WO2016093445A1 - 미세 조류를 이용한 수 정화 장치 - Google Patents

미세 조류를 이용한 수 정화 장치 Download PDF

Info

Publication number
WO2016093445A1
WO2016093445A1 PCT/KR2015/005197 KR2015005197W WO2016093445A1 WO 2016093445 A1 WO2016093445 A1 WO 2016093445A1 KR 2015005197 W KR2015005197 W KR 2015005197W WO 2016093445 A1 WO2016093445 A1 WO 2016093445A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
water purification
algae
nitrification
water
Prior art date
Application number
PCT/KR2015/005197
Other languages
English (en)
French (fr)
Inventor
강동한
장영호
문희천
김미정
이기종
오조교
이정복
이수문
유재인
Original Assignee
경기도
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경기도 filed Critical 경기도
Priority to KR1020167023408A priority Critical patent/KR101743653B1/ko
Publication of WO2016093445A1 publication Critical patent/WO2016093445A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • C02F3/322Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae use of algae
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/02Membranes; Filters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/02Stirrer or mobile mixing elements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M43/00Combinations of bioreactors or fermenters with other apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the present invention relates to a water purification device using microalgae. More specifically, the present invention relates to a water purification apparatus using microalgae capable of producing high purity algae while purifying water using aerobic microorganisms using photosynthetic oxygen generated by algae.
  • algae can produce oxygen through photosynthesis to supply oxygen to aerobic microorganisms.
  • the nitrogen component in the contaminated water is converted to nitrite nitrogen (NO 2 -N) or nitrate nitrogen (NO 3 -N) by biological nitrification to remove it from the contaminated water.
  • the organic matter contained in the contaminated water is converted to carbon dioxide and removed.
  • the nitrification and denitrification processes are carried out sequentially.
  • An aerobic microorganism uses the photosynthetic oxygen produced by algae to purify water and at the same time provide a device for purifying water by microalgae capable of producing algae of high purity.
  • the water purification device includes one or more water purification units adapted to purify contaminated water.
  • the water purification unit comprises: i) a photosynthetic reaction section into which contaminated water is introduced and irradiated with light; ii) a plurality of algal attachment networks that are inclined in the photosynthetic reaction section and spaced apart from each other, iii) located below the photosynthetic reaction section, photosynthesis A nitrification unit for accommodating a plurality of carriers to which aerobic microorganisms are attached to induce nitrification of contaminated water using oxygen generated in the reaction unit, and for producing nitrified liquid, iv) a nitrification unit located under the plurality of carriers, And an algae collector adapted to supply oxygen, and v) an algae collector connected to the photosynthetic reaction section to collect algae released from the plurality of algae attachment networks.
  • Water purification device is connected to the photosynthetic reaction unit to supply the contaminated water to the photosynthetic reaction unit, and connected to the nitrification unit is supplied to the nitrified liquid is a living body to clean the contaminated water by mixing with the contaminated water
  • the filter may further include.
  • the water purification apparatus according to an embodiment of the present invention further includes a planar porous screen positioned between the photosynthetic reaction unit and the nitrification unit, and the algae attachment network may form an angle of 30 ° to 60 ° with the planar porous screen.
  • the separation distance of the plurality of bird attachment nets is 15 cm to 20 cm, and the area of the opening formed in at least one bird attachment net of the plurality of bird attachment nets may be 1 cm 2 to 2.5 cm 2 .
  • the height of the photosynthetic reaction part may be greater than 0 and 30 cm or less.
  • the algal attachment nets of the plurality of algal attachment nets may be made of one or more materials selected from the group consisting of polyvinyl chloride, polyethylene, stainless steel, polyfluoride vinylladen, polytetrafluoroethylene, polyurethane, and polypropylene.
  • the at least one water purification unit includes a pair of water purification units, further includes a partition wall that partitions the pair of water purification units, and a pair of water depending on the flow direction of the contaminated water through the partition and the adjacent communication portion. Purification units may be connected in series.
  • the pair of water purification units includes a first purification unit and a second purification unit which are sequentially positioned along the flow direction of the contaminated water, and are installed on the inner side of the nitrification tank included in the first purification unit and directed toward the second purification unit. It may further include a propeller for adjusting the flow rate of the contaminated water.
  • the plurality of carriers may be formed in a fixed rod shape extending long up and down.
  • a water purification device includes one or more water purification units adapted to purify contaminated water.
  • the water purification unit comprises: i) an inlet adapted to introduce contaminated water, ii) an inlet connected to the inlet, and a nitrification unit accommodating a plurality of carriers with aerobic microorganisms to induce nitrification of the contaminated water;
  • a photosynthetic reaction part to which light is irradiated iv) a plurality of algae attachment members extending vertically apart from each other in the photosynthetic reaction part, v) collecting algae detached from the plurality of algae attachment members connected to the photosynthetic reaction part
  • An algae collector and vi) an underneath portion positioned below the plurality of algae attachment members and adapted to further supply oxygen.
  • the bottom surface of the inlet portion may be located higher than the bottom surface of the nitrification portion.
  • the bottom surface of the nitrification portion may be located lower than the bottom surface of the photosynthetic reaction portion.
  • the plurality of algae attachment members are arranged in a lattice form, and one or more of the algae attachment members of the plurality of algae attachment members may comprise i) a support, and ii) a support, and a detachable algae attachment.
  • the separation distance of the plurality of bird attachment members may be 1 cm to 5 cm.
  • the height of the support may be between 5 cm and 10 cm.
  • the height of the algae attachment member may be 30 cm to 60 cm.
  • the algae attachment may comprise one or more materials selected from the group consisting of acrylic, polyethylene, polypropylene and stainless steel.
  • the water purification apparatus according to another embodiment of the present invention may further include a rotary paddle installed in the inlet to smoothly transport the contaminated water to the nitrification unit.
  • the water purification apparatus according to another embodiment of the present invention may further include a baffle that extends in the vertical direction on the nitrification unit and is installed in a flat shape to guide the contaminated water to enter the nitrification unit.
  • the water purification apparatus according to another embodiment of the present invention may further include a planar porous screen positioned between the baffle and the nitrification unit, and the planar porous screen may be positioned to cover the nitrification unit.
  • the at least one water purification unit includes a pair of water purification units, further includes a partition wall that partitions the pair of water purification units, and a pair of water depending on the flow direction of the contaminated water through the partition and the adjacent communication portion.
  • Purification units may be connected in series.
  • a water purification device is connected to an inlet to supply contaminated water to an inlet, and is connected to a photosynthetic reaction unit to receive nitrified liquid and to mix the contaminated water with biofiltration to purify contaminated water. It may further include wealth.
  • the water purification unit may have a long channel shape.
  • the at least one flowable carrier of the plurality of flowable carriers comprises at least one material selected from the group consisting of polyurethane, polyethylene and polypropylene, and the specific gravity of the flowable carrier may be 0.97 to 1.03.
  • a water purification device can be used to purify water efficiently and produce fine algae with high purity. In other words, it is possible to reduce the energy required for aerobic water purification, such as sewage, wastewater, farm contaminated water, public contaminated water. And by harvesting the high-purity microalgae produced can be manufactured health functional food, feed, fertilizer, biofuel and the like.
  • FIG. 1 is a schematic side view of a water purification apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a schematic perspective view of the photosynthetic reaction part of FIG. 1.
  • FIG 3 is a schematic side view of a water purification apparatus according to a second embodiment of the present invention.
  • FIG. 4 is a schematic side view of a water purification device according to a third embodiment of the present invention.
  • FIG. 5 is a schematic side view of a water purification apparatus according to a fourth embodiment of the present invention.
  • FIG. 6 is a schematic plan view of a water purification apparatus according to a fifth embodiment of the present invention.
  • FIG. 7 is a schematic side view of a water purification apparatus according to a sixth embodiment of the present invention.
  • FIG. 8 is a schematic plan view of a water purification apparatus according to a seventh embodiment of the present invention.
  • FIG. 9 is a schematic plan view of a water purification apparatus according to an eighth embodiment of the present invention.
  • first, second, and third are used to describe various parts, components, regions, layers, and / or sections, but are not limited to these. These terms are only used to distinguish one part, component, region, layer or section from another part, component, region, layer or section. Accordingly, the first portion, component, region, layer or section described below may be referred to as the second portion, component, region, layer or section without departing from the scope of the invention.
  • FIG. 1 schematically shows a side structure of a water purification apparatus 100 according to a first embodiment of the present invention.
  • the structure of such a water purification device 100 is only for illustrating the present invention, and the present invention is not limited thereto. Therefore, the structure of the water purification device can be modified in other forms. For example, it can also manufacture from an oxide sphere, a rectangle, a round shape, etc.
  • the water purification apparatus 100 includes a photosynthesis reaction unit 10, algae attachment networks 12, nitrification units 15, acid units 22, and algae collection units 50. Include. In addition, the water purification device 100 may further include other components as necessary.
  • the water purification apparatus 100 separates the habitat space of the heterotrophic microorganisms and the autotrophic microorganisms, and separates the habitat space of the autotrophic microorganisms back and forth to purify the contaminated water.
  • the upper part corresponds to the photosynthetic reaction part 10 and the lower part corresponds to the nitrification part 15.
  • the contaminated water contains organic substances such as ammonia and phosphorus.
  • the contaminated water flows into the photosynthetic reaction part 10 in the direction of the arrow shown in FIG. 1. Since the upper portion of the photosynthetic reaction part 10 is exposed to the outside, light is irradiated to allow algae to photosynthesize.
  • the algae attachment networks 12 are spaced apart from each other and installed inclined in the photosynthetic reaction part 10. Since the algae attachment networks 12 are installed at an angle, light may be efficiently irradiated to each algae attachment networks 12 while the contaminated water passes well therebetween. If the algae attachment nets 12 are positioned vertically, light does not reach the algae attachment nets 12 well.
  • the algae attachment nets 12 are horizontally positioned, the algae attachment nets 12 need to be overlapped, and thus the algae are difficult to receive photosynthetic light. Therefore, it is preferable that the algae attachment networks 12 are inclined so that the algae receive light well to sufficiently produce oxygen by photosynthesis.
  • the bird attachment network 12 can be stably fixed by the bird attachment frame (11).
  • the algae collecting unit 50 is connected to the photosynthetic reaction unit 10 to collect algae detached from the algae attachment networks 12. That is, filamentous algae are desorbed due to blowing or rapid water flow changes, are collected in the algae collecting unit 50, and concentrated by gravity. Therefore, it is possible to collect the detached algae using the algae collecting unit (50). On the other hand, it is also possible to easily harvest the algae by detaching the algae by physical impact such as high pressure air injection by lifting up the algae attachment network 12.
  • the nitrification part 15 is located under the photosynthetic reaction part 10.
  • the nitrification unit 15 accommodates the fixed phase nitrification carriers 20 formed in the shape of a rod.
  • the stationary phase nitrification carriers 20 are formed in a fixed rod shape that extends vertically. As a result, contaminated water can flow well between the fixed-phase nitrification carriers 20, so that nitric oxide is easily generated by using oxygen in the oxidation reaction of organic matter and ammonia.
  • the stationary phase nitrification carriers 20 may be made of polyethylene, polypropylene, nylon, or the like. If necessary, the fixed-phase nitrification carriers 20 may be manufactured by suspension microbial contact oxidation (HBC) and fixed by a frame or the like.
  • HBC suspension microbial contact oxidation
  • Aerobic microorganisms attached to the fixed-phase nitrification carriers 20 are activated by oxygen generated in the photosynthetic reaction unit 10 to decompose contaminated water.
  • the nitrogen component can be separated from the contaminated water to induce the nitrification reaction. That is, the aerobic microorganisms produce nitrified liquid, which can be discharged and used outside.
  • the planar porous screen 21 is positioned between the photosynthetic reaction part 10 and the nitrification part 15. Oxygen generated in the photosynthetic reaction unit 10 is efficiently transferred to the nitrification unit 15 through the planar porous screen 21.
  • the planar porous screen 21 physically partitions the photosynthetic reaction unit 10 and the nitrification unit 15.
  • the acid groups 22 are located below the stationary phase nitrification carriers 20. If the algae is deeply located in the contaminated water, light may not reach the algae and the algae's photosynthesis may not be sufficient. In this case, the photosynthesis of the algae can be smoothly progressed by forcibly supplying oxygen to the nitrification unit 15 using the diffuser 22. That is, when oxygen is insufficient, the contaminated water may be purified by additionally supplying oxygen through the acid group 22 to activate the aerobic microorganisms attached to the fixed-phase nitrification carriers 20. As a result, the nitric oxide can be efficiently produced by the aerobic microorganisms and then discharged well to the outside.
  • FIG. 2 shows a schematic structure of the photosynthetic reaction part 10 of FIG. 1.
  • the structure of the photosynthetic reaction part 10 of FIG. 2 is only for illustrating the present invention, and the present invention is not limited thereto. Therefore, the structure of the photosynthetic reaction part can be modified into other forms.
  • the algae attachment nets 12 are fixed inclined at an angle ⁇ of 30 ° to 60 ° with respect to the planar porous screen 21, ie, the horizontal plane. If the angle ⁇ is too small, the algae may overlap each other, and thus may not receive light well, thereby degrading photosynthetic efficiency. On the contrary, when the angle ⁇ is large, the amount of light incident due to the tidal attachment networks 12 not facing the sun is low, so that the photosynthetic efficiency of the alga is lowered. Therefore, by adjusting the angle ( ⁇ ) in the above-described range, the flow of water flow is induced to maximize the oxygen production efficiency while rapidly growing algae.
  • the algae attachment network 12 includes filamentous algae, such as filamentous algae Klesormidium, Stigeoclonium, Oedogonium, Cladophora, and Eurotrix. Attached. As a result, algae can produce oxygen smoothly by photosynthesis.
  • filamentous algae such as filamentous algae Klesormidium, Stigeoclonium, Oedogonium, Cladophora, and Eurotrix. Attached. As a result, algae can produce oxygen smoothly by photosynthesis.
  • the separation distance d12 of the bird attachment networks 12 may be 15 cm to 20 cm. If the separation distance d12 is too small, the algae attachment networks 12 are positioned so that the algae cannot receive a sufficient amount of light, thereby degrading photosynthetic efficiency. Conversely, if the separation distance d12 is too large, the amount of algae produced may be too small. Therefore, the separation distance d12 is adjusted to the above range.
  • the area of the opening 121 formed in the bird attachment nets 12 may be 1 cm 2 to 2.5 cm 2 .
  • it is formed in an opening 121 in the square shape, and to control the area of the opening 121 to the 1cm 2 to about 2.25cm 2. If the size of the opening 121 is too small, the contaminated water may be blocked to obstruct the flow of the contaminated water. Conversely, if the opening 121 is too large in size, the algae can be easily detached from the algae attachment networks 12. As a result, sufficient photosynthetic efficiency cannot be obtained. Therefore, it is preferable to adjust the area of the opening 121 to the above-mentioned range.
  • the height h11 of the photosynthetic reaction part 10 may be greater than 0 and less than or equal to 30 cm.
  • the algae are located deep in the contaminated water and thus cannot receive light well, so that photosynthesis is not performed well.
  • the water depth is greater than 40 m
  • the lower tidal current that does not penetrate sunlight consumes oxygen through endogenous respiration while dying without photosynthetic reaction, and thus the oxygen utilization efficiency is lowered.
  • algae is well detached and mixed with the nitrifying bacteria detached from the carrier to reduce the purity of the algae, there is a problem that the utilization of the algae is lowered. Therefore, it is preferable to make height h11 of the photosynthesis reaction part 10 into the above-mentioned range.
  • the algae attachment networks 12 may be made of a material such as polyvinyl chloride, polyethylene, stainless steel, polyfluoride vinylladen, polytetrafluoroethylene, polyurethane, or polypropylene having a diameter of 1 mm to 5 mm. In addition, one or more of these materials may be mixed to make algal attachment nets 12. These materials not only have excellent durability, but also can induce rapid growth of high-purity algae, and can produce a large amount of oxygen by photosynthesis.
  • FIG. 3 schematically shows a side structure of the water purification apparatus 200 according to the second embodiment of the present invention. Since the water purification apparatus 200 of FIG. 3 is similar to the water purification apparatus 100 of FIG. 1, the same reference numerals are used for the same parts, and a detailed description thereof will be omitted.
  • the fluidized carriers 40 may be used to decompose contaminated water. That is, contaminated water can be efficiently decomposed using aerobic microorganisms attached to the fluid carriers 40.
  • the flowable carriers 40 may be made of polyurethane, polyethylene, polypropylene, or the like, and may have a specific gravity of 0.97 to 1.03.
  • aerobic microorganisms it is attached to a fluid carrier (40) as nitrification bacteria to a nitrification reaction can be used microorganisms such as Nitrosomonas, Nitrosococcus, Nitrobacter, Nitrococcus.
  • the fluid carriers 40 have a spherical shape, the fluid carriers 40 can be continuously flowed according to the flow of the contaminated water.
  • the planar porous screen 21 may be disposed between the photosynthetic reaction unit 10 and the nitrification unit 16 to prevent the flowable carriers 40 from entering the photosynthetic reaction unit 10.
  • FIG. 4 schematically shows a side structure of the water purification apparatus 300 according to the third embodiment of the present invention. Since the water purification device 300 of FIG. 4 is similar to the water purification device 100 of FIG. 1, the same reference numerals are used for the same parts, and a detailed description thereof will be omitted.
  • the biological filtration unit 60 is connected to the photosynthetic reaction unit 10 and supplies contaminated water to the photosynthetic reaction unit 10 along the arrow direction.
  • the biological filtration unit 60 is connected to the nitrification unit 15 receives the nitrified liquid and mixed with the contaminated water before supplying to the photosynthetic reaction unit 10.
  • the contaminated water may be purified first in the biological filtration unit 60 and then again in the nitrification unit 15, the contaminated water may provide purified water in which organic matters are well removed.
  • the three-way valve 63 may be controlled to block the nitrified liquid discharged from the nitrification unit 15 from being introduced into the biological filtration unit 60.
  • the concentration of organic matter in the purified water discharged through the biological filtration unit 60 may be 20 mg / L or less, and SS may maintain 20 mg / L or less.
  • Using the biological filtration unit 60 can be expected to remove nitrogen through the denitrification, organic matter removal, suspended matter removal effect and carbon dioxide supply effect through the denitrification reaction.
  • FIG. 5 schematically shows a side structure of a water purification apparatus 400 according to a fourth embodiment of the present invention. Since the water purification apparatus 400 of FIG. 5 is similar to the water purification apparatus 100 of FIG. 1, the same reference numerals are used for the same parts, and a detailed description thereof will be omitted.
  • the propeller 23 is installed on the inner side of the nitrification tank 15 to adjust the flow rate of the contaminated water.
  • the water flow can be induced by using the propeller 23.
  • FIG. 6 schematically shows a side structure of a water purification apparatus 500 according to a fifth embodiment of the present invention. Since the water purification device 500 of FIG. 6 is similar to the water purification device 400 of FIG. 5, the same reference numerals are used for the same parts, and a detailed description thereof will be omitted.
  • the water purification apparatus 500 includes a pair of water purification units 5001 and 5003. Although only a pair of water purification units 5001 and 5003 are shown in FIG. 6, alternatively, three or more water purification units may be connected in series. In addition, the pair of water purification units 5001 and 5003 are the same as the water purification devices 100, 200, 300 and 400 according to the first to fourth embodiments of the present invention.
  • the water purification apparatus 500 can be manufactured by combining (100, 200, 300, 400).
  • the pair of water purification units 5001 and 5003 include a first water purification unit 5001 and a second water purification unit 5003. Since the first water purification unit 5001 and the second water purification unit 5003 are partitioned by the partition wall 55, the contaminated water can flow smoothly along the arrow direction. The first water purification unit 5001 and the second water purification unit 5003 are sequentially located along the flow direction of the contaminated water. The contaminated water flows continuously through the partition wall 55 and the adjacent communication part 53. That is, the pair of water purification units 5001 and 5003 are connected in series in the flow direction of the contaminated water.
  • the propeller 23 adjusts the flow rate of contaminated water from the 1st purification unit 5001 toward the 2nd purification unit 5003.
  • FIG. 7 schematically shows a side structure of the water purification device 600 according to the sixth embodiment of the present invention.
  • the enlarged circle of FIG. 7 shows the bird attachment members 60 in an enlarged manner.
  • the structure of the water purification apparatus 600 of FIG. 7 is only for illustrating the present invention, and the present invention is not limited thereto. Therefore, the structure of the water purification device can be modified in other forms.
  • the water purification apparatus 600 of FIG. 7 is somewhat similar to the water purification apparatus 100 of FIG. 1, the same reference numerals are used for the same parts.
  • the water purification device 600 includes an inlet 61, a nitrification unit 64, a photosynthetic reaction unit 66, algae attachment members 68, and an acid generator 22. .
  • the water purification device 600 further includes a rotary paddle 65 and a baffle 62.
  • the water purification apparatus 600 sequentially performs the nitrification process and the denitrification process to nitrate and purify the water contaminated with ammonia.
  • contaminated water is introduced through the inlet 61.
  • the contaminated water introduced into the inlet 61 flows to the right by the rotary paddle 65 rotating in the direction of the arrow.
  • the rotary paddle 65 is installed in the inlet 61 to apply the shear force while adjusting the rotational speed to intermittently detach the algae attached to the bird attachment members 68.
  • Rotating paddles 65 are used to maintain optimal photosynthetic efficiency.
  • the baffle 62 extends in the vertical direction on the nitrification unit 64 and is installed in a planar shape. As a result, the contaminated water is blocked by the baffle 62 and guided to smoothly flow into the nitrification unit 64 while descending along the direction of the arrow.
  • the nitrification unit 64 is connected to the inlet 61, and a plurality of flowable carriers 69 to which aerobic microorganisms are attached are accommodated therein. Aerobic microorganisms induce nitrification of contaminated water.
  • the bottom surface 611 of the inlet 61 is located higher than the bottom surface 641 of the nitrification unit 64. That is, the nitrification unit 64 is formed in a convex form toward the bottom in the form of a pocket to easily accommodate the plurality of flowable carriers (69).
  • a planar porous screen 63 is disposed between the baffle 62 and the nitrification unit 64, and the planar porous screen 63 covers the nitrification unit 64. As a result, it is possible to prevent the flowable carriers 69 from leaving the nitrification unit 64 by the flow.
  • Flowable carriers 69 may be made of a material such as polyurethane, polyethylene, or polypropylene.
  • the specific gravity of the fluid carriers 69 may be 0.97 to 1.03. If the specific gravity of the flowable carriers 69 is too small, the flowable carriers 69 float only on the contaminated water, so that aerobic microorganisms cannot decompose organic matter well. On the contrary, if the specific gravity of the flowable carriers 69 is too large, it sinks under the contaminated water and does not flow well. Therefore, it is preferable to adjust the specific gravity of the flowable carriers 69 in the above-described range.
  • Nitrifying bacteria attached to the fluid carriers 69 remove oxygen by nitrification using oxygen, and microorganisms such as Nitrosomonas, Nitrosococcus, Nitrobacter, and Nitrococcus may be used.
  • the photosynthetic reaction part 66 is connected to the nitrification part 64 and irradiated with light. Therefore, oxygen generated by photosynthesis in the photosynthetic reaction part 66 may be supplied to the nitrification part 64 so that contaminated water may be efficiently decomposed.
  • the bottom surface 641 of the nitrification unit 64 is located lower than the bottom surface 661 of the photosynthetic reaction unit 66. Therefore, the fluid carriers 69 can be confined efficiently to decompose contaminated water.
  • algae attachment members 68 that are spaced apart from each other and extend vertically are located.
  • the algae attachment members 68 are in the form of rods having a square or circular cross section using a material such as polyvinyl chloride, polyetherene, polyethersulfone, polyfluoride vinylladen, polytetrafluoroethylene, polyurethane or polypropylene It can be prepared as.
  • the algae attachment members 68 Underneath the algae attachment members 68 is an air diffuser 22 positioned to supply additional oxygen. Meanwhile, the algae collector 67 is connected to the photosynthetic reaction part 66 to collect algae detached from the algae attachment members 68. As a result, algae produced in large quantities by photosynthesis can be easily collected.
  • the tidal attachment members 68 include a support 681 and a tidal attachment 683.
  • the bird attachment portion 683 is positioned above the support 681 and is detachable from the support 681. Therefore, the algae attachment portion 683, in which the algae is grown, may be separated from the support portion 681, and the algae may be separated and then used in combination with the support portion 681.
  • the algae attachment portion 683 may be made of a material such as acrylic, polyethylene, polypropylene or stainless steel. Appropriate algae are natural algae that live in sewage, wastewater, or aquaculture farms. Microspora, Spirogyra, or Oscillatoria can be used.
  • the separation distance d68 of the bird attachment members 68 may be 1 cm to 5 cm. If the separation distance d68 is too small, contaminated water is difficult to pass through. On the contrary, when the separation distance d68 is too large, the algae attachment members 68 are not densely formed so that a large amount of algae cannot be obtained, and sufficient oxygen for aerobic microorganisms is not generated. Therefore, the separation distance d68 is maintained in the above-described range.
  • the height h68 of the bird attachment member 68 may be 30cm to 60cm. If the height h68 of the algae attachment member 68 is too large, the algae attachment member 68 may protrude above the contaminated water. In contrast, when the height h68 of the algae attachment member 68 is too small, a sufficient amount of algae cannot be obtained. Therefore, it is preferable to adjust the height h68 of the bird attachment member 68 to the above-mentioned range. Furthermore, the height h681 of the support 681 of the bird attachment members 68 may be 5 cm to 10 cm. If the height h681 of the support portion 681 is too large, the length of the algae attachment portion 683 becomes relatively small to obtain a desired amount of algae. In addition, when the height h681 of the support portion 681 is too small, it is difficult to detach the bird attachment portion 683. Therefore, it is preferable to make height h681 of the support part 681 into the above-mentioned range.
  • FIG. 8 schematically shows a planar structure of a water purification apparatus 700 according to a seventh embodiment of the present invention. Since the water purification apparatus 700 of FIG. 8 is similar to the water purification apparatus 600 of FIG. 7, the same reference numerals are used for the same parts, and a detailed description thereof will be omitted.
  • the water purification apparatus 700 includes a pair of water purification units 7001 and 7003.
  • the pair of water purification units 7001 and 7003 may be the same as the water purification apparatus 600 of FIG. 7.
  • the pair of water purification units 7001 and 7003 include a first water purification unit 7001 and a second water purification unit 7003 each having a channel shape. In this case, it is necessary to provide a conveying pump to pump downstream water upstream.
  • the partition wall 45 partitions the 1st water purification unit 7001 and the 2nd water purification unit 7003 mutually.
  • the first water purification unit 7001 and the second water purification unit 7003 are continuously connected in the flow direction of the contaminated water shown by an arrow through the partition 45 and the adjacent communication part 43. Therefore, it is possible to manufacture a water purification apparatus 700 that can efficiently purify contaminated water while minimizing the occupied area.
  • FIG. 9 schematically shows a planar structure of a water purification apparatus 800 according to an eighth embodiment of the present invention. Since the water purification apparatus 800 of FIG. 9 is similar to the water purification apparatus 700 of FIG. 8, the same reference numerals are used for the same parts, and a detailed description thereof will be omitted.
  • the biological filtration unit 60 is connected to the inlet 61 to supply contaminated water.
  • the biological filtration unit 60 is connected to the photosynthetic reaction unit 66 to receive the nitrified liquid, and mixes the nitrified liquid with the contaminated water to purify the contaminated water.
  • the biological filtration unit 60 oxidizes the organic material using a denitrification reaction to remove carbon dioxide, and remove nitrate nitrogen with nitrogen gas.
  • a sewage and wastewater treatment apparatus having the same structure as that of FIG. 1 was manufactured to treat sewage and wastewater of Yeongdeok Respia, Yongin, Gyeonggi-do.
  • the algae attachment network was a grid-type stainless steel net, and filled with a square sponge made of polyurethane as a nitrification carrier.
  • the effective capacity of the wastewater and wastewater treatment apparatus was 231.0L (biofilm filtration tank: 15.0L, photosynthesis, nitrification tank: 216.0L) in total.
  • the LED was irradiated from the top of the surface of the water, and the mixed light consisting of white, red, and blue was used so that the wavelength of the LED was similar to natural light.
  • the biofilm of the biofilm filtration tank is inoculated with anaerobic sludge containing anaerobic microorganisms such as Micrococcus, Pseudomonas, Bacillus, Paracoccus into an anaerobic reactor filled with a 4 mm diameter spherical carrier and mixed with sewage / wastewater and sewage / wastewater. It was prepared by incubating for 1 month by the method of injection. And strainers were installed at the lower and upper ends, respectively, to prevent the loss of the carrier, and the effective volume was fixed to 15.0L.
  • anaerobic sludge containing anaerobic microorganisms such as Micrococcus, Pseudomonas, Bacillus, Paracoccus into an anaerobic reactor filled with a 4 mm diameter spherical carrier and mixed with sewage / wastewater and sewage / wastewater. It was prepared by incubating for 1 month by the method of injection. And strainers were installed at the
  • photosynthesis and nitrification tanks have 500 ⁇ m / m2 / s of light for the algae that grow in the sewage such as Stigioclonium, Oscillatoria, Anchistrodesmus, Chlorella, and Cenedesmus.
  • the culture solution was cultured under the condition of ⁇ 1.0 ° C, and the culture solution was collected at Yeongdeok Lespia (Sewage Treatment Plant) in Yongin, Gyeonggi-do, and continuously injected at a rate of 216 L / D.
  • Table 1 shows the operating conditions of the sewage and wastewater treatment system.
  • the chl-a concentration of algae attached to the attachment network was harvested by 10 g every four days without measuring.
  • Table 2 shows the measurement of BOD, SS, T-N and T-P of the treated water treated in the above experimental example.
  • the measurement method of BOD, SS, T-N and T-P was measured according to the water pollution process test method (2012, Ministry of Environment).
  • the BOD removal rate was 98.1% on average, indicating the efficiency of the standard activated sludge level which is artificially blown, and the SS removal rate was very high at 95.7%.
  • suspended suspended microalgae are precipitated by bio-flocculation of microalgae and bacterial microbial communities, separated from treated water, and removed. It was found that the detached microalgae were small and the SS of the treated water was maintained at a very low level.
  • the removal rate of T-N was high as 80.2%, and the reducing nitrogen (TKN) was also very high as 94.5%. Therefore, when a high nitrogen removal rate is required, it was confirmed that it is very useful to use a fixed-phase microalgae attachment medium.
  • T-P reducing nitrogen
  • a high removal efficiency of 79.1% was obtained by the rapid growth rate of the algae growing on the attachment network. Therefore, when high T-P removal rate is required, it was found that it is preferable to culture the algae growing on the adhesion.
  • the water temperature of the influent was low as 16 °C, but the oxygen supply was smoothed by algae growth and photosynthetic activity. It was in nitrified form. From this, it was found that the algae had excellent low temperature resistance, and the nitrification reaction was actively progressed by the adhesion medium and the fluid carrier. Therefore, the water purification device using the attached algae exhibited high water treatment efficiency because organic matter oxidation, nitrification and denitrification, and phosphorus intake reaction proceeded smoothly.
  • the biofilm filtration tank is located in front of the photosynthesis and nitrification tank, it exhibits the effect of removing organic matter and carbon dioxide supply by heterotrophic microorganism, and the nitrification reaction proceeded smoothly even at low water temperature. As a result, it was found that high-efficiency water purification and high purity algae can be harvested, so that both water treatment and useful algae production are possible.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Molecular Biology (AREA)
  • Botany (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

미세 조류에 의해 생성된 광합성 산소를 호기성 미생물이 이용하여 물을 정화하는 동시에 고순도의 조류를 생산할 수 있는 수 정화 장치를 제공한다. 수 정화 장치는 I) 오염수가 유입되고, 광이 조사되는 광합성 반응부, ii) 광합성 반응부내에 경사지게 설치되고, 상호 이격된 복수의 조류 부착망들, iii) 광합성 반응부 아래에 위치하고, 광합성 반응부에서 생성되는 산소를 이용해 오염수의 질산화 반응을 유도하는 호기성 미생물이 부착된 복수의 담체들을 수용하고, 질산화된 액체를 생성하는 질산화부, iv) 복수의 담체들의 아래에 위치하고, 질산화부에 추가로 산소를 공급하도록 적용된 산기부, 및 v) 광합성 반응부와 연결되어 복수의 조류 부착망들로부터 탈리된 조류를 수집하는 조류 수집부를 포함한다.

Description

미세 조류를 이용한 수 정화 장치
본 발명은 미세 조류를 이용한 수 정화 장치에 관한 것이다. 좀더 상세하게는, 본 발명은 조류에 의해 생성된 광합성 산소를 호기성 미생물이 이용하여 물을 정화하는 동시에 고순도의 조류를 생산할 수 있는 미세 조류를 이용한 수 정화 장치에 관한 것이다.
산업 발달과 도시화의 진행으로 인하여 산업폐수와 생활하수 등이 다량으로 발생하고, 이를 정화하기 위한 시간과 비용이 많이 소요된다. 오염수를 정화하기 위한 하나의 방법으로서 호기성 미생물이 사용되고 있다. 호기성 미생물에 산소를 공급하여 유기 물질을 분해시켜 오염수를 정화할 수 있다.
이를 위해 조류가 광합성을 통해 산소를 생성함으로써 호기성 미생물에 산소를 공급할 수 있다. 호기성 미생물을 이용하는 경우, 생물학적 질산화 반응에 의해 오염수내의 질소 성분을 아질산성 질소(NO2-N) 또는 질산성 질소(NO3-N)으로 전환함으로써 이를 오염수로부터 제거한다. 또한, 오염수내에 포함된 유기물을 이산화탄소로 전환하여 제거한다. 이러한 방법을 이용하여 오염수를 정화하기 위해서 질산화 공정과 탈질 공정을 순차적으로 진행한다.
조류에 의해 생성된 광합성 산소를 호기성 미생물이 이용하여 물을 정화하는 동시에 고순도의 조류를 생산할 수 있는 미세 조류에 의한 수 정화 장치를 제공하고자 한다.
본 발명의 일 실시예에 따른 수 정화 장치는 오염수를 정화하도록 적용된 하나 이상의 수 정화 유닛을 포함한다. 수 정화 유닛은, i) 오염수가 유입되고, 광이 조사되는 광합성 반응부, ii) 광합성 반응부내에 경사지게 설치되고, 상호 이격된 복수의 조류 부착망들, iii) 광합성 반응부 아래에 위치하고, 광합성 반응부에서 생성되는 산소를 이용해 오염수의 질산화 반응을 유도하는 호기성 미생물이 부착된 복수의 담체들을 수용하고, 질산화된 액체를 생성하는 질산화부, iv) 복수의 담체들의 아래에 위치하고, 질산화부에 추가로 산소를 공급하도록 적용된 산기부, 및 v) 광합성 반응부와 연결되어 복수의 조류 부착망들로부터 탈리된 조류를 수집하는 조류 수집부를 포함한다.
본 발명의 일 실시예에 따른 수 정화 장치는 광합성 반응부와 연결되어 오염수를 광합성 반응부에 공급하고, 질산화부와 연결되어 질산화된 액체를 공급받아 오염수와 혼합함으로써 오염수를 정화시키는 생물 여과부를 더 포함할 수 있다. 본 발명의 일 실시예에 따른 수 정화 장치는 광합성 반응부와 질산화부 사이에 위치하는 평면형 다공성 스크린을 더 포함하고, 조류 부착망은 평면형 다공성 스크린과 30° 내지 60°의 각을 이룰 수 있다. 복수의 조류 부착망들의 이격 거리는 15cm 내지 20cm이고, 복수의 조류 부착망들 중 하나 이상의 조류 부착망에 형성된 개구부의 면적은 1cm2 내지 2.5cm2일 수 있다. 광합성 반응부의 높이는 0 보다 크고, 30cm 이하일 수 있다.
복수의 조류 부착망들 중 하나 이상의 조류 부착망은 폴리염화비닐, 폴리에틸렌, 스테인리스강, 폴리플루오르화물비닐라덴, 폴리테트라플루오르에틸렌, 폴리우레탄 및 폴리프로필렌으로 이루어진 군에서 선택된 하나 이상의 소재로 제조될 수 있다. 하나 이상의 수 정화 유닛은 한 쌍의 수 정화 유닛들을 포함하고, 한 쌍의 수 정화 유닛들을 상호 구획하는 격벽을 더 포함하며, 격벽과 이웃하는 연통부를 통하여 오염수의 흐름 방향에 따라 한 쌍의 수 정화 유닛들이 연속 연결될 수 있다. 한 쌍의 수 정화 유닛들은 오염수의 흐름 방향을 따라 차례로 위치하는 제1 정화 유닛 및 제2 정화 유닛을 포함하고, 제1 정화 유닛에 포함된 질산화조의 내부 측면에 설치되어 제2 정화 유닛 방향으로 오염수의 유속을 조절하는 프로펠러를 더 포함할 수 있다. 복수의 담체들은 상하로 길게 뻗은 고정 막대형으로 형성될 수 있다.
본 발명의 다른 실시예에 따른 수 정화 장치는 오염수를 정화하도록 적용된 하나 이상의 수 정화 유닛을 포함한다. 수 정화 유닛은, i) 오염수가 유입되도록 적용된 유입부, ii) 유입부와 연결되고, 오염수의 질산화 반응을 유도하는 호기성 미생물이 부착된 복수의 담체들이 수용된 질산화부, iii) 질산화부와 연결되고, 광이 조사되는 광합성 반응부, iv) 광합성 반응부내에 상호 이격되어 상하로 길게 뻗은 복수의 조류 부착 부재들, v) 광합성 반응부와 연결되어 복수의 조류 부착 부재들로부터 탈리된 조류를 수집하는 조류 수집부, 및 vi) 복수의 조류 부착 부재들 아래에 위치하여 추가로 산소를 공급하도록 적용된 산기부를 포함한다.
유입부의 바닥면은 질산화부의 바닥면보다 높게 위치할 수 있다. 질산화부의 바닥면은 광합성 반응부의 바닥면보다 낮게 위치할 수 있다. 복수의 조류 부착 부재들은 격자 형태로 배열되고, 복수의 조류 부착 부재들 중 하나 이상의 조류 부착 부재들은, i) 지지부, 및 ii) 지지부 위에 위치하고, 지지부와 탈착 가능한 조류 부착부를 포함할 수 있다. 복수의 조류 부착 부재들의 이격 거리는 1cm 내지 5cm일 수 있다. 지지부의 높이는 5cm 내지 10cm일 수 있다. 조류 부착 부재의 높이는 30cm 내지 60cm일 수 있다.
조류 부착부는 아크릴, 폴리에틸렌, 폴리프로필렌 및 스테인리스강으로 이루어진 군에서 선택된 하나 이상의 소재를 포함할 수 있다. 본 발명의 다른 실시예에 따른 수 정화 장치는 유입부에 설치되어 오염수를 질산화부로 원활하게 이송하는 회전 패들을 더 포함할 수 있다. 본 발명의 다른 실시예에 따른 수 정화 장치는 질산화부 위에 수직 방향으로 뻗어 평면형으로 설치되어 오염수가 질산화부로 유입되도록 가이드하는 배플을 더 포함할 수 있다. 본 발명의 다른 실시예에 따른 수 정화 장치는 배플과 질산화부 사이에 위치하는 평면형 다공성 스크린을 더 포함하고, 평면형 다공성 스크린은 질산화부를 덮어서 위치할 수 있다.
하나 이상의 수 정화 유닛은 한 쌍의 수 정화 유닛들을 포함하고, 한 쌍의 수 정화 유닛들을 상호 구획하는 격벽을 더 포함하며, 격벽과 이웃하는 연통부를 통하여 오염수의 흐름 방향에 따라 한 쌍의 수 정화 유닛들이 연속 연결될 수 있다. 본 발명의 다른 실시예에 따른 수 정화 장치는 유입부와 연결되어 오염수를 유입부에 공급하고, 광합성 반응부와 연결되어 질산화된 액체를 공급받아 오염수와 혼합함으로써 오염수를 정화시키는 생물 여과부를 더 포함할 수 있다. 수 정화 유닛은 길게 뻗은 수로 형상을 가질 수 있다. 복수의 유동성 담체들 중 하나 이상의 유동성 담체는 폴리우레탄, 폴리에틸렌 및 폴리프로필렌으로 이루어진 군에서 선택된 하나 이상의 소재를 포함하고, 유동성 담체의 비중은 0.97 내지 1.03일 수 있다.
수 정화 장치를 이용하여 물을 효율적으로 정화하는 동시에 고순도의 미세 조류를 생산할 수 있다. 즉, 하수, 폐수, 양식장 오염수, 공공 오염수 등의 호기성 수질 정화에 소요되는 에너지를 절감할 수 있다. 그리고 생산된 고순도의 미세 조류를 쉽게 수확하여 건강기능식품, 사료, 비료, 바이오 연료 등을 제조할 수 있다.
도 1은 본 발명의 제1 실시예에 따른 수 정화 장치의 개략적인 측면도이다.
도 2는 도 1의 광합성 반응부의 개략적인 사시도이다.
도 3은 본 발명의 제2 실시예에 따른 수 정화 장치의 개략적인 측면도이다.
도 4는 본 발명의 제3 실시예에 따른 수 정화 장치의 개략적인 측면도이다.
도 5는 본 발명의 제4 실시예에 따른 수 정화 장치의 개략적인 측면도이다.
도 6은 본 발명의 제5 실시예에 따른 수 정화 장치의 개략적인 평면도이다.
도 7은 본 발명의 제6 실시예에 따른 수 정화 장치의 개략적인 측면도이다.
도 8은 본 발명의 제7 실시예에 따른 수 정화 장치의 개략적인 평면도이다.
도 9는 본 발명의 제8 실시예에 따른 수 정화 장치의 개략적인 평면도이다.
제1, 제2 및 제3 등의 용어들은 다양한 부분, 성분, 영역, 층 및/또는 섹션들을 설명하기 위해 사용되나 이들에 한정되지 않는다. 이들 용어들은 어느 부분, 성분, 영역, 층 또는 섹션을 다른 부분, 성분, 영역, 층 또는 섹션과 구별하기 위해서만 사용된다. 따라서, 이하에서 서술하는 제1 부분, 성분, 영역, 층 또는 섹션은 본 발명의 범위를 벗어나지 않는 범위 내에서 제2 부분, 성분, 영역, 층 또는 섹션으로 언급될 수 있다.
여기서 사용되는 전문 용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 "포함하는"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분의 존재나 부가를 제외시키는 것은 아니다.
다르게 정의하지는 않았지만, 여기에 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 보통 사용되는 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
도 1은 본 발명의 제1 실시예에 따른 수 정화 장치(100)의 측면 구조를 개략적으로 나타낸다. 이러한 수 정화 장치(100)의 구조는 단지 본 발명을 예시하기 위한 것이며, 본 발명이 여기에 한정되는 것은 아니다. 따라서 수 정화 장치의 구조를 다른 형태로도 변형할 수 있다. 예를 들면, 산화구, 장방형, 원형 등으로 제조할 수도 있다.
도 1에 도시한 바와 같이, 수 정화 장치(100)는 광합성 반응부(10), 조류 부착망들(12), 질산화부(15), 산기부(22), 및 조류 수집부(50)를 포함한다. 이외에, 수 정화 장치(100)는 필요에 따라 다른 부품들을 더 포함할 수 있다. 수 정화 장치(100)에서는 종속영양 미생물과 독립영양 미생물의 서식 공간을 분리하고 독립영양 미생물의 서식 공간을 다시 상부와 하부로 분리하여 오염수를 정화한다. 여기서 상부는 광합성 반응부(10)에 해당하고, 하부는 질산화부(15)에 해당한다.
오염수는 암모니아 및 인 등의 유기물을 포함한다. 오염수는 도 1에 도시한 화살표 방향을 따라 광합성 반응부(10)로 유입된다. 광합성 반응부(10)의 상부는 외부 노출되어 있으므로, 광이 조사되어 조류들이 광합성을 할 수 있다. 조류 부착망들(12)은 상호 이격되어 광합성 반응부(10)내에 경사지게 설치된다. 조류 부착망들(12)을 경사지게 설치하므로 오염수가 그 사이를 통하여 잘 통과하면서 각 조류 부착망들(12)에 광이 효율적으로 조사될 수 있다. 만약 조류 부착망들(12)이 수직으로 위치하는 경우, 조류 부착망들(12)에 광이 잘 닿지 않는다. 반대로, 조류 부착망들(12)이 수평으로 위치하는 경우, 조류 부착망들(12)을 겹쳐 놓아야 하므로 조류들이 광을 받아서 광합성하기가 어렵다. 따라서 조류 부착망들(12)을 경사지게 설치하여 조류가 광을 잘 받아 광합성에 의해 산소를 충분히 생산하는 것이 바람직하다. 한편, 조류 부착망들(12)은 조류 부착틀(11)에 의해 안정적으로 고정될 수 있다.
조류 수집부(50)는 광합성 반응부(10)와 연결되어 조류 부착망들(12)로부터 탈리된 조류를 수집한다. 즉, 사상성 조류는 송풍 또는 급격한 수류 변화 등으로 탈리되어 조류 수집부(50)에 모인 후 중력에 의해 농축된다. 따라서 조류 수집부(50)를 이용하여 탈리된 조류를 수집할 수 있다. 한편, 이와는 달리, 조류 부착망들(12)을 건져 올려서 고압 공기 분사 등의 물리적 충격에 의해 조류를 탈리하여 용이하게 수확할 수도 있다.
한편, 광합성 반응부(10)를 통과한 물에는 부착 조류와 부착 질산화 박테리아가 대부분인 미생물만 존재하고, 부유 고형물 농도가 20㎎/L 이내로 낮게 유지되므로, 광합성 반응부(10) 후단에 여과조 또는 간단한 고액 분리 장치를 설치하여 낮은 탁도를 가지는 정화수를 얻을 수 있다.
질산화부(15)는 광합성 반응부(10) 아래에 위치한다. 질산화부(15)는 막대형으로 형성된 고정상 질산화 담체들(20)을 수용한다. 고정상 질산화 담체들(20)은 상하로 길게 뻗은 고정 막대형으로 형성된다. 그 결과, 오염수가 고정상 질산화 담체들(20) 사이로 잘 유동할 수 있어서 유기물과 암모니아의 산화 반응에 산소를 이용하여 질산화액을 생성하기 용이하다. 고정상 질산화 담체들(20)은 폴리에틸렌, 폴리프로필렌 또는 나일론 등으로 제조할 수 있다. 필요한 경우 현수미생물접촉산화법(HBC)으로 고정상 질산화 담체들(20)을 제조하여 프레임 등에 의해 고정시킬 수 있다. 고정상 질산화 담체들(20)에 부착된 호기성 미생물은 광합성 반응부(10)에서 생성되는 산소에 의해 활성화되어 오염수를 분해한다. 그 결과, 오염수로부터 질소 성분을 분리하여 질산화 반응을 유도할 수 있다. 즉, 호기성 미생물은 질산화된 액체를 생성하고, 이는 외부로 배출되어 사용될 수 있다.
그리고 평면형 다공성 스크린(21)은 광합성 반응부(10)와 질산화부(15)의 사이에 위치한다. 평면형 다공성 스크린(21)을 통하여 광합성 반응부(10)에서 생성된 산소가 질산화부(15)에 효율적으로 전달된다. 평면형 다공성 스크린(21)은 광합성 반응부(10)와 질산화부(15)를 물리적으로 구획한다.
도 1에 도시한 바와 같이, 산기부(22)는 고정상 질산화 담체들(20)의 아래에 위치한다. 조류가 오염수내에 깊숙히 위치하는 경우, 광이 조류까지 도달하지 못하여 조류의 광합성이 충분하게 일어나지 못할 수 있다. 이 경우, 산기부(22)를 이용하여 강제로 질산화부(15)에 산소를 공급함으로써 조류의 광합성이 원활하게 진행되도록 할 수 있다. 즉, 산소가 부족한 경우, 산기부(22)를 통하여 추가로 산소를 공급해 고정상 질산화 담체들(20)에 부착된 호기성 미생물을 활성화시켜서 오염수를 정화시킬 수 있다. 그 결과, 호기성 미생물에 의해 질산화액이 효율적으로 제조된 후 외부로 잘 배출될 수 있다.
도 2는 도 1의 광합성 반응부(10)의 개략적인 구조를 나타낸다. 도 2의 광합성 반응부(10)의 구조는 단지 본 발명을 예시하기 위한 것이며, 본 발명이 여기에 한정되는 것은 아니다. 따라서 광합성 반응부의 구조를 다른 형태로 변형할 수 있다
도 2에 도시한 바와 같이, 조류 부착망들(12)은 평면형 다공성 스크린(21), 즉 수평면에 대하여 30° 내지 60°의 각(θ)을 이루면서 경사져서 고정된다. 만약, 각(θ)이 너무 작은 경우, 조류가 중첩되어 위치하므로, 광을 잘 받지 못하여 광합성 효율이 저하될 수 있다. 반대로, 각(θ)이 큰 경우, 조류 부착망들(12)이 태양을 향하지 못하여 입사되는 광의 양이 적으므로, 조류의 광합성 효율이 저하된다. 따라서 각(θ)을 전술한 범위로 조절하여 수류의 흐름을 유도해 조류를 빠르게 성장시키면서 산소 생성 효율을 최대화한다.
조류 부착망들(12)에는 사상성 조류인 크렙소르미디움(Klesormidium), 스티지오크로니움(Stigeoclonium), 오도고니움(Oedogonium), 클래도포라(Cladophora), 유로트릭스(Ulotrix) 등의 사상성 조류가 부착된다. 그 결과, 조류는 광합성 작용에 의해 산소를 원활하게 생성할 수 있다.
한편, 조류 부착망들(12)의 이격 거리(d12)는 15cm 내지 20cm일 수 있다. 이격 거리(d12)가 너무 적은 경우, 조류 부착망들(12)이 빼곡하게 위치하여 조류가 충분한 양의 광을 받을 수 없으므로 광합성 효율이 저하된다. 반대로, 이격 거리(d12)가 너무 큰 경우, 생산되는 조류의 양이 너무 적을 수 있다. 따라서 이격 거리(d12)를 전술한 범위로 조절한다.
한편, 도 2에 도시한 바와 같이, 조류 부착망들(12)에 형성된 개구부(121)의 면적은 1cm2 내지 2.5cm2일 수 있다. 바람직하게는 개구부(121)를 정사각형 형상으로 형성하고, 개구부(121)의 면적을 1cm2 내지 2.25cm2로 조절할 수 있다. 개구부(121)의 크기가 너무 작은 경우, 오염수를 막아서 오염수의 흐름을 방해할 수 있다. 반대로, 개구부(121)의 크기가 너무 큰 경우, 조류가 조류 부착망들(12)로부터 쉽게 탈리될 수 있다. 그 결과, 충분한 광합성 효율을 얻을 수 없다. 따라서 개구부(121)의 면적을 전술한 범위로 조절하는 것이 바람직하다.
그리고 광합성 반응부(10)의 높이(h11)는 0보다 크고 30cm 이하일 수 있다. 광합성 반응부(10)의 높이(h11)가 너무 큰 경우, 조류가 오염수 깊숙히 위치하여 광을 잘 받을 수 없어서 광합성이 잘 이루어지지 않는다. 예를 들면, 수심이 40m 이상으로 큰 경우, 햇빛이 투과하지 못하는 하층부의 조류는 광합성 반응을 하지 못하고 사멸하면서 내생 호흡으로 산소를 소비하므로, 산소 이용 효율이 낮아진다. 또한, 조류가 잘 탈리되어 담체에서 탈리된 질산화 박테리아와 혼합되어 조류의 순도가 낮아지므로, 조류의 활용도가 낮아지는 문제점이 있다. 따라서 광합성 반응부(10)의 높이(h11)를 전술한 범위로 하는 것이 바람직하다.
조류 부착망들(12)은 1㎜ 내지 5㎜의 직경을 가지는 폴리염화비닐, 폴리에틸렌, 스테인리스강, 폴리플루오르화물비닐라덴, 폴리테트라플루오르에틸렌, 폴리우레탄 또는 폴리프로필렌 등의 소재로 제조할 수 있다. 또한, 이들 소재들을 하나 이상 혼합하여 조류 부착망들(12)을 제조할 수도 있다. 이러한 소재들은 우수한 내구성을 가질 뿐만 아니라 순도 높은 조류의 빠른 성장을 유도할 수 있으므로, 광합성에 의해 다량의 산소를 생산할 수 있다.
도 3은 본 발명의 제2 실시예에 따른 수 정화 장치(200)의 측면 구조를 개략적으로 나타낸다. 도 3의 수 정화 장치(200)는 도 1의 수 정화 장치(100)와 유사하므로, 동일한 부분에는 동일한 도면 부호를 사용하며 그 상세한 설명을 생략한다.
도 3에 도시한 바와 같이, 유동성 담체들(40)을 사용하여 오염수를 분해할 수 있다. 즉, 유동성 담체들(40)에 부착된 호기성 미생물을 사용하여 오염수를 효율적으로 분해할 수 있다. 유동성 담체들(40)은 폴리우레탄, 폴리에틸렌 또는 폴리프로필렌 등으로 제조할 수 있으며, 그 비중은 0.97 내지 1.03일 수 있다. 호기성 미생물로는 유동성 담체들(40)에 부착되어 질산화 반응을 하는 질산화 박테리아로서 Nitrosomonas, Nitrosococcus, Nitrobacter, Nitrococcus 등의 미생물을 사용할 수 있다.
유동성 담체들(40)은 구형 형상을 가지므로, 오염수의 유동에 따라 지속적으로 유동될 수 있다. 이 경우, 평면형 다공성 스크린(21)을 광합성 반응부(10)와 질산화부(16) 사이에 배치하여 유동성 담체들(40)이 광합성 반응부(10)로 유입되는 것을 방지할 수 있다.
도 4는 본 발명의 제3 실시예에 따른 수 정화 장치(300)의 측면 구조를 개략적으로 나타낸다. 도 4의 수 정화 장치(300)는 도 1의 수 정화 장치(100)와 유사하므로, 동일한 부분에는 동일한 도면 부호를 사용하며 그 상세한 설명을 생략한다.
도 4에 도시한 바와 같이, 생물 여과부(60)는 광합성 반응부(10)와 연결되어 화살표 방향을 따라 오염수를 광합성 반응부(10)에 공급한다. 또한, 생물 여과부(60)는 질산화부(15)와 연결되어 질산화된 액체를 공급받아 광합성 반응부(10)에 공급하기 전의 오염수와 혼합시킨다. 이 경우, 오염수는 생물 여과부(60)에서 1차로 정화된 후 다시 질산화부(15)에서 2차로 정화될 수 있으므로, 유기물이 잘 제거된 정화수를 제공할 수 있다. 한편, 쓰리웨이밸브(63)를 제어하여 질산화부(15)로부터 배출되는 질산화된 액체가 생물 여과부(60)로 유입되지 않도록 차단할 수도 있다. 생물 여과부(60)를 통하여 배출되는 정화수의 유기물질농도는 20mg/L 이하가 되고, SS는 20mg/L 이하를 유지할 수 있다. 생물 여과부(60)를 이용하여 탈질 반응을 통한 질소 제거, 유기물 제거, 탁질 제거 효과와 탈질 반응을 통한 이산화탄소 공급 효과를 기대할 수 있다.
도 5는 본 발명의 제4 실시예에 따른 수 정화 장치(400)의 측면 구조를 개략적으로 나타낸다. 도 5의 수 정화 장치(400)는 도 1의 수 정화 장치(100)와 유사하므로, 동일한 부분에는 동일한 도면 부호를 사용하며 그 상세한 설명을 생략한다.
도 5에 도시한 바와 같이, 프로펠러(23)는 질산화조(15)의 내부 측면에 설치되어 오염수의 유속을 조절한다. 특히, 수 정화 장치(400)를 산화구 형태로 제조하는 경우, 프로펠러(23)를 이용하여 수류 흐름을 유도할 수 있다.
도 6은 본 발명의 제5 실시예에 따른 수 정화 장치(500)의 측면 구조를 개략적으로 나타낸다. 도 6의 수 정화 장치(500)는 도 5의 수 정화 장치(400)와 유사하므로, 동일한 부분에는 동일한 도면 부호를 사용하며 그 상세한 설명을 생략한다.
도 6에 도시한 바와 같이, 수 정화 장치(500)는 한 쌍의 수 정화 유닛들(5001, 5003)을 포함한다. 도 6에는 한 쌍의 수 정화 유닛들(5001, 5003)만 도시하였지만, 이와는 달리 3개 이상의 수 정화 유닛들을 연속으로 연결할 수도 있다. 또한, 한 쌍의 수 정화 유닛들(5001, 5003)은 본 발명의 제1 실시예 내지 제4 실시예에 따른 수 정화 장치들(100, 200, 300, 400)와 동일하며 이러한 수 정화 장치들(100, 200, 300, 400)을 조합하여 수 정화 장치(500)를 제조할 수 있다.
한 쌍의 수 정화 유닛들(5001, 5003)은 제1 수 정화 유닛(5001)과 제2 수 정화 유닛(5003)을 포함한다. 제1 수 정화 유닛(5001)과 제2 수 정화 유닛(5003)은 격벽(55)에 의해 상호 구획되므로, 화살표 방향을 따라 오염수가 원활하게 흐를 수 있다. 제1 수 정화 유닛(5001)과 제2 수 정화 유닛(5003)은 오염수의 흐름 방향을 따라 차례로 위치한다. 오염수는 격벽(55)과 이웃하는 연통부(53)를 통하여 연결되어 지속적으로 흐른다. 즉, 오염수의 흐름 방향에 따라 한 쌍의 수 정화 유닛들(5001, 5003)이 연속 연결되어 있다. 여기서, 프로펠러(23)는 제1 정화 유닛(5001)으로부터 제2 정화 유닛(5003) 방향으로 오염수의 유속을 조절한다.
도 7은 본 발명의 제6 실시예에 따른 수 정화 장치(600)의 측면 구조를 개략적으로 나타낸다. 도 7의 확대원에는 조류 부착 부재들(60)을 확대하여 나타낸다. 도 7의 수 정화 장치(600)의 구조는 단지 본 발명을 예시하기 위한 것이며, 본 발명이 여기에 한정되는 것은 아니다. 따라서 수 정화 장치의 구조를 다른 형태로도 변형할 수 있다. 또한, 도 7의 수 정화 장치(600)는 도 1의 수 정화 장치(100)와 다소 유사하므로, 동일한 부분에는 동일한 도면 부호를 사용한다.
도 7에 도시한 바와 같이, 수 정화 장치(600)는 유입부(61), 질산화부(64), 광합성 반응부(66), 조류 부착 부재들(68) 및 산기부(22)를 포함한다. 이외에, 수 정화 장치(600)는 회전 패들(65)과 배플(62)을 더 포함한다. 특히, 수 정화 장치(600)는 암모니아로 오염된 물을 질산화시켜 정화하기 위해 질산화 공정과 탈질 공정을 순차적으로 진행한다.
먼저 유입부(61)를 통하여 오염수가 유입된다. 유입부(61)로 유입된 오염수는 화살표 방향으로 회전하는 회전 패들(65)에 의해 우측으로 흐른다. 회전 패들(65)은 유입부(61)에 설치되어 그 회전 속도를 조절하면서 전단력을 가하여 조류 부착 부재들(68)에 부착된 조류를 간헐적으로 탈리시킨다. 최적의 광합성 효율을 유지하기 위하여 회전 패들(65)을 이용한다. 배플(62)은 질산화부(64) 위에 수직 방향으로 뻗어 평면형으로 설치된다. 그 결과, 오염수가 배플(62)에 막혀서 화살표 방향을 따라 하강하면서 질산화부(64)로 원활하게 유입되도록 가이드된다.
질산화부(64)는 유입부(61)와 연결되고, 그 내부에는 호기성 미생물이 부착된 복수의 유동성 담체들(69)이 수용된다. 호기성 미생물은 오염수의 질산화 반응을 유도한다. 한편, 유입부(61)의 바닥면(611)은 질산화부(64)의 바닥면(641)보다 높게 위치한다. 즉, 질산화부(64)는 포켓 형태로서 아래를 향해 볼록하게 형성되어 복수의 유동성 담체들(69)을 용이하게 수용할 수 있다. 나아가, 배플(62)과 질산화부(64) 사이에 위치하는 평면형 다공성 스크린(63)을 설치하고, 평면형 다공성 스크린(63)은 질산화부(64)를 덮어서 위치한다. 그 결과, 유동에 의해 유동성 담체들(69)이 질산화부(64)로부터 빠져나가는 것을 방지할 수 있다.
유동성 담체들(69)은 폴리우레탄, 폴리에틸렌 또는 폴리프로필렌 등의 소재로 제조될 수 있다. 그리고 유동성 담체들(69)의 비중은 0.97 내지 1.03일 수 있다. 유동성 담체들(69)의 비중이 너무 작은 경우, 유동성 담체들(69)이 오염수 위에만 떠 있어서 호기성 미생물이 유기물을 잘 분해할 수 없다. 반대로, 유동성 담체들(69)의 비중이 너무 큰 경우, 오염수 아래에 가라앉아 잘 유동되지 않는다. 따라서 유동성 담체들(69)의 비중을 전술한 범위로 조절하는 것이 바람직하다. 유동성 담체들(69)에 부착된 질산화 박테리아는 산소를 이용하여 암모니아를 질산화 반응으로 제거하며, Nitrosomonas, Nitrosococcus, Nitrobacter, Nitrococcus 등의 미생물을 사용할 수 있다.
광합성 반응부(66)는 질산화부(64)와 연결되고 광이 조사된다. 따라서 광합성 반응부(66)에서 광합성에 의해 생성된 산소를 질산화부(64)에 공급하여 오염수를 효율적으로 분해할 수 있다. 한편, 질산화부(64)의 바닥면(641)은 광합성 반응부(66)의 바닥면(661)보다 낮게 위치한다. 따라서 유동성 담체들(69)을 효율적으로 가두어 오염수를 분해할 수 있다.
광합성 반응부(66) 내에는 상호 이격되어 상하로 길게 뻗은 조류 부착 부재들(68)이 위치한다. 조류 부착 부재들(68)은 폴리염화비닐, 폴리에텔렌, 폴리에테르술폰, 폴리플루오르화물비닐라덴, 폴리테트라플루오르에틸렌, 폴리우레탄 또는 폴리프로필렌 등의 소재를 사용하여 그 단면이 각형 또는 원형인 막대 형태로 제조할 수 있다.
조류 부착 부재들(68)의 아래에는 산기부(22)가 위치하여 추가로 산소를 공급한다. 한편, 조류 수집부(67)는 광합성 반응부(66)와 연결되어 조류 부착 부재들(68)로부터 탈리된 조류를 수집한다. 그 결과, 광합성에 의해 다량으로 생성된 조류를 용이하게 채취할 수 있다.
광합성 반응부(66)를 통과하여 배출되는 물에는 부착 조류와 부착 질산화 박테리아가 대부분인 미생물만 존재하고, 부유 고형물 농도가 10㎎/L 이내로 낮게 유지된다. 따라서 광합성 반응부(66) 후단에 간단한 고액 분리 장치를 설치하여 낮은 탁도를 가지는 정화수를 얻을 수 있다.
한편, 도 7의 확대원에 도시한 바와 같이, 조류 부착 부재들(68)은 격자 형태로 배열되므로, 오염수를 잘 통과시키면서 광을 받아 조류를 효율적으로 성장시킬 수 있다. 조류 부착 부재들(68)은 지지부(681)와 조류 부착부(683)를 포함한다. 조류 부착부(683)는 지지부(681) 위에 위치하여 지지부(681)와 탈착 가능하다. 따라서 조류가 성장한 조류 부착부(683)를 지지부(681)와 분리하여 조류를 떼어낸 후 다시 지지부(681)와 결합해 사용할 수 있다. 조류 부착부(683)는 아크릴, 폴리에틸렌, 폴리프로필렌 또는 스테인리스강 등의 소재로 제조될 수 있다. 부착 조류로는 하수, 폐수 또는 양식장에서 서식하는 자연 상태의 조류가 적합하며, 마이크로스포라(Microspora), 스피룰리나(Spirogyra) 또는 오실라토리아(Oscillatoria) 등을 사용할 수 있다.
한편, 조류 부착 부재들(68)의 이격 거리(d68)는 1cm 내지 5cm일 수 있다. 이격 거리(d68)가 너무 작은 경우, 오염수가 통과하기 어렵다. 반대로, 이격 거리(d68)가 너무 큰 경우, 조류 부착 부재들(68)이 조밀하게 형성되지 않아 다량의 조류를 얻을 수 없고, 호기성 미생물에 필요한 산소도 충분하게 발생하지 않는다. 따라서 이격 거리(d68)를 전술한 범위로 유지한다.
그리고 조류 부착 부재(68)의 높이(h68)는 30cm 내지 60cm일 수 있다. 조류 부착 부재(68)의 높이(h68)가 너무 큰 경우, 오염수 위로 조류 부착 부재(68)가 돌출할 수 있다. 반대로, 조류 부착 부재(68)의 높이(h68)가 너무 작은 경우, 충분한 양의 조류를 얻을 수 없다. 따라서 조류 부착 부재(68)의 높이(h68)를 전술한 범위로 조절하는 것이 바람직하다. 나아가, 조류 부착 부재들(68)의 지지부(681)의 높이(h681)는 5cm 내지 10cm일 수 있다. 지지부(681)의 높이(h681)가 너무 큰 경우, 상대적으로 조류 부착부(683)의 길이가 작아져서 원하는 양의 조류를 얻을 수 없다. 또한, 지지부(681)의 높이(h681)가 너무 작은 경우, 조류 부착부(683)를 탈착하기 어렵다. 따라서 지지부(681)의 높이(h681)를 전술한 범위로 하는 것이 바람직하다.
도 8은 본 발명의 제7 실시예에 따른 수 정화 장치(700)의 평면 구조를 개략적으로 나타낸다. 도 8의 수 정화 장치(700)는 도 7의 수 정화 장치(600)와 유사하므로, 동일한 부분에는 동일한 도면 부호를 사용하며, 그 상세한 설명을 생략한다.
도 8에 도시한 바와 같이, 수 정화 장치(700)는 한 쌍의 수 정화 유닛들(7001, 7003)을 포함한다. 여기서, 한 쌍의 수 정화 유닛들(7001, 7003)은 도 7의 수 정화 장치(600)와 동일할 수 있다. 한 쌍의 수 정화 유닛들(7001, 7003)은 각각 수로 형상을 가지는 제1 수 정화 유닛(7001)과 제2 수 정화 유닛(7003)을 포함한다. 이 경우, 반송 펌프를 설치하여 하류의 물을 상류로 압송할 필요가 있다. 격벽(45)은 제1 수 정화 유닛(7001)과 제2 수 정화 유닛(7003)을 상호 구획한다. 제1 수 정화 유닛(7001)과 제2 수 정화 유닛(7003)은 격벽(45)과 이웃하는 연통부(43)를 통하여 화살표로 도시한 오염수의 흐름 방향에 따라 연속 연결된다. 따라서 점유 면적을 최소화하면서 오염수를 효율적으로 정화할 수 있는 수 정화 장치(700)를 제조할 수 있다.
도 9는 본 발명의 제8 실시예에 따른 수 정화 장치(800)의 평면 구조를 개략적으로 나타낸다. 도 9의 수 정화 장치(800)는 도 8의 수 정화 장치(700)와 유사하므로, 동일한 부분에는 동일한 도면 부호를 사용하며, 그 상세한 설명을 생략한다.
도 9에 도시한 바와 같이, 생물 여과부(60)는 유입부(61)와 연결되어 오염수를 공급한다. 그리고 생물 여과부(60)는 광합성 반응부(66)와 연결되어 질산화된 액체를 공급받고, 질산화된 액체를 오염수와 혼합하여 오염수를 정화시킨다. 생물 여과부(60)는 탈질 반응을 이용해 유기물을 산화시켜 이산화탄소로 제거하고, 질산성 질소는 질소 가스로 제거한다.
이하에서는 실험예를 통하여 본 발명을 좀더 상세하게 설명한다. 이러한 실험예는 단지 본 발명을 예시하기 위한 것이며, 본 발명이 여기에 한정되는 것은 아니다.
실험예
도 1과 동일한 구조의 하·폐수 처리 장치를 제작하여 경기도 용인시 소재 영덕레스피아의 하·폐수를 처리하였다. 조류 부착망은 격자형 스테인레스망을 사용하였으며, 질산화 담체로서 폴리우레탄 재질의 정방형 스펀지를 충전하였다. 하·폐수 처리장치의 유효 용량은 총 231.0L(생물막 여과조: 15.0L, 광합성·질산화조: 216.0L)이었다. 광합성 반응을 유도하기 위하여 LED를 수면 상부에서 조사하였으며, LED의 파장은 자연광과 유사하도록 백색, 적색, 청색으로 이루어진 혼합광을 이용하였다.
생물막 여과조의 생물막은 Micrococcus, Pseudomonas, Bacillus, Paracoccus 등의 혐기성 미생물이 함유된 무산소 슬러지를 폴리에틸렌 소재의 직경 4mm의 구형 담체를 채운 혐기성 반응기에 접종한 후, 하·폐수 방류수와 하·폐수 원수를 혼합하여 주입하는 방법으로 1개월 동안 배양하여 제조하였다. 그리고 각각 하단부과 상단부에 스트레이너를 설치하여 담체의 유실을 방지하였고, 유효 용적을 15.0L로 고정 설치하였다.
한편, 광합성·질산화조는 스티지오클로니움 속, 오실라토리아 속, 안키스트로데스무스 속, 클로렐라 속, 세네데스무스 속 등 하수에 자생하는 조류를 대상으로 광량 500㎛/㎡/s, 온도 16.0±1.0℃의 조건으로 배양하였고, 배양액은 경기도 용인시 소재 영덕레스피아(하수처리장)에서 채수하여 216L/D 속도로 연속 주입하였다. 하·폐수 처리 장치의 운전 조건들을 표 1에 나타낸다. 여기서 부착망에 부착된 조류의 chl-a 농도는 측정하지 않고 4일마다 10g씩 수확하였다.
표 1
운전기간 3개월 5일
HRT(hr) 24.0
SRT(d) 5
유입수 수온(℃) 16.0±1.0
전도도(㎲/㎠/s) 713.6±44.3
pH 7.4±0.2
생물여과조 전도도(㎲/㎠/s) 71.8±51.7
pH 7.2±0.1
생물막여과조 유출수 SS(mg/L) 18.6
생물막여과조 유출수 BOD(mg/L) 32.3
광합성질산화조 용존산소(mg/L) 3.3±0.4
하·폐수 유입량(L/d) 216
광합성부착틀 재질(직경) 스테인레스강(1.5㎜)
부착망의 스테인리스망목 간격 1.1cm
부착망과 부착망 사이 간격 10.0cm
유효 수심(부착망 높이) 45cm(25cm)
chl-a(부유상태, mg/L *) 0.2±0.3
MLSS(부유상태, mg/L *) 37.0±24.5
빛 조사 시간(시간/일) 24시간/일
표 2에는 전술한 실험예에서 처리된 처리수의 BOD, SS, T-N 및 T-P를 측정하여 나타낸다. 이 경우, BOD, SS, T-N 및 T-P의 측정방법은 수질오염공정시험방법(2012, 환경부)에 준하여 측정하였다.
표 2
항 목 유입수(mg/L) 처리수(mg/L) 제거율(%)
BOD 272.4±89.4 5.1±3.2 98.1
SS 250.8±116.4 10.9±6.5 95.7
T-N 59.5±6.5 11.8±3.1 80.2
TKN 58.7±8.9 3.2±3.2 94.5
NOx-N/TN(%) 0.4/59.5(0.7) 9.2/11.8(78.6) -
T-P 8.0±1.0 1.7±0.7 79.1
표 2에 기재한 바와 같이, BOD 제거율은 평균 98.1%로서 인위적 송풍을 실시하는 표준활성 슬러지 수준의 효율을 니타냈으며, SS 제거율도 95.7%로 매우 높게 나타났다. 일반적인 부유 성장 미세 조류는 미세조류·박테리아 미생물 군집의 생물-응집(bio-flocculation)에 의해 침전되어 처리수와 분리된 후 제거되는 것에 비해 부착 성장 미세 조류는 별도의 침전조를 설치하지 않아도 부착망에서 탈리된 미세 조류가 작아 처리수의 SS가 매우 낮은 수준으로 유지됨을 알 수 있었다.
한편, T-N 제거율은 80.2%로 높았고, 환원성 질소(TKN)도 94.5%로 매우 높았다. 따라서 높은 질소 제거율이 요구되는 경우, 고정상 미세조류 부착매체를 이용하는 것이 매우 유용하다는 것을 확인할 수 있었다. T-P 제거시 부착망에 부착되어 성장하는 조류의 빠른 성장 속도에 의해 79.1%의 높은 제거 효율을 얻을 수 있었으므로, 높은 T-P 제거율이 요구되는 경우 부착 성장하는 조류를 배양하는 것이 바람직한 것을 알 수 있었다.
반면에, 운전 기간이 1월~3월이어서 유입수의 수온이 16℃로 낮았으나 조류의 원활한 성장과 광합성 활동에 의해 산소 공급이 원활하여 질산화 박테리아의 활동이 정상적으로 진행되었으며 처리수내 질소의 78.6%가 질산화된 형태로 존재하였다. 이로부터 부착 조류는 우수한 저온 내성을 가지고, 부착 매체 및 유동성 담체에 의하여 질산화 반응이 활발하게 진행되는 것을 알 수 있었다. 따라서 부착 조류를 이용한 수 정화 장치는 유기물 산화, 질산화 및 탈질, 인 섭취 반응이 원활하게 진행되어 높은 수처리 효율을 나타내었다. 또한, 광합성·질산화조 전단에 생물막 여과조가 위치하므로, 종속영양 미생물에 의한 유기물 제거 및 이산화탄소 공급 효과를 나타내어 저수온 조건에서도 질산화 반응이 원활하게 진행되었다. 그 결과, 고효율의 수질 정화가 가능하고 순도가 높은 조류를 수확할 수 있어서 수처리와 유용한 조류 생산이 동시에 가능하다는 것을 알 수 있었다.
본 발명을 앞서 기재한 바에 따라 설명하였지만, 다음에 기재하는 특허청구범위의 개념과 범위를 벗어나지 않는 한, 다양한 수정 및 변형이 가능하다는 것을 본 발명이 속하는 기술 분야에서 종사하는 자들은 쉽게 이해할 것이다.

Claims (24)

  1. 오염수를 정화하도록 적용된 하나 이상의 수 정화 유닛을 포함하는 수 정화 장치로서,
    상기 수 정화 유닛은,
    오염수가 유입되고, 광이 조사되는 광합성 반응부,
    상기 광합성 반응부내에 경사지게 설치되고, 상호 이격된 복수의 조류 부착망들,
    상기 광합성 반응부 아래에 위치하고, 상기 광합성 반응부에서 생성되는 산소를 이용해 상기 오염수의 질산화 반응을 유도하는 호기성 미생물이 부착된 복수의 담체들을 수용하고, 질산화된 액체를 생성하는 질산화부,
    상기 복수의 담체들의 아래에 위치하고, 상기 질산화부에 추가로 산소를 공급하도록 적용된 산기부, 및
    상기 광합성 반응부와 연결되어 상기 복수의 조류 부착망들로부터 탈리된 조류를 수집하는 조류 수집부
    를 포함하는 수 정화 장치.
  2. 제1항에서,
    상기 광합성 반응부와 연결되어 상기 오염수를 상기 광합성 반응부에 공급하고, 상기 질산화부와 연결되어 상기 질산화된 액체를 공급받아 상기 오염수와 혼합함으로써 상기 오염수를 정화시키는 생물 여과부를 더 포함하는 수 정화 장치.
  3. 제1항에서,
    상기 광합성 반응부와 상기 질산화부 사이에 위치하는 평면형 다공성 스크린을 더 포함하고, 상기 조류 부착망은 상기 평면형 다공성 스크린과 30° 내지 60°의 각을 이루는 수 정화 장치.
  4. 제1항에서,
    상기 복수의 조류 부착망들의 이격 거리는 15cm 내지 20cm이고, 상기 복수의 조류 부착망들 중 하나 이상의 조류 부착망에 형성된 개구부의 면적은 1cm2 내지 2.5cm2인 수 정화 장치.
  5. 제1항에서,
    상기 광합성 반응부의 높이는 0 보다 크고, 30cm 이하인 수 정화 장치.
  6. 제1항에서,
    상기 복수의 조류 부착망들 중 하나 이상의 조류 부착망은 폴리염화비닐, 폴리에틸렌, 스테인리스강, 폴리플루오르화물비닐라덴, 폴리테트라플루오르에틸렌, 폴리우레탄 및 폴리프로필렌으로 이루어진 군에서 선택된 하나 이상의 소재로 제조된 수 정화 장치.
  7. 제1항에서,
    상기 하나 이상의 수 정화 유닛은 한 쌍의 수 정화 유닛들을 포함하고,
    상기 한 쌍의 수 정화 유닛들을 상호 구획하는 격벽을 더 포함하며,
    상기 격벽과 이웃하는 연통부를 통하여 상기 오염수의 흐름 방향에 따라 상기 한 쌍의 수 정화 유닛들이 연속 연결된 수 정화 장치.
  8. 제7항에서,
    상기 한 쌍의 수 정화 유닛들은 상기 오염수의 흐름 방향을 따라 차례로 위치하는 제1 정화 유닛 및 제2 정화 유닛을 포함하고, 상기 제1 정화 유닛에 포함된 질산화조의 내부 측면에 설치되어 상기 제2 정화 유닛 방향으로 상기 오염수의 유속을 조절하는 프로펠러를 더 포함하는 수 정화 장치.
  9. 제1항에서,
    상기 복수의 담체들은 상하로 길게 뻗은 고정 막대형으로 형성된 수 정화 장치.
  10. 오염수를 정화하도록 적용된 하나 이상의 수 정화 유닛을 포함하는 수 정화 장치로서,
    상기 수 정화 유닛은,
    상기 오염수가 유입되도록 적용된 유입부,
    상기 유입부와 연결되고, 상기 오염수의 질산화 반응을 유도하는 호기성 미생물이 부착된 복수의 담체들이 수용된 질산화부,
    상기 질산화부와 연결되고, 광이 조사되는 광합성 반응부,
    상기 광합성 반응부내에 상호 이격되어 상하로 길게 뻗은 복수의 조류 부착 부재들,
    상기 광합성 반응부와 연결되어 상기 복수의 조류 부착 부재들로부터 탈리된 조류를 수집하는 조류 수집부, 및
    상기 복수의 조류 부착 부재들 아래에 위치하여 추가로 산소를 공급하도록 적용된 산기부
    를 포함하는 수 정화 장치.
  11. 제10항에서,
    상기 유입부의 바닥면은 상기 질산화부의 바닥면보다 높게 위치하는 수 정화 장치.
  12. 제11항에서,
    상기 질산화부의 바닥면은 상기 광합성 반응부의 바닥면보다 낮게 위치하는 수 정화 장치.
  13. 제10항에서,
    상기 복수의 조류 부착 부재들은 격자 형태로 배열되고, 상기 복수의 조류 부착 부재들 중 하나 이상의 조류 부착 부재들은,
    지지부, 및
    상기 지지부 위에 위치하고, 상기 지지부와 탈착 가능한 조류 부착부
    를 포함하는 수 정화 장치.
  14. 제13항에서,
    상기 복수의 조류 부착 부재들의 이격 거리는 1cm 내지 5cm인 수 정화 장치.
  15. 제13항에서,
    상기 지지부의 높이는 5cm 내지 10cm인 수 정화 장치.
  16. 제13항에서,
    상기 조류 부착 부재의 높이는 30cm 내지 60cm인 수 정화 장치.
  17. 제13항에서,
    상기 조류 부착부는 아크릴, 폴리에틸렌, 폴리프로필렌 및 스테인리스강으로 이루어진 군에서 선택된 하나 이상의 소재를 포함하는 수 정화 장치.
  18. 제10항에서,
    상기 유입부에 설치되어 상기 오염수를 상기 질산화부로 원활하게 이송하는 회전 패들을 더 포함하는 수 정화 장치.
  19. 제10항에서,
    상기 질산화부 위에 수직 방향으로 뻗어 평면형으로 설치되어 상기 오염수가 상기 질산화부로 유입되도록 가이드하는 배플을 더 포함하는 수 정화 장치.
  20. 제19항에서,
    상기 배플과 상기 질산화부 사이에 위치하는 평면형 다공성 스크린을 더 포함하고, 상기 평면형 다공성 스크린은 상기 질산화부를 덮어서 위치하는 수 정화 장치.
  21. 제10항에서,
    상기 하나 이상의 수 정화 유닛은 한 쌍의 수 정화 유닛들을 포함하고,
    상기 한 쌍의 수 정화 유닛들을 상호 구획하는 격벽을 더 포함하며,
    상기 격벽과 이웃하는 연통부를 통하여 상기 오염수의 흐름 방향에 따라 상기 한 쌍의 수 정화 유닛들이 연속 연결된 수 정화 장치.
  22. 제10항에서,
    상기 유입부와 연결되어 상기 오염수를 상기 유입부에 공급하고, 상기 광합성 반응부와 연결되어 상기 질산화된 액체를 공급받아 상기 오염수와 혼합함으로써 상기 오염수를 정화시키는 생물 여과부를 더 포함하는 수 정화 장치.
  23. 제10항에서,
    상기 수 정화 유닛은 길게 뻗은 수로 형상을 가지는 수 정화 장치.
  24. 제10항에서,
    상기 복수의 유동성 담체들 중 하나 이상의 유동성 담체는 폴리우레탄, 폴리에틸렌 및 폴리프로필렌으로 이루어진 군에서 선택된 하나 이상의 소재를 포함하고, 상기 유동성 담체의 비중은 0.97 내지 1.03인 수 정화 장치.
PCT/KR2015/005197 2014-12-12 2015-05-22 미세 조류를 이용한 수 정화 장치 WO2016093445A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020167023408A KR101743653B1 (ko) 2014-12-12 2015-05-22 미세 조류를 이용한 수 정화 장치

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0179046 2014-12-12
KR20140179046 2014-12-12
KR20150035060 2015-03-13
KR10-2015-0035060 2015-03-13

Publications (1)

Publication Number Publication Date
WO2016093445A1 true WO2016093445A1 (ko) 2016-06-16

Family

ID=56107602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/005197 WO2016093445A1 (ko) 2014-12-12 2015-05-22 미세 조류를 이용한 수 정화 장치

Country Status (2)

Country Link
KR (1) KR101743653B1 (ko)
WO (1) WO2016093445A1 (ko)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106242168A (zh) * 2016-08-22 2016-12-21 中南民族大学 一种利用周丛藻类处理养殖场废水的方法
US9764975B2 (en) * 2015-07-31 2017-09-19 Helenio de Carvalho Ellery Filho Biological filtration system for removal of nitrogen compounds in aquatic animal breeding environments, and its implementing device
CN108640274A (zh) * 2018-04-09 2018-10-12 中国航天员科研训练中心 一种集成植物培养的废水循环利用装置
CN111977821A (zh) * 2020-08-20 2020-11-24 广东自远环保股份有限公司 一种针对生活污水的厌氧生物处理系统
CN111977906A (zh) * 2020-08-20 2020-11-24 广东自远环保股份有限公司 一种针对生活污水的厌氧生物处理方法
CN112624527A (zh) * 2020-12-31 2021-04-09 哈尔滨工程大学烟台研究院 一种水网藻-膜生物复合污水处理装置
CN113666502A (zh) * 2021-09-07 2021-11-19 世纪华扬环境工程有限公司 一种碳中和的污水处理用太阳能聚热反应器
CN113880354A (zh) * 2021-10-13 2022-01-04 世纪华扬环境工程有限公司 一种高海拔条件下污水处理用工艺

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101996065B1 (ko) * 2019-02-08 2019-10-17 경기도 미세조류와 탈질세균의 공배양을 이용한 질소제거 장치 및 이를 이용한 질소제거 방법
KR20220145011A (ko) 2021-04-21 2022-10-28 (주)케이이엠바이오 미세 조류를 이용한 수질정화장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020057466A (ko) * 2001-01-05 2002-07-11 조양호 광합성 미생물을 이용한 하폐수 처리방법 및 그의 처리장치
KR20060100869A (ko) * 2005-03-18 2006-09-21 주식회사 에스디알앤디 유동성 접촉재 모듈과 조류 모듈을 이용한 수질정화장치 및 이를 이용한 수질정화방법
KR20110112657A (ko) * 2010-04-07 2011-10-13 한국과학기술연구원 하폐수의 질소 및 인을 처리하는 장치 및 방법
KR101087068B1 (ko) * 2011-02-24 2011-11-25 지유 주식회사 고정식 미생물 접촉장치
KR101139701B1 (ko) * 2011-08-31 2012-05-02 디엔텍 (주) 미생물 담체를 이용한 호소의 수질개선 장치

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100874663B1 (ko) * 2008-06-02 2008-12-17 한명완 유동상 담체와 고정상 담체가 설치된 반응조를 이용한하·폐수처리장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020057466A (ko) * 2001-01-05 2002-07-11 조양호 광합성 미생물을 이용한 하폐수 처리방법 및 그의 처리장치
KR20060100869A (ko) * 2005-03-18 2006-09-21 주식회사 에스디알앤디 유동성 접촉재 모듈과 조류 모듈을 이용한 수질정화장치 및 이를 이용한 수질정화방법
KR20110112657A (ko) * 2010-04-07 2011-10-13 한국과학기술연구원 하폐수의 질소 및 인을 처리하는 장치 및 방법
KR101087068B1 (ko) * 2011-02-24 2011-11-25 지유 주식회사 고정식 미생물 접촉장치
KR101139701B1 (ko) * 2011-08-31 2012-05-02 디엔텍 (주) 미생물 담체를 이용한 호소의 수질개선 장치

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9764975B2 (en) * 2015-07-31 2017-09-19 Helenio de Carvalho Ellery Filho Biological filtration system for removal of nitrogen compounds in aquatic animal breeding environments, and its implementing device
CN106242168A (zh) * 2016-08-22 2016-12-21 中南民族大学 一种利用周丛藻类处理养殖场废水的方法
CN106242168B (zh) * 2016-08-22 2019-04-02 中南民族大学 一种利用周丛藻类处理养殖场废水的方法
CN108640274A (zh) * 2018-04-09 2018-10-12 中国航天员科研训练中心 一种集成植物培养的废水循环利用装置
CN111977821A (zh) * 2020-08-20 2020-11-24 广东自远环保股份有限公司 一种针对生活污水的厌氧生物处理系统
CN111977906A (zh) * 2020-08-20 2020-11-24 广东自远环保股份有限公司 一种针对生活污水的厌氧生物处理方法
CN111977821B (zh) * 2020-08-20 2022-06-14 广东自远环保股份有限公司 一种针对生活污水的厌氧生物处理系统
CN112624527A (zh) * 2020-12-31 2021-04-09 哈尔滨工程大学烟台研究院 一种水网藻-膜生物复合污水处理装置
CN113666502A (zh) * 2021-09-07 2021-11-19 世纪华扬环境工程有限公司 一种碳中和的污水处理用太阳能聚热反应器
CN113880354A (zh) * 2021-10-13 2022-01-04 世纪华扬环境工程有限公司 一种高海拔条件下污水处理用工艺
CN113880354B (zh) * 2021-10-13 2023-08-22 世纪华扬环境工程有限公司 一种高海拔条件下污水处理用工艺

Also Published As

Publication number Publication date
KR101743653B1 (ko) 2017-06-05
KR20160105920A (ko) 2016-09-07

Similar Documents

Publication Publication Date Title
WO2016093445A1 (ko) 미세 조류를 이용한 수 정화 장치
KR0175229B1 (ko) 과립상 슬러지를 이용한 폐수 처리 장치 및 폐수 처리 방법
WO2015108279A1 (ko) 하폐수를 이용한 미세조류 배양시스템 및 그 배양방법
CN106277646B (zh) 一种利用藻菌共生体同步净化沼液和原沼气的系统
CN109879402B (zh) 耦合净化养殖池塘底泥与水体的生物电化学装置和方法
CN205648738U (zh) 一种凡纳滨对虾生态工业化养殖系统
CN104540785B (zh) 用于废物处理的系统和方法
CN107285472A (zh) 黑臭河涌立体式原位生态修复系统及原位生态修复方法
KR101444643B1 (ko) 미세조류를 이용한 하· 폐수 처리 장치
CN108238703A (zh) 一种利用生物滤器-人工湿地进行循环水水产养殖的系统
CN103466879B (zh) 一种城市河道水体的原位净化系统
CN107867755A (zh) 一种处理高浓度有机物和氨氮废水的ambr‑mabr‑a/o‑mbr方法及其设备
CN214060278U (zh) 一种海水养殖尾水外排装置
CN209778575U (zh) 处理高浓度有机生活污水的一体化设备
KR101444642B1 (ko) 미세조류를 이용한 에너지 절약형 하· 폐수 처리 장치
CN108892249A (zh) 一种气浮式悬浮填料原位净水装置及净水方法
CN209428241U (zh) 一种水产养殖污水固定化微生物净化循环装置
CN113336332B (zh) 一种基于远程操控的水体富营养化控制系统及控制方法
CN109368812A (zh) 一种水产养殖污水固定化微生物净化循环装置及净化方法
KR20160052292A (ko) 혐기조, 무산소조 및 광합성 미생물 배양조가 유기적으로 조합된 바이오매스 생산 장치 및 그 방법
CN106430631A (zh) 一种清水滤墙
CN114600825B (zh) 一种双循环水产养殖系统
CN201040726Y (zh) 漂移式多功能净水设备
CN207375911U (zh) 一种生物滤床
CN116076425A (zh) 对虾全封闭循环水精养系统及其养殖方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15868331

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167023408

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112 112(1) EPC ( EPO FORM1205A DATED 28-11.2017 )

122 Ep: pct application non-entry in european phase

Ref document number: 15868331

Country of ref document: EP

Kind code of ref document: A1