WO2016092771A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2016092771A1
WO2016092771A1 PCT/JP2015/005962 JP2015005962W WO2016092771A1 WO 2016092771 A1 WO2016092771 A1 WO 2016092771A1 JP 2015005962 W JP2015005962 W JP 2015005962W WO 2016092771 A1 WO2016092771 A1 WO 2016092771A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
passage
return
evaporator
upward
Prior art date
Application number
PCT/JP2015/005962
Other languages
French (fr)
Japanese (ja)
Inventor
中村 毅
英隆 新開
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2016092771A1 publication Critical patent/WO2016092771A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel

Definitions

  • the present disclosure relates to a piping structure of a refrigeration cycle apparatus having a plurality of evaporators provided in parallel.
  • a dual air conditioner is known as a vehicle air conditioner that uses this type of refrigeration cycle apparatus.
  • the dual air conditioner has a front side evaporator that cools the blown air blown to the front side in the passenger compartment, and a rear side evaporator that cools the blown air blown to the rear side.
  • oil for lubricating the inside of the compressor is mixed with the refrigerant and circulated.
  • a configuration for avoiding the shortage of oil a configuration is known in which a solenoid valve is provided in a rear-side pipe for circulating a refrigerant to a rear-side evaporator.
  • the electromagnetic valve when the front-side independent operation is performed with the dual air conditioner, the inflow of refrigerant and oil to the rear-side evaporator is completely blocked by the electromagnetic valve.
  • this electromagnetic valve when the front-side independent operation is performed with the dual air conditioner, the inflow of refrigerant and oil to the rear-side evaporator is completely blocked by the electromagnetic valve.
  • the number of parts constituting the refrigeration cycle apparatus increases, which may lead to an increase in cost.
  • the design may be complicated, for example, abnormal noise may occur if the solenoid valve is not controlled to open and close the solenoid valve.
  • Patent Document 1 discloses a configuration that avoids oil shortage with a configuration different from the above configuration.
  • the low-pressure pipe extending from the front-side evaporator is lowered downward, and the low-pressure pipe extending from the rear-side evaporator is pulled upward.
  • Both of the low-pressure pipes are joined together so that the refrigerant flows at a position lower than that of the front-side evaporator.
  • a low-pressure pipe extending from the junction where the two low-pressure pipes merge to the compressor side is pulled upward.
  • the refrigeration cycle apparatus included in the dual air conditioner for a vehicle of Patent Document 1 is said to be able to increase the circulation rate of oil to the compressor.
  • Patent Document 1 The relative positional relationship in the vertical direction and the direction of a plurality of low-pressure pipes connected to the merging portion are finely limited. That is, in order to realize the refrigeration cycle apparatus of Patent Document 1, there may be a very large restriction on piping.
  • the refrigeration cycle apparatus has a suction port, a compressor that compresses and discharges the refrigerant sucked from the suction port, a radiator that dissipates heat from the refrigerant discharged from the compressor, A first decompressor for decompressing the refrigerant flowing out of the radiator, a second decompressor connected to the radiator in parallel with the first decompressor for decompressing the refrigerant flowing out of the radiator, and an air conditioning first A first evaporator that is disposed in one air conditioning duct and evaporates by exchanging heat of the refrigerant decompressed by the first decompression device with the first blown air flowing in the first air conditioning duct; and a second air conditioning unit.
  • a second evaporator which is disposed in the air conditioning duct and evaporates by exchanging heat of the refrigerant decompressed by the second decompression device with the second blown air flowing in the second air conditioning duct, and flows out from the first evaporator.
  • the second decompression device includes a throttle forming portion having a throttle hole, and a return side that is provided as a passage between the second evaporator and the return side connection pipe and flows the refrigerant flowing out of the second evaporator to the return side connection pipe.
  • the hole opening adjustment mechanism depressurizes the refrigerant by restricting the refrigerant flow from the radiator to the second evaporator according to the decrease in the hole opening.
  • the return side connection pipe has a connecting portion connected to the return side passage forming portion of the second pressure reducing device, and the connecting portion includes an upward passage communicating with the return side passage of the second pressure reducing device.
  • the upward passage is more than the return-side passage so that the refrigerant becomes a liquid phase and accumulates in the return-side passage when the first blown air is blown while the second blown air is stopped. Extends upward.
  • the connecting portion of the return side connection pipe communicates with the return side passage of the second decompression device, and the first blown air is blown while the second blown air is stopped.
  • the first side operation state an upward passage is formed extending upward from the return side passage so that the refrigerant enters a liquid phase state and accumulates in the return side passage. Therefore, in the first-side operation state, the return-side passage of the second decompression device can be filled with the refrigerant in the liquid phase state or almost the refrigerant in the gas-liquid mixed state.
  • the throttle hole of the second decompression device is fully closed (that is, the hole opening degree is zero) or substantially fully closed by the hole opening degree adjusting mechanism, and the refrigerant flow into the second evaporator is substantially stopped. Accordingly, oil can be prevented from flowing into the second evaporator by a simple piping structure in which an upward passage is provided, and occurrence of oil shortage in the compressor can be avoided.
  • FIG. 1 is a schematic diagram illustrating an overall configuration of a refrigeration cycle apparatus 10 according to an embodiment of the present disclosure.
  • the arrows in the refrigerant passage illustrated in FIG. 1 and FIG. 2 described later indicate the refrigerant flow direction.
  • the refrigeration cycle apparatus 10 is provided in a dual air conditioner type vehicle air conditioner 8 having a plurality of air conditioning units 12 and 14 for blowing conditioned air into a vehicle interior.
  • the vehicle air conditioner 8 includes a front side air conditioning unit, that is, a front seat side air conditioning unit 12, and a rear side air conditioning unit, that is, a rear seat side air conditioning unit 14.
  • the front seat side air conditioning unit 12 is disposed inside the foremost instrument panel (not shown) in the passenger compartment, and air-conditions the area on the front seat side of the passenger compartment.
  • the front seat side air conditioning unit 12 includes a front seat side air conditioning case 121 provided as a first air conditioning duct for air conditioning that forms an air passage, and a first air blower disposed upstream of the front seat side air conditioning case 121. It has a front seat side fan 122 as an apparatus.
  • the front seat side air conditioning unit 12 includes a front seat side evaporator 16 and a front seat side expansion valve 18 that constitute a part of the refrigeration cycle apparatus 10.
  • a front seat side evaporator 16 as a first evaporator is accommodated in the front seat side air conditioning case 121, and the front seat side evaporator 16 is arranged on the downstream side of the air flow with respect to the front seat side blower 122. ing.
  • the front seat evaporator 16 is a cooling heat exchanger that cools the first blown air flowing in the front seat side air conditioning case 121 as indicated by an arrow FL1a.
  • an air outlet 121 a is formed at the downstream end of the front seat air conditioning unit 12, that is, at the downstream end of the front seat air conditioning case 121 that forms the housing of the front seat air conditioning unit 12.
  • the first blown air cooled by the front seat side evaporator 16 passes through the air outlet 121a as indicated by an arrow FL1b, and from the air outlet 121a, for example, the inner surface of the vehicle window glass, the head of the front seat side occupant The air is blown out toward any part of the passenger compartment such as the feet.
  • the rear seat side air conditioning unit 14 is arranged at the rear part of the vehicle interior, for example, at the side part of the rear seat so as to air-condition the rear seat side of the vehicle interior.
  • the rear seat air conditioning unit 14 has the same configuration as the front seat air conditioning unit 12 described above.
  • the rear seat side air conditioning unit 14 is disposed upstream of the rear seat side air conditioning case 141 provided as a second air conditioning duct for air conditioning that forms an air passage, and the rear seat side air conditioning case 141.
  • a rear seat blower 142 or the like as the second blower is provided.
  • the rear seat side air conditioning unit 14 includes a rear seat side evaporator 20 and a rear seat side expansion valve 22 that constitute a part of the refrigeration cycle apparatus 10.
  • a rear seat side evaporator 20 as a second evaporator is accommodated in the rear seat side air conditioning case 141, and the rear seat side evaporator 20 is disposed on the downstream side of the air flow with respect to the rear seat side blower 142. Yes.
  • the rear seat-side evaporator 20 is a cooling heat exchanger that cools the second blown air that flows in the rear seat-side air conditioning case 141 as indicated by an arrow FL2a.
  • an air outlet 141 a is formed at the downstream end of the rear seat air conditioning unit 14, that is, at the downstream end of the rear seat air conditioning case 141 that forms the housing of the rear seat air conditioning unit 14.
  • the second blown air cooled by the rear seat side evaporator 20 passes through the air outlet 141a as indicated by an arrow FL2b, and, for example, from the air outlet 141a toward the space around the rear seat in the vehicle interior. Blown out.
  • a normal chlorofluorocarbon refrigerant is employed as the refrigerant.
  • the refrigeration cycle apparatus 10 includes a subcritical refrigeration cycle in which the pressure of the high-pressure refrigerant does not exceed the critical pressure of the refrigerant.
  • the refrigeration cycle apparatus 10 includes a compressor 30 (in addition to the front seat evaporator 16, the front seat expansion valve 18, the rear seat evaporator 20, and the rear seat expansion valve 22).
  • COMP the front seat evaporator 16
  • the condenser 32 the refrigerant discharged from the compressor 30 passes through the condenser 32, the front seat side expansion valve 18, and the front seat side evaporator 16 in this order, and returns to the compressor 30 in order.
  • the compressor 30 and the condenser 32 are included in both the first and second refrigerant circuits.
  • the compressor 30 has a suction port 30a and a discharge port 30b, compresses the refrigerant sucked from the suction port 30a, and discharges the compressed refrigerant, that is, a high-temperature and high-pressure refrigerant in a gas phase, from the discharge port 30b.
  • the compressor 30 is provided in an engine room of a vehicle and is driven by a vehicle engine (not shown).
  • the condenser 32 is an outdoor heat exchanger that is provided, for example, in a place where the traveling wind of the vehicle is easily received, and exchanges heat between the refrigerant flowing inside the condenser 32, the outside air blown by the outdoor fan, and the traveling wind.
  • the condenser 32 is a radiator that radiates heat from the refrigerant discharged from the compressor 30.
  • the refrigerant inlet 32 a of the condenser 32 is connected to the discharge port 30 b of the compressor 30 via the first high-pressure pipe 34, and the gas-phase refrigerant discharged from the compressor 30 is introduced into the condenser 32.
  • the condenser 32 condenses and liquefies the refrigerant discharged from the compressor 30 by heat exchange with the outside air.
  • the front seat side expansion valve 18 is an example of a first decompression device that decompresses the liquid-phase low-temperature refrigerant flowing out of the condenser 32.
  • the rear seat side expansion valve 22 is connected in parallel to the front seat side expansion valve 18 with respect to the condenser 32, and is an example of a second decompression device that decompresses the low-temperature refrigerant in the liquid phase that has flowed out of the condenser 32. It has become.
  • the refrigerant outlet 32b of the condenser 32 is connected to the front seat side expansion valve 18 through the second high-pressure pipe 36 and the third high-pressure pipe 38 connected to the downstream end of the second high-pressure pipe 36 in order. ing.
  • the refrigerant outlet 32b of the condenser 32 sequentially passes through the second high-pressure pipe 36 and the fourth high-pressure pipe 40 connected in parallel to the third high-pressure pipe 38 at the downstream end of the second high-pressure pipe 36. And connected to the rear seat side expansion valve 22.
  • the high-pressure pipes 36, 38, and 40 By connecting the high-pressure pipes 36, 38, and 40, the liquid-phase refrigerant flowing out from the refrigerant outlet 32 b of the condenser 32 is introduced into the front seat side expansion valve 18 and the rear seat side expansion valve 22, respectively.
  • the front seat side expansion valve 18 and the rear seat side expansion valve 22 are well-known temperature type expansion valves and have the same internal structure. Therefore, the rear seat side expansion valve 22 enlarged in FIG. 2 will be mainly described, and the front seat side expansion valve 18 will be simplified by omitting the description common to the rear seat side expansion valve 22. .
  • FIG. 2 is a partial enlarged view in which the II part in FIG. 1 is enlarged and displayed.
  • the rear-seat side expansion valve 22 includes a forward-side passage forming part 221 in which a forward-side passage 222 that forms a part of the refrigerant forward path from the condenser 32 to the rear-seat evaporator 20 is formed; A return-side passage forming portion 223 in which a return-side passage 224 that forms a part of the refrigerant return path from the rear seat evaporator 20 to the suction port 30a of the compressor 30 is formed.
  • the forward passage 222 has a refrigerant inlet 222a and a refrigerant outlet 222b.
  • the refrigerant inlet 222 a of the forward passage 222 is connected to the fourth high-pressure pipe 40, and the refrigerant outlet 222 b of the forward passage 222 is connected to the refrigerant inlet 20 a of the rear seat side evaporator 20.
  • the return side passage 224 has a refrigerant inlet 224a and a refrigerant outlet 224b.
  • the refrigerant inlet 224a of the return side passage 224 is connected to the refrigerant outlet 20b of the rear seat side evaporator 20, and the refrigerant outlet 224b of the return side passage 224 is connected to the second pipe 422 connected to the suction port 30a of the compressor 30.
  • the return side passage 224 is provided as a passage between the rear seat side evaporator 20 and the second pipe 422, and allows the refrigerant flowing out from the rear seat side evaporator 20 to flow to the second pipe 422.
  • the forward side passage 222 has a throttle hole 222c in the middle of the forward side passage 222 in which the passage cross section is reduced to restrict the refrigerant flow. That is, the forward side passage forming part 221 includes, as a part thereof, a throttle forming part 221a in which a throttle hole 222c is formed.
  • the forward side passage forming portion 221 and the return side passage forming portion 223 are integrally formed with each other, and are included in, for example, an expansion valve main body 225 formed in a block shape made of an aluminum alloy.
  • the rear seat side expansion valve 22 includes a valve body 226, a diaphragm operating portion 227, a temperature sensing rod 228, and an operating rod 229 in order to increase or decrease the opening degree of the throttle hole 222c.
  • the valve body 226 is an open / close valve body that opens and closes the throttle hole 222 c, for example, has a spherical shape, and is disposed in the forward passage 222. The valve body 226 adjusts the opening degree of the throttle hole 222c according to the relative distance between the throttle hole 222c and the hole wall surface.
  • the throttle hole 222 c throttles the refrigerant flow from the condenser 32 to the rear seat side evaporator 20 according to the opening degree of the hole adjusted by the valve body 226.
  • the throttle hole 222c expands the refrigerant passing through the throttle hole 222c under reduced pressure by narrowing the refrigerant flow.
  • the hole opening degree of zero is a fully closed state in which the throttle hole 222c is closed by the valve body 226.
  • the diaphragm operating part 227 is fixed to the upper end of the expansion valve body 225 by screws or the like.
  • the diaphragm operating part 227 has a diaphragm 227a and forms a diaphragm chamber 227b in which a working gas is sealed.
  • the working gas is, for example, the same type of saturated gas as the refrigerant used in the refrigeration cycle apparatus 10.
  • the diaphragm 227a is made of a thin metal plate having flexibility, for example.
  • the diaphragm 227a forms a part of the diaphragm chamber 227b so as to close one surface of the diaphragm chamber 227b. Therefore, heat is transferred immediately if a temperature difference occurs between the working gas in the diaphragm chamber 227b and the diaphragm 227a.
  • the diaphragm 227a is displaced according to the pressure change of the working gas in the diaphragm chamber 227b. In other words, the pressure of the working gas acts to expand the diaphragm chamber 227b and displace the diaphragm 227a downward as indicated by an arrow Pg.
  • the temperature sensing rod 228 is made of aluminum having high thermal conductivity, for example, and is a temperature sensing cylinder having a cylindrical shape.
  • the temperature sensing rod 228 is disposed in the return side passage 224 such that the axial direction of the temperature sensing rod 228 intersects the refrigerant flow direction in the return side passage 224. That is, the temperature sensing rod 228 is disposed so as to cross a part of the return side passage 224 in the up-down direction DR1.
  • the upper end of the temperature sensing rod 228 is in contact with the diaphragm 227a. With such an arrangement, the temperature sensing rod 228 transfers heat between the refrigerant in the return side passage 224 and the diaphragm 227a.
  • an arrow DR1 in FIG. 2 indicates the vertical direction DR1 of the rear seat side expansion valve 22 and a second pipe 422 to be described later.
  • the operating rod 229 has a cylindrical shape and functions as a valve operating unit that operates the valve body 226.
  • the operating rod 229 is arranged in series with the temperature sensing rod 228 in the vertical direction DR1 and below the temperature sensing rod 228.
  • the operating rod 229 is in contact with the lower end of the temperature sensing rod 228 at the upper end of the operation rod 229, and is connected to the diaphragm 227a via the temperature sensing rod 228.
  • the valve body 226 is connected to the lower end of the operating rod 229 so as to be displaced integrally with the operating rod 229 in the vertical direction DR1.
  • the actuating rod 229 operates the valve body 226 to the side where the opening degree of the throttle hole 222c is reduced as the diaphragm 227a is displaced (deformed) toward the side where the diaphragm chamber 227b is contracted (ie, the upper side).
  • the valve body 226, the diaphragm operating portion 227, the temperature sensing rod 228, and the operating rod 229 as a whole constitute a hole opening degree adjusting mechanism 230 that adjusts the opening degree of the throttle hole 222c.
  • the hole opening adjusting mechanism 230 replaces the temperature change of the refrigerant in the return side passage 224 with a change in the opening degree of the throttle hole 222c by a mechanical operation, and the refrigerant temperature in the return side passage 224 is changed.
  • the lower the aperture the smaller the opening of the throttle hole 222c. Since the hole opening degree adjusting mechanism 230 operates in this way, for example, if the return side passage 224 is filled with the liquid phase refrigerant, the hole opening degree of the throttle hole 222c is made zero.
  • the front seat side expansion valve 18 shown in FIG. 1 is the same as the rear seat side expansion valve 22 described above, that is, the forward side passage forming portion 181 in which the forward side passage 182 including the throttle hole 182c for restricting the refrigerant flow is formed. And a return side passage forming portion 183 in which a return side passage 184 is formed.
  • the refrigerant inlet 182a of the forward passage 182 is connected to the third high-pressure pipe 38, and the refrigerant outlet 182b of the forward passage 182 is connected to the refrigerant inlet 16a of the front seat evaporator 16. Further, the refrigerant inlet 184a of the return side passage 184 is connected to the refrigerant outlet 16b of the front seat side evaporator 16, and the refrigerant outlet 184b of the return side passage 184 is connected to a suction port 30a of the compressor 30, which will be described later. 421.
  • the front seat side expansion valve 18 has a hole opening degree adjusting mechanism 186 that adjusts the opening degree of the throttle hole 182c, similarly to the rear seat side expansion valve 22 described above.
  • the front seat side evaporator 16 is disposed in the front seat side air conditioning case 121 as shown in FIG.
  • Low-pressure refrigerant decompressed by the throttle hole 182 c of the front seat side expansion valve 18 is introduced into the refrigerant inlet 16 a of the front seat side evaporator 16.
  • the front seat evaporator 16 evaporates the low pressure refrigerant by exchanging heat with the air flowing in the front seat air conditioning case 121, and causes the low pressure refrigerant after the heat exchange to flow out of the refrigerant outlet 16b.
  • the low-pressure refrigerant that has flowed out of the refrigerant outlet 16 b of the front seat side evaporator 16 flows into the first pipe 421 through the return side passage 184 of the front seat side expansion valve 18.
  • the rear seat evaporator 20 is disposed in the rear seat air conditioning case 141.
  • Low-pressure refrigerant decompressed by a throttle hole 222c (see FIG. 2) of the rear seat side expansion valve 22 is introduced into the refrigerant inlet 20a of the rear seat side evaporator 20.
  • the rear seat evaporator 20 evaporates the low pressure refrigerant by exchanging heat with the second blown air flowing in the rear seat air conditioning case 141, and causes the low pressure refrigerant after the heat exchange to flow out from the refrigerant outlet 20b. Then, the low-pressure refrigerant flowing out from the refrigerant outlet 20b of the rear seat side evaporator 20 flows into the second pipe 422 through the return side passage 224 (see FIG. 2) of the rear seat side expansion valve 22.
  • the refrigeration cycle apparatus 10 is provided with a low-pressure pipe 42 as an example of a return-side connection pipe that guides the refrigerant flowing out from the return-side passages 184 and 224 of the expansion valves 18 and 22 to the suction port 30a of the compressor 30. Yes.
  • the low pressure pipe 42 includes a first pipe 421, a second pipe 422, and a third pipe 423.
  • the upstream end of the first pipe 421 is connected to the refrigerant outlet 184 b of the return side passage 184 formed in the front seat side expansion valve 18, and the upstream end of the second pipe 422 is formed in the rear seat side expansion valve 22.
  • the return side passage 224 is connected to the refrigerant outlet 224b.
  • the downstream end of the first pipe 421 and the downstream end of the second pipe 422 are connected to the upstream end of the third pipe 423. That is, the first pipe 421 and the second pipe 422 are connected to the third pipe 423 in parallel with each other.
  • the downstream end of the third pipe 423 is connected to the suction port 30a of the compressor 30. Accordingly, the refrigerant flowing out from the refrigerant outlet 184b of the return side passage 184 of the front seat side expansion valve 18 is guided to the suction port 30a of the compressor 30 through the first pipe 421 and the third pipe 423 in order. At the same time, the refrigerant flowing out from the refrigerant outlet 224b of the return side passage 224 of the rear seat side expansion valve 22 is guided to the suction port 30a of the compressor 30 through the second pipe 422 and the third pipe 423 in order. In short, the low-pressure pipe 42 guides the refrigerant flowing out from each of the front seat evaporator 16 and the rear seat evaporator 20 to the suction port 30 a of the compressor 30.
  • the second pipe 422 forming a part of the low-pressure pipe 42 has a connecting portion 424 that is connected to the return side passage forming portion 223 of the rear seat side expansion valve 22.
  • this connection portion 424 an inlet passage 424a and an upward passage 424b connected in series to the downstream side of the refrigerant flow of the inlet passage 424a are formed.
  • the upward passage 424b communicates with the return side passage 224 of the rear seat side expansion valve 22 via the inlet passage 424a. That is, the refrigerant outlet 224b of the return side passage 224 causes the refrigerant to flow out to the upward passage 424b.
  • the upward passage (rising passage) 424b extends (rises) obliquely upward with respect to the horizontal direction so that the downstream end 424d of the upward passage 424b in the refrigerant flow direction is positioned higher than the upstream end 424c.
  • the upward passage 424b is the uppermost portion of the return-side passage 224 of the rear seat side expansion valve 22 in which the lowermost portion 424e of the passage section SCt at the uppermost position of the upward passage 424b is located. It is provided so as to be positioned above the portion 224c.
  • the horizontal direction may be perpendicular to the direction of gravity.
  • the passage length of the inlet passage 424a is very short, and the upward passage 424b extends upward immediately after the refrigerant outlet 224b of the return side passage 224.
  • the operation state of the refrigeration cycle apparatus 10 is either the front / rear seat operation state as the first operation state or the front seat side single operation state as the second operation state. It becomes.
  • the front and rear seat operation state of the refrigeration cycle apparatus 10 is an operation state when both the front seat air conditioning unit 12 and the rear seat air conditioning unit 14 shown in FIG. This is an operation state when the front seat air conditioning unit 12 is operating and the rear seat air conditioning unit 14 is stopped.
  • the refrigerant discharged from the compressor 30 passes through the condenser 32, the front seat side expansion valve 18, and the front seat side evaporator 16 in order.
  • the refrigerant circulates through the first refrigerant circuit for the front seat air conditioning that returns to 30.
  • the refrigerant discharged from the compressor 30 passes through the condenser 32, the rear seat side expansion valve 22, and the rear seat side evaporator 20 in that order and returns to the compressor 30 in the second refrigerant circuit for rear seat side air conditioning. Circulates.
  • both the fans 122 and 142 are blowing air. That is, in the front and rear seat operation state, the first blown air is blown by the front seat side blower 122 and the second blown air is also blown by the rear seat side blower 142. Therefore, in the front-rear seat operation state, the refrigerant is evaporated and vaporized by heat exchange with the air blown by the blowers 122 and 142 in each of the front seat evaporator 16 and the rear seat evaporator 20.
  • the front seat side blower 122 blows air, but the rear seat side blower 142 is stopped. That is, in the front seat side independent operation state, the first blown air is blown while the second blown air is stopped. Therefore, in the front seat side independent operation state, heat exchange in the rear seat side evaporator 20 in the rear seat side air conditioning unit 14 is substantially stopped. As a result, the valve body 226 of the rear seat side expansion valve 22 makes the opening degree of the throttle hole 222c substantially zero, so that the refrigerant flow in the second refrigerant circuit is substantially stopped in the refrigeration cycle apparatus 10, and the refrigerant is exclusively used for the above. Circulate in the first refrigerant circuit.
  • the oil is discharged from the discharge port 30b together with the refrigerant. And in the front-rear seat operation state of the refrigeration cycle apparatus 10, the oil goes around the first refrigerant circuit and the second refrigerant circuit together with the refrigerant and returns to the suction port 30 a of the compressor 30.
  • the refrigerant flowing out from the front seat side evaporator 16 in the first refrigerant circuit for front seat side air conditioning exchanges heat with the blown air of the front seat side blower 122 and performs superheat. It becomes. Therefore, the opening degree of the throttle hole 182c in the front seat side expansion valve 18 is increased, and the refrigerant in the front seat side evaporator 16 is a refrigerant that is large enough to cause the oil to flow out from the front seat side evaporator 16 together with the refrigerant. Flows at a flow rate. Therefore, in the first refrigerant circuit, the oil circulation rate at which the oil returns to the compressor 30 can be kept sufficiently large.
  • the rear seat evaporator 20 does not exchange heat between the refrigerant and the air in the second refrigerant circuit for the rear seat air conditioning.
  • the refrigerant flowing out of the rear seat side evaporator 20 is in a liquid phase state or almost a liquid phase gas-liquid mixed state.
  • an upward passage 424b is provided in the low-pressure pipe. Therefore, in the front seat side single operation state, the refrigerant in the liquid phase is blocked by the upward passage 424b and is accumulated in the return side passage 224 of the rear seat side expansion valve 22. Further, if the refrigerant flowing out from the rear seat side evaporator 20 is almost in a liquid phase gas-liquid mixed state, the liquid phase state refrigerant therein is blocked by the upward passage 424b.
  • the upward passage 424b of the low-pressure pipe 42 extends upward from the return-side passage 224 so that the refrigerant is in a liquid state and accumulates in the return-side passage 224 in the front seat side single operation state.
  • the refrigerant in the liquid phase state or almost in the liquid phase gas-liquid mixture state is accumulated in the return side passage 224, so the state of the refrigerant in the return side passage 224 has no superheat.
  • the valve element 226 of the rear seat side expansion valve 22 makes the opening degree of the throttle hole 222c substantially zero. Accordingly, the refrigerant flow into the rear seat evaporator 20 is stopped or substantially stopped.
  • the refrigerant in the liquid phase state or the almost liquid phase gas-liquid mixed state reaches the upward passage 424b from the throttle hole 222c of the rear seat side expansion valve 22 through the rear seat side evaporator 20.
  • the connecting portion 424 of the low pressure pipe 42 has the upward passage 424b that communicates with the return side passage 224 of the rear seat side expansion valve 22 and extends upward from the return side passage 224. Is formed.
  • the upward passage 424b extends upward immediately after the refrigerant outlet 224b of the return side passage 224. That is, in the upward passage 424b, the refrigerant is in a liquid phase state in a state where the first blown air is blown and the second blown air is stopped (that is, the front seat side single operation state). And extends upward so as to accumulate in the return side passage 224. Therefore, in the front seat side independent operation state, the return side passage 224 of the rear seat side expansion valve 22 can be filled with the refrigerant in the liquid phase state or the refrigerant in the almost liquid phase gas-liquid mixed state.
  • the opening degree of the throttle hole 222 c in the rear seat side expansion valve 22 is fully closed (that is, the hole opening degree is zero) or substantially fully closed by the valve body 226, and the rear seat side evaporator 20 is returned to. Inflow of refrigerant and oil almost stops. Therefore, the simple piping structure in which the upward passage 424b is provided in the low-pressure pipe 42 can prevent the oil from flowing into the rear seat side evaporator 20, and the occurrence of oil shortage in the compressor 30 can be avoided.
  • filling the return side passage 224 with almost liquid phase gas-liquid mixed refrigerant means that the return side passage 224 is filled with liquid phase refrigerant and a slight amount of gas phase refrigerant. Therefore, also in this case, the refrigerant is in a liquid phase state and is accumulated in the return side passage 224.
  • the inflow of refrigerant and oil to the rear seat side evaporator 20 substantially stops as described above. Therefore, there is an advantage that it is not necessary to execute the above-described intermittent compressor control for performing the intermittent operation of the compressor 30 in order to return the oil from the rear seat evaporator 20 to the compressor 30.
  • the upward passage 424b of the low-pressure pipe 42 extends obliquely upward with respect to the horizontal direction, and therefore, for example, compared to a case where it extends vertically to the horizontal direction, the rear seat During the operation of the side air conditioning unit 14, the refrigerant can flow smoothly into the upward passage 424b.
  • the upper passage 424b of the low-pressure pipe 42 is such that the lowermost portion 424e in the passage section SCt (see FIG. 2) at the uppermost position of the upward passage 424b is the rear seat side expansion valve 22.
  • the uppermost portion 224c located on the uppermost side is provided above the uppermost portion 224c. Therefore, in the front seat side single operation state of the refrigeration cycle apparatus 10, it is possible to dam the refrigerant in the upward passage 424b so that the return-side passage 224 is filled with the liquid-phase refrigerant.
  • the inlet passage 424a is provided in the connecting portion 424 of the second pipe 422 in FIG. 2, but even if the inlet passage 424a is not present or is extremely short to the extent that there is no inlet passage 424a. Good.
  • the upward passage 424b is provided extending upward from the refrigerant outlet 224b of the return side passage 224 of the rear seat side expansion valve 22. If so, the refrigerant blocked by the upward passage 424b as compared with the case where the inlet passage 424a having a certain length is provided between the return side passage 224 and the upward passage 424b. It is possible to suppress the heat absorption of the refrigerant and to prevent evaporation of the refrigerant.
  • the vehicle air conditioner 8 includes the two air conditioning units 12 and 14, but may include three or more air conditioning units.
  • the present disclosure is not limited to the above-described embodiment, and can be changed as appropriate. Further, in the above-described embodiment, it is needless to say that elements constituting the embodiment are not necessarily indispensable except for the case where it is clearly indicated that the element is essential and the case where the element is clearly considered to be essential in principle. . Further, in the above embodiment, when numerical values such as the number, numerical value, quantity, range, etc. of the constituent elements of the embodiment are mentioned, it is particularly limited to a specific number when clearly indicated as essential and in principle. The number is not limited to a specific number except for cases. Further, in the above embodiment, when referring to the material, shape, positional relationship, etc. of the component, etc., unless otherwise specified and in principle limited to a specific material, shape, positional relationship, etc. The material, shape, positional relationship and the like are not limited.

Abstract

Provided is a refrigeration cycle device with which depletion of oil deficiency in a compressor can be avoided by means of a simple pipeline structure. This refrigeration cycle device is provided with a second pressure reduction device (22) connected in parallel to a first pressure reduction device (18), a second evaporator (20) connected to the second pressure reduction device, and a return-side connecting pipeline (42) connected to the intake side of the compressor. The second pressure reduction device has a throttle-forming portion (221a) in which a throttle hole (222c) is formed, a return-side passage (224) through which refrigerant outflowing from the second evaporator flows to the return-side connecting pipeline, and a hole opening adjustment mechanism (230) for making the hole opening of the throttle hole smaller in response to lower refrigerant temperature within the return-side passage, and reducing the pressure of the refrigerant inflowing to the second evaporator. A coupling part (424) of the return-side connecting pipeline has an upward passage (424b) communicating with the return-side passage, and extending farther upward than the return-side passage, so that in a state in which the flow of forced air for heat exchange with the refrigerant flowing through the second evaporator is halted, refrigerant entering the liquid phase state collects within the return-side passage.

Description

冷凍サイクル装置Refrigeration cycle equipment 関連出願の相互参照Cross-reference of related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2014年12月9日に出願された日本特許出願2014-249102を基にしている。 This application is based on Japanese Patent Application No. 2014-249102 filed on Dec. 9, 2014, the disclosure of which is incorporated herein by reference.
 本開示は、並列的に設けられた複数の蒸発器を有する冷凍サイクル装置の配管構造に関するものである。 The present disclosure relates to a piping structure of a refrigeration cycle apparatus having a plurality of evaporators provided in parallel.
 この種の冷凍サイクル装置を利用する車両用エアコンとしてデュアルエアコンが知られている。そのデュアルエアコンは、車室の中のフロント側へ吹き出される送風空気を冷却するフロント側蒸発器と、リア側へ吹き出される送風空気を冷却するリア側蒸発器とを有している。そして、デュアルエアコンの冷凍サイクル装置でも、シングルエアコンと同様に、圧縮機内部の潤滑を行うオイルが冷媒に混入されて循環する。 A dual air conditioner is known as a vehicle air conditioner that uses this type of refrigeration cycle apparatus. The dual air conditioner has a front side evaporator that cools the blown air blown to the front side in the passenger compartment, and a rear side evaporator that cools the blown air blown to the rear side. In the refrigeration cycle apparatus of the dual air conditioner, as in the single air conditioner, oil for lubricating the inside of the compressor is mixed with the refrigerant and circulated.
 デュアルエアコンでは、フロント側のみ運転する場合、すなわち、フロント側用蒸発器へ送風するがリア側用蒸発器への送風を停止するフロント側単独運転が行われる場合がある。このフロント側単独運転の実行中にリア側の冷媒経路にオイルが停滞することに起因した圧縮機でのオイル不足を回避する構成が従来から種々知られている。 In the dual air conditioner, there is a case where only the front side is operated, that is, the front side independent operation is performed in which the air is blown to the front side evaporator but the blowing to the rear side evaporator is stopped. Various configurations for avoiding oil shortage in the compressor due to oil stagnating in the rear refrigerant path during execution of the front side independent operation have been conventionally known.
 例えば、そのオイル不足を回避する構成の1つとして、リア側用蒸発器へ冷媒を流通させるリア側配管に電磁弁が設けられる構成が知られている。この構成では、デュアルエアコンでフロント側単独運転が行われる場合には、リア側用蒸発器への冷媒およびオイルの流入が上記電磁弁によって完全に遮断される。これにより、リア側用蒸発器とそれに続くリア側低圧配管にオイルが流入し停滞してしまうことを防止することができる。但し、この電磁弁が設けられる構成では、冷凍サイクル装置を構成する部品点数が増え、延いてはコストアップにつながるおそれがある。また、電磁弁の開閉に関してスムーズな冷媒流れになるように制御しないと異音が生じる場合があるなど設計が複雑になる場合がある。 For example, as one configuration for avoiding the shortage of oil, a configuration is known in which a solenoid valve is provided in a rear-side pipe for circulating a refrigerant to a rear-side evaporator. In this configuration, when the front-side independent operation is performed with the dual air conditioner, the inflow of refrigerant and oil to the rear-side evaporator is completely blocked by the electromagnetic valve. As a result, it is possible to prevent the oil from flowing into the rear side evaporator and the subsequent rear side low-pressure pipe and stagnating. However, in the configuration in which this electromagnetic valve is provided, the number of parts constituting the refrigeration cycle apparatus increases, which may lead to an increase in cost. In addition, the design may be complicated, for example, abnormal noise may occur if the solenoid valve is not controlled to open and close the solenoid valve.
 また、別の構成として、上記電磁弁を設けずに、圧縮機の運転を制御するものが知られている。すなわち、フロント側単独運転の実行中において、圧縮機の作動を開始してからある程度の時間が経過すると、圧縮機を一旦OFFした後ONする間欠作動を行う圧縮機間欠制御を実行する。これにより冷媒の圧力変動が生じ、その圧力変動を利用して、リア側用蒸発器およびリア側低圧配管に溜まっている冷媒とオイルとを一気に圧縮機へ戻すことができる。但し、上記圧縮機間欠制御を実行する制御パターンを決める手間がかかること、および、圧縮機がOFFとなっている間は冷房が止まること等のおそれがある。 Also, as another configuration, one that controls the operation of the compressor without providing the solenoid valve is known. That is, when a certain amount of time has elapsed since the start of the operation of the compressor during execution of the front side independent operation, intermittent compressor control is performed in which the compressor is intermittently turned on after being turned off. As a result, refrigerant pressure fluctuation occurs, and the refrigerant and oil accumulated in the rear-side evaporator and the rear-side low-pressure pipe can be returned to the compressor at once using the pressure fluctuation. However, it may take time to determine a control pattern for executing the compressor intermittent control, and cooling may be stopped while the compressor is OFF.
 また、上記のような構成とは別の構成でオイル不足を回避するものが、例えば特許文献1に開示されている。この特許文献1の車両用デュアルエアコンでは、フロント側エバポレータから延びる低圧配管は下方向に降ろされ、リア側エバポレータから延びる低圧配管は上方向に引き上げられている。そして、その両方の低圧配管はフロント側エバポレータよりも低い位置で冷媒が流れるように互いに合流させられている。更に、その両低圧配管が合流する合流部からコンプレッサ側に延びる低圧配管が上方向に引き上げられている。 Also, for example, Patent Document 1 discloses a configuration that avoids oil shortage with a configuration different from the above configuration. In the vehicle dual air conditioner disclosed in Patent Document 1, the low-pressure pipe extending from the front-side evaporator is lowered downward, and the low-pressure pipe extending from the rear-side evaporator is pulled upward. Both of the low-pressure pipes are joined together so that the refrigerant flows at a position lower than that of the front-side evaporator. Furthermore, a low-pressure pipe extending from the junction where the two low-pressure pipes merge to the compressor side is pulled upward.
 上記特許文献1の車両用デュアルエアコンに含まれる冷凍サイクル装置は、圧縮機へのオイルの循環率を高めることができるとされているが、特許文献1では、各エバポレータと低圧配管の合流部との上下方向における相対位置関係、および、合流部へつながる複数の低圧配管の向きなどが細かく限定されている。すなわち、特許文献1の冷凍サイクル装置を実現するためには配管上の制約が非常に大きい場合がある。 The refrigeration cycle apparatus included in the dual air conditioner for a vehicle of Patent Document 1 is said to be able to increase the circulation rate of oil to the compressor. In Patent Document 1, however, The relative positional relationship in the vertical direction and the direction of a plurality of low-pressure pipes connected to the merging portion are finely limited. That is, in order to realize the refrigeration cycle apparatus of Patent Document 1, there may be a very large restriction on piping.
特開平11-20463号公報Japanese Patent Laid-Open No. 11-20463
 本開示は上記点に鑑みて、簡単な配管構造によって圧縮機でのオイル不足発生を回避することができる冷凍サイクル装置を提供することを目的とする。 In view of the above points, it is an object of the present disclosure to provide a refrigeration cycle apparatus capable of avoiding oil shortage in a compressor with a simple piping structure.
 本開示の一態様によると、冷凍サイクル装置は、吸入口を有し、その吸入口から吸入した冷媒を圧縮して吐出する圧縮機と、その圧縮機が吐出した冷媒から放熱させる放熱器と、その放熱器から流出した冷媒を減圧する第1減圧装置と、放熱器に対して第1減圧装置と並列に接続され、放熱器から流出した冷媒を減圧する第2減圧装置と、空調用の第1空調ダクト内に配置され、第1減圧装置で減圧された冷媒を、第1空調ダクト内を流れる第1の送風空気と熱交換させることにより蒸発させる第1蒸発器と、空調用の第2空調ダクト内に配置され、第2減圧装置で減圧された冷媒を、第2空調ダクト内を流れる第2の送風空気と熱交換させることにより蒸発させる第2蒸発器と、第1蒸発器から流出する冷媒と、第2蒸発器から流出する冷媒の両方を圧縮機の吸入口へ導く戻り側接続配管とを備える。第2減圧装置は、絞り孔を有する絞り形成部と、第2蒸発器と戻り側接続配管との間の通路として設けられ第2蒸発器から流出する冷媒を戻り側接続配管へと流す戻り側通路が形成された戻り側通路形成部と、戻り側通路内の冷媒温度が低いほど絞り孔の孔開度を小さくする孔開度調節機構とを有する。孔開度調節機構は、放熱器から第2蒸発器への冷媒流れを孔開度の減少に応じて絞ることで冷媒を減圧する。戻り側接続配管は、第2減圧装置の戻り側通路形成部に連結される連結部を有し、その連結部は、第2減圧装置の戻り側通路へ連通する上向き通路を備える。上向き通路は、第1の送風空気が送風される一方で第2の送風空気の送風が停止された状態において冷媒が液相状態となって戻り側通路内に溜まるようにその戻り側通路よりも上方へ延びる。 According to one aspect of the present disclosure, the refrigeration cycle apparatus has a suction port, a compressor that compresses and discharges the refrigerant sucked from the suction port, a radiator that dissipates heat from the refrigerant discharged from the compressor, A first decompressor for decompressing the refrigerant flowing out of the radiator, a second decompressor connected to the radiator in parallel with the first decompressor for decompressing the refrigerant flowing out of the radiator, and an air conditioning first A first evaporator that is disposed in one air conditioning duct and evaporates by exchanging heat of the refrigerant decompressed by the first decompression device with the first blown air flowing in the first air conditioning duct; and a second air conditioning unit. A second evaporator, which is disposed in the air conditioning duct and evaporates by exchanging heat of the refrigerant decompressed by the second decompression device with the second blown air flowing in the second air conditioning duct, and flows out from the first evaporator. Flowing out of the second evaporator And a return-side connection pipe for guiding both medium to the suction port of the compressor. The second decompression device includes a throttle forming portion having a throttle hole, and a return side that is provided as a passage between the second evaporator and the return side connection pipe and flows the refrigerant flowing out of the second evaporator to the return side connection pipe. A return side passage forming portion in which a passage is formed, and a hole opening degree adjusting mechanism that reduces the opening degree of the throttle hole as the refrigerant temperature in the return side passage is lower. The hole opening adjustment mechanism depressurizes the refrigerant by restricting the refrigerant flow from the radiator to the second evaporator according to the decrease in the hole opening. The return side connection pipe has a connecting portion connected to the return side passage forming portion of the second pressure reducing device, and the connecting portion includes an upward passage communicating with the return side passage of the second pressure reducing device. The upward passage is more than the return-side passage so that the refrigerant becomes a liquid phase and accumulates in the return-side passage when the first blown air is blown while the second blown air is stopped. Extends upward.
 上述の一態様によれば、戻り側接続配管の連結部には、第2減圧装置の戻り側通路へ連通し、第1の送風空気が送風される一方で第2の送風空気の送風が停止された状態(以下、第1側運転状態という)において冷媒が液相状態となって戻り側通路内に溜まるようにその戻り側通路よりも上方へ延びる上向き通路が形成されている。したがって、第1側運転状態では、液相状態の冷媒または殆どが液の気液混合状態の冷媒で第2減圧装置の戻り側通路を満たすことができる。そのため、第2減圧装置の絞り孔は孔開度調節機構によって全閉(すなわち、孔開度が零)または略全閉とされ、第2蒸発器への冷媒流入が略止まる。従って、上向き通路を設けるという簡単な配管構造によって第2蒸発器へのオイルの流入を防止でき、圧縮機でのオイル不足発生を回避することができる。 According to the one aspect described above, the connecting portion of the return side connection pipe communicates with the return side passage of the second decompression device, and the first blown air is blown while the second blown air is stopped. In this state (hereinafter referred to as the first side operation state), an upward passage is formed extending upward from the return side passage so that the refrigerant enters a liquid phase state and accumulates in the return side passage. Therefore, in the first-side operation state, the return-side passage of the second decompression device can be filled with the refrigerant in the liquid phase state or almost the refrigerant in the gas-liquid mixed state. Therefore, the throttle hole of the second decompression device is fully closed (that is, the hole opening degree is zero) or substantially fully closed by the hole opening degree adjusting mechanism, and the refrigerant flow into the second evaporator is substantially stopped. Accordingly, oil can be prevented from flowing into the second evaporator by a simple piping structure in which an upward passage is provided, and occurrence of oil shortage in the compressor can be avoided.
本開示の一実施形態における冷凍サイクル装置を示す模式図である。It is a mimetic diagram showing the refrigerating cycle device in one embodiment of this indication. 図1におけるII部分を示す図である。It is a figure which shows the II part in FIG.
 以下、本開示の実施形態について図に基づいて説明する。なお、後述する他の実施形態を含む以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments including other embodiments described later, the same or equivalent parts are denoted by the same reference numerals in the drawings.
 図1は、本開示の一実施形態における冷凍サイクル装置10の全体構成を示す模式図である。図1および後述の図2に図示された冷媒通路内の矢印は冷媒流れ方向を示している。この冷凍サイクル装置10は、図1に示すように、車室内へ空調風を吹き出す複数の空調ユニット12、14を有するデュアルエアコンタイプの車両用空調装置8に備えられるものである。この車両用空調装置8は、フロント側空調ユニットすなわち前席側空調ユニット12と、リア側空調ユニットすなわち後席側空調ユニット14とを含んで構成されている。 FIG. 1 is a schematic diagram illustrating an overall configuration of a refrigeration cycle apparatus 10 according to an embodiment of the present disclosure. The arrows in the refrigerant passage illustrated in FIG. 1 and FIG. 2 described later indicate the refrigerant flow direction. As shown in FIG. 1, the refrigeration cycle apparatus 10 is provided in a dual air conditioner type vehicle air conditioner 8 having a plurality of air conditioning units 12 and 14 for blowing conditioned air into a vehicle interior. The vehicle air conditioner 8 includes a front side air conditioning unit, that is, a front seat side air conditioning unit 12, and a rear side air conditioning unit, that is, a rear seat side air conditioning unit 14.
 前席側空調ユニット12は、車室内の最前部の計器盤(図示せず)の内側に配設されて、車室内前席側の領域を空調するものである。この前席側空調ユニット12は、空気通路を形成する空調用の第1空調ダクトとして設けられた前席側空調ケース121、および、前席側空調ケース121の上流側に配置された第1送風装置としての前席側送風機122等を有している。また、前席側空調ユニット12は、冷凍サイクル装置10の一部を構成する前席側蒸発器16と前席側膨張弁18とを有している。 The front seat side air conditioning unit 12 is disposed inside the foremost instrument panel (not shown) in the passenger compartment, and air-conditions the area on the front seat side of the passenger compartment. The front seat side air conditioning unit 12 includes a front seat side air conditioning case 121 provided as a first air conditioning duct for air conditioning that forms an air passage, and a first air blower disposed upstream of the front seat side air conditioning case 121. It has a front seat side fan 122 as an apparatus. The front seat side air conditioning unit 12 includes a front seat side evaporator 16 and a front seat side expansion valve 18 that constitute a part of the refrigeration cycle apparatus 10.
 前席側空調ケース121内には、第1蒸発器としての前席側蒸発器16が収容されており、その前席側蒸発器16は前席側送風機122に対し空気流れ下流側に配置されている。前席側蒸発器16は、前席側空調ケース121内を矢印FL1aのように流れる第1の送風空気を冷却する冷却用熱交換器である。 A front seat side evaporator 16 as a first evaporator is accommodated in the front seat side air conditioning case 121, and the front seat side evaporator 16 is arranged on the downstream side of the air flow with respect to the front seat side blower 122. ing. The front seat evaporator 16 is a cooling heat exchanger that cools the first blown air flowing in the front seat side air conditioning case 121 as indicated by an arrow FL1a.
 また、前席側空調ユニット12の下流端、すなわち前席側空調ユニット12の筐体を成す前席側空調ケース121の下流端には、空気吹出口121aが形成されている。前席側蒸発器16で冷却された第1の送風空気はこの空気吹出口121aを矢印FL1bのように通過し、空気吹出口121aから例えば、車両窓ガラスの内面、前席側乗員の頭部、足元部など車室内の何れかの箇所に向けて吹き出される。 In addition, an air outlet 121 a is formed at the downstream end of the front seat air conditioning unit 12, that is, at the downstream end of the front seat air conditioning case 121 that forms the housing of the front seat air conditioning unit 12. The first blown air cooled by the front seat side evaporator 16 passes through the air outlet 121a as indicated by an arrow FL1b, and from the air outlet 121a, for example, the inner surface of the vehicle window glass, the head of the front seat side occupant The air is blown out toward any part of the passenger compartment such as the feet.
 後席側空調ユニット14は、車室内の後席側を空調するように車室内の後部、例えば、後席の側方部位等に配置される。後席側空調ユニット14は、上述した前席側空調ユニット12と同様の構成を有している。 The rear seat side air conditioning unit 14 is arranged at the rear part of the vehicle interior, for example, at the side part of the rear seat so as to air-condition the rear seat side of the vehicle interior. The rear seat air conditioning unit 14 has the same configuration as the front seat air conditioning unit 12 described above.
 具体的に、後席側空調ユニット14は、空気通路を形成する空調用の第2空調ダクトとして設けられた後席側空調ケース141、および、後席側空調ケース141の上流側に配置された第2送風装置としての後席側送風機142等を有している。また、後席側空調ユニット14は、冷凍サイクル装置10の一部を構成する後席側蒸発器20と後席側膨張弁22とを有している。 Specifically, the rear seat side air conditioning unit 14 is disposed upstream of the rear seat side air conditioning case 141 provided as a second air conditioning duct for air conditioning that forms an air passage, and the rear seat side air conditioning case 141. A rear seat blower 142 or the like as the second blower is provided. Further, the rear seat side air conditioning unit 14 includes a rear seat side evaporator 20 and a rear seat side expansion valve 22 that constitute a part of the refrigeration cycle apparatus 10.
 後席側空調ケース141内には、第2蒸発器としての後席側蒸発器20が収容されており、その後席側蒸発器20は後席側送風機142に対し空気流れ下流側に配置されている。後席側蒸発器20は、後席側空調ケース141内を矢印FL2aのように流れる第2の送風空気を冷却する冷却用熱交換器である。 A rear seat side evaporator 20 as a second evaporator is accommodated in the rear seat side air conditioning case 141, and the rear seat side evaporator 20 is disposed on the downstream side of the air flow with respect to the rear seat side blower 142. Yes. The rear seat-side evaporator 20 is a cooling heat exchanger that cools the second blown air that flows in the rear seat-side air conditioning case 141 as indicated by an arrow FL2a.
 また、後席側空調ユニット14の下流端、すなわち後席側空調ユニット14の筐体を成す後席側空調ケース141の下流端には、空気吹出口141aが形成されている。後席側蒸発器20で冷却された第2の送風空気はこの空気吹出口141aを矢印FL2bのように通過し、空気吹出口141aから例えば、車室内の中の後席周りの空間に向けて吹き出される。 Also, an air outlet 141 a is formed at the downstream end of the rear seat air conditioning unit 14, that is, at the downstream end of the rear seat air conditioning case 141 that forms the housing of the rear seat air conditioning unit 14. The second blown air cooled by the rear seat side evaporator 20 passes through the air outlet 141a as indicated by an arrow FL2b, and, for example, from the air outlet 141a toward the space around the rear seat in the vehicle interior. Blown out.
 冷凍サイクル装置10では、冷媒として通常のフロン系冷媒が採用されている。冷凍サイクル装置10は、高圧冷媒の圧力が冷媒の臨界圧力を越えない亜臨界冷凍サイクルで構成されている。 In the refrigeration cycle apparatus 10, a normal chlorofluorocarbon refrigerant is employed as the refrigerant. The refrigeration cycle apparatus 10 includes a subcritical refrigeration cycle in which the pressure of the high-pressure refrigerant does not exceed the critical pressure of the refrigerant.
 図1に示すように、冷凍サイクル装置10は、上記の前席側蒸発器16、前席側膨張弁18、後席側蒸発器20、および後席側膨張弁22に加え、圧縮機30(COMP)、凝縮器32、および配管34、36、38、40、42など備えている。冷凍サイクル装置10においては、圧縮機30から吐出された冷媒が凝縮器32と前席側膨張弁18と前席側蒸発器16とを順に経て圧縮機30へ戻る前席側空調用の第1冷媒回路と、圧縮機30から吐出された冷媒が凝縮器32と後席側膨張弁22と後席側蒸発器20とを順に経て圧縮機30へ戻る後席側空調用の第2冷媒回路とが構成されている。すなわち、圧縮機30および凝縮器32は第1、第2冷媒回路の両方に含まれている。 As shown in FIG. 1, the refrigeration cycle apparatus 10 includes a compressor 30 (in addition to the front seat evaporator 16, the front seat expansion valve 18, the rear seat evaporator 20, and the rear seat expansion valve 22). COMP), a condenser 32, and pipes 34, 36, 38, 40, 42, and the like. In the refrigeration cycle apparatus 10, the refrigerant discharged from the compressor 30 passes through the condenser 32, the front seat side expansion valve 18, and the front seat side evaporator 16 in this order, and returns to the compressor 30 in order. A refrigerant circuit, and a second refrigerant circuit for rear seat air conditioning in which the refrigerant discharged from the compressor 30 returns to the compressor 30 through the condenser 32, the rear seat expansion valve 22 and the rear seat evaporator 20 in order. Is configured. That is, the compressor 30 and the condenser 32 are included in both the first and second refrigerant circuits.
 圧縮機30は、吸入口30aと吐出口30bとを有し、吸入口30aから吸入した冷媒を圧縮し、その圧縮した冷媒すなわち気相状態の高温高圧冷媒を吐出口30bから吐出する。例えば、圧縮機30は車両のエンジンルーム内に設けられ、不図示の車両エンジンによって駆動される。 The compressor 30 has a suction port 30a and a discharge port 30b, compresses the refrigerant sucked from the suction port 30a, and discharges the compressed refrigerant, that is, a high-temperature and high-pressure refrigerant in a gas phase, from the discharge port 30b. For example, the compressor 30 is provided in an engine room of a vehicle and is driven by a vehicle engine (not shown).
 凝縮器32は、例えば車両の走行風を受け易い場所に設けられ、凝縮器32の内部を流れる冷媒と室外ファンにより送風される外気および走行風とを熱交換する室外熱交換器である。言い換えれば、凝縮器32は、圧縮機30が吐出した冷媒から放熱させる放熱器である。 The condenser 32 is an outdoor heat exchanger that is provided, for example, in a place where the traveling wind of the vehicle is easily received, and exchanges heat between the refrigerant flowing inside the condenser 32, the outside air blown by the outdoor fan, and the traveling wind. In other words, the condenser 32 is a radiator that radiates heat from the refrigerant discharged from the compressor 30.
 具体的に、凝縮器32の冷媒入口32aは第1高圧配管34を介して圧縮機30の吐出口30bへ接続されており、圧縮機30から吐出された気相冷媒は凝縮器32へ導入される。そして、凝縮器32は、圧縮機30から吐出された冷媒を外気との熱交換により凝縮液化させる。 Specifically, the refrigerant inlet 32 a of the condenser 32 is connected to the discharge port 30 b of the compressor 30 via the first high-pressure pipe 34, and the gas-phase refrigerant discharged from the compressor 30 is introduced into the condenser 32. The The condenser 32 condenses and liquefies the refrigerant discharged from the compressor 30 by heat exchange with the outside air.
 前席側膨張弁18は、凝縮器32から流出した液相状態の低温冷媒を減圧する第1減圧装置の一例となっている。後席側膨張弁22は、凝縮器32に対して前席側膨張弁18と並列に接続されており、凝縮器32から流出した液相状態の低温冷媒を減圧する第2減圧装置の一例となっている。 The front seat side expansion valve 18 is an example of a first decompression device that decompresses the liquid-phase low-temperature refrigerant flowing out of the condenser 32. The rear seat side expansion valve 22 is connected in parallel to the front seat side expansion valve 18 with respect to the condenser 32, and is an example of a second decompression device that decompresses the low-temperature refrigerant in the liquid phase that has flowed out of the condenser 32. It has become.
 詳細には、凝縮器32の冷媒出口32bは、第2高圧配管36と第2高圧配管36の下流端に接続された第3高圧配管38とを順に介して前席側膨張弁18へ接続されている。それと共に、凝縮器32の冷媒出口32bは、第2高圧配管36と、第2高圧配管36の下流端に第3高圧配管38に対して並列に接続された第4高圧配管40とを順に介して後席側膨張弁22へ接続されている。このような各高圧配管36、38、40の接続により、凝縮器32の冷媒出口32bから流出した液相冷媒は前席側膨張弁18と後席側膨張弁22とへそれぞれ導入される。 Specifically, the refrigerant outlet 32b of the condenser 32 is connected to the front seat side expansion valve 18 through the second high-pressure pipe 36 and the third high-pressure pipe 38 connected to the downstream end of the second high-pressure pipe 36 in order. ing. At the same time, the refrigerant outlet 32b of the condenser 32 sequentially passes through the second high-pressure pipe 36 and the fourth high-pressure pipe 40 connected in parallel to the third high-pressure pipe 38 at the downstream end of the second high-pressure pipe 36. And connected to the rear seat side expansion valve 22. By connecting the high- pressure pipes 36, 38, and 40, the liquid-phase refrigerant flowing out from the refrigerant outlet 32 b of the condenser 32 is introduced into the front seat side expansion valve 18 and the rear seat side expansion valve 22, respectively.
 これらの前席側膨張弁18および後席側膨張弁22は周知の温度式膨張弁であり、互いに同じ内部構造を有している。そこで、図2に拡大図示されている後席側膨張弁22について主として説明し、前席側膨張弁18については、後席側膨張弁22と共通する説明を省略して簡略化した説明とする。 The front seat side expansion valve 18 and the rear seat side expansion valve 22 are well-known temperature type expansion valves and have the same internal structure. Therefore, the rear seat side expansion valve 22 enlarged in FIG. 2 will be mainly described, and the front seat side expansion valve 18 will be simplified by omitting the description common to the rear seat side expansion valve 22. .
 図2は、図1におけるII部分を拡大表示した部分拡大図である。図2に示すように、後席側膨張弁22は、凝縮器32から後席側蒸発器20への冷媒往路の一部を成す往き側通路222が形成された往き側通路形成部221と、後席側蒸発器20から圧縮機30の吸入口30aへの冷媒復路の一部を成す戻り側通路224が形成された戻り側通路形成部223とを有している。 FIG. 2 is a partial enlarged view in which the II part in FIG. 1 is enlarged and displayed. As shown in FIG. 2, the rear-seat side expansion valve 22 includes a forward-side passage forming part 221 in which a forward-side passage 222 that forms a part of the refrigerant forward path from the condenser 32 to the rear-seat evaporator 20 is formed; A return-side passage forming portion 223 in which a return-side passage 224 that forms a part of the refrigerant return path from the rear seat evaporator 20 to the suction port 30a of the compressor 30 is formed.
 往き側通路222は冷媒入口222aと冷媒出口222bとを有している。その往き側通路222の冷媒入口222aは第4高圧配管40へ接続され、往き側通路222の冷媒出口222bは、後席側蒸発器20の冷媒入口20aへ接続されている。 The forward passage 222 has a refrigerant inlet 222a and a refrigerant outlet 222b. The refrigerant inlet 222 a of the forward passage 222 is connected to the fourth high-pressure pipe 40, and the refrigerant outlet 222 b of the forward passage 222 is connected to the refrigerant inlet 20 a of the rear seat side evaporator 20.
 また、戻り側通路224は冷媒入口224aと冷媒出口224bとを有している。その戻り側通路224の冷媒入口224aは後席側蒸発器20の冷媒出口20bへ接続され、戻り側通路224の冷媒出口224bは、圧縮機30の吸入口30aへとつながる第2配管422へ接続されている。すなわち、戻り側通路224は、後席側蒸発器20と第2配管422との間の通路として設けられおり、後席側蒸発器20から流出する冷媒を第2配管422へと流す。 Also, the return side passage 224 has a refrigerant inlet 224a and a refrigerant outlet 224b. The refrigerant inlet 224a of the return side passage 224 is connected to the refrigerant outlet 20b of the rear seat side evaporator 20, and the refrigerant outlet 224b of the return side passage 224 is connected to the second pipe 422 connected to the suction port 30a of the compressor 30. Has been. That is, the return side passage 224 is provided as a passage between the rear seat side evaporator 20 and the second pipe 422, and allows the refrigerant flowing out from the rear seat side evaporator 20 to flow to the second pipe 422.
 また、往き側通路222は、通路断面が縮小され冷媒流れを絞る絞り孔222cを、往き側通路222の途中に有している。すなわち、往き側通路形成部221は、その一部分として、絞り孔222cが形成された絞り形成部221aを含んでいる。この往き側通路形成部221および戻り側通路形成部223は互いに一体的に構成されており、例えばアルミニウム合金製のブロック状に形成された膨張弁本体225に含まれている。 In addition, the forward side passage 222 has a throttle hole 222c in the middle of the forward side passage 222 in which the passage cross section is reduced to restrict the refrigerant flow. That is, the forward side passage forming part 221 includes, as a part thereof, a throttle forming part 221a in which a throttle hole 222c is formed. The forward side passage forming portion 221 and the return side passage forming portion 223 are integrally formed with each other, and are included in, for example, an expansion valve main body 225 formed in a block shape made of an aluminum alloy.
 また、後席側膨張弁22は、絞り孔222cの孔開度を増減するために、弁体226とダイヤフラム作動部227と感温棒228と作動棒229とを有している。弁体226は、絞り孔222cを開閉する開閉弁体であり、例えば球形状を成し、往き側通路222内に配置されている。この弁体226は、絞り孔222cの孔壁面との相対距離に応じて絞り孔222cの孔開度を調節する。この孔開度が小さいほど、絞り孔222cの孔壁面と弁体226との間に形成される冷媒通路の断面積が小さくなり、絞り孔222cを通過する冷媒流れが強く絞られる。要するに、絞り孔222cは、凝縮器32から後席側蒸発器20への冷媒流れを、弁体226によって調節される孔開度に応じて絞る。そして、絞り孔222cは、その冷媒流れを絞ることで、絞り孔222cを通過する冷媒を減圧膨張させる。なお、例えば孔開度の零とは、絞り孔222cが弁体226によって閉塞されている全閉状態である。 Further, the rear seat side expansion valve 22 includes a valve body 226, a diaphragm operating portion 227, a temperature sensing rod 228, and an operating rod 229 in order to increase or decrease the opening degree of the throttle hole 222c. The valve body 226 is an open / close valve body that opens and closes the throttle hole 222 c, for example, has a spherical shape, and is disposed in the forward passage 222. The valve body 226 adjusts the opening degree of the throttle hole 222c according to the relative distance between the throttle hole 222c and the hole wall surface. The smaller the hole opening, the smaller the cross-sectional area of the refrigerant passage formed between the hole wall surface of the throttle hole 222c and the valve body 226, and the refrigerant flow passing through the throttle hole 222c is strongly throttled. In short, the throttle hole 222 c throttles the refrigerant flow from the condenser 32 to the rear seat side evaporator 20 according to the opening degree of the hole adjusted by the valve body 226. The throttle hole 222c expands the refrigerant passing through the throttle hole 222c under reduced pressure by narrowing the refrigerant flow. For example, the hole opening degree of zero is a fully closed state in which the throttle hole 222c is closed by the valve body 226.
 ダイヤフラム作動部227は膨張弁本体225の上端部にネジ止め等によって固定されている。ダイヤフラム作動部227はダイヤフラム227aを有し、作動ガスが封入されたダイヤフラム室227bを形成している。その作動ガスは、例えば、冷凍サイクル装置10に使用される冷媒と同一種類の飽和ガスである。 The diaphragm operating part 227 is fixed to the upper end of the expansion valve body 225 by screws or the like. The diaphragm operating part 227 has a diaphragm 227a and forms a diaphragm chamber 227b in which a working gas is sealed. The working gas is, for example, the same type of saturated gas as the refrigerant used in the refrigeration cycle apparatus 10.
 ダイヤフラム227aは、例えば可撓性を有する薄い金属板から成る。ダイヤフラム227aは、ダイヤフラム室227bの一面を閉じるようにしてそのダイヤフラム室227bの一部を形成している。従って、ダイヤフラム室227b内の作動ガスとダイヤフラム227aとの間では温度差が生じれば直ちに熱が伝達されるようになっている。そして、ダイヤフラム227aはダイヤフラム室227b内の作動ガスの圧力変化に応じて変位する。言い換えれば、その作動ガスの圧力は、矢印Pgのようにダイヤフラム室227bを膨張させると共にダイヤフラム227aを下方へ変位させるように作用する。 The diaphragm 227a is made of a thin metal plate having flexibility, for example. The diaphragm 227a forms a part of the diaphragm chamber 227b so as to close one surface of the diaphragm chamber 227b. Therefore, heat is transferred immediately if a temperature difference occurs between the working gas in the diaphragm chamber 227b and the diaphragm 227a. The diaphragm 227a is displaced according to the pressure change of the working gas in the diaphragm chamber 227b. In other words, the pressure of the working gas acts to expand the diaphragm chamber 227b and displace the diaphragm 227a downward as indicated by an arrow Pg.
 感温棒228は、例えば熱伝導率が高いアルミニウム製であり、円筒形状を成す感温筒となっている。感温棒228は、感温棒228の軸方向が戻り側通路224における冷媒流れ方向に交差するように、戻り側通路224に配置されている。すなわち、感温棒228は、戻り側通路224の一部を上下方向DR1に横切るように配置されている。そして、感温棒228の上端はダイヤフラム227aに当接している。このような配置により、感温棒228は、戻り側通路224内の冷媒とダイヤフラム227aとの間で熱を伝達する。なお、図2の矢印DR1は、後席側膨張弁22および後述する第2配管422の上下方向DR1を示している。 The temperature sensing rod 228 is made of aluminum having high thermal conductivity, for example, and is a temperature sensing cylinder having a cylindrical shape. The temperature sensing rod 228 is disposed in the return side passage 224 such that the axial direction of the temperature sensing rod 228 intersects the refrigerant flow direction in the return side passage 224. That is, the temperature sensing rod 228 is disposed so as to cross a part of the return side passage 224 in the up-down direction DR1. The upper end of the temperature sensing rod 228 is in contact with the diaphragm 227a. With such an arrangement, the temperature sensing rod 228 transfers heat between the refrigerant in the return side passage 224 and the diaphragm 227a. Note that an arrow DR1 in FIG. 2 indicates the vertical direction DR1 of the rear seat side expansion valve 22 and a second pipe 422 to be described later.
 作動棒229は円柱形状を成し、弁体226を作動させる弁作動部として機能する。作動棒229は、上下方向DR1において感温棒228に対し直列に且つ感温棒228の下側に配置されている。作動棒229は、その作動棒229の上端において感温棒228の下端に当接しており、感温棒228を介してダイヤフラム227aに連結されている。また、弁体226は、作動棒229と一体的に上下方向DR1に変位するように作動棒229の下端へ連結されている。従って、作動棒229は、ダイヤフラム室227bが縮小する側(すなわち上側)へダイヤフラム227aが変位(変形)するほど絞り孔222cの孔開度を小さくする側へ弁体226を作動させる。 The operating rod 229 has a cylindrical shape and functions as a valve operating unit that operates the valve body 226. The operating rod 229 is arranged in series with the temperature sensing rod 228 in the vertical direction DR1 and below the temperature sensing rod 228. The operating rod 229 is in contact with the lower end of the temperature sensing rod 228 at the upper end of the operation rod 229, and is connected to the diaphragm 227a via the temperature sensing rod 228. Further, the valve body 226 is connected to the lower end of the operating rod 229 so as to be displaced integrally with the operating rod 229 in the vertical direction DR1. Therefore, the actuating rod 229 operates the valve body 226 to the side where the opening degree of the throttle hole 222c is reduced as the diaphragm 227a is displaced (deformed) toward the side where the diaphragm chamber 227b is contracted (ie, the upper side).
 このように、上記の弁体226、ダイヤフラム作動部227、感温棒228、および作動棒229は全体として、絞り孔222cの孔開度を調節する孔開度調節機構230を構成する。そして、この孔開度調節機構230は、戻り側通路224内の冷媒の温度変化を絞り孔222cの孔開度の変化へ機械的動作によって置き換えるものであり、戻り側通路224内の冷媒温度が低いほど絞り孔222cの孔開度を小さくする。孔開度調節機構230はこのように作動することから、例えば仮に、戻り側通路224が液相状態の冷媒で満たされたとすれば絞り孔222cの孔開度を零にする。 Thus, the valve body 226, the diaphragm operating portion 227, the temperature sensing rod 228, and the operating rod 229 as a whole constitute a hole opening degree adjusting mechanism 230 that adjusts the opening degree of the throttle hole 222c. The hole opening adjusting mechanism 230 replaces the temperature change of the refrigerant in the return side passage 224 with a change in the opening degree of the throttle hole 222c by a mechanical operation, and the refrigerant temperature in the return side passage 224 is changed. The lower the aperture, the smaller the opening of the throttle hole 222c. Since the hole opening degree adjusting mechanism 230 operates in this way, for example, if the return side passage 224 is filled with the liquid phase refrigerant, the hole opening degree of the throttle hole 222c is made zero.
 図1に示す前席側膨張弁18は、上述した後席側膨張弁22と同様であり、すなわち、冷媒流れを絞る絞り孔182cを含む往き側通路182が形成された往き側通路形成部181と、戻り側通路184が形成された戻り側通路形成部183とを有している。 The front seat side expansion valve 18 shown in FIG. 1 is the same as the rear seat side expansion valve 22 described above, that is, the forward side passage forming portion 181 in which the forward side passage 182 including the throttle hole 182c for restricting the refrigerant flow is formed. And a return side passage forming portion 183 in which a return side passage 184 is formed.
 往き側通路182の冷媒入口182aは第3高圧配管38へ接続され、往き側通路182の冷媒出口182bは、前席側蒸発器16の冷媒入口16aへ接続されている。また、戻り側通路184の冷媒入口184aは前席側蒸発器16の冷媒出口16bへ接続され、戻り側通路184の冷媒出口184bは、圧縮機30の吸入口30aへとつながる後述の第1配管421へ接続されている。 The refrigerant inlet 182a of the forward passage 182 is connected to the third high-pressure pipe 38, and the refrigerant outlet 182b of the forward passage 182 is connected to the refrigerant inlet 16a of the front seat evaporator 16. Further, the refrigerant inlet 184a of the return side passage 184 is connected to the refrigerant outlet 16b of the front seat side evaporator 16, and the refrigerant outlet 184b of the return side passage 184 is connected to a suction port 30a of the compressor 30, which will be described later. 421.
 また、前席側膨張弁18は、上述した後席側膨張弁22と同様に、絞り孔182cの孔開度を調節する孔開度調節機構186を有している。 Also, the front seat side expansion valve 18 has a hole opening degree adjusting mechanism 186 that adjusts the opening degree of the throttle hole 182c, similarly to the rear seat side expansion valve 22 described above.
 前席側蒸発器16は、図1に示すように前席側空調ケース121内に配置されている。前席側蒸発器16の冷媒入口16aには、前席側膨張弁18の絞り孔182cで減圧された低圧冷媒が導入される。前席側蒸発器16は、その低圧冷媒を、前席側空調ケース121内を流れる空気と熱交換させることにより蒸発させ、熱交換後の低圧冷媒を冷媒出口16bから流出させる。そして、その前席側蒸発器16の冷媒出口16bから流出した低圧冷媒は、前席側膨張弁18の戻り側通路184を通って第1配管421へ流入する。 The front seat side evaporator 16 is disposed in the front seat side air conditioning case 121 as shown in FIG. Low-pressure refrigerant decompressed by the throttle hole 182 c of the front seat side expansion valve 18 is introduced into the refrigerant inlet 16 a of the front seat side evaporator 16. The front seat evaporator 16 evaporates the low pressure refrigerant by exchanging heat with the air flowing in the front seat air conditioning case 121, and causes the low pressure refrigerant after the heat exchange to flow out of the refrigerant outlet 16b. The low-pressure refrigerant that has flowed out of the refrigerant outlet 16 b of the front seat side evaporator 16 flows into the first pipe 421 through the return side passage 184 of the front seat side expansion valve 18.
 後席側蒸発器20は、後席側空調ケース141内に配置されている。後席側蒸発器20の冷媒入口20aには、後席側膨張弁22の絞り孔222c(図2参照)で減圧された低圧冷媒が導入される。後席側蒸発器20は、その低圧冷媒を、後席側空調ケース141内を流れる第2の送風空気と熱交換させることにより蒸発させ、熱交換後の低圧冷媒を冷媒出口20bから流出させる。そして、その後席側蒸発器20の冷媒出口20bから流出した低圧冷媒は、後席側膨張弁22の戻り側通路224(図2参照)を通って第2配管422へ流入する。 The rear seat evaporator 20 is disposed in the rear seat air conditioning case 141. Low-pressure refrigerant decompressed by a throttle hole 222c (see FIG. 2) of the rear seat side expansion valve 22 is introduced into the refrigerant inlet 20a of the rear seat side evaporator 20. The rear seat evaporator 20 evaporates the low pressure refrigerant by exchanging heat with the second blown air flowing in the rear seat air conditioning case 141, and causes the low pressure refrigerant after the heat exchange to flow out from the refrigerant outlet 20b. Then, the low-pressure refrigerant flowing out from the refrigerant outlet 20b of the rear seat side evaporator 20 flows into the second pipe 422 through the return side passage 224 (see FIG. 2) of the rear seat side expansion valve 22.
 冷凍サイクル装置10には、各膨張弁18、22の戻り側通路184、224から流出した冷媒を圧縮機30の吸入口30aへと導く戻り側接続配管の一例としての低圧配管42が設けられている。この低圧配管42は第1配管421と第2配管422と第3配管423とから構成されている。 The refrigeration cycle apparatus 10 is provided with a low-pressure pipe 42 as an example of a return-side connection pipe that guides the refrigerant flowing out from the return-side passages 184 and 224 of the expansion valves 18 and 22 to the suction port 30a of the compressor 30. Yes. The low pressure pipe 42 includes a first pipe 421, a second pipe 422, and a third pipe 423.
 第1配管421の上流端は、前席側膨張弁18に形成された戻り側通路184の冷媒出口184bへ接続され、第2配管422の上流端は、後席側膨張弁22に形成された戻り側通路224の冷媒出口224bへ接続されている。そして、第1配管421の下流端および第2配管422の下流端は、第3配管423の上流端へ接続されている。すなわち、第1配管421および第2配管422は互いに並列に第3配管423へ接続されている。 The upstream end of the first pipe 421 is connected to the refrigerant outlet 184 b of the return side passage 184 formed in the front seat side expansion valve 18, and the upstream end of the second pipe 422 is formed in the rear seat side expansion valve 22. The return side passage 224 is connected to the refrigerant outlet 224b. The downstream end of the first pipe 421 and the downstream end of the second pipe 422 are connected to the upstream end of the third pipe 423. That is, the first pipe 421 and the second pipe 422 are connected to the third pipe 423 in parallel with each other.
 また、第3配管423の下流端は、圧縮機30の吸入口30aへ接続されている。従って、前席側膨張弁18の戻り側通路184の冷媒出口184bから流出した冷媒は、第1配管421と第3配管423とを順に介して圧縮機30の吸入口30aへと導かれる。それと共に、後席側膨張弁22の戻り側通路224の冷媒出口224bから流出した冷媒は、第2配管422と第3配管423とを順に介して圧縮機30の吸入口30aへと導かれる。要するに、低圧配管42は、前席側蒸発器16と後席側蒸発器20との各々から流出する冷媒を圧縮機30の吸入口30aへと導く。 Further, the downstream end of the third pipe 423 is connected to the suction port 30a of the compressor 30. Accordingly, the refrigerant flowing out from the refrigerant outlet 184b of the return side passage 184 of the front seat side expansion valve 18 is guided to the suction port 30a of the compressor 30 through the first pipe 421 and the third pipe 423 in order. At the same time, the refrigerant flowing out from the refrigerant outlet 224b of the return side passage 224 of the rear seat side expansion valve 22 is guided to the suction port 30a of the compressor 30 through the second pipe 422 and the third pipe 423 in order. In short, the low-pressure pipe 42 guides the refrigerant flowing out from each of the front seat evaporator 16 and the rear seat evaporator 20 to the suction port 30 a of the compressor 30.
 ここで、低圧配管42の一部を成す第2配管422は、図2に示すように、後席側膨張弁22の戻り側通路形成部223に連結される連結部424を有している。この連結部424には、入口通路424aと入口通路424aの冷媒流れ下流側に直列に接続された上向き通路424bとが形成されている。 Here, as shown in FIG. 2, the second pipe 422 forming a part of the low-pressure pipe 42 has a connecting portion 424 that is connected to the return side passage forming portion 223 of the rear seat side expansion valve 22. In this connection portion 424, an inlet passage 424a and an upward passage 424b connected in series to the downstream side of the refrigerant flow of the inlet passage 424a are formed.
 この上向き通路424bは、入口通路424aを介して後席側膨張弁22の戻り側通路224へ連通している。すなわち、その戻り側通路224の冷媒出口224bは冷媒を上向き通路424bへ流出させる。 The upward passage 424b communicates with the return side passage 224 of the rear seat side expansion valve 22 via the inlet passage 424a. That is, the refrigerant outlet 224b of the return side passage 224 causes the refrigerant to flow out to the upward passage 424b.
 上向き通路(立上がり通路)424bは、冷媒流れ方向における上向き通路424bの下流端424dが上流端424cよりも高く位置するように、水平方向に対して斜め上方に延びて(立ち上がって)いる。詳細には、上向き通路424bは、その上向き通路424bの最上位置における通路断面SCtのうち最も下側の部位424eが、後席側膨張弁22の戻り側通路224のうちで最も上側に位置する最上部位224cよりも上方に位置するように設けられている。水平方向とは、重力方向に対して垂直であっても良い。 The upward passage (rising passage) 424b extends (rises) obliquely upward with respect to the horizontal direction so that the downstream end 424d of the upward passage 424b in the refrigerant flow direction is positioned higher than the upstream end 424c. Specifically, the upward passage 424b is the uppermost portion of the return-side passage 224 of the rear seat side expansion valve 22 in which the lowermost portion 424e of the passage section SCt at the uppermost position of the upward passage 424b is located. It is provided so as to be positioned above the portion 224c. The horizontal direction may be perpendicular to the direction of gravity.
 なお、戻り側通路224から上向き通路424bに至る冷媒経路においては、外気等からの吸熱に起因した冷媒の気化は防止されることが望ましい。したがって、入口通路424aの通路長は非常に短くなっており、上向き通路424bは、戻り側通路224の冷媒出口224b直後から上方に延びている。 In the refrigerant path from the return side passage 224 to the upward passage 424b, it is desirable to prevent the vaporization of the refrigerant due to heat absorption from the outside air or the like. Accordingly, the passage length of the inlet passage 424a is very short, and the upward passage 424b extends upward immediately after the refrigerant outlet 224b of the return side passage 224.
 以上のように構成された冷凍サイクル装置10では、その冷凍サイクル装置10の運転状態は、第1運転状態としての前後席運転状態と、第2運転状態としての前席側単独運転状態との何れかになる。その冷凍サイクル装置10の前後席運転状態は、図1に示す前席側空調ユニット12と後席側空調ユニット14との両方が稼働する場合の運転状態であり、前席側単独運転状態は、前席側空調ユニット12が稼働する一方で後席側空調ユニット14が停止する場合の運転状態である。 In the refrigeration cycle apparatus 10 configured as described above, the operation state of the refrigeration cycle apparatus 10 is either the front / rear seat operation state as the first operation state or the front seat side single operation state as the second operation state. It becomes. The front and rear seat operation state of the refrigeration cycle apparatus 10 is an operation state when both the front seat air conditioning unit 12 and the rear seat air conditioning unit 14 shown in FIG. This is an operation state when the front seat air conditioning unit 12 is operating and the rear seat air conditioning unit 14 is stopped.
 図1に示すように、冷凍サイクル装置10の前後席運転状態では、圧縮機30から吐出された冷媒が凝縮器32と前席側膨張弁18と前席側蒸発器16とを順に経て圧縮機30へ戻る前席側空調用の第1冷媒回路を冷媒が循環する。同時に、圧縮機30から吐出された冷媒が凝縮器32と後席側膨張弁22と後席側蒸発器20とを順に経て圧縮機30へ戻る後席側空調用の第2冷媒回路においても冷媒が循環する。このとき、前席側空調ユニット12と後席側空調ユニット14との両方が稼働しているので、両方の送風機122、142が送風している。すなわち、前後席運転状態では、前席側送風機122により第1の送風空気が送風されると共に後席側送風機142により第2の送風空気も送風される状態になっている。従って、前後席運転状態では、冷媒は、前席側蒸発器16および後席側蒸発器20のそれぞれで、送風機122、142が送風する送風空気と熱交換され蒸発気化される。 As shown in FIG. 1, in the front and rear seat operation state of the refrigeration cycle apparatus 10, the refrigerant discharged from the compressor 30 passes through the condenser 32, the front seat side expansion valve 18, and the front seat side evaporator 16 in order. The refrigerant circulates through the first refrigerant circuit for the front seat air conditioning that returns to 30. At the same time, the refrigerant discharged from the compressor 30 passes through the condenser 32, the rear seat side expansion valve 22, and the rear seat side evaporator 20 in that order and returns to the compressor 30 in the second refrigerant circuit for rear seat side air conditioning. Circulates. At this time, since both the front seat side air conditioning unit 12 and the rear seat side air conditioning unit 14 are operating, both the fans 122 and 142 are blowing air. That is, in the front and rear seat operation state, the first blown air is blown by the front seat side blower 122 and the second blown air is also blown by the rear seat side blower 142. Therefore, in the front-rear seat operation state, the refrigerant is evaporated and vaporized by heat exchange with the air blown by the blowers 122 and 142 in each of the front seat evaporator 16 and the rear seat evaporator 20.
 冷凍サイクル装置10の前席側単独運転状態では、前席側送風機122は送風するが後席側送風機142は停止されている。すなわち、前席側単独運転状態では、上記第1の送風空気が送風される一方で上記第2の送風空気の送風が停止された状態になっている。従って、前席側単独運転状態では、後席側空調ユニット14内において後席側蒸発器20での熱交換が略停止する。これにより、後席側膨張弁22の弁体226が絞り孔222cの孔開度を略零にするので、冷凍サイクル装置10において上記第2冷媒回路の冷媒流れは略停止し、冷媒は専ら上記第1冷媒回路で循環する。 In the front seat side independent operation state of the refrigeration cycle apparatus 10, the front seat side blower 122 blows air, but the rear seat side blower 142 is stopped. That is, in the front seat side independent operation state, the first blown air is blown while the second blown air is stopped. Therefore, in the front seat side independent operation state, heat exchange in the rear seat side evaporator 20 in the rear seat side air conditioning unit 14 is substantially stopped. As a result, the valve body 226 of the rear seat side expansion valve 22 makes the opening degree of the throttle hole 222c substantially zero, so that the refrigerant flow in the second refrigerant circuit is substantially stopped in the refrigeration cycle apparatus 10, and the refrigerant is exclusively used for the above. Circulate in the first refrigerant circuit.
 また圧縮機30内部を潤滑する潤滑油としてのオイルに着目すると、そのオイルは吐出口30bから冷媒と共に吐出される。そして、冷凍サイクル装置10の前後席運転状態では、オイルは、上記第1冷媒回路および第2冷媒回路の各々を冷媒と共に回って圧縮機30の吸入口30aへ戻る。 Further, paying attention to oil as lubricating oil for lubricating the inside of the compressor 30, the oil is discharged from the discharge port 30b together with the refrigerant. And in the front-rear seat operation state of the refrigeration cycle apparatus 10, the oil goes around the first refrigerant circuit and the second refrigerant circuit together with the refrigerant and returns to the suction port 30 a of the compressor 30.
 冷凍サイクル装置10の前席側単独運転状態では、前席側空調用の第1冷媒回路において前席側蒸発器16から流出する冷媒は、前席側送風機122の送風空気と熱交換しスーパーヒートとなる。そのため、前席側膨張弁18における絞り孔182cの孔開度は大きくなり、前席側蒸発器16内の冷媒は、前席側蒸発器16から冷媒と共にオイルを流出させるのに十分に大きな冷媒流量で流れる。従って、第1冷媒回路では、オイルが圧縮機30へ戻るオイル循環率を十分な大きさに保つことができる。 In the front seat side independent operation state of the refrigeration cycle apparatus 10, the refrigerant flowing out from the front seat side evaporator 16 in the first refrigerant circuit for front seat side air conditioning exchanges heat with the blown air of the front seat side blower 122 and performs superheat. It becomes. Therefore, the opening degree of the throttle hole 182c in the front seat side expansion valve 18 is increased, and the refrigerant in the front seat side evaporator 16 is a refrigerant that is large enough to cause the oil to flow out from the front seat side evaporator 16 together with the refrigerant. Flows at a flow rate. Therefore, in the first refrigerant circuit, the oil circulation rate at which the oil returns to the compressor 30 can be kept sufficiently large.
 その一方で、前席側単独運転状態では後席側送風機142が止まっているので、後席側空調用の第2冷媒回路において後席側蒸発器20は冷媒と空気との熱交換を行わず、後席側蒸発器20から流出する冷媒は液相状態または殆ど液相の気液混合状態になる。 On the other hand, since the rear seat blower 142 is stopped in the front seat side independent operation state, the rear seat evaporator 20 does not exchange heat between the refrigerant and the air in the second refrigerant circuit for the rear seat air conditioning. The refrigerant flowing out of the rear seat side evaporator 20 is in a liquid phase state or almost a liquid phase gas-liquid mixed state.
 そのため、仮に低圧配管42の上向き通路424bが設けられておらず、後席側膨張弁22の戻り側通路224内の冷媒が戻り側通路224内に溜まらずに圧縮機30へ戻るとすれば、後席側膨張弁22における絞り孔222cが小開度ながらも或る程度開くことになる。そうなると、後席側蒸発器20から流出する冷媒は、後席側蒸発器20から冷媒と共にオイルを流出させるには不足した小さい冷媒流量で流れ、第2冷媒回路における圧縮機30へのオイル帰還量が乏しくなる。その結果、冷凍サイクル装置10全体では、圧縮機30へのオイル帰還量が減ってしまうことになる。 Therefore, if the upward passage 424b of the low-pressure pipe 42 is not provided and the refrigerant in the return side passage 224 of the rear seat side expansion valve 22 returns to the compressor 30 without accumulating in the return side passage 224, The throttle hole 222c in the rear seat side expansion valve 22 opens to a certain extent although the opening is small. Then, the refrigerant flowing out from the rear seat evaporator 20 flows at a small refrigerant flow that is insufficient to cause the oil to flow out from the rear seat evaporator 20 together with the refrigerant, and the oil return amount to the compressor 30 in the second refrigerant circuit. Becomes scarce. As a result, in the entire refrigeration cycle apparatus 10, the amount of oil return to the compressor 30 is reduced.
 これに対し、本実施形態の冷凍サイクル装置10では、図2に示すように、低圧配管42に上向き通路424bが設けられている。そのため、前席側単独運転状態では、液相状態の冷媒は上向き通路424bに堰き止められ、後席側膨張弁22の戻り側通路224内に溜まることとなる。また、後席側蒸発器20から流出する冷媒が殆ど液相の気液混合状態であればその中の液相状態の冷媒が上向き通路424bに堰き止められる。言い換えれば、低圧配管42の上向き通路424bは、前席側単独運転状態において冷媒が液相状態となって戻り側通路224内に溜まるようにその戻り側通路224よりも上方へ延びている。 On the other hand, in the refrigeration cycle apparatus 10 of the present embodiment, as shown in FIG. 2, an upward passage 424b is provided in the low-pressure pipe. Therefore, in the front seat side single operation state, the refrigerant in the liquid phase is blocked by the upward passage 424b and is accumulated in the return side passage 224 of the rear seat side expansion valve 22. Further, if the refrigerant flowing out from the rear seat side evaporator 20 is almost in a liquid phase gas-liquid mixed state, the liquid phase state refrigerant therein is blocked by the upward passage 424b. In other words, the upward passage 424b of the low-pressure pipe 42 extends upward from the return-side passage 224 so that the refrigerant is in a liquid state and accumulates in the return-side passage 224 in the front seat side single operation state.
 このようにして前席側単独運転状態では、液相状態または殆ど液相の気液混合状態の冷媒が戻り側通路224内に溜まるので、戻り側通路224内の冷媒の状態がスーパーヒートの無い状態になり、後席側膨張弁22の弁体226は絞り孔222cの孔開度を略零にする。従って、後席側蒸発器20への冷媒流入は停止または略停止される。その結果、第2冷媒回路においては、液相状態または殆ど液相の気液混合状態の冷媒が、後席側膨張弁22の絞り孔222cから後席側蒸発器20を経て上向き通路424bに至る冷媒経路に滞留し、凝縮器32から後席側膨張弁22へのオイル流入を防止することができる。そして、冷媒は専ら前席側空調用の第1冷媒回路で循環するので、冷凍サイクル装置10全体として、圧縮機30のオイル不足を防止できる程度に十分に大きなオイル循環率を保つことができる。 In this way, in the front seat side independent operation state, the refrigerant in the liquid phase state or almost in the liquid phase gas-liquid mixture state is accumulated in the return side passage 224, so the state of the refrigerant in the return side passage 224 has no superheat. Then, the valve element 226 of the rear seat side expansion valve 22 makes the opening degree of the throttle hole 222c substantially zero. Accordingly, the refrigerant flow into the rear seat evaporator 20 is stopped or substantially stopped. As a result, in the second refrigerant circuit, the refrigerant in the liquid phase state or the almost liquid phase gas-liquid mixed state reaches the upward passage 424b from the throttle hole 222c of the rear seat side expansion valve 22 through the rear seat side evaporator 20. The oil stays in the refrigerant path, and oil inflow from the condenser 32 to the rear seat side expansion valve 22 can be prevented. And since a refrigerant | coolant circulates exclusively in the 1st refrigerant circuit for front seat side air conditioning, as a whole refrigeration cycle device 10, the oil circulation rate large enough to prevent oil shortage of compressor 30 can be maintained.
 上述したように、本実施形態によれば、低圧配管42の連結部424には、後席側膨張弁22の戻り側通路224へ連通しその戻り側通路224よりも上方へ延びる上向き通路424bが形成されている。そして、その上向き通路424bは戻り側通路224の冷媒出口224b直後から上方に延びている。すなわち、上向き通路424bは、上記第1の送風空気が送風される一方で上記第2の送風空気の送風が停止された状態(すなわち、前席側単独運転状態)において冷媒が液相状態となって戻り側通路224内に溜まるように上方に延びている。そのため、上記前席側単独運転状態では、液相状態の冷媒または殆ど液相の気液混合状態の冷媒で後席側膨張弁22の戻り側通路224を満たすことができる。 As described above, according to the present embodiment, the connecting portion 424 of the low pressure pipe 42 has the upward passage 424b that communicates with the return side passage 224 of the rear seat side expansion valve 22 and extends upward from the return side passage 224. Is formed. The upward passage 424b extends upward immediately after the refrigerant outlet 224b of the return side passage 224. That is, in the upward passage 424b, the refrigerant is in a liquid phase state in a state where the first blown air is blown and the second blown air is stopped (that is, the front seat side single operation state). And extends upward so as to accumulate in the return side passage 224. Therefore, in the front seat side independent operation state, the return side passage 224 of the rear seat side expansion valve 22 can be filled with the refrigerant in the liquid phase state or the refrigerant in the almost liquid phase gas-liquid mixed state.
 そうなると上述したように、後席側膨張弁22における絞り孔222cの孔開度は弁体226により全閉(すなわち、孔開度が零)または略全閉とされ、後席側蒸発器20への冷媒およびオイルの流入が略止まる。従って、低圧配管42に上向き通路424bを設けるという簡単な配管構造によって後席側蒸発器20へのオイルの流入を防止でき、圧縮機30でのオイル不足発生を回避することができる。なお、殆ど液相の気液混合状態の冷媒で戻り側通路224を満たすことは、言い換えれば、液相状態の冷媒と僅かながらの気相状態の冷媒とで戻り側通路224を満たすことであるので、この場合にも、冷媒が液相状態となって戻り側通路224内に溜まっている。 Then, as described above, the opening degree of the throttle hole 222 c in the rear seat side expansion valve 22 is fully closed (that is, the hole opening degree is zero) or substantially fully closed by the valve body 226, and the rear seat side evaporator 20 is returned to. Inflow of refrigerant and oil almost stops. Therefore, the simple piping structure in which the upward passage 424b is provided in the low-pressure pipe 42 can prevent the oil from flowing into the rear seat side evaporator 20, and the occurrence of oil shortage in the compressor 30 can be avoided. Note that filling the return side passage 224 with almost liquid phase gas-liquid mixed refrigerant means that the return side passage 224 is filled with liquid phase refrigerant and a slight amount of gas phase refrigerant. Therefore, also in this case, the refrigerant is in a liquid phase state and is accumulated in the return side passage 224.
 また、冷凍サイクル装置10の前席側単独運転状態では、上記のように後席側蒸発器20への冷媒およびオイルの流入が略止まる。従って、オイルを後席側蒸発器20から圧縮機30へ戻すために圧縮機30の間欠作動を行う前述の圧縮機間欠制御を実行する必要がないというメリットがある。 Further, in the front seat side single operation state of the refrigeration cycle apparatus 10, the inflow of refrigerant and oil to the rear seat side evaporator 20 substantially stops as described above. Therefore, there is an advantage that it is not necessary to execute the above-described intermittent compressor control for performing the intermittent operation of the compressor 30 in order to return the oil from the rear seat evaporator 20 to the compressor 30.
 また、本実施形態によれば、低圧配管42の上向き通路424bは、水平方向に対して斜め上方に延びているので、例えば水平方向に対して垂直に延びている場合と比較して、後席側空調ユニット14の稼働中において冷媒を上向き通路424bに滑らかに流すことが可能である。 Further, according to the present embodiment, the upward passage 424b of the low-pressure pipe 42 extends obliquely upward with respect to the horizontal direction, and therefore, for example, compared to a case where it extends vertically to the horizontal direction, the rear seat During the operation of the side air conditioning unit 14, the refrigerant can flow smoothly into the upward passage 424b.
 また、本実施形態によれば、低圧配管42の上向き通路424bは、その上向き通路424bの最上位置における通路断面SCt(図2参照)のうち最も下側の部位424eが、後席側膨張弁22の戻り側通路224のうちで最も上側に位置する最上部位224cよりも上方に位置するように設けられている。従って、冷凍サイクル装置10の前席側単独運転状態において、戻り側通路224内に液相状態の冷媒が満たされるように上向き通路424bで冷媒を堰き止めることが可能である。 Further, according to the present embodiment, the upper passage 424b of the low-pressure pipe 42 is such that the lowermost portion 424e in the passage section SCt (see FIG. 2) at the uppermost position of the upward passage 424b is the rear seat side expansion valve 22. In the return side passage 224, the uppermost portion 224c located on the uppermost side is provided above the uppermost portion 224c. Therefore, in the front seat side single operation state of the refrigeration cycle apparatus 10, it is possible to dam the refrigerant in the upward passage 424b so that the return-side passage 224 is filled with the liquid-phase refrigerant.
 上述の実施形態において、図2では入口通路424aが第2配管422の連結部424に設けられているが、その入口通路424aが無い或いは入口通路424aが無いに等しい程度に極めて短くなっていてもよい。その場合には、上向き通路424bは、後席側膨張弁22が有する戻り側通路224の冷媒出口224bから上方に延びて設けられる。そのようにしたとすれば、或る程度の長さの入口通路424aが戻り側通路224と上向き通路424bとの間に設けられている場合と比較して、上向き通路424bにより堰き止められた冷媒の吸熱を抑え、その冷媒の蒸発気化を抑えることが可能である。 In the above-described embodiment, the inlet passage 424a is provided in the connecting portion 424 of the second pipe 422 in FIG. 2, but even if the inlet passage 424a is not present or is extremely short to the extent that there is no inlet passage 424a. Good. In that case, the upward passage 424b is provided extending upward from the refrigerant outlet 224b of the return side passage 224 of the rear seat side expansion valve 22. If so, the refrigerant blocked by the upward passage 424b as compared with the case where the inlet passage 424a having a certain length is provided between the return side passage 224 and the upward passage 424b. It is possible to suppress the heat absorption of the refrigerant and to prevent evaporation of the refrigerant.
 上述の実施形態において、車両用空調装置8は、2つの空調ユニット12、14を有しているが、3つ以上の空調ユニットを有していても差し支えない。 In the above-described embodiment, the vehicle air conditioner 8 includes the two air conditioning units 12 and 14, but may include three or more air conditioning units.
 なお、本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記実施形態において、構成要素等の材質、形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の材質、形状、位置関係等に限定される場合等を除き、その材質、形状、位置関係等に限定されるものではない。 Note that the present disclosure is not limited to the above-described embodiment, and can be changed as appropriate. Further, in the above-described embodiment, it is needless to say that elements constituting the embodiment are not necessarily indispensable except for the case where it is clearly indicated that the element is essential and the case where the element is clearly considered to be essential in principle. . Further, in the above embodiment, when numerical values such as the number, numerical value, quantity, range, etc. of the constituent elements of the embodiment are mentioned, it is particularly limited to a specific number when clearly indicated as essential and in principle. The number is not limited to a specific number except for cases. Further, in the above embodiment, when referring to the material, shape, positional relationship, etc. of the component, etc., unless otherwise specified and in principle limited to a specific material, shape, positional relationship, etc. The material, shape, positional relationship and the like are not limited.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

 
Although the present disclosure has been described with reference to the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (5)

  1.  吸入口(30a)を有し、該吸入口から吸入した冷媒を圧縮して吐出する圧縮機(30)と、
     該圧縮機が吐出した前記冷媒から放熱させる放熱器(32)と、
     該放熱器から流出した前記冷媒を減圧する第1減圧装置(18)と、
     前記放熱器に対して前記第1減圧装置と並列に接続され、前記放熱器から流出した前記冷媒を減圧する第2減圧装置(22)と、
     空調用の第1空調ダクト(121)内に配置され、前記第1減圧装置で減圧された前記冷媒を、前記第1空調ダクト内を流れる第1の送風空気と熱交換させることにより蒸発させる第1蒸発器(16)と、
     空調用の第2空調ダクト(41)内に配置され、前記第2減圧装置で減圧された前記冷媒を、前記第2空調ダクト内を流れる第2の送風空気と熱交換させることにより蒸発させる第2蒸発器(20)と、
     前記第1蒸発器から流出する前記冷媒と、前記第2蒸発器から流出する前記冷媒の両方を前記圧縮機の吸入口へ導く戻り側接続配管(42)とを備え、
     前記第2減圧装置は、絞り孔(222c)を有する絞り形成部(221a)と、前記第2蒸発器と前記戻り側接続配管との間の通路として設けられ前記第2蒸発器から流出する前記冷媒を前記戻り側接続配管へと流す戻り側通路(224)を有する戻り側通路形成部(223)と、前記戻り側通路内の冷媒温度が低いほど前記絞り孔の孔開度を小さくする孔開度調節機構(230)とを有し、
     前記孔開度調節機構は、前記放熱器から前記第2蒸発器への冷媒流れを前記孔開度の減少に応じて絞ることで前記冷媒を減圧し、
     前記戻り側接続配管は、前記第2減圧装置の戻り側通路形成部に連結される連結部(424)を有し、
     該連結部は、前記第2減圧装置の戻り側通路へ連通する上向き通路(424b)を備え、
     前記上向き通路は、前記第1の送風空気が送風される一方で前記第2の送風空気の送風が停止された状態において前記冷媒が液相状態となって前記戻り側通路内に溜まるように該戻り側通路よりも上方へ延びる冷凍サイクル装置。
    A compressor (30) having a suction port (30a) for compressing and discharging the refrigerant sucked from the suction port;
    A radiator (32) for radiating heat from the refrigerant discharged by the compressor;
    A first decompression device (18) for decompressing the refrigerant flowing out of the radiator;
    A second decompression device (22) connected in parallel to the first decompressor for the radiator and decompressing the refrigerant flowing out of the radiator;
    The refrigerant which is disposed in the first air conditioning duct (121) for air conditioning and evaporates by exchanging heat with the first blown air flowing in the first air conditioning duct. One evaporator (16),
    The refrigerant which is disposed in the second air conditioning duct (41) for air conditioning and evaporates by exchanging heat with the second blown air flowing through the second air conditioning duct. Two evaporators (20);
    A return side connection pipe (42) for guiding both the refrigerant flowing out of the first evaporator and the refrigerant flowing out of the second evaporator to the suction port of the compressor;
    The second pressure reducing device is provided as a passage between a throttle forming portion (221a) having a throttle hole (222c) and the second evaporator and the return side connection pipe, and flows out from the second evaporator. A return-side passage forming portion (223) having a return-side passage (224) for flowing the refrigerant to the return-side connecting pipe, and a hole for reducing the opening degree of the throttle hole as the refrigerant temperature in the return-side passage decreases. An opening adjustment mechanism (230),
    The hole opening adjustment mechanism depressurizes the refrigerant by restricting a refrigerant flow from the radiator to the second evaporator according to a decrease in the hole opening;
    The return side connection pipe has a connecting portion (424) connected to a return side passage forming portion of the second decompression device,
    The connecting portion includes an upward passage (424b) communicating with the return-side passage of the second decompression device,
    The upward passage is arranged so that the refrigerant becomes a liquid phase and accumulates in the return side passage in a state where the first blowing air is blown and the second blowing air is stopped. A refrigeration cycle apparatus extending upward from the return side passage.
  2.  前記戻り側通路は、前記冷媒を前記上向き通路へ流出させる冷媒出口(224b)を有し、
     前記上向き通路は、前記戻り側通路の冷媒出口から上方へ延びる請求項1に記載の冷凍サイクル装置。
    The return side passage has a refrigerant outlet (224b) for letting the refrigerant flow out to the upward passage,
    The refrigeration cycle apparatus according to claim 1, wherein the upward passage extends upward from a refrigerant outlet of the return side passage.
  3.  前記上向き通路は、水平方向に対して斜め上方に延びる請求項1または2に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1 or 2, wherein the upward passage extends obliquely upward with respect to a horizontal direction.
  4.  前記上向き通路は、該上向き通路の最上位置における該上向き通路の通路断面(SCt)のうち最も下側の部位(424e)が、前記戻り側通路のうちで最も上側に位置する最上部位(224c)よりも上方に位置する請求項1ないし3のいずれか1つに記載の冷凍サイクル装置。 In the upward passage, the lowermost portion (424e) of the passage section (SCt) of the upward passage at the uppermost position of the upward passage is the uppermost portion (224c) of the return side passage. The refrigeration cycle apparatus according to any one of claims 1 to 3, which is located above the position.
  5.  前記第2減圧装置の孔開度調節機構は、前記絞り孔の孔開度を調節する弁体(226)と、作動ガスが封入されたダイヤフラム室(227b)と、前記ダイヤフラム室の一面を閉じるダイヤフラム(227a)とを有するダイヤフラム作動部(227)と、前記戻り側通路に配置され前記戻り側通路内の前記冷媒と前記ダイヤフラムとの間で熱を伝える感温棒(228)と、前記感温棒を介して前記ダイヤフラムに連結される弁作動部(229)とを有し、
     前記弁作動部は、前記ダイヤフラム室が縮小するように前記ダイヤフラムが変形するほど前記絞り孔の孔開度を小さくするように前記弁体を作動させる請求項1ないし4のいずれか1つに記載の冷凍サイクル装置。

     
    The hole opening degree adjusting mechanism of the second pressure reducing device closes the valve body (226) for adjusting the hole opening degree of the throttle hole, the diaphragm chamber (227b) filled with the working gas, and one surface of the diaphragm chamber. A diaphragm actuating portion (227) having a diaphragm (227a); a temperature sensing rod (228) disposed in the return side passage for transferring heat between the refrigerant in the return side passage and the diaphragm; A valve operating part (229) connected to the diaphragm via a hot rod,
    The said valve action part operates the said valve body so that the opening degree of the said throttle hole may become so small that the said diaphragm deform | transforms so that the said diaphragm chamber may shrink | contract. Refrigeration cycle equipment.

PCT/JP2015/005962 2014-12-09 2015-12-01 Refrigeration cycle device WO2016092771A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014249102A JP6330641B2 (en) 2014-12-09 2014-12-09 Refrigeration cycle equipment
JP2014-249102 2014-12-09

Publications (1)

Publication Number Publication Date
WO2016092771A1 true WO2016092771A1 (en) 2016-06-16

Family

ID=56106999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005962 WO2016092771A1 (en) 2014-12-09 2015-12-01 Refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP6330641B2 (en)
WO (1) WO2016092771A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106765894A (en) * 2016-11-29 2017-05-31 广东美的暖通设备有限公司 Multiple on-line system and its coolant quantity decision method
CN109477646A (en) * 2016-08-03 2019-03-15 伸和控制工业股份有限公司 Conditioner

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002067669A (en) * 2000-08-28 2002-03-08 Denso Corp Refrigerant piping structure of air conditioner for vehicle
JP2003042599A (en) * 2001-08-01 2003-02-13 Denso Corp Refrigerating cycle device
JP2007333290A (en) * 2006-06-14 2007-12-27 Tgk Co Ltd Mounting structure of expansion valve
JP2009019847A (en) * 2007-07-13 2009-01-29 Denso Corp Refrigerating cycle device
JP2009126300A (en) * 2007-11-21 2009-06-11 Denso Corp Refrigerating cycle device, and vehicular air conditioner having the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001121949A (en) * 1999-10-29 2001-05-08 Denso Corp Refrigerating cycle apparatus
JP2003042575A (en) * 2001-08-01 2003-02-13 Denso Corp Refrigerating cycle system and air conditioner for motor vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002067669A (en) * 2000-08-28 2002-03-08 Denso Corp Refrigerant piping structure of air conditioner for vehicle
JP2003042599A (en) * 2001-08-01 2003-02-13 Denso Corp Refrigerating cycle device
JP2007333290A (en) * 2006-06-14 2007-12-27 Tgk Co Ltd Mounting structure of expansion valve
JP2009019847A (en) * 2007-07-13 2009-01-29 Denso Corp Refrigerating cycle device
JP2009126300A (en) * 2007-11-21 2009-06-11 Denso Corp Refrigerating cycle device, and vehicular air conditioner having the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109477646A (en) * 2016-08-03 2019-03-15 伸和控制工业股份有限公司 Conditioner
CN106765894A (en) * 2016-11-29 2017-05-31 广东美的暖通设备有限公司 Multiple on-line system and its coolant quantity decision method
CN106765894B (en) * 2016-11-29 2019-07-26 广东美的暖通设备有限公司 Multi-line system and its coolant quantity determination method

Also Published As

Publication number Publication date
JP2016109380A (en) 2016-06-20
JP6330641B2 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
JP4626531B2 (en) Ejector refrigeration cycle
US7430874B2 (en) Vehicle air conditioning system
US20170350624A1 (en) Refrigeration cycle device
WO2017006775A1 (en) Refrigeration system, and in-vehicle refrigeration system
JP2007126134A (en) Expansion valve for vehicle rear seat air-conditioner
WO2017183588A1 (en) Vehicle air-conditioning device and vehicle provided with same
CN108369045B (en) Air conditioner
WO2016092771A1 (en) Refrigeration cycle device
JP2011145035A (en) Evaporator unit
US11656014B2 (en) Heat exchanger
JP2011007463A (en) Cooling device
JP2010266198A (en) Ejector type refrigerating cycle
JP2019105422A (en) Joint block for vehicle
JP6430465B2 (en) Gas-liquid separator
US20080173042A1 (en) Vapor compression refrigeration circuit and automotive air-conditioning system using same
JP6537928B2 (en) Heat exchanger and heat pump system
JP6606254B2 (en) Gas-liquid separator
JP6780516B2 (en) Liquid reservoir
JP6714864B2 (en) Refrigeration cycle equipment
JP6481824B2 (en) Heat pump air conditioner
JP6606052B2 (en) Air conditioner
JP6606253B2 (en) Gas-liquid separator
JP2019027729A (en) Complex type heat exchanger
JP2010032158A (en) Refrigeration cycle device
JP2008281254A (en) Refrigerating cycle device and air conditioning device for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15867847

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15867847

Country of ref document: EP

Kind code of ref document: A1