WO2016091160A1 - 核电站堆机协调控制方法和装置 - Google Patents

核电站堆机协调控制方法和装置 Download PDF

Info

Publication number
WO2016091160A1
WO2016091160A1 PCT/CN2015/096725 CN2015096725W WO2016091160A1 WO 2016091160 A1 WO2016091160 A1 WO 2016091160A1 CN 2015096725 W CN2015096725 W CN 2015096725W WO 2016091160 A1 WO2016091160 A1 WO 2016091160A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
mode
control
turbine
signal
Prior art date
Application number
PCT/CN2015/096725
Other languages
English (en)
French (fr)
Inventor
董威
董孝胜
曾彬
王旭峰
商静
苟小龙
唐华雄
Original Assignee
中广核工程有限公司
中国广核集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中广核工程有限公司, 中国广核集团有限公司 filed Critical 中广核工程有限公司
Publication of WO2016091160A1 publication Critical patent/WO2016091160A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/08Regulation of any parameters in the plant
    • G21D3/12Regulation of any parameters in the plant by adjustment of the reactor in response only to changes in engine demand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Definitions

  • the invention belongs to the technical field of nuclear power, and more particularly, to a coordinated control method and device for a nuclear power plant stacker.
  • the stacker coordination scheme basically has: a constant temperature constant operation scheme, a steam generator pressure constant scheme, an average temperature fold line saturation steady state operation scheme, and a steady state operation scheme in which the average temperature and power are linear.
  • the nuclear power project based on Alstom's turbine control technology usually adopts a steady-state operation scheme in which the average temperature and power are linear, that is, as the unit power increases, the average temperature of the primary circuit gradually increases, and the steam temperature at the outlet of the steam generator increases. decreasing gradually.
  • Figure 1 shows the main parameters of the one-loop average temperature drift compromise control scheme for a known nuclear power plant based on Alstom's turbine control technology. From Fig.
  • the average temperature of the primary circuit is equal to the average temperature setting value in the control scheme, and the secondary circuit steam quality is ensured without degrading the operating parameters of the primary circuit, thereby achieving the thermal power matching of the first and second circuits.
  • the reactor control system uses a G mode, which is characterized by a temperature adjustment rod group (R rod group) and a power compensation rod group (G rod group).
  • R rod group temperature adjustment rod group
  • G rod group power compensation rod group
  • the power station has the ability to participate in the power grid peak shaving and quickly track the load change.
  • the purpose of adjusting the core temperature is achieved by adjusting the R rod; when the temperature deviation is large, the purpose of adjusting the core temperature is achieved by adjusting the GCT.
  • the protection and control of nuclear island nuclear islands involves the safety of the entire nuclear power plant.
  • the current nuclear island control and reactor protection should be the center of the nuclear power plant.
  • the operation of many systems and equipment of the nuclear power plant should be centered on the nuclear island.
  • the operation and control of the turbine should also match the safety and control needs of the nuclear island.
  • the coordinated control of nuclear power plant stacker is a complicated control process.
  • the coordination control between different manufacturers, different stack types and different turbine control schemes will be very different. It is necessary to fully consider the relationship between nuclear island control and conventional island control.
  • the stacking machine mainly includes dozens to dozens of interfaces and signals. Due to the replacement of the turbine control mode, the existing coordinator control based on Alstom's turbine control technology cannot be adapted to the Siemens-based turbine control technology project.
  • the object of the present invention is to provide a steam turbine control technology suitable for Siemens in the coordinated control process of a nuclear power plant stacker.
  • the present invention provides a coordinated control method for a nuclear power plant stacker, the method comprising:
  • the method further includes receiving a first-stage intake pressure signal, and the obtaining the steam turbine load information according to the electric power signal is specifically: according to the electric power signal and the one The stage intake pressure signal acquires turbine load information.
  • the method further includes:
  • the external nuclear test system receives the output 10S pulse signal, and records the value of the current primary pressure according to the first-stage pressure signal.
  • the method further includes:
  • the method further includes:
  • Whether the set operator pressure reference value is set to be small is determined according to the value of the first-stage pressure, and if the operator pressure reference value setting is determined to be too small, the "reactor pressure control" mode is exited.
  • the "reactor pressure control" mode includes:
  • the turbine regulating valve is controlled according to the minimum value of the pressure control mode, the steam flow limit value, and the load control mode.
  • the load control modes are all automatic control modes.
  • the method further includes:
  • the present invention also provides a nuclear power plant stacker coordinated control device, the device comprising:
  • a receiving module configured to receive a power signal of a nuclear power plant steam turbine
  • An acquiring module configured to acquire steam turbine load information according to the electric power signal
  • a detecting module configured to detect, according to the steam turbine load information, whether the turbine load reaches 96% Pn;
  • the switching module is configured to trigger the turbine to enter a "reactor pressure control" mode if the turbine load is detected to be 96% Pn.
  • the receiving module is further configured to:
  • the acquisition module is further configured to acquire steam turbine load information according to the electric power signal and the first-stage intake pressure signal.
  • the receiving module is further configured to:
  • the external nuclear test system receives the output 10S pulse signal, and records the value of the current primary pressure according to the first-stage pressure signal.
  • the switching module is further configured to:
  • the switch exits the "reactor pressure control" mode.
  • the switching module is further configured to:
  • Whether the set operator pressure reference value is set to be too small is determined according to the value of the first-stage pressure, and if it is determined that the operator pressure reference value is set to be too small, the switch is exited from the "reactor pressure control" mode.
  • the "reactor pressure control" mode includes:
  • the turbine regulating valve is controlled according to the minimum value of the pressure control mode, the steam flow limit value, and the load control mode.
  • the device further comprises:
  • a module is established for establishing a correspondence between the steam turbine load and the primary pressure.
  • the nuclear power plant stacker coordinated control method and system of the present invention has the following beneficial technical effects: obtaining turbine load information by receiving nuclear power turbine steam power signal, and determining a steam turbine pressure control mode according to the acquired turbine load information. Since the steam turbine load information is determined by the electric power signal, the steam turbine control mainly for Siemens is realized, and the stacker coordinated control of the nuclear power project mainly based on the Siemens steam turbine technology is satisfied.
  • the implementation method of the scheme is simple and easy, and achieves good technical effects.
  • Fig. 1 is a flow chart showing an example of a coordinated control method for a nuclear power plant stacker according to the present invention.
  • Fig. 2 is a flow chart showing still another example of the coordinated control method of the nuclear power plant stacker of the present invention.
  • Fig. 3 is a view showing an example of a coordinated control device for a nuclear power plant stacker according to the present invention.
  • FIG. 1 Please refer to FIG. 1 in combination with FIG. 1 to provide a coordinated control method for a nuclear power plant stacker.
  • Step 101 Receive a power signal of a nuclear power plant steam turbine.
  • receiving a first-stage intake pressure signal and acquiring turbine load information according to the electric power signal and the first-stage intake pressure signal.
  • Step 103 Acquire steam turbine load information according to the electric power signal.
  • the method of representing the load by the first-stage pressure measurement is cancelled, the electric power is used to represent the load, and the first-stage pressure measurement is used to monitor the turbine state.
  • Step 105 Detect whether the turbine load reaches 96% Pn according to the steam turbine load information.
  • the nuclear power over-power limit is an important measure for nuclear power safety.
  • the turbine When the turbine is powered up, it detects whether the turbine load reaches 96% Pn.
  • step 107 if the turbine load is detected to be 96% Pn, the turbine is triggered to enter the "reactor pressure control" mode.
  • the "reactor pressure control" mode of the turbine is triggered, and the power is suspended to prevent the reactor from overshooting, resulting in super power when the nuclear island power is lower than 96% steady state operation (G mode), if The “Reactor Pressure Mode” function automatically prevents the nuclear island from being overpowered due to an accident that causes the nuclear island to power up.
  • the external nuclear measurement system is received to output a 10S pulse signal, and the current primary pressure value is recorded according to the first-stage pressure signal. If the value of the current primary pressure reaches the set operator pressure reference value, the "reactor pressure control" mode is exited. Alternatively, it is determined whether the set operator pressure reference value is set to be small according to the value of the first pressure, and if the operator pressure reference value setting is determined to be too small, the "reactor pressure control" mode is exited.
  • the "reactor pressure control" mode includes: controlling a steam turbine regulating valve according to a minimum value of a pressure control mode, a steam flow limit value, and a load control mode.
  • the load control methods of the nuclear power unit project mainly based on Siemens steam turbine technology are automatic control modes. That is, in the case of improving the power control requirements of the RGL system, cancel the hand Dynamic control mode.
  • the C8 trip signal of the nuclear power unit project based on Siemens steam turbine technology is the "command" signal from the trip system to the drive inlet valve closing, rather than the state feedback signal after the turbine valve is closed, that is, the trip system. Issue a C8 turbine trip command signal.
  • the nuclear power plant project based on Siemens steam turbine technology does not implement the “reactor pressure mode” boost power limit function. It is recommended that this function be manually implemented by the operator, and the minimum pressure setting of the main steam main pipe by the nuclear island is used for the steam turbine.
  • Control main steam main pipe pressure minimum setting and offset signal -3bar, mainly used for main pipe pressure regulation when the main steam main pipe pressure is lower than the set value.
  • the turbine load information is obtained by receiving the electric power signal of the nuclear power plant steam turbine, and the pressure control mode of the steam turbine is determined according to the acquired steam turbine load information. Since the steam turbine load information is determined by the electric power signal, the steam turbine control mainly for Siemens is realized, and the stacker coordinated control of the nuclear power project mainly based on the Siemens steam turbine technology is satisfied.
  • FIG. 2 provides a flow chart of an embodiment of a nuclear power plant stacker coordinated control method.
  • the operator pressure reference value sets the power to be achieved, and is generally set to 102% of the first-level nominal pressure.
  • the pressure control enters the reactor mode and records the current first stage pressure. Thereafter, the pressure is increased to 0.3% min or 0.183 b/min to the operator pressure reference before exiting the reactor mode.
  • the PR module is set. If set incorrectly, the turbine control exits the reactor mode and the turbine power drops at -0.3% min.
  • the opening of the regulating valve is controlled by the minimum of the pressure control mode, the steam flow limit value and the load control mode.
  • the steam turbine load information is obtained by receiving the electric power signal of the nuclear power plant steam turbine, and the pressure control mode of the steam turbine is determined according to the acquired steam turbine load information, and the reactor pressure control mode is switched between the normal mode and the normal steam mode. Pressure control and power frequency adjustment.
  • FIG. 3 provides a schematic diagram of an embodiment of a nuclear power plant stacker coordinated control device.
  • the device includes:
  • the receiving module 301 is configured to receive a nuclear power plant electrical power signal.
  • the receiving module 301 receives the first-stage intake pressure signal.
  • the receiving module 301 receives the 10S pulse signal outputted by the external nuclear test system, and records the value of the current primary pressure according to the first-stage pressure signal.
  • the obtaining module 303 is configured to acquire steam turbine load information according to the electrical power signal.
  • the method of representing the load by the first-stage pressure measurement is cancelled, the electric power is used to represent the load, and the first-stage pressure measurement is used to monitor the turbine state.
  • the acquisition module 303 acquires turbine load information based on the electrical power signal and the primary intake pressure signal.
  • the detecting module 305 is configured to detect, according to the steam turbine load information, whether the turbine load reaches 96% Pn.
  • the switching module 307 is configured to trigger the turbine to enter a "reactor pressure control" mode if the turbine load is detected to be 96% Pn.
  • the switching module 307 switches out of the "reactor pressure control" mode.
  • the switching module 307 determines whether the set operator pressure reference value is set to be small according to the value of the primary pressure, and if it is determined that the operator pressure reference value is set to be too small, the switch exits the "reactor pressure control" mode.
  • the apparatus further includes an establishing module configured to establish a correspondence between the steam turbine load and the primary pressure.
  • the present invention has at least the following beneficial technical effects: the turbine load information is obtained by receiving the nuclear power electric power signal of the nuclear power plant, and the pressure control mode of the steam turbine is determined according to the acquired steam turbine load information. . Since the steam turbine load information is determined by the electric power signal, the steam turbine control mainly for Siemens is realized, and the stacker coordinated control of the nuclear power project mainly based on the Siemens steam turbine technology is satisfied. The implementation method of the scheme is simple and easy, and achieves good technical effects.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Control Of Turbines (AREA)

Abstract

一种核电站堆机协调控制方法,该方法包括:接收核电站汽轮机电功率信号(101);根据所述电功率信号获取汽轮机负荷信息(103);根据所述汽轮机负荷信息检测汽轮机负荷是否达到96%Pn(105);若检测汽轮机负荷达到96%Pn,则触发汽轮机进入"反应堆压力控制"模式(107)。一种核电站堆机协调控制装置也被公开了。

Description

核电站堆机协调控制方法和装置 技术领域
本发明属于核电技术领域,更具体地说,本发明涉及一种核电站堆机协调控制方法和装置。
背景技术
目前,大部分核电站项目的汽轮发电机组广泛采用阿尔斯通的汽轮机控制技术,也有少数汽轮发电机组采用了西门子的汽轮机控制技术。西门子与阿尔斯通这两种技术路线在汽机的设计、运行及控制理念上都有着较大的不同,主要体现在是否有压力控制、是否有自动控制,是否有高压控制器等方面,而这也给整个核电机组的反应堆控制和堆机协调控制带来了较大影响。一般的,堆机协调方案基本上有:平均温度恒定运行方案、蒸汽发生器压力恒定方案、平均温度折线饱和稳态运行方案和平均温度与功率成线性的稳态运行方案。
以阿尔斯通的汽机控制技术为主的核电项目,通常采用平均温度与功率成线性的稳态运行方案,即随着机组功率上升,一回路平均温度逐渐增加,同时蒸汽发生器出口的蒸汽温度逐渐下降。图1以阿尔斯通的汽机控制技术为主的一种已知技术的核电站,采用的一回路平均温度漂移的折衷控制方案下各主要参数变化曲线。从图1中我们可以看出:当一回路平均温度Tav随负荷增加,在291.4~310℃之间变化时,蒸汽发生器出口的蒸汽压力Ps和蒸汽温度Ts随负荷增加而逐渐降低;另外从图中我们也可以看当负荷在0%~100%Pn的范围内变化时堆芯进出口温度随负荷增加而变化的情况,可以看到反应堆的进口温度仅变化1℃,正缘于此,平均温度与功率成线性的稳态运行方案又称为堆进口温度不变方案。该方案的优点是兼顾了一、二回路的运行特点在确定了一回路平 均温度控制方案后,使一回路平均温度等于控制方案中的平均温度整定值,在不劣化一回路运行参数指标的情况下,保证二回路蒸汽品质,从而实现一、二回路的热功率匹配。
一种已知核电站选定漂移一回路平均温度的折衷控制方案后,反应堆控制系统采用了G模式,其特点是设有温度调节棒组(R棒组)和功率补偿棒组(G棒组),通过调节R棒组、G棒组和硼浓度来协调控制反应性,使电站具有参与电网调峰、快速跟踪负荷变化的能力。当温度偏差小的时候,通过调节R棒来达到调节堆芯温度的目的;当温度偏差大的时候,通过调节GCT来达到调节堆芯温度的目的。
核电厂核岛的保护与控制涉及到整个核电厂的安全,目前的核岛控制和反应堆保护应该是核电站的中心,核电厂的众多系统和设备的运行都应该以核岛为中心。当然,汽机的运行与控制也应该配合核岛的安全和控制需求。核电站堆机协调控制是一个复杂的控制过程,不同的厂家,不同的堆型和不同的汽机控制方案之间的协调控制会有很大区别,需要充分考虑核岛控制与常规岛控制间的关系来确定核电站堆机协调控制方案。堆机协调主要包括的接口和信号有十佘种至数十种。由于汽轮机控制方式更换,现有的以阿尔斯通的汽机控制技术为主的堆机协调控制,不能适应用于以西门子为主的汽轮机控制技术项目。
发明内容
本发明的目的在于:在核电站堆机协调控制过程中,提供一种适用于以西门子为主的汽轮机控制技术。
为了实现上述发明目的,本发明提供了一种核电站堆机协调控制方法,所述方法包括:
接收核电站汽轮机电功率信号;
根据所述电功率信号获取汽轮机负荷信息;
根据所述汽轮机负荷信息检测汽轮机负荷是否达到96%Pn;
若检测汽轮机负荷达到96%Pn,则触发汽轮机进入“反应堆压力控制”模式。
作为本发明核电站堆机协调控制方法的一种改进,所述方法还包括接收一级进气压力信号,所述根据所述电功率信号获取汽轮机负荷信息具体为:根据所述电功率信号和所述一级进气压力信号获取汽轮机负荷信息。
作为本发明核电站堆机协调控制方法的一种改进,所述若检测汽轮机负荷达到96%Pn之后,还包括:
接收到堆外核测系统输出10S脉冲信号,根据所述一级压力信号记录当前一级压力的值。
作为本发明核电站堆机协调控制方法的一种改进,所述方法还包括:
若所述当前一级压力的值达到设定的操作员压力参考值,则退出“反应堆压力控制”模式。
作为本发明核电站堆机协调控制方法的一种改进,所述方法还包括:
根据所述一级压力的值判断设置的操作员压力参考值是否设置偏小,若判断所述操作员压力参考值设置偏小,则退出“反应堆压力控制”模式。
作为本发明核电站堆机协调控制方法的一种改进,所述“反应堆压力控制”模式,包括:
根据压力控制方式、蒸汽流量限值和负荷控制方式的最小值对汽轮机调节阀进行控制。
作为本发明核电站堆机协调控制方法的一种改进,所述负荷控制方式均为自动控制方式。
作为本发明核电站堆机协调控制方法的一种改进,所述方法还包括:
建立所述汽轮机负荷与一级压力的对应关系。
为了实现上述发明目的,本发明还提供了一种核电站堆机协调控制装置,该装置包括:
接收模块,用于接收核电站汽轮机电功率信号;
获取模块,用于根据所述电功率信号获取汽轮机负荷信息;
检测模块,用于根据所述汽轮机负荷信息检测汽轮机负荷是否达到96%Pn;
切换模块,用于若检测汽轮机负荷达到96%Pn,则触发汽轮机进入“反应堆压力控制”模式。
作为本发明核电站堆机协调控制装置的一种改进,所述接收模块还用于:
接收一级进气压力信号。
作为本发明核电站堆机协调控制装置的一种改进,所述获取模块还用于根据所述电功率信号和所述一级进气压力信号获取汽轮机负荷信息。
作为本发明核电站堆机协调控制装置的一种改进,所述接收模块还用于:
接收到堆外核测系统输出10S脉冲信号,根据所述一级压力信号记录当前一级压力的值。
作为本发明核电站堆机协调控制装置的一种改进,所述切换模块还用于:
若所述当前一级压力的值达到设定的操作员压力参考值,则切换退出“反应堆压力控制”模式。
作为本发明核电站堆机协调控制装置的一种改进,所述切换模块还用于:
根据所述一级压力的值判断设置的操作员压力参考值是否设置偏小,若判断所述操作员压力参考值设置偏小,则切换退出“反应堆压力控制”模式。
作为本发明核电站堆机协调控制系统的一种改进,所述“反应堆压力控制”模式,包括:
根据压力控制方式、蒸汽流量限值和负荷控制方式的最小值对汽轮机调节阀进行控制。
作为本发明核电站堆机协调控制装置的一种改进,所述装置还包括:
建立模块,用于建立所述汽轮机负荷与一级压力的对应关系。
与现有技术相比,本发明核电站堆机协调控制方法和系统具有以下有益技术效果:通过接收核电站汽轮机电功率信号获取汽轮机负荷信息,根据获取的汽轮机负荷信息,确定汽轮机的压力控制模式。由于通过电功率信号确定汽轮机负荷信息,实现了适用于以西门子为主的汽轮机控制,满足以西门子汽轮机技术为主的核电项目的堆机协调控制。该方案实现方法简单易行,取得很好的技术效果。
附图说明
下面结合附图和具体实施方式,对本发明核电站堆机协调控制方法和装置进行详细说明,其中:
图1提供了本发明核电站堆机协调控制方法的一个实例流程图。
图2提供了本发明核电站堆机协调控制方法的又一个实例流程图。
图3提供了本发明核电站堆机协调控制装置的一个实例示意图。
具体实施方式
为了使本发明的发明目的、技术方案及其有益技术效果更加清晰,以下结合附图和具体实施方式,对本发明进行进一步详细说明。应当强调的是,本说明书中描述的具体实施方式仅仅是为了解释本发明,并非为了限定本发明的使用场合。
请结合参看图1,图1提供了一种核电站堆机协调控制方法。包括:
步骤101,接收核电站汽轮机电功率信号。
可选的,接收一级进气压力信号,根据所述电功率信号和所述一级进气压力信号获取汽轮机负荷信息。
步骤103,根据所述电功率信号获取汽轮机负荷信息。
在以西门子汽轮机控制方案为主的核电项目中,取消用一级压力测量代表负荷的方式,采用电功率代表负荷,一级压力测量用于监测汽机状态。
进一步的,建立所述汽轮机负荷与一级压力的对应关系。
需要说明的是,受发电机效率、汽机抽汽等因素影响,电功率不能完全替代汽机负荷,且取消作为重要的核岛控制变量的一级压力测量对核岛控制影响巨大,因此西门子提供一级压力和汽轮机负荷间的对应关系作为堆机协调控制的输入。
步骤105,根据所述汽轮机负荷信息检测汽轮机负荷是否达到96%Pn。
一般的,对核岛超功率限制是核电安全的重要措施,汽轮机升功率时,检测汽轮机负荷是否达到96%Pn。
步骤107,若检测汽轮机负荷达到96%Pn,则触发汽轮机进入“反应堆压力控制”模式。
具体的,若检测汽轮机负荷达到96%Pn,触发汽机的“反应堆压力控制”模式,暂停升功率防止反应堆超调导致超功率在核岛功率低于96%稳态运行时(G模式),如果因某种意外导致核岛升功率,该“反应堆压力模式”功能可以自动防止核岛超功率。
可选的,若检测汽轮机负荷达到96%Pn,接收到堆外核测系统输出10S脉冲信号,根据所述一级压力信号记录当前一级压力的值。若所述当前一级压力的值达到设定的操作员压力参考值,则退出“反应堆压力控制”模式。或者,根据所述一级压力的值判断设置的操作员压力参考值是否设置偏小,若判断所述操作员压力参考值设置偏小,则退出“反应堆压力控制”模式。其中,所述“反应堆压力控制”模式,包括:根据压力控制方式、蒸汽流量限值和负荷控制方式的最小值对汽轮机调节阀进行控制。
进一步的,在本方案中以西门子汽轮机技术为主的核电机组项目的负荷控制方式均为自动控制方式。即在改进RGL系统功率控制要求的情况下,取消手 动控制模式。
进一步的,以西门子汽轮机技术为主的核电机组项目的C8跳闸信号为跳闸系统到驱动进汽阀关闭的“指令”(command)信号,而非汽机阀门关闭后的状态反馈信号,即由跳闸系统发出C8汽机跳闸指令信号。
进一步的,以西门子汽轮机技术为主的核电机组项目不执行“反应堆压力模式”升功率限制功能,建议该功能通过操纵员手动实现,并由核岛提供主蒸汽母管最小压力定值用于汽机控制(主蒸汽母管压力最小定值和偏置信号-3bar,主要用于当主蒸汽母管压力低于设定值时母管压力调节。
本发明实施例通过接收核电站汽轮机电功率信号获取汽轮机负荷信息,根据获取的汽轮机负荷信息,确定汽轮机的压力控制模式。由于通过电功率信号确定汽轮机负荷信息,实现了适用于以西门子为主的汽轮机控制,满足以西门子汽轮机技术为主的核电项目的堆机协调控制。
请结合参看图2,图2提供了一种核电站堆机协调控制方法的一个实施例的流程图。具体的,在正常模式下,操作员压力参考值设置需要达到的功率,一般设置为102%第一级名义压力。当堆外核测系统RPN输出10s脉冲信号时候,压力控制进入反应堆模式,并记下当前第一级压力。此后,压力以0.3%min or0.183b/min的速度上升到操作员压力参考值后,才退出反应堆模式。在西门子方案中,为了防止在反应堆模式时候,操作员压力参考值被错误设小,设置了PR模块。如果错误设置,汽机控制就退出反应堆模式,汽机功率以-0.3%min速度下降。调节阀的开度由压力控制方式、蒸汽流量限值和负荷控制方式的最小值来控制。
本实施例中通过接收核电站汽轮机电功率信号获取汽轮机负荷信息,根据获取的汽轮机负荷信息,确定汽轮机的压力控制模式,在反应堆压力控制”模式与正常模式之间切换,实现对以西门子汽轮机技术为主的压力控制和功频调节。
请结合参看图3,图3提供了一种核电站堆机协调控制装置的一个实施例的示意图。该装置包括:
接收模块301,用于接收核电站汽轮机电功率信号。
可选的,接收模块301接收一级进气压力信号。
接收模块301接收到堆外核测系统输出10S脉冲信号,根据所述一级压力信号记录当前一级压力的值。
获取模块303,用于根据所述电功率信号获取汽轮机负荷信息。
在以西门子汽轮机控制方案为主的核电项目中,取消用一级压力测量代表负荷的方式,采用电功率代表负荷,一级压力测量用于监测汽机状态。
获取模块303根据所述电功率信号和所述一级进气压力信号获取汽轮机负荷信息。
检测模块305,用于根据所述汽轮机负荷信息检测汽轮机负荷是否达到96%Pn。
切换模块307,用于若检测汽轮机负荷达到96%Pn,则触发汽轮机进入“反应堆压力控制”模式。
进一步的,切换模块307若所述当前一级压力的值达到设定的操作员压力参考值,则切换退出“反应堆压力控制”模式。或者,切换模块307根据所述一级压力的值判断设置的操作员压力参考值是否设置偏小,若判断所述操作员压力参考值设置偏小,则切换退出“反应堆压力控制”模式。
可选的,该装置还包括建立模块,用于建立所述汽轮机负荷与一级压力的对应关系。
需要说明的是,受发电机效率、汽机抽汽等因素影响,电功率不能完全替代汽机负荷,且取消作为重要的核岛控制变量的一级压力测量对核岛控制影响巨大,因此提供建立模块用于建立一级压力和汽轮机负荷间的对应关系作为堆机协调控制的输入是优选方案。
装置的实施方法和流程可以参见前述实施例中介绍的方法实施例,此处不再赘述。
结合以上对本发明的详细描述可以看出,相对于现有技术,本发明至少具有以下有益技术效果:通过接收核电站汽轮机电功率信号获取汽轮机负荷信息,根据获取的汽轮机负荷信息,确定汽轮机的压力控制模式。由于通过电功率信号确定汽轮机负荷信息,实现了适用于以西门子为主的汽轮机控制,满足以西门子汽轮机技术为主的核电项目的堆机协调控制。该方案实现方法简单易行,取得很好的技术效果。
根据上述原理,本发明还可以对上述实施方式进行适当的变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对本发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。

Claims (16)

  1. 一种核电站堆机协调控制方法,其特征在于,所述方法包括:
    接收核电站汽轮机电功率信号;
    根据所述电功率信号获取汽轮机负荷信息;
    根据所述汽轮机负荷信息检测汽轮机负荷是否达到96%Pn;
    若检测汽轮机负荷达到96%Pn,则触发汽轮机进入“反应堆压力控制”模式。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括接收一级进气压力信号,所述根据所述电功率信号获取汽轮机负荷信息具体为:根据所述电功率信号和所述一级进气压力信号获取汽轮机负荷信息。
  3. 根据权利要求2所述的方法,其特征在于,所述若检测汽轮机负荷达到96%Pn之后,还包括:
    接收到堆外核测系统输出10S脉冲信号,根据所述一级压力信号记录当前一级压力的值。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    若所述当前一级压力的值达到设定的操作员压力参考值,则退出“反应堆压力控制”模式。
  5. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    根据所述一级压力的值判断设置的操作员压力参考值是否设置偏小,若判断所述操作员压力参考值设置偏小,则退出“反应堆压力控制”模式。
  6. 根据权利要求4或5所述的方法,其特征在于,所述“反应堆压力控制”模式,包括:
    根据压力控制方式、蒸汽流量限值和负荷控制方式的最小值对汽轮机调节阀进行控制。
  7. 根据权利要求6所述的方法,其特征在于,所述负荷控制方式均为自动控制方式。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    建立所述汽轮机负荷与一级压力的对应关系。
  9. 一种核电站堆机协调控制装置,其特征在于,所述系统包括:
    接收模块,用于接收核电站汽轮机电功率信号;
    获取模块,用于根据所述电功率信号获取汽轮机负荷信息;
    检测模块,用于根据所述汽轮机负荷信息检测汽轮机负荷是否达到96%Pn;
    切换模块,用于若检测汽轮机负荷达到96%Pn,则触发汽轮机进入“反应堆压力控制”模式。
  10. 根据权利要求9所述的装置,其特征在于,所述接收模块还用于:
    接收一级进气压力信号。
  11. 根据权利要求10所述的装置,其特征在于,所述获取模块还用于根据所述电功率信号和所述一级进气压力信号获取汽轮机负荷信息。
  12. 根据权利要求11所述的装置,其特征在于,所述接收模块还用于:
    接收到堆外核测系统输出10S脉冲信号,根据所述一级压力信号记录当前一级压力的值。
  13. 根据权利要求12所述的装置,其特征在于,所述切换模块还用于:
    若所述当前一级压力的值达到设定的操作员压力参考值,则切换退出“反应堆压力控制”模式。
  14. 根据权利要求12所述的装置,其特征在于,所述切换模块还用于:
    根据所述一级压力的值判断设置的操作员压力参考值是否设置偏小,若判断所述操作员压力参考值设置偏小,则切换退出“反应堆压力控制”模式。
  15. 根据权利要求13或14所述的装置,其特征在于,所述“反应堆压力控制”模式,包括:
    根据压力控制方式、蒸汽流量限值和负荷控制方式的最小值对汽轮机调节阀进行控制。
  16. 根据权利要求15所述的装置,其特征在于,所述装置还包括:
    建立模块,用于建立所述汽轮机负荷与一级压力的对应关系。
PCT/CN2015/096725 2014-12-08 2015-12-08 核电站堆机协调控制方法和装置 WO2016091160A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410742015.5A CN104505134A (zh) 2014-12-08 2014-12-08 核电站堆机协调控制方法和装置
CN201410742015.5 2014-12-08

Publications (1)

Publication Number Publication Date
WO2016091160A1 true WO2016091160A1 (zh) 2016-06-16

Family

ID=52946875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/096725 WO2016091160A1 (zh) 2014-12-08 2015-12-08 核电站堆机协调控制方法和装置

Country Status (2)

Country Link
CN (1) CN104505134A (zh)
WO (1) WO2016091160A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111768884A (zh) * 2020-06-08 2020-10-13 核动力运行研究所 一种核电厂机组运行状态监测系统及方法
CN115614112A (zh) * 2022-10-11 2023-01-17 中广核工程有限公司 核电厂汽轮发电机电功率控制方法及系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104505134A (zh) * 2014-12-08 2015-04-08 中广核工程有限公司 核电站堆机协调控制方法和装置
CN108877973B (zh) * 2018-06-27 2021-10-15 中广核工程有限公司 核电站汽轮机控制方法及控制系统
CN109488394A (zh) * 2018-10-19 2019-03-19 哈尔滨汽轮机厂有限责任公司 百万核电汽轮机控制系统机堆协调的控制方法
CN111255531B (zh) * 2020-01-20 2022-03-22 岭东核电有限公司 核电站汽轮机的进汽门带负荷开关试验及其参数确定方法
CN112682770B (zh) * 2020-12-25 2022-12-27 中广核研究院有限公司 直流式蒸汽发生器压力控制方法及系统
CN114575939B (zh) * 2022-01-24 2023-09-26 岭澳核电有限公司 用于核电站的切换汽轮机控制模式方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4879087A (en) * 1987-02-04 1989-11-07 Hitachi, Ltd. Nuclear power plant
CN101183246A (zh) * 2007-11-27 2008-05-21 哈尔滨工程大学 基于模糊解耦的核动力装置的控制装置及协调控制方法
CN104091623A (zh) * 2014-07-18 2014-10-08 中广核工程有限公司 核电站机组模拟量控制参数整定方法、装置及系统
CN104100307A (zh) * 2014-07-02 2014-10-15 中广核工程有限公司 核电站汽轮机调节系统调试方法及系统
CN104505134A (zh) * 2014-12-08 2015-04-08 中广核工程有限公司 核电站堆机协调控制方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5078953A (en) * 1990-04-16 1992-01-07 General Electric Company Natural circulation boiling-water reactor with output power regulation
JP3780884B2 (ja) * 2001-08-31 2006-05-31 株式会社日立製作所 蒸気タービン発電プラント
JP2006233797A (ja) * 2005-02-23 2006-09-07 Toshiba Plant Systems & Services Corp 蒸気タービン制御装置
CN103036253B (zh) * 2012-12-06 2015-01-28 中广核工程有限公司 一种核电厂机组频率的控制方法及系统
CN104122797B (zh) * 2014-07-22 2016-08-31 东南大学 一种新型火电机组负荷多变量预测控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4879087A (en) * 1987-02-04 1989-11-07 Hitachi, Ltd. Nuclear power plant
CN101183246A (zh) * 2007-11-27 2008-05-21 哈尔滨工程大学 基于模糊解耦的核动力装置的控制装置及协调控制方法
CN104100307A (zh) * 2014-07-02 2014-10-15 中广核工程有限公司 核电站汽轮机调节系统调试方法及系统
CN104091623A (zh) * 2014-07-18 2014-10-08 中广核工程有限公司 核电站机组模拟量控制参数整定方法、装置及系统
CN104505134A (zh) * 2014-12-08 2015-04-08 中广核工程有限公司 核电站堆机协调控制方法和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111768884A (zh) * 2020-06-08 2020-10-13 核动力运行研究所 一种核电厂机组运行状态监测系统及方法
CN115614112A (zh) * 2022-10-11 2023-01-17 中广核工程有限公司 核电厂汽轮发电机电功率控制方法及系统

Also Published As

Publication number Publication date
CN104505134A (zh) 2015-04-08

Similar Documents

Publication Publication Date Title
WO2016091160A1 (zh) 核电站堆机协调控制方法和装置
RU2674167C2 (ru) Способ переключения с пассивного секционирования на подключение к энергосистеме
CN104218638A (zh) 一种充电电流安全控制方法
US8907525B2 (en) Method and system for islanding detection and protection
WO2013163266A1 (en) Power conversion system with open- circuit fault detection and method thereof
US20130114302A1 (en) Method and apparatus for detecting islanding conditions of a distributed grid
CN107166427B (zh) 一种火电机组送风机自动控制优化方法
JP2012120285A (ja) 単独運転検出装置および単独運転検出方法
WO2016000446A1 (zh) 一种直流输电逆变侧频率控制方法
CN103414204B (zh) 采用动态电压补偿风力发电系统输出无功功率的控制方法
US20160252588A1 (en) Inverter and detection method for an inverter for detecting a network fault
CN105471178A (zh) 水冷系统的泄漏保护装置及方法、风力发电机组水冷系统
CN108667309B (zh) 用于有轨电车辅助变流系统的dc-dc控制方法
CN109004673A (zh) 一种地铁再生能量回馈装置直流电压检测及控制方法
CN206060229U (zh) 一种微机自动准同期装置合闸控制系统
CN114374214A (zh) 一种特高压混合直流输电系统暂态电压控制方法及装置
CN107017662A (zh) 一种基于pi补偿器的并网逆变器高电压穿越控制方法
CN107046289A (zh) 计及安控策略和一次调频特性的电网稳态频率估算方法
KR101566387B1 (ko) 순간 전압 강하 보상에서 피드포워드 보상장치
CN208432930U (zh) 一种稳流电源
CN110546844B (zh) 用于检测孤岛电网形成的方法
JP6341791B2 (ja) 単独運転検出装置および単独運転検出方法ならびに、単独運転検出用の制御装置および分散型電源装置
CN109286194B (zh) 高压无源光控隔离设备的控制系统、方法以及装置
CN105914710A (zh) 基于合闸电压频率控制的变压器励磁涌流抑制系统及方法
CN207010256U (zh) 一种agc变负荷速率实时检测及控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15867671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/10/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15867671

Country of ref document: EP

Kind code of ref document: A1