WO2016093385A1 - Method for recovering polyimide - Google Patents

Method for recovering polyimide Download PDF

Info

Publication number
WO2016093385A1
WO2016093385A1 PCT/KR2014/012090 KR2014012090W WO2016093385A1 WO 2016093385 A1 WO2016093385 A1 WO 2016093385A1 KR 2014012090 W KR2014012090 W KR 2014012090W WO 2016093385 A1 WO2016093385 A1 WO 2016093385A1
Authority
WO
WIPO (PCT)
Prior art keywords
dianhydride
polyimide
hydrolysis
filtrate
precipitate
Prior art date
Application number
PCT/KR2014/012090
Other languages
French (fr)
Korean (ko)
Inventor
조승원
조승민
Original Assignee
주식회사 엔케이이씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엔케이이씨 filed Critical 주식회사 엔케이이씨
Priority to PCT/KR2014/012090 priority Critical patent/WO2016093385A1/en
Publication of WO2016093385A1 publication Critical patent/WO2016093385A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/14Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with steam or water
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a polyimide recovery method, and more particularly, to a method capable of recovering a raw material of polyimide from a polyimide waste product which is difficult to recycle.
  • polyimide molded products and processed waste materials are excellent in chemical resistance, do not dissolve in solvents, and are often non-thermoplastic, and thus cannot be dissolved and recycled like ordinary thermoplastics.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a polyimide recovery method for recovering a raw material of polyimide from polyimide processing waste material having insoluble and insoluble characteristics. have.
  • Polyimide recovery method for achieving the above object is a polyimide by reacting in a nitrogen atmosphere at 480 to 580 parts by weight of alkali, 3000 to 4000 parts by weight of water at 90 to 99 degrees with respect to 1000 parts by weight of polyimide waste materials
  • the first hydrolysis step for hydrolysis, the first filtration step for filtering the product of the first hydrolysis step to remove insolubles, and the filtrate of the first filtration step is concentrated by heating, 3 to 5 in a nitrogen atmosphere
  • the precipitate may be washed with deionized water and dried at 90 to 120 ° C. for 20 to 24 hours to afford diamine.
  • an acidity adjustment step of adjusting the pH of the filtrate to 1 to 2 a heating step of maintaining the filtrate through the acidity adjustment step at 90 to 100 degrees for 3 to 5 hours, and a filtration through the heating step
  • a cooling step of cooling the liquid to form a precipitate a third filtration step of filtering the precipitate passed through the cooling step, a washing step of washing the precipitate through the third filtration step, and a drying step of drying the washed precipitate Dianehydrides can be obtained.
  • the obtained dianhydride can be recrystallized with an acetic anhydride solvent so that the difference between endotherm initiation temperature and endothermic peak temperature may be within 20 degreeC.
  • polyimide can be recovered by recovering diamine and dianhydride, which are raw materials of polyimide, from waste polyimide materials. It can be effective.
  • FIG. 1 is a flowchart showing a polyimide recovery method according to an embodiment of the present invention.
  • FIG. 2 is a flow chart showing a subsequent process for the filtrate of the second filtration step of FIG.
  • 3 is an NMR spectrum of a polyimide raw material recovered by the polyimide recovery method according to the embodiment of the present invention.
  • 1 is a flowchart showing a method for recovering polyimide according to an embodiment of the present invention.
  • first hydrolysis step S100
  • first filtration step S200
  • second hydrolysis step S300
  • second filtration step S400
  • the polyimide waste material is hydrolyzed.
  • the polyimide to be decomposed is preferably a waste of polyimide having a definite chemical structure.
  • a defective product that is out of standard in the manufacturing process of a resin molded article, waste water, etc. in the film manufacturing process is easy to calculate the amount of alkali required for hydrolysis due to a clear chemical structure, and the amount of alkali is added as little as possible. It is preferable because it becomes possible.
  • Polyimide recovery method can further include a second hydrolysis step (S300) to be described later by performing the hydrolysis step by step to reduce the alkali input amount, it is possible to maintain the input amount of water.
  • S300 second hydrolysis step
  • polyimide is made by reacting 480 to 580 parts by weight of alkali and 3000 to 4000 parts by weight of water at 90 to 99 degrees with respect to 1000 parts by weight of polyimide waste material. It is preferable to hydrolyze When hydrolysis is performed at a temperature of less than 90 degrees, the time required for decomposition becomes too long, which is not preferable from the viewpoint of productivity, and when hydrolysis is performed at temperatures exceeding 99 degrees, a container having a high internal pressure is required. In some cases, the added alkali may evaporate, which is undesirable.
  • the alkali to be added is preferably at least one selected from sodium hydroxide or potassium hydroxide, but is not limited thereto.
  • alkali is added in an amount of less than 480 parts by weight with respect to 1000 parts by weight of polyimide, the hydrolysis takes a long time, which is not preferable in view of productivity.
  • alkali is added in an amount exceeding 580 parts by weight with respect to 1000 parts by weight of polyimide, it is not preferable because not only the amount of acid for neutralization is increased after decomposition but also impurities in the final product are increased.
  • the addition of excess alkali is uneconomical, and may cause problems such as inhibition of temperature rise in the reaction system or corrosion of the reactor.
  • the water to be added is not particularly limited, but preferably, purified water such as distilled water or ion-exchanged water is preferable because of less impurities.
  • purified water such as distilled water or ion-exchanged water
  • soft water having a small content of ions rather than hard water having a large amount of ions such as calcium or magnesium.
  • the final product may have a purity of 99% or more, a recovery rate of 90% or more, and yellowness.
  • Nitrogen is continuously added, and the amount of nitrogen introduced is preferably 20 to 50 times / hour of the reactor volume.
  • the product of the first hydrolysis step (S100) is filtered the product of the first hydrolysis step (S100). This results in a filtrate from which insoluble matters which have not been dissolved are removed. Insoluble matters may include undigested substances and other impurities and may be continuously introduced into the first hydrolysis step S100. Nitrogen is continuously added because it is a continuous process from the first hydrolysis step (S100), and the amount of nitrogen added is preferably 20 to 50 times / hour of the reactor volume because the purity and recovery rate of the final product can be improved.
  • the filtrate of the first filtration step (S200) is concentrated by heating and boiling, and hydrolyzed for 3 to 5 hours in a nitrogen atmosphere. A considerable amount of impurities may be removed when the filtrate is boiling, the amount of evaporation of water due to concentration may be 25 to 67% of the water introduced in the first hydrolysis step (S100). Hydrolysis is carried out while the concentrated filtrate is continuously heated, where hydrolysis is carried out with a reflux condenser, thereby minimizing the loss to steam to increase yield.
  • the initial amount of alkali may be small by performing hydrolysis step by step in this manner.
  • the product of the second hydrolysis step (S300) is cooled and then filtered to obtain diamine and tetracarboxylic acid.
  • the obtained tetracarboxylic acid can be dehydrated by heating to obtain dianhydride.
  • Diamine (diamine) is obtained by separating the precipitate of the second filtration step (S400), washed with deionized water and dried at 90 to 120 °C 20 to 24 hours.
  • the diamine obtained is 1,1,3,3-tetramethyl-1,3-bis (4-aminophenyl) disiloxane, 1,1,3,3-tetraphenoxy-1,3-bis (4-amino Ethyl) disiloxane, 1,1,3,3-tetraphenyl-1,3-bis (2-aminoethyl) disiloxane, 1,1,3,3-tetraphenyl-1,3-bis (3-amino Propyl) disiloxane, 1,1,3,3-tetramethyl-1,3-bis (2-aminoethyl) disiloxane, 1,1,3,3-tetramethyl-1,3-bis (3-amino Propyl) disiloxane, 1,1,3,3-tetramethyl-1,3-bis (3-a
  • the dianhydride (dianhydride) is separated from the filtrate of the second filtration step (S400) to adjust the pH to 1 to 2, and heated for 3 to 5 hours to maintain a temperature of 90 to 100 degrees, then cooled and filtered It can be obtained by washing, drying and dehydrating the precipitate.
  • the obtained dianhydride is pyromellitic dianhydride, biphenyltetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3 -Dicarboxyphenyl) propane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,1-bis (3,4-dicarboxyphenyl) ethane dianhydride, bis (2,3 Dicarboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, 3,4,9,10-perylenetetracarboxylic Acid dianhydrides, bis (3,4-dicarboxyphenyl) ether dianhydrides, benzene-1,2,3,4-tetracarboxylic Acid dian
  • the polyimide recovery method according to an embodiment of the present invention may further include a polymerization step (S500).
  • a polyimide by dehydration ring closure can be obtained by adding diamine and dianhydride obtained in the second filtration step (S400) to an organic solvent and continuously stirring at 0 to 80 ° C for 1 to 10 hours. have.
  • the organic solvent used is N-methyl-2-pyrrolidinone, N-acetyl-2-pyrrolidinone, N, N-dimethylformamide, N, N-diethylformamide, N, N- It may be at least one selected from dimethylacetamide, dimethyl sulfoxide, hexamethylphosphoamide, diethylene glycol dimethyl ether, and may further contain a ring closure catalyst and a dehydrating agent.
  • FIG. 2 is a flowchart illustrating a subsequent process for the filtrate of the second filtration step S400 of FIG. 1.
  • dianhydride is separated from the filtrate of the second filtration step (S400), acidity adjustment step (S410), heating step (S420), cooling step (S430), the third filtration step ( S440), a washing step (S450) and a drying step (S460) can be obtained through a subsequent process further.
  • the pH of the filtrate filtered in the second filtration step S400 is adjusted to 1 to 2.
  • the acid introduced for acidity adjustment is preferably at least one selected from sulfuric acid or hydrochloric acid, but is not limited thereto.
  • hydrochloric acid for acidity adjustment sodium chloride or potassium hydroxide is added as alkali in the first hydrolysis step (S100), so that sodium chloride is added to the final product. Impurities such as sodium chloride and potassium chloride may be included.
  • the dianhydride is dissolved and extracted in at least one solvent selected from water, ethanol, DMAC (dimethylacetamide), and NMP (n-methylpyrrolidone) to remove impurities. It is desirable to.
  • the filtrate passed through the acidity adjustment step (S410) is maintained at 90 to 100 °C for 3 to 5 hours.
  • the filtrate is further concentrated through the heating step (S420).
  • Heating to a temperature above 100 ° C. is undesirable since the recovery of the final product may drop.
  • the precipitate passed through the cooling step (S430) is filtered.
  • the filtered precipitate may be further subjected to the washing step (S450) and the drying step (S460) to be described later, thereby further increasing the purity.
  • washing step (S450) to wash the precipitate passed through the third filtration step (S440). It is preferable to use ion-exchanged water for the washing in view of purity.
  • a dianhydride can be obtained by heating and drying dehydrated tetracarboxylic acid.
  • the obtained dianhydride can be improved in purity by recrystallization with an acetic anhydride solvent.
  • the recrystallization is preferably repeated several times so that the difference between the endothermic initiation temperature of the dianhydride and the endothermic peak temperature is within 20 ° C. to increase the purity of the dianhydride. Accordingly, the recovery rate of dianhydride is 90% or more, the purity is 99% or more, and the yellowness is very low.
  • 3 is an NMR spectrum of a polyimide raw material recovered by the polyimide recovery method according to the embodiment of the present invention.
  • Example 1 The experiment is the result of measuring the spectrum using an NMR apparatus to confirm the material (A) finally obtained in Example 1.
  • the 1 H NMR spectrum of Material (A) obtained in Example 1 shows hydrogen on the para-disubstituted benzene ring as quartet near 6.4 to 7.0 ppm, with an amine over a broad range near 3.2 to 4.0 ppm
  • the hydrogen peak of the group appears. Accordingly, it can be confirmed that the precipitate washed and dried in Example 1 is 4,4'-diaminodiphenyl ether, which is a para-disubstituted benzene ring having an amine group.

Abstract

The present invention relates to a method for recovering polyimide, comprising a first hydrolysis step, a first filtration step, a second hydrolysis step, and a second filtration step. The first hydrolysis step hydrolyzes polyimide by reacting 480 to 580 parts by weight of alkali and 3000 to 4000 parts by weight of water, with respect to 1000 parts by weight of polyimide waste material, at 90 to 99 ℃ in a nitrogen atmosphere. The first filtration step removes insoluble material by filtering the product of the first hydrolysis step. The second hydrolysis step concentrates, by heating, a filtrate of the first filtration step, and hydrolyzes the filtrate for 3 to 5 hours in a nitrogen atmosphere. The second filtration step cools and then filters the product of the second hydrolysis step to thereby obtain diamine and dianhydride. Accordingly, the present invention can recover polyimide by recovering diamine and dianhydride, which are raw materials of polyimide, from difficult-to-recycle polyimide waste material, and has an effect of having excellent environment friendliness and economic feasibility.

Description

폴리이미드 회수 방법Polyimide Recovery Method
본 발명은 폴리이미드 회수 방법에 관한 것으로서, 특히 재활용이 어려운 폴리이미드 가공 폐자재로부터 폴리이미드(polyimide)의 원료 물질을 회수할 수 있는 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polyimide recovery method, and more particularly, to a method capable of recovering a raw material of polyimide from a polyimide waste product which is difficult to recycle.
일반적으로 폴리이미드 성형물 및 가공 폐자재는 내약품성이 뛰어나 용매에 녹지 않으며 열가소성이 아닌 경우가 많아 보통의 열가소성 플라스틱의 재생방법과 같이 용해하여 재활용하는 것이 불가능하다.In general, polyimide molded products and processed waste materials are excellent in chemical resistance, do not dissolve in solvents, and are often non-thermoplastic, and thus cannot be dissolved and recycled like ordinary thermoplastics.
특히 불용(insoluble), 불융(infusible)의 특성은 폴리이미드가 많은 공업제품에 사용되는 이유이기도 하나, 사용이 끝난 제품이나 불량 제품의 재생 처리나 재자원화가 곤란하여, 그대로 매립 폐기되거나 소각 폐기되고 있다.Insoluble and infusible properties are the reason why polyimide is used in many industrial products.However, it is difficult to reclaim or re-use used or defective products. have.
이와 같은 매립 폐기 처분은 매립 용지의 확보가 필요하고, 소각 폐기 처분을 위해서는 소각로가 필요하며, 환경에 미치는 영향이 크다. 특히 자원 고갈과 지구 환경 오염에 관한 문제가 대두되면서, 폐자재를 재자원화하는 회수 기술에 대한 요구가 커지고 있다.Such landfill disposal needs to secure landfill sites, incinerators are required for disposal of incineration, and environmental impacts are great. In particular, with the problems of resource depletion and global environmental pollution, the demand for recovery technology to recycle waste materials is increasing.
본 발명은 상기한 바와 같은 문제점을 해결하기 위해 이루어진 것으로서, 본 발명의 목적은 불용, 불융의 특성을 가지고 있는 폴리이미드 가공 폐자재로부터 폴리이미드의 원료 물질을 회수하는 폴리이미드 회수 방법을 제공하는 데 있다.The present invention has been made to solve the above problems, and an object of the present invention is to provide a polyimide recovery method for recovering a raw material of polyimide from polyimide processing waste material having insoluble and insoluble characteristics. have.
상기 목적을 달성하기 위한 본 발명에 의한 폴리이미드 회수 방법은 폴리이미드 폐자재 1000 중량부에 대하여 알칼리 480 내지 580 중량부, 물 3000 내지 4000 중량부를 90 내지 99도에서 질소 분위기에서 반응시켜 폴리이미드를 가수분해시키는 제1 가수분해 단계와, 제1 가수분해 단계의 산물을 여과하여 불용물을 제거하는 제1 여과 단계와, 제1 여과 단계의 여과액을 가열하여 농축시키며, 질소 분위기에서 3 내지 5 시간 동안 가수분해시키는 제2 가수분해 단계와, 제2 가수분해 단계의 산물을 냉각 후 여과하여 디아민과 디안하이드라이드를 수득하는 제2 여과 단계를 포함한다.Polyimide recovery method according to the present invention for achieving the above object is a polyimide by reacting in a nitrogen atmosphere at 480 to 580 parts by weight of alkali, 3000 to 4000 parts by weight of water at 90 to 99 degrees with respect to 1000 parts by weight of polyimide waste materials The first hydrolysis step for hydrolysis, the first filtration step for filtering the product of the first hydrolysis step to remove insolubles, and the filtrate of the first filtration step is concentrated by heating, 3 to 5 in a nitrogen atmosphere A second hydrolysis step of hydrolyzing for a time and a second filtration step of cooling and filtering the product of the second hydrolysis step to obtain diamine and dianhydride.
제2 여과 단계에서는, 침전물을 탈이온수로 세척하고, 90 내지 120℃에서 20 내지 24시간 건조하여 디아민을 수득할 수 있다.In the second filtration step, the precipitate may be washed with deionized water and dried at 90 to 120 ° C. for 20 to 24 hours to afford diamine.
제2 여과 단계에서는, 여과액의 pH를 1 내지 2로 조정하는 산도 조정 단계와, 산도 조정 단계를 거친 여과액을 3 내지 5 시간 동안 90 내지 100 도로 유지시키는 가열 단계와, 가열 단계를 거친 여과액을 냉각시켜 침전물을 형성시키는 냉각 단계와, 냉각 단계를 거친 침전물을 여과하는 제3 여과 단계와, 제3 여과 단계를 거친 침전물을 세척하는 세척 단계와, 세척된 침전물을 건조하는 건조단계를 거쳐 디안하이드라이드를 수득할 수 있다.In the second filtration step, an acidity adjustment step of adjusting the pH of the filtrate to 1 to 2, a heating step of maintaining the filtrate through the acidity adjustment step at 90 to 100 degrees for 3 to 5 hours, and a filtration through the heating step Through a cooling step of cooling the liquid to form a precipitate, a third filtration step of filtering the precipitate passed through the cooling step, a washing step of washing the precipitate through the third filtration step, and a drying step of drying the washed precipitate Dianehydrides can be obtained.
수득된 디안하이드라이드는 흡열 개시 온도와 흡열 피크 온도와의 차이가 20℃ 이내가 되도록 무수 아세트산 용매로 재결정을 반복할 수 있다.The obtained dianhydride can be recrystallized with an acetic anhydride solvent so that the difference between endotherm initiation temperature and endothermic peak temperature may be within 20 degreeC.
상기 목적을 달성하기 위한 본 발명에 의한 폴리이미드 회수 방법은 디아민과 디안하이드라이드를 0 내지 80℃에서 축합시킨 후 탈수폐환하여 폴리이미드를 수득하는 중합단계를 더 포함할 수 있다.Polyimide recovery method according to the present invention for achieving the above object may further comprise a polymerization step of obtaining a polyimide by condensation diamine and dianhydride at 0 to 80 ℃ dehydration ring.
본 발명에 의한 폴리이미드 회수 방법에 의하면, 재활용이 어려운 폴리이미드 폐자재로부터 폴리이미드(polyimide)의 원료 물질인 디아민(diamine)과 디안하이드라이드(dianhydride)를 회수함으로써 폴리이미드(polyimide)를 회수할 수 있는 효과가 있다.According to the polyimide recovery method according to the present invention, polyimide can be recovered by recovering diamine and dianhydride, which are raw materials of polyimide, from waste polyimide materials. It can be effective.
본 발명에 의한 폴리이미드 회수 방법에 의하면, 폐기물의 재자원화가 가능하므로 환경친화성과 경제성이 우수한 효과가 있다.According to the polyimide recovery method according to the present invention, since the waste can be recycled, there is an effect of excellent environmental friendliness and economy.
도 1은 본 발명의 실시예에 의한 폴리이미드 회수 방법을 나타내는 순서도이다.1 is a flowchart showing a polyimide recovery method according to an embodiment of the present invention.
도 2는 도 1의 제2 여과 단계의 여과액에 대한 후속 공정을 나타내는 순서도이다.FIG. 2 is a flow chart showing a subsequent process for the filtrate of the second filtration step of FIG.
도 3은 본 발명의 실시예에 의한 폴리이미드 회수 방법에 의해 회수된 폴리이미드 원료 물질의 NMR 스펙트럼이다.3 is an NMR spectrum of a polyimide raw material recovered by the polyimide recovery method according to the embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다. 이 때, 첨부된 도면에서 동일한 구성 요소는 가능한 동일한 부호로 나타내고 있음에 유의한다. 또한, 본 발명의 요지를 흐리게 할 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략할 것이다. 마찬가지 이유로 첨부 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시되었다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. At this time, it is noted that the same components in the accompanying drawings are represented by the same reference numerals as possible. In addition, detailed descriptions of well-known functions and configurations that may blur the gist of the present invention will be omitted. For the same reason, in the accompanying drawings, some components are exaggerated, omitted or schematically illustrated.
도 1은 본 발명의 실시예에 의한 폴리이미드의 회수방법을 나타내는 순서도이다.1 is a flowchart showing a method for recovering polyimide according to an embodiment of the present invention.
도시된 바와 같이, 본 발명의 실시예에 의한 제1 가수분해 단계(S100)와, 제1 여과 단계(S200)와, 제2 가수분해 단계(S300)와, 제2 여과 단계(S400)를 포함한다.As shown, includes a first hydrolysis step (S100), a first filtration step (S200), a second hydrolysis step (S300), and a second filtration step (S400) according to an embodiment of the present invention. do.
제1 가수분해 단계(S100)에서는 폴리이미드(polyimide) 폐자재를 가수 분해 시킨다. 분해 대상이 되는 폴리이미드는 화학구조가 명확한 폴리이미드의 폐기물인 것이 바람직하다. 예를 들면, 수지 성형 물건의 제조 공정에서 규격이 어긋난 불량품이나, 필름 제조 공정에 있어서 폐수 등이 화학구조가 명확하여 가수분해에 소요되는 알칼리의 양을 산출하기 쉬워, 알칼리의 양을 가능한 적게 투입할 수 있게 되므로 바람직하다.In the first hydrolysis step (S100), the polyimide waste material is hydrolyzed. The polyimide to be decomposed is preferably a waste of polyimide having a definite chemical structure. For example, a defective product that is out of standard in the manufacturing process of a resin molded article, waste water, etc. in the film manufacturing process is easy to calculate the amount of alkali required for hydrolysis due to a clear chemical structure, and the amount of alkali is added as little as possible. It is preferable because it becomes possible.
일반적으로 가수 분해 반응 중에는 반응의 진행에 따라 알칼리의 양이 점차 소모되기 마련인데, 이에 따라 시간이 흐를수록 알칼리의 농도가 점차 낮아지며 반응이 느려지게 되는 결과가 나타난다. 이를 해결하기 위해서는 투입되는 알칼리의 양을 늘리거나 투입되는 물의 양을 감소시키는 것이 고려될 수 있는데, 이는 후속 처리 공정의 부담을 가중시키며 전기 용해가 어려워져 회수 비용을 증가시키는 원인이 된다. 본 발명의 실시예에 의한 폴리이미드 회수 방법은 후술하는 제2 가수분해 단계(S300)를 더 포함시킴으로써 가수분해를 단계적으로 실시함으로써 알칼리 투입량을 줄이고, 물의 투입량을 유지할 수 있다. 보다 구체적으로, 제1 가수분해 단계(S100)에서는 폴리이미드(polyimide) 폐자재 1000 중량부에 대하여 알칼리 480 내지 580 중량부, 물 3000 내지 4000 중량부를 90 내지 99도에서 질소 분위기에서 반응시켜 폴리이미드를 가수분해시키는 것이 바람직하다. 90도 미만의 온도에서 가수분해를 진행할 경우에는 분해에 걸리는 시간이 너무 길어지게 되므로 생산성의 관점에서 바람직하지 못하며, 99 도를 초과하는 온도에서 가수분해를 진행할 경우에는 고내압의 용기가 필요할 뿐 아니라, 경우에 따라서는 첨가된 알칼리가 증발되는 경우가 있으므로 바람직하지 못하다.In general, during the hydrolysis reaction, the amount of alkali is gradually consumed as the reaction proceeds. As a result, the concentration of alkali gradually decreases over time, resulting in a slow reaction. In order to solve this, it may be considered to increase the amount of alkali introduced or decrease the amount of water introduced, which adds to the burden of the subsequent treatment process and becomes difficult to dissolve the electricity, thereby increasing the recovery cost. Polyimide recovery method according to an embodiment of the present invention can further include a second hydrolysis step (S300) to be described later by performing the hydrolysis step by step to reduce the alkali input amount, it is possible to maintain the input amount of water. More specifically, in the first hydrolysis step (S100), polyimide is made by reacting 480 to 580 parts by weight of alkali and 3000 to 4000 parts by weight of water at 90 to 99 degrees with respect to 1000 parts by weight of polyimide waste material. It is preferable to hydrolyze When hydrolysis is performed at a temperature of less than 90 degrees, the time required for decomposition becomes too long, which is not preferable from the viewpoint of productivity, and when hydrolysis is performed at temperatures exceeding 99 degrees, a container having a high internal pressure is required. In some cases, the added alkali may evaporate, which is undesirable.
투입되는 알칼리는 수산화 나트륨(sodium hydroxide) 또는 수산화 칼륨(potassium hydroxide)에서 선택된 적어도 하나인 것이 바람직하며, 이에 한정되지 않는다. 폴리이미드 1000 중량부에 대하여 480 중량부 미만의 양으로 알칼리가 투입되는 경우에는 가수분해 시간이 오래 걸리게 되므로 생산성의 관점에서 바람직하지 못하다. 폴리이미드 1000 중량부에 대하여 580 중량부를 초과하는 양으로 알칼리가 투입되는 경우에는 분해 후에 중화를 위한 산의 투입량이 많아질 뿐만 아니라, 최종 산물 중의 불순물이 많아지게 되므로 바람직하지 못하다. 또한 과잉의 알칼리를 투입하는 것은 비경제적이며, 반응계의 온도 상승 저해 또는 반응기의 부식 등의 문제를 일으킬 수 있다.The alkali to be added is preferably at least one selected from sodium hydroxide or potassium hydroxide, but is not limited thereto. When alkali is added in an amount of less than 480 parts by weight with respect to 1000 parts by weight of polyimide, the hydrolysis takes a long time, which is not preferable in view of productivity. When alkali is added in an amount exceeding 580 parts by weight with respect to 1000 parts by weight of polyimide, it is not preferable because not only the amount of acid for neutralization is increased after decomposition but also impurities in the final product are increased. In addition, the addition of excess alkali is uneconomical, and may cause problems such as inhibition of temperature rise in the reaction system or corrosion of the reactor.
투입되는 물은 특별한 제한은 없지만, 바람직하게는 증류수 또는 이온교환수 등 정제수를 사용하는 것이 불순물이 적으므로 바람직하다. 예를 들어 칼슘이나 마그네슘 등의 이온이 다량으로 존재하는 센물 보다는 이들의 이온 함유량이 적은 연수를 사용하는 것이 바람직하다.The water to be added is not particularly limited, but preferably, purified water such as distilled water or ion-exchanged water is preferable because of less impurities. For example, it is preferable to use soft water having a small content of ions rather than hard water having a large amount of ions such as calcium or magnesium.
질소 분위기에서 반응시키기 때문에 산화를 방지시켜 최종 수득물의 순도는 99% 이상일 수 있으며, 회수율이 90% 이상에 달하게 되며, 황색도가 낮아지는 효과가 있다. 질소는 지속적으로 투입시키며, 투입되는 질소의 양은 반응기 체적의 20 내지 50배/시간으로 하는 것이 바람직하다.Since the reaction in a nitrogen atmosphere prevents oxidation, the final product may have a purity of 99% or more, a recovery rate of 90% or more, and yellowness. Nitrogen is continuously added, and the amount of nitrogen introduced is preferably 20 to 50 times / hour of the reactor volume.
제1 여과 단계(S200)에서는 제1 가수분해 단계(S100)의 산물을 여과한다. 이에 따라 용해되지 않은 불용물이 제거된 여과액이 얻어진다. 불용물은 미분해물과 기타 불순물을 포함하며 계속적으로 제1 가수분해 단계(S100)에 재투입될 수 있다. 제1 가수분해 단계(S100)로부터 연속적인 공정이므로 질소를 지속적으로 투입시키며, 투입되는 질소의 양은 반응기 체적의 20 내지 50배/시간으로 하는 것이 최종 수득물의 순도와 회수율을 높일 수 있으므로 바람직하다.In the first filtration step (S200) is filtered the product of the first hydrolysis step (S100). This results in a filtrate from which insoluble matters which have not been dissolved are removed. Insoluble matters may include undigested substances and other impurities and may be continuously introduced into the first hydrolysis step S100. Nitrogen is continuously added because it is a continuous process from the first hydrolysis step (S100), and the amount of nitrogen added is preferably 20 to 50 times / hour of the reactor volume because the purity and recovery rate of the final product can be improved.
제2 가수분해 단계(S300)에서는 제1 여과 단계(S200)의 여과액을 가열하여 끓임으로써 농축시키며, 질소 분위기에서 3 내지 5 시간 동안 가수분해시킨다. 상당량의 불순물은 여과액이 끓을 때에 제거될 수 있으며, 농축에 따른 물의 증발량은 제1 가수분해 단계(S100)에서 투입된 물의 25~67%일 수 있다. 농축된 여과액을 계속적으로 가열하면서 가수분해를 실시하는데, 이때 가수분해는 환류 냉각기를 설치한 상태에서 실시함으로서 증기로 손실되는 양을 최소화하여 수득율을 높인다. 본 발명의 실시예에 의한 폴리이미드 회수 방법은 이와 같이 2차에 걸쳐 단계적으로 가수분해를 실시함으로써 알칼리의 최초 투입량이 적을 수 있다. 또한, 전 과정을 질소 분위기에서 반응시키기 때문에 불필요한 산화를 방지시켜 회수율은 90% 이상, 수득물의 순도는 99% 이상일 수 있다. 이에 따라 수득물의 황색도가 매우 낮다. 질소는 지속적으로 투입시키며, 투입되는 질소의 양은 반응기 체적의 20 내지 50배/시간으로 하는 것이 바람직하다.In the second hydrolysis step (S300), the filtrate of the first filtration step (S200) is concentrated by heating and boiling, and hydrolyzed for 3 to 5 hours in a nitrogen atmosphere. A considerable amount of impurities may be removed when the filtrate is boiling, the amount of evaporation of water due to concentration may be 25 to 67% of the water introduced in the first hydrolysis step (S100). Hydrolysis is carried out while the concentrated filtrate is continuously heated, where hydrolysis is carried out with a reflux condenser, thereby minimizing the loss to steam to increase yield. In the polyimide recovery method according to an embodiment of the present invention, the initial amount of alkali may be small by performing hydrolysis step by step in this manner. In addition, since the whole process is reacted in a nitrogen atmosphere, unnecessary oxidation may be prevented, so that the recovery may be 90% or more and the purity of the obtained product may be 99% or more. The yellowness of the obtained is thus very low. Nitrogen is continuously added, and the amount of nitrogen introduced is preferably 20 to 50 times / hour of the reactor volume.
제2 여과 단계(S400)는 제2 가수분해 단계(S300)의 산물을 냉각 후 여과하여 디아민(diamine)과 테트라카르복실산(tetracarboxylic acid)를 수득한다. 수득된 테트라카르복실산(tetracarboxylic acid)은 가열하여 탈수 축합시킴으로써 디안하이드라이드(dianhydride)를 얻을 수 있다.In the second filtration step (S400), the product of the second hydrolysis step (S300) is cooled and then filtered to obtain diamine and tetracarboxylic acid. The obtained tetracarboxylic acid can be dehydrated by heating to obtain dianhydride.
디아민(diamine)은 제2 여과 단계(S400)의 침전물을 분리하여, 탈이온수로 세척한 후 90 내지 120℃에서 20 내지 24 시간 건조함으로써 수득된다. 수득되는 디아민은 1,1,3,3-테트라메틸-1,3-비스(4-아미노페닐)디실록산, 1,1,3,3-테트라페녹시-1,3-비스(4-아미노에틸)디실록산, 1,1,3,3-테트라페닐-1,3-비스(2-아미노에틸)디실록산, 1,1,3,3-테트라페닐-1,3-비스(3-아미노프로필)디실록산, 1,1,3,3-테트라메틸-1,3-비스(2-아미노에틸)디실록산, 1,1,3,3-테트라메틸-1,3-비스(3-아미노프로필)디실록산, 1,1,3,3-테트라메틸-1,3-비스(3-아미노부틸)디실록산, 1,3-디메틸-1,3-디메톡시-1,3-비스(4-아미노부틸)디실록산, 1,1,3,3,5,5-헥사메틸-1,5-비스(4-아미노페닐)트리실록산, 1,1,5,5-테트라페닐-3,3-디메틸-1,5-비스(3-아미노프로필)트리실록산, 1,1,5,5-테트라페닐-3,3-디메톡시-1,5-비스(4-아미노부틸)트리실록산, 1,1,5,5-테트라페닐-3,3-디메톡시-1,5-비스(5-아미노펜틸)트리실록산, 1,1,5,5-테트라메틸-3,3-디메톡시-1,5-비스(2-아미노에틸)트리실록산, 1,1,5,5-테트라메틸-3,3-디메톡시-1,5-비스(4-아미노부틸)트리실록산, 1,1,5,5-테트라메틸-3,3-디메톡시-1,5-비스(5-아미노펜틸)트리실록산, 1,1,3,3,5,5-헥사메틸-1,5-비스(3-아미노프로필)트리실록산, 1,1,3,3,5,5-헥사에틸-1,5-비스(3-아미노프로필)트리실록산, 1,1,3,3,5,5-헥사프로필-1,5-비스(3-아미노프로필)트리실록산, o-페닐렌디아민, m-페닐렌디아민, p-페닐렌디아민, 3,3'-디아미노디페닐에테르, 3,4'-디아미노디페닐에테르, 4,4'-디아미노디페닐에테르, 3,3'-디아미노디페닐메탄, 3,4'-디아미노디페닐메탄, 4,4'-디아미노디페닐에테르메탄, 비스(4-아미노-3,5-디메틸페닐)메탄, 비스(4-아미노-3,5-디이소프로필페닐)메탄, 3,3'-디아미노디페닐디플루오로메탄, 3,4'-디아미노디페닐디플루오로메탄, 4,4'-디아미노디페닐디플루오로메탄, 3,3'-디아미노디페닐설폰, 3,4'-디아미노디페닐설폰, 4,4'-디아미노디페닐설폰, 3,3'-디아미노디페닐설피드, 3,4'-디아미노디페닐설피드, 4,4'-디아미노디페닐설피드, 3,3'-디아미노디페닐케톤, 3,4'-디아미노디페닐케톤, 4,4'-디아미노디페닐케톤, 2,2-비스(3-아미노페닐)프로판, 2,2'-(3,4'-디아미노디페닐)프로판, 2,2-비스(4-아미노페닐)프로판, 2,2-비스(3-아미노페닐)헥사플루오로프로판, 2,2-(3,4'-디아미노디페닐)헥사플루오로프로판, 2,2-비스(4-아미노페닐)헥사플루오로프로판, 1,3-비스(3-아미노페녹시)벤젠, 1,4-비스(3-아미노페녹시)벤젠, 1,4-비스(4-아미노페녹시)벤젠, 3,3'-(1,4-페닐렌비스(1-메틸에틸리덴))비스아닐린, 3,4'-(1,4-페닐렌비스(1-메틸에틸리덴))비스아닐린, 4,4'-(1,4-페닐렌비스(1-메틸에틸리덴))비스아닐린, 2,2-비스(4-(3-아미노페녹시)페닐)프로판, 2,2-비스(4-(3-아미노페녹시)페닐)헥사플루오로프로판, 2,2-비스(4-(4-아미노페녹시)페닐)헥사플루오로프로판, 비스(4-(3-아미노페녹시)페닐)설피드, 비스(4-(4-아미노페녹시)페닐)설피드, 비스(4-(3-아미노페녹시)페닐)설폰, 비스(4-(4-아미노페녹시)페닐)설폰, 1,3-비스(아미노메틸)시클로헥산 및 2,2-비스(4-아미노페녹시페닐)프로판, 아미노페닐에테르 중 적어도 하나일 수 있다.Diamine (diamine) is obtained by separating the precipitate of the second filtration step (S400), washed with deionized water and dried at 90 to 120 ℃ 20 to 24 hours. The diamine obtained is 1,1,3,3-tetramethyl-1,3-bis (4-aminophenyl) disiloxane, 1,1,3,3-tetraphenoxy-1,3-bis (4-amino Ethyl) disiloxane, 1,1,3,3-tetraphenyl-1,3-bis (2-aminoethyl) disiloxane, 1,1,3,3-tetraphenyl-1,3-bis (3-amino Propyl) disiloxane, 1,1,3,3-tetramethyl-1,3-bis (2-aminoethyl) disiloxane, 1,1,3,3-tetramethyl-1,3-bis (3-amino Propyl) disiloxane, 1,1,3,3-tetramethyl-1,3-bis (3-aminobutyl) disiloxane, 1,3-dimethyl-1,3-dimethoxy-1,3-bis (4 -Aminobutyl) disiloxane, 1,1,3,3,5,5-hexamethyl-1,5-bis (4-aminophenyl) trisiloxane, 1,1,5,5-tetraphenyl-3,3 -Dimethyl-1,5-bis (3-aminopropyl) trisiloxane, 1,1,5,5-tetraphenyl-3,3-dimethoxy-1,5-bis (4-aminobutyl) trisiloxane, 1 , 1,5,5-tetraphenyl-3,3-dimethoxy-1,5-bis (5-aminopentyl) trisiloxane, 1,1,5,5-tetramethyl-3,3-dimethoxy-1 , 5-bis (2-aminoethyl) trisiloxane, 1,1 , 5,5-tetramethyl-3,3-dimethoxy-1,5-bis (4-aminobutyl) trisiloxane, 1,1,5,5-tetramethyl-3,3-dimethoxy-1,5 Bis (5-aminopentyl) trisiloxane, 1,1,3,3,5,5-hexamethyl-1,5-bis (3-aminopropyl) trisiloxane, 1,1,3,3,5, 5-hexaethyl-1,5-bis (3-aminopropyl) trisiloxane, 1,1,3,3,5,5-hexapropyl-1,5-bis (3-aminopropyl) trisiloxane, o- Phenylenediamine, m-phenylenediamine, p-phenylenediamine, 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3 , 3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylethermethane, bis (4-amino-3,5-dimethylphenyl) methane, bis ( 4-amino-3,5-diisopropylphenyl) methane, 3,3'-diaminodiphenyldifluoromethane, 3,4'-diaminodiphenyldifluoromethane, 4,4'-diamino Diphenyldifluoromethane, 3,3'-diaminodiphenylsulfone, 3,4'-diaminodiphenylsulfone , 4,4'-diaminodiphenylsulfone, 3,3'-diaminodiphenylsulfide, 3,4'-diaminodiphenylsulfide, 4,4'-diaminodiphenylsulfide, 3, 3'-diaminodiphenyl ketone, 3,4'-diaminodiphenyl ketone, 4,4'-diaminodiphenyl ketone, 2,2-bis (3-aminophenyl) propane, 2,2 '-( 3,4'-diaminodiphenyl) propane, 2,2-bis (4-aminophenyl) propane, 2,2-bis (3-aminophenyl) hexafluoropropane, 2,2- (3,4 ' -Diaminodiphenyl) hexafluoropropane, 2,2-bis (4-aminophenyl) hexafluoropropane, 1,3-bis (3-aminophenoxy) benzene, 1,4-bis (3-amino Phenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 3,3 '-(1,4-phenylenebis (1-methylethylidene)) bisaniline, 3,4'-( 1,4-phenylenebis (1-methylethylidene)) bisaniline, 4,4 '-(1,4-phenylenebis (1-methylethylidene)) bisaniline, 2,2-bis ( 4- (3-aminophenoxy) phenyl) propane, 2,2-bis (4- (3-aminophenoxy) phenyl) hexafluoropropane, 2,2-bis ( 4- (4-aminophenoxy) phenyl) hexafluoropropane, bis (4- (3-aminophenoxy) phenyl) sulfide, bis (4- (4-aminophenoxy) phenyl) sulfide, bis ( 4- (3-aminophenoxy) phenyl) sulfone, bis (4- (4-aminophenoxy) phenyl) sulfone, 1,3-bis (aminomethyl) cyclohexane and 2,2-bis (4-aminophenoxy At least one of ciphenyl) propane and aminophenyl ether.
디안하이드라이드(dianhydride)는 제2 여과 단계(S400)의 여과액을 분리하여 pH 1 내지 2로 산도 조정을 하고, 3 내지 5시간 가열하여 90 내지 100도의 온도를 유지한 후, 냉각 및 여과하여 침전물을 세척 및 건조하고 탈수함으로써 수득될 수 있다. 보다 구체적으로, 수득되는 디안하이드라이드는 피로메리트산이무수물, 비페닐테트라카르복실산이무수물, 2,2-비스(3,4-디카르복시페닐)프로판이무수물, 2,2-비스(2,3-디카르복시페닐)프로판이무수물, 1,1-비스(2,3-디카르복시페닐)에탄이무수물, 1,1-비스(3,4-디카르복시페닐)에탄이무수물, 비스(2,3-디카르복시페닐)메탄이무수물, 비스(3,4-디카르복시페닐)메탄이무수물, 비스(3,4-디카르복시페닐)설폰이무수물, 3,4,9,10-페릴렌테트라카르복실산이무수물, 비스(3,4-디카르복시페닐)에테르이무수물, 벤젠-1,2,3,4-테트라카르복실산이무수물, 3,4,3',4'-벤조페논테트라카르복실산이무수물, 벤조페논테트라카르복실산이무수물, 1,2,5,6-나프탈렌테트라카르복실산이무수물, 1,4,5,8-나프탈렌테트라카르복실산이무수물, 2,3,6,7-나프탈렌테트라카르복실산이무수물, 1,2,4,5-나프탈렌테트라카르복실산이무수물, 2,6-디클로로나프탈렌-1,4,5,8-테트라카르복실산이무수물, 2,7-디클로로나프탈렌-1,4,5,8-테트라카르복실산이무수물, 2,3,6,7-테트라 클로로나프탈렌-1,4,5,8-테트라카르복실산이무수물, 페난스렌-1,8,9,10-테트라카르복실산이무수물, 피라진-2,3,5,6-테트라카르복실산이무수물, 티오펜-2,3,5,6-테트라카르복실산이무수물, 2,3,3',4'-비페닐테트라카르복실산이무수물, 3,4,3',4'-비페닐테트라카르복실산이무수물, 2,3,2',3'-비페닐테트라카르복실산이무수물, 비스(3,4-디카르복시페닐)디메틸실란이무수물, 비스(3,4-디카르복시페닐)메틸페닐실란이무수물, 비스(3,4-디카르복시페닐)디페닐실란이무수물, 1,4-비스(3,4-디카르복시페닐디메틸실릴)벤젠이무수물, 1,3-비스(3,4-디카르복시페닐)-1,1,3,3-테트라메틸디시클로헥산이무수물, p-페닐렌비스(트리메리테이트무수물), 에틸렌테트라카르복실산이무수물, 디페닐에테르테트라카르복실산이무수물, 1,2,3,4-부탄테트라카르복실산이무수물, 테트라히드로나프탈렌-1,4,5,8-테트라카르복실산이무수물, 4,8-디메틸-1,2,3,5,6,7-헥사히드로나프탈렌-1,2,5,6-테트라카르복실산이무수물, 시클로펜탄-1,2,3,4-테트라카르복실산이무수물, 피롤리딘-2,3,4,5-테트라카르복실산이무수물, 1,2,3,4-시클로부탄테트라카르복실산이무수물, 비스(엑소-비시클로[2,2,1]헵탄-2,3-디카르복실산이무수물, 비시클로[2,2,2]-옥토-7-엔-2,3,5,6-테트라카르복실산이무수물, 2,2-비스(3,4-디카르복시페닐)프로판이무수물, 2,2-비스[4-(3,4-디카르복시페닐)페닐]프로판이무수물, 2,2-비스(3,4-디카르복시페닐)헥사플루오로프로판이무수물, 2,2-비스[4-(3,4-디카르복시페닐)페닐]헥사플루오로프로판이무수물, 4,4'-비스(3,4-디카르복시페녹시)디페닐설피드이무수물, 1,4-비스(2-히드록시헥사플루오로이소프로필)벤젠비스(트리메리트 산무수물), 1,3-비스(2-히드록시헥사플루오로이소프로필)벤젠비스(트리메리트산무수물), 5-(2,5-디옥소테트라히드로푸릴)-3-메틸-3-시클로헥센-1,2-디카르복실산이무수물, 및 테트라히드로푸란-2,3,4,5-테트라카르복실산이무수물 중 적어도 하나일 수 있다.The dianhydride (dianhydride) is separated from the filtrate of the second filtration step (S400) to adjust the pH to 1 to 2, and heated for 3 to 5 hours to maintain a temperature of 90 to 100 degrees, then cooled and filtered It can be obtained by washing, drying and dehydrating the precipitate. More specifically, the obtained dianhydride is pyromellitic dianhydride, biphenyltetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3 -Dicarboxyphenyl) propane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,1-bis (3,4-dicarboxyphenyl) ethane dianhydride, bis (2,3 Dicarboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, 3,4,9,10-perylenetetracarboxylic Acid dianhydrides, bis (3,4-dicarboxyphenyl) ether dianhydrides, benzene-1,2,3,4-tetracarboxylic dianhydrides, 3,4,3 ', 4'-benzophenonetetracarboxylic dianhydrides, Benzophenone tetracarboxylic dianhydride, 1,2,5,6-naphthalene tetracarboxylic dianhydride, 1,4,5,8-naphthalene tetracarboxylic dianhydride, 2,3,6,7-naphthalene tetracarboxylic Acid dianhydrides, 1,2,4,5-nap Talenetetracarboxylic dianhydride, 2,6-dichloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 2,7-dichloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 2 , 3,6,7-tetrachloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, phenanthsene-1,8,9,10-tetracarboxylic dianhydride, pyrazine-2,3,5, 6-tetracarboxylic dianhydride, thiophene-2,3,5,6-tetracarboxylic dianhydride, 2,3,3 ', 4'-biphenyltetracarboxylic dianhydride, 3,4,3', 4'-biphenyltetracarboxylic dianhydride, 2,3,2 ', 3'-biphenyltetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) dimethylsilane dianhydride, bis (3,4- Dicarboxyphenyl) methylphenylsilane dianhydride, bis (3,4-dicarboxyphenyl) diphenylsilane dianhydride, 1,4-bis (3,4-dicarboxyphenyldimethylsilyl) benzene dianhydride, 1,3-bis (3,4-dicarboxyphenyl) -1,1,3,3-tetramethyldicyclohexane dianhydride, p-phenylenebis (t Meritate anhydride), ethylene tetracarboxylic dianhydride, diphenyl ether tetracarboxylic dianhydride, 1,2,3,4-butanetetracarboxylic dianhydride, tetrahydronaphthalene-1,4,5,8-tetracar Acid dianhydride, 4,8-dimethyl-1,2,3,5,6,7-hexahydronaphthalene-1,2,5,6-tetracarboxylic dianhydride, cyclopentane-1,2,3,4 Tetracarboxylic dianhydride, pyrrolidine-2,3,4,5-tetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, bis (exo-bicyclo [2, 2,1] heptane-2,3-dicarboxylic dianhydride, bicyclo [2,2,2] -octo-7-ene-2,3,5,6-tetracarboxylic dianhydride, 2,2- Bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis [4- (3,4-dicarboxyphenyl) phenyl] propane dianhydride, 2,2-bis (3,4-dicarboxyphenyl Hexafluoropropane dianhydride, 2,2-bis [4- (3,4-dicarboxyphenyl) phenyl] hexafluoropropane dianhydride, 4,4'- S (3,4-dicarboxyphenoxy) diphenylsulfide dianhydride, 1,4-bis (2-hydroxyhexafluoroisopropyl) benzenebis (trimeric acid anhydride), 1,3-bis (2- Hydroxyhexafluoroisopropyl) benzenebis (trimeric anhydride), 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic dianhydride, And tetrahydrofuran-2,3,4,5-tetracarboxylic dianhydride.
한편, 본 발명의 실시예에 의한 폴리이미드 회수 방법은 중합 단계(S500)를 더 포함할 수 있다. 중합 단계(S500)에서는 제2 여과 단계(S400)에서 수득된 디아민과 디안하이드라이드를 유기 용매에 투입하고 0 내지 80℃에서 1 내지 10 시간 연속하여 교반시킴으로써 탈수 폐환에 의한 폴리이미드를 수득할 수 있다. 이때, 사용되는 유기 용매로는 N-메틸-2-피롤리디논, N-아세틸-2-피롤리디논, N,N-다이메틸폼아마이드, N,N-다이에틸폼아마이드, N,N-디메틸아세트아미드, 디메틸술폭시드, 헥사메틸포스포아미드, 디에틸렌글리콜디메틸에테르에서 선택된 적어도 하나를 일 수 있으며, 폐환 촉매 및 탈수제를 더 함유할 수 있다.On the other hand, the polyimide recovery method according to an embodiment of the present invention may further include a polymerization step (S500). In the polymerization step (S500), a polyimide by dehydration ring closure can be obtained by adding diamine and dianhydride obtained in the second filtration step (S400) to an organic solvent and continuously stirring at 0 to 80 ° C for 1 to 10 hours. have. At this time, the organic solvent used is N-methyl-2-pyrrolidinone, N-acetyl-2-pyrrolidinone, N, N-dimethylformamide, N, N-diethylformamide, N, N- It may be at least one selected from dimethylacetamide, dimethyl sulfoxide, hexamethylphosphoamide, diethylene glycol dimethyl ether, and may further contain a ring closure catalyst and a dehydrating agent.
도 2는 도 1의 제2 여과 단계(S400)의 여과액에 대한 후속 공정을 나타내는 순서도이다.FIG. 2 is a flowchart illustrating a subsequent process for the filtrate of the second filtration step S400 of FIG. 1.
도시된 바와 같이, 디안하이드라이드(dianhydride)는 제2 여과 단계(S400)의 여과액을 분리하여, 산도 조정 단계(S410), 가열 단계(S420), 냉각 단계(S430), 제3 여과 단계(S440), 세척 단계(S450) 및 건조 단계(S460)를 포함하는 후속 공정을 더 거쳐서 수득될 수 있다.As shown, dianhydride is separated from the filtrate of the second filtration step (S400), acidity adjustment step (S410), heating step (S420), cooling step (S430), the third filtration step ( S440), a washing step (S450) and a drying step (S460) can be obtained through a subsequent process further.
산도 조정 단계(S410)에서는 제2 여과 단계(S400)에서 여과된 여과액의 pH를 1 내지 2로 조정한다. 산도 조정을 위하여 투입되는 산은 황산(sulfuric acid) 또는 염산(hydrochloric acid)에서 선택된 적어도 하나인 것이 바람직하며, 이에 한정되지 않는다. 이때, 산도 조정을 위하여 염산(hydrochloric acid)을 사용하는 경우에는, 제1 가수분해 단계(S100)에서 수산화 나트륨(sodium hydroxide) 또는 수산화 칼륨(potassium hydroxide)를 알칼리로서 투입하기 때문에 최종 산물에 염화 나트륨(sodium chloride)과 염화 칼륨(potassium chloride) 등의 불순물이 포함될 수 있다. 이 경우, 후술하는 건조 단계(S460)에서 디안하이드라이드를 물, 에탄올, DMAC(디메틸아세트아미드), 및 NMP(n-메틸피롤리돈)에서 선택된 적어도 하나의 용매에 용해하여 추출함으로써 불순물을 제거하는 것이 바람직하다.In the acidity adjusting step S410, the pH of the filtrate filtered in the second filtration step S400 is adjusted to 1 to 2. The acid introduced for acidity adjustment is preferably at least one selected from sulfuric acid or hydrochloric acid, but is not limited thereto. In this case, when using hydrochloric acid for acidity adjustment, sodium chloride or potassium hydroxide is added as alkali in the first hydrolysis step (S100), so that sodium chloride is added to the final product. Impurities such as sodium chloride and potassium chloride may be included. In this case, in the drying step (S460) described later, the dianhydride is dissolved and extracted in at least one solvent selected from water, ethanol, DMAC (dimethylacetamide), and NMP (n-methylpyrrolidone) to remove impurities. It is desirable to.
가열 단계(S420)에서는 산도 조정 단계(S410)를 거친 여과액을 3 내지 5 시간 동안 90 내지 100℃로 유지시킨다. 가열 단계(S420)를 거치며 여과액은 더욱 농축된다. 90℃ 미만의 온도로 가열할 경우에는 불순물의 증발이 적어 최종 산물의 순도가 떨어질 수 있을 뿐만 아니라, 이후 냉각 및 여과를 거칠 때에 처리량이 많게 되므로 효율성의 관점에서 바람직하지 못하다. 100℃를 초과하는 온도로 가열할 경우에는 최종 산물의 회수율이 떨어질 수 있으므로 바람직하지 못하다.In the heating step (S420) the filtrate passed through the acidity adjustment step (S410) is maintained at 90 to 100 ℃ for 3 to 5 hours. The filtrate is further concentrated through the heating step (S420). When heated to a temperature of less than 90 ℃ less evaporation of impurities may reduce the purity of the final product, it is not preferable in terms of efficiency because the throughput is large when the cooling and filtration afterwards. Heating to a temperature above 100 ° C. is undesirable since the recovery of the final product may drop.
냉각 단계(S430)에서는 가열 단계(S420)를 거친 여과액을 냉각시킨다. 냉각이 진행되면서 침전물이 형성된다.In the cooling step (S430) to cool the filtrate passed through the heating step (S420). As cooling proceeds, a precipitate forms.
제3 여과 단계(S440)에서는 냉각 단계(S430)를 거친 침전물을 여과시킨다. 여과된 침전물은 후술하는 세척 단계(S450)와 건조 단계(S460)를 더 거칠 수 있으며, 이에 따라 순도가 더욱 높아지게 된다.In the third filtration step (S440), the precipitate passed through the cooling step (S430) is filtered. The filtered precipitate may be further subjected to the washing step (S450) and the drying step (S460) to be described later, thereby further increasing the purity.
세척 단계(S450)에서는 제3 여과 단계(S440)를 거친 침전물을 세척한다. 세척은 이온교환수를 사용하는 것이 순도의 관점에서 바람직하다.In the washing step (S450) to wash the precipitate passed through the third filtration step (S440). It is preferable to use ion-exchanged water for the washing in view of purity.
건조 단계(S460)에서는 세척 단계(S450)에서 세척된 침전물을 건조한다. 건조된 테트라카르복실산을 가열하여 탈수 축합시킴으로써 디안하이드라이드를 얻을 수 있다. 수득된 디안하이드라이드는 무수 아세트산 용매로 재결정을 함으로써 순도를 높일 수 있다. 재결정은 디안하이드라이드의 흡열 개시 온도와 흡열 피크 온도와의 차이가 20℃ 이내가 되도록 수회 반복 실시함으로써 디안하이드라이드의 순도를 높이는 것이 바람직하다. 이에 따라 디안하이드라이드의 회수율은 90%이상, 순도는 99% 이상이 되어 황색도가 매우 낮은 효과가 있다.In the drying step (S460) to dry the precipitate washed in the washing step (S450). A dianhydride can be obtained by heating and drying dehydrated tetracarboxylic acid. The obtained dianhydride can be improved in purity by recrystallization with an acetic anhydride solvent. The recrystallization is preferably repeated several times so that the difference between the endothermic initiation temperature of the dianhydride and the endothermic peak temperature is within 20 ° C. to increase the purity of the dianhydride. Accordingly, the recovery rate of dianhydride is 90% or more, the purity is 99% or more, and the yellowness is very low.
이하, 본 발명을 실시예에 의하여 더욱 상세히 설명하나, 본 발명의 범위가 실시예에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the scope of the present invention is not limited by Examples.
[실시예 1]Example 1
피로메리트산이무수물(pyromellitic acid dianhydride)과 4,4'-디아미노디페닐에테르(4,4'-diaminodiphenyl ether)를 합성한 폴리이미드(polyimide) 폐자재 1000 g을 반응기에 투입하고, 수산화 나트륨(sodium hydroxide) 480 g, 물 3000 g을 가한다. 시간당 질소 통과량을 반응기 체적의 20배로 하며, 온도는 95도까지 높인 상태에서 가수 분해(hydrolysis)를 한다. 여과하여 불용물을 제거하고 여과액을 남긴다. 시간당 질소 통과량을 반응기 체적의 20배로 하면서, 여과액의 온도를 100도까지 높여서 끓임으로써 1000 g의 물을 증발시켜 농축액을 얻는다. 시간당 질소 통과량을 반응기 체적의 20배로 하면서, 농축액의 끓는 상태를 유지하면서 환류 가수 분해(reflux hydrolysis)를 4시간 진행한 후, 냉각으로 침전시키고, 여과를 통해 침전물과 여과액을 분리시킨다.1000 g of polyimide waste material synthesized from pyromellitic acid dianhydride and 4,4'-diaminodiphenyl ether was introduced into a reactor, and sodium hydroxide ( sodium hydroxide) 480 g and water 3000 g. Nitrogen passage per hour is 20 times the volume of the reactor and hydrolysis is carried out with the temperature raised to 95 degrees. Filtration removes insolubles and leaves the filtrate. The nitrogen is evaporated to boil by raising the temperature of the filtrate to 100 degrees while boiling the nitrogen per hour by 20 times the volume of the reactor to obtain a concentrate. Reflow hydrolysis was carried out for 4 hours while maintaining the boiling state of the concentrate while maintaining the boiling state of the nitrogen at 20 times the volume of the reactor per hour, and then precipitated by cooling, and the precipitate and the filtrate were separated by filtration.
침전물은 다시 세척 및 건조를 진행하여 백색의 4,4'-디아미노디페닐에테르(4,4'-diaminodiphenyl ether) 480 g을 얻는다. 회수율은 91.4%이다. 액체 크로마토그래피로 순도를 측정한 결과 순도는 99% 이상이다. (A)The precipitate is washed and dried again to obtain 480 g of white 4,4'-diaminodiphenyl ether. Recovery is 91.4%. Purity was measured by liquid chromatography, and the purity was over 99%. (A)
여과액은 황산(sulfuric acid)을 첨가하며 pH 2로 만들고, 100도까지 온도를 올려 3시간 동안 유지시킨 후, 냉각 및 여과하여 침전물을 분리한다. 침전물을 세척 및 건조하여 피로메리트산(pyromellitic acid) 600 g을 얻는다. 회수율은 91.0%이다. 액체 크로마토그래피로 순도를 측정한 결과 순도는 99% 이상이다. 피로메리트산(pyromellitic acid)을 가열하여 탈수 축합시킴으로써 피로메리트산이무수물(pyromellitic acid dianhydride)을 얻는다. 회수율은 90.9%이다. (B)The filtrate is added to sulfuric acid (sulfuric acid) to pH 2, the temperature is raised to 100 degrees and maintained for 3 hours, and then cooled and filtered to separate the precipitate. The precipitate is washed and dried to give 600 g of pyromellitic acid. Recovery is 91.0%. Purity was measured by liquid chromatography, and the purity was over 99%. Pyromellitic acid dianhydride is obtained by heating and dehydrating condensation of pyromellitic acid. Recovery is 90.9%. (B)
[실시예 2]Example 2
비페닐테트라카르복실산이무수물(biphenyltetracarboxylic acid dianhydride)과 4,4'-디아미노디페닐에테르(4,4'-diaminodiphenyl ether)를 합성한 폴리이미드(polyimide) 폐자재 1000 g을 반응기에 투입하고, 수산화 나트륨(sodium hydroxide) 520 g, 물 4000 g을 가한다. 시간당 질소 통과량을 반응기 체적의 50배로 하며, 온도는 95도까지 높인 상태에서 가수 분해(hydrolysis)를 한다. 여과하여 불용물을 제거하고 여과액을 남긴다. 시간당 질소 통과량을 반응기 체적의 20배로 하면서, 여과액의 온도를 100도까지 높여서 끓임으로써 2000 g의 물을 증발시켜 농축액을 얻는다. 시간당 질소 통과량을 반응기 체적의 50배로 하면서, 농축액의 끓는 상태를 유지하면서 환류 가수 분해(reflux hydrolysis)를 3시간 진행한 후, 냉각으로 침전시키고, 여과를 통해 침전물과 여과액을 분리시킨다.1000 g of polyimide waste material obtained by synthesizing biphenyltetracarboxylic acid dianhydride and 4,4'-diaminodiphenyl ether was introduced into the reactor. 520 g of sodium hydroxide and 4000 g of water are added. Nitrogen passage per hour is 50 times the volume of the reactor and hydrolysis is carried out at a temperature of up to 95 degrees. Filtration removes insolubles and leaves the filtrate. The nitrogen is evaporated to boil by raising the temperature of the filtrate to 100 degrees while boiling the nitrogen per hour by 20 times the volume of the reactor to obtain a concentrate. The nitrogen flow per hour is 50 times the volume of the reactor, reflux hydrolysis is carried out for 3 hours while maintaining the boiling state of the concentrate, and then precipitated by cooling, and the precipitate and the filtrate are separated by filtration.
침전물은 다시 세척 및 건조를 진행하여 백색의 4,4'-디아미노디페닐에테르(4,4'-diaminodiphenyl ether) 405 g을 얻는다. 회수율은 92.7%이다. (A)The precipitate is washed and dried again to obtain 405 g of white 4,4'-diaminodiphenyl ether. Recovery is 92.7%. (A)
여과액은 황산(sulfuric acid)을 첨가하며 pH 1로 만들고, 100도까지 온도를 올려 3시간 동안 유지시킨 후, 냉각 및 여과하여 침전물을 분리한다. 침전물을 세척 및 건조하여 비페닐테트라카르복실산(biphenyltetracarboxylic acid) 655 g을 얻는다. 회수율은 91.0%이다. 비페닐테트라카르복실산(biphenyltetracarboxylic acid)을 가열하여 탈수 축합시킴으로써 비페닐테트라카르복실산이무수물(biphenyltetracarboxylic acid dianhydride)을 얻는다. 회수율은 90.9%이다. (B)The filtrate is added to sulfuric acid (sulfuric acid) to pH 1, the temperature is raised to 100 degrees and maintained for 3 hours, then cooled and filtered to separate the precipitate. The precipitate is washed and dried to give 655 g of biphenyltetracarboxylic acid. Recovery is 91.0%. Biphenyltetracarboxylic acid dianhydride is obtained by heating and dehydrating condensing biphenyltetracarboxylic acid. Recovery is 90.9%. (B)
[실시예 3]Example 3
피로메리트산이무수물(pyromellitic acid dianhydride)과 4,4'-디아미노디페닐에테르(4,4'-diaminodiphenyl ether)를 합성한 폴리이미드(polyimide) 폐자재 1000 g을 반응기에 투입하고, 수산화 나트륨(sodium hydroxide) 580 g, 물 3500 g을 가한다. 시간당 질소 통과량을 반응기 체적의 40배로 하며, 온도는 99도까지 높인 상태에서 가수 분해(hydrolysis)를 한다. 여과하여 불용물을 제거하고 여과액을 남긴다. 시간당 질소 통과량을 반응기 체적의 40배로 하면서, 여과액의 온도를 100도까지 높여서 끓임으로써 1500 g의 물을 증발시켜 농축액을 얻는다. 시간당 질소 통과량을 반응기 체적의 40배로 하면서, 농축액의 끓는 상태를 유지하면서 환류 가수 분해(reflux hydrolysis)를 3시간 진행한 후, 냉각으로 침전시키고, 여과를 통해 침전물과 여과액을 분리시킨다.1000 g of polyimide waste material synthesized from pyromellitic acid dianhydride and 4,4'-diaminodiphenyl ether was introduced into a reactor, and sodium hydroxide ( sodium hydroxide) 580 g and water 3500 g. The amount of nitrogen passage per hour is 40 times the volume of the reactor, and hydrolysis is performed at a temperature of up to 99 degrees. Filtration removes insolubles and leaves the filtrate. With nitrogen passing hourly at 40 times the reactor volume, the temperature of the filtrate is raised to 100 degrees and boiled to evaporate 1500 g of water to obtain a concentrate. The nitrogen flow per hour is 40 times the volume of the reactor, reflux hydrolysis is performed for 3 hours while maintaining the boiling state of the concentrate, and then precipitated by cooling, and the precipitate and the filtrate are separated by filtration.
침전물은 다시 세척 및 건조를 진행하여 백색의 4,4'-디아미노디페닐에테르(4,4'-diaminodiphenyl ether) 475 g을 얻는다. 회수율은 90.5%이다. (A)The precipitate is washed and dried again to give 475 g of white 4,4'-diaminodiphenyl ether. Recovery is 90.5%. (A)
여과액은 황산(sulfuric acid)을 첨가하며 pH 2로 만들고, 90도까지 온도를 올려 5시간 동안 유지시킨 후, 냉각 및 여과하여 침전물을 분리한다. 침전물을 세척 및 건조하여 피로메리트산(pyromellitic acid) 600 g을 얻는다. 회수율은 90.8%이다. 피로메리트산(pyromellitic acid)을 가열하여 탈수 축합시킴으로써 피로메리트산이무수물(pyromellitic acid dianhydride)을 얻는다. 회수율은 90.7%이다. (B)The filtrate is added to sulfuric acid (sulfuric acid) to pH 2, the temperature is raised to 90 degrees and maintained for 5 hours, then cooled and filtered to separate the precipitate. The precipitate is washed and dried to give 600 g of pyromellitic acid. Recovery is 90.8%. Pyromellitic acid dianhydride is obtained by heating and dehydrating condensation of pyromellitic acid. Recovery is 90.7%. (B)
[실시예 4]Example 4
디페닐에테르테트라카르복실산이무수물(diphenyl ether tetracarboxylic acid dianhydride)과 4,4'-디아미노디페닐에테르(4,4'-diaminodiphenyl ether)를 합성한 폴리이미드(polyimide) 폐자재 1000 g을 반응기에 투입하고, 수산화 나트륨(sodium hydroxide) 580 g, 물 3000 g을 가한다. 시간당 질소 통과량을 반응기 체적의 40배로 하며, 온도는 99도까지 높인 상태에서 가수 분해(hydrolysis)를 한다. 여과하여 불용물을 제거하고 여과액을 남긴다. 시간당 질소 통과량을 반응기 체적의 40배로 하면서, 여과액의 온도를 100도까지 높여서 끓임으로써 1000 g의 물을 증발시켜 농축액을 얻는다. 시간당 질소 통과량을 반응기 체적의 40배로 하면서, 농축액의 끓는 상태를 유지하면서 환류 가수 분해(reflux hydrolysis)를 3시간 진행한 후, 냉각으로 침전시키고, 여과를 통해 침전물과 여과액을 분리시킨다.1000 g of polyimide waste material synthesized with diphenyl ether tetracarboxylic acid dianhydride and 4,4'-diaminodiphenyl ether was placed in a reactor. 580 g of sodium hydroxide and 3000 g of water are added. The amount of nitrogen passage per hour is 40 times the volume of the reactor, and hydrolysis is performed at a temperature of up to 99 degrees. Filtration removes insolubles and leaves the filtrate. The nitrogen is evaporated to boil by raising the temperature of the filtrate to 100 degrees while boiling the nitrogen per hour by 40 times the volume of the reactor to obtain a concentrate. The nitrogen flow per hour is 40 times the volume of the reactor, reflux hydrolysis is performed for 3 hours while maintaining the boiling state of the concentrate, and then precipitated by cooling, and the precipitate and the filtrate are separated by filtration.
침전물은 세척 및 건조를 진행하여 백색의 4,4'-디아미노디페닐에테르(4,4'-diaminodiphenyl ether) 380 g을 얻는다. 회수율은 90.3%이다. (A)The precipitate is washed and dried to yield 380 g of a white 4,4'-diaminodiphenyl ether. Recovery is 90.3%. (A)
여과액은 황산(sulfuric acid)을 첨가하며 pH 2로 만들고, 100도까지 온도를 올려 3시간 동안 유지시킨 후, 냉각 및 여과하여 침전물을 분리한다. 침전물을 세척 및 건조하여 디페닐에테르테트라카르복실산(diphenyl ether tetracarboxylic acid) 676 g을 얻는다. 회수율은 93.0%이다. 디페닐에테르테트라카르복실산(diphenyl ether tetracarboxylic acid)을 가열하여 탈수 축합시킴으로써 디페닐에테르테트라카르복실산이무수물(diphenyl ether tetracarboxylic acid dianhydride)을 얻는다. 회수율은 92.9%이다. (B)The filtrate is added to sulfuric acid (sulfuric acid) to pH 2, the temperature is raised to 100 degrees and maintained for 3 hours, and then cooled and filtered to separate the precipitate. The precipitate is washed and dried to give 676 g of diphenyl ether tetracarboxylic acid. Recovery is 93.0%. Diphenyl ether tetracarboxylic acid (diphenyl ether tetracarboxylic acid) is obtained by heating and dehydrating condensation to obtain diphenyl ether tetracarboxylic acid dianhydride. Recovery is 92.9%. (B)
[실시예 5]Example 5
벤조페논테트라카르복실산이무수물(benzophenone tetracarboxylic acid dianhydride)와 4,4'-디아미노디페닐에테르(4,4'-diaminodiphenyl ether)를 합성한 폴리이미드(polyimide) 폐자재 1000 g을 반응기에 투입하고, 수산화 나트륨(sodium hydroxide) 240 g, 수산화 칼륨(potassium hydroxide) 336g, 물 4000 g을 가한다. 시간당 질소 통과량을 반응기 체적의 45배로 하며, 온도는 99도까지 높인 상태에서 가수 분해(hydrolysis)를 한다. 여과하여 불용물을 제거하고 여과액을 남긴다. 시간당 질소 통과량을 반응기 체적의 45배로 하면서, 여과액의 온도를 100도까지 높여서 끓임으로써 2000 g의 물을 증발시켜 농축액을 얻는다. 시간당 질소 통과량을 반응기 체적의 45배로 하면서, 농축액의 끓는 상태를 유지하면서 환류 가수 분해(reflux hydrolysis)를 4시간 진행한 후, 냉각으로 침전시키고, 여과를 통해 침전물과 여과액을 분리시킨다.1000 g of polyimide waste material synthesized with benzophenone tetracarboxylic acid dianhydride and 4,4'-diaminodiphenyl ether was introduced into the reactor. 240 g of sodium hydroxide, 336 g of potassium hydroxide and 4000 g of water are added. The passage of nitrogen per hour is 45 times the volume of the reactor, and hydrolysis is carried out at a temperature of up to 99 degrees. Filtration removes insolubles and leaves the filtrate. The nitrogen is evaporated to boil by raising the temperature of the filtrate to 100 degrees while boiling the nitrogen per hour to 45 times the volume of the reactor to obtain a concentrate. Reflowing hydrolysis (reflux hydrolysis) for 4 hours while maintaining the boiling state of the concentrate while maintaining the boiling state of nitrogen at 45 times the reactor volume, precipitates by cooling, and separates the precipitate and the filtrate through filtration.
침전물은 다시 세척 및 건조를 진행하여 백색의 4,4'-디아미노디페닐에테르(4,4'-diaminodiphenyl ether) 476 g을 얻는다. 회수율은 91.0%이다. (A)The precipitate is washed and dried again to give 476 g of white 4,4'-diaminodiphenyl ether. Recovery is 91.0%. (A)
여과액은 황산(sulfuric acid)을 첨가하며 pH 1로 만들고, 95도까지 온도를 올려 3시간 동안 유지시킨 후, 냉각 및 여과하여 침전물을 분리한다. 침전물을 세척 및 건조하여 벤조페논테트라카르복실산(benzophenone tetracarboxylic acid) 686 g을 얻는다. 회수율은 93.0%이다. 벤조페논테트라카르복실산(benzophenone tetracarboxylic acid)을 가열하여 탈수 축합시킴으로써 벤조페논테트라카르복실산이무수물(benzophenone tetracarboxylic acid dianhydride)을 얻는다. 회수율은 92.9%이다. (B)The filtrate is added to sulfuric acid (sulfuric acid) to pH 1, the temperature is raised to 95 ° C and maintained for 3 hours, then cooled and filtered to separate the precipitate. The precipitate is washed and dried to give 686 g of benzophenone tetracarboxylic acid. Recovery is 93.0%. Benzophenone tetracarboxylic acid dianhydride is obtained by heating and dehydrating condensing benzophenone tetracarboxylic acid. Recovery is 92.9%. (B)
실시예 1 내지 5의 결과를 하기 표 1에 나타낸다.The results of Examples 1 to 5 are shown in Table 1 below.
표 1
구분 원료 분해조건 회수율 순도
A B 온도 질소투입량/hr 시간(환류가수분해) A B
실시예1 4,4'-diaminodiphenyl ether pyromellitic acid dianhydride 95℃ 반응기체적20배 4 hr 91.4% 90.9% >99%
실시예2 4,4'-diaminodiphenyl ether biphenyltetracarboxylic acid dianhydride 95℃ 반응기체적20배 3 hr 92.7% 90.9% -
실시예3 4,4'-diaminodiphenyl ether pyromellitic acid dianhydride 99℃ 반응기체적40배 3 hr 90.5% 90.7% -
실시예4 4,4'-diaminodiphenyl ether diphenyl ether tetracarboxylic acid dianhydride 99℃ 반응기체적40배 3 hr 90.3% 92.9% -
실시예5 4,4'-diaminodiphenyl ether benzophenone tetracarboxylic acid dianhydride 99℃ 반응기체적45배 4 hr 91.0% 92.9% -
Table 1
division Raw material Decomposition condition Recovery rate water
A B Temperature Nitrogen input amount / hr Time (reflux hydrolysis) A B
Example 1 4,4'-diaminodiphenyl ether pyromellitic acid dianhydride 95 ℃ Reactor volume 20 times 4 hr 91.4% 90.9% > 99%
Example 2 4,4'-diaminodiphenyl ether biphenyltetracarboxylic acid dianhydride 95 ℃ Reactor volume 20 times 3 hr 92.7% 90.9% -
Example 3 4,4'-diaminodiphenyl ether pyromellitic acid dianhydride 99 ℃ 40 times of reactor volume 3 hr 90.5% 90.7% -
Example 4 4,4'-diaminodiphenyl ether diphenyl ether tetracarboxylic acid dianhydride 99 ℃ 40 times of reactor volume 3 hr 90.3% 92.9% -
Example 5 4,4'-diaminodiphenyl ether benzophenone tetracarboxylic acid dianhydride 99 ℃ 45 times the reactor volume 4 hr 91.0% 92.9% -
도 3은 본 발명의 실시예에 의한 폴리이미드 회수 방법에 의해 회수된 폴리이미드 원료 물질의 NMR 스펙트럼이다.3 is an NMR spectrum of a polyimide raw material recovered by the polyimide recovery method according to the embodiment of the present invention.
실험은 실시예 1에서 최종적으로 얻어진 물질 (A)를 확인하기 위하여 NMR 기기를 사용하여 스펙트럼을 측정한 결과이다. 도시된 바와 같이, 실시예 1에서 얻어진 물질 (A)의 1H NMR 스펙트럼은 6.4 내지 7.0 ppm 근처에서 파라 이중치환 벤젠 고리 위의 수소가 사중선으로 나타나며, 3.2 내지 4.0 ppm 근처의 넓은 범위에 걸쳐서 아민 그룹의 수소 피크가 나타난다. 이에 따라, 실시예 1에서 세척 및 건조된 침전물은 아민기를 가지는 파라 이중치환 벤젠 고리인 4,4'-디아미노디페닐에테르(4,4'-diaminodiphenyl ether)인 것을 확인할 수 있다.The experiment is the result of measuring the spectrum using an NMR apparatus to confirm the material (A) finally obtained in Example 1. As shown, the 1 H NMR spectrum of Material (A) obtained in Example 1 shows hydrogen on the para-disubstituted benzene ring as quartet near 6.4 to 7.0 ppm, with an amine over a broad range near 3.2 to 4.0 ppm The hydrogen peak of the group appears. Accordingly, it can be confirmed that the precipitate washed and dried in Example 1 is 4,4'-diaminodiphenyl ether, which is a para-disubstituted benzene ring having an amine group.
한편, 본 명세서와 도면에 개시된 본 발명의 실시예들은 본 발명의 기술 내용을 쉽게 설명하고 본 발명의 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.On the other hand, the embodiments of the present invention disclosed in the specification and drawings are merely presented specific examples to easily explain the technical contents of the present invention and help the understanding of the present invention, and are not intended to limit the scope of the present invention. It will be apparent to those skilled in the art that other modifications based on the technical idea of the present invention can be carried out in addition to the embodiments disclosed herein.

Claims (5)

  1. 폴리이미드 폐자재 1000 중량부에 대하여 알칼리 480 내지 580 중량부, 물 3000 내지 4000 중량부를 90 내지 99도에서 질소 분위기에서 반응시켜 폴리이미드(polyimide)를 가수분해시키는 제1 가수분해 단계와,A first hydrolysis step of hydrolyzing the polyimide by reacting 480 to 580 parts by weight of alkali and 3000 to 4000 parts by weight of water at 90 to 99 degrees with respect to 1000 parts by weight of the polyimide waste material,
    상기 제1 가수분해 단계의 산물을 여과하여 불용물을 제거하는 제1 여과 단계와,A first filtration step of filtering the product of the first hydrolysis step to remove insoluble matters,
    상기 제1 여과 단계의 여과액을 가열하여 농축시키며, 질소 분위기에서 3 내지 5 시간동안 가수분해시키는 제2 가수분해 단계와,A second hydrolysis step of heating and concentrating the filtrate of the first filtration step and hydrolyzing for 3 to 5 hours in a nitrogen atmosphere;
    상기 제2 가수분해 단계의 산물을 냉각 후 여과하여 디아민(diamine)과 디안하이드라이드(dianhydride)를 수득하는 제2 여과 단계를 포함하는 폴리이미드 회수 방법.And a second filtration step of cooling and filtering the product of the second hydrolysis step to obtain diamine and dianhydride.
  2. 제1항에 있어서,The method of claim 1,
    상기 제2 여과 단계에서는In the second filtration step
    상기 제2 가수분해 단계의 산물을 냉각 후 여과한 침전물을 탈이온수로 세척하고, 90 내지 120℃에서 20 내지 24 시간 건조하여 디아민을 수득하는 것을 특징으로 하는 폴리이미드 회수 방법.After cooling the product of the second hydrolysis step, the filtered precipitate is washed with deionized water, and dried at 90 to 120 ℃ 20 to 24 hours to obtain a polyimide, characterized in that the diamine.
  3. 제1항에 있어서,The method of claim 1,
    상기 제2 여과 단계에서는In the second filtration step
    상기 제2 가수분해 단계의 산물을 냉각 후 여과한 여과액의 pH를 1 내지 2로 조정하는 산도 조정 단계와,An acidity adjustment step of adjusting the pH of the filtrate after cooling the product of the second hydrolysis step to 1 to 2;
    상기 산도 조정 단계를 거친 여과액을 3 내지 5 시간 동안 90 내지 100도로 유지시키는 가열 단계와,A heating step of maintaining the acidity-adjusted filtrate at 90 to 100 degrees for 3 to 5 hours;
    상기 가열 단계를 거친 여과액을 냉각시켜 침전물을 형성시키는 냉각 단계와,A cooling step of cooling the filtrate passed through the heating step to form a precipitate;
    상기 냉각 단계를 거친 침전물을 여과하는 제3 여과 단계와,A third filtration step of filtering the precipitate passed through the cooling step;
    상기 제3 여과 단계를 거친 침전물을 세척하는 세척 단계와,A washing step of washing the precipitate through the third filtration step;
    상기 세척된 침전물을 건조하는 건조 단계를 포함하는 후속 공정을 거쳐 디안하이드라이드를 수득하는 것을 특징으로 하는 폴리이미드 회수 방법.Polyanimide recovery method characterized in that to obtain a dianhydride through a subsequent process comprising a drying step of drying the washed precipitate.
  4. 제3항에 있어서,The method of claim 3,
    상기 디안하이드라이드는 흡열 개시 온도와 흡열 피크 온도와의 차이가 20℃ 이내가 되도록 무수아세트산 용매로 재결정을 반복하여 얻어지는 것을 특징으로 하는 폴리이미드 회수 방법.The dianhydride is obtained by repeating recrystallization with an acetic anhydride solvent such that the difference between the endothermic onset temperature and the endothermic peak temperature is within 20 ° C.
  5. 제1항에 있어서,The method of claim 1,
    상기 디아민과 상기 디안하이드라이드를 0 내지 80℃에서 축합시킨 후 탈수폐환하여 폴리이미드를 수득하는 중합 단계를 더 포함하는 것을 특징으로 하는 폴리이미드 회수 방법.And condensing the diamine and the dianhydride at 0 to 80 ° C, followed by dehydration and ring closure, to obtain a polyimide.
PCT/KR2014/012090 2014-12-10 2014-12-10 Method for recovering polyimide WO2016093385A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2014/012090 WO2016093385A1 (en) 2014-12-10 2014-12-10 Method for recovering polyimide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2014/012090 WO2016093385A1 (en) 2014-12-10 2014-12-10 Method for recovering polyimide

Publications (1)

Publication Number Publication Date
WO2016093385A1 true WO2016093385A1 (en) 2016-06-16

Family

ID=56107557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/012090 WO2016093385A1 (en) 2014-12-10 2014-12-10 Method for recovering polyimide

Country Status (1)

Country Link
WO (1) WO2016093385A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5721280A (en) * 1996-10-07 1998-02-24 General Electric Company Method for depolymerizing polyimides and recovering reagents therefrom
CN1324789A (en) * 2001-06-26 2001-12-05 中国科学院长春应用化学研究所 Polyimide hydrolyzing recovery process
JP2006124530A (en) * 2004-10-29 2006-05-18 Toray Ind Inc Method for alkaline hydrolysis of polyimide and method for recovering low molecular weight compound
CN101519359B (en) * 2009-04-16 2012-07-25 李汉毅 Method for recovering polyimide through hydrolysis
CN103012837A (en) * 2011-09-28 2013-04-03 广州源骏电子科技有限公司 Recovery processing method of polyimide film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5721280A (en) * 1996-10-07 1998-02-24 General Electric Company Method for depolymerizing polyimides and recovering reagents therefrom
CN1324789A (en) * 2001-06-26 2001-12-05 中国科学院长春应用化学研究所 Polyimide hydrolyzing recovery process
JP2006124530A (en) * 2004-10-29 2006-05-18 Toray Ind Inc Method for alkaline hydrolysis of polyimide and method for recovering low molecular weight compound
CN101519359B (en) * 2009-04-16 2012-07-25 李汉毅 Method for recovering polyimide through hydrolysis
CN103012837A (en) * 2011-09-28 2013-04-03 广州源骏电子科技有限公司 Recovery processing method of polyimide film

Similar Documents

Publication Publication Date Title
US9777117B2 (en) Process for the production of polyimide and polyamic ester polymers
KR102190722B1 (en) Polyimide precursor and polyimide
CN103874723B (en) Polyimide precursor, polyimide, polyimide film, and the preparation method of triaizine compounds for the manufacture of it
CN111278898A (en) Ultrathin black polyimide film and preparation method thereof
US4225702A (en) Method of preparing polyamide acid type intermediates for processing of semiconductors
WO2015190645A1 (en) Method for preparing polyimide using water as dispersion medium and method for recovering water
JPH0320412B2 (en)
KR20160102378A (en) Method for recycling water in the preparation of polyimide using water as a dispersion medium
JPH0348656A (en) Imide ring-containing new diphenols and its production
WO2021095976A1 (en) Highly elastic and heat-resistant polyimide film and method for producing same
WO2016093385A1 (en) Method for recovering polyimide
KR101506323B1 (en) Recovery method of polyimide
KR100503225B1 (en) Process for producing polyimide
JPS61151238A (en) Photosensitive polyimide precursor and production thereof
JPS6323928A (en) Production of modified polyimide
JP2007016182A (en) Method for producing polyimide
WO2021101323A1 (en) Thermally conductive polyimide composite powder and method for manufacturing same
KR101259544B1 (en) Polyimide film
EP0490364B1 (en) Process for producing polyisoimide
DE3703167A1 (en) PHOTO-SENSITIVE POLYIMIDE PRE-STAGE
CN112341624B (en) Polyimide film with low thermal expansion coefficient and production process thereof
JPH11116675A (en) Aromatic bis(ether acid anhydride), polyamic acid and polyimide
JP2003292618A (en) Polyamic acid solution and process for producing polyimide film using it
WO2023014050A1 (en) Method for continuously recovering dimethylformamide from waste solution resulting from production of polyimide
JP3386383B2 (en) Method for producing polyimide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14908083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14908083

Country of ref document: EP

Kind code of ref document: A1