitus in a south-east Iranian population: Evidences from case-control and bioinformatics studies
CA3050896A1 (en) Genetic factors associated with inhibitor development in hemophilia a
KR20230154405A (en) Method for providing information for metabolic syndrome disease and kits using the same
US20220162710A1 (en) Composition for diagnosis or prognosis prediction of glioma, and method for providing information related thereto
JP5427352B2 (en) A method for determining the risk of developing obesity based on genetic polymorphisms associated with human body fat mass
JP2011103821A (en) Identification of gene with variable expression, responding by stimulation of sorafenib
JP2006510341A (en) Single nucleotide polymorphism predicts adverse drug response and drug efficacy
JP2020174547A (en) Method of determining genetic predisposition to gray hair
US10731219B1 (en) Method for preventing progression to metabolic syndrome
JP6017117B2 (en) Genetic biomarker for predicting the stability of blood concentration of azathioprine (AZT) in patients with inflammatory bowel disease
El Shamieh et al. Functional epistatic interaction between rs6046G> A in F7 and rs5355C> T in SELE modifies systolic blood pressure levels
WO2009055596A2 (en) Methods of using genetic variants to diagnose and predict metabolic syndrome and associated traits
JP6788879B2 (en) Peripheral artery disease test method and test reagent
KR102511596B1 (en) A single nucleotide polymorphism marker composition for diagnosing an adverse reactions with angiotensin converting enzyme inhibitor and a method using the same
CN105765077B (en) Detection method for determining risk of anti-thyroid drug-induced agranulocytosis and kit for determination
WO2014006231A1 (en) Association of vascular endothelial growth factor genetic variant with metabolic syndrome
KR20230036504A (en) Markers for diagnosing Sarcopenia and use thereof
JP5791171B2 (en) Method for examining arrhythmia based on single nucleotide polymorphism of first long arm 24 region, NEURL gene, or CUX2 gene

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130205