WO2016091041A1 - 一种利用成像亮度计对道路照明眩光进行动态评估的方法 - Google Patents

一种利用成像亮度计对道路照明眩光进行动态评估的方法 Download PDF

Info

Publication number
WO2016091041A1
WO2016091041A1 PCT/CN2015/094090 CN2015094090W WO2016091041A1 WO 2016091041 A1 WO2016091041 A1 WO 2016091041A1 CN 2015094090 W CN2015094090 W CN 2015094090W WO 2016091041 A1 WO2016091041 A1 WO 2016091041A1
Authority
WO
WIPO (PCT)
Prior art keywords
glare
measuring
brightness
road
measurement
Prior art date
Application number
PCT/CN2015/094090
Other languages
English (en)
French (fr)
Inventor
周春伟
叶丹
吴宝林
叶荣南
Original Assignee
厦门元谷信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门元谷信息科技有限公司 filed Critical 厦门元谷信息科技有限公司
Publication of WO2016091041A1 publication Critical patent/WO2016091041A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass

Definitions

  • the present invention relates to a method for dynamically evaluating road illumination glare using an imaging luminance meter.
  • the "CJJ45-2006 Urban Road Lighting Design Standards” specifies the glare threshold increment TI requirements for road lighting.
  • each glare source needs to be measured one by one, and the brightness, vertical illuminance and angle ⁇ of each glare source are measured.
  • the labor cost is large and the accuracy is not high. Only glare can be measured.
  • the brightness or illuminance of the source center point cannot be integrated into the brightness or illuminance of the entire glare source, and an accurate glare threshold increment TI close to the driver's visual perception cannot be obtained.
  • the invention is a method for dynamically evaluating road illumination glare using an imaging luminance meter, comprising the following steps:
  • Step 1 Determine the measurement area:
  • the initial measurement position A is located 60m ahead of the measurement area and 1/4 of the distance from the right side of the road;
  • the measured point B is the reference point starting point C of 25.935m, that is, the starting measurement position A to the measurement area starting point C is 60m, and the above A, B, and C points are at a distance of 1/4 from the right side of the road.
  • the parallel line is the center line for measuring the travel of the vehicle.
  • a straight line perpendicular to the traveling direction of the measuring vehicle is drawn on the road surface in the figure, and the road edges at both ends of the measuring area intersect at a, a1, which is The starting line aa1 of the measurement area; in the graph, centering on the measured point B, lifting up 1°, this point is the infinity point D, which is the convergence point of each longitudinal line in the graph, and the starting point of the measurement area
  • the points a and a1 at both ends of the line aa1 are respectively connected to the infinity point D, and aD and a1D are obtained.
  • a line bb1 parallel to the starting line aa1 of the measurement area is drawn forward by a rod pitch extending from the starting line aa1 of the measurement area.
  • the area aa1bb1 surrounded by the four lines aa1, bb1, aD, and a1D is the measurement area;
  • Step 2 The measuring vehicle is equipped with an in-vehicle system including a road lighting dynamic measuring device, and the imaging brightness meter of the road lighting dynamic measuring device is installed on the stabilizing device, so that the measuring angle of view is constant and the viewing axis is 1.5 m high and the viewing angle is high.
  • the roadside dynamic measuring device has a positioning and ranging function to accurately determine the initial measurement position.
  • the vehicle is measured at a constant speed.
  • the control is performed.
  • the imaging brightness meter is placed in the vehicle vehicle system for measuring, and the measurement area is quickly photographed according to the measurement step, and image data including the original brightness data of the road and the glare data of the lamp is obtained;
  • Step 3 measuring the luminance data of each pixel in the image data in the area, and obtaining the average road surface brightness value Lav according to the average of the brightness data of each image point;
  • Step 4 For the acquired image data, the image points are sequentially taken out in the order of the brightness values from high to low, and each time an image point is taken, the brightness value is compared with the previously summed brightness value, if the brightness value is smaller than before The preset percentage value of the summed brightness value is stopped, and each of the extracted image points is determined as a glare light source;
  • Step 5 Calculate the azimuth angle ⁇ (i,j) of each glare source according to the positional coordinates (i,j) of each glare source in the image, and use the triangular relationship with the position of the lens center line, and record each glare source.
  • the brightness value L(i,j) of the pixel, the azimuth angle ⁇ (i,j) is the angle between the glare source and the line of sight;
  • ⁇ (i,j) arctan[k* ⁇ (i 2 +j 2 )/f], where k is the imaging luminance meter lens calibration coefficient, and f is the lens focal length;
  • Step 6 Calculate the glare threshold increment TI:
  • L(i,j) is the brightness value of the glare source
  • ⁇ 0 is the unit solid angle
  • ⁇ (i,j) is the azimuth angle of the glare source
  • k is the lens calibration coefficient of the imaging brightness meter
  • K 2 is the age coefficient
  • the formula for calculating the age coefficient K 2 is as follows:
  • Step 7 Calculate the image data continuously taken by the imaging luminance meter during the moving process one by one, and select all the glare threshold increments TI of the measurement area as the glare level of the whole road, and according to the CJJ45-2006 standard. The glare is required to be evaluated.
  • the dynamic quantitative measurement of road glare by using the technical scheme of the invention can not only measure the brightness or illuminance of the center point of the glare source, but also integrate the brightness or illuminance of the entire glare source, and can obtain an accurate glare close to the driver's visual sense.
  • the threshold increment TI is easy to operate, greatly reducing measurement difficulty and cost, and improving measurement accuracy.
  • Figure 1 is a schematic view showing the measurement area in the present invention.
  • Glare threshold increment TI K 2 *Ls/Lav 0.8
  • K 1 and K 2 are constants, and the remaining parameters of the light curtain brightness Ls, the road surface average brightness value Lav, the vertical illuminance Ee (i, j) at the eyelid, and the angle ⁇ of the glare source to the line of sight (i, j)
  • the luminance value L(i, j) of the glare source pixel point can be calculated by the present invention.
  • the invention provides a method for dynamically evaluating road illumination glare by using an imaging luminance meter, comprising the following steps:
  • Step 1 Determine the measurement area:
  • the initial measurement position is located 60m ahead of the measurement area, and is 1/4 wide from the right side of the road, as shown in point A of Figure 1;
  • the parallel line is the center line for measuring the vehicle's travel.
  • a straight line perpendicular to the direction of travel of the measuring vehicle is drawn on the road surface, and the ends of the measuring area are The intersection intersects at a, a1, which is the starting line aa1 of the measurement area;
  • a line bb1 parallel to the starting line aa1 of the measurement area is drawn forward by a rod distance (for example, 30 m) based on the starting line aa1 of the measurement area, and the area aa1bb1 surrounded by the four lines of aa1, bb1, aD, and a1D is drawn. Is the measurement area;
  • Step 2 The measuring vehicle is equipped with an in-vehicle system including a road lighting dynamic measuring device, and the imaging brightness meter of the road lighting dynamic measuring device is installed on the stabilizing device, so that the measuring angle of view is constant and the viewing axis is 1.5 m high and the viewing angle is high.
  • the roadside dynamic measuring device has a positioning and ranging function to accurately determine the initial measurement position.
  • the vehicle is measured at a constant speed.
  • the control is performed.
  • the imaging brightness meter is placed in the vehicle vehicle system for measuring, and the measurement area is quickly photographed according to the measurement step, and image data including the original brightness data of the road and the glare data of the lamp is obtained;
  • Step 3 measuring the luminance data of each pixel in the image data in the area, and obtaining the average road surface brightness value Lav according to the average of the brightness data of each image point;
  • Step 4 For the acquired image data, the image points are sequentially taken out in the order of the brightness values from high to low, and each time an image point is taken, the brightness value is compared with the previously summed brightness value, if the brightness value is smaller than before a preset percentage value of the summed brightness value (for example, 20%), the extraction is stopped, and each of the extracted image points is determined to be a glare light source;
  • a preset percentage value of the summed brightness value for example, 20%
  • Step 5 Calculate the azimuth angle ⁇ (i,j) of each glare source according to the positional coordinates (i,j) of each glare source in the image, and use the triangular relationship with the position of the lens center line, and record each glare source.
  • the brightness value L(i,j) of the pixel, the azimuth angle ⁇ (i,j) is the angle between the glare source and the line of sight;
  • ⁇ (i,j) arctan[k* ⁇ (i 2 +j 2 )/f], where k is the imaging luminance meter lens calibration coefficient, and f is the lens focal length;
  • Step 6 Calculate the glare threshold increment TI:
  • L(i,j) is the brightness value of the glare source
  • ⁇ 0 is the unit solid angle
  • ⁇ (i,j) is the azimuth angle of the glare source
  • k is the lens calibration coefficient of the imaging brightness meter
  • K 2 is the age coefficient
  • the formula for calculating the age coefficient K 2 is as follows:
  • Step 7 Calculate the image data continuously taken by the imaging luminance meter during the moving process one by one, and select all the glare threshold increments TI of the measurement area as the glare level of the whole road, and according to the CJJ45-2006 standard. The glare is required to be evaluated.

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明一种利用成像亮度计对道路照明眩光进行动态评估的方法,在测量车辆行驶至起始测量位置时,控制置于测量车辆的车载系统中的成像亮度计,对待测区域按照测量步长进行快速拍照,获取包含有道路原始亮度数据和灯具眩光数据的图像数据;不仅能测量眩光源中心点的亮度或照度,还能对整个眩光源的亮度或照度进行积分计算,可以得到准确的接近司机视觉感觉的眩光阈值增量TI,操作简便,极大地降低了测量难度和成本,同时提高了测量准确度。

Description

一种利用成像亮度计对道路照明眩光进行动态评估的方法 技术领域
本发明涉及一种利用成像亮度计对道路照明眩光进行动态评估的方法。
背景技术
《CJJ45-2006城市道路照明设计标准》中对道路照明的眩光阈值增量TI要求进行了规定,但是由于眩光现场测量难度大,在实际运用中有诸多局限,计算繁琐。如采用直接对准式测量方法,需要对各个眩光源进行逐个测量,而且要对每个眩光源的亮度,垂直照度和θ角进行测量,人工成本大,且准确度不高,只能测量眩光源中心点的亮度或照度,无法对整个眩光源的亮度或照度进行积分计算,无法得到准确的接近司机视觉感觉的眩光阈值增量TI。
发明内容
本发明的目的在于提供一种利用成像亮度计所获图像对道路照明眩光进行动态定量测量的方法,操作简便,极大地降低了测量难度和成本,同时提高了测量准确度。
本发明是一种利用成像亮度计对道路照明眩光进行动态评估的方法,包括如下步骤:
步骤1、确定测量区域:
根据CJJ45-2006标准中的要求,起始测量位置A位于测量区域前方60m,且距离右侧路沿1/4路宽处;
在标准要求的状态下,即成像亮度计视轴离地1.5m高且视角水平向下1°,起始测量位置距被测点B的距离L=1.5m/TAN 1°=85.935m,以被测点B为基准往回25.935m得测量区域起始点C,即起始测量位置A至测量区域起始点C为60m,上述的A、B、C点在与右侧路沿距离1/4路宽的平行线上,该平行线为测量车辆行驶的中心线,在图形中的路面上画一条垂直于测量车行驶方向的直线,与测量区域两端路沿相交于a、a1,这就是测量区域的起始线aa1;在图形中以被测点B为中心,向上抬起1°,这点即无穷远点D,这是图形中各纵向线的会聚点,将测量区域的起始线aa1两端点a、a1分别与无穷远点D相连,得aD和a1D;以测量区域的起始线aa1为基准向前延伸一个杆距画一条与测量区域的起始线aa1平行的线bb1,则aa1、bb1、aD和a1D四条线所包围的区域aa1bb1便是测量区域;
步骤2、测量车辆装设有包括道路照明现场动态测量设备的车载系统,该道路照明现场动态测量设备的成像亮度计安装在稳定装置上,使测量视角恒定保持视轴离地1.5m高且视角水平向下1°,该道路照明现场动态测量设备带有定位和测距功能,以便准确判定起始测量位置,开始测量时,测量车辆匀速行驶,当测量车辆行驶至起始测量位置时,控制置于测量车辆车载系统中的成像亮度计,对测量区域按照测量步长进行快速拍照,获取包含有道路原始亮度数据和灯具眩光数据的图像数据;
步骤3、测量区域内图像数据中各像素点的亮度数据,根据各像数点亮度数据求均值得到路面平均亮度值Lav;
步骤4、针对所获取的图像数据,按亮度值从高到低的顺序依次取出图像点,每取出一个图像点,将其亮度值与之前求和的亮度值进行比较,如果其亮度值小于之前求和的亮度值的预置百分比值,提取停止,上述所提取的各图像点均确定为眩光源;
步骤5、根据每个眩光源在图像中的位置坐标(i,j),利用其与镜头中心线位置的三角关系计算出各眩光源的方位角θ(i,j),同时记录各眩光源像素点的亮度值L(i,j),该方位角θ(i,j)为眩光源对视线的夹角;
上述θ(i,j)=arctan[k*√(i2+j2)/f],式中,k为成像亮度计镜头校准系数,f为镜头焦距;
步骤6、计算眩光阈值增量TI:
(1)计算眼瞳处垂直照度Ee(i,j)
Ee(i,j)=(L(i,j)*Ω0*k*cos4θ(i,j))
其中:L(i,j)为眩光源亮度值,Ω0为单位立体角,θ(i,j)为眩光源方位角,k为成像亮度计镜头校准系数;
(2)计算光幕亮度Ls
Ls(i,j)=k1*Ee(i,j)/θ2(i,j)
当θ(i,j)在1.5°~60°及各像素点亮度值在0.05cd/m2~5cd/m2时,取k1=10;因此,
Figure PCTCN2015094090-appb-000001
(3)计算失能眩光阈值增量TI
TI=K2*Ls/Lav0.8
其中:K2为年龄系数,年龄系数K2的计算公式如下:
K2=64.1*[1+(A/66.4)4];
A为观测者年龄,取A=23,则K2=65;
步骤7、通过对成像亮度计在移动过程中连续所拍的图像数据进行逐个计算,选取测量区域的所有眩光阈值增量TI最大者作为衡量整段道路的眩光水平,并依据CJJ45-2006标准中的眩光要求进行评估。
采用本发明的技术方案对道路眩光进行动态定量测量,不仅能测量眩光源中心点的亮度或照度,还能对整个眩光源的亮度或照度进行积分计算,可以得到准确的接近司机视觉感觉的眩光阈值增量TI,操作简便,极大地降低了测量难度和成本,同时提高了测量准确度。
附图说明
图1为本发明中确认测量区域示意图。
以下结合附图和具体实施例对本发明做进一步详述。
具体实施方式
根据CIE文件给出的定义:
眩光阈值增量TI=K2*Ls/Lav0.8
Figure PCTCN2015094090-appb-000002
Ee(i,j)=(L(i,j)*Ω0*K1*cos4θ(i,j))
所列公式中:K1、K2为常数,其余各参数光幕亮度Ls、路面平均亮度值Lav、眼瞳处垂直照度Ee(i,j)、眩光源对视线的夹角θ(i,j)、眩光源像素点的亮度值L(i,j)可通过本发明计算得出。
本发明一种利用成像亮度计对道路照明眩光进行动态评估的方法,包括如下步骤:
步骤1、确定测量区域:
如图1所示,根据CJJ45-2006标准中的要求,起始测量位置位于测量区域前方60m,且距离右侧路沿1/4路宽处,见图1中的A点;
在所述标准要求的状态下,即成像亮度计视轴离地1.5m高且视角水平向下1°,起始测量位置距被测点B的距离为:L=1.5m/TAN 1°=85.935m,以被测点B为基准往回25.935m得测量区域起始点C,85.935m-60m=25.935m,即起始测量位置A至测量区域起始点C为60m,上述的A、B、C点在与右侧路沿距离1/4路宽的平行线上,该平行线为测量车辆行驶的中心线,在路面上画一条垂直于测量车行驶方向的直线,与测量区域两端路沿相交于a、a1,这就是测量区域的起始线aa1;
在图形中以被测点B为中心,向上抬起1°,这点即无穷远点D,这是图形中各纵向线的会聚点,将测量区域的起始线aa1两端点a、a1分别与无穷远点D相连,得aD和a1D;
以测量区域的起始线aa1为基准向前延伸一个杆距(如30m)画一条与测量区域的起始线aa1平行的线bb1,则aa1、bb1、aD和a1D四条线所包围的区域aa1bb1便是测量区域;
步骤2、测量车辆装设有包括道路照明现场动态测量设备的车载系统,该道路照明现场动态测量设备的成像亮度计安装在稳定装置上,使测量视角恒定保持视轴离地1.5m高且视角水平向下1°,该道路照明现场动态测量设备带有定位和测距功能,以便准确判定起始测量位置,开始测量时,测量车辆匀速行驶,当测量车辆行驶至起始测量位置时,控制置于测量车辆车载系统中的成像亮度计,对测量区域按照测量步长进行快速拍照,获取包含有道路原始亮度数据和灯具眩光数据的图像数据;
步骤3、测量区域内图像数据中各像素点的亮度数据,根据各像数点亮度数据求均值得到路面平均亮度值Lav;
步骤4、针对所获取的图像数据,按亮度值从高到低的顺序依次取出图像点,每取出一个图像点,将其亮度值与之前求和的亮度值进行比较,如果其亮度值小于之前求和的亮度值的预置百分比值(例如20%),提取停止,上述所提取的各图像点均确定为眩光源;
步骤5、根据每个眩光源在图像中的位置坐标(i,j),利用其与镜头中心线位置的三角关系计算出各眩光源的方位角θ(i,j),同时记录各眩光源像素点的亮度值L(i,j),该方位角θ(i,j)为眩光源对视线的夹角;
上述θ(i,j)=arctan[k*√(i2+j2)/f],式中,k为成像亮度计镜头校准系数,f为镜头焦距;
步骤6、计算眩光阈值增量TI:
(1)计算眼瞳处垂直照度Ee(i,j)
Ee(i,j)=(L(i,j)*Ω0*k*cos4θ(i,j))
其中:L(i,j)为眩光源亮度值,Ω0为单位立体角,θ(i,j)为眩光源方位角,k为成像亮度计镜头校准系数;
(2)计算光幕亮度Ls
Ls(i,j)=k1*Ee(i,j)/θ2(i,j)
当θ(i,j)在1.5°~60°及各像素点亮度值在0.05cd/m2~5cd/m2时,取k1=10;因此,
Figure PCTCN2015094090-appb-000003
(3)计算失能眩光阈值增量TI
TI=K2*Ls/Lav0.8
其中:K2为年龄系数,年龄系数K2的计算公式如下:
K2=64.1*[1+(A/66.4)4];
A为观测者年龄,一般以23岁左右为准,所以,K2=65;
步骤7、通过对成像亮度计在移动过程中连续所拍的图像数据进行逐个计算,选取测量区域的所有眩光阈值增量TI最大者作为衡量整段道路的眩光水平,并依据CJJ45-2006标准中的眩光要求进行评估。
以上所述,仅是本发明较佳实施例而已,并非对本发明的技术范围作任何限制,故凡是依据本发明的技术实质对以上实施例所作的任何细微修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (1)

  1. 一种利用成像亮度计对道路照明眩光进行动态评估的方法,其特征在于包括如下步骤:
    步骤1、确定测量区域:
    根据CJJ45-2006标准中的要求,起始测量位置A位于测量区域前方60m,且距离右侧路沿1/4路宽处;
    在标准要求的状态下,即成像亮度计视轴离地1.5m高且视角水平向下1°,起始测量位置距被测点B的距离L=1.5m/TAN1°=85.935m,以被测点B为基准往回25.935m得测量区域起始点C,即起始测量位置A至测量区域起始点C为60m,上述的A、B、C点在与右侧路沿距离1/4路宽的平行线上,该平行线为测量车辆行驶的中心线,在图形中的路面上画一条垂直于测量车行驶方向的直线,与测量区域两端路沿相交于a、a1,这就是测量区域的起始线aa1;在图形中以被测点B为中心,向上抬起1°,这点即无穷远点D,这是图形中各纵向线的会聚点,将测量区域的起始线aa1两端点a、a1分别与无穷远点D相连,得aD和a1D;以测量区域的起始线aa1为基准向前延伸一个杆距画一条与测量区域的起始线aa1平行的线bb1,则aa1、bb1、aD和a1D四条线所包围的区域aa1bb1便是测量区域;
    步骤2、测量车辆装设有包括道路照明现场动态测量设备的车载系统,该道路照明现场动态测量设备的成像亮度计安装在稳定装置上,使测量视角恒定保持视轴离地1.5m高且视角水平向下1°,该道路照明现场动态测量设备带有定位和测距功能,以便准确判定起始 测量位置,开始测量时,测量车辆匀速行驶,当测量车辆行驶至起始测量位置时,控制置于测量车辆车载系统中的成像亮度计,对测量区域按照测量步长进行快速拍照,获取包含有道路原始亮度数据和灯具眩光数据的图像数据;
    步骤3、测量区域内图像数据中各像素点的亮度数据,根据各像数点亮度数据求均值得到路面平均亮度值Lav;
    步骤4、针对所获取的图像数据,按亮度值从高到低的顺序依次取出图像点,每取出一个图像点,将其亮度值与之前求和的亮度值进行比较,如果其亮度值小于之前求和的亮度值的预置百分比值,提取停止,上述所提取的各图像点均确定为眩光源;
    步骤5、根据每个眩光源在图像中的位置坐标(i,j),利用其与镜头中心线位置的三角关系计算出各眩光源的方位角θ(i,j),同时记录各眩光源像素点的亮度值L(i,j),该方位角θ(i,j)为眩光源对视线的夹角;
    上述θ(i,j)=arctan[k*√(i2+j2)/f],式中,k为成像亮度计镜头校准系数,f为镜头焦距;
    步骤6、计算眩光阈值增量TI:
    (1)计算眼瞳处垂直照度Ee(i,j)
    Ee(i,j)=(L(i,j)*Ω0*k*cos4θ(i,j))
    其中:L(i,j)为眩光源亮度值,Ω0为单位立体角,θ(i,j)为眩光源方位角,k为成像亮度计镜头校准系数;
    (2)计算光幕亮度Ls
    Ls(i,j)=k1*Ee(i,j)/θ2(i,j)
    当θ(i,j)在1.5°~60°及各像素点亮度值在0.05cd/m2~5cd/m2时,取k1=10;因此,
    Figure PCTCN2015094090-appb-100001
    (3)计算失能眩光阈值增量TI
    TI=K2*Ls/Lav0.8
    其中:K2为年龄系数,年龄系数K2的计算公式如下:
    K2=64.1*[1+(A/66.4)4];
    A为观测者年龄,取23岁,则K2=65;
    步骤7、通过对成像亮度计在移动过程中连续所拍的图像数据进行逐个计算,选取测量区域的所有眩光阈值增量TI最大者作为衡量整段道路的眩光水平,并依据CJJ45-2006标准中的眩光要求进行评估。
PCT/CN2015/094090 2014-12-11 2015-11-09 一种利用成像亮度计对道路照明眩光进行动态评估的方法 WO2016091041A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410764162.2 2014-12-11
CN201410764162.2A CN104484563B (zh) 2014-12-11 2014-12-11 一种利用成像亮度计对道路照明眩光进行动态评估的方法

Publications (1)

Publication Number Publication Date
WO2016091041A1 true WO2016091041A1 (zh) 2016-06-16

Family

ID=52759104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/094090 WO2016091041A1 (zh) 2014-12-11 2015-11-09 一种利用成像亮度计对道路照明眩光进行动态评估的方法

Country Status (2)

Country Link
CN (1) CN104484563B (zh)
WO (1) WO2016091041A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110553727A (zh) * 2019-10-09 2019-12-10 广东省中山市质量计量监督检测所 一种地面光度测量装置、光度测量系统及测量方法
CN112348771A (zh) * 2020-09-25 2021-02-09 深圳市运泰利自动化设备有限公司 一种基于小波变换的成像一致性评价方法
CN116306319A (zh) * 2023-05-17 2023-06-23 天津大学 基于遗传算法的文物照明眩光量化评估方法及系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104484563B (zh) * 2014-12-11 2018-07-31 厦门元谷节能环保集团有限公司 一种利用成像亮度计对道路照明眩光进行动态评估的方法
CN108709167B (zh) * 2018-05-28 2019-03-22 陕西高速电子工程有限公司 一种隧道警示灯安装布设方法
CN114689286B (zh) * 2022-06-02 2022-08-19 济宁半导体及显示产品质量监督检验中心 室内视觉环境眩光测量仪器的校准装置及校准方法
CN116734996B (zh) * 2023-08-11 2023-10-20 陕西省计量科学研究院 一种道路照明眩光测量装置及测量方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103616161A (zh) * 2013-12-04 2014-03-05 厦门元谷信息科技有限公司 一种用于道路照明现场动态测量的稳定方法
CN104484563A (zh) * 2014-12-11 2015-04-01 厦门元谷信息科技有限公司 一种利用成像亮度计对道路照明眩光进行动态评估的方法
CN204301966U (zh) * 2014-11-20 2015-04-29 厦门元谷信息科技有限公司 一种道路照明动态测量装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040160595A1 (en) * 2003-02-14 2004-08-19 Lafarge Road Marking, Inc. Road marking evaluation and measurement system
CN102103015B (zh) * 2009-12-21 2012-08-29 厦门市光电子行业协会 一种led道路照明现场动态测量方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103616161A (zh) * 2013-12-04 2014-03-05 厦门元谷信息科技有限公司 一种用于道路照明现场动态测量的稳定方法
CN204301966U (zh) * 2014-11-20 2015-04-29 厦门元谷信息科技有限公司 一种道路照明动态测量装置
CN104484563A (zh) * 2014-12-11 2015-04-01 厦门元谷信息科技有限公司 一种利用成像亮度计对道路照明眩光进行动态评估的方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110553727A (zh) * 2019-10-09 2019-12-10 广东省中山市质量计量监督检测所 一种地面光度测量装置、光度测量系统及测量方法
CN110553727B (zh) * 2019-10-09 2024-02-23 广东省中山市质量计量监督检测所 一种地面光度测量装置、光度测量系统及测量方法
CN112348771A (zh) * 2020-09-25 2021-02-09 深圳市运泰利自动化设备有限公司 一种基于小波变换的成像一致性评价方法
CN112348771B (zh) * 2020-09-25 2022-04-15 深圳市运泰利自动化设备有限公司 一种基于小波变换的成像一致性评价方法
CN116306319A (zh) * 2023-05-17 2023-06-23 天津大学 基于遗传算法的文物照明眩光量化评估方法及系统
CN116306319B (zh) * 2023-05-17 2023-07-21 天津大学 基于遗传算法的文物照明眩光量化评估方法及系统

Also Published As

Publication number Publication date
CN104484563B (zh) 2018-07-31
CN104484563A (zh) 2015-04-01

Similar Documents

Publication Publication Date Title
WO2016091041A1 (zh) 一种利用成像亮度计对道路照明眩光进行动态评估的方法
WO2016066018A1 (zh) 基于安全视认的白天隧道入口段照明标准测算方法及其系统
CN105784710B (zh) 一种基于数字图像处理的混凝土桥梁裂缝检测装置
CN105835880B (zh) 车道追踪系统
CN104011737B (zh) 用于探测雾的方法
WO2016066020A1 (zh) 基于安全视认的隧道中间段照明标准的测算方法及其系统
CN102314601B (zh) 使用非线性光照恒定核去除由基于车辆的相机捕获的图像中的阴影
CN108088414A (zh) 一种单目测距方法
WO2016066019A1 (zh) 基于安全视认的白天隧道入口段照明标准测算方法及其系统
CN104019742A (zh) 隧道衬砌裂缝快速检测方法
CN102853777B (zh) 基于图像处理的制动间隙宽度测量方法和设备
CN104280221B (zh) 用于评价前照灯的方法
CN105628194B (zh) 一种道路照明质量现场测量方法
CN102162788A (zh) 基于高清视频的能见度检测方法
CN104374550A (zh) 一种道路照明动态测量装置
CN107688174A (zh) 一种图像测距方法、系统、存储介质和车载视觉感知设备
CN104034413A (zh) 一种公路隧道洞外亮度的测量方法
US20230177724A1 (en) Vehicle to infrastructure extrinsic calibration system and method
KR101705027B1 (ko) 야간 도로 시인성 조사 평가 시스템 및 방법
CN110399664A (zh) 一种驾驶速度的确定方法及装置
CN206378107U (zh) 轮廓测量装置
CN103528801A (zh) Led灯具统一眩光值光学测量装置
CN204301966U (zh) 一种道路照明动态测量装置
CN107328777A (zh) 一种在夜间测量大气能见度的方法及装置
CN205981622U (zh) 公路隧道照明评估装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15868583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15868583

Country of ref document: EP

Kind code of ref document: A1