WO2016092638A1 - Encoder and encoder-equipped motor - Google Patents

Encoder and encoder-equipped motor Download PDF

Info

Publication number
WO2016092638A1
WO2016092638A1 PCT/JP2014/082597 JP2014082597W WO2016092638A1 WO 2016092638 A1 WO2016092638 A1 WO 2016092638A1 JP 2014082597 W JP2014082597 W JP 2014082597W WO 2016092638 A1 WO2016092638 A1 WO 2016092638A1
Authority
WO
WIPO (PCT)
Prior art keywords
light receiving
light
receiving elements
light source
receiving element
Prior art date
Application number
PCT/JP2014/082597
Other languages
French (fr)
Japanese (ja)
Inventor
康 吉田
松谷 泰裕
宏樹 近藤
幾磨 室北
正信 原田
次郎 村岡
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to PCT/JP2014/082597 priority Critical patent/WO2016092638A1/en
Priority to CN201480077280.4A priority patent/CN106104214B/en
Priority to JP2016537040A priority patent/JP6010876B1/en
Publication of WO2016092638A1 publication Critical patent/WO2016092638A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales

Definitions

  • the disclosed embodiment relates to an encoder and a motor with an encoder.
  • Patent Document 1 an optical signal from an absolute pattern that can uniquely represent the absolute position of a rotating disk by a combination of positions of reflection slits within a predetermined angle is received by a plurality of light receiving elements of an absolute light receiving element group.
  • An encoder that detects independently is described.
  • the present invention has been made in view of such problems, and an object thereof is to provide an encoder and a motor with an encoder that can improve detection accuracy.
  • an absolute pattern along a measurement direction a light source configured to emit light to the absolute pattern, and a light source arranged along the measurement direction are arranged.
  • a plurality of light receiving elements configured to receive light emitted from the light source and transmitted or reflected by the absolute pattern, wherein the plurality of light receiving elements are each of a maximum outer dimension in the measurement direction.
  • an encoder in which the maximum external dimensions in the width direction perpendicular to the measurement direction are equal to each other, and the light receiving elements having different distances from the light source have different shapes so that the received light amounts are equal to each other.
  • a motor with an encoder having a motor and the encoder is provided.
  • an absolute pattern along the measurement direction a light source configured to emit light to the absolute pattern, and arranged along the measurement direction and emitted from the light source
  • an encoder comprising a plurality of light receiving elements configured to receive light transmitted or reflected through the absolute pattern and means for equalizing the received light amounts of the light receiving elements.
  • FIG. 6 is an explanatory diagram for explaining a light receiving operation along a section AA in FIGS. 4 and 5. It is explanatory drawing for demonstrating the light intensity distribution of the reflected light on the board
  • the encoder according to the embodiment described below can be applied to various types of encoders such as a rotary type (rotary type) and a linear type (linear type).
  • a rotary encoder will be described as an example so that the encoder can be easily understood.
  • it is possible to make an appropriate change such as changing the object to be measured from a rotary disk to a linear linear scale.
  • the servo system S includes a servo motor SM and a control device CT.
  • the servo motor SM includes an encoder 100 and a motor M.
  • the motor M is an example of a power generation source that does not include the encoder 100.
  • the motor M is a rotary motor in which a rotor (not shown) rotates with respect to a stator (not shown), and a rotational force is generated by rotating a shaft SH fixed to the rotor around an axis AX. Output.
  • the motor M alone may be referred to as a servo motor
  • a configuration including the encoder 100 is referred to as a servo motor SM.
  • the servo motor SM corresponds to an example of a motor with an encoder.
  • the motor with an encoder is a servo motor controlled so as to follow a target value such as a position and a speed.
  • the present invention is not necessarily limited to the servo motor.
  • the motor with an encoder includes a motor used other than the servo system as long as the encoder is attached, for example, when the output of the encoder is used only for display.
  • the motor M is not particularly limited as long as the encoder 100 can detect position data and the like, for example.
  • the motor M is not limited to an electric motor that uses electricity as a power source.
  • a motor using another power source such as a hydraulic motor, an air motor, or a steam motor. It may be.
  • a case where the motor M is an electric motor will be described below.
  • Encoder 100 is connected to the side opposite to the rotational force output side of shaft SH of motor M. However, it is not necessarily limited to the opposite side, and the encoder 100 may be coupled to the rotational force output side of the shaft SH.
  • the encoder 100 detects the position of the motor M (also referred to as a rotation angle) by detecting the position of the shaft SH (rotor), and outputs position data representing the position.
  • the encoder 100 is not limited to being directly connected to the motor M, and may be connected via other mechanisms such as a brake device, a speed reducer, and a rotation direction changer.
  • the encoder 100 detects at least one of the speed of the motor M (also referred to as rotational speed or angular velocity) and the acceleration of the motor M (also referred to as rotational acceleration or angular acceleration) in addition to or instead of the position of the motor M. May be.
  • the speed and acceleration of the motor M can be detected by, for example, processing such as first or second order differentiation of the position with time or counting a detection signal (for example, an incremental signal described later) for a predetermined time.
  • processing such as first or second order differentiation of the position with time or counting a detection signal (for example, an incremental signal described later) for a predetermined time.
  • a detection signal for example, an incremental signal described later
  • the control device CT acquires the position data output from the encoder 100, and controls the rotation of the motor M based on the position data. Therefore, in this embodiment in which an electric motor is used as the motor M, the control device CT controls the rotation of the motor M by controlling the current or voltage applied to the motor M based on the position data. Furthermore, the control device CT obtains a host control signal from a host control device (not shown), and a rotational force capable of realizing the position and the like represented by the host control signal is output from the shaft SH of the motor M. Thus, it is possible to control the motor M. When the motor M uses another power source such as a hydraulic type, an air type, or a steam type, the control device CT controls the rotation of the motor M by controlling the supply of these power sources. Is possible.
  • the encoder 100 includes a disk 110, an optical module 130, and a position data generation unit 140.
  • the encoder 100 is a so-called reflective encoder in which the light source 131 and the light receiving arrays PA1, PA2, etc. provided in the optical module 130 are arranged on the same side with respect to the patterns SA1, SA2, etc. of the disk 110.
  • the encoder 100 is not limited to the reflective encoder, and may be a so-called transmissive encoder in which the light source 131 and the light receiving arrays PA1, PA2 and the like are arranged on the opposite side with the disk 110 interposed therebetween.
  • a case where the encoder 100 is a reflective encoder will be described below.
  • the vertical direction is determined as follows and used as appropriate.
  • the direction in which the disk 110 faces the optical module 130 that is, the Z-axis positive direction is “up” and the Z-axis negative direction is “down”.
  • the direction varies depending on the installation mode of the encoder 100 and the like, and does not limit the positional relationship between the components of the encoder 100.
  • the disk 110 is formed in a disk shape, and is arranged such that the disk center O substantially coincides with the axis AX.
  • the disk 110 is connected to the shaft SH of the motor M and rotates by the rotation of the shaft SH.
  • a disk-shaped disk 110 is described as an example of an object to be measured for measuring the rotation of the motor M, but other members such as an end face of the shaft SH are to be measured. It can also be used as a target.
  • the disk 110 is directly connected to the shaft SH, but may be connected via a connecting member such as a hub.
  • the disk 110 has a plurality of patterns SA1, SA2, and SI.
  • the disk 110 rotates with the drive of the motor M, but the optical module 130 is fixedly disposed while facing a part of the disk 110. Therefore, the patterns SA1, SA2, SI and the optical module 130 are relative to each other in the measurement direction (the direction of arrow C shown in FIG. 3; hereinafter referred to as “measurement direction C” as appropriate) as the motor M is driven. Moving.
  • the “measurement direction” is a measurement direction when each pattern formed on the disk 110 by the optical module 130 is optically measured.
  • the measurement direction coincides with the circumferential direction of the disk 110.
  • the object to be measured is a linear scale
  • the mover is a stator.
  • the measurement direction is a direction along a linear scale.
  • the optical detection mechanism includes patterns SA1, SA2, SI, an optical module 130, and the like.
  • Each pattern is formed on the upper surface of the disk 110 as a track arranged in a ring shape with the disk center O as the center.
  • Each pattern has a plurality of reflective slits (hatched portions in FIG. 4) arranged along the measurement direction C over the entire circumference of the track.
  • Each reflection slit reflects light emitted from the light source 131.
  • the disk 110 is formed of a material that reflects light, such as metal. Then, a material having a low reflectance (for example, chromium oxide) is disposed on the surface of the disk 110 where light is not reflected by coating or the like, so that a reflective slit is formed in the portion that is not disposed.
  • a reflective slit may be formed by making the part which does not reflect light into a rough surface by sputtering etc., and reducing a reflectance.
  • the material and manufacturing method of the disk 110 are not particularly limited.
  • the disk 110 can be formed of a material that transmits light, such as glass or transparent resin.
  • a reflective slit can be formed by disposing a material (for example, aluminum) that reflects light on the surface of the disk 110 by vapor deposition or the like.
  • each pattern formed on the disk 110 has a plurality of transmissive slits arranged along the measurement direction C over the entire circumference of the track.
  • Each transmission slit transmits light emitted from the light source 121.
  • width direction R Three patterns are provided in the width direction (in the direction of arrow R shown in FIG. 3; hereinafter referred to as “width direction R” as appropriate) on the upper surface of the disk 110.
  • the “width direction” is a radial direction of the disk 110, that is, a direction substantially perpendicular to the measurement direction C, and the length of each pattern along the width direction R corresponds to the width of each pattern.
  • the three patterns are arranged concentrically in the order of SA1, SI, SA2 from the inner side to the outer side in the width direction R.
  • FIG. 4 shows a partially enlarged view of the vicinity of the area facing the optical module 130 of the disk 110.
  • the plurality of reflective slits included in the patterns SA ⁇ b> 1 and SA ⁇ b> 2 are arranged on the entire circumference of the disk 110 so as to have an absolute pattern along the measurement direction C.
  • These patterns SA1 and SA2 correspond to examples of absolute patterns.
  • the “absolute pattern” is a pattern in which the position and ratio of the reflection slit within an angle at which a light receiving array of the optical module 130 described later faces is uniquely determined within one rotation of the disk 110. That is, for example, in the case of the example of the absolute pattern shown in FIG. 4, when the motor M is at an angular position, a combination of bit patterns by detection or non-detection of each of the plurality of light receiving elements of the opposed light receiving array is as follows: The absolute position of the angular position is uniquely expressed.
  • the “absolute position” refers to an angular position with respect to the origin within one rotation of the disk 110. The origin is set at an appropriate angular position within one rotation of the disk 110, and an absolute pattern is formed with this origin as a reference.
  • the absolute pattern is not limited to this example.
  • it may be a multidimensional pattern represented by bits of the number of light receiving elements.
  • a pattern in which a physical quantity such as the amount of light received by a light receiving element or a phase changes so as to uniquely represent an absolute position a pattern in which a code sequence of an absolute pattern is modulated, etc.
  • There may be other various patterns.
  • the same absolute pattern is offset in the measurement direction C by a length of, for example, 1/2 of 1 bit, and formed as two patterns SA1 and SA2.
  • This offset amount corresponds to, for example, half the pitch P of the reflection slits of the pattern SI.
  • the pattern SA1, SA2 is not offset as described above, there is the following possibility. That is, when the absolute position is represented by a one-dimensional absolute pattern as in the present embodiment, the bit pattern transition point is caused by the fact that each light receiving element of the light receiving arrays PA1 and PA2 is positioned in the vicinity of the end of the reflecting slit. In the region, the absolute position detection accuracy may be lowered.
  • the absolute position of the pattern SA1 corresponds to the change of the bit pattern
  • the absolute position is calculated using the detection signal from the pattern SA2
  • the absolute position detection accuracy can be improved.
  • the amount of light received by the two light receiving arrays PA1 and PA2 needs to be uniform, but in the present embodiment, the two light receiving arrays PA1 and PA2 are arranged at substantially the same distance from the light source 131. Therefore, the above configuration can be realized.
  • the light receiving arrays PA1 and PA2 corresponding to the patterns SA1 and SA2 may be offset without offsetting the absolute patterns.
  • two absolute patterns are not necessarily formed, and only one may be used. However, hereinafter, for convenience of explanation, a case where two patterns SA1 and SA2 are formed will be described.
  • the plurality of reflective slits included in the pattern SI are arranged on the entire circumference of the disk 110 so as to have an incremental pattern along the measurement direction C.
  • the “incremental pattern” is a pattern that is regularly repeated at a predetermined pitch as shown in FIG.
  • pitch refers to the arrangement interval of the reflective slits in the pattern SI having an incremental pattern.
  • the pitch of the pattern SI is P.
  • the incremental pattern is different from an absolute pattern that represents an absolute position with each of the presence / absence of detection by a plurality of light receiving elements as a bit, and the position of the motor M within each pitch or within one pitch depending on the sum of the detection signals by at least one light receiving element. Represents. Therefore, although the incremental pattern does not represent the absolute position of the motor M, it can represent the position with very high accuracy compared to the absolute pattern.
  • the minimum length in the measurement direction C of the reflection slits of the patterns SA1 and SA2 matches the pitch P of the reflection slits of the pattern SI.
  • the resolution of the absolute signal based on the patterns SA1 and SA2 matches the number of reflection slits of the pattern SI.
  • the minimum length is not limited to this example, and it is desirable that the number of reflection slits of the pattern SI is set to be equal to or larger than the resolution of the absolute signal.
  • the optical module 130 is formed as a single substrate BA parallel to the disk 110.
  • the encoder 100 can be thinned and the optical module 130 can be easily manufactured. Therefore, as the disk 110 rotates, the optical module 130 moves relative to the patterns SA1, SA2, and SI in the measurement direction C.
  • the optical module 130 is not necessarily configured as a single substrate BA, and each configuration may be configured as a plurality of substrates. In this case, it is only necessary that these substrates are arranged together. Further, the optical module 130 does not have to be a substrate.
  • the optical module 130 has a light source 131 and a plurality of light receiving arrays PA1, PA2, PI1, PI2 on a surface of the substrate BA facing the disk 110.
  • the light source 131 is disposed at a position facing the pattern SI.
  • the light source 131 emits light to the opposed portions of the three patterns SA1, SA2, and SI that pass through the opposed positions of the optical module 130.
  • the light source 131 is not particularly limited as long as it is a light source capable of irradiating light to the irradiation region.
  • an LED Light Emitting Diode
  • the light source 131 is configured as a point light source in which no optical lens or the like is disposed, and emits diffused light from the light emitting unit.
  • the term “point light source” does not need to be a strict point.
  • light sources that can be considered to emit diffused light from a substantially point-like position in terms of design or operating principle light from a finite emission surface is used. May be emitted.
  • the “diffused light” is not limited to light emitted from a point light source in all directions, and includes light emitted while diffusing in a finite fixed direction.
  • the diffused light here includes light that is more diffusive than parallel light.
  • the plurality of light receiving arrays are arranged around the light source 131 and have a plurality of light receiving elements (dot hatched portions in FIG. 5) that respectively receive the light reflected by the reflection slits of the associated pattern.
  • the plurality of light receiving elements are arranged along the measurement direction C as shown in FIG.
  • the light emitted from the light source 131 is diffused light. Therefore, the pattern image projected on the optical module 130 is enlarged by a predetermined enlargement factor ⁇ corresponding to the optical path length. That is, as shown in FIGS. 4 to 6, the lengths of the patterns SA1, SA2, and SI in the width direction R are WSA1, WSA2, and WSI, and the reflected light is projected onto the optical module 130 in the width direction. Assuming that the length of R is WPA1, WPA2, and WPI, WPA1, WPA2, and WPI are ⁇ times as long as WSA1, WSA2, and WSI. In this embodiment, as shown in FIGS.
  • the length in the width direction R of the light receiving element of each light receiving array is set substantially equal to the shape of each slit projected onto the optical module 130.
  • An example is shown.
  • the length of the light receiving element in the width direction R is not necessarily limited to this example.
  • the measurement direction C in the optical module 130 also has a shape in which the measurement direction C in the disk 110 is projected onto the optical module 130, that is, a shape affected by the magnification factor ⁇ .
  • the measurement direction C at the position of the light source 131 will be described as an example as shown in FIG.
  • the measurement direction C in the disk 110 is circular with the axis AX as the center.
  • the center in the measurement direction C projected on the optical module 130 is a position separated from the optical center Op, which is the in-plane position of the disk 110 on which the light source 131 is disposed, by a distance ⁇ L.
  • the distance ⁇ L is a distance obtained by enlarging the distance L between the axis AX and the optical center Op at an enlargement factor ⁇ .
  • this position is conceptually shown as the measurement center Os. Therefore, the measurement direction C in the optical module 130 is centered on the measurement center Os that is separated from the optical center Op by a distance ⁇ L in the direction of the axis AX on the line where the optical center Op and the axis AX ride, and the distance ⁇ L is the radius. On the line to be.
  • the corresponding relationship in the measurement direction C in each of the disk 110 and the optical module 130 is represented by arc-shaped lines Lcd and Lcp.
  • 4 represents a line along the measurement direction C on the disk 110
  • the line Lcp illustrated in FIG. 5 and the like represents a line along the measurement direction C on the substrate BA (the line Lcd is an optical module). Line projected onto 130).
  • each light receiving element for example, a photodiode can be used.
  • Each light receiving element is formed in a shape having a predetermined light receiving area, and outputs an analog detection signal having a magnitude corresponding to the total light amount received in the entire light receiving area (hereinafter referred to as “light receiving amount”).
  • the light receiving element is not limited to a photodiode, and is not particularly limited as long as it can receive light emitted from the light source 131 and convert it into an electric signal.
  • the light receiving array in the present embodiment is arranged corresponding to the three patterns SA1, SA2, and SI.
  • the light receiving array PA1 is configured to receive the light reflected by the pattern SA1
  • the light receiving array PA2 is configured to receive the light reflected by the pattern SA2.
  • the light receiving arrays PI1 and PI2 are configured to receive light reflected by the pattern SI.
  • the light receiving array PI1 and the light receiving array PI2 are divided on the way, but correspond to the same track. As described above, the number of light receiving arrays corresponding to one pattern is not limited to one, and may be plural.
  • the light source 131 and the light receiving arrays PA1 and PA2 are arranged in the positional relationship shown in FIG. That is, two sets of light receiving arrays PA1 and PA2 corresponding to the absolute pattern are arranged in parallel at positions offset from each other in the width direction R with the light source 131 interposed therebetween.
  • the light receiving array PA1 is disposed on the inner peripheral side and the light receiving array PA2 is disposed on the outer peripheral side, and the distances between the light receiving arrays PA1 and PA2 and the light source 131 are substantially equal.
  • Each of the light receiving arrays PA1 and PA2 has an axisymmetric shape with respect to a line Lo passing through the light source 131 (optical center Op) and parallel to the Y axis.
  • a plurality (for example, 9 in this embodiment) of light receiving elements included in the light receiving arrays PA1 and PA2 are arranged at a constant pitch along the measurement direction C (line Lcp). The shapes of the plurality of light receiving elements will be described later.
  • a one-dimensional pattern is illustrated as an absolute pattern. Therefore, the light receiving arrays PA1 and PA2 corresponding to the pattern are arranged along the measurement direction C (line Lcp) so as to receive the light reflected by the reflecting slits of the corresponding patterns SA1 and SA2.
  • a plurality of (for example, 9 in this embodiment) light receiving elements are provided. In the plurality of light receiving elements, as described above, each light reception or non-light reception is treated as a bit and represents an absolute position of 9 bits.
  • the light reception signals received by each of the plurality of light receiving elements are handled independently of each other in the position data generation unit 140 (see FIG.
  • the light receiving signals of the light receiving arrays PA1 and PA2 are referred to as “absolute signals”.
  • the light receiving arrays PA1 and PA2 have a configuration corresponding to the pattern.
  • the number of light receiving elements included in the light receiving arrays PA1 and PA2 may be other than nine, and the number of bits of the absolute signal is not limited to nine.
  • the light source 131 and the light receiving arrays PI1, PI2 are arranged in the positional relationship shown in FIG. That is, the light receiving arrays PI1 and PI2 corresponding to the incremental pattern are arranged in the measurement direction C with the light source 131 interposed therebetween. Specifically, the light receiving arrays PI1 and PI2 are arranged so as to be line symmetric with respect to the line Lo as a symmetry axis. The light source 131 is arranged between the light receiving arrays PI1 and PI2 arranged as one track in the measurement direction C.
  • the light receiving arrays PI1 and PI2 have a plurality of light receiving elements arranged along the measurement direction C (line Lcp) so as to receive the light reflected by the reflecting slits of the associated pattern SI.
  • Each of these light receiving elements has the same shape (substantially rectangular in this example).
  • a total of four sets of light receiving elements are included in one pitch of the incremental pattern of pattern SI (one pitch in the projected image, ie, ⁇ ⁇ P).
  • a plurality of sets of four light receiving elements are arranged along the measurement direction C.
  • reflection slits are repeatedly formed for each pitch. Therefore, when the disk 110 rotates, each light receiving element generates a periodic signal of one cycle (referred to as 360 ° in electrical angle) at one pitch.
  • 360 ° in electrical angle a periodic signal of one cycle
  • adjacent light receiving elements in one set receive an incremental phase signal which is a periodic signal having a phase difference of 90 ° from each other. Will be output.
  • Each incremental phase signal is divided into A + phase signal, B + phase signal (phase difference with respect to A + phase signal is 90 °), A ⁇ phase signal (phase difference with respect to A + phase signal is 180 °), B ⁇ phase signal (with respect to B + phase signal).
  • the phase difference is called 180 °.
  • the signal of each phase in one set and the signal of each phase in another set corresponding to it have values that change similarly. Accordingly, signals of the same phase are added over a plurality of sets. Accordingly, four signals whose phases are shifted by 90 ° are detected from the many light receiving elements of the light receiving array PI shown in FIG. Accordingly, four signals whose phases are shifted by 90 ° are generated from the light receiving arrays PI1 and PI2, respectively. These four signals are referred to as “incremental signals”.
  • one set corresponding to one pitch of the incremental pattern includes four light receiving elements, and the light receiving array PI1 and the light receiving array PI2 each have a set having the same configuration as an example.
  • the number of light receiving elements in one set is not particularly limited, for example, two light receiving elements are included in one set.
  • the total number of light receiving elements of the light receiving arrays PIL and PIR is not limited to the example shown in FIG.
  • the light receiving arrays PI1 and PI2 may be configured to acquire light receiving signals having different phases.
  • the light receiving array corresponding to the incremental pattern is not limited to a mode in which two light receiving arrays such as the light receiving arrays PI1 and PI2 are arranged with the light source 131 interposed therebetween.
  • the light source 131 may be arranged as one light receiving array along the measurement direction C on the outer peripheral side or the inner peripheral side.
  • incremental patterns having different resolutions may be formed on a plurality of tracks of the disk 110, and a plurality of light receiving arrays corresponding to the respective tracks may be provided.
  • Position data generator The position data generation unit 140, from the optical module 130, at the timing of measuring the absolute position of the motor M, two absolute signals each having a bit pattern representing the first absolute position, and four signals whose phases are shifted by 90 °. Incremental signal including. Then, the position data generation unit 140 calculates the second absolute position of the motor M represented by these signals based on the acquired signals, and outputs position data representing the calculated second absolute position to the control device CT.
  • the position data generation method by the position data generation unit 140 can use various methods, and is not particularly limited.
  • a case where the absolute position is calculated from the incremental signal and the absolute signal to generate position data will be described as an example.
  • the position data generation unit 140 binarizes each of the absolute signals from the light receiving arrays PA1 and PA2, and converts them into bit data representing an absolute position. Then, the first absolute position is specified based on the correspondence between the predetermined bit data and the absolute position. That is, the “first absolute position” here is an absolute position having a low resolution before the incremental signal is superimposed. On the other hand, among the incremental signals of the four phases from the light receiving arrays PI1 and PI2, the incremental signals having a phase difference of 180 ° are subtracted from each other. Thus, by subtracting a signal having a phase difference of 180 °, it is possible to cancel a manufacturing error or a measurement error of the reflection slit within one pitch.
  • first incremental signal and “second incremental signal”.
  • the first incremental signal and the second incremental signal have a phase difference of 90 ° in electrical angle with each other (simply referred to as “A phase signal”, “B phase signal”, etc.). Therefore, the position data generation unit 140 identifies the position within one pitch from these two signals.
  • the method for specifying the position within one pitch is not particularly limited. For example, when the incremental signal, which is a periodic signal, is a sine wave signal, the electrical angle ⁇ is calculated by performing an arctan operation on the division result of the two A-phase and B-phase sine wave signals as an example of the above-described specific method. There is a way to do it.
  • the position data generation unit 140 preferably performs analog-digital conversion of the two sine wave signals of the A phase and the B phase for each detection signal.
  • the position data generation unit 140 superimposes the position within one pitch specified based on the incremental signal on the first absolute position specified based on the absolute signal. Accordingly, it is possible to calculate the second absolute position with higher resolution than the first absolute position based on the absolute signal. The position data generation unit 140 multiplies the second absolute position calculated in this way to further improve the resolution, and then outputs it to the control device CT as position data representing a highly accurate absolute position.
  • the intensity distribution of the reflected light becomes farther from the optical center Op as shown in FIG. It becomes a concentric distribution that decays.
  • the dotted circle in FIG. 7 represents the isointensity line of the reflected light, and the light intensity is higher on the inner peripheral side and the light intensity is lower on the outer peripheral side.
  • the distribution of the light intensity of the reflected light is concentric as described above, while the light is attenuated according to the optical path length, while the optical axis is in the irradiation space of diffuse light from the light source 131 (in the reflection space). This is because the structure is such that the light is received by a flat substrate BA perpendicular to the substrate. Actually, the reflected light is applied to the areas corresponding to the patterns SA1, SA2, and SI of the disk 110 on the substrate BA.
  • each of the absolute light receiving arrays PA1 and PA2 a plurality of light receiving elements are arranged along the arc-shaped line Lcp with the measurement center Os as the center of curvature, while the optical center Op is measured. It is arranged at a position greatly separated from the center Os. For this reason, the light intensity in each light receiving element of the light receiving arrays PA1, PA2 changes according to the distance from the light source 131 in the measurement direction C.
  • the light receiving array PA2 will be described in detail. Since the light receiving array PA2 has a line-symmetric shape with respect to the line Lo as described above, the light intensity at each light receiving element is highest at the light receiving element P5 on the line Lo.
  • the light receiving array PA1 and the light receiving array PA2 are arranged side by side with the light source 131 therebetween, the light intensity in each light receiving element of the light receiving arrays PA1 and PA2 is highest at the end Eo on the light source side. , And lowest at the end En on the opposite side of the light source 131.
  • each light receiving element constituted by, for example, a photodiode outputs an analog value detection signal according to the amount of light received in the entire light receiving area as described above.
  • the received light amount is obtained by integrating the light intensity at each light receiving point in the light receiving area. For this reason, if the light intensity distribution is different among the light receiving elements, even if the light receiving areas are the same, the amount of received light is different, and the change characteristics of the analog detection signal between the light receiving elements. Will be different. In this case, since the change timing of the binarized signal is shifted between the light receiving elements, the absolute position may be erroneously detected.
  • the light receiving element having a shorter length in the width direction is more susceptible to the positional deviation in the width direction of the reflected light due to the eccentricity of the disk 110, False detection may occur.
  • the maximum outer dimension in the measurement direction C and the maximum outer dimension in the width direction R of each light receiving element are set to be equal to each other, and the respective received light amounts are mutually equal.
  • the light receiving elements having different distances from the light source 131 are formed in different shapes so as to be equal.
  • the description that the outer diameter and the amount of received light are “equal” does not mean a strict meaning, but means that tolerances and errors in manufacturing are allowed and are substantially equal.
  • the “light reception amount” here is the maximum light reception amount when each light receiving element receives reflected light over the entire light receiving area.
  • the light receiving arrays PA1 and PA2 some or all of the plurality of light receiving elements are each formed into a shape having a tapered pointed portion.
  • the position of the tip is not particularly limited, in the present embodiment, a case where the light receiving element includes the tip at the end in the width direction R will be described.
  • the light receiving array PA2 out of the light receiving arrays PA1 and PA2 will be described as a specific example.
  • the light receiving array PA1 has the same shape as that of the light receiving array PA2 except that the light receiving array PA1 is symmetrical in the width direction R, and the description thereof is omitted.
  • FIG. 8 Details of shape of light receiving element having pointed portion
  • the shape of the light receiving element P6, which is one of the nine light receiving elements included in the light receiving array PA2 is enlarged and shown as an example.
  • the shape and dimension setting of each part of the light receiving element having a pointed portion will be described in detail.
  • the shape of the light receiving element P6 is roughly a shape in which corners of a basic quadrilateral shape are trimmed.
  • This basic quadrangular shape has a length in the measurement direction C as TPA2 (in this example, a length ⁇ times the minimum length P (basic bit length) in the measurement direction C of the reflective slit of the pattern SA2), and the width direction. It is a rectangular shape in which the length of R is WPA2.
  • the basic rectangular shape that is, the maximum external dimension TPA2 in the measurement direction C and the maximum external dimension WPA2 in the width direction R are set to be equal in common. .
  • the above-described basic quadrangular shape does not need to be strictly parallel between two opposing sides, and each corner does not need to be strictly right-angled, and may be substantially rectangular.
  • “trimming” means chamfering at a predetermined inclination angle with respect to one corner of the square shape. Then, at least one of the both end portions En and Eo in the width direction R of the light receiving element P6 is trimmed at the same inclination angle with respect to two corner portions respectively positioned on the end portions En and Eo. A substantially isosceles triangular point Ps is formed on the portions En and Eo. In the case of the light receiving element P6 shown in FIG. 8, the apex portion Ps is formed at each of the both end portions En and Eo in the width direction R.
  • the maximum outer dimension in the width direction R (that is, each end portion at both ends)
  • the distance between the vertices of Ps) is maintained at the length WPA2.
  • the light receiving element P6 is formed in a hexagonal shape symmetrical with respect to the measurement direction C with a line Loc passing through the measurement center Os and the apex of each tip portion Ps as an axis of symmetry.
  • the light receiving elements (light receiving elements P2, P3, P5, P7, and P8) in which only one of the two end portions En and Eo is formed have a pentagonal shape that is symmetric with respect to the measurement direction C with the line Loc as an axis of symmetry. Formed.
  • the shape of the pointed portion Ps may be a tapered shape, and may be, for example, a trapezoidal shape or a rounded arc shape other than the triangular shape. Further, the pointed portion Ps may be formed by a method other than the trimming of a basic rectangular corner.
  • the width direction dimension of the tip portion Ps formed at the end portion Eo on the light source side is Wo and the width direction dimension of the tip portion Ps formed at the end portion En on the opposite side of the light source 131 is Wn, If the total Wo + Wn of the widthwise dimensions of both the tip portions Ps is equal between the elements, it can be said that the light receiving area is also equal. In other words, if the ratio of Wo + Wn to the maximum external dimension WPA2 in the width direction R of the light receiving element is equal, the light receiving area of the entire light receiving element is also equal.
  • a light receiving element having a pointed portion Ps at at least one of the end Eo on the light source side and the end En on the opposite side in other words, a light receiving element in which Wo + Wn is a value greater than 0 (in this example, the light receiving element) P2 to P8) are also referred to as “first light receiving elements”.
  • the light intensity of each light receiving element is highest at the end Eo on the light source side and lowest at the end En on the opposite side to the light source 131. For this reason, even if Wo + Wn is the same between the light receiving elements, that is, the light receiving area is the same, increasing the ratio of the width direction dimension Wo of the tip portion Ps on the end Eo side close to the light source 131 causes the received light amount to be relative. Can be made small. Conversely, the amount of received light can be relatively increased by increasing the proportion of the width direction dimension Wn of the tip portion Ps on the end portion En side far from the light source 131.
  • the light intensity in the plurality of light receiving elements P1 to P9 of the light receiving array PA2 is higher as the light receiving element is closer to the line Lo, that is, closer to the light source 131 on the substrate BA.
  • the farther away, that is, the light receiving element farther from the light source 131 on the substrate BA becomes lower.
  • the two light receiving elements P1 and P9 located farthest from the light source 131 are the second light receiving elements having the largest light receiving area, and the other light receiving elements P2 to P8 are the first light receiving elements.
  • the shape of the light receiving element is adjusted so that the received light amount is the same with reference to the received light amount at the light receiving elements P1 and P9.
  • the shapes of the plurality of light receiving elements P1 to P9 of the light receiving array PA2 can be the modes shown in FIGS. 5 and 7, for example. That is, the two light receiving elements P1 and P9 located at both ends are rectangular second light receiving elements which are not trimmed at all. Further, the two light receiving elements P2 and P8 positioned in the immediate vicinity thereof are first light receiving elements having substantially the same shape and having a pointed portion Ps having a relatively low width direction dimension Wn on the end portion En side. Further, the two light receiving elements P3 and P7 positioned in the immediate vicinity thereof are first light receiving elements having substantially the same shape and having a pointed portion Ps having a relatively high width direction dimension Wn on the end portion En side.
  • the two light receiving elements P4 and P6 positioned in the immediate vicinity of each other are first light receiving elements having substantially the same shape, each having a tip portion Ps on both sides of the end portion Eo and the end portion En.
  • the light receiving element P5 closest to the light source 131 inside thereof is a first light receiving element having a pointed portion Ps having a relatively high width direction dimension Wo on the end Eo side.
  • the five light receiving elements P3 to P7 close to the light source 131 have the same Wo + Wn, that is, the light receiving areas are equal.
  • the light receiving elements P3 to P5 and the light receiving elements P5 to P7 constituting the light receiving elements P3 to P7 correspond to an example of a plurality of light receiving elements having different distances from the light source 131 and equal areas.
  • the ratio of the width direction dimension Wo of the pointed portion Ps formed at the end Eo on the light source 131 side with respect to Wo + Wn hereinafter referred to as “Wo ratio” as appropriate).
  • the light receiving element closer to the light source 131 is set to be larger.
  • the Wo ratio (100% in this example) of the light receiving element P5 is larger than the Wo ratio of the light receiving elements P4 and P6, and the Wo ratio of the light receiving elements P4 and P6 is the above of the light receiving elements P3 and P7. It is larger than the Wo ratio (0% in this example).
  • Wo + Wn is light received close to the light source 131 in the measurement direction C.
  • the device is larger.
  • Wo + Wn of the light receiving element P3 is larger than Wo + Wn of the light receiving element P2
  • Wo + Wn of the light receiving element P7 is larger than Wo + Wn of the light receiving element P8.
  • the light receiving elements P2, P3 and the light receiving elements P7, P8 correspond to an example of a plurality of first light receiving elements having different distances from the light source and different areas.
  • the shape of the plurality of light receiving elements P1 to P9 of the light receiving array PA2 is not limited to the above.
  • the light receiving elements P1 and P9 at both ends of the light receiving array PA2 may be the first light receiving elements provided with the pointed portion Ps.
  • the number of light receiving elements having the same area in the light receiving elements P1 to P9 may be other than 5, or the areas of all the light receiving elements may be different from each other.
  • the relationship of the Wo ratio in the first light receiving elements having the same area and the relationship of Wo + Wn in the first light receiving elements having the different areas may be other than the above.
  • the case where it is the above-mentioned shape is demonstrated for convenience of explanation.
  • each of the light receiving array PA1 and the light receiving array PA2 it is possible to make the received light amounts equal to each other while making the maximum outer dimension in the measurement direction C and the maximum outer dimension in the width direction R of each light receiving element equal to each other.
  • the shape of each light receiving element of the light receiving arrays PA1 and PA2 described above corresponds to an example of a unit that equalizes the amount of light received by each light receiving element.
  • the first light receiving element has the pointed portion Ps, an advantageous effect can be obtained even when the detection signal is converted into a binarized signal.
  • the effect will be described in detail.
  • the light intensity distribution in the irradiation surface Rs is uniform.
  • the amount of light received by the light receiving element PD ′ changes with the change characteristics as shown by the thick line VX.
  • the amount of received light monotonically increases from the timing of the position X2 where the irradiation surface Rs begins to overlap with the light receiving element PD ′ to the timing of the position X6 where the irradiation surface Rs completely overlaps with the light receiving element PD ′. To do. Further, from the timing of the position X6 at which the received light amount becomes the maximum to the timing of the position X10 at which the irradiation surface Rs and the light receiving element PD 'do not overlap, the received light amount decreases monotonically in a linear function.
  • the change characteristic of the analog detection signal in the case of the light receiving element PD having the tip portion Ps is shown in FIG.
  • FIG. 10 in order to facilitate understanding, a case where the light receiving element PD is formed only by the tip portion Ps is illustrated.
  • the irradiation surface Rs is larger than the light receiving element PD in the width direction R, has a rectangular shape having the same size as the light receiving element PD in the measurement direction C, and the light intensity distribution in the irradiation surface Rs is uniform.
  • FIG. 10 the change characteristic of the analog detection signal in the case of the light receiving element PD having the tip portion Ps.
  • the received light amount in the light receiving element PD is indicated by a thick line VY corresponding to each position Y1 to Y11. It changes with time with such change characteristics.
  • the amount of received light is a quadratic function (a cubic function or higher) from the timing of the position Y2 where the irradiation surface Rs begins to overlap the light receiving element PD to the timing of the position Y6 where the irradiation surface Rs completely overlaps the light receiving element PD. (It may be a multi-order function).
  • the timing of the position Y4 where the irradiation surface Rs overlaps half of the light receiving element PD becomes an inflection point, and the time change rate (curve slope) of the amount of received light becomes the largest at this point.
  • the received light amount decreases in a quadratic function from the timing of the position Y6 where the received light amount becomes maximum to the timing of the position Y10 where the irradiation surface Rs and the light receiving element PD do not overlap.
  • the timing of the position Y8 where the irradiation surface Rs overlaps half of the light receiving element PD becomes the inflection point, and the time change rate (curve slope) of the amount of received light becomes the largest at this point.
  • the change characteristics of the received light amount in the case of the light receiving element PD ′ and in the case of the light receiving element PD are compared.
  • the respective light receiving areas are equal, the irradiation light having the same light intensity is irradiated with a uniform distribution, and the maximum received light amounts in the respective change characteristics are equal.
  • the timing at which the overlapping area with the irradiation surface Rs becomes half of the light receiving area that is, the timing of the positions X4, X8, Y4, Y8 in FIGS.
  • the received light quantity becomes half of the maximum received light quantity, and the characteristic lines VX and VY intersect.
  • the threshold value for converting the analog detection signal from the light receiving element into a binarized signal is preferably set to a value that is half the maximum received light amount.
  • the threshold value is relative to the change characteristic of the amount of received light due to, for example, fluctuation of the light intensity of the irradiation light due to aging degradation of the light source 131 or manufacturing individual difference, or fluctuation of light receiving sensitivity due to aging deterioration of the light receiving element or manufacturing individual difference. May vary.
  • the fluctuation of the threshold fluctuates within a fluctuation range ⁇ T centered on the reference value that is half of the above-described maximum received light quantity.
  • the change characteristic increases and decreases in a linear function. Therefore, the change timing of the binarized signal fluctuates within the corresponding fluctuation width ⁇ tx.
  • the light receiving element PD in the case of the light receiving element PD, as described above, it becomes an inflection point of the characteristic curve at the timing of the reference value that is half of the maximum received light amount, and the curve is largely inclined around the characteristic curve. For this reason, the change in the change timing of the binarized signal with respect to the change width ⁇ T of the threshold can be suppressed to a change width ⁇ ty that is sufficiently narrower than the change width ⁇ tx in the case of the light receiving element PD ′.
  • the first light receiving element in the present embodiment is formed in a shape having the tip portion Ps, an effect of suppressing the influence due to the fluctuation of the threshold when the analog detection signal is converted into the binarized signal. There is.
  • the encoder 100 includes the light receiving arrays PA1 and PA2 that are arranged along the measurement direction C and receive the light emitted from the light source 131 and reflected by the patterns SA1 and SA2.
  • a plurality of light receiving elements (light receiving elements P1 to P9 in the example shown in FIG. 5 and the like) included in the light receiving arrays PA1 and PA2 have the same maximum outer dimension in the measurement direction C and the maximum outer dimension in the width direction R.
  • the light receiving elements having different distances from the light source 131 have different shapes so that the received light amounts are equal to each other.
  • each of the light receiving arrays PA1 and PA2 the amount of light received by each light receiving element is uniform, so that detection accuracy of 1 bit and 1 bit can be made uniform to prevent erroneous detection of absolute positions, and detection accuracy can be improved. Further, it is not necessary to adjust the signal output of each light receiving element, and the threshold for converting the analog detection signal from each light receiving element into a binarized signal can be shared by each light receiving element.
  • the circuit configuration can be simplified.
  • the intervals in the measurement direction C of the respective light receiving elements can be made uniform.
  • the crosstalk amount between each light receiving element adjacent in the measurement direction C can be made uniform, the uniformity of the amount of light received by each light receiving element can be further enhanced.
  • processing for removing noise due to crosstalk from the signals of the respective light receiving elements is facilitated.
  • the light receiving element having a shorter length in the width direction R has a smaller width in the width direction R of the light due to the eccentricity of the disk 110.
  • the influence of misalignment is increased, and detection errors are likely to occur.
  • the maximum outer dimensions in the width direction R of the respective light receiving elements of the light receiving arrays PA1 and PA2 are equal to each other, the influence of the eccentricity can be reduced, and even when the disk 110 has an eccentricity, it is absolutely necessary. It is possible to make it difficult for position detection errors to occur.
  • the plurality of light receiving elements included in the light receiving arrays PA1 and PA2 have a plurality of light receiving elements having different distances from the light source 131 and equal areas (in the example shown in FIG. 5 and the like, the light receiving elements P3 to P7).
  • the following effects are obtained. That is, since the junction capacitance (capacitance) is equal in the light receiving elements having the same area, the response speed can be made uniform among the light receiving elements. As a result, the absolute position detection accuracy when the motor M rotates at high speed can be improved.
  • the plurality of light receiving elements included in the light receiving arrays PA1 and PA2 are first light receiving elements each having a tapered pointed portion Ps at the end in the width direction R (in the example shown in FIG. In the case of including P2 to P8), the following effects are obtained. That is, in the case of the second light receiving element not provided with the tip portion Ps (square shape), since the edge in the measurement direction C is parallel to the width direction R, the output change of the analog detection signal when the irradiation region Rs by the pattern passes is primary. It is a functional monotonous increase and monotonic decrease (see FIG. 9 above).
  • the first light receiving element having the tip portion Ps at the end portion in the width direction R has a shape in which the edge in the measurement direction C is inclined with respect to the width direction R.
  • the change in output of the analog detection signal increases and decreases in a quadratic function, and the degree of change in the output of the analog detection signal in the vicinity of the threshold value can be increased (the slope is abrupt) (see FIG. 10 above).
  • the phase shift of the binarized signal with respect to the fluctuation of the threshold value is reduced, so that even if the threshold value fluctuates, an absolute position detection error can be made difficult to occur (see FIG. 11).
  • the plurality of first light receiving elements having the same area (light receiving elements P3 to P7 in the example shown in FIG. 5 and the like)
  • the first light-receiving elements whose width direction dimensions Wo + Wn are equal to each other, and the ratio of the width direction dimension Wo of the tip portion Ps formed at the end Eo on the light source 131 side to the total Wo + Wn is closer to the light source 131 in the measurement direction C. If it is large, the following effects are obtained.
  • the irradiation intensity of the light emitted from the light source 131 and reflected by the patterns SA1 and SA2 has a concentric distribution that attenuates with increasing distance from the light source 131 with the light source 131 at the center.
  • the first light receiving element closer to the light source 131 has a relatively large light intensity for the first light receiving element far from the light source 131 by increasing the proportion of the tip portion Ps on the light source 131 side. While securing the light receiving area of the region, it is possible to gradually reduce the light receiving area of the region where the light intensity of the first light receiving element closer to the light source 131 is relatively large. Therefore, it is possible to achieve a uniform amount of received light while making the area of each light receiving element uniform.
  • a plurality of light receiving elements included in the light receiving arrays PA1 and PA2 are arranged in the measurement direction C with the first light receiving elements sandwiched therebetween, and two second light receiving elements that do not have the pointed portion Ps (see FIG. In the example shown in 5 etc., when the light receiving elements P1, P9) are included, the following effects are obtained. That is, the second light receiving element that does not include the pointed portion Ps has a larger area than the first light receiving element that includes the pointed portion Ps.
  • the light receiving elements at both ends of the light receiving arrays PA1 and PA2 that are located farthest from the light source 131 are used as the second light receiving elements, and the first light receiving elements are arranged therebetween, so that a plurality of light receiving arrays PA1 and PA2 are provided.
  • the light receiving amount of each light receiving element can be made uniform while ensuring the maximum amount of light received by the entire light receiving element.
  • the second light receiving elements (light receiving elements P1 and P9 in the example shown in FIG. 5 and the like) have a square shape
  • the first light receiving elements (light receiving elements P2 to P8 in the example shown in FIG. 5 and the like)
  • the trimming area, position, and the like may be adjusted based on the square shape of the second light receiving element, so that the design of the shape of the first light receiving element can be facilitated.
  • the plurality of light receiving elements included in the light receiving arrays PA1 and PA2 are a plurality of first light receiving elements having different distances from the light source 131 and different areas (in the example illustrated in FIG. 5 and the like, the light receiving elements P2 and P2).
  • the total Wo + Wn of the widthwise dimensions of the tip portion Ps is set to be larger in the measurement direction C as the first light receiving element is closer to the light source 131. The following effects are obtained.
  • the light receiving area can be gradually reduced as the first light receiving element closer to the light source 131 is. Therefore, it is possible to make the amount of light received by each light receiving element uniform.
  • the detection signal when two sets of light receiving elements constituting each of the light receiving arrays PA1 and PA2 are arranged in parallel at positions offset from each other in the width direction R so as to sandwich the light source 131, The effect like this is obtained. That is, when the reliability of the detection signal is reduced due to one of the plurality of light receiving elements (for example, the light receiving array PA2) corresponding to the transition of the absolute pattern, the signal from the other plurality of light receiving elements (for example, the light receiving array PA1) The detection signal can be used and vice versa. Thereby, the reliability of the detection signal of the light receiving element can be improved, and the absolute position detection accuracy can be improved.
  • the encoder 100 is a point light source in which the light source 131 emits diffused light to the patterns SA1 and SA2, and the patterns SA1 and SA2 are patterns that reflect the light emitted from the light source 131, and the light receiving array.
  • the plurality of light receiving elements PA1 and PA2 are configured as reflective encoders that receive the light reflected by the patterns SA1 and SA2, the following effects are obtained. That is, in the reflection type encoder, by using a point light source that emits diffused light, the light amount distribution of the reflected light from the patterns SA1 and SA2 tends to become a trapezoidal shape that further spreads from the irradiation area corresponding to the patterns SA1 and SA2.
  • each light receiving element of the light receiving arrays PA1 and PA2 is not limited to the above embodiment, and various other forms are conceivable.
  • variations in the shapes of these light receiving elements will be described with reference to FIGS. 12 to 18, only the shape of each light receiving element of the light receiving array PA2 is shown, and the other configurations are not shown.
  • the light receiving elements are arranged along the arc-shaped line Lcp (arranged along the measurement direction C).
  • Lcp arranged along the measurement direction C.
  • FIGS. 12 to 18 it is easy to understand the shape relationship between the light receiving elements. Therefore, it is schematically shown in a linear arrangement.
  • FIG. 12 shows the shape of each light receiving element of the light receiving array PA2 in the above embodiment.
  • the two light receiving elements P1 and P9 positioned at both ends of the light receiving array PA2 are second light receiving elements that do not have the pointed portion Ps, and the first light receiving elements P2 to P8 that have the pointed portion Ps are disposed therebetween.
  • the first light receiving elements P3 to P7 have the same light receiving area, and in these first light receiving elements P3 to P7, the above-mentioned Wo ratio is set larger as the light receiving elements closer to the light source 131 in the measurement direction C.
  • the light receiving element closer to the light source 131 in the measurement direction C has a larger Wo + Wn at the tip portion Ps.
  • the light receiving elements having different maximum distances from the light source 131 so that the maximum outer dimensions in the measurement direction C and the maximum outer dimensions in the width direction R of the light receiving elements are equal to each other and the received light amounts are equal to each other.
  • the light receiving elements P2 to P4 and P6 to P8 are first light receiving elements having a pointed portion Ps on the end portion En side.
  • the light receiving element P5 closest to the light source 131 is a first light receiving element having a pointed portion Ps on the end Eo side.
  • the three first light receiving elements P4 to P6 have the same light receiving area, and in these first light receiving elements P4 to P6, the light receiving element closer to the light source 131 in the measurement direction C is set larger.
  • the light receiving elements closer to the light source 131 in the measurement direction C have a larger Wo + Wn at the tip portion Ps. Also in this modification, the same effect as the above embodiment can be obtained.
  • the light receiving elements P2 and P8 are first light receiving elements having a pointed portion Ps on the end En side.
  • the light receiving elements P3, P4, P6, and P7 are first light receiving elements each having a pointed portion Ps on both sides of the end portions Eo and En.
  • the light receiving element P5 closest to the light source 131 is a first light receiving element having a pointed portion Ps on the end Eo side.
  • the light receiving areas of the seven first light receiving elements P2 to P8 are equal, and in these first light receiving elements P2 to P8, the Wo ratio is set to be larger as the light receiving element is closer to the light source 131 in the measurement direction C.
  • the first light receiving elements having different areas are not arranged. Also in this modification, the same effect as the above embodiment can be obtained.
  • all the light receiving elements P1 to P9 are the first light receiving elements having the pointed portion Ps, and the second light receiving elements not having the pointed portion Ps are not arranged. Further, the two light receiving elements P1 and P9 located at both ends are first light receiving elements having a pointed end portion Ps on the end portion En side.
  • the light receiving elements P2 to P4 and P6 to P8 are first light receiving elements each having a pointed portion Ps on both sides of the end portions Eo and En.
  • the light receiving element P5 closest to the light source 131 is a first light receiving element having a pointed portion Ps on the end Eo side.
  • the light receiving areas of all the first light receiving elements P1 to P9 are the same, and in these first light receiving elements P1 to P9, the Wo ratio is set to be larger as the light receiving elements are closer to the light source 131 in the measurement direction C.
  • the first light receiving elements having different areas are not arranged. Also in this modification, the same effect as the above embodiment can be obtained.
  • the light receiving areas of all the first light receiving elements P1 to P9 are the same, and in these first light receiving elements P1 to P9, the Wo ratio is set to be larger as the light receiving elements are closer to the light source 131 in the measurement direction C.
  • the first light receiving elements having different areas are not arranged. Also in this modification, the same effect as the above embodiment can be obtained.
  • the two light receiving elements P1 and P9 located at both ends are second light receiving elements that do not have the pointed portion Ps.
  • the light receiving elements P2 to P8 are first light receiving elements having a pointed portion Ps on the end Eo side. All the light receiving elements P1 to P9 have different light receiving areas. In the first light receiving elements P2 to P8 having different light receiving areas, Wo + Wn of the pointed portion Ps is larger as the light receiving element is closer to the light source 131 in the measurement direction C. Also in this modification, the same effect as the above embodiment can be obtained.
  • the tip When the tip is formed only on the side opposite to the light source) Moreover, it is good also as a shape as shown in FIG.
  • all the light receiving elements P1 to P9 have different light receiving areas.
  • Wo + Wn of the pointed portion Ps is larger as the light receiving element is closer to the light source 131 in the measurement direction C. Also in this modification, the same effect as the above embodiment can be obtained.

Abstract

[Problem] To provide an encoder capable of improving detection accuracy, and an encoder-equipped motor. [Solution] This encoder comprises: patterns SA1, SA2 along a measurement direction C; a light source 131 that emits light to the patterns SA1, SA2; and light reception arrays PA1, PA2 each arranged along the measurement direction C and receiving light emitted from the light source 131 and reflected by the respective patterns SA1, SA2. A plurality of light reception elements provided in each light reception array PA1, PA2 each have the same maximum outer dimension TPA2 in the measurement direction C and the same maximum outer dimension WPA2 in a width direction R perpendicular to the measurement direction, and the light reception elements provided at different distances from the light source 131 have different shapes such that the light reception amount of each light reception element becomes the same.

Description

エンコーダ及びエンコーダ付きモータEncoder and motor with encoder
 開示の実施形態は、エンコーダ及びエンコーダ付きモータに関する。 The disclosed embodiment relates to an encoder and a motor with an encoder.
 特許文献1には、所定角度内の反射スリットの位置の組み合わせにより一義に回転ディスクの絶対位置を表すことが可能なアブソリュートパターンからの光信号を、アブソ用受光素子群の複数の受光素子が各々独立して検出するエンコーダが記載されている。 In Patent Document 1, an optical signal from an absolute pattern that can uniquely represent the absolute position of a rotating disk by a combination of positions of reflection slits within a predetermined angle is received by a plurality of light receiving elements of an absolute light receiving element group. An encoder that detects independently is described.
特許第4945674号公報Japanese Patent No. 4945674
 上記エンコーダにおいて検出精度の向上を図る場合、装置構成の更なる最適化が要望される。 In order to improve detection accuracy in the above encoder, further optimization of the device configuration is required.
 本発明はこのような問題点に鑑みてなされたものであり、検出精度を向上できるエンコーダ及びエンコーダ付きモータを提供することを目的とする。 The present invention has been made in view of such problems, and an object thereof is to provide an encoder and a motor with an encoder that can improve detection accuracy.
 上記課題を解決するため、本発明の一の観点によれば、測定方向に沿ったアブソリュートパターンと、前記アブソリュートパターンに光を出射するように構成された光源と、前記測定方向に沿って並べられ、前記光源から出射され前記アブソリュートパターンを透過又は反射された光を受光するように構成された複数の受光素子と、を有し、前記複数の受光素子は、各々の前記測定方向の最大外形寸法及び前記測定方向に垂直な幅方向の最大外形寸法が互いに等しく、且つ、各々の受光光量が互いに等しくなるように前記光源からの距離が異なる前記受光素子同士が異なる形状を有する、エンコーダが提供される。 In order to solve the above problems, according to one aspect of the present invention, an absolute pattern along a measurement direction, a light source configured to emit light to the absolute pattern, and a light source arranged along the measurement direction are arranged. A plurality of light receiving elements configured to receive light emitted from the light source and transmitted or reflected by the absolute pattern, wherein the plurality of light receiving elements are each of a maximum outer dimension in the measurement direction. And an encoder in which the maximum external dimensions in the width direction perpendicular to the measurement direction are equal to each other, and the light receiving elements having different distances from the light source have different shapes so that the received light amounts are equal to each other. The
 また、本発明の別の観点によれば、モータと、上記エンコーダと、を有する、エンコーダ付きモータが提供される。 Further, according to another aspect of the present invention, a motor with an encoder having a motor and the encoder is provided.
 また、本発明の別の観点によれば、測定方向に沿ったアブソリュートパターンと、前記アブソリュートパターンに光を出射するように構成された光源と、前記測定方向に沿って並べられ、前記光源から出射され前記アブソリュートパターンを透過又は反射された光を受光するように構成された複数の受光素子と、前記各受光素子の受光光量を互いに等しくする手段と、を有する、エンコーダが提供される。 According to another aspect of the present invention, an absolute pattern along the measurement direction, a light source configured to emit light to the absolute pattern, and arranged along the measurement direction and emitted from the light source There is provided an encoder comprising a plurality of light receiving elements configured to receive light transmitted or reflected through the absolute pattern and means for equalizing the received light amounts of the light receiving elements.
 本発明によれば、検出精度を向上できる。 According to the present invention, detection accuracy can be improved.
一実施形態に係るサーボシステムについて説明するための説明図である。It is explanatory drawing for demonstrating the servo system which concerns on one Embodiment. 同実施形態に係るエンコーダについて説明するための説明図である。It is explanatory drawing for demonstrating the encoder which concerns on the same embodiment. 同実施形態に係るディスクについて説明するための説明図である。It is explanatory drawing for demonstrating the disk which concerns on the same embodiment. 同実施形態に係るパターンについて説明するための説明図である。It is explanatory drawing for demonstrating the pattern which concerns on the same embodiment. 同実施形態に係る光学モジュール及び受光アレイについて説明するための説明図である。It is explanatory drawing for demonstrating the optical module and light receiving array which concern on the embodiment. 図4及び図5のA-A断面による受光動作について説明するための説明図である。FIG. 6 is an explanatory diagram for explaining a light receiving operation along a section AA in FIGS. 4 and 5. 同実施形態に係る光学モジュールの基板上での反射光の光強度分布について説明するための説明図である。It is explanatory drawing for demonstrating the light intensity distribution of the reflected light on the board | substrate of the optical module which concerns on the embodiment. 同実施形態に係る受光素子の形状及び寸法設定について説明する説明図である。It is explanatory drawing explaining the shape and dimension setting of the light receiving element which concern on the embodiment. 尖端部を有していない矩形形状の受光素子の場合のアナログ検出信号の変化特性について説明するための説明図である。It is explanatory drawing for demonstrating the change characteristic of the analog detection signal in the case of the rectangular-shaped light receiving element which does not have a pointed part. 尖端部を有する受光素子の場合のアナログ検出信号の変化特性について説明するための説明図である。It is explanatory drawing for demonstrating the change characteristic of the analog detection signal in the case of the light receiving element which has a pointed part. 尖端部を有していない受光素子と尖端部を有する受光素子のそれぞれの受光光量の変化特性の差異について説明するための説明図である。It is explanatory drawing for demonstrating the difference of the change characteristic of each received light quantity of the light receiving element which does not have a pointed part, and the light receiving element which has a pointed part. 同実施形態に係る受光アレイが備える複数の受光素子の形状を説明するための説明図である。It is explanatory drawing for demonstrating the shape of the several light receiving element with which the light receiving array which concerns on the same embodiment is provided. 3つの受光素子で受光面積を同一とした変形例に係る受光アレイが備える複数の受光素子の形状を説明するための説明図である。It is explanatory drawing for demonstrating the shape of the several light receiving element with which the light receiving array which concerns on the modification which made the light receiving area the same with three light receiving elements is provided. 7つの受光素子で受光面積を同一とした変形例に係る受光アレイが備える複数の受光素子の形状を説明するための説明図である。It is explanatory drawing for demonstrating the shape of the several light receiving element with which the light receiving array which concerns on the modification which made the light receiving area the same with seven light receiving elements is provided. 9つ全ての受光素子で受光面積を同一とした変形例に係る受光アレイが備える複数の受光素子の形状を説明するための説明図である。It is explanatory drawing for demonstrating the shape of the some light receiving element with which the light receiving array which concerns on the modification which made the light receiving area the same in all nine light receiving elements is provided. 受光素子を尖端部のみで構成した変形例に係る受光アレイが備える複数の受光素子の形状を説明するための説明図である。It is explanatory drawing for demonstrating the shape of the some light receiving element with which the light receiving array which concerns on the modification which comprised the light receiving element only by the tip part is provided. 9つ全ての受光素子で受光面積を異ならせた変形例に係る受光アレイが備える複数の受光素子の形状を説明するための説明図である。It is explanatory drawing for demonstrating the shape of the some light receiving element with which the light receiving array which concerns on the modification which varied the light-receiving area by all nine light receiving elements. 受光素子が光源側と反対側の端部だけに尖端部を備えた変形例に係る受光アレイが備える複数の受光素子の形状を説明するための説明図である。It is explanatory drawing for demonstrating the shape of the some light receiving element with which the light receiving element which the light receiving element equips only the edge part on the opposite side to the light source side with which the light receiving array which concerns on the modification is provided.
 以下、一実施の形態について図面を参照しつつ説明する。 Hereinafter, an embodiment will be described with reference to the drawings.
 なお、以下で説明する実施形態に係るエンコーダは、回転型(ロータリタイプ)や直線型(リニアタイプ)など様々なタイプのエンコーダに適用可能である。以下では、エンコーダの理解が容易になるように、回転型のエンコーダを例に挙げて説明する。他のタイプのエンコーダに適用する場合には、被測定対象を回転型のディスクから直線型のリニアスケールに変更するなど適切な変更を加えることにより可能であるので、詳しい説明は省略する。 In addition, the encoder according to the embodiment described below can be applied to various types of encoders such as a rotary type (rotary type) and a linear type (linear type). Hereinafter, a rotary encoder will be described as an example so that the encoder can be easily understood. When applied to other types of encoders, it is possible to make an appropriate change such as changing the object to be measured from a rotary disk to a linear linear scale.
 <1.サーボシステム>
 まず、図1を参照しつつ、本実施形態に係るエンコーダを備えたサーボシステムの構成について説明する。図1に示すように、サーボシステムSは、サーボモータSMと、制御装置CTとを有する。サーボモータSMは、エンコーダ100と、モータMとを有する。
<1. Servo system>
First, the configuration of a servo system including an encoder according to the present embodiment will be described with reference to FIG. As shown in FIG. 1, the servo system S includes a servo motor SM and a control device CT. The servo motor SM includes an encoder 100 and a motor M.
 モータMは、エンコーダ100を含まない動力発生源の一例である。モータMは、回転子(図示省略)が固定子(図示省略)に対して回転する回転型モータであり、回転子に固定されたシャフトSHを軸心AX周りに回転させることにより、回転力を出力する。 The motor M is an example of a power generation source that does not include the encoder 100. The motor M is a rotary motor in which a rotor (not shown) rotates with respect to a stator (not shown), and a rotational force is generated by rotating a shaft SH fixed to the rotor around an axis AX. Output.
 なお、モータM単体をサーボモータという場合もあるが、本実施形態では、エンコーダ100を含む構成をサーボモータSMという。つまり、サーボモータSMはエンコーダ付きモータの一例に相当する。以下では、説明の便宜上、エンコーダ付きモータが、位置や速度等の目標値に追従するように制御されるサーボモータである場合について説明するが、必ずしもサーボモータに限定されるものではない。エンコーダ付きモータは、例えばエンコーダの出力を表示のみに用いる場合等、エンコーダが付設さえされていれば、サーボシステム以外に用いられるモータをも含むものである。 Although the motor M alone may be referred to as a servo motor, in this embodiment, a configuration including the encoder 100 is referred to as a servo motor SM. That is, the servo motor SM corresponds to an example of a motor with an encoder. In the following, for convenience of explanation, a case where the motor with an encoder is a servo motor controlled so as to follow a target value such as a position and a speed will be described. However, the present invention is not necessarily limited to the servo motor. The motor with an encoder includes a motor used other than the servo system as long as the encoder is attached, for example, when the output of the encoder is used only for display.
 また、モータMは、例えば位置データ等をエンコーダ100が検出可能なモータであれば、特に限定されるものではない。また、モータMは、動力源として電気を使用する電動式モータである場合に限定されるものではなく、例えば、油圧式モータ、エア式モータ、蒸気式モータ等の他の動力源を使用したモータであってもよい。但し、説明の便宜上、以下ではモータMが電動式モータである場合について説明する。 The motor M is not particularly limited as long as the encoder 100 can detect position data and the like, for example. The motor M is not limited to an electric motor that uses electricity as a power source. For example, a motor using another power source such as a hydraulic motor, an air motor, or a steam motor. It may be. However, for convenience of explanation, a case where the motor M is an electric motor will be described below.
 エンコーダ100は、モータMのシャフトSHの回転力出力側とは反対側に連結される。但し、必ずしも反対側に限定されるものではなく、エンコーダ100はシャフトSHの回転力出力側に連結されてもよい。エンコーダ100は、シャフトSH(回転子)の位置を検出することにより、モータMの位置(回転角度ともいう。)を検出し、その位置を表す位置データを出力する。なお、エンコーダ100は、モータMに直接連結される場合に限定されるものではなく、例えばブレーキ装置や減速機、回転方向変換機等の他の機構を介して連結されてもよい。 Encoder 100 is connected to the side opposite to the rotational force output side of shaft SH of motor M. However, it is not necessarily limited to the opposite side, and the encoder 100 may be coupled to the rotational force output side of the shaft SH. The encoder 100 detects the position of the motor M (also referred to as a rotation angle) by detecting the position of the shaft SH (rotor), and outputs position data representing the position. The encoder 100 is not limited to being directly connected to the motor M, and may be connected via other mechanisms such as a brake device, a speed reducer, and a rotation direction changer.
 エンコーダ100は、モータMの位置に加えて又は代えて、モータMの速度(回転速度、角速度等ともいう。)及びモータMの加速度(回転加速度、角加速度等ともいう。)の少なくとも一方を検出してもよい。この場合、モータMの速度及び加速度は、例えば、位置を時間で1又は2階微分したり検出信号(例えば後述するインクリメンタル信号)を所定の時間カウントするなどの処理により検出することが可能である。説明の便宜上、以下ではエンコーダ100が検出する物理量は位置であるとして説明する。 The encoder 100 detects at least one of the speed of the motor M (also referred to as rotational speed or angular velocity) and the acceleration of the motor M (also referred to as rotational acceleration or angular acceleration) in addition to or instead of the position of the motor M. May be. In this case, the speed and acceleration of the motor M can be detected by, for example, processing such as first or second order differentiation of the position with time or counting a detection signal (for example, an incremental signal described later) for a predetermined time. . For convenience of explanation, the following description will be made assuming that the physical quantity detected by the encoder 100 is a position.
 制御装置CTは、エンコーダ100から出力される位置データを取得して、当該位置データに基づいて、モータMの回転を制御する。従って、モータMとして電動式モータが使用される本実施形態では、制御装置CTは、位置データに基づいてモータMに印加する電流又は電圧等を制御することにより、モータMの回転を制御する。更に、制御装置CTは、上位制御装置(図示せず)から上位制御信号を取得して、当該上位制御信号に表された位置等を実現可能な回転力がモータMのシャフトSHから出力されるように、モータMを制御することも可能である。なお、モータMが、油圧式、エア式、蒸気式などの他の動力源を使用する場合には、制御装置CTは、それらの動力源の供給を制御することにより、モータMの回転を制御することが可能である。 The control device CT acquires the position data output from the encoder 100, and controls the rotation of the motor M based on the position data. Therefore, in this embodiment in which an electric motor is used as the motor M, the control device CT controls the rotation of the motor M by controlling the current or voltage applied to the motor M based on the position data. Furthermore, the control device CT obtains a host control signal from a host control device (not shown), and a rotational force capable of realizing the position and the like represented by the host control signal is output from the shaft SH of the motor M. Thus, it is possible to control the motor M. When the motor M uses another power source such as a hydraulic type, an air type, or a steam type, the control device CT controls the rotation of the motor M by controlling the supply of these power sources. Is possible.
 <2.エンコーダ>
 次に、本実施形態に係るエンコーダ100について説明する。図2に示すように、エンコーダ100は、ディスク110と、光学モジュール130と、位置データ生成部140とを有する。エンコーダ100は、光学モジュール130に備えられた光源131と受光アレイPA1,PA2等がディスク110のパターンSA1,SA2等に対し同じ側に配置された、いわゆる反射型のエンコーダである。但し、エンコーダ100は、反射型エンコーダに限定されるものではなく、光源131と受光アレイPA1,PA2等がディスク110を挟んで反対側に配置された、いわゆる透過型のエンコーダであってもよい。但し、説明の便宜上、以下ではエンコーダ100が反射型エンコーダである場合について説明する。
<2. Encoder>
Next, the encoder 100 according to the present embodiment will be described. As shown in FIG. 2, the encoder 100 includes a disk 110, an optical module 130, and a position data generation unit 140. The encoder 100 is a so-called reflective encoder in which the light source 131 and the light receiving arrays PA1, PA2, etc. provided in the optical module 130 are arranged on the same side with respect to the patterns SA1, SA2, etc. of the disk 110. However, the encoder 100 is not limited to the reflective encoder, and may be a so-called transmissive encoder in which the light source 131 and the light receiving arrays PA1, PA2 and the like are arranged on the opposite side with the disk 110 interposed therebetween. However, for convenience of explanation, a case where the encoder 100 is a reflective encoder will be described below.
 ここで、エンコーダ100の構造の説明の便宜上、上下等の方向を以下のように定め、適宜使用する。図2において、ディスク110が光学モジュール130と面する方向、つまりZ軸正の方向を「上」とし、Z軸負の方向を「下」とする。但し、該方向はエンコーダ100等の設置態様によって変動するものであり、エンコーダ100の各構成の位置関係を限定するものではない。 Here, for convenience of explanation of the structure of the encoder 100, the vertical direction is determined as follows and used as appropriate. In FIG. 2, the direction in which the disk 110 faces the optical module 130, that is, the Z-axis positive direction is “up” and the Z-axis negative direction is “down”. However, the direction varies depending on the installation mode of the encoder 100 and the like, and does not limit the positional relationship between the components of the encoder 100.
  (2-1.ディスク)
 ディスク110は、図3に示すように円板状に形成され、ディスク中心Oが軸心AXとほぼ一致するように配置される。ディスク110は、モータMのシャフトSHに連結され、シャフトSHの回転により回転する。なお、本実施形態では、モータMの回転を測定する被測定対象の例として、円板状のディスク110を例に挙げて説明するが、例えば、シャフトSHの端面などの他の部材を被測定対象として使用することも可能である。また、図2に示す例では、ディスク110がシャフトSHに直接連結されているが、ハブ等の連結部材を介して連結されてもよい。
(2-1. Disc)
As shown in FIG. 3, the disk 110 is formed in a disk shape, and is arranged such that the disk center O substantially coincides with the axis AX. The disk 110 is connected to the shaft SH of the motor M and rotates by the rotation of the shaft SH. In the present embodiment, a disk-shaped disk 110 is described as an example of an object to be measured for measuring the rotation of the motor M, but other members such as an end face of the shaft SH are to be measured. It can also be used as a target. In the example shown in FIG. 2, the disk 110 is directly connected to the shaft SH, but may be connected via a connecting member such as a hub.
 図3に示すように、ディスク110は、複数のパターンSA1,SA2,SIを有する。ディスク110はモータMの駆動と共に回転するが、光学モジュール130は、ディスク110の一部に対向しつつ固定して配置される。従って、パターンSA1,SA2,SIと、光学モジュール130とは、モータMの駆動に伴い、互いに測定方向(図3に示す矢印Cの方向。以下適宜「測定方向C」と記載する。)に相対移動する。 As shown in FIG. 3, the disk 110 has a plurality of patterns SA1, SA2, and SI. The disk 110 rotates with the drive of the motor M, but the optical module 130 is fixedly disposed while facing a part of the disk 110. Therefore, the patterns SA1, SA2, SI and the optical module 130 are relative to each other in the measurement direction (the direction of arrow C shown in FIG. 3; hereinafter referred to as “measurement direction C” as appropriate) as the motor M is driven. Moving.
 ここで、「測定方向」とは、光学モジュール130でディスク110に形成された各パターンを光学的に測定する際の測定方向である。本実施形態のように被測定対象がディスク110である回転型のエンコーダにおいては、測定方向はディスク110の円周方向に一致するが、例えば被測定対象がリニアスケールであり、可動子が固定子に対して移動する直線型のエンコーダにおいては、測定方向はリニアスケールに沿った方向となる。 Here, the “measurement direction” is a measurement direction when each pattern formed on the disk 110 by the optical module 130 is optically measured. In the rotary encoder in which the object to be measured is the disk 110 as in this embodiment, the measurement direction coincides with the circumferential direction of the disk 110. For example, the object to be measured is a linear scale, and the mover is a stator. In a linear encoder that moves with respect to, the measurement direction is a direction along a linear scale.
  (2-2.光学検出機構)
 光学検出機構は、パターンSA1,SA2,SIと光学モジュール130等とにより構成される。
(2-2. Optical detection mechanism)
The optical detection mechanism includes patterns SA1, SA2, SI, an optical module 130, and the like.
   (2-2-1.パターン)
 各パターンは、ディスク110の上面にディスク中心Oを中心としたリング状に配置されたトラックとして形成される。各パターンは、トラックの全周にわたって、測定方向Cに沿って並べられた複数の反射スリット(図4における斜線ハッチング部分)を有する。1つ1つの反射スリットは、光源131から照射された光を反射する。
(2-2-1. Pattern)
Each pattern is formed on the upper surface of the disk 110 as a track arranged in a ring shape with the disk center O as the center. Each pattern has a plurality of reflective slits (hatched portions in FIG. 4) arranged along the measurement direction C over the entire circumference of the track. Each reflection slit reflects light emitted from the light source 131.
 ディスク110は、例えば金属等の光を反射する材質により形成される。そして、ディスク110の表面における光を反射させない部分に反射率の低い材質(例えば酸化クロム等)を塗布等により配置することで、配置されない部分に反射スリットが形成される。なお、光を反射させない部分をスパッタリング等により粗面として反射率を低下させることで、反射スリットが形成されてもよい。 The disk 110 is formed of a material that reflects light, such as metal. Then, a material having a low reflectance (for example, chromium oxide) is disposed on the surface of the disk 110 where light is not reflected by coating or the like, so that a reflective slit is formed in the portion that is not disposed. In addition, a reflective slit may be formed by making the part which does not reflect light into a rough surface by sputtering etc., and reducing a reflectance.
 なお、ディスク110の材質や製造方法等については特に限定されるものではない。例えば、ディスク110をガラスや透明樹脂等の光を透過する材質で形成することも可能である。この場合、ディスク110の表面に光を反射する材質(例えばアルミニウム等)を蒸着等によって配置することにより、反射スリットが形成可能である。 Note that the material and manufacturing method of the disk 110 are not particularly limited. For example, the disk 110 can be formed of a material that transmits light, such as glass or transparent resin. In this case, a reflective slit can be formed by disposing a material (for example, aluminum) that reflects light on the surface of the disk 110 by vapor deposition or the like.
 なお、エンコーダ100を上述の透過型エンコーダとして構成する場合には、ディスク110に形成される各パターンは、トラックの全周にわたって、測定方向Cに沿って並べられた複数の透過スリットを有する。1つ1つの透過スリットは、光源121から照射された光を透過する。 When the encoder 100 is configured as the above-described transmissive encoder, each pattern formed on the disk 110 has a plurality of transmissive slits arranged along the measurement direction C over the entire circumference of the track. Each transmission slit transmits light emitted from the light source 121.
 パターンは、ディスク110の上面において幅方向(図3に示す矢印Rの方向。以下適宜「幅方向R」と記載する。)に3本併設される。なお、「幅方向」とは、ディスク110の半径方向、すなわち測定方向Cと略垂直な方向であり、この幅方向Rに沿った各パターンの長さが各パターンの幅に相当する。3本のパターンは、幅方向Rの内側から外側に向けて、SA1,SI,SA2の順に同心円状に配置される。各パターンについてより詳細に説明するために、ディスク110の光学モジュール130と対向する領域近傍の部分拡大図を図4に示す。 Three patterns are provided in the width direction (in the direction of arrow R shown in FIG. 3; hereinafter referred to as “width direction R” as appropriate) on the upper surface of the disk 110. The “width direction” is a radial direction of the disk 110, that is, a direction substantially perpendicular to the measurement direction C, and the length of each pattern along the width direction R corresponds to the width of each pattern. The three patterns are arranged concentrically in the order of SA1, SI, SA2 from the inner side to the outer side in the width direction R. In order to explain each pattern in more detail, FIG. 4 shows a partially enlarged view of the vicinity of the area facing the optical module 130 of the disk 110.
    (2-2-1-1.アブソリュートパターン)
 図4に示すように、パターンSA1,SA2が有する複数の反射スリットは、測定方向Cに沿ってアブソリュートパターンを有するように、ディスク110の全周に配置される。これらパターンSA1,SA2がアブソリュートパターンの一例に相当する。
(2-2-1-1. Absolute pattern)
As shown in FIG. 4, the plurality of reflective slits included in the patterns SA <b> 1 and SA <b> 2 are arranged on the entire circumference of the disk 110 so as to have an absolute pattern along the measurement direction C. These patterns SA1 and SA2 correspond to examples of absolute patterns.
 なお、「アブソリュートパターン」とは、後述する光学モジュール130が有する受光アレイが対向する角度内における反射スリットの位置や割合等が、ディスク110の1回転内で一義に定まるようなパターンである。つまり、例えば、図4に示すアブソリュートパターンの例の場合、モータMがある角度位置となっている場合に、対向した受光アレイの複数の受光素子それぞれの検出又は未検出によるビットパターンの組み合わせが、その角度位置の絶対位置を一義に表すことになる。なお、「絶対位置」とは、ディスク110の1回転内での原点に対する角度位置をいう。原点は、ディスク110の1回転内での適宜の角度位置に設定され、この原点を基準としてアブソリュートパターンが形成される。 It should be noted that the “absolute pattern” is a pattern in which the position and ratio of the reflection slit within an angle at which a light receiving array of the optical module 130 described later faces is uniquely determined within one rotation of the disk 110. That is, for example, in the case of the example of the absolute pattern shown in FIG. 4, when the motor M is at an angular position, a combination of bit patterns by detection or non-detection of each of the plurality of light receiving elements of the opposed light receiving array is as follows: The absolute position of the angular position is uniquely expressed. The “absolute position” refers to an angular position with respect to the origin within one rotation of the disk 110. The origin is set at an appropriate angular position within one rotation of the disk 110, and an absolute pattern is formed with this origin as a reference.
 なお、このパターンの一例によれば、モータMの絶対位置を、受光アレイの受光素子数のビットにより、一次元的に表すようなパターンを生成できる。しかし、アブソリュートパターンは、この例に限定されるものではない。例えば、受光素子数のビットにより多次元的に表すパターンであってもよい。また、所定のビットパターン以外にも、受光素子で受光する光量や位相などの物理量が絶対位置を一義的に表すように変化するパターンや、アブソリュートパターンの符号系列が変調を施されたパターン等であってもよく、その他、様々なパターンであってもよい。 Note that, according to this pattern example, it is possible to generate a pattern in which the absolute position of the motor M is represented in a one-dimensional manner by the number of light receiving elements in the light receiving array. However, the absolute pattern is not limited to this example. For example, it may be a multidimensional pattern represented by bits of the number of light receiving elements. In addition to a predetermined bit pattern, a pattern in which a physical quantity such as the amount of light received by a light receiving element or a phase changes so as to uniquely represent an absolute position, a pattern in which a code sequence of an absolute pattern is modulated, etc. There may be other various patterns.
 なお、本実施形態では、同様のアブソリュートパターンが、測定方向Cで例えば1ビットの1/2の長さだけオフセットされて、2本のパターンSA1,SA2として形成される。このオフセット量は、例えばパターンSIの反射スリットのピッチPの半分に相当する。仮に、このようにパターンSA1,SA2をオフセットさせた構成としない場合、次のような可能性がある。つまり、本実施形態のような一次元的なアブソリュートパターンにより絶対位置を表す場合、受光アレイPA1,PA2の各受光素子が反射スリットの端部近傍に対向して位置することによるビットパターンの変わり目の領域において、絶対位置の検出精度が低下する可能性がある。本実施形態では、パターンSA1,SA2をオフセットさせるので、例えば、パターンSA1による絶対位置がビットパターンの変わり目に相当する場合には、パターンSA2からの検出信号を使用して絶対位置を算出したり、その逆を行うことにより、絶対位置の検出精度を向上できる。なお、このような構成とする場合、2つの受光アレイPA1,PA2における受光量を均一にする必要があるが、本実施形態では2つの受光アレイPA1,PA2を光源131からほぼ等しい距離に配置するので、上記構成を実現できる。 In the present embodiment, the same absolute pattern is offset in the measurement direction C by a length of, for example, 1/2 of 1 bit, and formed as two patterns SA1 and SA2. This offset amount corresponds to, for example, half the pitch P of the reflection slits of the pattern SI. If the pattern SA1, SA2 is not offset as described above, there is the following possibility. That is, when the absolute position is represented by a one-dimensional absolute pattern as in the present embodiment, the bit pattern transition point is caused by the fact that each light receiving element of the light receiving arrays PA1 and PA2 is positioned in the vicinity of the end of the reflecting slit. In the region, the absolute position detection accuracy may be lowered. In the present embodiment, since the patterns SA1 and SA2 are offset, for example, when the absolute position of the pattern SA1 corresponds to the change of the bit pattern, the absolute position is calculated using the detection signal from the pattern SA2, By performing the reverse, the absolute position detection accuracy can be improved. In such a configuration, the amount of light received by the two light receiving arrays PA1 and PA2 needs to be uniform, but in the present embodiment, the two light receiving arrays PA1 and PA2 are arranged at substantially the same distance from the light source 131. Therefore, the above configuration can be realized.
 なお、パターンSA1,SA2の各アブソリュートパターン同士をオフセットさせる代わりに、例えば、アブソリュートパターン同士はオフセットさせずに、パターンSA1,SA2それぞれに対応した受光アレイPA1,PA2同士をオフセットさせてもよい。 Instead of offsetting the absolute patterns of the patterns SA1 and SA2, for example, the light receiving arrays PA1 and PA2 corresponding to the patterns SA1 and SA2 may be offset without offsetting the absolute patterns.
 また、アブソリュートパターンは必ずしも2本形成される必要はなく、1本のみとしてもよい。但し、以下では、説明の便宜上、2本のパターンSA1,SA2が形成された場合について説明する。 Also, two absolute patterns are not necessarily formed, and only one may be used. However, hereinafter, for convenience of explanation, a case where two patterns SA1 and SA2 are formed will be described.
    (2-2-1-2.インクリメンタルパターン)
 一方、パターンSIが有する複数の反射スリットは、測定方向Cに沿ってインクリメンタルパターンを有するように、ディスク110の全周に配置される。
(2-2-1-2. Incremental pattern)
On the other hand, the plurality of reflective slits included in the pattern SI are arranged on the entire circumference of the disk 110 so as to have an incremental pattern along the measurement direction C.
 「インクリメンタルパターン」とは、図4に示すように、所定のピッチで規則的に繰り返されるパターンである。ここで、「ピッチ」とはインクリメンタルパターンを有するパターンSIにおける各反射スリットの配置間隔をいう。図4に示すように、パターンSIのピッチはPである。インクリメンタルパターンは、複数の受光素子による検出の有無それぞれをビットとして絶対位置を表すアブソリュートパターンと異なり、少なくとも1以上の受光素子による検出信号の和により、1ピッチ毎又は1ピッチ内のモータMの位置を表す。従って、インクリメンタルパターンは、モータMの絶対位置を表すものではないが、アブソリュートパターンに比べると非常に高精度に位置を表すことが可能である。 The “incremental pattern” is a pattern that is regularly repeated at a predetermined pitch as shown in FIG. Here, “pitch” refers to the arrangement interval of the reflective slits in the pattern SI having an incremental pattern. As shown in FIG. 4, the pitch of the pattern SI is P. The incremental pattern is different from an absolute pattern that represents an absolute position with each of the presence / absence of detection by a plurality of light receiving elements as a bit, and the position of the motor M within each pitch or within one pitch depending on the sum of the detection signals by at least one light receiving element. Represents. Therefore, although the incremental pattern does not represent the absolute position of the motor M, it can represent the position with very high accuracy compared to the absolute pattern.
 なお、本実施形態では、パターンSA1,SA2の反射スリットの測定方向Cにおける最小長さは、パターンSIの反射スリットのピッチPと一致する。その結果、パターンSA1,SA2に基づくアブソリュート信号の分解能は、パターンSIの反射スリットの数と一致する。しかしながら、最小長さは、この例に限定されるものではなく、パターンSIの反射スリットの数はアブソリュート信号の分解能と同じかそれよりも多く設定されることが望ましい。 In the present embodiment, the minimum length in the measurement direction C of the reflection slits of the patterns SA1 and SA2 matches the pitch P of the reflection slits of the pattern SI. As a result, the resolution of the absolute signal based on the patterns SA1 and SA2 matches the number of reflection slits of the pattern SI. However, the minimum length is not limited to this example, and it is desirable that the number of reflection slits of the pattern SI is set to be equal to or larger than the resolution of the absolute signal.
   (2-2-2.光学モジュール)
 光学モジュール130は、図2及び図5に示すように、ディスク110と平行な一枚の基板BAとして形成される。これにより、エンコーダ100を薄型化したり、光学モジュール130の製造を容易にすることが可能である。従って、ディスク110の回転に伴い、光学モジュール130は、パターンSA1,SA2,SIに対して測定方向Cで相対移動する。なお、光学モジュール130は必ずしも一枚の基板BAとして構成される必要はなく、各構成が複数の基板として構成されてもよい。この場合、それらの基板が集約して配置されていればよい。また、光学モジュール130は基板状でなくともよい。
(2-2-2. Optical module)
As shown in FIGS. 2 and 5, the optical module 130 is formed as a single substrate BA parallel to the disk 110. As a result, the encoder 100 can be thinned and the optical module 130 can be easily manufactured. Therefore, as the disk 110 rotates, the optical module 130 moves relative to the patterns SA1, SA2, and SI in the measurement direction C. The optical module 130 is not necessarily configured as a single substrate BA, and each configuration may be configured as a plurality of substrates. In this case, it is only necessary that these substrates are arranged together. Further, the optical module 130 does not have to be a substrate.
 光学モジュール130は、図2及び図5に示すように、基板BAのディスク110と対向する面上に、光源131と、複数の受光アレイPA1,PA2,PI1,PI2とを有する。 As shown in FIGS. 2 and 5, the optical module 130 has a light source 131 and a plurality of light receiving arrays PA1, PA2, PI1, PI2 on a surface of the substrate BA facing the disk 110.
    (2-2-2-1.光源)
 図3に示すように、光源131は、パターンSIと対向する位置に配置される。そして、光源131は、光学モジュール130の対向する位置を通過する3つのパターンSA1,SA2,SIの対向した部分に光を出射する。
(2-2-2-1. Light source)
As shown in FIG. 3, the light source 131 is disposed at a position facing the pattern SI. The light source 131 emits light to the opposed portions of the three patterns SA1, SA2, and SI that pass through the opposed positions of the optical module 130.
 光源131としては、照射領域に光を照射可能な光源であれば特に限定されるものではないが、例えば、LED(Light Emitting Diode)が使用可能である。図6に示すように、光源131は、特に光学レンズ等が配置されない点光源として構成され、発光部から拡散光を出射する。なお、「点光源」という場合、厳密な点である必要はなく、設計上や動作原理上、略点状の位置から拡散光が発せられるものとみなせる光源であれば、有限な出射面から光が発せられてもよい。また、「拡散光」は、点光源から全方位に向かって放たれる光に限定されず、有限の一定の方位に向かって拡散しつつ出射される光を含む。すなわち、ここでいう拡散光には、平行光よりも拡散性を有する光であれば含まれる。このように点光源を使用することにより、光源131は、対向した位置を通過する3つのパターンSA1,SA2,SIにほぼ均等に光を照射することが可能である。また、光学素子による集光・拡散を行わないので、光学素子による誤差等が生じにくく、パターンへの光の直進性を高める事が可能である。 The light source 131 is not particularly limited as long as it is a light source capable of irradiating light to the irradiation region. For example, an LED (Light Emitting Diode) can be used. As shown in FIG. 6, the light source 131 is configured as a point light source in which no optical lens or the like is disposed, and emits diffused light from the light emitting unit. Note that the term “point light source” does not need to be a strict point. For light sources that can be considered to emit diffused light from a substantially point-like position in terms of design or operating principle, light from a finite emission surface is used. May be emitted. The “diffused light” is not limited to light emitted from a point light source in all directions, and includes light emitted while diffusing in a finite fixed direction. In other words, the diffused light here includes light that is more diffusive than parallel light. By using the point light source in this way, the light source 131 can irradiate light almost evenly to the three patterns SA1, SA2, and SI that pass through the opposed positions. Further, since the light is not condensed and diffused by the optical element, an error due to the optical element is not easily generated, and the straightness of the light to the pattern can be improved.
    (2-2-2-2.投影像の拡大率)
 複数の受光アレイは、光源131の周囲に配置され、対応付けられたパターンの反射スリットで反射された光を各々受光する複数の受光素子(図5のドットハッチング部分)を有する。複数の受光素子は、図5に示すように、測定方向Cに沿って並べられる。
(2-2-2-2. Magnification ratio of projected image)
The plurality of light receiving arrays are arranged around the light source 131 and have a plurality of light receiving elements (dot hatched portions in FIG. 5) that respectively receive the light reflected by the reflection slits of the associated pattern. The plurality of light receiving elements are arranged along the measurement direction C as shown in FIG.
 図6に示すように、光源131から出射される光は拡散光である。従って、光学モジュール130上に投影されるパターンの像は、光路長に応じた所定の拡大率εだけ拡大されたものとなる。つまり、図4~図6に示すように、パターンSA1,SA2,SIそれぞれの幅方向Rの長さをWSA1,WSA2,WSIとし、それらの反射光が光学モジュール130に投影された形状の幅方向Rの長さをWPA1,WPA2,WPIとすると、WPA1,WPA2,WPIは、WSA1,WSA2,WSIのε倍の長さとなる。なお、本実施形態では、図5及び図6に示すように、各受光アレイの受光素子の幅方向Rの長さは、各スリットが光学モジュール130に投影された形状とほぼ等しく設定されている例を示している。しかし、受光素子の幅方向Rの長さは、必ずしもこの例に限定されるものではない。 As shown in FIG. 6, the light emitted from the light source 131 is diffused light. Therefore, the pattern image projected on the optical module 130 is enlarged by a predetermined enlargement factor ε corresponding to the optical path length. That is, as shown in FIGS. 4 to 6, the lengths of the patterns SA1, SA2, and SI in the width direction R are WSA1, WSA2, and WSI, and the reflected light is projected onto the optical module 130 in the width direction. Assuming that the length of R is WPA1, WPA2, and WPI, WPA1, WPA2, and WPI are ε times as long as WSA1, WSA2, and WSI. In this embodiment, as shown in FIGS. 5 and 6, the length in the width direction R of the light receiving element of each light receiving array is set substantially equal to the shape of each slit projected onto the optical module 130. An example is shown. However, the length of the light receiving element in the width direction R is not necessarily limited to this example.
 同様に、光学モジュール130における測定方向Cも、ディスク110における測定方向Cが光学モジュール130に投影された形状、つまり拡大率εの影響を受けた形状となる。理解が容易になるように、図2に示すように光源131の位置における測定方向Cを例に挙げて、具体的に説明する。ディスク110における測定方向Cは、軸心AXを中心とした円状になる。これに対して、光学モジュール130に投影された測定方向Cの中心は、光源131が配置されたディスク110の面内位置である光学中心Opから距離εLだけ離隔した位置となる。距離εLは、軸心AXと光学中心Opとの間の距離Lが拡大率εで拡大された距離である。この位置を図2では、概念的に測定中心Osとして示している。従って、光学モジュール130における測定方向Cは、光学中心Opから当該光学中心Opと軸心AXとが乗るライン上を軸心AX方向に距離εL離れた測定中心Osを中心とし、距離εLを半径とするライン上となる。 Similarly, the measurement direction C in the optical module 130 also has a shape in which the measurement direction C in the disk 110 is projected onto the optical module 130, that is, a shape affected by the magnification factor ε. In order to facilitate understanding, the measurement direction C at the position of the light source 131 will be described as an example as shown in FIG. The measurement direction C in the disk 110 is circular with the axis AX as the center. On the other hand, the center in the measurement direction C projected on the optical module 130 is a position separated from the optical center Op, which is the in-plane position of the disk 110 on which the light source 131 is disposed, by a distance εL. The distance εL is a distance obtained by enlarging the distance L between the axis AX and the optical center Op at an enlargement factor ε. In FIG. 2, this position is conceptually shown as the measurement center Os. Therefore, the measurement direction C in the optical module 130 is centered on the measurement center Os that is separated from the optical center Op by a distance εL in the direction of the axis AX on the line where the optical center Op and the axis AX ride, and the distance εL is the radius. On the line to be.
 図4~図6では、ディスク110及び光学モジュール130の各々における測定方向Cの対応関係を、円弧状のラインLcd,Lcpで表す。図4等に示すラインLcdは、ディスク110上の測定方向Cに沿った線を表す一方、図5等に示すラインLcpは、基板BA上の測定方向Cに沿った線(ラインLcdが光学モジュール130上に投影された線)を表す。 4 to 6, the corresponding relationship in the measurement direction C in each of the disk 110 and the optical module 130 is represented by arc-shaped lines Lcd and Lcp. 4 represents a line along the measurement direction C on the disk 110, while the line Lcp illustrated in FIG. 5 and the like represents a line along the measurement direction C on the substrate BA (the line Lcd is an optical module). Line projected onto 130).
 図6に示すように、光学モジュール130とディスク110との間のギャップ長をGとし、光源131の基板BAからの突出量をΔdとした場合、拡大率εは、下記(式1)で示される。
 ε=(2G-Δd)/(G-Δd)    …(式1)
As shown in FIG. 6, when the gap length between the optical module 130 and the disk 110 is G and the protrusion amount of the light source 131 from the substrate BA is Δd, the enlargement ratio ε is expressed by the following (formula 1). It is.
ε = (2G−Δd) / (G−Δd) (Formula 1)
    (2-2-2-3.アブソリュート用、インクリメンタル用の受光アレイ)
 1つ1つの受光素子としては、例えばフォトダイオードを使用することができる。各受光素子は、それぞれ所定の受光面積を有する形状に形成されており、その受光面積全体で受光した総光量(以下、「受光光量」という)に応じた大きさのアナログ検出信号を出力する。但し、受光素子としては、フォトダイオードに限られるものではなく、光源131から出射された光を受光して電気信号に変換可能なものであれば、特に限定されるものではない。
(2-2-2-3. Light receiving array for absolute and incremental use)
As each light receiving element, for example, a photodiode can be used. Each light receiving element is formed in a shape having a predetermined light receiving area, and outputs an analog detection signal having a magnitude corresponding to the total light amount received in the entire light receiving area (hereinafter referred to as “light receiving amount”). However, the light receiving element is not limited to a photodiode, and is not particularly limited as long as it can receive light emitted from the light source 131 and convert it into an electric signal.
 本実施形態における受光アレイは、3本のパターンSA1,SA2,SIに対応して配置される。受光アレイPA1は、パターンSA1で反射した光を受光するように構成され、受光アレイPA2は、パターンSA2で反射した光を受光するように構成される。また、受光アレイPI1,PI2は、パターンSIで反射した光を受光するように構成される。受光アレイPI1と受光アレイPI2とは途中で分割されているが、同一トラックに対応する。このように、1つのパターンに対応した受光アレイは1つに限らず、複数であってもよい。 The light receiving array in the present embodiment is arranged corresponding to the three patterns SA1, SA2, and SI. The light receiving array PA1 is configured to receive the light reflected by the pattern SA1, and the light receiving array PA2 is configured to receive the light reflected by the pattern SA2. The light receiving arrays PI1 and PI2 are configured to receive light reflected by the pattern SI. The light receiving array PI1 and the light receiving array PI2 are divided on the way, but correspond to the same track. As described above, the number of light receiving arrays corresponding to one pattern is not limited to one, and may be plural.
 光源131と、受光アレイPA1,PA2とは、図5に示す位置関係に配置される。すなわち、アブソリュートパターンに対応する受光アレイPA1,PA2は、光源131を間に挟んで幅方向Rに互いにオフセットした位置に2セット並列に配置される。この例では、受光アレイPA1は内周側、受光アレイPA2は外周側に配置され、受光アレイPA1,PA2と光源131との距離は略等しくなっている。受光アレイPA1,PA2の各々は、光源131(光学中心Op)を通りY軸に平行なラインLoを中心に線対称な形状となっている。そして、受光アレイPA1,PA2が有する複数(本実施形態では例えば9)の受光素子は、それぞれ測定方向C(ラインLcp)に沿って一定のピッチで並べられる。なお、これらの複数の受光素子の形状については後述する。 The light source 131 and the light receiving arrays PA1 and PA2 are arranged in the positional relationship shown in FIG. That is, two sets of light receiving arrays PA1 and PA2 corresponding to the absolute pattern are arranged in parallel at positions offset from each other in the width direction R with the light source 131 interposed therebetween. In this example, the light receiving array PA1 is disposed on the inner peripheral side and the light receiving array PA2 is disposed on the outer peripheral side, and the distances between the light receiving arrays PA1 and PA2 and the light source 131 are substantially equal. Each of the light receiving arrays PA1 and PA2 has an axisymmetric shape with respect to a line Lo passing through the light source 131 (optical center Op) and parallel to the Y axis. A plurality (for example, 9 in this embodiment) of light receiving elements included in the light receiving arrays PA1 and PA2 are arranged at a constant pitch along the measurement direction C (line Lcp). The shapes of the plurality of light receiving elements will be described later.
 本実施形態では、アブソリュートパターンとして一次元的なパターンを例示している。このため、該パターンに対応した受光アレイPA1,PA2は、対応付けられたパターンSA1,SA2の反射スリットで反射された光を各々受光するように測定方向C(ラインLcp)に沿って並べられた複数(本実施形態では例えば9)の受光素子を有する。この複数の受光素子では、上述のとおり、1つ1つの受光又は非受光がビットとして扱われ、9ビットの絶対位置を表す。複数の受光素子それぞれが受光する受光信号は、位置データ生成部140(図2参照)において相互に独立して取り扱われて、シリアルなビットパターンに暗号化(コード化)されていた絶対位置が、これらの受光信号の組み合わせから復号される。この受光アレイPA1,PA2の受光信号を、「アブソリュート信号」という。なお、本実施形態とは異なるアブソリュートパターンが使用される場合には、受光アレイPA1,PA2は、そのパターンに対応した構成となる。なお、受光アレイPA1,PA2が有する受光素子の数は9以外でもよく、アブソリュート信号のビット数も9に限定されるものではない。 In the present embodiment, a one-dimensional pattern is illustrated as an absolute pattern. Therefore, the light receiving arrays PA1 and PA2 corresponding to the pattern are arranged along the measurement direction C (line Lcp) so as to receive the light reflected by the reflecting slits of the corresponding patterns SA1 and SA2. A plurality of (for example, 9 in this embodiment) light receiving elements are provided. In the plurality of light receiving elements, as described above, each light reception or non-light reception is treated as a bit and represents an absolute position of 9 bits. The light reception signals received by each of the plurality of light receiving elements are handled independently of each other in the position data generation unit 140 (see FIG. 2), and the absolute position encrypted (encoded) into a serial bit pattern is It decodes from the combination of these received light signals. The light receiving signals of the light receiving arrays PA1 and PA2 are referred to as “absolute signals”. When an absolute pattern different from the present embodiment is used, the light receiving arrays PA1 and PA2 have a configuration corresponding to the pattern. The number of light receiving elements included in the light receiving arrays PA1 and PA2 may be other than nine, and the number of bits of the absolute signal is not limited to nine.
 光源131と、受光アレイPI1,PI2とは、図5に示す位置関係に配置される。すなわち、インクリメンタルパターンに対応する受光アレイPI1,PI2は、測定方向Cにおいて光源131を間に挟んで配置される。具体的には、受光アレイPI1,PI2は、上記ラインLoを対称軸として線対称となるように配置される。光源131は、測定方向Cに1トラックとして配置された受光アレイPI1,PI2の間に配置される。 The light source 131 and the light receiving arrays PI1, PI2 are arranged in the positional relationship shown in FIG. That is, the light receiving arrays PI1 and PI2 corresponding to the incremental pattern are arranged in the measurement direction C with the light source 131 interposed therebetween. Specifically, the light receiving arrays PI1 and PI2 are arranged so as to be line symmetric with respect to the line Lo as a symmetry axis. The light source 131 is arranged between the light receiving arrays PI1 and PI2 arranged as one track in the measurement direction C.
 受光アレイPI1,PI2は、対応付けられたパターンSIの反射スリットで反射された光を各々受光するように測定方向C(ラインLcp)に沿って並べられた複数の受光素子を有する。これらの受光素子は、各々が同一の形状(この例では略長方形)を有する。 The light receiving arrays PI1 and PI2 have a plurality of light receiving elements arranged along the measurement direction C (line Lcp) so as to receive the light reflected by the reflecting slits of the associated pattern SI. Each of these light receiving elements has the same shape (substantially rectangular in this example).
 本実施形態では、パターンSIのインクリメンタルパターンの1ピッチ(投影された像における1ピッチ。すなわちε×P。)中に、合計4個の受光素子のセット(図5に「SET」で示す)が並べられ、かつ、4個の受光素子のセットが測定方向Cに沿って更に複数並べられる。そして、インクリメンタルパターンは、1ピッチ毎に反射スリットが繰り返し形成されるので、各受光素子は、ディスク110が回転する場合、1ピッチで1周期(電気角で360°という。)の周期信号を生成する。そして、1ピッチに相当する1セット中に4つの受光素子が配置されるので、1セット内の相隣接する受光素子同士は、相互に90°の位相差を有する周期信号であるインクリメンタル相信号を出力することになる。各インクリメンタル相信号をA+相信号、B+相信号(A+相信号に対する位相差が90°)、A-相信号(A+相信号に対する位相差が180°)、B-相信号(B+相信号に対する位相差が180°)と呼ぶ。 In the present embodiment, a total of four sets of light receiving elements (indicated by “SET” in FIG. 5) are included in one pitch of the incremental pattern of pattern SI (one pitch in the projected image, ie, ε × P). A plurality of sets of four light receiving elements are arranged along the measurement direction C. In the incremental pattern, reflection slits are repeatedly formed for each pitch. Therefore, when the disk 110 rotates, each light receiving element generates a periodic signal of one cycle (referred to as 360 ° in electrical angle) at one pitch. To do. Since four light receiving elements are arranged in one set corresponding to one pitch, adjacent light receiving elements in one set receive an incremental phase signal which is a periodic signal having a phase difference of 90 ° from each other. Will be output. Each incremental phase signal is divided into A + phase signal, B + phase signal (phase difference with respect to A + phase signal is 90 °), A− phase signal (phase difference with respect to A + phase signal is 180 °), B− phase signal (with respect to B + phase signal). The phase difference is called 180 °.
 インクリメンタルパターンは1ピッチ中の位置を表すので、1セット中の各位相の信号と、それと対応した他のセット中の各位相の信号とは、同様に変化する値となる。従って、同一位相の信号は、複数のセットにわたって加算される。従って、図5に示す受光アレイPIの多数の受光素子からは、位相が90°ずつずれる4つの信号が検出されることとなる。従って、受光アレイPI1,PI2から位相が90°ずつずれる4つの信号がそれぞれ生成される。この4つの信号を、「インクリメンタル信号」という。 Since the incremental pattern represents a position in one pitch, the signal of each phase in one set and the signal of each phase in another set corresponding to it have values that change similarly. Accordingly, signals of the same phase are added over a plurality of sets. Accordingly, four signals whose phases are shifted by 90 ° are detected from the many light receiving elements of the light receiving array PI shown in FIG. Accordingly, four signals whose phases are shifted by 90 ° are generated from the light receiving arrays PI1 and PI2, respectively. These four signals are referred to as “incremental signals”.
 なお、本実施形態では、インクリメンタルパターンの1ピッチに相当する1セットには受光素子が4つ含まれ、受光アレイPI1及び受光アレイPI2のそれぞれが同様の構成のセットを有する場合を一例として説明するが、例えば1セットに2つの受光素子が含まれる等、1セット中の受光素子数は特に限定されるものではない。また、受光アレイPIL,PIRの全体の受光素子数も、図5等に示す例に限定されるものではない。また、受光アレイPI1,PI2が各々異なる位相の受光信号を取得するように構成されてもよい。 In this embodiment, one set corresponding to one pitch of the incremental pattern includes four light receiving elements, and the light receiving array PI1 and the light receiving array PI2 each have a set having the same configuration as an example. However, the number of light receiving elements in one set is not particularly limited, for example, two light receiving elements are included in one set. Further, the total number of light receiving elements of the light receiving arrays PIL and PIR is not limited to the example shown in FIG. The light receiving arrays PI1 and PI2 may be configured to acquire light receiving signals having different phases.
 また、インクリメンタルパターンに対応する受光アレイは、受光アレイPI1,PI2のように光源131を間に挟んで2つ配置される態様に限定されるものではない。例えば、光源131の外周側又は内周側において測定方向Cに沿った1つの受光アレイとして配置されてもよい。また、分解能が異なるインクリメンタルパターンをディスク110の複数のトラックに形成し、各トラックに対応した複数の受光アレイを設けてもよい。 Further, the light receiving array corresponding to the incremental pattern is not limited to a mode in which two light receiving arrays such as the light receiving arrays PI1 and PI2 are arranged with the light source 131 interposed therebetween. For example, the light source 131 may be arranged as one light receiving array along the measurement direction C on the outer peripheral side or the inner peripheral side. Further, incremental patterns having different resolutions may be formed on a plurality of tracks of the disk 110, and a plurality of light receiving arrays corresponding to the respective tracks may be provided.
 以上、ここでは、受光アレイの概要について説明した。次に、受光アレイPA1,PA2が有する各受光素子の形状等について説明する前に、残りの構成である位置データ生成部140について説明する。 Heretofore, the outline of the light receiving array has been described. Next, before describing the shape and the like of each light receiving element included in the light receiving arrays PA1 and PA2, the position data generating unit 140 which is the remaining configuration will be described.
  (2-3.位置データ生成部)
 位置データ生成部140は、モータMの絶対位置を測定するタイミングにおいて、光学モジュール130から、第1絶対位置を表すビットパターンをそれぞれ備えた2つのアブソリュート信号と、位相が90°ずつずれる4つの信号を含むインクリメンタル信号とを取得する。そして、位置データ生成部140は、取得した信号に基づいて、これらの信号が表すモータMの第2絶対位置を算出し、算出した第2絶対位置を表す位置データを制御装置CTに出力する。
(2-3. Position data generator)
The position data generation unit 140, from the optical module 130, at the timing of measuring the absolute position of the motor M, two absolute signals each having a bit pattern representing the first absolute position, and four signals whose phases are shifted by 90 °. Incremental signal including. Then, the position data generation unit 140 calculates the second absolute position of the motor M represented by these signals based on the acquired signals, and outputs position data representing the calculated second absolute position to the control device CT.
 なお、位置データ生成部140による位置データの生成方法は、様々な方法が使用可能であり、特に限定されるものではない。ここでは、インクリメンタル信号とアブソリュート信号とから絶対位置を算出し位置データを生成する場合を例にとって説明する。 Note that the position data generation method by the position data generation unit 140 can use various methods, and is not particularly limited. Here, a case where the absolute position is calculated from the incremental signal and the absolute signal to generate position data will be described as an example.
 位置データ生成部140は、受光アレイPA1,PA2からのアブソリュート信号のそれぞれを2値化し、絶対位置を表すビットデータに変換する。そして、予め定められたビットデータと絶対位置との対応関係に基づいて、第1絶対位置を特定する。つまり、ここでいう「第1絶対位置」とは、インクリメンタル信号を重畳する前の低分解能である絶対位置である。一方、受光アレイPI1,PI2からの4つの位相それぞれのインクリメンタル信号のうち、180°位相差のインクリメンタル信号同士を相互に減算する。このように180°位相差のある信号を減算することで、1ピッチ内の反射スリットの製造誤差や測定誤差などを相殺可能である。上述のように減算された結果の信号を、ここでは「第1インクリメンタル信号」及び「第2インクリメンタル信号」という。この第1インクリメンタル信号及び第2インクリメンタル信号は相互に電気角で90°の位相差を有する(単に「A相信号」、「B相信号」などという。)。そこで、この2つの信号から、位置データ生成部140は、1ピッチ内の位置を特定する。この1ピッチ内の位置の特定方法は、特に限定されない。例えば、周期信号であるインクリメンタル信号が正弦波信号である場合には、上記特定方法の例として、A相及びB相の2つの正弦波信号の除算結果をarctan演算することにより電気角φを算出する方法がある。あるいは、トラッキング回路を用いて2つの正弦波信号を電気角φに変換する方法もある。あるいは、予め作成されたテーブルにおいてA相及びB相の信号の値に対応付けられた電気角φを特定する方法もある。なおこの際、位置データ生成部140は、好ましくは、A相及びB相の2つの正弦波信号を各検出信号毎にアナログ-デジタル変換する。 The position data generation unit 140 binarizes each of the absolute signals from the light receiving arrays PA1 and PA2, and converts them into bit data representing an absolute position. Then, the first absolute position is specified based on the correspondence between the predetermined bit data and the absolute position. That is, the “first absolute position” here is an absolute position having a low resolution before the incremental signal is superimposed. On the other hand, among the incremental signals of the four phases from the light receiving arrays PI1 and PI2, the incremental signals having a phase difference of 180 ° are subtracted from each other. Thus, by subtracting a signal having a phase difference of 180 °, it is possible to cancel a manufacturing error or a measurement error of the reflection slit within one pitch. The signals resulting from the subtraction as described above are referred to herein as “first incremental signal” and “second incremental signal”. The first incremental signal and the second incremental signal have a phase difference of 90 ° in electrical angle with each other (simply referred to as “A phase signal”, “B phase signal”, etc.). Therefore, the position data generation unit 140 identifies the position within one pitch from these two signals. The method for specifying the position within one pitch is not particularly limited. For example, when the incremental signal, which is a periodic signal, is a sine wave signal, the electrical angle φ is calculated by performing an arctan operation on the division result of the two A-phase and B-phase sine wave signals as an example of the above-described specific method. There is a way to do it. Alternatively, there is a method of converting two sine wave signals into an electrical angle φ using a tracking circuit. Alternatively, there is a method of specifying the electrical angle φ associated with the values of the A-phase and B-phase signals in a table created in advance. At this time, the position data generation unit 140 preferably performs analog-digital conversion of the two sine wave signals of the A phase and the B phase for each detection signal.
 位置データ生成部140は、アブソリュート信号に基づいて特定された第1絶対位置に、インクリメンタル信号に基づいて特定された1ピッチ内の位置を重畳する。これにより、アブソリュート信号に基づく第1絶対位置よりも高分解能な第2絶対位置を算出することができる。位置データ生成部140は、このようにして算出した第2絶対位置を逓倍処理して分解能をさらに向上させた後、高精度な絶対位置を表す位置データとして制御装置CTに出力する。 The position data generation unit 140 superimposes the position within one pitch specified based on the incremental signal on the first absolute position specified based on the absolute signal. Accordingly, it is possible to calculate the second absolute position with higher resolution than the first absolute position based on the absolute signal. The position data generation unit 140 multiplies the second absolute position calculated in this way to further improve the resolution, and then outputs it to the control device CT as position data representing a highly accurate absolute position.
  (2-4.アブソリュート用受光アレイの各受光素子の形状)
 次に、受光アレイPA1,PA2が有する各受光素子の形状について説明する。
(2-4. Shape of each light receiving element of absolute light receiving array)
Next, the shape of each light receiving element included in the light receiving arrays PA1 and PA2 will be described.
 仮に、光源131から照射された拡散光が全てディスク110上で反射されて光学モジュール130の基板BAに照射された場合、図7に示すように反射光の強度分布は光学中心Opから離間するほど減衰する同心円状の分布となる。なお、図7中における点線円が反射光の等強度線を表しており、内周側ほど光強度が高く、外周側ほど光強度が低い。このように反射光の光強度の分布が同心円状となるのは、光が光路長に応じて減衰する性質を有する一方、光源131からの拡散光の照射空間中(反射空間中)で光軸に対し垂直な平面状の基板BAで受光する構造をとっているからである。なお、実際には基板BA上におけるディスク110の各パターンSA1,SA2,SIに対応した領域に反射光が照射される。 If all of the diffused light emitted from the light source 131 is reflected on the disk 110 and applied to the substrate BA of the optical module 130, the intensity distribution of the reflected light becomes farther from the optical center Op as shown in FIG. It becomes a concentric distribution that decays. Note that the dotted circle in FIG. 7 represents the isointensity line of the reflected light, and the light intensity is higher on the inner peripheral side and the light intensity is lower on the outer peripheral side. The distribution of the light intensity of the reflected light is concentric as described above, while the light is attenuated according to the optical path length, while the optical axis is in the irradiation space of diffuse light from the light source 131 (in the reflection space). This is because the structure is such that the light is received by a flat substrate BA perpendicular to the substrate. Actually, the reflected light is applied to the areas corresponding to the patterns SA1, SA2, and SI of the disk 110 on the substrate BA.
 そして、上述したように、アブソリュート用の各受光アレイPA1,PA2においては、測定中心Osを曲率中心とした円弧状のラインLcpに沿って複数の受光素子が配置される一方、光学中心Opは測定中心Osから大きく離間した位置に配置される。このため、受光アレイPA1,PA2の各受光素子における光強度は、測定方向Cにおいて光源131からの距離に応じて変化する。受光アレイPA2について具体的に説明すると、前述のように受光アレイPA2はラインLoを中心に線対称な形状であることから、各受光素子における光強度は、ラインLo上の受光素子P5が最も高く、ラインLoに近い順、つまり受光素子P4,P6、受光素子P3,P7、受光素子P2,P8、受光素子P1,P9の順に、線対称的に低くなる。受光アレイPA1も同様である。また、受光アレイPA1と受光アレイPA2が光源131を間に挟んで並設されていることから、受光アレイPA1,PA2の各受光素子における光強度は、いずれも光源側の端部Eoで最も高く、光源131と反対側の端部Enで最も低くなる。 As described above, in each of the absolute light receiving arrays PA1 and PA2, a plurality of light receiving elements are arranged along the arc-shaped line Lcp with the measurement center Os as the center of curvature, while the optical center Op is measured. It is arranged at a position greatly separated from the center Os. For this reason, the light intensity in each light receiving element of the light receiving arrays PA1, PA2 changes according to the distance from the light source 131 in the measurement direction C. The light receiving array PA2 will be described in detail. Since the light receiving array PA2 has a line-symmetric shape with respect to the line Lo as described above, the light intensity at each light receiving element is highest at the light receiving element P5 on the line Lo. In this order, they are line-symmetrically lower in the order closer to the line Lo, that is, in the order of the light receiving elements P4 and P6, the light receiving elements P3 and P7, the light receiving elements P2 and P8, and the light receiving elements P1 and P9. The same applies to the light receiving array PA1. Further, since the light receiving array PA1 and the light receiving array PA2 are arranged side by side with the light source 131 therebetween, the light intensity in each light receiving element of the light receiving arrays PA1 and PA2 is highest at the end Eo on the light source side. , And lowest at the end En on the opposite side of the light source 131.
 ここで、本実施形態において例えばフォトダイオードで構成される各受光素子は、上述したように、その受光面積全体での受光光量に応じてアナログ値の検出信号を出力する。そして、受光光量とは、受光面積中における各受光点での光強度を積算したものである。このため、受光素子間で上記光強度の分布が相違している場合には、例えそれぞれの受光面積が同じであっても受光光量が相違してしまい、受光素子間でアナログ検出信号の変化特性が相違してしまう。この場合、それら受光素子同士の間で2値化信号の変化タイミングがずれてしまうので、絶対位置の誤検出を招く可能性がある。また、受光素子間で2値化信号の変化タイミングがずれないように、2値化信号に変換するための閾値をそれぞれの受光素子の変化特性に対応して調整することも考えられるが、回路構成や信号処理が複雑化し、コストアップ等の要因となりうる。 Here, in the present embodiment, each light receiving element constituted by, for example, a photodiode outputs an analog value detection signal according to the amount of light received in the entire light receiving area as described above. The received light amount is obtained by integrating the light intensity at each light receiving point in the light receiving area. For this reason, if the light intensity distribution is different among the light receiving elements, even if the light receiving areas are the same, the amount of received light is different, and the change characteristics of the analog detection signal between the light receiving elements. Will be different. In this case, since the change timing of the binarized signal is shifted between the light receiving elements, the absolute position may be erroneously detected. In addition, it is conceivable to adjust the threshold value for conversion to a binarized signal corresponding to the change characteristics of each light receiving element so that the change timing of the binarized signal does not shift between the light receiving elements. The configuration and signal processing are complicated, which can cause an increase in cost.
 これに対し、受光素子間で各々の測定方向C又は幅方向Rにおける外形寸法を調整して受光面積を変化させ、受光光量を均一化させる手法を取ることも考えられる。しかし、各受光素子の測定方向Cにおける外形寸法を変化させた場合には、隣り合う受光素子間における間隔が不均一となるので、それら受光素子同士の間で乱反射などの影響により相互に漏出受光するクロストーク量が不均一となり、結果的に受光光量を不均一化させる可能性がある。また、各受光素子の幅方向Rにおける外形寸法を変化させた場合には、幅方向の長さが短い受光素子ほどディスク110の偏心による反射光の幅方向の位置ずれの影響を受けやすくなり、誤検出が生じる可能性がある。 On the other hand, it is also conceivable to take a method of changing the light receiving area by adjusting the outer dimensions in the measurement direction C or the width direction R between the light receiving elements, and making the received light quantity uniform. However, when the external dimensions in the measurement direction C of each light receiving element are changed, the interval between adjacent light receiving elements becomes non-uniform, so that light leakage from each other occurs due to the influence of irregular reflection between the light receiving elements. As a result, the amount of crosstalk to be generated becomes non-uniform, and as a result, the amount of received light may become non-uniform. Further, when the external dimensions of each light receiving element in the width direction R are changed, the light receiving element having a shorter length in the width direction is more susceptible to the positional deviation in the width direction of the reflected light due to the eccentricity of the disk 110, False detection may occur.
 そこで本実施形態では、受光アレイPA1と受光アレイPA2のそれぞれにおいて、各受光素子の測定方向Cの最大外形寸法及び幅方向Rの最大外形寸法が互いに等しく設定されるとともに、各々の受光光量が互いに等しくなるように光源131からの距離が異なる受光素子同士が異なる形状に形成される。なお、ここでいう外径寸法や受光光量が「等しい」という記載は、厳密な意味ではなく、設計上、製造上の公差、誤差が許容され、実質的に等しいという意味である。また、ここでいう「受光光量」は、各受光素子がそれぞれの受光面積全体で反射光を受光した場合の最大受光光量である。 Therefore, in the present embodiment, in each of the light receiving array PA1 and the light receiving array PA2, the maximum outer dimension in the measurement direction C and the maximum outer dimension in the width direction R of each light receiving element are set to be equal to each other, and the respective received light amounts are mutually equal. The light receiving elements having different distances from the light source 131 are formed in different shapes so as to be equal. Here, the description that the outer diameter and the amount of received light are “equal” does not mean a strict meaning, but means that tolerances and errors in manufacturing are allowed and are substantially equal. Further, the “light reception amount” here is the maximum light reception amount when each light receiving element receives reflected light over the entire light receiving area.
 本実施形態では、このような条件を実現する形状の一例として、受光アレイPA1,PA2において、複数の受光素子のうちの一部又は全部がそれぞれ先細り形状の尖端部を備える形状に形成される。尖端部の位置は特に限定されるものではないが、本実施形態では、受光素子が尖端部を幅方向Rの端部に備える場合について説明する。ここでは、受光アレイPA1,PA2のうち受光アレイPA2を例に挙げて、より具体的に説明する。なお、受光アレイPA1については、受光アレイPA2と幅方向Rにおいて対称な形状となること以外は同様の形状であるので、説明を省略する。 In this embodiment, as an example of a shape that realizes such a condition, in the light receiving arrays PA1 and PA2, some or all of the plurality of light receiving elements are each formed into a shape having a tapered pointed portion. Although the position of the tip is not particularly limited, in the present embodiment, a case where the light receiving element includes the tip at the end in the width direction R will be described. Here, the light receiving array PA2 out of the light receiving arrays PA1 and PA2 will be described as a specific example. The light receiving array PA1 has the same shape as that of the light receiving array PA2 except that the light receiving array PA1 is symmetrical in the width direction R, and the description thereof is omitted.
   (2-4-1.尖端部を有する受光素子の形状の詳細)
 図8に、受光アレイPA2が有する9つの受光素子のうちの一つである受光素子P6の形状を例に挙げて拡大して示す。この図8を参照しつつ、尖端部を有する受光素子の各部の形状及び寸法設定について詳細に説明する。
(2-4-1. Details of shape of light receiving element having pointed portion)
In FIG. 8, the shape of the light receiving element P6, which is one of the nine light receiving elements included in the light receiving array PA2, is enlarged and shown as an example. With reference to FIG. 8, the shape and dimension setting of each part of the light receiving element having a pointed portion will be described in detail.
 この受光素子P6の形状は、概略的には、基本となる四角形状の角部がトリミングされた形状である。この基本となる四角形状は、測定方向Cの長さをTPA2(この例ではパターンSA2の反射スリットの測定方向Cにおける最小長さP(基本ビット長)のε倍の長さ)とし、幅方向Rの長さをWPA2とした矩形形状である。受光アレイPA2が有するいずれの受光素子P1~P9においても、この基本となる矩形形状、つまり測定方向Cの最大外形寸法TPA2及び幅方向Rの最大外形寸法WPA2は、共通して等しく設定されている。なお、上記の基本となる四角形状は、対向する2辺どうしが厳密に平行である必要はなく、また各角部が厳密に直角である必要もなく、実質的に四角形状であればよい。 The shape of the light receiving element P6 is roughly a shape in which corners of a basic quadrilateral shape are trimmed. This basic quadrangular shape has a length in the measurement direction C as TPA2 (in this example, a length ε times the minimum length P (basic bit length) in the measurement direction C of the reflective slit of the pattern SA2), and the width direction. It is a rectangular shape in which the length of R is WPA2. In any of the light receiving elements P1 to P9 included in the light receiving array PA2, the basic rectangular shape, that is, the maximum external dimension TPA2 in the measurement direction C and the maximum external dimension WPA2 in the width direction R are set to be equal in common. . Note that the above-described basic quadrangular shape does not need to be strictly parallel between two opposing sides, and each corner does not need to be strictly right-angled, and may be substantially rectangular.
 また、ここで「トリミング」とは、上記四角形状の一つの角部に対し所定の傾斜角で面取りすることをいう。そして、受光素子P6の幅方向Rの両端部En,Eoの少なくとも一方において、当該端部En,Eo上にそれぞれ位置する2つの角部に対し同じ傾斜角のトリミングがなされることで、当該端部En,Eo上に頂点が位置する略二等辺三角形状の尖端部Psが形成される。図8に示す受光素子P6の場合は、幅方向Rの両端部En,Eoのそれぞれにおいて尖端部Psが形成されているが、この場合でも幅方向Rの最大外形寸法(つまり両端の各尖端部Psの頂点間距離)は長さWPA2に維持される。これにより受光素子P6は、測定中心Osと各尖端部Psの頂点とを通るラインLocを対称軸として測定方向Cに対し対称な六角形状に形成されている。なお、両端部En,Eoのうち一方のみに尖端部が形成される受光素子(受光素子P2,P3,P5,P7,P8)は、ラインLocを対称軸として測定方向Cに対し対称な五角形状に形成される。 Further, here, “trimming” means chamfering at a predetermined inclination angle with respect to one corner of the square shape. Then, at least one of the both end portions En and Eo in the width direction R of the light receiving element P6 is trimmed at the same inclination angle with respect to two corner portions respectively positioned on the end portions En and Eo. A substantially isosceles triangular point Ps is formed on the portions En and Eo. In the case of the light receiving element P6 shown in FIG. 8, the apex portion Ps is formed at each of the both end portions En and Eo in the width direction R. Even in this case, the maximum outer dimension in the width direction R (that is, each end portion at both ends) The distance between the vertices of Ps) is maintained at the length WPA2. Thereby, the light receiving element P6 is formed in a hexagonal shape symmetrical with respect to the measurement direction C with a line Loc passing through the measurement center Os and the apex of each tip portion Ps as an axis of symmetry. The light receiving elements (light receiving elements P2, P3, P5, P7, and P8) in which only one of the two end portions En and Eo is formed have a pentagonal shape that is symmetric with respect to the measurement direction C with the line Loc as an axis of symmetry. Formed.
 なお、尖端部Psの形状は先細り形状であればよく、上記三角形状以外にも、例えば台形状や、丸みを帯びた円弧状としてもよい。また、尖端部Psは基本となる四角形状の角部のトリミング以外の手法で形成されてもよい。 In addition, the shape of the pointed portion Ps may be a tapered shape, and may be, for example, a trapezoidal shape or a rounded arc shape other than the triangular shape. Further, the pointed portion Ps may be formed by a method other than the trimming of a basic rectangular corner.
 また、光源側の端部Eoに形成された尖端部Psの幅方向寸法をWoとし、光源131と反対側の端部Enに形成された尖端部Psの幅方向寸法をWnとした場合、受光素子間で両方の尖端部Psの幅方向寸法の合計Wo+Wnが等しいと、受光面積も等しいと言える。換言すれば、受光素子の幅方向Rの最大外形寸法WPA2に対してWo+Wnが占める割合が等しいと、受光素子全体の受光面積も等しいと言える。 Further, when the width direction dimension of the tip portion Ps formed at the end portion Eo on the light source side is Wo and the width direction dimension of the tip portion Ps formed at the end portion En on the opposite side of the light source 131 is Wn, If the total Wo + Wn of the widthwise dimensions of both the tip portions Ps is equal between the elements, it can be said that the light receiving area is also equal. In other words, if the ratio of Wo + Wn to the maximum external dimension WPA2 in the width direction R of the light receiving element is equal, the light receiving area of the entire light receiving element is also equal.
 なお、以下においては、光源側の端部Eoと反対側の端部Enの少なくとも一方に尖端部Psを有する受光素子、換言するとWo+Wnが0よりも大きい値である受光素子(この例では受光素子P2~P8)を、「第1受光素子」ともいう。また、両端部Eo,Enのいずれにも尖端部Psを有しない四角形状の受光素子、換言するとWo+Wnが実質的に0(Wo=Wn=0)である受光素子(この例では受光素子P1,P9)を、「第2受光素子」ともいう。 In the following, a light receiving element having a pointed portion Ps at at least one of the end Eo on the light source side and the end En on the opposite side, in other words, a light receiving element in which Wo + Wn is a value greater than 0 (in this example, the light receiving element) P2 to P8) are also referred to as “first light receiving elements”. In addition, a square-shaped light receiving element that does not have the pointed part Ps at both ends Eo and En, in other words, a light receiving element in which Wo + Wn is substantially 0 (Wo = Wn = 0) (in this example, the light receiving elements P1, P9) is also referred to as “second light receiving element”.
 そして、上記図7で説明したように、各受光素子における光強度は光源側の端部Eoで最も高く、光源131と反対側の端部Enで最も低くなる。このため、受光素子間でWo+Wnが同じ、つまり受光面積が同じであっても、光源131に近い端部Eo側の尖端部Psの幅方向寸法Woの割合を大きくした方が、受光光量を相対的に小さくできる。逆に、光源131から遠い端部En側の尖端部Psの幅方向寸法Wnの割合を大きくした方が、受光光量を相対的に大きくできる。 As described with reference to FIG. 7, the light intensity of each light receiving element is highest at the end Eo on the light source side and lowest at the end En on the opposite side to the light source 131. For this reason, even if Wo + Wn is the same between the light receiving elements, that is, the light receiving area is the same, increasing the ratio of the width direction dimension Wo of the tip portion Ps on the end Eo side close to the light source 131 causes the received light amount to be relative. Can be made small. Conversely, the amount of received light can be relatively increased by increasing the proportion of the width direction dimension Wn of the tip portion Ps on the end portion En side far from the light source 131.
 また、同じ図7で説明したように、受光アレイPA2の複数の受光素子P1~P9における光強度は、ラインLoに近いほど、つまり基板BA上で光源131に近い受光素子ほど高く、ラインLoから遠いほど、つまり基板BA上で光源131から遠い受光素子ほど低くなる。このため、本実施形態では、光源131から最も遠い位置にある2つの受光素子P1,P9が受光面積が最大となる上記第2受光素子とされ、他の受光素子P2~P8については上記第1受光素子とされ、受光素子P1,P9での受光光量を基準として同じ受光光量となるよう形状が調整されている。 Further, as described with reference to FIG. 7, the light intensity in the plurality of light receiving elements P1 to P9 of the light receiving array PA2 is higher as the light receiving element is closer to the line Lo, that is, closer to the light source 131 on the substrate BA. The farther away, that is, the light receiving element farther from the light source 131 on the substrate BA becomes lower. For this reason, in this embodiment, the two light receiving elements P1 and P9 located farthest from the light source 131 are the second light receiving elements having the largest light receiving area, and the other light receiving elements P2 to P8 are the first light receiving elements. The shape of the light receiving element is adjusted so that the received light amount is the same with reference to the received light amount at the light receiving elements P1 and P9.
 以上から、受光アレイPA2の複数の受光素子P1~P9の形状は、例えば図5、図7に示す態様とすることができる。すなわち、最も両端に位置する2つの受光素子P1,P9は、全くトリミングしない四角形状の第2受光素子である。また、それらの内側直近に位置する2つの受光素子P2,P8は、端部En側に比較的低い幅方向寸法Wnの尖端部Psを有する略同一形状の第1受光素子である。また、それらの内側直近に位置する2つの受光素子P3,P7は、端部En側に比較的高い幅方向寸法Wnの尖端部Psを有する略同一形状の第1受光素子である。また、それらの内側直近に位置する2つの受光素子P4,P6は、端部Eoと端部Enの両側にそれぞれ尖端部Psを有する略同一形状の第1受光素子である。また、それらの内側で最も光源131に近い受光素子P5は、端部Eo側に比較的高い幅方向寸法Woの尖端部Psを有する第1受光素子である。 From the above, the shapes of the plurality of light receiving elements P1 to P9 of the light receiving array PA2 can be the modes shown in FIGS. 5 and 7, for example. That is, the two light receiving elements P1 and P9 located at both ends are rectangular second light receiving elements which are not trimmed at all. Further, the two light receiving elements P2 and P8 positioned in the immediate vicinity thereof are first light receiving elements having substantially the same shape and having a pointed portion Ps having a relatively low width direction dimension Wn on the end portion En side. Further, the two light receiving elements P3 and P7 positioned in the immediate vicinity thereof are first light receiving elements having substantially the same shape and having a pointed portion Ps having a relatively high width direction dimension Wn on the end portion En side. Further, the two light receiving elements P4 and P6 positioned in the immediate vicinity of each other are first light receiving elements having substantially the same shape, each having a tip portion Ps on both sides of the end portion Eo and the end portion En. Further, the light receiving element P5 closest to the light source 131 inside thereof is a first light receiving element having a pointed portion Ps having a relatively high width direction dimension Wo on the end Eo side.
 また、この例では、受光アレイPA2における9つの受光素子P1~P9のうち、光源131に近い5つの受光素子P3~P7についてはWo+Wnが等しくなっており、すなわち受光面積が等しくなっている。これら受光素子P3~P7を構成する受光素子P3~P5及び受光素子P5~P7は、光源131からの距離が異なると共に互いに面積が等しい複数の受光素子の一例に相当する。そして、これら面積が等しい受光素子P3~P7の間では、Wo+Wnに対する光源131側の端部Eoに形成された尖端部Psの幅方向寸法Woの割合(以下適宜「Wo割合」という。)が、測定方向Cにおいて光源131に近い受光素子ほど大きくなるように設定されている。具体的には、受光素子P5の上記Wo割合(この例では100%)は受光素子P4,P6の上記Wo割合よりも大きく、受光素子P4,P6の上記Wo割合は受光素子P3,P7の上記Wo割合(この例では0%)よりも大きい。 In this example, among the nine light receiving elements P1 to P9 in the light receiving array PA2, the five light receiving elements P3 to P7 close to the light source 131 have the same Wo + Wn, that is, the light receiving areas are equal. The light receiving elements P3 to P5 and the light receiving elements P5 to P7 constituting the light receiving elements P3 to P7 correspond to an example of a plurality of light receiving elements having different distances from the light source 131 and equal areas. Between the light receiving elements P3 to P7 having the same area, the ratio of the width direction dimension Wo of the pointed portion Ps formed at the end Eo on the light source 131 side with respect to Wo + Wn (hereinafter referred to as “Wo ratio” as appropriate). In the measurement direction C, the light receiving element closer to the light source 131 is set to be larger. Specifically, the Wo ratio (100% in this example) of the light receiving element P5 is larger than the Wo ratio of the light receiving elements P4 and P6, and the Wo ratio of the light receiving elements P4 and P6 is the above of the light receiving elements P3 and P7. It is larger than the Wo ratio (0% in this example).
 さらに、この例では、受光素子P1~P9のうち、互いに面積が異なる第1受光素子、すなわち受光素子P2,P3と、受光素子P7,P8については、Wo+Wnが測定方向Cにおいて光源131に近い受光素子ほど大きくなっている。具体的には、受光素子P3のWo+Wnは受光素子P2のWo+Wnよりも大きく、同様に受光素子P7のWo+Wnは受光素子P8のWo+Wnよりも大きい。なお、受光素子P2,P3及び受光素子P7,P8は、光源からの距離が異なると共に互いに面積が異なる複数の第1受光素子の一例に相当する。 Further, in this example, among the light receiving elements P1 to P9, for the first light receiving elements having different areas, that is, the light receiving elements P2 and P3 and the light receiving elements P7 and P8, Wo + Wn is light received close to the light source 131 in the measurement direction C. The device is larger. Specifically, Wo + Wn of the light receiving element P3 is larger than Wo + Wn of the light receiving element P2, and similarly Wo + Wn of the light receiving element P7 is larger than Wo + Wn of the light receiving element P8. The light receiving elements P2, P3 and the light receiving elements P7, P8 correspond to an example of a plurality of first light receiving elements having different distances from the light source and different areas.
 なお、受光アレイPA2の複数の受光素子P1~P9の形状の態様は、上記に限定されるものではない。例えば、受光アレイPA2の両端の受光素子P1,P9についても尖端部Psを備えた第1受光素子としてもよい。また、受光素子P1~P9中の互いに面積が等しい受光素子の数は上記5以外としてもよいし、全ての受光素子の面積を相互に異なるようにしてもよい。また、互いに面積が等しい第1受光素子における上記Wo割合の関係や、互いに面積が異なる第1受光素子における上記Wo+Wnの関係も、上記以外の態様としてもよい。但し、本実施形態では、説明の便宜上、上述の形状である場合について説明する。 Note that the shape of the plurality of light receiving elements P1 to P9 of the light receiving array PA2 is not limited to the above. For example, the light receiving elements P1 and P9 at both ends of the light receiving array PA2 may be the first light receiving elements provided with the pointed portion Ps. Further, the number of light receiving elements having the same area in the light receiving elements P1 to P9 may be other than 5, or the areas of all the light receiving elements may be different from each other. In addition, the relationship of the Wo ratio in the first light receiving elements having the same area and the relationship of Wo + Wn in the first light receiving elements having the different areas may be other than the above. However, in this embodiment, the case where it is the above-mentioned shape is demonstrated for convenience of explanation.
 以上により、受光アレイPA1と受光アレイPA2のそれぞれについて、各受光素子の測定方向Cの最大外形寸法及び幅方向Rの最大外形寸法を互いに等しくしつつ、各々の受光光量を互いに等しくすることができる。なお、以上説明した受光アレイPA1,PA2の各受光素子の形状が、各受光素子の受光光量を互いに等しくする手段の一例に相当する。 As described above, with respect to each of the light receiving array PA1 and the light receiving array PA2, it is possible to make the received light amounts equal to each other while making the maximum outer dimension in the measurement direction C and the maximum outer dimension in the width direction R of each light receiving element equal to each other. . In addition, the shape of each light receiving element of the light receiving arrays PA1 and PA2 described above corresponds to an example of a unit that equalizes the amount of light received by each light receiving element.
 なお、第1受光素子が上記尖端部Psを有することにより、その検出信号を2値化信号に変換する際にも有利な効果が得られる。以下、その効果について詳細に説明する。 In addition, since the first light receiving element has the pointed portion Ps, an advantageous effect can be obtained even when the detection signal is converted into a binarized signal. Hereinafter, the effect will be described in detail.
   (2-4-2.2値化信号変換時における尖端部の効果)
 まず比較例として、尖端部Psを有していない矩形形状の受光素子PD’の場合のアナログ検出信号の変化特性について、図9を参照しつつ説明する。この図9において、矩形形状の受光素子PD’に対し、パターンSA1,SA2が有する反射スリットからの反射光の照射面Rsが、時間の経過とともに測定方向Cに沿って位置X1~X11の順に進行する。なお、照射面Rsは幅方向Rで受光素子PD’より大きく、測定方向Cで受光素子PD’と同じ大きさの矩形形状とする。またここでは、照射面Rs中における光強度の分布は均一であるとする。これら位置X1~X11にそれぞれ対応して、受光素子PD’における受光光量は太線VXに示すような変化特性で経時変化する。
(2-4-2.2 Effect of the tip when converting a binary signal)
First, as a comparative example, a change characteristic of an analog detection signal in the case of a rectangular light receiving element PD ′ not having a pointed portion Ps will be described with reference to FIG. In FIG. 9, with respect to the rectangular light receiving element PD ′, the irradiation surface Rs of the reflected light from the reflection slits of the patterns SA1 and SA2 proceeds in the order of the positions X1 to X11 along the measurement direction C over time. To do. The irradiation surface Rs is larger than the light receiving element PD ′ in the width direction R, and has a rectangular shape having the same size as the light receiving element PD ′ in the measurement direction C. Here, it is assumed that the light intensity distribution in the irradiation surface Rs is uniform. Corresponding to each of these positions X1 to X11, the amount of light received by the light receiving element PD ′ changes with the change characteristics as shown by the thick line VX.
 この場合、照射面Rsが受光素子PD’と重複し始める位置X2のタイミングから、照射面Rsが受光素子PD’と完全に重複する位置X6のタイミングまでは、受光光量が一次関数的に単調増加する。また、受光光量が最大となるこの位置X6のタイミングから、照射面Rsと受光素子PD’との重複が無くなる位置X10のタイミングまでは、受光光量が一次関数的に単調減少する。 In this case, the amount of received light monotonically increases from the timing of the position X2 where the irradiation surface Rs begins to overlap with the light receiving element PD ′ to the timing of the position X6 where the irradiation surface Rs completely overlaps with the light receiving element PD ′. To do. Further, from the timing of the position X6 at which the received light amount becomes the maximum to the timing of the position X10 at which the irradiation surface Rs and the light receiving element PD 'do not overlap, the received light amount decreases monotonically in a linear function.
 これに対し、尖端部Psを有する受光素子PDの場合のアナログ検出信号の変化特性を図10に示す。なお、この図10においては、理解を容易とするために、受光素子PDが尖端部Psだけで形成される場合を図示している。また上述と同様に、照射面Rsは幅方向Rで受光素子PDより大きく、測定方向Cで受光素子PDと同じ大きさの矩形形状であり、照射面Rs中における光強度の分布は均一であるとする。この図10において、受光素子PDに対して照射面Rsが時間の経過とともに位置Y1~Y11の順に進行した場合、各位置Y1~Y11に対応して、受光素子PDにおける受光光量は太線VYに示すような変化特性で経時変化する。 On the other hand, the change characteristic of the analog detection signal in the case of the light receiving element PD having the tip portion Ps is shown in FIG. In FIG. 10, in order to facilitate understanding, a case where the light receiving element PD is formed only by the tip portion Ps is illustrated. Similarly to the above, the irradiation surface Rs is larger than the light receiving element PD in the width direction R, has a rectangular shape having the same size as the light receiving element PD in the measurement direction C, and the light intensity distribution in the irradiation surface Rs is uniform. And In FIG. 10, when the irradiation surface Rs advances with respect to the light receiving element PD in the order of positions Y1 to Y11 with time, the received light amount in the light receiving element PD is indicated by a thick line VY corresponding to each position Y1 to Y11. It changes with time with such change characteristics.
 この場合、照射面Rsが受光素子PDと重複し始める位置Y2のタイミングから、照射面Rsが受光素子PDと完全に重複する位置Y6のタイミングまでは、受光光量が二次関数的(三次関数以上の多次関数的でもよい)に増加する。この間には、照射面Rsが受光素子PDの半分と重複する位置Y4のタイミングが変曲点となり、この時点で受光光量の時間変化率(曲線の傾斜)が最も大きくなる。また、受光光量が最大となる位置Y6のタイミングから、照射面Rsと受光素子PDとの重複が無くなる位置Y10のタイミングまでは、受光光量が二次関数的に減少する。この間には、照射面Rsが受光素子PDの半分と重複する位置Y8のタイミングが変曲点となり、この時点で受光光量の時間変化率(曲線の傾斜)が最も大きくなる。 In this case, the amount of received light is a quadratic function (a cubic function or higher) from the timing of the position Y2 where the irradiation surface Rs begins to overlap the light receiving element PD to the timing of the position Y6 where the irradiation surface Rs completely overlaps the light receiving element PD. (It may be a multi-order function). During this time, the timing of the position Y4 where the irradiation surface Rs overlaps half of the light receiving element PD becomes an inflection point, and the time change rate (curve slope) of the amount of received light becomes the largest at this point. In addition, the received light amount decreases in a quadratic function from the timing of the position Y6 where the received light amount becomes maximum to the timing of the position Y10 where the irradiation surface Rs and the light receiving element PD do not overlap. During this time, the timing of the position Y8 where the irradiation surface Rs overlaps half of the light receiving element PD becomes the inflection point, and the time change rate (curve slope) of the amount of received light becomes the largest at this point.
 ここで、図11に示すように、受光素子PD’である場合と受光素子PDである場合のそれぞれの受光光量の変化特性を比較する。なおこの図11では、比較が容易となるよう、それぞれの受光面積が等しく、同じ光強度の照射光が均一な分布で照射されており、それぞれの変化特性における最大受光光量が等しくなっているものとする。 Here, as shown in FIG. 11, the change characteristics of the received light amount in the case of the light receiving element PD ′ and in the case of the light receiving element PD are compared. In FIG. 11, for easy comparison, the respective light receiving areas are equal, the irradiation light having the same light intensity is irradiated with a uniform distribution, and the maximum received light amounts in the respective change characteristics are equal. And
 この図11において、いずれの受光素子PD’,PDの場合も照射面Rsとの重複領域が受光面積の半分となるタイミング、つまり上記図9、図10における位置X4,X8,Y4,Y8のタイミングで受光光量が最大受光光量の半分となり、それぞれの特性線VX,VYが交差する。受光素子からのアナログ検出信号を2値化信号に変換するための閾値は、この最大受光光量の半分の値に設定されるのが望ましい。しかし、例えば光源131の経年劣化や製造個体差による照射光の光強度の変動、または受光素子の経年劣化や製造個体差による受光感度の変動などにより、受光光量の変化特性に対して閾値が相対的に変動する場合がある。この閾値の変動は、上述した最大受光光量の半分である基準値を中心とした変動幅ΔTの範囲で変動するが、受光素子PD’である場合には変化特性が一次関数的に増減変化するため、対応する変動幅Δtxで2値化信号の変化タイミングが変動する。 In FIG. 11, in any of the light receiving elements PD ′ and PD, the timing at which the overlapping area with the irradiation surface Rs becomes half of the light receiving area, that is, the timing of the positions X4, X8, Y4, Y8 in FIGS. Thus, the received light quantity becomes half of the maximum received light quantity, and the characteristic lines VX and VY intersect. The threshold value for converting the analog detection signal from the light receiving element into a binarized signal is preferably set to a value that is half the maximum received light amount. However, the threshold value is relative to the change characteristic of the amount of received light due to, for example, fluctuation of the light intensity of the irradiation light due to aging degradation of the light source 131 or manufacturing individual difference, or fluctuation of light receiving sensitivity due to aging deterioration of the light receiving element or manufacturing individual difference. May vary. The fluctuation of the threshold fluctuates within a fluctuation range ΔT centered on the reference value that is half of the above-described maximum received light quantity. However, in the case of the light receiving element PD ′, the change characteristic increases and decreases in a linear function. Therefore, the change timing of the binarized signal fluctuates within the corresponding fluctuation width Δtx.
 これに対し、受光素子PDである場合には、上述したように最大受光光量の半分である基準値のタイミングで特性曲線の変曲点となり、その周囲は曲線が大きく傾斜している。このため、閾値の変動幅ΔTに対して、2値化信号の変化タイミングの変動を、受光素子PD’の場合の上記変動幅Δtxよりも十分狭い変動幅Δtyに抑えることができる。以上により、本実施形態における第1受光素子が尖端部Psを有する形状に形成されていることで、そのアナログ検出信号を2値化信号に変換する際には、閾値の変動による影響を抑える効果がある。 On the other hand, in the case of the light receiving element PD, as described above, it becomes an inflection point of the characteristic curve at the timing of the reference value that is half of the maximum received light amount, and the curve is largely inclined around the characteristic curve. For this reason, the change in the change timing of the binarized signal with respect to the change width ΔT of the threshold can be suppressed to a change width Δty that is sufficiently narrower than the change width Δtx in the case of the light receiving element PD ′. As described above, since the first light receiving element in the present embodiment is formed in a shape having the tip portion Ps, an effect of suppressing the influence due to the fluctuation of the threshold when the analog detection signal is converted into the binarized signal. There is.
 <3.本実施形態による効果の例>
 以上説明した実施形態では、エンコーダ100が、測定方向Cに沿って並べられ、光源131から出射されパターンSA1,SA2で反射された光を受光する受光アレイPA1,PA2を有する。そして、それら受光アレイPA1,PA2が有する複数の受光素子(図5等に示す例では受光素子P1~P9)は、各々の測定方向Cの最大外形寸法及び幅方向Rの最大外形寸法が互いに等しく、且つ、各々の受光光量が互いに等しくなるように光源131からの距離が異なる受光素子同士が異なる形状を有する。これにより、受光アレイPA1,PA2の各々において、各受光素子の受光光量が均一になるので、1ビット1ビットの検出精度を均一化して絶対位置の誤検出を抑制でき、検出精度を向上できる。また、各受光素子の信号出力を調整する処理が不要となると共に、各受光素子からのアナログ検出信号を2値化信号に変換するための閾値を各受光素子で共通化できるので、信号処理や回路構成を単純化できる。
<3. Examples of effects according to this embodiment>
In the embodiment described above, the encoder 100 includes the light receiving arrays PA1 and PA2 that are arranged along the measurement direction C and receive the light emitted from the light source 131 and reflected by the patterns SA1 and SA2. A plurality of light receiving elements (light receiving elements P1 to P9 in the example shown in FIG. 5 and the like) included in the light receiving arrays PA1 and PA2 have the same maximum outer dimension in the measurement direction C and the maximum outer dimension in the width direction R. In addition, the light receiving elements having different distances from the light source 131 have different shapes so that the received light amounts are equal to each other. As a result, in each of the light receiving arrays PA1 and PA2, the amount of light received by each light receiving element is uniform, so that detection accuracy of 1 bit and 1 bit can be made uniform to prevent erroneous detection of absolute positions, and detection accuracy can be improved. Further, it is not necessary to adjust the signal output of each light receiving element, and the threshold for converting the analog detection signal from each light receiving element into a binarized signal can be shared by each light receiving element. The circuit configuration can be simplified.
 また、受光アレイPA1,PA2が有する各受光素子の測定方向Cの最大外形寸法が互いに等しいので、各受光素子の測定方向Cの間隔を均一にすることができる。これにより、測定方向Cにおいて隣り合う各受光素子間のクロストーク量を均一化することができるので、各受光素子の受光光量の均一性を更に高めることができる。また、各受光素子の信号からクロストークによるノイズを除去する処理等が容易となる。 Further, since the maximum external dimensions in the measurement direction C of the respective light receiving elements of the light receiving arrays PA1 and PA2 are equal to each other, the intervals in the measurement direction C of the respective light receiving elements can be made uniform. Thereby, since the crosstalk amount between each light receiving element adjacent in the measurement direction C can be made uniform, the uniformity of the amount of light received by each light receiving element can be further enhanced. In addition, processing for removing noise due to crosstalk from the signals of the respective light receiving elements is facilitated.
 また、前述のように、例えば光源131に近づくにつれ受光素子の幅方向Rの長さを短くした場合、幅方向Rの長さが短い受光素子ほど、ディスク110の偏心による光の幅方向Rの位置ずれの影響が大きくなり、検出誤差が生じ易くなる。本実施形態では、受光アレイPA1,PA2が有する各受光素子の幅方向Rの最大外形寸法を互いに等しくするので、上記偏心による影響を小さくすることができ、ディスク110に偏心が存在する場合でも絶対位置の検出誤差を生じにくくすることができる。 Further, as described above, for example, when the length of the light receiving element in the width direction R is shortened as the light source 131 is approached, the light receiving element having a shorter length in the width direction R has a smaller width in the width direction R of the light due to the eccentricity of the disk 110. The influence of misalignment is increased, and detection errors are likely to occur. In the present embodiment, since the maximum outer dimensions in the width direction R of the respective light receiving elements of the light receiving arrays PA1 and PA2 are equal to each other, the influence of the eccentricity can be reduced, and even when the disk 110 has an eccentricity, it is absolutely necessary. It is possible to make it difficult for position detection errors to occur.
 また、本実施形態において、受光アレイPA1,PA2が有する複数の受光素子が、光源131からの距離が異なると共に互いに面積が等しい複数の受光素子(図5等に示す例では受光素子P3~P7)を含む場合には、次のような効果を得る。つまり、互いに面積が等しい受光素子では接合容量(静電容量)が等しくなるので、それらの受光素子の間で応答速度を均一化できる。その結果、モータMの高速回転時の絶対位置の検出精度を向上できる。 In the present embodiment, the plurality of light receiving elements included in the light receiving arrays PA1 and PA2 have a plurality of light receiving elements having different distances from the light source 131 and equal areas (in the example shown in FIG. 5 and the like, the light receiving elements P3 to P7). The following effects are obtained. That is, since the junction capacitance (capacitance) is equal in the light receiving elements having the same area, the response speed can be made uniform among the light receiving elements. As a result, the absolute position detection accuracy when the motor M rotates at high speed can be improved.
 また、本実施形態において、受光アレイPA1,PA2が有する複数の受光素子が、先細り形状の尖端部Psを幅方向Rの端部に備えた第1受光素子(図5等に示す例では受光素子P2~P8)を含む場合には、次のような効果を得る。つまり、尖端部Psを備えない(四角形の)第2受光素子の場合、測定方向Cのエッジが幅方向Rに平行なので、パターンによる照射領域Rsが通過する際のアナログ検出信号の出力変化は一次関数的な単調増加及び単調減少となる(上記図9参照)。一方、幅方向Rの端部に尖端部Psを備えた第1受光素子は、測定方向Cのエッジが幅方向Rに対して傾斜した形状となるので、パターンによる照射領域Rsが通過する際のアナログ検出信号の出力変化は二次関数的な増加及び減少となり、閾値付近におけるアナログ検出信号の出力変化の度合いを大きくする(傾きを急にする)ことができる(上記図10参照)。これにより、閾値の変動に対する2値化信号の位相のずれが小さくなるので、閾値が変動した場合でも絶対位置の検出誤差を生じにくくすることができる(上記図11参照)。 In the present embodiment, the plurality of light receiving elements included in the light receiving arrays PA1 and PA2 are first light receiving elements each having a tapered pointed portion Ps at the end in the width direction R (in the example shown in FIG. In the case of including P2 to P8), the following effects are obtained. That is, in the case of the second light receiving element not provided with the tip portion Ps (square shape), since the edge in the measurement direction C is parallel to the width direction R, the output change of the analog detection signal when the irradiation region Rs by the pattern passes is primary. It is a functional monotonous increase and monotonic decrease (see FIG. 9 above). On the other hand, the first light receiving element having the tip portion Ps at the end portion in the width direction R has a shape in which the edge in the measurement direction C is inclined with respect to the width direction R. The change in output of the analog detection signal increases and decreases in a quadratic function, and the degree of change in the output of the analog detection signal in the vicinity of the threshold value can be increased (the slope is abrupt) (see FIG. 10 above). As a result, the phase shift of the binarized signal with respect to the fluctuation of the threshold value is reduced, so that even if the threshold value fluctuates, an absolute position detection error can be made difficult to occur (see FIG. 11).
 また、本実施形態において、受光アレイPA1,PA2が有する複数の受光素子のうち、互いに面積が等しい複数の第1受光素子(図5等に示す例では受光素子P3~P7)について、尖端部Psの幅方向寸法の合計Wo+Wnが互いに等しく、該合計Wo+Wnに対する光源131側の端部Eoに形成された尖端部Psの幅方向寸法Woの割合が測定方向Cにおいて光源131に近い第1受光素子ほど大きい場合には、次のような効果を得る。つまり、光は光路長に応じて減衰することから、光源131から出射されパターンSA1,SA2で反射された光の照射強度は光源131を中心として光源131から離れるほど減衰する同心円状の分布をとる。このような光強度分布において、光源131に近い第1受光素子ほど光源131側の尖端部Psの割合を大きくすることで、光源131から離れた第1受光素子については光強度が相対的に大きな領域の受光面積を確保しつつ、光源131に近い第1受光素子ほど光強度が相対的に大きな領域の受光面積を次第に減少させることができる。したがって、各受光素子の面積を均一にしつつ受光光量の均一化を実現できる。 In the present embodiment, among the plurality of light receiving elements of the light receiving arrays PA1 and PA2, the plurality of first light receiving elements having the same area (light receiving elements P3 to P7 in the example shown in FIG. 5 and the like) The first light-receiving elements whose width direction dimensions Wo + Wn are equal to each other, and the ratio of the width direction dimension Wo of the tip portion Ps formed at the end Eo on the light source 131 side to the total Wo + Wn is closer to the light source 131 in the measurement direction C. If it is large, the following effects are obtained. That is, since the light attenuates according to the optical path length, the irradiation intensity of the light emitted from the light source 131 and reflected by the patterns SA1 and SA2 has a concentric distribution that attenuates with increasing distance from the light source 131 with the light source 131 at the center. . In such a light intensity distribution, the first light receiving element closer to the light source 131 has a relatively large light intensity for the first light receiving element far from the light source 131 by increasing the proportion of the tip portion Ps on the light source 131 side. While securing the light receiving area of the region, it is possible to gradually reduce the light receiving area of the region where the light intensity of the first light receiving element closer to the light source 131 is relatively large. Therefore, it is possible to achieve a uniform amount of received light while making the area of each light receiving element uniform.
 また、本実施形態において、受光アレイPA1,PA2が有する複数の受光素子が、測定方向Cにおいて第1受光素子を間に挟んで配置され、尖端部Psを備えない2つの第2受光素子(図5等に示す例では受光素子P1,P9)を含む場合には、次のような効果を得る。つまり、尖端部Psを備えない第2受光素子は、尖端部Psを備える第1受光素子よりも面積が大きい。このため、光源131より最も離れた位置となる受光アレイPA1,PA2の両端の受光素子を第2受光素子とし、その間に第1受光素子を配置することにより、受光アレイPA1,PA2の各々において複数の受光素子全体での受光光量を最大限確保しつつ、各受光素子の受光光量を均一化することができる。 In the present embodiment, a plurality of light receiving elements included in the light receiving arrays PA1 and PA2 are arranged in the measurement direction C with the first light receiving elements sandwiched therebetween, and two second light receiving elements that do not have the pointed portion Ps (see FIG. In the example shown in 5 etc., when the light receiving elements P1, P9) are included, the following effects are obtained. That is, the second light receiving element that does not include the pointed portion Ps has a larger area than the first light receiving element that includes the pointed portion Ps. For this reason, the light receiving elements at both ends of the light receiving arrays PA1 and PA2 that are located farthest from the light source 131 are used as the second light receiving elements, and the first light receiving elements are arranged therebetween, so that a plurality of light receiving arrays PA1 and PA2 are provided. The light receiving amount of each light receiving element can be made uniform while ensuring the maximum amount of light received by the entire light receiving element.
 また、本実施形態において、第2受光素子(図5等に示す例では受光素子P1,P9)が四角形状であり、第1受光素子(図5等に示す例では受光素子P2~P8)が四角形状の角部をトリミングした形状とする場合には、次のような効果を得る。つまり、各第1受光素子について、第2受光素子の四角形状を基準にトリミングの面積や位置等を調整すればよいので、第1受光素子の形状の設計を容易化できる。 In the present embodiment, the second light receiving elements (light receiving elements P1 and P9 in the example shown in FIG. 5 and the like) have a square shape, and the first light receiving elements (light receiving elements P2 to P8 in the example shown in FIG. 5 and the like) The following effects can be obtained when the rectangular corner is trimmed. That is, for each first light receiving element, the trimming area, position, and the like may be adjusted based on the square shape of the second light receiving element, so that the design of the shape of the first light receiving element can be facilitated.
 また、本実施形態において、受光アレイPA1,PA2が有する複数の受光素子が、光源131からの距離が異なると共に互いに面積が異なる複数の第1受光素子(図5等に示す例では受光素子P2,P3と受光素子P7,P8)を含み、該面積が異なる複数の第1受光素子において、尖端部Psの幅方向寸法の合計Wo+Wnが測定方向Cにおいて光源131に近い第1受光素子ほど大きく設定された場合には、次のような効果を得る。つまり、上記光強度分布において、光源131に近い第1受光素子ほど尖端部Psの幅方向寸法を大きくすることで、光源131に近い第1受光素子ほど受光面積を次第に小さくすることができる。したがって、各受光素子の受光光量の均一化を実現できる。 In the present embodiment, the plurality of light receiving elements included in the light receiving arrays PA1 and PA2 are a plurality of first light receiving elements having different distances from the light source 131 and different areas (in the example illustrated in FIG. 5 and the like, the light receiving elements P2 and P2). In a plurality of first light receiving elements including P3 and light receiving elements P7 and P8), the total Wo + Wn of the widthwise dimensions of the tip portion Ps is set to be larger in the measurement direction C as the first light receiving element is closer to the light source 131. The following effects are obtained. That is, in the light intensity distribution, by increasing the widthwise dimension of the tip portion Ps as the first light receiving element closer to the light source 131, the light receiving area can be gradually reduced as the first light receiving element closer to the light source 131 is. Therefore, it is possible to make the amount of light received by each light receiving element uniform.
 また、本実施形態において、受光アレイPA1,PA2の各々を構成する複数の受光素子が、光源131を挟むように幅方向Rに互いにオフセットした位置に2セット並列に配置された場合には、次のような効果を得る。つまり、一方の複数の受光素子(例えば受光アレイPA2)がアブソリュートパターンの変わり目に相当する等により検出信号の信頼性が低下した場合には、他方の複数の受光素子(例えば受光アレイPA1)からの検出信号を使用したり、その逆を行うことができる。これにより、受光素子の検出信号の信頼性を向上し、絶対位置の検出精度を向上できる。 In the present embodiment, when two sets of light receiving elements constituting each of the light receiving arrays PA1 and PA2 are arranged in parallel at positions offset from each other in the width direction R so as to sandwich the light source 131, The effect like this is obtained. That is, when the reliability of the detection signal is reduced due to one of the plurality of light receiving elements (for example, the light receiving array PA2) corresponding to the transition of the absolute pattern, the signal from the other plurality of light receiving elements (for example, the light receiving array PA1) The detection signal can be used and vice versa. Thereby, the reliability of the detection signal of the light receiving element can be improved, and the absolute position detection accuracy can be improved.
 また、本実施形態において、エンコーダ100が、光源131がパターンSA1,SA2に拡散光を出射する点光源であり、パターンSA1,SA2が光源131より出射された光を反射するパターンであり、受光アレイPA1,PA2の複数の受光素子がパターンSA1,SA2で反射された光を受光する、反射型のエンコーダとして構成された場合には、次のような効果を得る。つまり、反射型のエンコーダでは、拡散光を出射する点光源を用いることでパターンSA1,SA2からの反射光の光量分布がパターンSA1,SA2に対応する照射領域からさらに広がる台形状となりやすいことから、測定方向Cに隣り合う受光素子間でクロストークが生じやすい。したがって、クロストーク量を均一化できる本構成は、反射型のエンコーダへ適用した場合により有効である。また、反射型のエンコーダとして構成することで、受光アレイPA1,PA2の複数の受光素子P1~P9を光源131に近接して配置することが可能となるので、エンコーダ100を小型化できる。 In the present embodiment, the encoder 100 is a point light source in which the light source 131 emits diffused light to the patterns SA1 and SA2, and the patterns SA1 and SA2 are patterns that reflect the light emitted from the light source 131, and the light receiving array. When the plurality of light receiving elements PA1 and PA2 are configured as reflective encoders that receive the light reflected by the patterns SA1 and SA2, the following effects are obtained. That is, in the reflection type encoder, by using a point light source that emits diffused light, the light amount distribution of the reflected light from the patterns SA1 and SA2 tends to become a trapezoidal shape that further spreads from the irradiation area corresponding to the patterns SA1 and SA2. Crosstalk is likely to occur between light receiving elements adjacent in the measurement direction C. Therefore, this configuration capable of making the crosstalk amount uniform is more effective when applied to a reflective encoder. In addition, by configuring as a reflective encoder, the plurality of light receiving elements P1 to P9 of the light receiving arrays PA1 and PA2 can be disposed close to the light source 131, so that the encoder 100 can be reduced in size.
 <4.変形例等>
 以上、添付図面を参照しながら一実施の形態について詳細に説明した。しかしながら、技術的思想の範囲は、ここで説明した実施の形態に限定されないことは言うまでもない。実施形態の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範囲内において、様々な変更や修正、組み合わせなどを行うことに想到できることは明らかである。従って、これらの変更や修正、組み合わせなどが行われた後の技術も、当然に技術的思想の範囲に属するものである。以下、そのような変形例を順を追って説明する。なお、以下の説明において前述の実施形態と同様の部分には同符号を付し、適宜説明を省略する。
<4. Modified example>
The embodiment has been described in detail with reference to the accompanying drawings. However, it goes without saying that the scope of the technical idea is not limited to the embodiment described here. It is obvious that a person having ordinary knowledge in the technical field to which the embodiments belong can make various changes, modifications, combinations, and the like within the scope of the technical idea described in the claims. It is. Accordingly, the technology after these changes, corrections, combinations, and the like are naturally within the scope of the technical idea. Hereinafter, such modifications will be described in order. In the following description, the same parts as those in the above-described embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
 受光アレイPA1,PA2の各受光素子の形状は、上記実施形態の態様に限定されるものではなく、その他にも種々の態様が考えられる。以下、図12~図18を用いて、これら受光素子の形状のバリエーションについて説明する。なお、図12~図18では、受光アレイPA2の各受光素子の形状のみを示し、その他の構成については図示を省略している。また、実際には各受光素子は円弧状ラインLcpに沿って配置(測定方向Cに沿って配置)されるが、図12~図18においては各受光素子間の形状関係の理解を容易とするために直線的な配置で模式的に示している。 The shape of each light receiving element of the light receiving arrays PA1 and PA2 is not limited to the above embodiment, and various other forms are conceivable. Hereinafter, variations in the shapes of these light receiving elements will be described with reference to FIGS. 12 to 18, only the shape of each light receiving element of the light receiving array PA2 is shown, and the other configurations are not shown. In practice, the light receiving elements are arranged along the arc-shaped line Lcp (arranged along the measurement direction C). However, in FIGS. 12 to 18, it is easy to understand the shape relationship between the light receiving elements. Therefore, it is schematically shown in a linear arrangement.
  (4-1.実施形態の受光素子の形状:同一面積の受光素子が5つの場合)
 比較のために、図12に上記実施形態における受光アレイPA2の各受光素子の形状を示す。この例では、受光アレイPA2の両端に位置する2つの受光素子P1,P9が尖端部Psを有しない第2受光素子であり、その間に尖端部Psを有する第1受光素子P2~P8が配置されている。また、第1受光素子P3~P7については受光面積が等しく、これら第1受光素子P3~P7では、前述のWo割合が測定方向Cにおいて光源131に近い受光素子ほど大きく設定されている。また、互いに面積が異なる第1受光素子P2,P3と第1受光素子P7,P8については、尖端部PsのWo+Wnが測定方向Cにおいて光源131に近い受光素子ほど大きくなっている。
(4-1. Shape of light receiving element of embodiment: When there are five light receiving elements of the same area)
For comparison, FIG. 12 shows the shape of each light receiving element of the light receiving array PA2 in the above embodiment. In this example, the two light receiving elements P1 and P9 positioned at both ends of the light receiving array PA2 are second light receiving elements that do not have the pointed portion Ps, and the first light receiving elements P2 to P8 that have the pointed portion Ps are disposed therebetween. ing. In addition, the first light receiving elements P3 to P7 have the same light receiving area, and in these first light receiving elements P3 to P7, the above-mentioned Wo ratio is set larger as the light receiving elements closer to the light source 131 in the measurement direction C. Further, for the first light receiving elements P2 and P3 and the first light receiving elements P7 and P8 having different areas, the light receiving element closer to the light source 131 in the measurement direction C has a larger Wo + Wn at the tip portion Ps.
 なお、各受光素子の測定方向Cの最大外形寸法及び幅方向Rの最大外形寸法が互いに等しく、且つ、各々の受光光量が互いに等しくなるように光源131からの距離が異なる受光素子同士が異なる形状を有する点については、以下に説明する各変形例についても同様である。 The light receiving elements having different maximum distances from the light source 131 so that the maximum outer dimensions in the measurement direction C and the maximum outer dimensions in the width direction R of the light receiving elements are equal to each other and the received light amounts are equal to each other. The same applies to each modified example described below.
  (4-2.同一面積の受光素子が3つの場合)
 図13に示すような形状としてもよい。この例では、受光素子P2~P4,P6~P8は、端部En側に尖端部Psを有する第1受光素子である。また、最も光源131に近い受光素子P5は、端部Eo側に尖端部Psを有する第1受光素子である。
(4-2. When there are three light receiving elements of the same area)
It is good also as a shape as shown in FIG. In this example, the light receiving elements P2 to P4 and P6 to P8 are first light receiving elements having a pointed portion Ps on the end portion En side. The light receiving element P5 closest to the light source 131 is a first light receiving element having a pointed portion Ps on the end Eo side.
 そして、3つの第1受光素子P4~P6については受光面積が等しく、これら第1受光素子P4~P6では、上記Wo割合が測定方向Cにおいて光源131に近い受光素子ほど大きく設定されている。また、互いに面積が異なる第1受光素子P2~P4と第1受光素子P6~P8については、尖端部PsのWo+Wnが測定方向Cにおいて光源131に近い受光素子ほど大きくなっている。本変形例においても、上記実施形態と同様の効果を得ることができる。 The three first light receiving elements P4 to P6 have the same light receiving area, and in these first light receiving elements P4 to P6, the light receiving element closer to the light source 131 in the measurement direction C is set larger. For the first light receiving elements P2 to P4 and the first light receiving elements P6 to P8 having different areas, the light receiving elements closer to the light source 131 in the measurement direction C have a larger Wo + Wn at the tip portion Ps. Also in this modification, the same effect as the above embodiment can be obtained.
  (4-3.同一面積の受光素子が7つの場合)
 また、図14に示すような形状としてもよい。この例では、受光素子P2,P8は、端部En側に尖端部Psを有する第1受光素子である。また、受光素子P3,P4,P6,P7は、端部Eo,Enの両側にそれぞれ尖端部Psを有する第1受光素子である。また、最も光源131に近い受光素子P5は、端部Eo側に尖端部Psを有する第1受光素子である。
(4-3. Seven light receiving elements with the same area)
Moreover, it is good also as a shape as shown in FIG. In this example, the light receiving elements P2 and P8 are first light receiving elements having a pointed portion Ps on the end En side. The light receiving elements P3, P4, P6, and P7 are first light receiving elements each having a pointed portion Ps on both sides of the end portions Eo and En. The light receiving element P5 closest to the light source 131 is a first light receiving element having a pointed portion Ps on the end Eo side.
 そして、7つの第1受光素子P2~P8については受光面積が等しく、これら第1受光素子P2~P8では、上記Wo割合が測定方向Cにおいて光源131に近い受光素子ほど大きく設定されている。なお、本変形例では、互いに面積が異なる第1受光素子については配置されていない。本変形例においても、上記実施形態と同様の効果を得ることができる。 The light receiving areas of the seven first light receiving elements P2 to P8 are equal, and in these first light receiving elements P2 to P8, the Wo ratio is set to be larger as the light receiving element is closer to the light source 131 in the measurement direction C. In the present modification, the first light receiving elements having different areas are not arranged. Also in this modification, the same effect as the above embodiment can be obtained.
  (4-4.全受光素子が同一面積である場合)
 また、図15に示すような形状としてもよい。この例では、全ての受光素子P1~P9が尖端部Psを有する第1受光素子であり、尖端部Psを有しない第2受光素子については配置されていない。また、両端に位置する2つの受光素子P1,P9は、端部En側に尖端部Psを有する第1受光素子である。また、受光素子P2~P4,P6~P8は、端部Eo,Enの両側にそれぞれ尖端部Psを有する第1受光素子である。また、最も光源131に近い受光素子P5は、端部Eo側に尖端部Psを有する第1受光素子である。
(4-4. When all light receiving elements have the same area)
Moreover, it is good also as a shape as shown in FIG. In this example, all the light receiving elements P1 to P9 are the first light receiving elements having the pointed portion Ps, and the second light receiving elements not having the pointed portion Ps are not arranged. Further, the two light receiving elements P1 and P9 located at both ends are first light receiving elements having a pointed end portion Ps on the end portion En side. The light receiving elements P2 to P4 and P6 to P8 are first light receiving elements each having a pointed portion Ps on both sides of the end portions Eo and En. The light receiving element P5 closest to the light source 131 is a first light receiving element having a pointed portion Ps on the end Eo side.
 そして、全ての第1受光素子P1~P9について受光面積が等しく、これら第1受光素子P1~P9では、上記Wo割合が測定方向Cにおいて光源131に近い受光素子ほど大きく設定されている。なお、本変形例でも、互いに面積が異なる第1受光素子については配置されていない。本変形例においても、上記実施形態と同様の効果を得ることができる。 The light receiving areas of all the first light receiving elements P1 to P9 are the same, and in these first light receiving elements P1 to P9, the Wo ratio is set to be larger as the light receiving elements are closer to the light source 131 in the measurement direction C. In this modification as well, the first light receiving elements having different areas are not arranged. Also in this modification, the same effect as the above embodiment can be obtained.
  (4-5.受光素子を尖端部のみで構成する場合)
 また、図16に示すような形状としてもよい。この例では、全ての受光素子P1~P9が尖端部Psのみで構成されている。すなわち、両端に位置する2つの受光素子P1,P9は、全体が端部En側に向けた尖端部Psだけで形成(つまりWn=WPA2で形成)された第1受光素子である。また、受光素子P2~P8は、端部Eo,Enの両側に向けた尖端部Psだけで形成(つまりWo+Wn=WPA2で形成)された第1受光素子である。
(4-5. When the light receiving element is composed of only the tip)
Moreover, it is good also as a shape as shown in FIG. In this example, all the light receiving elements P1 to P9 are configured by only the pointed portion Ps. That is, the two light receiving elements P1 and P9 located at both ends are the first light receiving elements that are formed only by the tip portion Ps facing the end portion En side (that is, formed by Wn = WPA2). Further, the light receiving elements P2 to P8 are first light receiving elements formed only at the pointed ends Ps directed to both sides of the ends Eo and En (that is, formed by Wo + Wn = WPA2).
 そして、全ての第1受光素子P1~P9について受光面積が等しく、これら第1受光素子P1~P9では、上記Wo割合が測定方向Cにおいて光源131に近い受光素子ほど大きく設定されている。なお、本変形例でも、互いに面積が異なる第1受光素子については配置されていない。本変形例においても、上記実施形態と同様の効果を得ることができる。 The light receiving areas of all the first light receiving elements P1 to P9 are the same, and in these first light receiving elements P1 to P9, the Wo ratio is set to be larger as the light receiving elements are closer to the light source 131 in the measurement direction C. In this modification as well, the first light receiving elements having different areas are not arranged. Also in this modification, the same effect as the above embodiment can be obtained.
  (4-6.全ての受光素子の面積が異なる場合)
 また、図17に示すような形状としてもよい。この例では、両端に位置する2つの受光素子P1,P9は、尖端部Psを有しない第2受光素子である。また、受光素子P2~P8は、端部Eo側に尖端部Psを有する第1受光素子である。そして、全ての受光素子P1~P9は、互いに受光面積が異なっている。そして、互いに受光面積が異なる第1受光素子P2~P8においては、尖端部PsのWo+Wnが測定方向Cにおいて光源131に近い受光素子ほど大きくなっている。本変形例においても、上記実施形態と同様の効果を得ることができる。
(4-6. When the areas of all light receiving elements are different)
Moreover, it is good also as a shape as shown in FIG. In this example, the two light receiving elements P1 and P9 located at both ends are second light receiving elements that do not have the pointed portion Ps. The light receiving elements P2 to P8 are first light receiving elements having a pointed portion Ps on the end Eo side. All the light receiving elements P1 to P9 have different light receiving areas. In the first light receiving elements P2 to P8 having different light receiving areas, Wo + Wn of the pointed portion Ps is larger as the light receiving element is closer to the light source 131 in the measurement direction C. Also in this modification, the same effect as the above embodiment can be obtained.
  (4-7.光源と反対側のみに尖端部を形成する場合)
 また、図18に示すような形状としてもよい。この例では、両端の第2受光素子P1,P9を除く第1受光素子P2~P8が、光源131とは反対側である端部En側だけに尖端部Psを有する。そして、上記変形例(4-6)と同様に、全ての受光素子P1~P9は、互いに受光面積が異なっている。そして、互いに受光面積が異なる第1受光素子P2~P8においては、尖端部PsのWo+Wnが測定方向Cにおいて光源131に近い受光素子ほど大きくなっている。本変形例においても、上記実施形態と同様の効果を得ることができる。
(4-7. When the tip is formed only on the side opposite to the light source)
Moreover, it is good also as a shape as shown in FIG. In this example, the first light receiving elements P2 to P8, excluding the second light receiving elements P1 and P9 at both ends, have a pointed end portion Ps only on the end portion En side opposite to the light source 131. As in the modification example (4-6), all the light receiving elements P1 to P9 have different light receiving areas. In the first light receiving elements P2 to P8 having different light receiving areas, Wo + Wn of the pointed portion Ps is larger as the light receiving element is closer to the light source 131 in the measurement direction C. Also in this modification, the same effect as the above embodiment can be obtained.
 なお、以上の説明において、「垂直」「平行」「平面」等の記載がある場合には、当該記載は厳密な意味ではない。すなわち、それら「垂直」「平行」「平面」とは、設計上、製造上の公差、誤差が許容され、「実質的に垂直」「実質的に平行」「実質的に平面」という意味である。 In addition, in the above description, when there are descriptions such as “vertical”, “parallel”, and “plane”, the description is not strict. That is, the terms “vertical”, “parallel”, and “plane” are acceptable in design and manufacturing tolerances and errors, and mean “substantially vertical”, “substantially parallel”, and “substantially plane”. .
 また、以上の説明において、外観上の寸法や形状が「同一」「等しい」「異なる」等の記載がある場合は、当該記載は厳密な意味ではない。すなわち、それら「同一」「等しい」「異なる」とは、設計上、製造上の公差、誤差が許容され、「実質的に同一」「実質的に等しい」「実質的に異なる」という意味である。 In addition, in the above description, when there is a description such as “same”, “equal”, “different”, etc., in terms of external dimensions and shape, the description is not strict. That is, the terms “identical”, “equal”, and “different” mean that “tolerance and error in manufacturing are allowed in design and that they are“ substantially identical ”,“ substantially equal ”, and“ substantially different ”. .
 S    サーボシステム
 SM   サーボモータ
 CT   制御装置
 M    モータ
 SH   シャフト
 100  エンコーダ
 110  ディスク
 130  光学モジュール
 131  光源
 140  位置データ生成部
 SA1,SA2,SI       パターン
 PA1,PA2          受光アレイ
 PI1,PI2          受光アレイ
 P1,P2,P3,P4,P5,P6,P7,P8,P9   受光素子
 C  測定方向
 R  幅方向
 AX  回転軸
 O   ディスク中心
 Op  光学中心
 Lcd,Lcp,Lo,Loc  ライン
 BA  基板
S servo system SM servo motor CT controller M motor SH shaft 100 encoder 110 disk 130 optical module 131 light source 140 position data generator SA1, SA2, SI pattern PA1, PA2 light receiving array PI1, PI2 light receiving array P1, P2, P3, P4 , P5, P6, P7, P8, P9 Light receiving element C Measuring direction R Width direction AX Rotating axis O Disk center Op Optical center Lcd, Lcp, Lo, Loc Line BA substrate

Claims (10)

  1.  測定方向に沿ったアブソリュートパターンと、
     前記アブソリュートパターンに光を出射するように構成された光源と、
     前記測定方向に沿って並べられ、前記光源から出射され前記アブソリュートパターンを透過又は反射された光を受光するように構成された複数の受光素子と、を有し、
     前記複数の受光素子は、
     各々の前記測定方向の最大外形寸法及び前記測定方向に垂直な幅方向の最大外形寸法が互いに等しく、且つ、各々の受光光量が互いに等しくなるように前記光源からの距離が異なる前記受光素子同士が異なる形状を有する、
    エンコーダ。
    An absolute pattern along the measurement direction,
    A light source configured to emit light to the absolute pattern;
    A plurality of light receiving elements arranged along the measurement direction and configured to receive light emitted from the light source and transmitted or reflected by the absolute pattern;
    The plurality of light receiving elements are:
    The light receiving elements having different maximum distances from the light source such that the maximum outer dimensions in each of the measurement directions and the maximum outer dimensions in the width direction perpendicular to the measurement directions are equal to each other and the received light amounts are equal to each other. Have different shapes,
    Encoder.
  2.  前記複数の受光素子は、
     前記光源からの距離が異なると共に互いに面積が等しい複数の受光素子を含む、
    請求項1に記載のエンコーダ。
    The plurality of light receiving elements are:
    Including a plurality of light receiving elements having different distances from the light source and equal areas.
    The encoder according to claim 1.
  3.  前記複数の受光素子は、
     先細り形状の尖端部を前記幅方向の端部に備えた第1受光素子を含む、
    請求項1又は2に記載のエンコーダ。
    The plurality of light receiving elements are:
    Including a first light receiving element provided with a tapered pointed end at the end in the width direction;
    The encoder according to claim 1 or 2.
  4.  互いに面積が等しい複数の前記第1受光素子は、
     前記尖端部の幅方向寸法の合計が互いに等しく、該合計に対する前記光源側の前記端部に形成された前記尖端部の前記幅方向寸法の割合が、前記測定方向において前記光源に近い前記第1受光素子ほど大きい、
    請求項3に記載のエンコーダ。
    The plurality of first light receiving elements having the same area are
    The sum of the width direction dimensions of the tip portion is equal to each other, and the ratio of the width direction size of the tip portion formed at the end portion on the light source side to the sum is close to the light source in the measurement direction. The larger the light receiving element,
    The encoder according to claim 3.
  5.  前記複数の受光素子は、
     前記測定方向において前記第1受光素子を間に挟んで配置され、前記尖端部を備えない2つの第2受光素子を含む、
    請求項3又は4に記載のエンコーダ。
    The plurality of light receiving elements are:
    Including two second light receiving elements that are arranged with the first light receiving element in between in the measurement direction and do not include the pointed portion,
    The encoder according to claim 3 or 4.
  6.  前記第2受光素子は、
     四角形状であり、
     前記第1受光素子は、
     前記四角形状の角部がトリミングされた形状である、
    請求項5に記載のエンコーダ。
    The second light receiving element is
    A square shape,
    The first light receiving element includes:
    The square corner is a trimmed shape.
    The encoder according to claim 5.
  7.  前記複数の受光素子は、
     前記光源からの距離が異なると共に互いに面積が異なる複数の前記第1受光素子を含み、
     該面積が異なる前記複数の第1受光素子は、
     前記尖端部の幅方向寸法の合計が、前記測定方向において前記光源に近い前記第1受光素子ほど大きい、
    請求項2~6のいずれか1項に記載のエンコーダ。
    The plurality of light receiving elements are:
    A plurality of the first light receiving elements having different distances from the light source and different areas from each other;
    The plurality of first light receiving elements having different areas are:
    The sum of the widthwise dimensions of the tip is larger in the first light receiving element closer to the light source in the measurement direction,
    The encoder according to any one of claims 2 to 6.
  8.  前記複数の受光素子は、
     前記光源を挟むように前記幅方向に互いにオフセットした位置に2セット並列に配置される、
    請求項1~7のいずれか1項に記載のエンコーダ。
    The plurality of light receiving elements are:
    Two sets are arranged in parallel at positions offset from each other in the width direction so as to sandwich the light source,
    The encoder according to any one of claims 1 to 7.
  9.  前記光源は、
     前記アブソリュートパターンに拡散光を出射するように構成された点光源であり、
     前記アブソリュートパターンは、
     前記光源より出射された光を反射するように構成されたパターンであり、
     前記複数の受光素子は、
     前記アブソリュートパターンで反射された光を受光するように構成される、
    請求項1~8のいずれか1項に記載のエンコーダ。
    The light source is
    A point light source configured to emit diffused light to the absolute pattern;
    The absolute pattern is
    A pattern configured to reflect light emitted from the light source;
    The plurality of light receiving elements are:
    Configured to receive light reflected by the absolute pattern;
    The encoder according to any one of claims 1 to 8.
  10.  モータと、
     請求項1~9のいずれか1項に記載のエンコーダと、
    を有する、エンコーダ付きモータ。
    A motor,
    The encoder according to any one of claims 1 to 9,
    A motor with an encoder.
PCT/JP2014/082597 2014-12-09 2014-12-09 Encoder and encoder-equipped motor WO2016092638A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2014/082597 WO2016092638A1 (en) 2014-12-09 2014-12-09 Encoder and encoder-equipped motor
CN201480077280.4A CN106104214B (en) 2014-12-09 2014-12-09 Encoder and motor with encoder
JP2016537040A JP6010876B1 (en) 2014-12-09 2014-12-09 Encoder and motor with encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/082597 WO2016092638A1 (en) 2014-12-09 2014-12-09 Encoder and encoder-equipped motor

Publications (1)

Publication Number Publication Date
WO2016092638A1 true WO2016092638A1 (en) 2016-06-16

Family

ID=56106890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082597 WO2016092638A1 (en) 2014-12-09 2014-12-09 Encoder and encoder-equipped motor

Country Status (3)

Country Link
JP (1) JP6010876B1 (en)
CN (1) CN106104214B (en)
WO (1) WO2016092638A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022026795A (en) * 2020-07-31 2022-02-10 大銀微系統股▲分▼有限公司 Index grating of optical encoder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019158850A (en) * 2018-03-16 2019-09-19 富士電機株式会社 Reflection type encoder

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6073418A (en) * 1983-09-30 1985-04-25 Yokogawa Hokushin Electric Corp Displacement transducer
JPH0360019U (en) * 1989-10-14 1991-06-13
JP2000241198A (en) * 1998-12-22 2000-09-08 Mitsutoyo Corp Photoelectric encoder
JP2007010426A (en) * 2005-06-29 2007-01-18 Mitsumi Electric Co Ltd Encoder device
JP4945674B2 (en) * 2010-11-08 2012-06-06 株式会社安川電機 Reflective encoder, servo motor and servo unit
JP2012167949A (en) * 2011-02-10 2012-09-06 Yaskawa Electric Corp Encoder, optical module and servo system
JP2013083673A (en) * 2013-02-13 2013-05-09 Nikon Corp Detection unit and encoder

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11183201A (en) * 1997-12-19 1999-07-09 Yaskawa Electric Corp Encoder
JP3695398B2 (en) * 2002-01-30 2005-09-14 富士ゼロックス株式会社 Optical encoder and encoder scale
US6972402B2 (en) * 2002-06-03 2005-12-06 Mitsubishi Denki Kabushiki Kaisha Photoelectric rotary encoder
CN1601232A (en) * 2003-09-27 2005-03-30 光栅科技有限公司 Light source for optical encoder
US7109472B2 (en) * 2004-03-26 2006-09-19 Mitutoyo Corporation Scale for reflective photoelectric encoder and reflective photoelectric encoder

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6073418A (en) * 1983-09-30 1985-04-25 Yokogawa Hokushin Electric Corp Displacement transducer
JPH0360019U (en) * 1989-10-14 1991-06-13
JP2000241198A (en) * 1998-12-22 2000-09-08 Mitsutoyo Corp Photoelectric encoder
JP2007010426A (en) * 2005-06-29 2007-01-18 Mitsumi Electric Co Ltd Encoder device
JP4945674B2 (en) * 2010-11-08 2012-06-06 株式会社安川電機 Reflective encoder, servo motor and servo unit
JP2012167949A (en) * 2011-02-10 2012-09-06 Yaskawa Electric Corp Encoder, optical module and servo system
JP2013083673A (en) * 2013-02-13 2013-05-09 Nikon Corp Detection unit and encoder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022026795A (en) * 2020-07-31 2022-02-10 大銀微系統股▲分▼有限公司 Index grating of optical encoder

Also Published As

Publication number Publication date
JPWO2016092638A1 (en) 2017-04-27
JP6010876B1 (en) 2016-10-19
CN106104214A (en) 2016-11-09
CN106104214B (en) 2017-12-12

Similar Documents

Publication Publication Date Title
JP6263965B2 (en) Encoder, motor with encoder, servo system
JP5527637B2 (en) Encoder, optical module and servo system
JP2015200613A (en) Encoder, motor with encoder, and servo system
JP2016109634A (en) Encoder and motor with encoder
JP2015232448A (en) Encoder, servo system, and encoder location data generation method
JP6128328B2 (en) Encoder, motor with encoder, servo system
JP2016118486A (en) Encoder and motor with encoder
WO2014141370A1 (en) Encoder, motor with encoder, and servo system
JP5943238B2 (en) Encoder, motor with encoder, servo system
JP5999584B2 (en) Encoder, motor with encoder, servo system
JP6098999B2 (en) Encoder and motor with encoder
JP6010876B1 (en) Encoder and motor with encoder
JP6037258B2 (en) Encoder and motor with encoder
JP2016109633A (en) Encoder and motor with encoder
CN112240781B (en) Encoder, servo motor and servo system
JP6004194B2 (en) Encoder, motor with encoder, servo system
JP2015090308A (en) Encoder, motor with encoder, and servo system
JP5999583B2 (en) Encoder, motor with encoder, servo system
JP6004193B2 (en) Encoder, motor with encoder, servo system
JP5787124B2 (en) Encoder and servo motor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016537040

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907989

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14907989

Country of ref document: EP

Kind code of ref document: A1