WO2016093462A1 - High pressure ambient ultra-low temperature vaporizer, and method for coupling seamless pipe and fin tube which are used in vaporizer - Google Patents

High pressure ambient ultra-low temperature vaporizer, and method for coupling seamless pipe and fin tube which are used in vaporizer Download PDF

Info

Publication number
WO2016093462A1
WO2016093462A1 PCT/KR2015/008144 KR2015008144W WO2016093462A1 WO 2016093462 A1 WO2016093462 A1 WO 2016093462A1 KR 2015008144 W KR2015008144 W KR 2015008144W WO 2016093462 A1 WO2016093462 A1 WO 2016093462A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
seamless
heat
fin tube
vaporizer
Prior art date
Application number
PCT/KR2015/008144
Other languages
French (fr)
Korean (ko)
Inventor
최태환
권훈택
최규평
Original Assignee
최태환
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 최태환 filed Critical 최태환
Publication of WO2016093462A1 publication Critical patent/WO2016093462A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • F17C7/02Discharging liquefied gases
    • F17C7/04Discharging liquefied gases with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/16Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means being integral with the element, e.g. formed by extrusion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the present invention relates to a high pressure atmospheric cryogenic gas vaporizer and a seamless tube, a fin tube coupling method used in the vaporizer, and more specifically, the seamless tube is a high-pressure cryogenic fluid flowing tube safety for high pressure use
  • the high pressure atmospheric cryogenic gas vaporizer and the seamless tube used for the vaporizer in which the heat dissipation effect of the seamless tube is improved, and the seamless tube and the fin tube are closely contacted without welding.
  • Liquefied gas is a gas that can be liquefied at a specific temperature (zero minus -196 ⁇ 50 °C) at a relatively low pressure at a commercial temperature such as LNG, liquefied oxygen, liquefied nitrogen, liquefied argon, liquefied ammonia, liquefied carbon dioxide gas, and liquefied ethylene oxide.
  • LNG liquefied oxygen
  • nitrogen liquefied nitrogen
  • liquefied argon liquefied ammonia
  • liquefied carbon dioxide gas liquefied ethylene oxide
  • the vaporizer is a device for vaporizing the cryogenic liquefied gas automatically or forcibly discharged from the liquefied gas storage tank, the liquefied gas vaporized in the vaporizer is supplied to the consumer in a gaseous state, and sometimes used to fill the pressure vessel.
  • the vaporizer according to the prior art is commonly used by erecting a plurality of pipes, installing a partition chamber or a manifold on the upper and lower parts thereof, and welding and fixing them. LNG and industrial cryogenic liquefied gas are first supplied from the lower part of the vaporizer. As the temperature of the inner fluid rises due to heat exchange due to the outside temperature, the heat fins and the temperature difference, the vaporized gas is sent to the place of use through the upper manifold or partition chamber.
  • the heat exchanger tube Since the heat exchanger tube is welded and fixedly connected to the upper and lower tube plates, when the degree of warming is changed by the amount of LNG and industrial cryogenic gas supplied, the heat transfer tube is stretched and the thermal stress is applied to the welding position with the tube plate. As a result, if the feeding amount continues to change, this thermal stress is repeated, and at the end, the weld part fixed to the tube plate by thermal fatigue breaks.
  • the temperature difference of each welding part fixed to the tube plate will generate
  • An object of the present invention for solving the above-mentioned problems is a high-pressure atmospheric cryogenic gas vaporizer and a shim used in the vaporizer, the heat dissipation effect of the seamless tube is improved, and the contact area between the atmosphere and the heat dissipation wing is maximized. It is to provide a method of coupling the tube, pin tube.
  • the present invention provides a cryogenic gas vaporizer and a seamless tube and fin tube joining method used in the vaporizer.
  • Still another object of the present invention is to provide a high-pressure atmospheric cryogenic gas vaporizer and a seamless tube and fin tube joining method for use in the vaporizer, in which the seamless tube and the fin tube are closely attached by drawing or pressure molding without welding. It is.
  • the high-pressure atmospheric cryogenic gas vaporizer of the present invention includes a high-pressure atmospheric cryogenic gas vaporizer for supplying a liquid cryogenic gas such as LNG and industrial gas into a vaporized state, the vaporizing framework;
  • a seamless tube installed in the vaporization framework and passing a high pressure cryogenic liquid gas;
  • a manifold installed in the vaporization framework and connected to the seamless pipe; It comprises a fin tube coupled to the circumference of the seamless tube and allowing heat exchange to occur in the atmosphere with the seamless tube;
  • the fin tube is characterized by consisting of a coupling boss that is in close contact with the circumference of the seamless tube, and a plurality of radiating wings formed radially around the coupling boss.
  • the seamless tube is made of austenitic stainless steel
  • the fin tube is made of aluminum alloy or an austenitic stainless steel.
  • the heat radiation grooves are formed in the longitudinal direction around the heat radiation wing.
  • a heat flash prevention part is installed in the lower part of the vaporization framework, the heat flash prevention part, between the blow fan and the blow fan and the fan tube to blow air to the fin tube side It is installed in the diffuser to diffuse the air supplied by the blower fan, and is installed in the diffuser between the blower fan and the fin tube so that the air flowing to the fin tubes is uniformly blown to the plurality of fin tubes to improve the heat transfer performance of the air.
  • the air deflector is installed to be inclined inside the diffuser so that one end faces the inner center side of the diffuser and the other end faces the outer circumference of the diffuser, so that some of the cooling air blown by the blower fan is guided toward the circumference of the open portion of the diffuser. ;
  • the seamless tube, the fin tube coupling method used in the high-pressure atmospheric cryogenic gas vaporizer of the present invention for achieving the same object as described above, is installed on the vaporization framework, the vaporization framework and supplied with a high-pressure cryogenic liquid gas and austenite Seamless stainless steel material, a manifold installed in the vaporization framework and connected to the seamless pipe, coupled to the seamless pipe to allow heat exchange between the seamless pipe and the atmosphere, and aluminum alloy or austenitic
  • the present invention as described above comprises a seamless tube through which the high-pressure cryogenic liquid gas passes, and a fin tube coupled to the circumference of the seamless tube and allowing heat exchange to occur in the atmosphere with the seamless tube.
  • the fin tube is composed of a coupling boss that is in close contact with the circumference of the seamless tube, and a plurality of heat dissipating wings formed radially around the coupling boss. Therefore, when liquid cryogenic gas, such as LNG and cryogenic industrial gas, passes through the seamless tube, heat conduction occurs between the coupling boss of the fin tube and the heat dissipation blades and the seamless tube, and thus the temperature of the cryogenic gas is increased to the vaporized state. Change.
  • the heat dissipation wings are arranged radially around the coupling boss of the fin tube, the heat dissipation effect is excellent, and the contact area between the air and the heat dissipation wing is maximized by the heat dissipation blades arranged radially and the heat dissipation grooves on the heat dissipation wing surface.
  • the performance of the carburetor is improved.
  • a blower fan for blowing air to the fin tube side, a diffuser disposed between the blower fan and the fin tube to diffuse the air supplied by the blower fan, and a diffuser between the blower fan and the fin tube It is installed in the inside of the heat flow prevention portion made of an air deflector to improve the heat transfer performance of the air by allowing the air flowing toward the fin tubes to be uniformly blown through the plurality of fin tubes. Therefore, when the air is blown by the blower fan, part of the air is guided to the four corners of the diffuser by the air deflector, and the air blown by the blower fan is diffused evenly through the opening of the diffuser. It is evenly distributed throughout the tube. Therefore, the air flows uniformly through the fin tube, thereby improving the performance of the vaporizer.
  • the seamless tube and fin tube coupling of the present invention inserts the seamless tube into the coupling boss of the fin tube, injects a pressure into the sealed seamless tube with a high pressure pump, and raises the setting pressure to increase the internal pressure.
  • a high pressure pump By expanding the inside of the seamless tube to the outer peripheral surface of the seamless tube is made to be in close contact with the inner peripheral surface of the coupling boss of the pin tube. Therefore, the seamless tube and the fin tube are fixed without being welded separately, so that a high temperature cryogenic liquid gas is vaporized, so that even if an extreme temperature deviation occurs, cracks do not occur at the joint.
  • FIG. 1 is a schematic perspective view showing a high-pressure atmospheric cryogenic gas vaporizer of the present invention
  • Figure 2 is a perspective view showing a state in which the seamless tube and the fin tube is coupled
  • FIG. 3 is a partial cutaway perspective view of FIG.
  • Figure 4 is a schematic front view showing a state in which the heat island prevention portion is installed in the lower portion of the vaporization framework
  • Figure 5 is a schematic side cross-sectional view showing a heat island prevention portion
  • FIG. 6 is a schematic plan view of FIG.
  • FIG. 1 is a schematic perspective view showing a high-pressure atmospheric cryogenic gas vaporizer of the present invention
  • Figure 2 is an excerpt perspective view showing a state in which the seamless tube and the fin tube is coupled
  • Figure 3 is a partial cutaway perspective view of FIG.
  • FIG. 4 is a schematic front view showing a state where a heat island prevention part is installed at a lower part of the vaporization framework
  • FIG. 5 is a side view schematically showing a heat island prevention part
  • FIG. 6 is a schematic plan view of FIG.
  • the high-pressure atmospheric cryogenic gas vaporizer of the present invention is an equipment for changing and supplying liquid cryogenic gas such as LNG and industrial gas into a vaporized state.
  • Vaporizer of the present invention in the liquid state such as LNG (liquefied natural gas) and industrial gas (liquefied oxygen, liquefied nitrogen, liquefied argon, liquefied carbon dioxide, liquefied ethylene oxide, liquefied ammonia) used from minus 50 °C to minus 200 °C
  • LNG liquefied natural gas
  • industrial gas liquefied oxygen, liquefied nitrogen, liquefied argon, liquefied carbon dioxide, liquefied ethylene oxide, liquefied ammonia
  • the material of the fin tube 40 for heat exchange between the cryogenic fluid and the atmosphere is aluminum alloy (A6061, A6163, A6063) and austenitic stainless steel (STS304, STS304L, STS316, STS316L).
  • the inner pipe through which the high-pressure cryogenic liquid flows is made of austenitic stainless steel, and the seamless pipe 20 is used.
  • the fin tube 40 uses 4, 8, 12, 16, etc., and the length and total heat transfer area are changed depending on the total amount of fluid used.
  • the high pressure atmospheric cryogenic gas vaporizer of this invention consists of a vaporization frame 10, the seamless pipe 20, the manifold 30, and the fin tube 40. As shown in FIG.
  • the vaporization frame 10 is provided with a seamless tube 20, a manifold 30, and a fin tube 40 which will be described later.
  • the seamless tube 20 is installed in the vaporization framework 10 and passes a high pressure cryogenic liquid gas.
  • the seamless tube 20 is made of austenitic stainless steel as described above.
  • the manifold 30 is installed in the vaporization framework 10 and connected to the seamless pipe 20.
  • the fin tube 40 is coupled to the circumference of the seamless tube 20 to allow heat exchange with the seamless tube 20 in the atmosphere.
  • the fin tube 40 is made of an aluminum alloy tube AL or an austenitic stainless steel material.
  • the fin tube 40 is composed of a coupling boss 41 in close contact with the circumference of the seamless tube 20, and a plurality of radiating wings 42 formed radially around the coupling boss 41.
  • the heat dissipation grooves 43 are formed in the longitudinal direction of the heat dissipation blade 42.
  • the bar may be provided with a heat flash prevention unit 50, the heat flash prevention unit 50, the blowing fan 51 for blowing air to the fin tube 40 side,
  • the diffuser 52 which is installed between the blowing fan 51 and the fin tube 40 to diffuse the air supplied by the blowing fan 51 and the diffuser 52 between the blowing fan 51 and the fin tube 40.
  • the air deflector 53 is installed in the airflow tube to improve the heat transfer performance of the air by allowing the air flowing toward the fin tubes 40 to be uniformly blown through the plurality of fin tubes 40.
  • the air deflector 53 is inclined in the diffuser 52 so that one end faces the inner center side of the diffuser 52 and the other end faces the outer circumference of the diffuser 52, and is blown by the blower fan 51. Some of the air blown is provided to be directed toward the circumference of the opening of the diffuser 52.
  • Four air deflectors 53 are provided radially inside one diffuser 52 installed in one blower fan 51 so that a part of the air is guided to the four corner portions of the diffuser 52. .
  • a reinforcement table 54 is provided to support the air deflector 53 provided inside the diffuser 52.
  • This reinforcement stand 54 is formed in a circular pipe shape so as not to disturb the flow of air.
  • the air deflector 53 since the air deflector 53 is firmly supported by the reinforcing bar 54, the air deflector 53 does not escape from the diffuser 52 even when the heat island prevention part 50 of the present invention is used for a long time.
  • the reinforcing table 54 of the present invention has a circular pipe shape and is provided in an X shape on the outside of the diffuser 54.
  • the reinforcing bar 54 of the circular pipe shape installed as described above does not disturb the flow of air, and thus the pressure drop of the air is hardly generated.
  • FIG. 7 is a flowchart sequentially showing a process of coupling the seamless tube and the fin tube.
  • High-pressure atmospheric cryogenic gas vaporizer of the present invention described above is characterized in that the coupling of the seamless tube 20 and the fin tube 40, these combinations are made as shown in FIG.
  • a high pressure pump (not shown) is connected to one end of the seamless tube 20, and a plug (not shown) is connected to the other end of the seamless tube 20. Coupled to have a seamless pipe sealing step (S20) to seal the inside of the seamless pipe 20.
  • the internal pressure release step (S50) of stopping the high-pressure pump and opening the stopper to drain the fluid inside the seamless pipe 20 is performed.
  • the high pressure atmospheric cryogenic gas vaporizer of the present invention has the following advantages.
  • the present invention is connected to the seamless tube 20, the seamless tube 20 through which the high-pressure cryogenic liquid gas is passed, and the fin tube 40 for heat exchange in the air with the seamless tube 20.
  • the fin tube 40 is composed of a coupling boss 41 in close contact with the circumference of the seamless tube 20, and a plurality of heat dissipation blades 42 radially formed around the coupling boss 41.
  • the heat dissipation blades 42 are arranged radially around the coupling boss 41 of the fin tube 40, the heat dissipation effect is excellent, and the heat dissipation of the surfaces of the heat dissipation blades 42 and the heat dissipation blades 42 arranged radially.
  • the grooves 43 the contact area between the atmosphere and the heat dissipation blade 42 is maximized, thereby improving the performance of the vaporizer.
  • a blowing fan 51 for blowing air toward the fin tube 40 side, and is installed between the blowing fan 51 and the fin tube 40 to blow the fan 51
  • a plurality of fin tubes (2) installed in the diffuser (52) for diffusing the air supplied by the air blower (51) and between the blower fan (51) and the fin tube (40) and flowing toward the fin tubes (40).
  • 40 is provided with a heat deterioration preventing portion 50 made of an air deflector 53 for uniformly blowing the air to improve the heat transfer performance of the air.
  • the air flows uniformly throughout the fin tube 40, thereby improving the performance of the vaporizer.
  • the seamless tube 20 and the fin tube 40 of the present invention the seamless tube 20 is inserted into the coupling boss 41 of the fin tube 40, the sealed seamless tube 20
  • the pressure is increased to the set pressure
  • the inner circumferential surface of the seamless tube 20 is expanded by the expansion of the seamless tube 20 by the increased internal pressure. It is made to be in close contact with the inner circumferential surface.
  • the anti-wear coating layer may be coated on the inlet 31 of the manifold 30 to which the high pressure is applied.
  • this antiwear coating layer 96 to 98% by weight of chromium oxide (Cr 2 O 3 ) and 2 to 4% by weight of titanium dioxide (TiO 2 ) are mixed and the powder is sprayed around the inlet 31 of the manifold 30. It is made, the thickness of 50 to 600 ⁇ m, the hardness is plasma coated to maintain 900 to 1000 HV.
  • Cr 2 O 3 chromium oxide
  • TiO 2 titanium dioxide
  • This anti-wear coating layer is formed by spraying a powder obtained by mixing 96 to 98% by weight of chromium oxide (Cr 2 O 3 ) and 2 to 4% by weight of titanium dioxide (TiO 2 ).
  • the reason for the ceramic coating around the inlet 31 of the manifold 30 is mainly to prevent wear and corrosion. Ceramic coatings are more resistant to corrosion, scratch, abrasion, impact and durability than chromium or nickel chromium plating.
  • Chromium oxide (Cr 2 O 3 ) serves to prevent rust by acting as a passivity layer that blocks oxygen invading into the metal.
  • Titanium dioxide (TiO 2 ) is very stable physicochemically and has a high hiding power, thus becoming a white pigment.
  • the refractive index is high, it is widely used in high refractive index ceramics. It has photocatalytic and superhydrophilic properties. Titanium dioxide (TiO 2 ), air purification, antibacterial, harmful substance decomposition, pollution prevention function, discoloration prevention function.
  • the titanium dioxide (TiO 2 ), the anti-wear coating layer is reliably coated around the inlet 31 of the manifold 30, and decomposes and removes the foreign matter attached to the anti-wear coating layer to prevent damage to the anti-wear coating layer. .
  • chromium oxide (Cr 2 O 3 ) and titanium dioxide (TiO 2 ) are mixed and used, the mixing ratio thereof is titanium oxide (TiO 2 ) 2 in 96 to 98% by weight of chromium oxide (Cr 2 O 3 ). It is preferable that -4 weight% is mixed.
  • titanium dioxide (TiO 2 ) When the mixing ratio of titanium dioxide (TiO 2 ) is less than 2 to 4% by weight, the effect of titanium dioxide (TiO 2 ) was so small that the purpose of mixing it with chromium oxide (Cr 2 O 3 ) is faded. That is, titanium dioxide (TiO 2 ) decomposes and removes foreign matter adhering around the inlet 31 of the manifold 30 to prevent corrosion or damage around the inlet 31 of the manifold 30. If less than 2 to 4% by weight, there is a problem that takes a long time to decompose the adhered foreign matter.
  • the coating layer made of these materials has a thickness of 50 to 600 ⁇ m around the periphery 31 of the manifold 30, and is plasma coated to maintain a hardness of 900 to 1000 HV and a surface roughness of 0.1 to 0.3 ⁇ m. .
  • the antiwear coating layer is sprayed at 50 to 600 ⁇ m by jetting the powdered powder and the gas at 1400 ° C. around the inlet 31 of the manifold 30 at a speed of about Mach 2.
  • the thickness of the anti-wear coating layer is less than 50 ⁇ m, the effect of the above-described ceramic coating layer is not guaranteed.
  • the thickness of the anti-wear coating layer exceeds 600 ⁇ m, the above-mentioned effect is insignificant, but due to excessive ceramic coating. There is a problem in that work time and material costs are wasted.
  • the temperature around the inlet 31 of the manifold 30 is raised while the anti-wear coating layer is coated around the inlet 31 of the manifold 30, preventing deformation around the inlet 31 of the heated manifold 30. If possible, around the inlet 31 of the manifold 30 is cooled by a cooling device (not shown) to maintain a temperature of 150 ⁇ 200 °C.
  • the sealing material made of chromic anhydride (CrO 3 ) made of a metallic glass quartz system may be further coated around the wear protection coating layer. Chromic anhydride is applied around the coating layer made of chromium nickel powder as the inorganic sealing material.
  • Chromic anhydride (CrO 3 ) is used in places requiring high wear resistance, lubricity, heat resistance, corrosion resistance, and releasability, and does not discolor in the air, has great durability, and has good wear resistance and corrosion resistance.
  • the coating thickness of a sealing material about 0.3-0.5 micrometer is preferable. When the coating thickness of the sealing material is less than 0.3 ⁇ m, the sealing material is easily peeled off and peeled even in a slight scratch groove, so that the above-described effects cannot be obtained. If the coating thickness of the sealing material is thick enough to exceed 0.5 ⁇ m, there are many pin holes, cracks, etc. in the plating surface. Therefore, the coating thickness of the sealing material is preferably about 0.3 to 0.5 ⁇ m.
  • the manifold 30 may be made of nodular cast iron.
  • the nodular cast iron is heated to 1600-1650 ° C. to form a molten metal, followed by desulfurization treatment.
  • the spheroidizing agent containing about 0.3 to 0.7% by weight of magnesium is added thereto, followed by a spheroidizing treatment at 1500 to 1550 ° C., followed by heat treatment.
  • nodular cast iron is cast iron in which graphite is spherically crystallized in the solidification process by adding magnesium or the like to the molten iron of ordinary gray cast iron, the form of graphite is spherical compared to gray cast iron. Since the nodular cast iron has a small notch effect, stress concentration is reduced, and strength and toughness are greatly improved.
  • the nodular cast iron is heated to 1600 to 1650 ° C. to form a molten metal, followed by desulfurization treatment, and a spheroidizing treatment containing about 0.3 to 0.7 wt% of magnesium is added to the spheroidizing treatment at 1500 to 1550 ° C. It is made by heat treatment after implementation.
  • nodular cast iron when the nodular cast iron is heated to less than 1600 ° C, the entire structure is not sufficiently melted, and if it is heated above 1650 ° C, energy is unnecessarily wasted. Therefore, it is preferable to heat nodular cast iron at 1600-1650 degreeC.
  • a spheroidizing agent containing about 0.3 to 0.7% by weight of magnesium is added.
  • the magnesium content is less than 0.3% by weight, the spheroidizing agent is insignificant.
  • the magnesium mixing ratio of the spheroidizing agent is suitably about 0.3 to 0.7% by weight.
  • the spheroidization treatment temperature is preferably 1500 to 1550 ° C.
  • the manifold 30 of the present invention is made of nodular cast iron, since the notch effect is small, the stress concentration phenomenon is reduced and the strength and toughness are greatly improved.
  • the vaporization framework 10 may be formed of a polypropylene resin composition having excellent impact resistance against external impact or external environment.
  • the polypropylene resin composition comprises a polypropylene random block copolymer composed of 75 to 95% by weight of ethylene-propylene-alpha olefin random copolymer and 5 to 25% by weight of ethylene-propylene block copolymer having an ethylene content of 20 to 50% by weight. It may include.
  • the polypropylene random block copolymer is preferably 75 to 95% by weight of the above-mentioned ethylene-propylene-alpha olefin random copolymer and 5 to 25% by weight of the ethylene-propylene block copolymer, ethylene-propylene-alpha olefin random copolymer Is less than 75% by weight, the rigidity is lowered, when it exceeds 95% by weight, impact resistance is lowered, when the ethylene-propylene block copolymer is less than 5% by weight, impact resistance is lowered, when it exceeds 25% by weight, the rigidity is lowered do.
  • the ethylene-propylene-alpha olefin random copolymer comprises 0.5 to 7% by weight of ethylene and 1 to 15% by weight of alpha olefin having 4 to 5 carbon atoms, and maintains mechanical rigidity and heat resistance of the polypropylene resin composition and whitening resistance Play an effective role in maintaining
  • the ethylene content is preferably 0.5 to 5% by weight, more preferably 1 to 3% by weight, and less than 0.5% by weight of whitening resistance is lowered, when it exceeds 7% by weight the crystallinity and rigidity of the resin Degrades.
  • the alpha olefin means any alpha olefin except ethylene and propylene, preferably butene.
  • the above-mentioned alpha olefin has less than 4 or more than 5 carbon atoms, it is difficult to prepare a copolymer due to low reactivity with a comonomer when preparing a random copolymer.
  • it includes 1 to 15% by weight of the above-mentioned alpha olefin, preferably 1 to 10% by weight, more preferably 3 to 9% by weight. If the alpha olefin is less than 1% by weight, the degree of crystallinity is higher than necessary to increase the transparency, and if the alpha olefin is more than 15% by weight, the degree of crystallinity and rigidity is lowered and heat resistance is significantly lowered.
  • the ethylene-propylene block copolymer contains 20 to 50% by weight of ethylene, and imparts impact resistance to the polypropylene resin composition and enables fine dispersion to serve to simultaneously provide whitening resistance and transparency.
  • the ethylene content may be preferably 20 to 40% by weight, and less than 20% by weight may lower the impact resistance, while more than 50% by weight may reduce the impact resistance and the whitening resistance.
  • the polypropylene resin composition is coated around the vaporization frame 10 as described above, impact resistance and whitening resistance to external impact or external environment are improved, thereby extending the life of the product.
  • thermochromic layer whose color changes with temperature may be applied to one outer surface of the vaporization framework 10.
  • the temperature change layer is a step of determining the temperature change by two or more thermochromic material that changes color when the temperature is above a predetermined temperature is coated on the surface of the vaporization frame 10 and separated into two or more sections according to the temperature change
  • the protective film layer may be coated on the thermochromic layer to prevent the thermochromic layer from being damaged.
  • the color change layer is for detecting the temperature change of the paint by changing the color according to the temperature of the vaporization framework (10).
  • the thermochromic layer may be formed by coating a surface of the vaporization frame 10 with a thermochromic material that changes color when a temperature is higher than a predetermined temperature.
  • Thermochromic material is generally composed of a microcapsule structure of 1 ⁇ 10 ⁇ m, it can be colored and transparent due to the binding and separation phenomenon depending on the temperature of the electron donor and the electron acceptor in the microcapsules.
  • thermochromic materials may be used in various kinds of thermochromic materials based on principles such as molecular rearrangement of organic compounds and rearrangement of atomic groups.
  • thermochromic layer is preferably formed to coat two or more thermochromic materials having different discoloration temperatures into two or more sections according to temperature changes. It is preferable to use a thermochromic material having a relatively low temperature discoloration temperature and a thermochromic material having a relatively high temperature discoloration temperature, and the temperature discoloration layer having a discoloration temperature reacting at two different temperatures. The material can be used to form the thermochromic layer.
  • thermochromic layer can indirectly determine whether the liquid cryogenic gas is vaporized smoothly at the optimum temperature in the vaporizer.
  • the protective layer is coated on the thermochromic layer to prevent the thermochromic layer from being damaged by an external impact, and it is easy to check whether the thermochromic layer is discolored, and at the same time, it has a heat insulating effect considering that the thermochromic material is weak to heat. It is preferable to use a coating material.

Abstract

The present invention relates to a high pressure ambient ultra-low temperature vaporizer, and a method for coupling a seamless pipe and a fin tube which are used in the vaporizer. The vaporizer comprises: a seamless pipe through which a high pressure ultra-low temperature liquid gas passes; and a fin tube which is coupled to the circumference of the seamless pipe and allows heat exchange to be performed between the seamless pipe and the atmosphere. The fin tube consists of: a coupling boss adhered to the circumference of the seamless pipe; and a plurality of heat-radiating fans which are radially formed on the circumference of the coupling boss. Accordingly, if a liquid-state ultra-low temperature gas such as LNG, industrial gas, etc. passes through the seamless pipe, the liquid-state ultra-low temperature gas is changed to a gaseous state since the temperature of the ultra-low temperature gas is increased while heat conduction between the coupling boss and the heat-radiating fans of the fin tube, and the seamless pipe occurs. Therefore, since a plurality of heat-radiating fans are radially arranged on the circumference of the coupling boss of the fin tube, the heat release effect is excellent. In addition, since the contact area between the atmosphere and the heat-radiating fans is maximized due to the radially arranged heat-radiating fans and heat-radiating grooves on the surfaces of the heat-radiating fans, the performance of the vaporizer is improved.

Description

고압용 대기식 초저온가스 기화기 및 이 기화기에 사용되는 심레스관, 핀튜브 결합방법High Pressure Atmospheric Cryogenic Gas Vaporizer and Seamless Tube and Fin Tube Coupling Method
본 발명은 고압용 대기식 초저온가스 기화기 및 이 기화기에 사용되는 심레스관, 핀튜브 결합방법에 관한 것으로, 더 상세하게는 심레스관은 고압의 초저온용 유체가 흐르는 관으로 고압 사용에 대한 안전을 확보하고 열방출 효과가 향상되도록, 심레스관의 열방출 효과가 향상되고, 심레스관 및 핀튜브가 별도의 용접없이 밀착되는 고압용 대기식 초저온 가스 기화기 및 이 기화기에 사용되는 심레스관, 핀튜브 결합방법에 관한 것이다.The present invention relates to a high pressure atmospheric cryogenic gas vaporizer and a seamless tube, a fin tube coupling method used in the vaporizer, and more specifically, the seamless tube is a high-pressure cryogenic fluid flowing tube safety for high pressure use The high pressure atmospheric cryogenic gas vaporizer and the seamless tube used for the vaporizer, in which the heat dissipation effect of the seamless tube is improved, and the seamless tube and the fin tube are closely contacted without welding. , To a method for coupling a fin tube.
액화가스는 LNG, 액화산소, 액화질소, 액화알곤, 액화암모니아, 액화이산화탄산가스, 액화산화에틸렌 등과 같이 상용온도에서 비교적 낮은 압력으로 특정온도(영하 -196~50℃)에서 액화될 수 있는 가스를 액화시켜 용기 내에 저장 또는 특정 목적으로 사용하는 액체 상태 가스를 말한다.Liquefied gas is a gas that can be liquefied at a specific temperature (zero minus -196 ~ 50 ℃) at a relatively low pressure at a commercial temperature such as LNG, liquefied oxygen, liquefied nitrogen, liquefied argon, liquefied ammonia, liquefied carbon dioxide gas, and liquefied ethylene oxide. Refers to a liquid gas that is liquefied and stored in a container or used for a specific purpose.
그리고, 기화기는 액화 가스 저장조에서 자동적 또는 강제적으로 배출된 초저온 액화가스를 기화시키는 장치로서 기화기에서 기화시킨 액화가스는 가스 상태로 소비처에 공급하기도 하고, 때로는 압력 용기에 충전사용하기도 한다.In addition, the vaporizer is a device for vaporizing the cryogenic liquefied gas automatically or forcibly discharged from the liquefied gas storage tank, the liquefied gas vaporized in the vaporizer is supplied to the consumer in a gaseous state, and sometimes used to fill the pressure vessel.
초저온 액화 가스를 소비처에서 사용하기 위하여서는 일정한 상태의 온도 조건을 확보하여야 한다. 그러나 일정한 상태의 온도 조건을 확보하기 위하여서는 가온과 방열 시스템을 적절하게 조화시켜야 하며, 외부 조건도 맞추어야만 가능하다. In order to use the cryogenic liquefied gas at the consumer, it is necessary to secure a certain temperature condition. However, in order to ensure a constant temperature condition, the heating and heat dissipation system must be properly harmonized, and external conditions must be met.
종래 기술에 의한 기화기는 공통적으로 파이프를 복수개 세워서, 그 상하에 칸막이실이나 매니폴드를 설치하여 용접 고정해서 사용되는 것으로, LNG 및 산업용 초저온액화가스는 우선 기화장치의 하부로 부터 공급되고, 다음에 각 전열관 속을 내부를 통과하면서 외부의 온도와 전열핀과 온도차에 의한 열교환으로 내부유체의 온도가 상승하면서 기화한 가스가 상부의 매니폴드나 칸막이실로 통하여 사용처로 보내어지게 된다.The vaporizer according to the prior art is commonly used by erecting a plurality of pipes, installing a partition chamber or a manifold on the upper and lower parts thereof, and welding and fixing them. LNG and industrial cryogenic liquefied gas are first supplied from the lower part of the vaporizer. As the temperature of the inner fluid rises due to heat exchange due to the outside temperature, the heat fins and the temperature difference, the vaporized gas is sent to the place of use through the upper manifold or partition chamber.
이러한 기화기는, 전열관이 상하의 관판에 용접 고정연결되어 있으므로 LNG 및 산업용 초저온가스의 송입량에 의해 가온의 정도가 변하면 전열관이 신축해 관판과의 용접 개소에 열응력이 가해진다. 그 결과, 송입량이 변화를 계속하면 이 열응력의 반복이 일어나, 최후에는 열피로에 의해 관판에 고정되어 있는 용접부가 파괴된다. 또, 전열관이 복수개 있으므로 이 내부에서의 LNG의 액분산이 나쁘면 관판에 고정되어 있는 각 용접부의 온도의 편차가 일어나 관판에 왜곡이 생겨, 상기 열피로를 가속시킨다.Since the heat exchanger tube is welded and fixedly connected to the upper and lower tube plates, when the degree of warming is changed by the amount of LNG and industrial cryogenic gas supplied, the heat transfer tube is stretched and the thermal stress is applied to the welding position with the tube plate. As a result, if the feeding amount continues to change, this thermal stress is repeated, and at the end, the weld part fixed to the tube plate by thermal fatigue breaks. In addition, since there are a plurality of heat transfer tubes, when the liquid dispersion of LNG in this inside is bad, the temperature difference of each welding part fixed to the tube plate will generate | occur | produce, a distortion will arise in a tube plate, and the said heat fatigue will be accelerated.
이러한 문제는, 관판에 상당하는 매니폴드에 전열관이 용접 고정되어 있는 기화기에서도 일어난다.This problem also occurs in a vaporizer in which a heat transfer pipe is welded and fixed to a manifold corresponding to the tube plate.
또한, 전열관의 재료로서 합금알루미늄 재질을 채용했을 경우는 100℃의 온도차의 상위가 생기면 1m당 2.3㎜의 신축량의 상위가 생기고, 스테인레스 강으로 이루어진 전열관에서는 1m당 1.5㎜의 신축량의 상위가 생기며, 철제의 전열관에서는 1m당 1.2㎜의 신축량의 상위가 생긴다. 이 때문에, 용접부에 과잉의 응력이 가해져서, 기화기를 간헐 운전하면 용접부에 균열이 생기는 문제를 자주 일으키고 있었다.In the case of adopting an alloyed aluminum material as the material of the heat transfer tube, if there is a difference in temperature difference of 100 ° C., a difference in the amount of expansion and contraction of 2.3 mm occurs per 1 m, and in a heat transfer tube made of stainless steel, there is a difference in the amount of extension of 1.5 mm per 1 m. In iron heat transfer tubes, the difference in the amount of expansion and contraction of 1.2 mm per 1 m occurs. For this reason, excessive stress was applied to the welded portion, and if the intermittent operation of the carburetor often caused a problem of cracking at the welded portion.
상술한 문제점을 해결하기 위한 본 발명의 목적은, 심레스관의 열방출 효과가 향상되고, 대기와 방열날개 사이의 접촉면적이 극대화되도록 한 고압용 대기식 초저온 가스 기화기 및 이 기화기에 사용되는 심레스관, 핀튜브 결합방법을 제공하는데 있다.An object of the present invention for solving the above-mentioned problems is a high-pressure atmospheric cryogenic gas vaporizer and a shim used in the vaporizer, the heat dissipation effect of the seamless tube is improved, and the contact area between the atmosphere and the heat dissipation wing is maximized. It is to provide a method of coupling the tube, pin tube.
본 발명의 또 다른 목적은, 송풍팬에 의해 공기가 송풍되면 일부의 공기가 공기전향부에 의해 확산기의 네 귀퉁이로 유도되어서, 송풍되는 공기가 확산기의 개방부 전체로 고르게 확산되도록 한 고압용 대기식 초저온 가스 기화기 및 이 기화기에 사용되는 심레스관, 핀튜브 결합방법을 제공하는데 있다.It is still another object of the present invention that, when air is blown by a blower fan, some of the air is guided to the four corners of the diffuser by the air deflector, so that the blown air is diffused evenly through the opening of the diffuser. The present invention provides a cryogenic gas vaporizer and a seamless tube and fin tube joining method used in the vaporizer.
본 발명의 또 다른 목적은, 심레스관 및 핀튜브가 별도의 용접없이 인발 또는 압력성형으로 밀착되도록 한 고압용 대기식 초저온 가스 기화기 및 이 기화기에 사용되는 심레스관, 핀튜브 결합방법을 제공하는데 있다.Still another object of the present invention is to provide a high-pressure atmospheric cryogenic gas vaporizer and a seamless tube and fin tube joining method for use in the vaporizer, in which the seamless tube and the fin tube are closely attached by drawing or pressure molding without welding. It is.
이와 같은 목적을 달성하기 위한 본 발명의 고압용 대기식 초저온 가스 기화기는, LNG 및 산업용 가스 등의 액체 상태 초저온 가스를 기화 상태로 변화시켜서 공급하는 고압용 대기식 초저온 가스 기화기에 있어서, 기화기틀; 기화기틀에 설치되고 고압의 초저온 액체 가스가 통과되는 심레스관; 기화기틀에 설치되고 심레스관에 연결되는 메니폴드; 심레스관의 둘레에 결합되고 심레스관과 대기 중에 열교환이 이루어지도록 하는 핀튜브를 포함하여서 이루어지며; 핀튜브는, 심레스관의 둘레에 밀착되는 결합보스와, 결합보스의 둘레에 방사상으로 복수개 형성된 방열날개들로 이루어진 것을 특징으로 한다.In order to achieve the above object, the high-pressure atmospheric cryogenic gas vaporizer of the present invention includes a high-pressure atmospheric cryogenic gas vaporizer for supplying a liquid cryogenic gas such as LNG and industrial gas into a vaporized state, the vaporizing framework; A seamless tube installed in the vaporization framework and passing a high pressure cryogenic liquid gas; A manifold installed in the vaporization framework and connected to the seamless pipe; It comprises a fin tube coupled to the circumference of the seamless tube and allowing heat exchange to occur in the atmosphere with the seamless tube; The fin tube is characterized by consisting of a coupling boss that is in close contact with the circumference of the seamless tube, and a plurality of radiating wings formed radially around the coupling boss.
본 발명의 고압용 대기식 초저온 가스 기화기의 다른 특징은, 심레스관은, 오스테나이트계 스테인레스강 재질로 이루어지고, 핀튜브는, 알루미늄합금 또는 오스테이이트계 스테인레스강 재질로 이루어진다.Another characteristic of the high-pressure atmospheric cryogenic gas vaporizer of the present invention is that the seamless tube is made of austenitic stainless steel, and the fin tube is made of aluminum alloy or an austenitic stainless steel.
본 발명의 고압용 대기식 초저온 가스 기화기의 또 다른 특징은, 방열날개의 둘레에는 길이방향을 방열홈들이 형성되어 있다.Another feature of the high-pressure atmospheric cryogenic gas vaporizer for the present invention, the heat radiation grooves are formed in the longitudinal direction around the heat radiation wing.
본 발명의 고압용 대기식 초저온 가스 기화기의 또 다른 특징은, 기화기틀의 하부에는, 열섬화방지부가 설치되되, 이 열섬화방지부는, 핀튜브 측으로 공기를 송풍시키는 송풍팬과, 송풍팬과 핀튜브 사이에 설치되어서 송풍팬에 의해 공급되는 공기를 확산시키는 확산기와, 송풍팬 및 핀튜브 사이의 확산기 내에 설치되어서 핀튜브들 측으로 흐르는 공기가 다수의 핀튜브에 균일하게 송풍되도록 하여서 공기의 열전달 성능을 향상시키는 공기전향부로 이루어지며; 공기전향부는, 일단이 확산기의 내부 중앙측을 향하고 타단이 확산기의 외측 둘레를 향하도록 확산기 내부에 경사지게 설치되어서, 송풍팬에 의해 송풍되는 냉각공기 중 일부가 확산기의 개방부 둘레 측으로 유도되도록 구비되며; 하나의 송풍팬에 설치된 하나의 확산기 내부에 방사상으로 네 개가 설치되어서, 공기의 일부가 확산기의 네 모서리 부분으로 유도되도록 구비된다.Another feature of the high-pressure atmospheric cryogenic gas vaporizer of the present invention is a heat flash prevention part is installed in the lower part of the vaporization framework, the heat flash prevention part, between the blow fan and the blow fan and the fan tube to blow air to the fin tube side It is installed in the diffuser to diffuse the air supplied by the blower fan, and is installed in the diffuser between the blower fan and the fin tube so that the air flowing to the fin tubes is uniformly blown to the plurality of fin tubes to improve the heat transfer performance of the air. Consisting of an air deflector; The air deflector is installed to be inclined inside the diffuser so that one end faces the inner center side of the diffuser and the other end faces the outer circumference of the diffuser, so that some of the cooling air blown by the blower fan is guided toward the circumference of the open portion of the diffuser. ; Four radially inside one diffuser installed in one blower fan, a portion of the air is provided to guide the four corners of the diffuser.
상술한 동일한 목적을 달성하기 위한 본 발명의 고압용 대기식 초저온 가스 기화기에 사용되는 심레스관, 핀튜브 결합방법은, 기화기틀과, 기화기틀에 설치되고 고압의 초저온 액체 가스가 공급되며 오스테나이트계 스테인레스강 재질로 이루어진 심레스관과, 기화기틀에 설치되고 심레스관에 연결되는 메니폴드와, 심레스관의 둘레에 결합되고 심레스관과 대기 중에 열교환이 이루어지도록 하며 알루미늄합금 또는 오스테나이트계 스테인레스강 재질로 이루어진 핀튜브를 포함하여서 이루어진 고압용 대기식 초저온 가스 기화기 중, 심레스관과 핀튜브를 결합하는 방법으로서, 핀튜브의 결합보스 내에 심레스관을 삽입하는 가결합단계; 심레스관의 일단에는 고압 장치에 연결하며 심레스관의 타단에는 마개를 결합시켜서 심레스관 내부를 밀폐하는 심레스관 밀폐단계; 심레스관 내부에 고압용 펌프로 압력을 주입하여서 심레스관 내부에 압력을 세팅된 압력까지 상승시키는 심레스관 가압단계; 증가된 내부압으로 심레스관 내부을 팽창시켜서 심레스관의 외주면이 핀튜브의 결합보스 내주면에 밀착되도록 하는 관접합단계; 심레스관의 내부압이 상승되면 압력상승을 중단시키고 마개를 열어서 심레스관 내부의 유체를 배수시키는 내부압 해제단계; 심레스관의 내부압을 해제시킨 후 심레스관의 내부를 건조시키는 건조단계로 이루어진 것을 특징으로 한다.The seamless tube, the fin tube coupling method used in the high-pressure atmospheric cryogenic gas vaporizer of the present invention for achieving the same object as described above, is installed on the vaporization framework, the vaporization framework and supplied with a high-pressure cryogenic liquid gas and austenite Seamless stainless steel material, a manifold installed in the vaporization framework and connected to the seamless pipe, coupled to the seamless pipe to allow heat exchange between the seamless pipe and the atmosphere, and aluminum alloy or austenitic A method of coupling a seamless tube and a fin tube in a high pressure atmospheric cryogenic gas vaporizer comprising a fin tube made of stainless steel, comprising: a temporary coupling step of inserting a seamless tube into a coupling boss of the fin tube; A seamless tube sealing step of sealing the inside of the seamless tube by connecting a plug to one end of the seamless tube and connecting a high pressure device to the other end of the seamless tube; A seamless pipe pressurizing step of injecting pressure into the seamless pipe into the seamless pipe to increase the pressure to the set pressure; A pipe joint step of expanding the inside of the seamless tube with an increased internal pressure so that the outer peripheral surface of the seamless tube is in close contact with the inner peripheral surface of the coupling boss of the fin tube; An internal pressure releasing step of stopping the increase in pressure when the internal pressure of the seamless pipe is increased and opening a stopper to drain the fluid inside the seamless pipe; After releasing the internal pressure of the seamless tube is characterized in that the drying step of drying the interior of the seamless tube.
이상에서와 같은 본 발명은, 고압의 초저온 액체 가스가 통과되는 심레스관과, 심레스관의 둘레에 결합되고 심레스관과 대기 중에 열교환이 이루어지도록 하는 핀튜브를 포함하여서 이루어진다. 이 핀튜브는, 심레스관의 둘레에 밀착되는 결합보스와, 결합보스의 둘레에 방사상으로 복수개 형성된 방열날개들로 이루어진다. 따라서, LNG 및 초저온용 산업 가스 등의 액체 상태 초저온 가스가 심레스관을 통과하면 핀튜브의 결합보스 및 방열날개들과 심레스관 사이에 열전도가 발생되면서 초저온 가스의 온도가 상승되므로 기화 상태로 변화시킨다. 그러므로 방열날개들은 핀튜브의 결합보스 둘레에 방사상으로 다수 배열되므로 열방출 효과가 뛰어나고, 방사상으로 배열된 방열날개들과 방열날개 표면의 방열홈들에 의해 대기와 방열날개 사이의 접촉면적이 극대화되므로 기화기의 성능이 향상된다.The present invention as described above comprises a seamless tube through which the high-pressure cryogenic liquid gas passes, and a fin tube coupled to the circumference of the seamless tube and allowing heat exchange to occur in the atmosphere with the seamless tube. The fin tube is composed of a coupling boss that is in close contact with the circumference of the seamless tube, and a plurality of heat dissipating wings formed radially around the coupling boss. Therefore, when liquid cryogenic gas, such as LNG and cryogenic industrial gas, passes through the seamless tube, heat conduction occurs between the coupling boss of the fin tube and the heat dissipation blades and the seamless tube, and thus the temperature of the cryogenic gas is increased to the vaporized state. Change. Therefore, since the heat dissipation wings are arranged radially around the coupling boss of the fin tube, the heat dissipation effect is excellent, and the contact area between the air and the heat dissipation wing is maximized by the heat dissipation blades arranged radially and the heat dissipation grooves on the heat dissipation wing surface. The performance of the carburetor is improved.
본 발명의 기화기틀의 하부에는, 핀튜브 측으로 공기를 송풍시키는 송풍팬과, 송풍팬과 핀튜브 사이에 설치되어서 송풍팬에 의해 공급되는 공기를 확산시키는 확산기와, 송풍팬 및 핀튜브 사이의 확산기 내에 설치되어서 핀튜브들 측으로 흐르는 공기가 다수의 핀튜브에 균일하게 송풍되도록 하여서 공기의 열전달 성능을 향상시키는 공기전향부로 이루어진 열섬화방지부가 설치된다. 따라서, 송풍팬에 의해 공기가 송풍되면 일부의 공기가 공기전향부에 의해 확산기의 네 귀퉁이로 유도되고, 송풍팬에 의해 송풍되는 공기는 확산기의 개방부 전체로 고르게 확산되며, 이에 따라 다수의 핀튜브 전체에 고르게 공급된다. 그러므로 핀튜브의 전체에 공기가 균일하게 흐르게 되므로 기화기의 성능을 향상시키게 된다.In the lower part of the vaporization frame of the present invention, a blower fan for blowing air to the fin tube side, a diffuser disposed between the blower fan and the fin tube to diffuse the air supplied by the blower fan, and a diffuser between the blower fan and the fin tube It is installed in the inside of the heat flow prevention portion made of an air deflector to improve the heat transfer performance of the air by allowing the air flowing toward the fin tubes to be uniformly blown through the plurality of fin tubes. Therefore, when the air is blown by the blower fan, part of the air is guided to the four corners of the diffuser by the air deflector, and the air blown by the blower fan is diffused evenly through the opening of the diffuser. It is evenly distributed throughout the tube. Therefore, the air flows uniformly through the fin tube, thereby improving the performance of the vaporizer.
본 발명의 심레스관 및 핀튜브 결합은, 핀튜브의 결합보스 내에 심레스관을 삽입하고, 밀폐된 심레스관 내부에 고압용 펌프로 압력을 주입하여서 세팅압까지 상승시키며, 증가된 내부압으로 심레스관 내부을 팽창시켜서 심레스관의 외주면이 핀튜브의 결합보스 내주면에 밀착되도록 하여서 이루어진다. 따라서, 심레스관 및 핀튜브가 별도의 용접없이 밀착되어서 고정되므로 고압의 초저온 액체 가스가 기화되면서 극심한 온도편차가 발생되어도 결합부위에 균열이 발생되지 않는다.The seamless tube and fin tube coupling of the present invention inserts the seamless tube into the coupling boss of the fin tube, injects a pressure into the sealed seamless tube with a high pressure pump, and raises the setting pressure to increase the internal pressure. By expanding the inside of the seamless tube to the outer peripheral surface of the seamless tube is made to be in close contact with the inner peripheral surface of the coupling boss of the pin tube. Therefore, the seamless tube and the fin tube are fixed without being welded separately, so that a high temperature cryogenic liquid gas is vaporized, so that even if an extreme temperature deviation occurs, cracks do not occur at the joint.
도 1은 본 발명의 고압용 대기식 초저온 가스 기화기를 보인 개략적 사시도1 is a schematic perspective view showing a high-pressure atmospheric cryogenic gas vaporizer of the present invention
도 2는 심레스관 및 핀튜브가 결합된 상태를 보인 발췌 사시도Figure 2 is a perspective view showing a state in which the seamless tube and the fin tube is coupled
도 3는 도 2의 부분 절개 사시도3 is a partial cutaway perspective view of FIG.
도 4는 본 기화기틀의 하부에 열섬화방지부가 설치된 상태를 보인 개략적 정면도Figure 4 is a schematic front view showing a state in which the heat island prevention portion is installed in the lower portion of the vaporization framework
도 5는 열섬화방지부를 보인 개략적 측단면도Figure 5 is a schematic side cross-sectional view showing a heat island prevention portion
도 6은 도 5의 개략적 평면도6 is a schematic plan view of FIG.
도 7은 심레스관 및 핀튜브가 결합되는 과정을 순차적으로 보인 순서도7 is a flowchart sequentially showing a process of coupling the seamless tube and the fin tube
본 발명의 구체적인 특징 및 이점은 첨부된 도면을 참조한 이하의 설명으로 더욱 명확해질 것이다.Specific features and advantages of the present invention will become more apparent from the following description with reference to the accompanying drawings.
도 1은 본 발명의 고압용 대기식 초저온 가스 기화기를 보인 개략적 사시도이고, 도 2는 심레스관 및 핀튜브가 결합된 상태를 보인 발췌 사시도이며, 도 3는 도 2의 부분 절개 사시도이다. 도 4는 본 기화기틀의 하부에 열섬화방지부가 설치된 상태를 보인 개략적 정면도이고, 도 5는 열섬화방지부를 보인 개략적 측단면도이며, 도 6은 도 5의 개략적 평면도다.1 is a schematic perspective view showing a high-pressure atmospheric cryogenic gas vaporizer of the present invention, Figure 2 is an excerpt perspective view showing a state in which the seamless tube and the fin tube is coupled, Figure 3 is a partial cutaway perspective view of FIG. FIG. 4 is a schematic front view showing a state where a heat island prevention part is installed at a lower part of the vaporization framework, FIG. 5 is a side view schematically showing a heat island prevention part, and FIG. 6 is a schematic plan view of FIG.
이러한 본 발명의 고압용 대기식 초저온 가스 기화기는, LNG 및 산업용 가스 등의 액체 상태 초저온 가스를 기화 상태로 변화시켜서 공급하는 장비이다.The high-pressure atmospheric cryogenic gas vaporizer of the present invention is an equipment for changing and supplying liquid cryogenic gas such as LNG and industrial gas into a vaporized state.
본 발명의 기화기는 영하 50℃부터 영하 200℃까지 사용하는 LNG(액화천연가스) 및 산업용 가스(액화산소, 액화질소, 액화알곤, 액화탄산가스, 액화산화에틸렌, 액화암모니아) 등의 액체 상태의 초저온 가스를 기화 상태로 변화시키는 장치로써, 사용압력이 최저 5MPa 이상의 초고압을 사용하는 시설에 적용된다.Vaporizer of the present invention in the liquid state, such as LNG (liquefied natural gas) and industrial gas (liquefied oxygen, liquefied nitrogen, liquefied argon, liquefied carbon dioxide, liquefied ethylene oxide, liquefied ammonia) used from minus 50 ℃ to minus 200 ℃ It is a device to change the cryogenic gas into vaporization state, and it is applied to the facility using the ultra high pressure of the minimum pressure of 5MPa or more.
사용 초저온 유체와 대기와의 열교환용 핀튜브(40)의 재질은 알루미늄합금(A6061, A6163, A6063), 오스테나이트계 스테인레스강(STS304, STS304L, STS316, STS316L)을 사용한다.The material of the fin tube 40 for heat exchange between the cryogenic fluid and the atmosphere is aluminum alloy (A6061, A6163, A6063) and austenitic stainless steel (STS304, STS304L, STS316, STS316L).
고압의 초저온 액체가 흐르는 내부의 배관은 오스테나이트계 스테인레스강으로 심레스관(20)(Seamless Pipe)을 사용한다.The inner pipe through which the high-pressure cryogenic liquid flows is made of austenitic stainless steel, and the seamless pipe 20 is used.
열교환 효율을 극대화하기 위한 핀튜브(40)(Fin Tube)의 배열 형식은 4핀, 8핀, 12핀, 16핀 등을 사용하고, 길이와 총 전열 면적은 사용 유체의 총량에 따라 변화된다.In order to maximize the heat exchange efficiency, the fin tube 40 uses 4, 8, 12, 16, etc., and the length and total heat transfer area are changed depending on the total amount of fluid used.
이와 같은 본 발명의 고압용 대기식 초저온 가스 기화기는, 기화기틀(10), 심레스관(20), 메니폴드(30), 핀튜브(40)로 이루어진다.The high pressure atmospheric cryogenic gas vaporizer of this invention consists of a vaporization frame 10, the seamless pipe 20, the manifold 30, and the fin tube 40. As shown in FIG.
기화기틀(10)에는, 후술할 심레스관(20), 메니폴드(30), 핀튜브(40)가 설치된다.The vaporization frame 10 is provided with a seamless tube 20, a manifold 30, and a fin tube 40 which will be described later.
심레스관(20)은, 기화기틀(10)에 설치되고 고압의 초저온 액체 가스가 통과된다. 이러한 심레스관(20)은 상술한 바와 같이 오스테나이트계 스테인레스강 재질로 이루어진다.The seamless tube 20 is installed in the vaporization framework 10 and passes a high pressure cryogenic liquid gas. The seamless tube 20 is made of austenitic stainless steel as described above.
메니폴드(30)는, 기화기틀(10)에 설치되고 심레스관(20)에 연결된다.The manifold 30 is installed in the vaporization framework 10 and connected to the seamless pipe 20.
핀튜브(40)는, 심레스관(20)의 둘레에 결합되고 심레스관(20)과 대기 중에 열교환이 이루어지도록 한다. 이러한 핀튜브(40)는, 알루미늄합금관(AL) 또는 오스테이이트계 스테인레스강 재질로 이루어진다.The fin tube 40 is coupled to the circumference of the seamless tube 20 to allow heat exchange with the seamless tube 20 in the atmosphere. The fin tube 40 is made of an aluminum alloy tube AL or an austenitic stainless steel material.
여기서, 핀튜브(40)는, 심레스관(20)의 둘레에 밀착되는 결합보스(41)와, 결합보스(41)의 둘레에 방사상으로 복수개 형성된 방열날개(42)들로 이루어진다. 방열날개(42)의 둘레에는 길이방향을 방열홈(43)들이 형성되어 있다.Here, the fin tube 40 is composed of a coupling boss 41 in close contact with the circumference of the seamless tube 20, and a plurality of radiating wings 42 formed radially around the coupling boss 41. The heat dissipation grooves 43 are formed in the longitudinal direction of the heat dissipation blade 42.
한편, 기화기틀(10)의 하부에는, 열섬화방지부(50)가 설치될 수 있는 바, 이 열섬화방지부(50)는, 핀튜브(40) 측으로 공기를 송풍시키는 송풍팬(51)과, 송풍팬(51)과 핀튜브(40) 사이에 설치되어서 송풍팬(51)에 의해 공급되는 공기를 확산시키는 확산기(52)와, 송풍팬(51) 및 핀튜브(40) 사이의 확산기(52) 내에 설치되어서 핀튜브(40)들 측으로 흐르는 공기가 다수의 핀튜브(40)에 균일하게 송풍되도록 하여서 공기의 열전달 성능을 향상시키는 공기전향부(53)로 이루어진다.On the other hand, the lower portion of the vaporization framework 10, the bar may be provided with a heat flash prevention unit 50, the heat flash prevention unit 50, the blowing fan 51 for blowing air to the fin tube 40 side, The diffuser 52 which is installed between the blowing fan 51 and the fin tube 40 to diffuse the air supplied by the blowing fan 51 and the diffuser 52 between the blowing fan 51 and the fin tube 40. The air deflector 53 is installed in the airflow tube to improve the heat transfer performance of the air by allowing the air flowing toward the fin tubes 40 to be uniformly blown through the plurality of fin tubes 40.
여기서, 공기전향부(53)는 일단이 확산기(52)의 내부 중앙측을 향하고 타단이 확산기(52)의 외측 둘레를 향하도록 확산기(52) 내부에 경사지게 설치되어서, 송풍팬(51)에 의해 송풍되는 공기 중 일부가 확산기(52)의 개방부 둘레 측으로 유도되도록 구비된다. Here, the air deflector 53 is inclined in the diffuser 52 so that one end faces the inner center side of the diffuser 52 and the other end faces the outer circumference of the diffuser 52, and is blown by the blower fan 51. Some of the air blown is provided to be directed toward the circumference of the opening of the diffuser 52.
이러한 공기전향부(53)는, 하나의 송풍팬(51)에 설치된 하나의 확산기(52) 내부에 방사상으로 네 개가 설치되어서, 공기의 일부가 확산기(52)의 네 모서리 부분으로 유도되도록 구비된다.Four air deflectors 53 are provided radially inside one diffuser 52 installed in one blower fan 51 so that a part of the air is guided to the four corner portions of the diffuser 52. .
공기가 배출되는 확산기(52)의 외측에는, 확산기(52)의 내부에 설치되는 공기전향부(53)를 지지하도록 보강대(54)가 설치된다. 이 보강대(54)는, 공기의 흐름을 방해하지 않도록 원형 파이프 형상으로 이루어진다.On the outside of the diffuser 52 through which air is discharged, a reinforcement table 54 is provided to support the air deflector 53 provided inside the diffuser 52. This reinforcement stand 54 is formed in a circular pipe shape so as not to disturb the flow of air.
따라서 공기전향부(53)가 보강대(54)에 의해 견고히 지지되므로 본 발명의 열섬화방지부(50)를 장기간 사용하여도 공기전향부(53)가 확산기(52)로부터 이탈되지 않는다.Therefore, since the air deflector 53 is firmly supported by the reinforcing bar 54, the air deflector 53 does not escape from the diffuser 52 even when the heat island prevention part 50 of the present invention is used for a long time.
이러한 본 발명의 보강대(54)는, 원형파이프 형상으로 이루어지며 확산기(54)의 외측에 X자 형태로 설치되어 있다. 이와 같이 설치된 원형파이프 형태의 보강대(54)는 공기의 흐름을 방해하지 않으며, 이로 인한 공기의 압력강하가 거의 발생되지 않는다.The reinforcing table 54 of the present invention has a circular pipe shape and is provided in an X shape on the outside of the diffuser 54. The reinforcing bar 54 of the circular pipe shape installed as described above does not disturb the flow of air, and thus the pressure drop of the air is hardly generated.
도 7은 심레스관 및 핀튜브가 결합되는 과정을 순차적으로 보인 순서도이다. 상술한 본 발명의 고압용 대기식 초저온 가스 기화기는 심레스관(20)과 핀튜브(40)의 결합에 그 특징이 있는바, 이들의 결합은 도 7과 같이 이루어진다.7 is a flowchart sequentially showing a process of coupling the seamless tube and the fin tube. High-pressure atmospheric cryogenic gas vaporizer of the present invention described above is characterized in that the coupling of the seamless tube 20 and the fin tube 40, these combinations are made as shown in FIG.
먼저, 핀튜브(40)의 결합보스(41) 내에 심레스관(20)을 삽입하는 가결합단계(S10)를 갖는다. First, it has a temporary coupling step (S10) for inserting the seamless tube 20 into the coupling boss 41 of the fin tube (40).
핀튜브(40) 및 심레스관(20)이 가결합되면 심레스관(20)의 일단에는 고압용 펌프(미도시)를 연결하고 심레스관(20)의 타단에는 마개(미도시)를 결합시켜서 심레스관(20) 내부를 밀폐하는 심레스관 밀폐단계(S20)를 갖는다.When the fin tube 40 and the seamless tube 20 are combined, a high pressure pump (not shown) is connected to one end of the seamless tube 20, and a plug (not shown) is connected to the other end of the seamless tube 20. Coupled to have a seamless pipe sealing step (S20) to seal the inside of the seamless pipe 20.
심레스관(20)이 밀폐되면, 심레스관(20) 내부에 고압용 펌프로 압력을 주입하여서 심레스관(20) 내부에 압력을 세팅된 압력까지 상승시키는 심레스관 가압단계(S30)를 갖는다.When the seamless pipe 20 is sealed, the seamless pipe pressurizing step (S30) of injecting pressure into the seamless pipe 20 with a high-pressure pump to raise the pressure to the set pressure inside the seamless pipe 20 (S30). Has
심레스관(20)의 내부를 가압하면 증가된 내부압으로 심레스관(20) 내부을 팽창시켜서 심레스관(20)의 외주면이 핀튜브(40)의 결합보스(41) 내주면에 밀착되도록 하는 관접합단계(S40)를 갖는다.Pressing the inside of the seamless tube 20 expands the inside of the seamless tube 20 with an increased internal pressure so that the outer circumferential surface of the seamless tube 20 is in close contact with the inner circumferential surface of the coupling boss 41 of the fin tube 40. It has a pipe joint step (S40).
심레스관(20)의 내부압이 세팅압을 초과하여 상승되면 고압용 펌프를 중단시키고 마개를 열어서 심레스관(20) 내부의 유체를 배수시키는 내부압 해제단계(S50)를 갖는다.When the internal pressure of the seamless pipe 20 rises above the set pressure, the internal pressure release step (S50) of stopping the high-pressure pump and opening the stopper to drain the fluid inside the seamless pipe 20 is performed.
심레스관(20)의 내부압을 해제시킨 후 심레스관(20)의 내부를 건조시키는 건조단계(S60)를 갖는다.After releasing the internal pressure of the seamless tube 20 has a drying step (S60) for drying the interior of the seamless tube 20.
이러한 본 발명의 고압용 대기식 초저온 가스 기화기는 다음과 같은 장점이 있다.The high pressure atmospheric cryogenic gas vaporizer of the present invention has the following advantages.
첫째, 본 발명은 고압의 초저온 액체 가스가 통과되는 심레스관(20)과, 심레스관(20)의 둘레에 결합되고 심레스관(20)과 대기 중에 열교환이 이루어지도록 하는 핀튜브(40)를 포함하여서 이루어진다. 이 핀튜브(40)는, 심레스관(20)의 둘레에 밀착되는 결합보스(41)와, 결합보스(41)의 둘레에 방사상으로 복수개 형성된 방열날개(42)들로 이루어진다. First, the present invention is connected to the seamless tube 20, the seamless tube 20 through which the high-pressure cryogenic liquid gas is passed, and the fin tube 40 for heat exchange in the air with the seamless tube 20. ) The fin tube 40 is composed of a coupling boss 41 in close contact with the circumference of the seamless tube 20, and a plurality of heat dissipation blades 42 radially formed around the coupling boss 41.
따라서, LNG 및 산업용 가스 등의 액체 상태 초저온 가스가 심레스관(20)을 통과하면 핀튜브(40)의 결합보스(41) 및 방열날개(42)들과 심레스관(20) 사이에 열전도가 발생되면서 초저온 가스의 온도가 상승되므로 기화 상태로 변화시킨다. Therefore, when liquid cryogenic gas such as LNG and industrial gas passes through the seamless tube 20, heat conduction is performed between the coupling boss 41 of the fin tube 40 and the heat dissipation blades 42 and the seamless tube 20. As the temperature of the cryogenic gas rises, the gas is changed into a vaporized state.
그러므로 방열날개(42)들은 핀튜브(40)의 결합보스(41) 둘레에 방사상으로 다수 배열되므로 열방출 효과가 뛰어나고, 방사상으로 배열된 방열날개(42)들과 방열날개(42) 표면의 방열홈(43)들에 의해 대기와 방열날개(42) 사이의 접촉면적이 극대화되므로 기화기의 성능이 향상된다.Therefore, since the heat dissipation blades 42 are arranged radially around the coupling boss 41 of the fin tube 40, the heat dissipation effect is excellent, and the heat dissipation of the surfaces of the heat dissipation blades 42 and the heat dissipation blades 42 arranged radially. By the grooves 43, the contact area between the atmosphere and the heat dissipation blade 42 is maximized, thereby improving the performance of the vaporizer.
둘째, 본 발명의 기화기틀(10)의 하부에는, 핀튜브(40) 측으로 공기를 송풍시키는 송풍팬(51)과, 송풍팬(51)과 핀튜브(40) 사이에 설치되어서 송풍팬(51)에 의해 공급되는 공기를 확산시키는 확산기(52)와, 송풍팬(51) 및 핀튜브(40) 사이의 확산기(52) 내에 설치되어서 핀튜브(40)들 측으로 흐르는 공기가 다수의 핀튜브(40)에 균일하게 송풍되도록 하여서 공기의 열전달 성능을 향상시키는 공기전향부(53)로 이루어진 열섬화방지부(50)가 설치된다.Second, in the lower part of the vaporization framework 10 of the present invention, a blowing fan 51 for blowing air toward the fin tube 40 side, and is installed between the blowing fan 51 and the fin tube 40 to blow the fan 51 A plurality of fin tubes (2) installed in the diffuser (52) for diffusing the air supplied by the air blower (51) and between the blower fan (51) and the fin tube (40) and flowing toward the fin tubes (40). 40 is provided with a heat deterioration preventing portion 50 made of an air deflector 53 for uniformly blowing the air to improve the heat transfer performance of the air.
따라서, 송풍팬(51)에 의해 공기가 송풍되면 일부의 공기가 공기전향부(53)에 의해 확산기(52)의 네 귀퉁이로 유도되고, 송풍팬(51)에 의해 송풍되는 공기는 확산기(52)의 개방부 전체로 고르게 확산되며, 이에 따라 다수의 핀튜브(40) 전체에 고르게 공급된다. Therefore, when the air is blown by the blower fan 51, a part of the air is guided to the four corners of the diffuser 52 by the air deflector 53, and the air blown by the blower fan 51 is diffuser 52. It is spread evenly throughout the opening of the), and is thus evenly supplied throughout the plurality of fin tubes (40).
그러므로 핀튜브(40)의 전체에 공기가 균일하게 흐르게 되므로 기화기의 성능을 향상시키게 된다.Therefore, the air flows uniformly throughout the fin tube 40, thereby improving the performance of the vaporizer.
셋째, 본 발명의 심레스관(20) 및 핀튜브(40) 결합은, 핀튜브(40)의 결합보스(41) 내에 심레스관(20)을 삽입하고, 밀폐된 심레스관(20) 내부에 고압용 펌프로 압력을 주입하여서 세팅압까지 상승시키며, 증가된 내부압으로 심레스관(20) 내부을 팽창시켜서 심레스관(20)의 외주면이 핀튜브(40)의 결합보스(41) 내주면에 밀착되도록 하여서 이루어진다. Third, the seamless tube 20 and the fin tube 40 of the present invention, the seamless tube 20 is inserted into the coupling boss 41 of the fin tube 40, the sealed seamless tube 20 By injecting pressure into the high-pressure pump therein, the pressure is increased to the set pressure, and the inner circumferential surface of the seamless tube 20 is expanded by the expansion of the seamless tube 20 by the increased internal pressure. It is made to be in close contact with the inner circumferential surface.
따라서, 심레스관(20) 및 핀튜브(40)가 별도의 용접없이 밀착되어서 고정되므로 고압의 초저온 액체 가스가 기화되면서 극심한 온도편차가 발생되어도 결합부위에 균열이 발생되지 않는다.Therefore, since the seamless tube 20 and the fin tube 40 are tightly fixed without additional welding, cracks do not occur at the joint even when extreme temperature deviation occurs while the high-pressure cryogenic liquid gas is vaporized.
한편, 고압이 작용하는 메니폴드(30)의 입구(31)에는 마모방지코팅층이 코팅될 수 있다.Meanwhile, the anti-wear coating layer may be coated on the inlet 31 of the manifold 30 to which the high pressure is applied.
이 마모방지코팅층은, 산화크롬(Cr2O3) 96∼98중량% 및 이산화티타늄(TiO2) 2∼4중량%가 혼합되어 이루어진 분말이 메니폴드(30)의 입구(31) 주변에 용사되어서 이루어지고, 50∼600㎛의 두께로 이루어지며, 경도는 900∼1000HV를 유지하도록 플라즈마 코팅된다.In this antiwear coating layer, 96 to 98% by weight of chromium oxide (Cr 2 O 3 ) and 2 to 4% by weight of titanium dioxide (TiO 2 ) are mixed and the powder is sprayed around the inlet 31 of the manifold 30. It is made, the thickness of 50 to 600 ㎛, the hardness is plasma coated to maintain 900 to 1000 HV.
이 마모방지코팅층은 산화크롬(Cr2O3) 96∼98중량% 및 이산화티타늄(TiO2) 2∼4중량%가 혼합되어 이루어진 분말이 용사되어서 이루어진다.This anti-wear coating layer is formed by spraying a powder obtained by mixing 96 to 98% by weight of chromium oxide (Cr 2 O 3 ) and 2 to 4% by weight of titanium dioxide (TiO 2 ).
메니폴드(30)의 입구(31) 주변에 세라믹 코팅을 하는 이유는 마모 방지 및 부식 방지가 주목적이다. 세라믹 코팅은 크롬도금 또는 니켈크롬도금에 비해 내부식성, 내스크래치성, 내마모성, 내충격성 및 내구성이 뛰어나다.The reason for the ceramic coating around the inlet 31 of the manifold 30 is mainly to prevent wear and corrosion. Ceramic coatings are more resistant to corrosion, scratch, abrasion, impact and durability than chromium or nickel chromium plating.
산화크롬(Cr2O3)은, 금속 내부로 침입하는 산소를 차단시키는 부동태피막(Passivity Layer)의 역할을 함으로써 녹이 잘 슬지 않도록 하는 역할을 한다.Chromium oxide (Cr 2 O 3 ) serves to prevent rust by acting as a passivity layer that blocks oxygen invading into the metal.
이산화티타늄(TiO2)은, 물리화학적으로 매우 안정적이고 은폐력이 높아서 백색안료로 많이 된다. 또한 굴절율이 높아서 고굴절율의 세라믹스에도 많이 이용되고 있다. 그리고 광촉매적 특성과 초친수성의 특성을 갖는다. 이산화티타늄(TiO2)은, 공기정화 작용, 항균작용, 유해물질 분해작용, 오염방지 기능, 변색 방지기능의 역할을 수행한다. 이러한 이산화티타늄(TiO2)은, 마모방지코팅층이 메니폴드(30)의 입구(31) 주변에 확실하게 피복되도록 하며, 마모방지코팅층에 부착된 이물질을 분해, 제거하여 마모방지코팅층의 손상을 방지시킨다.Titanium dioxide (TiO 2 ) is very stable physicochemically and has a high hiding power, thus becoming a white pigment. In addition, the refractive index is high, it is widely used in high refractive index ceramics. It has photocatalytic and superhydrophilic properties. Titanium dioxide (TiO 2 ), air purification, antibacterial, harmful substance decomposition, pollution prevention function, discoloration prevention function. The titanium dioxide (TiO 2 ), the anti-wear coating layer is reliably coated around the inlet 31 of the manifold 30, and decomposes and removes the foreign matter attached to the anti-wear coating layer to prevent damage to the anti-wear coating layer. .
여기서, 산화크롬(Cr2O3)과 이산화티타늄(TiO2)을 혼합하여서 사용할 경우, 이들의 혼합 비율은, 산화크롬(Cr2O3) 96∼98중량%에 이산화티타늄(TiO2) 2∼4중량%가 혼합되는 것이 바람직하다.Here, when chromium oxide (Cr 2 O 3 ) and titanium dioxide (TiO 2 ) are mixed and used, the mixing ratio thereof is titanium oxide (TiO 2 ) 2 in 96 to 98% by weight of chromium oxide (Cr 2 O 3 ). It is preferable that -4 weight% is mixed.
산화크롬(Cr2O3)의 혼합비율이 96∼98%보다 적을 경우, 고온 등의 환경에서 산화크롬(Cr2O3)의 피복이 파괴되는 경우가 종종 발생되었으며, 이에 따라 메니폴드(30)의 입구(31) 주변의 녹방지 효과가 급격이 저하되었다.When the mixing ratio of chromium oxide (Cr 2 O 3 ) is less than 96-98%, the coating of chromium oxide (Cr 2 O 3 ) is often broken in an environment such as high temperature, and thus the manifold 30 The antirust effect around the inlet 31 of the abruptly fell.
이산화티타늄(TiO2)의 혼합비율이 2∼4중량%보다 적을 경우, 이를 산화크롬(Cr2O3)에 혼합하는 목적이 퇴색될 정도로 이산화티타늄(TiO2)의 효과가 미미하였다. 즉, 이산화티타늄(TiO2)은 메니폴드(30)의 입구(31) 주변에 부착되는 이물질을 분해, 제거하여서 메니폴드(30)의 입구(31) 주변이 부식되거나 손상되는 것을 방지시키는데, 그 혼합비율이 2∼4중량%보다 작을 경우, 부착된 이물질을 분해하는데 많은 시간이 소요되는 문제점이 있다.When the mixing ratio of titanium dioxide (TiO 2 ) is less than 2 to 4% by weight, the effect of titanium dioxide (TiO 2 ) was so small that the purpose of mixing it with chromium oxide (Cr 2 O 3 ) is faded. That is, titanium dioxide (TiO 2 ) decomposes and removes foreign matter adhering around the inlet 31 of the manifold 30 to prevent corrosion or damage around the inlet 31 of the manifold 30. If less than 2 to 4% by weight, there is a problem that takes a long time to decompose the adhered foreign matter.
이러한 재료들로 이루어진 코팅층은, 메니폴드(30)의 입구(31) 주변의 둘레에 50∼600㎛의 두께로 이루어지고, 경도는 900∼1000HV, 표면조도는 0.1∼0.3㎛를 유지하도록 플라즈마 코팅된다.The coating layer made of these materials has a thickness of 50 to 600 μm around the periphery 31 of the manifold 30, and is plasma coated to maintain a hardness of 900 to 1000 HV and a surface roughness of 0.1 to 0.3 μm. .
이러한 마모방지코팅층은, 상기의 분말가루와 1400℃의 가스를 마하 2정도의 속도로 메니폴드(30)의 입구(31) 주변에 제트분사하여서 50∼600㎛으로 용사한다.The antiwear coating layer is sprayed at 50 to 600 µm by jetting the powdered powder and the gas at 1400 ° C. around the inlet 31 of the manifold 30 at a speed of about Mach 2.
마모방지코팅층의 두께가 50㎛ 미만일 경우, 상술한 세라믹 코팅층에 의한 효과가 보장되지 못하게 되며, 마모방지코팅층의 두께가 600㎛을 초과할 경우, 상술한 효과의 증대는 미미한 반면 과다한 세라믹코팅에 의해 작업시간 및 재료비가 낭비되는 문제점이 있다.When the thickness of the anti-wear coating layer is less than 50 μm, the effect of the above-described ceramic coating layer is not guaranteed. When the thickness of the anti-wear coating layer exceeds 600 μm, the above-mentioned effect is insignificant, but due to excessive ceramic coating. There is a problem in that work time and material costs are wasted.
메니폴드(30)의 입구(31) 주변에 마모방지코팅층이 코팅되는 동안 메니폴드(30)의 입구(31) 주변의 온도는 상승되는데, 가열된 메니폴드(30)의 입구(31) 주변의 변형이 방지되도록 메니폴드(30)의 입구(31) 주변이 냉각장치(미도시)로 냉각되어서 150∼200℃의 온도를 유지하도록 된다.The temperature around the inlet 31 of the manifold 30 is raised while the anti-wear coating layer is coated around the inlet 31 of the manifold 30, preventing deformation around the inlet 31 of the heated manifold 30. If possible, around the inlet 31 of the manifold 30 is cooled by a cooling device (not shown) to maintain a temperature of 150 ~ 200 ℃.
마모방지코팅층의 둘레에는 금속계 유리 석영 계통으로 이루어진 무수크롬산(CrO3)으로 이루어진 실링재가 더 도포될 수 있다. 무수크롬산은 무기실링재로써 크롬니켈 분말로 이루어진 코팅층 둘레에 도포된다.The sealing material made of chromic anhydride (CrO 3 ) made of a metallic glass quartz system may be further coated around the wear protection coating layer. Chromic anhydride is applied around the coating layer made of chromium nickel powder as the inorganic sealing material.
무수크롬산(CrO3)은, 높은 내마모, 윤활성, 내열성, 내식성, 이형성을 필요로 하는 곳에 사용되며, 대기중에서 변색이 안되고, 내구성이 크며, 내마모성과 내식성이 좋다. 실링재의 코팅 두께는 0.3∼0.5㎛ 정도가 바람직하다. 실링재의 코팅두께가 0.3㎛ 미만이면 약간의 스크래치홈에도 실링재가 쉽게 파이면서 벗겨지게 되므로 상술한 효과를 얻을 수 없게 된다. 실링재의 코팅두께가 0.5㎛를 초과할 정도로 두껍게 하면 도금면에 핀홀(pin hole), 균열 등이 많게 된다. 따라서 실링재의 코팅두께는 0.3∼0.5㎛ 정도가 바람직하다.Chromic anhydride (CrO 3 ) is used in places requiring high wear resistance, lubricity, heat resistance, corrosion resistance, and releasability, and does not discolor in the air, has great durability, and has good wear resistance and corrosion resistance. As for the coating thickness of a sealing material, about 0.3-0.5 micrometer is preferable. When the coating thickness of the sealing material is less than 0.3㎛, the sealing material is easily peeled off and peeled even in a slight scratch groove, so that the above-described effects cannot be obtained. If the coating thickness of the sealing material is thick enough to exceed 0.5㎛, there are many pin holes, cracks, etc. in the plating surface. Therefore, the coating thickness of the sealing material is preferably about 0.3 to 0.5㎛.
따라서 메니폴드(30)의 입구(31) 주변에 내마모성 및 내산화성이 뛰어난 코팅층이 형성되므로 메니폴드(30)의 입구(31) 주변이 마모되거나 산화되는 것이 방지되고, 이에 따라 제품의 수명이 연장된다.Therefore, since a coating layer having excellent wear resistance and oxidation resistance is formed around the inlet 31 of the manifold 30, wear or oxidation around the inlet 31 of the manifold 30 is prevented, thereby extending the life of the product.
또한, 메니폴드(30)는, 노듈러주철로 이루어질 수 있다. 이 노듈러주철을 1600∼1650℃로 가열시켜서 용탕으로 만든 다음 탈황처리를 하며, 마그네슘이 0.3∼0.7중량% 정도 포함된 구상화 처리제를 넣고 1500∼1550℃에서 구상화 처리를 실시한 후 열처리하여 이루어진다.In addition, the manifold 30 may be made of nodular cast iron. The nodular cast iron is heated to 1600-1650 ° C. to form a molten metal, followed by desulfurization treatment. The spheroidizing agent containing about 0.3 to 0.7% by weight of magnesium is added thereto, followed by a spheroidizing treatment at 1500 to 1550 ° C., followed by heat treatment.
노듈러주철은, 일반 회주철의 용탕에 마그네슘 등을 첨가하여 응고과정에서 흑연이 구상으로 정출된 주철이므로 회주철에 비하여 흑연의 형태가 구상이다. 이러한 노듈러주철은 노치효과가 적기 때문에 응력 집중 현상이 감소되어 강도와 인성이 크게 향상된다.Since nodular cast iron is cast iron in which graphite is spherically crystallized in the solidification process by adding magnesium or the like to the molten iron of ordinary gray cast iron, the form of graphite is spherical compared to gray cast iron. Since the nodular cast iron has a small notch effect, stress concentration is reduced, and strength and toughness are greatly improved.
본 발명의 메니폴드(30)는 노듈러주철을 1600∼1650℃로 가열시켜서 용탕으로 만든 다음 탈황처리를 하며, 마그네슘이 0.3∼0.7중량% 정도 포함된 구상화 처리제를 넣고 1500∼1550℃에서 구상화 처리를 실시한 후 열처리하여 이루어진다.In the manifold 30 of the present invention, the nodular cast iron is heated to 1600 to 1650 ° C. to form a molten metal, followed by desulfurization treatment, and a spheroidizing treatment containing about 0.3 to 0.7 wt% of magnesium is added to the spheroidizing treatment at 1500 to 1550 ° C. It is made by heat treatment after implementation.
여기서, 노듈러주철을 1600℃ 미만으로 가열하면 전체 조직이 충분히 용융되지 못하며, 1650℃를 초과하여 가열시키면 불필요하게 에너지가 낭비된다. 그러므로 노듈러주철을 1600∼1650℃로 가열하는 것이 바람직하다.Here, when the nodular cast iron is heated to less than 1600 ° C, the entire structure is not sufficiently melted, and if it is heated above 1650 ° C, energy is unnecessarily wasted. Therefore, it is preferable to heat nodular cast iron at 1600-1650 degreeC.
용융된 노듈러주철에는 마그네슘이 0.3∼0.7중량% 정도 포함된 구상화 처리제를 넣는 바, 마그네슘이 0.3중량% 미만이면 구상화 처리제를 투입효과가 극히 미미해 지며, 0.7중량%를 초과하면 구상화 처리제의 투입효과가 크게 향상되지 않는 반면에, 고가의 재료비가 증가되는 문제점이 있다. 그러므로 구상화 처리제의 마그네슘 혼합비율은 0.3∼0.7중량% 정도가 적합하다.In the molten nodular cast iron, a spheroidizing agent containing about 0.3 to 0.7% by weight of magnesium is added. When the magnesium content is less than 0.3% by weight, the spheroidizing agent is insignificant. On the other hand, there is a problem that the expensive material cost is increased, while it is not greatly improved. Therefore, the magnesium mixing ratio of the spheroidizing agent is suitably about 0.3 to 0.7% by weight.
용융된 노듈러주철에 구상화 처리제가 투입되면 이를 1500∼1550℃에서 구상화 처리를 실시한다. 구상화 처리 온도가 1500℃ 미만이면 구상화 처리가 제대로 이루어지지 않으며, 1550℃를 초과하면 구상화 처리 효과가 크게 개선되지 않는 반면에 불필요하게 에너지가 낭비된다. 그러므로 구상화 처리 온도는 1500∼1550℃가 적합하다.When a spheroidizing agent is added to the molten nodular cast iron, it is spheroidized at 1500 to 1550 ° C. If the spheroidization treatment temperature is less than 1500 ° C., the spheroidization treatment is not performed properly. If the spheroidization treatment temperature is higher than 1550 ° C., the spheroidization treatment effect is not greatly improved, but energy is unnecessarily waste. Therefore, the spheroidization treatment temperature is preferably 1500 to 1550 ° C.
이와 같이 본 발명의 메니폴드(30)가 노듈러주철로 이루어지므로 노치효과가 적기 때문에 응력 집중 현상이 감소되어 강도와 인성이 크게 향상된다.As described above, since the manifold 30 of the present invention is made of nodular cast iron, since the notch effect is small, the stress concentration phenomenon is reduced and the strength and toughness are greatly improved.
그리고, 기화기틀(10)은 외부 충격 또는 외부 환경에 대한 내충격성이 우수한 폴리프로필렌 수지 조성물로 형성될 수 있다. 이러한 폴리프로필렌 수지 조성물은 에틸렌-프로필렌-알파올레핀 랜덤 공중합체 75~95중량% 및 에틸렌 함량이 20~50중량%인 에틸렌-프로필렌 블록 공중합체 5~25중량%로 이루어진 폴리프로필렌 랜덤 블록 공중합체를 포함할 수 있다. The vaporization framework 10 may be formed of a polypropylene resin composition having excellent impact resistance against external impact or external environment. The polypropylene resin composition comprises a polypropylene random block copolymer composed of 75 to 95% by weight of ethylene-propylene-alpha olefin random copolymer and 5 to 25% by weight of ethylene-propylene block copolymer having an ethylene content of 20 to 50% by weight. It may include.
상기 폴리프로필렌 랜덤 블록 공중합체는 전술한 에틸렌-프로필렌-알파올레핀 랜덤 공중합체 75~95중량% 및 에틸렌-프로필렌 블록 공중합체 5~25중량%인 것이 바람직한데, 에틸렌-프로필렌-알파올레핀 랜덤 공중합체가 75중량% 미만이면 강성이 저하되고, 95중량%를 초과하면 내충격성이 저하되며, 에틸렌-프로필렌 블록 공중합체는 5중량% 미만이면 내충격성이 저하되고, 25중량%를 초과하면 강성이 저하된다.The polypropylene random block copolymer is preferably 75 to 95% by weight of the above-mentioned ethylene-propylene-alpha olefin random copolymer and 5 to 25% by weight of the ethylene-propylene block copolymer, ethylene-propylene-alpha olefin random copolymer Is less than 75% by weight, the rigidity is lowered, when it exceeds 95% by weight, impact resistance is lowered, when the ethylene-propylene block copolymer is less than 5% by weight, impact resistance is lowered, when it exceeds 25% by weight, the rigidity is lowered do.
상기 에틸렌-프로필렌-알파올레핀 랜덤 공중합체는 에틸렌 0.5~7중량% 및 탄소수가 4~5인 알파올레핀 1~15중량%를 포함하며, 폴리프로필렌 수지 조성물의 기계적 강성유지 및 내열성을 향상시키며 내백화성을 유지하는데 효과적인 역할을 한다. 상기 에틸렌 함량은 바람직하게는 0.5~5중량%이며, 더욱 바람직하게는 1~3중량%일 수 있으며, 0.5중량% 미만이면 내백화성이 저하되고, 7중량%를 초과하면 수지의 결정화도 및 강성이 저하된다. 또한, 상기 알파올레핀은 에틸렌 및 프로필렌을 제외한 임의의 알파올레핀을 의미하며, 바람직하게는 부텐이다. 또한, 전술한 알파올레핀은 탄소수가 4 미만이거나 5를 초과하면 랜덤 공중합체의 제조 시, 코모노머와의 반응성이 낮아 공중합체를 제조하는데 어려움이 있다. 또한, 전술한 알파올레핀 1~15중량%를 포함하며, 바람직하게는 1~10중량%이고, 더욱 바람직하게는 3~9중량%일 수 있다. 상기 알파올레핀은 1중량% 미만이면, 결정화도가 필요 이상으로 높아져 투명성이 저하되고, 15중량%를 초과하면 결정화도 및 강성이 저하되어 내열성이 현저히 낮아지는 문제점을 가진다.The ethylene-propylene-alpha olefin random copolymer comprises 0.5 to 7% by weight of ethylene and 1 to 15% by weight of alpha olefin having 4 to 5 carbon atoms, and maintains mechanical rigidity and heat resistance of the polypropylene resin composition and whitening resistance Play an effective role in maintaining The ethylene content is preferably 0.5 to 5% by weight, more preferably 1 to 3% by weight, and less than 0.5% by weight of whitening resistance is lowered, when it exceeds 7% by weight the crystallinity and rigidity of the resin Degrades. In addition, the alpha olefin means any alpha olefin except ethylene and propylene, preferably butene. In addition, when the above-mentioned alpha olefin has less than 4 or more than 5 carbon atoms, it is difficult to prepare a copolymer due to low reactivity with a comonomer when preparing a random copolymer. In addition, it includes 1 to 15% by weight of the above-mentioned alpha olefin, preferably 1 to 10% by weight, more preferably 3 to 9% by weight. If the alpha olefin is less than 1% by weight, the degree of crystallinity is higher than necessary to increase the transparency, and if the alpha olefin is more than 15% by weight, the degree of crystallinity and rigidity is lowered and heat resistance is significantly lowered.
또한, 상기 에틸렌-프로필렌 블록 공중합체는 에틸렌 20~50중량%을 포함하며, 폴리프로필렌 수지 조성물에 내충격적 특성을 부여하고 미세 분산이 가능하여 내백화성 및 투명성을 동시에 부여하는 역할을 한다. 이러한 에틸렌 함량은 바람직하게는 20~40중량%일 수 있으며, 20중량% 미만이면 내충격성이 저하되고 50중량%를 초과하면 내충격성 및 내백화성이 저하될 수 있다.In addition, the ethylene-propylene block copolymer contains 20 to 50% by weight of ethylene, and imparts impact resistance to the polypropylene resin composition and enables fine dispersion to serve to simultaneously provide whitening resistance and transparency. The ethylene content may be preferably 20 to 40% by weight, and less than 20% by weight may lower the impact resistance, while more than 50% by weight may reduce the impact resistance and the whitening resistance.
이와 같이 기화기틀(10)의 둘레에 폴리프로필렌 수지 조성물이 코팅되므로 외부 충격 또는 외부 환경에 대한 내충격성, 내백화성이 향상되므로 제품의 수명이 연장된다.Since the polypropylene resin composition is coated around the vaporization frame 10 as described above, impact resistance and whitening resistance to external impact or external environment are improved, thereby extending the life of the product.
또한, 기화기틀(10)의 외부면 한 곳에는 온도에 따라 색이 변화하는 온도변색층이 도포될 수 있다.In addition, a thermochromic layer whose color changes with temperature may be applied to one outer surface of the vaporization framework 10.
이 온도변색층은, 소정의 온도 이상이 되었을 때 색이 변하는 두 가지 이상의 온도변색물질이 기화기틀(10)의 표면에 코팅되어 온도 변화에 따라 두 개 이상의 구간으로 분리됨으로써 단계적인 온도 변화를 판단할 수 있고, 온도변색층 위에는 온도변색층이 손상되는 것을 방지하기 위한 보호막층이 코팅된다.The temperature change layer is a step of determining the temperature change by two or more thermochromic material that changes color when the temperature is above a predetermined temperature is coated on the surface of the vaporization frame 10 and separated into two or more sections according to the temperature change The protective film layer may be coated on the thermochromic layer to prevent the thermochromic layer from being damaged.
여기서, 온도변색층은 기화기틀(10)의 온도에 따라 색이 변화하여 도료의 온도 변화를 감지하기 위한 것이다. 이러한 온도변색층은 소정의 온도 이상이 되었을 때 색깔이 변하는 온도변색물질이 기화기틀(10)의 표면에 코팅됨으로써 형성될 수 있다.Here, the color change layer is for detecting the temperature change of the paint by changing the color according to the temperature of the vaporization framework (10). The thermochromic layer may be formed by coating a surface of the vaporization frame 10 with a thermochromic material that changes color when a temperature is higher than a predetermined temperature.
온도변색물질은 일반적으로 1~10㎛의 마이크로캡슐 구조로 구성되어 있고, 마이크로캡슐 내에 전자 공여체와 전자 수용체의 온도에 따른 결합 및 분리현상으로 인해 유색 및 투명색을 나타내도록 할 수 있다. Thermochromic material is generally composed of a microcapsule structure of 1 ~ 10㎛, it can be colored and transparent due to the binding and separation phenomenon depending on the temperature of the electron donor and the electron acceptor in the microcapsules.
또한, 온도변색물질은 색의 변화가 빠르고, 다양한 변색온도를 가질 수 있으며, 이러한 변색온도는 여러 방법으로 쉽게 조정될 수 있다. 이러한 온도변색물질은 유기화합물의 분자 재배열, 원자단의 공간 재배치 등의 원리에 의한 다양한 종류의 온도변색물질이 이용될 수 있다.In addition, the temperature change material may change color quickly and have various color changes, and the color change temperature may be easily adjusted in various ways. Such thermochromic materials may be used in various kinds of thermochromic materials based on principles such as molecular rearrangement of organic compounds and rearrangement of atomic groups.
이를 위해, 온도변색층은 서로 다른 변색 온도를 가지는 두 가지 이상의 온도변색물질을 코팅하여 온도 변화에 따라 두 개 이상의 구간으로 분리되도록 형성되는 것이 바람직하다. 이 온도변색층은 상대적으로 저온의 변색온도를 갖는 온도변색물질과 상대적으로 고온의 변색온도를 갖는 온도변색물질을 사용하는 것이 바람직하며, 두 개의 서로 다른 온도에서 각각 반응하는 변색온도를 갖는 온도변색물질을 사용하여 온도변색층을 형성할 수 있다.To this end, the thermochromic layer is preferably formed to coat two or more thermochromic materials having different discoloration temperatures into two or more sections according to temperature changes. It is preferable to use a thermochromic material having a relatively low temperature discoloration temperature and a thermochromic material having a relatively high temperature discoloration temperature, and the temperature discoloration layer having a discoloration temperature reacting at two different temperatures. The material can be used to form the thermochromic layer.
이를 통해, 기화기틀(10)의 온도 변화를 단계적으로 확인할 수 있어 도료의 온도변화를 감지할 수 있으며, 이에 따라 기화기틀(10) 주변의 온도를 파악할 수 있다. 이러한 온도변색층은을 통해서 액체상태의 초저온 가스가 기화기 내에서 최적의 온도에서 원활하게 기화되는지의 여부를 간접적으로 파악할 수 있다.Through this, it is possible to check the temperature change of the vaporization framework (10) step by step to detect the temperature change of the paint, thereby grasping the temperature around the vaporization framework (10). The thermochromic layer can indirectly determine whether the liquid cryogenic gas is vaporized smoothly at the optimum temperature in the vaporizer.
보호막층은 온도변색층 위에 코팅되어서 외부의 충격으로 인해 온도변색층이 손상되는 것을 방지하며, 온도변색층의 변색 여부를 쉽게 확인함과 동시에 온도변색물질이 열에 약한 것을 고려하여 단열 효과를 가지는 투명 코팅재를 사용하는 것이 바람직하다.The protective layer is coated on the thermochromic layer to prevent the thermochromic layer from being damaged by an external impact, and it is easy to check whether the thermochromic layer is discolored, and at the same time, it has a heat insulating effect considering that the thermochromic material is weak to heat. It is preferable to use a coating material.

Claims (5)

  1. LNG 및 산업용 가스 등의 액체 상태 초저온 가스를 기화 상태로 변화시켜서 공급하는 고압용 대기식 초저온 가스 기화기에 있어서,In the high pressure atmospheric cryogenic gas vaporizer which supplies liquid cryogenic gas, such as LNG and industrial gas, to the vaporization state, and supplies it,
    기화기틀(10);Vaporization framework (10);
    기화기틀(10)에 설치되고 고압의 초저온 액체 가스가 통과되는 심레스관(20);A seamless tube 20 installed in the vaporization framework 10 and having a high pressure cryogenic liquid gas therethrough;
    기화기틀(10)에 설치되고 심레스관(20)에 연결되는 메니폴드(30);A manifold 30 installed on the vaporization framework 10 and connected to the seamless pipe 20;
    심레스관(20)의 둘레에 결합되고 심레스관(20)과 대기 중에 열교환이 이루어지도록 하는 핀튜브(40)를 포함하여서 이루어지며;A fin tube 40 coupled to the periphery of the seamless tube 20 to allow heat exchange with the seamless tube 20 in the atmosphere;
    핀튜브(40)는,The fin tube 40,
    심레스관(20)의 둘레에 밀착되는 결합보스(41)와, 결합보스(41)의 둘레에 방사상으로 복수개 형성된 방열날개(42)들로 이루어진 것을 특징으로 하는 고압용 대기식 초저온 가스 기화기.High pressure atmospheric cryogenic gas vaporizer, characterized in that made of a coupling boss 41 in close contact with the circumference of the seamless tube 20, and a plurality of radiating wings 42 formed radially around the coupling boss 41.
  2. 청구항 1에 있어서, The method according to claim 1,
    심레스관(20)은, 오스테나이트계 스테인레스강 재질로 이루어지고,The seamless tube 20 is made of austenitic stainless steel,
    핀튜브(40)는, 알루미늄합금 또는 오스테이이트계 스테인레스강 재질로 이루어진 것을 특징으로 하는 고압용 대기식 초저온 가스 기화기.Fin tube 40 is a high-pressure atmospheric cryogenic gas vaporizer, characterized in that made of aluminum alloy or an austenitic stainless steel material.
  3. 청구항 1에 있어서, 방열날개(42)의 둘레에는 길이방향을 방열홈(43)들이 형성되어 있는 것을 특징으로 하는 고압용 대기식 초저온 가스 기화기.The high-temperature atmospheric cryogenic gas vaporizer of claim 1, wherein heat dissipation grooves 43 are formed around the heat dissipation blade 42 in the longitudinal direction.
  4. 청구항 1에 있어서,The method according to claim 1,
    기화기틀(10)의 하부에는 열섬화방지부(50)가 설치되되, On the lower part of the vaporization framework 10 is installed a heat flash prevention unit 50,
    이 열섬화방지부(50)는 핀튜브(40) 측으로 공기를 송풍시키는 송풍팬(51)과, 송풍팬(51)과 핀튜브(40) 사이에 설치되어서 송풍팬(51)에 의해 공급되는 공기를 확산시키는 확산기(52)와, 송풍팬(51) 및 핀튜브(40) 사이의 확산기(52) 내에 설치되어서 핀튜브(40)들 측으로 흐르는 공기가 다수의 핀튜브(40)에 균일하게 송풍되도록 하여서 공기의 열전달 성능을 향상시키는 공기전향부(53)로 이루어지며;The heat flash prevention unit 50 is provided between a blowing fan 51 for blowing air to the fin tube 40 side, and is provided between the blowing fan 51 and the fin tube 40 to be supplied by the blowing fan 51. Diffuser 52 and diffuser 52 for spreading the air, and the air flowing to the fin tubes 40 in the diffuser 52 between the blower fan 51 and the fin tube 40 is uniformly blown to the plurality of fin tubes 40. An air deflector 53 for improving the heat transfer performance of the air;
    공기전향부(53)는, Air deflector 53,
    일단이 확산기(52)의 내부 중앙측을 향하고 타단이 확산기(52)의 외측 둘레를 향하도록 확산기(52) 내부에 경사지게 설치되어서, 송풍팬(51)에 의해 송풍되는 공기 중 일부가 확산기(52)의 개방부 둘레 측으로 유도되도록 구비되며; 하나의 송풍팬(51)에 설치된 하나의 확산기(52) 내부에 방사상으로 네 개가 설치되어서, 공기의 일부가 확산기(52)의 네 모서리 부분으로 유도되도록 된 것을 특징으로 하는 고압용 대기식 초저온 가스 기화기.One end is inclined inside the diffuser 52 so that one end faces the inner center side of the diffuser 52 and the other end faces the outer circumference of the diffuser 52 so that some of the air blown by the blower fan 51 is diffuser 52. Is guided to the circumferential side of the opening; Four radially installed inside one diffuser 52 installed in one blower fan 51, so that a part of the air is guided to the four corners of the diffuser 52, characterized in that the atmospheric ultra-low temperature gas for high pressure carburetor.
  5. 기화기틀과, 기화기틀에 설치되고 고압의 초저온 액체 가스가 공급되며 오스테나이트계 스테인레스강 재질로 이루어진 심레스관과, 기화기틀에 설치되고 심레스관에 연결되는 메니폴드와, 심레스관의 둘레에 결합되고 심레스관과 대기 중에 열교환이 이루어지도록 하며 알루미늄합금 또는 오스테나이트계 스테인레스강 재질로 이루어진 핀튜브를 포함하여서 이루어진 고압용 대기식 초저온 가스 기화기 중, 심레스관과 핀튜브를 결합하는 방법으로서, A vaporization base, a seamless tube made of austenitic stainless steel, supplied with a high-pressure cryogenic liquid gas provided on the vaporized base, a manifold installed on the vaporized base and connected to the seamless tube, and around the seamless tube A method of coupling a seamless tube and a fin tube in a high pressure atmospheric cryogenic gas vaporizer comprising a fin tube made of an aluminum alloy or an austenitic stainless steel. ,
    핀튜브(40)의 결합보스(41) 내에 심레스관(20)을 삽입하는 가결합단계(S10);Provisional coupling step (S10) for inserting the seamless tube 20 into the coupling boss 41 of the fin tube 40;
    심레스관(20)의 일단에는 고압용 펌프를 연결하며 심레스관(20)의 타단에는 마개를 결합시켜서 심레스관(20) 내부를 밀폐하는 심레스관 밀폐단계(S20);Connecting the high pressure pump to one end of the seamless pipe 20 and connecting the stopper to the other end of the seamless pipe 20 to seal the seamless pipe sealing step (S20) to seal the inside of the seamless pipe 20;
    심레스관(20) 내부에 고압용 펌프로 압력을 주입하여서 심레스관(20) 내부에 압력을 세팅된 압력까지 상승시키는 심레스관 가압단계(S30);A seamless pipe pressurizing step (S30) of injecting pressure into the seamless pipe (20) with a high pressure pump to raise the pressure to the set pressure inside the seamless pipe (20);
    증가된 내부압으로 심레스관(20) 내부을 팽창시켜서 심레스관(20)의 외주면이 핀튜브(40)의 결합보스(41) 내주면에 밀착되도록 하는 관접합단계(S40);A pipe joint step (S40) of expanding the inside of the seamless tube 20 with an increased internal pressure such that the outer circumferential surface of the seamless tube 20 is in close contact with the inner circumferential surface of the coupling boss 41 of the fin tube 40;
    심레스관(20)의 내부압이 상승되면 고압용 펌프를 중단시키고 마개를 열어서 심레스관(20) 내부의 유체를 배수시키는 내부압 해제단계(S50);An internal pressure releasing step (S50) of stopping the high pressure pump and opening a stopper to drain the fluid inside the seamless tube 20 when the internal pressure of the seamless tube 20 is increased (S50);
    심레스관(20)의 내부압을 해제시킨 후 심레스관(20)의 내부를 건조시키는 건조단계(S60)로 이루어진 것을 특징으로 하는 고압용 대기식 초저온 가스 기화기에 사용되는 심레스관, 핀튜브 결합방법.Simless tube, pin used for high-pressure atmospheric cryogenic gas vaporizer, characterized in that the drying step (S60) for releasing the internal pressure of the seamless tube 20 and then drying the inside of the seamless tube 20 Tube joining method.
PCT/KR2015/008144 2014-12-11 2015-08-04 High pressure ambient ultra-low temperature vaporizer, and method for coupling seamless pipe and fin tube which are used in vaporizer WO2016093462A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20140178161A KR101506946B1 (en) 2014-12-11 2014-12-11 High Pressure Ambient Air Vaporizer And Seamless Pipe, Pin Tube Connection Method Used To Air Vaporizer
KR10-2014-0178161 2014-12-11

Publications (1)

Publication Number Publication Date
WO2016093462A1 true WO2016093462A1 (en) 2016-06-16

Family

ID=53032109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008144 WO2016093462A1 (en) 2014-12-11 2015-08-04 High pressure ambient ultra-low temperature vaporizer, and method for coupling seamless pipe and fin tube which are used in vaporizer

Country Status (2)

Country Link
KR (1) KR101506946B1 (en)
WO (1) WO2016093462A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112763160A (en) * 2020-12-18 2021-05-07 湖南省特种设备检验检测研究院 Low-temperature tank car air tightness test device and method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101586657B1 (en) * 2015-06-04 2016-01-19 (주)태진중공업 Seamless pipe expanding apparatus of ambient air vaporizer and seamless pipe expanding method using the same
KR101603063B1 (en) * 2015-10-07 2016-03-14 (주)태진중공업 Heat exchanges pipe of ambient air vaporizer
KR20180081241A (en) 2017-01-06 2018-07-16 (주)아이시스텍 Ambient air vaporizer
KR101913556B1 (en) * 2018-06-01 2018-10-31 주식회사 태진중공업 Forced draft ambient air vaporizer
KR102043583B1 (en) 2019-01-15 2019-11-11 서진욱 Submerged liquefied gas vaporizer with expansion function
KR102154423B1 (en) 2019-01-15 2020-09-09 서진욱 Plate type Heat Exchanger for Cryogenic Liquefied Gas
KR102565176B1 (en) * 2021-02-25 2023-08-11 주식회사 이앤코 Hybrid ambient air vaporizer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100927840B1 (en) * 2009-06-04 2009-11-23 주식회사 사이몬 Apparatus and method for antibacterial pipe, and antibacterial pipe
KR20100106345A (en) * 2007-11-16 2010-10-01 우드사이드 에너지 리미티드 Intermittent de-icing during continuous regasification of a cryogenic fluid using ambient air
KR20100111807A (en) * 2009-04-08 2010-10-18 주식회사 케이에이치이 Air cooled a heat exchanger with improved heat transfer performance
JP2010255670A (en) * 2009-04-22 2010-11-11 Showa Denko Aluminum Trading Kk Air temperature type liquefied gas vaporizer
KR20110103204A (en) * 2010-03-12 2011-09-20 강미영 Heat exchanger for air cooling

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100106345A (en) * 2007-11-16 2010-10-01 우드사이드 에너지 리미티드 Intermittent de-icing during continuous regasification of a cryogenic fluid using ambient air
KR20100111807A (en) * 2009-04-08 2010-10-18 주식회사 케이에이치이 Air cooled a heat exchanger with improved heat transfer performance
JP2010255670A (en) * 2009-04-22 2010-11-11 Showa Denko Aluminum Trading Kk Air temperature type liquefied gas vaporizer
KR100927840B1 (en) * 2009-06-04 2009-11-23 주식회사 사이몬 Apparatus and method for antibacterial pipe, and antibacterial pipe
KR20110103204A (en) * 2010-03-12 2011-09-20 강미영 Heat exchanger for air cooling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112763160A (en) * 2020-12-18 2021-05-07 湖南省特种设备检验检测研究院 Low-temperature tank car air tightness test device and method

Also Published As

Publication number Publication date
KR101506946B1 (en) 2015-04-07

Similar Documents

Publication Publication Date Title
WO2016093462A1 (en) High pressure ambient ultra-low temperature vaporizer, and method for coupling seamless pipe and fin tube which are used in vaporizer
KR101602966B1 (en) Oxygen heat exchanger
CN102382533B (en) Environment-friendly aqueous industrial thermal insulation coating
ES2396997T3 (en) Improvements in the life and performance of torch nozzles
KR101394360B1 (en) Construct ability and power saving is improved industrial boiler
CN207512248U (en) A kind of thermal spraying is from solid from Cooling fixture
JP4268824B2 (en) System and method for curing composite materials
CN102159732A (en) Oxygen blowing lance with protection element
KR101679263B1 (en) A system for cooling welding tips of robot welding guns
US7169439B2 (en) Methods for repairing a refractory wall of a high temperature process vessel utilizing viscous fibrous refractory material
CN219415257U (en) Vertical equipment capable of being used for rapid high-temperature heating of gas
CN219520946U (en) Air-cooled welding repair gun
US11268763B1 (en) Electric arc and ladle furnaces and components
CN112902211A (en) High-temperature high-corrosion flue gas chilling device and melting gasification system comprising same
JPS5832139Y2 (en) Heat-resistant collective piping for powder spraying
CN220083101U (en) Chimney with spraying device
JPH11264341A (en) Thermal spraying method for multiple cylinder
US7163750B2 (en) Thermal barrier composition
WO2021071161A1 (en) Pyrolysis treatment apparatus for optical cable and waste synthetic resin
CN214209989U (en) Transition device of humidifying tower
WO2023055164A1 (en) Carbon-coated steel material and manufacturing method therefor
CN219535755U (en) Steam guiding device for protecting main motor of evaporative air cooling fan
CN217830455U (en) Spraying frock of shaftless head roller cover
DE102012016143A1 (en) Hot blast lance
JP2631439B2 (en) Nozzle for injecting pulverized coal into furnace of iron making device and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15868255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15868255

Country of ref document: EP

Kind code of ref document: A1