WO2016090987A1 - 一种基于网络感知的服务策略配置方法及网络设备 - Google Patents

一种基于网络感知的服务策略配置方法及网络设备 Download PDF

Info

Publication number
WO2016090987A1
WO2016090987A1 PCT/CN2015/090194 CN2015090194W WO2016090987A1 WO 2016090987 A1 WO2016090987 A1 WO 2016090987A1 CN 2015090194 W CN2015090194 W CN 2015090194W WO 2016090987 A1 WO2016090987 A1 WO 2016090987A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
information
neighboring
centralized
characteristic information
Prior art date
Application number
PCT/CN2015/090194
Other languages
English (en)
French (fr)
Inventor
贺媛
秦飞
刘佳敏
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to EP15867553.8A priority Critical patent/EP3232704B1/en
Priority to US15/534,473 priority patent/US10341174B2/en
Publication of WO2016090987A1 publication Critical patent/WO2016090987A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition

Definitions

  • the present application relates to the field of communications, and in particular, to a network-aware service policy configuration method and a network device.
  • the existing multi-RAT Radio Access Technology
  • RRME Radio Resource Management Equipment
  • the multi-RAT resource management and coordination function, the radio resource management device and the base station can exchange corresponding radio resource management information, as shown in FIG. 1 , a centralized networking structure, where the radio resource management device can be OAM (Operation Administration and Maintenance) node. Whether it is centralized networking or distributed networking, the base station works at the frequency and bandwidth of the OAM node configuration.
  • OAM Operaation Administration and Maintenance
  • ultra-dense networks in the future development of mobile communication systems, in order to better meet the needs of users and greatly improve network capacity and throughput, more low-power and small-coverage access nodes will be introduced, that is, ultra-dense networks in the future. Due to the dense nodes and large number of nodes in the ultra-dense network, the problem of serious inter-cell interference and system performance degradation is inevitable.
  • the ultra-dense network configures the neighbor relationship through OAM, and the number of cells in the ultra-dense network is very large, which is not conducive to the maintenance of the neighbor relationship of the base station. At the same time, there are also the base station's power on/off, plug and play, and cell access/leave. The base stations in the network will change. The future networking is flexible. Therefore, the traditional OAM configuration cannot be adapted. Changes in the network.
  • the embodiment of the present application provides a network-aware service policy configuration method and a network device, which are used to implement a service policy for a network node according to network sensing information and node characteristics.
  • the embodiment of the present application provides a network policy-based service policy configuration method, including:
  • the network sensing information includes:
  • the measurement information obtained by the first node and/or the information obtained by the first node from the broadcast message of the adjacent node.
  • the measured information obtained by the measurement includes one or any combination of the following information:
  • the information obtained from the broadcast message of the neighboring node includes one or any combination of the following information:
  • Transmit power radio frequency capability, geographic location coordinates, cell identity, time division duplex (TDD) configuration information, multicast/multicast single frequency network (MBSFN) configuration information.
  • TDD time division duplex
  • MBSFN multicast/multicast single frequency network
  • the method further includes: acquiring characteristic information of the neighboring nodes of the first node;
  • the configuring a service policy for the first node including: configuring a service policy for the first node according to the environment information map, and characteristic information of the first node and neighboring nodes of the first node .
  • the step of acquiring the network sensing information of the first node, the step of establishing the environment information map of the first node according to the network sensing information, the acquiring the first node, and the first node The step of characteristic information of the adjacent node, and the execution body of the step of configuring the service policy for the first node are all centralized nodes;
  • the first node is included in the management scope of the centralized node.
  • the acquiring network sensing information of the first node includes:
  • the centralized node receives the information reported by the first node, where the reported information includes information obtained by the first node from a broadcast message sent by a neighboring node.
  • obtaining the characteristic information of the first node and the neighboring node of the first node including:
  • the centralized node receives the characteristic information of the respective node reported by the first node and the neighboring node of the first node.
  • acquiring the characteristic information of the neighboring node of the first node includes:
  • the second node If the second node is included in the neighboring node of the first node, the second node is not in the management scope of the centralized node, and a backhaul link exists between the second node and the centralized node, The centralized node interacts with the second node by using a backhaul link between the centralized node and the second node to obtain characteristic information of the second node.
  • the first node is within the management scope of the centralized node
  • Obtaining characteristic information of the neighboring node of the first node including:
  • the second node is included in the neighboring node of the first node, the second node is not in the management scope of the centralized node, and a backhaul link exists between the first node and the second node, then:
  • the centralized node instructs the first node to report the characteristic information of the second node, and the first node passes the backhaul link between the first node and the second node according to the indication
  • the second node interacts to acquire the characteristic information of the second node, and sends the acquired characteristic information to the centralized node; or
  • the first node sends the characteristic information sent by the second node to the centralized node.
  • the acquiring network sensing information of the first node includes:
  • the first node performs measurement on the neighboring node, and obtains network sensing information of the first node according to the measurement information; and/or
  • the first node receives the broadcast message sent by the neighboring node, and acquires the network sensing information of the first node according to the received broadcast message.
  • the acquiring the characteristic information of the neighboring node of the first node includes:
  • the first node interacts with a neighboring node of the first node by using a backhaul link between the first node and a neighboring node to obtain characteristic information of a neighboring node of the first node.
  • a backhaul link exists between the first node and the centralized node, and the first node is not in the management scope of the centralized node;
  • the second node is a node within the management range of the centralized node, and there is no backhaul chain between the first node and the second node
  • the first node interacts with the centralized node by using a backhaul link between the first node and the centralized node to obtain characteristic information of the second node.
  • the first node is not within the management scope of the centralized node
  • the neighboring node of the first node includes a second node
  • the second node is within the management scope of the centralized node, and a backhaul link exists between the first node and the second node, then:
  • the first node interacts with the second node by using a backhaul link between the first node and the second node to request to acquire characteristic information of the second node;
  • the backhaul link between the second node and the centralized node acquires characteristic information of the second node from the centralized node and sends the characteristic information to the first node Point; or
  • the first node interacts with the second node by using a backhaul link between the first node and the second node to acquire characteristic information of the second node.
  • the environment information map of the first node is used to represent one or any combination of the following information:
  • the establishing an environmental information map of the first node according to the network sensing information includes one of the following:
  • the neighboring cell relationship determines the spectrum usage of the neighboring node of the first node, and obtains the environment information map of the first node according to the relative location, the neighboring zone relationship, and the spectrum usage.
  • the method further includes:
  • the characteristic information includes one or any combination of the following information:
  • Capability information for supported frequency points, supported bandwidth, type of backhaul link, and characteristics of the backhaul link.
  • the embodiment of the present application further provides a network device, including:
  • a first acquiring module configured to acquire network sensing information of the first node
  • a first processing module configured to establish an environment information map of the first node according to the network sensing information
  • a second acquiring module configured to acquire characteristic information of the first node
  • a second processing module configured to configure a service policy for the first node according to the environment information map and the characteristic information of the first node.
  • the network sensing information includes:
  • the measurement information obtained by the first node and/or the information obtained by the first node from the broadcast message of the adjacent node.
  • the measured information obtained by the measurement includes one or any combination of the following information:
  • the information obtained from the broadcast message of the neighboring node includes one or any combination of the following information:
  • the second obtaining module is further configured to: acquire characteristic information of neighboring nodes of the first node;
  • the second processing module is configured to: configure a service policy for the first node according to the environment information map, and characteristic information of the first node and neighboring nodes of the first node.
  • the network device is a centralized node
  • the first node is included in the management scope of the centralized node.
  • the first acquiring module is specifically configured to:
  • Receiving information reported by the first node where the reported information includes information obtained by the first node from a broadcast message sent by a neighboring node.
  • the second obtaining module is specifically configured to:
  • the second obtaining module is specifically configured to:
  • the second node is included in the neighboring node of the first node, the second node is not in the management scope of the centralized node, and a backhaul link exists between the second node and the centralized node, And interacting with the second node by using a backhaul link between the centralized node and the second node to obtain characteristic information of the second node.
  • the first node is within the management scope of the centralized node
  • the second acquiring module is specifically configured to:
  • the second node is included in the neighboring node of the first node, the second node is not in the management scope of the centralized node, and a backhaul link exists between the first node and the second node, then:
  • the network device is a first node.
  • the first acquiring module is specifically configured to:
  • the second obtaining module is specifically configured to:
  • a backhaul link exists between the first node and the centralized node, and the first node is not in the management scope of the centralized node;
  • the second acquiring module is specifically configured to:
  • the second node is a node within the management range of the centralized node, and there is no backhaul chain between the first node and the second node And performing, by the backhaul link between the first node and the centralized node, interacting with the centralized node to acquire characteristic information of the second node.
  • the first node is not within the management scope of the centralized node
  • the second acquiring module is specifically configured to:
  • the neighboring node of the first node includes a second node
  • the second node is within the management scope of the centralized node, and a backhaul link exists between the first node and the second node, then:
  • the environment information map of the first node is used to represent one or any combination of the following information:
  • the first processing module is further configured to:
  • the first obtaining module receives an indication that the neighboring node of the first node accesses or leaves, or detects Updating the environmental information map of the first node when the neighboring node of the first node moves.
  • the characteristic information includes one or any combination of the following information:
  • Capability information for supported frequency points, supported bandwidth, type of backhaul link, and characteristics of the backhaul link.
  • the apparatus can include a processor for reading a program in the memory and performing the following processes:
  • a memory for storing one or more executable programs, configured to configure the processor
  • a transceiver for receiving and transmitting data under the control of a processor.
  • the processor is further configured to: read a program from the memory, and perform the following process: acquiring, by the transceiver, characteristic information of the neighboring node of the first node;
  • the processor is specifically configured to read the program from the memory, and execute the following process: according to the environment information map, and the first node and the adjacent node of the first node Characteristic information, configuring a service policy for the first node.
  • the network device is a centralized node
  • the first node is included in the management scope of the centralized node.
  • the processor is specifically configured to read the program from the memory, and perform the following process:
  • the transceiver Receiving, by the transceiver, the information reported by the first node, where the reported information includes information obtained by the first node from a broadcast message sent by a neighboring node.
  • the processor is specifically configured to read the program from the memory, and perform the following process:
  • the first node and the characteristic information of the respective node reported by the neighboring node of the first node are received by the transceiver.
  • the processor is specifically configured to read the program from the memory, and perform the following process:
  • the second node is included in the neighboring node of the first node, the second node is not in the management scope of the centralized node, and a backhaul link exists between the second node and the centralized node, Interacting with the second node by a backhaul link between the transceiver and the second node to obtain characteristic information of the second node.
  • the first node is in a management range of the centralized node; the processor is specifically configured to read a program from the memory, and perform the following process:
  • the second node is included in the neighboring node of the first node, the second node is not in the management scope of the centralized node, and a backhaul link exists between the first node and the second node, then:
  • the second node interacts to acquire the characteristic information of the second node, and sends the acquired characteristic information to the centralized node;
  • the network device is a first node.
  • the processor is specifically configured to read the program from the memory, and perform the following process:
  • the transceiver Measuring, by the transceiver, the neighboring node, obtaining network awareness information of the first node according to the measurement information;
  • the broadcast message sent by the neighboring node is received by the transceiver, and the network sensing information of the first node is obtained according to the received broadcast message.
  • the processor is specifically configured to read the program from the memory, and perform the following process:
  • a backhaul link exists between the first node and the centralized node, and the first node is not in the management scope of the centralized node; the processor is specifically configured to read a program from a memory, and execute The following process: if the neighboring node of the first node includes a second node, the second node is a node within the management range of the centralized node, and the first node and the second node are not If there is a backhaul link, the backhaul link between the transceiver of the first node and the centralized node interacts with the centralized node to obtain the characteristic information of the second node.
  • the first node is not in the management scope of the centralized node; the processor is specifically configured to read the program from the memory, and perform the following process:
  • the neighboring node of the first node includes a second node
  • the second node is within the management scope of the centralized node, and a backhaul link exists between the first node and the second node, then:
  • the processor is further configured to read the program from the memory, and perform the following process:
  • the network sensing information of the first node is first obtained, the environment information map of the first node is established according to the network sensing information, and then the characteristic information of the first node is acquired, and then according to the environment information map and the characteristics of the first node.
  • the information is configured to configure a service policy for the first node to implement information interaction between node types and characteristics of network nodes, and configure a service policy for the network node.
  • the environment information map established according to the network perception information can reflect the situation of the nodes around the node, and on the other hand, the acquired characteristic information of the node can be further supplemented as the environment information map, and when the service policy is configured, The service information is determined based on the environmental information map and the characteristic information of the node, so that the flexible network architecture can be adapted to determine an appropriate service strategy.
  • FIG. 1 is a schematic structural diagram of a centralized networking in the prior art
  • FIG. 2 is a schematic flowchart of a network-aware service policy preparation process according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a centralized networking in the embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a network-aware service policy configuration process in a centralized networking in an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a distributed networking in the embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a network-aware service policy configuration process in a distributed networking according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of a scenario in a hybrid networking in the embodiment of the present application.
  • FIG. 8 is a schematic diagram of node distribution in a hybrid networking according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another network device according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another network device in the embodiment of the present application.
  • the embodiment of the present application provides a network policy-based service policy configuration solution.
  • the environmental information map of the point and the characteristic information of the node are used as a basis to determine the service policy, so that the flexible network architecture can be adapted to determine the appropriate service policy.
  • the embodiments of the present application can be applied to a variety of architectures or types of networking, such as centralized networking and distributed networking, and can also be applied to a hybrid networking in which a centralized networking architecture and a distributed networking architecture coexist.
  • a centralized networking architecture and a distributed networking architecture coexist.
  • the network nodes are dense, and the types are diverse.
  • the networking is flexible, including centralized networking, distributed networking, and hybrid networking.
  • Centralized networking refers to the control of multiple network nodes by centralized nodes, and the centralized control of resources and coordination or cooperation between network nodes.
  • Distributed networking refers to the absence of centralized nodes to coordinate or cooperate between network nodes through backhaul link negotiation.
  • Hybrid networking is a combination of the two.
  • a centralized node can manage multiple network nodes, which is a high-level node, which can be a logical entity or an independent device.
  • the centralized node may be an independent access network node, such as a local gateway or a local controller; the centralized node may also be a core network node or an OAM node; the centralized node may also be a base station, The base station can be regarded as a super base station because it can manage multiple other base stations; the centralized node can also be a C-RAN (Centralized, Cooperative, Cloud Radio Access Network, based on a centralized, cooperative, cloud-based wireless access network) architecture.
  • the baseband pool centrally processes the baseband signals of multiple RRHs (Remote Radio Heads).
  • the network nodes managed by the centralized nodes and the network nodes in the distributed networking may be multiple types of network nodes.
  • the network node may be a base station, including a macro base station, such as an eNB, an NB (Node B, a base station in a third generation mobile communication technology), and the like, and may also include a small station, such as a LPN (Low Power Node). ) pico (pico base station), femto (home base station), etc., may also include an AP (Access Point, access point); the network node may also be an RRH; the network node may also be an enhanced capability UE (User Equipment) , user equipment or terminal), such as a UE with relay capability.
  • a macro base station such as an eNB, an NB (Node B, a base station in a third generation mobile communication technology), and the like
  • a small station such as a LPN (Low Power Node).
  • pico pico base station
  • the base station operates at a central frequency point, the base station is divided into a cell whose working frequency point is the working frequency point (central frequency point) of the base station. If the base station works on two or more center frequency points, the base station is divided into two or more cells, the number of cells is the number of working frequency points of the base station, and the working frequency of each cell is the base station. A working frequency.
  • the operating frequency of the base station is below 6 GHz, and the typical operating frequency band is 3.4 GHz to 3.6 GHz.
  • High frequency bands such as the working frequency bands of 42-48 GHz and 59-64 GHz, can also be used.
  • Figure 2 shows a network-aware service policy configuration process.
  • the process can be applied to centralized networking, distributed networking, or hybrid networking.
  • different nodes perform the following.
  • the process for example, in a centralized networking or a hybrid networking, may be performed by a centralized node, and in a distributed networking or a hybrid networking, may be performed by a base station. Row.
  • the first node is configured as a service policy
  • the first node may be any network node in the network architecture that needs to perform service policy configuration.
  • Step S201 Acquire network sensing information of the first node.
  • the network sensing information of the first node may include measurement information measured by the first node and/or information obtained by the first node from a broadcast message of the neighboring node.
  • the measurement information measured by the first node is related information of the neighboring nodes of the first node, and the measurement information measured by the first node may include multiple types of information, such as different measurement configurations or different measurement modes, such as It may include one or any combination of the following information: signal strength (such as RSRP (Reference Signal Received Power)), signal quality (such as RSRQ (Reference Signal Received Quality), SINR (Signal-to) - Interference plus Noise Ratio), working frequency, working bandwidth, radio frequency capability, geographic location coordinates, cell identification, etc.
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • SINR Signal-to
  • the information obtained by the first node from the broadcast message of the neighboring node is related information of the neighboring node of the first node, and may include one or any combination of the following information: transmit power, radio frequency capability, geographic location coordinates, and cell. Identification, TDD (Time Division Duplexing) configuration information, MBSFN (Multimedia Broadcast multicast service Single Frequency Network) configuration information, and the like.
  • TDD Time Division Duplexing
  • MBSFN Multimedia Broadcast multicast service Single Frequency Network
  • Step S202 Establish an environmental information map of the first node according to the network sensing information.
  • the environmental information map may reflect a relationship between a certain node and its neighboring nodes and/or related information of adjacent nodes.
  • the environment information map of the first node may be used to indicate one or any combination of the following information: a relative position between the first node and a neighboring node of the first node, the first node Neighbor relationship, spectrum usage of adjacent nodes of the first node, and the like.
  • the manner of establishing the environment information map according to the network sensing information is also various.
  • the environment information map of the first node may be determined in the following manner. :
  • Method 1 determining a relative position of the first node and a neighboring node of the first node according to the network sensing information, and obtaining an environment information map of the first node; wherein, the geographic location coordinates and the path are obtained Loss, received signal strength, etc. to indicate relative position;
  • Manner 2 determining a neighbor relationship of the first node according to the network sensing information, and obtaining an environment information map of the first node, where the neighbor relationship may include an adjacent neighboring area and an adjacent neighboring area, Collaborative neighborhoods, etc.;
  • Manner 3 determining, according to the network sensing information, a spectrum usage situation of a neighboring node of the first node, and obtaining an environment information map of the first node;
  • Manner 4 determining, according to the network sensing information, between the first node and a neighboring node of the first node a relative position, determining a neighbor relationship of the first node according to the relative position, and obtaining an environment information map of the first node according to the relative position and a neighbor relationship of the first node;
  • Manner 5 determining a relative position between the first node and a neighboring node of the first node and a spectrum usage of a neighboring node of the first node according to the network sensing information, to obtain the first The environmental information map of the node;
  • Manner 6 determining, according to the network sensing information, a neighbor relationship of the first node, determining, according to the neighbor relationship of the first node, a spectrum usage situation of the neighboring node of the first node, according to the foregoing Obtaining a neighboring area relationship of a node and a spectrum usage of the neighboring node of the first node, and obtaining an environmental information map of the first node;
  • Manner 7 determining a relative position between the first node and a neighboring node of the first node according to the network sensing information, and determining a neighbor relationship of the first node according to the relative location, according to the The neighboring cell relationship of the first node determines a spectrum usage situation of the neighboring node of the first node, and obtains an environment information map of the first node according to the relative location, the neighboring cell relationship, and the spectrum usage situation.
  • Step S203 Acquire characteristic information of the first node.
  • the characteristic information of the neighboring node of the first node may be acquired, and the obtaining manner is mainly through a backhaul link (wired backhaul or wireless backhaul) and phase Neighbor nodes negotiate and acquire each other.
  • the foregoing characteristic information may be used to configure a service policy for the first node, and the first node may learn the type and characteristics of its neighboring nodes by using the foregoing characteristic information.
  • the characteristic information of a node generally refers to some inherent information of the node itself, such as configuration information and capability information of the node.
  • the characteristic information of a node may include one or any combination of the following information of the node: capability information (such as capability level, transmit power, antenna port, radio frequency capability, relay capability, etc.), supported frequency points, supported Bandwidth, backhaul (backhaul link) type and backhaul characteristics (such as ideal/non-ideal backhaul, backhaul delay and throughput characteristics, backhaul capability level, etc.).
  • Step S204 Configure a service policy for the first node according to the environment information map and the characteristic information of the first node.
  • the service policy is configured for the first section according to the environment information map and the characteristic information described in step S203.
  • the service policy configured for one node may include multiple types, for example, configuring a working frequency, working bandwidth, and cell identifier of the node for one node, and may also include the role of the node in the network, and interact with other nodes. Coordination or assistance in relationships, etc.
  • the relative position between the first node and the neighboring node of the first node, the neighbor relationship of the first node, and the first node in the environment information map established in the foregoing step S202 may configure a service policy for the first node, for example, determining a frequency of the working of the first node.
  • Working bandwidth, for the first quarter Selecting the identifier of the cell may also determine the role of the first node in the network, and coordinating/cooperating with other nodes to serve the user, for example, the first node and its neighboring nodes cooperate with each other to jointly serve the user.
  • the first node negotiates with its neighboring nodes such that its neighboring nodes provide backhaul services for the first node.
  • step S201 of the flow shown in FIG. 2 above the specific implementation process is different according to the networking mode.
  • the central node sends a measurement configuration to the first node, and the first node performs measurement on the neighboring node according to the measurement configuration, and reports the measurement report message to the centralized node, and measures
  • the report message includes part or all of the measurement information of the first node to the adjacent node.
  • the first node may also receive a broadcast message of the neighboring node, and report the information obtained from the broadcast message to the centralized node.
  • the first node performs measurement on its neighboring nodes, and stores information acquired from the measurement information; the first node may also receive broadcast messages of its neighboring nodes. The information is obtained and stored in the broadcast message.
  • the manner in which the network sensing information is obtained may coexist.
  • step S201 of the flow shown in FIG. 2 above the specific implementation process is different according to the networking mode.
  • the backhaul link may be a wired link, such as a backhaul link based on the X2 interface.
  • the network node under centralized node management reports its own characteristic information to the centralized node through the backhaul link with the centralized node. In this way, the centralized node can obtain the characteristic information of each network node within its management scope.
  • each network node can interact with the backhaul link between the network nodes, such as the backhaul link based on the X2 interface or the S1 interface, to obtain the characteristic information of the other node.
  • the foregoing manner of acquiring node characteristic information may coexist. Further, if a node (such as a macro base station) is not a node managed by a centralized node, a backhaul link may exist between the node and the centralized node, so that a node under the centralized node management can be obtained through the centralized node.
  • the characteristic information, or a node under the management of the centralized node can also acquire the characteristic information of the macro base station through the centralized node.
  • the nodes in the network may change at any time, for example, the base station is powered on or off, the AP is plug and play, the cell accesses or leaves, the AP moves, etc., and thus can be accessed or left or moved according to the network node.
  • Update the environmental information map in other cases. For example, when the centralized node or the first node itself receives an indication that the neighboring node of the first node accesses or leaves, or detects that the neighboring node of the first node moves, the environment of the first node is updated. Information map.
  • a network node in the centralized node management area can report its own characteristic information to the centralized node when accessing the network, and perform measurement and report the measurement report. interest.
  • the network sensing information is first acquired, the environment information map is established according to the network sensing information, and then the characteristic information of the first node and its neighboring nodes is acquired, and then the first node and its neighbor nodes are obtained according to the environment information map.
  • the characteristic information is configured to configure a service policy for the first node to implement information interaction between node types and characteristics of network nodes, and configure a service policy for the network node.
  • the network sensing information may include measurement information measured by a node and/or information acquired by the node from a system broadcast message of a neighboring node, the environment information map established according to the information can reflect the surrounding of the node.
  • the acquired feature information of the node can be further supplemented by the environment information map.
  • the service information is determined based on the environment information map and the characteristic information of the node, so that the service policy can be adapted.
  • a base station or an AP is managed by a centralized node.
  • Figure 3 shows a schematic diagram of a centralized networking.
  • APs in the same office area are managed by centralized nodes.
  • FIG. 4 shows a network-aware service policy configuration flow in a centralized networking, which is performed by a centralized node. This process is described by taking a centralized node as a service policy for AP1. As shown in the figure, the specific steps of the process include:
  • step S401 the centralized node sends a measurement configuration to AP1.
  • the centralized node After the AP1 is powered on, the centralized node needs to send a measurement configuration to AP1 to instruct AP1 to perform measurement and report.
  • step S402 to step S403 the AP1 performs a perceptual measurement on the surrounding APs in the range of its own capability according to the measurement configuration sent by the central node, and then reports the measurement report message to the central node, and the measurement report message includes the part of the AP1 to the surrounding AP or All measurement information.
  • the APs are measured by themselves in the range of their own capabilities.
  • the AP1 measures the CRS (Cell-specific reference signals) of the neighboring APs at different frequencies.
  • the report message is reported to the centralized node, and the measurement report message includes some or all of the measurement information measured by the AP1 to the AP.
  • the measurement information includes measurement frequency points, neighbor cell identifiers, and RSRP measurement results.
  • the cell identifier may include a PCI, an ECGI (E-UTRAN Cell Global Identifier), and the like.
  • the AP1 measures the neighboring AP according to the measurement configuration sent by the centralized node, and reports the measurement report message to the centralized node.
  • the AP1 can measure the neighboring AP according to the configuration node of the centralized node. The measurement result of the neighboring cell identifier and the RSRP is reported to the centralized node.
  • the AP1 can also measure the neighboring APs according to the measurement node frequency and the RSRP threshold of the centralized node, and report the identity of the neighboring cell that meets the RSRP threshold and the measurement result of the RSRP to the centralized node.
  • the AP1 can also measure neighboring APs according to the configuration of the measurement node, the CSI-RS (Channel State Information-Reference Signal, also known as the channel state information pilot signal), and the CSI-RS RSRP. The measurement results are reported to the central node.
  • the different APs use different CSI-RS resources to send CSI-RS.
  • the centralized node constructs an environment information map according to the measurement report message reported by the AP1, where the measurement report message includes some or all of the measured information.
  • the measurement information may include working frequency points, PCI, ECGI, and other measurement results of neighboring APs.
  • the measurement information in the measurement report message is further explained in two ways. Of course, the following two methods are only specific examples, and the application is not limited thereto.
  • Method 1 Self-measurement, no measurement configuration of the centralized node.
  • AP1 measures the surrounding APs within its own capabilities (different frequency points), and measures 8 neighboring APs (8 detection capabilities) to obtain their working frequency, cell ID, and RSRP measurements.
  • the AP1 reports the frequency, the cell identifier, and the RSRP measurement result of the eight neighboring APs to the centralized node. That is, the measurement report message includes all the measurement information obtained by the measurement.
  • Mode 2 The centralized node sends the measurement configuration. There are measurement frequency points and RSRP threshold values in the measurement configuration.
  • AP1 performs perceptual measurement on the surrounding APs at the configured measurement frequency, and measures 8 neighboring APs (8 detection capabilities) to obtain their cell ID and RSRP measurement results.
  • AP1 compares the RSRP measurements of eight neighboring APs with the threshold to obtain five neighboring APs that meet the threshold.
  • the AP1 reports the cell ID and RSRP measurement results of the five neighboring APs to the central node. At this time, only the measured partial measurement information is included in the measurement report message.
  • the centralized node may establish an environmental information map in one of the following ways:
  • the centralized node may obtain the received signal strength between the AP1 and the neighboring AP according to the measurement result of the RSRP, or obtain the path loss between the AP1 and the neighboring AP according to the measurement result of the RSRP and the transmit power of the neighboring AP, or according to the neighboring AP.
  • the identity lookup obtains their geographic location coordinates (the geographic location coordinate information is obtained and stored a priori by the centralized node) to construct a relative position between the AP1 and the neighboring APs.
  • the concentrating node may also determine the neighbor relationship of the AP1 according to the relative location information between the AP1 and the neighboring AP or the measurement information of the measurement report message reported by the AP1, where the neighbor relationship may include a neighbor list and an interference neighbor. Area collection, collaborative neighborhood collection, etc. For example, AP1 measures the neighboring APs that are reported to form a neighboring cell list. The neighboring APs that meet the RSRP threshold in the RSRP measurement result form a set of interference neighboring cells. The RSRP measurement results in the descending order of the top N neighboring APs. Area collection.
  • the centralized node may also determine the spectrum usage of AP1 neighboring APs according to the neighbor relationship of AP1 and the frequency and working bandwidth of the working of neighboring APs in the measurement report message.
  • Step S405 the network node in the centralized node management range reports its own characteristics to the centralized node through the backhaul link. information.
  • a network backhaul link exists between the network node (including AP1 and its neighboring nodes) managed by the centralized node and the centralized node, such as a fiber direct link.
  • the AP1 and its neighboring nodes can report their respective capability information, supported frequency points and bandwidths to the centralized nodes through the backhaul links of the respective nodes.
  • the capability information reported by AP1 includes: transmit power of 24 dBm, 8 antenna ports, and 2 sets of RF links.
  • the supported frequencies are 3.4 GHz to 3.6 GHz, and the supported bandwidth is 20 MHz and 40 MHz.
  • the network node managed by the centralized node reports the characteristic information to the centralized node when the network is powered on or the cell is turned on.
  • Step S406 The central node configures a service policy for the AP1 according to the environment map information and the characteristic information of the AP1.
  • the centralized node can allocate the working frequency and the working bandwidth to the AP1 according to the interference neighboring cell set of AP1 and the spectrum usage of its neighboring APs, combined with the frequency points supported by AP1 and the supported bandwidth, so that AP1 and The interference between adjacent APs is reduced, so that the user throughput under AP1 is improved.
  • the centralized node may also allocate an appropriate cell identifier PCI to the AP1 according to the neighboring cell list of the AP1 and the identity of the neighboring cell.
  • the centralized node may also allocate resources such as a physical resource block (PRB) and a power resource to the AP1 and the coordinated neighboring cell set according to the AP1's coordinated neighboring cell set and the load of the AP in the AP1 and the coordinated neighboring cell set.
  • PRB physical resource block
  • the APs work together to serve the users, so that the user's spectrum efficiency is improved.
  • Step S407 After the centralized node configures the service policy for the AP1, the centralized node sends a service policy indication to the AP1, instructing the AP1 to perform the service policy configuration.
  • the centralized node can update the environmental information map of AP1. For example, when AP2 of AP1 is closed, the centralized node deletes AP2 in the neighbor list of AP1, and identifies the spectrum used by AP2 as unused. When a new AP3 is powered on, if AP3 is in the neighbor list. If AP1 is included, the centralized node updates the environment information map of AP1, adds AP3 to the neighbor list of AP1, and identifies the spectrum used by AP3 as used.
  • the centralized node stores some a priori static information, such as geographic location information of the AP (such as geographic location coordinates), capability information (such as capability level, transmit power, antenna port, radio frequency capability, relay capability, etc.), support
  • geographic location information of the AP such as geographic location coordinates
  • capability information such as capability level, transmit power, antenna port, radio frequency capability, relay capability, etc.
  • the centralized node obtains the measurement report message and the characteristic information reported by the AP1, and then establishes the environment information map of the AP1 according to the measurement report message reported by the AP1, and then according to the characteristic information reported by the AP1. And the AP1's environment information map configures the service policy for the AP1, so that the AP1 and the connected AP perform the interaction of the node type and the feature, jointly serve the user, and effectively access the flexible and variable network.
  • the foregoing embodiment is directed to a centralized networking manner in which a centralized node acquires network sensing information in a centralized networking.
  • the information that is reported by the node managed by the neighboring node is included in the information reported by the AP1, and the information reported by the AP1 is included in the broadcast message sent by the neighboring node.
  • the adjacent nodes of AP1 may be nodes under the management of centralized nodes, or may not be nodes under centralized node management, and the latter belongs to the case of hybrid networking.
  • the method can be used in combination with the manner of step S402, that is, the manner in which the centralized node acquires the network sensing information is: receiving the measurement report message reported by the AP1, and receiving the broadcast sent by the AP1 from the neighboring node by the AP1. The information obtained in the message.
  • FIG. 5 shows a schematic structural diagram of a distributed networking. Multiple APs are distributed in multiple rooms, and the AP can manage itself.
  • Figure 6 shows a network-aware service policy configuration process for distributed networking. The process is performed by AP1. As shown in the figure, the specific steps of the process include:
  • step S601 after the AP1 is powered on, the AP is perceived in the range of its own capabilities to obtain network sensing information.
  • AP1 measures the CRS of the neighboring AP at different frequency points, obtains the measurement result of the neighboring cell identifier and the RSRP, and stores the result.
  • the cell identifier may include information such as a PCI, an ECGI, a SIM (Subscriber Identity Module) number, and an IPv6.
  • the AP1 can also measure the CRS of the neighboring AP at different frequency points, and store the identifier of the neighboring cell that satisfies the RSRP threshold and the measurement result of the RSRP.
  • the AP1 can also measure the CRS of the neighboring APs at different frequency points, and store the identifiers of the first N neighboring cells and the RSRP measurement results of the RSRP descending order.
  • the AP1 can also read broadcast messages of neighboring APs, obtain basic information of neighboring APs, and store them.
  • the basic information includes a transmit power, a working bandwidth, a geographical location coordinate, a CSG (Closed Subscriber Group), and the like.
  • the AP1 can also periodically measure the surrounding APs to obtain that the adjacent APs are in a stationary or moving state and store them.
  • Step S602 the AP1 identifies its neighboring AP according to the acquired network perception information, and constructs an environment information map.
  • the obtained network sensing information may include, for example, a working frequency of a neighboring node of the AP1, a PCI, an ECGI, a SIM card number, a measurement result, basic information, and the like.
  • AP1 can establish an environmental information map in one of the following ways:
  • the AP1 can obtain the received signal strength between the AP and the neighboring AP according to the measurement result of the RSRP, or obtain the path loss between the AP and the neighboring AP according to the measurement result of the RSRP and the transmit power of the neighboring AP, or broadcast a message according to the neighboring AP.
  • AP1 can determine its neighbor relationship according to network perception information or the relative location of neighboring APs.
  • the system includes a neighbor list, an interference neighbor set, and a coordinated neighbor set.
  • the neighboring APs measured by AP1 form a neighboring cell list.
  • the neighboring APs that meet the RSRP threshold in the RSRP measurement result form a set of interference neighboring cells.
  • the first N neighboring APs in descending order of the RSRP measurement result form a coordinated neighboring zone.
  • Aggregation; AP1 determines the spectrum usage of its connected APs based on its neighbor relationship, the measured frequency of the working of neighboring APs, and the bandwidth of the work.
  • step S603 the AP1 interacts with the neighboring APs through the backhaul link with the neighboring APs to obtain the characteristic information of the neighboring APs.
  • the backhaul link between them is usually a wireless backhaul.
  • AP1 can obtain the characteristic information of neighboring nodes through an interactive negotiation process. For example, after determining its neighboring AP, AP1 may send a request message to its neighboring AP to request to obtain the characteristic information of the neighboring AP. The neighboring AP of AP1 will respectively obtain the characteristic information according to the request message. Send to AP1.
  • the characteristic information of a node may include information about capability information of the node, supported frequency and bandwidth, backhaul type and the like.
  • AP1 obtains the characteristic information of its neighboring node AP2, which may include: transmitting power of 24 dBm, four antenna ports, and having relay capability, supporting frequency points of 3.4 GHz to 3.6 GHz, supporting bandwidth of 100 MHz, and backhaul time.
  • the one-way extension is 10 to 30 ms and the throughput is 10 Gbps.
  • step S604 the AP1 configures a service policy for itself according to the environment information map and the characteristic information of the neighboring AP, and can also coordinate resources with other APs at the same time, thereby better serving the user.
  • AP1 can select its own working frequency and working bandwidth according to its own set of neighboring neighbors and the spectrum usage of neighboring APs, combined with the frequency and supported bandwidth of its own, so that AP1 and neighboring APs The interference between the two is reduced, thereby increasing the throughput of the user under AP1.
  • AP1 may also select a suitable cell identity PCI for itself according to its neighbor list and the identity of the neighboring cell.
  • AP1 can also provide backhaul services to AP2 based on AP2's relay capability, supported frequency and supported bandwidth, backhaul type and characteristics, and its own load and traffic. If AP2 cannot provide sufficient backhaul resources, AP1 can also negotiate with other APs in the neighbor relationship to enable multiple APs to provide backhaul services.
  • the change of the AP1 neighbor relationship may be discovered by the AP1 periodic measurement, or the AP may be notified by the neighboring AP by sending an access or leaving indication to the AP1, so that the AP1 may change according to its neighbor relationship. Update its environmental information map.
  • AP2 when the connected node AP2 in the AP1 neighbor list is shut down or the cell is closed, AP2 sends a leaving indication to AP1. AP1 deletes the AP2 in its neighbor list and identifies the spectrum used by AP2 as unused.
  • the AP3 when a new AP3 is powered on or the cell is open, if the neighboring cell list of the AP3 includes the AP1, the AP3 sends an access indication to the AP1, and the AP1 updates its own environment information map, and adds the AP3 to its neighbor list. , the spectrum used by AP3 is marked as used.
  • AP1 updates its own environment information map, and AP1 The relative position between AP4 and AP4 is updated.
  • the AP1 obtains the network sensing information of the neighboring APs, and then establishes the environmental information map of the AP1 according to the network sensing information of the neighboring APs, and then obtains the neighboring APs obtained through the interaction.
  • the feature information and the environment information map of AP1 configure the service policy for itself, so that the AP1 and the connected AP perform the interaction of the node type and the feature, jointly serve the user, and effectively access the flexible and variable network.
  • FIG. 7 is a schematic diagram of a scene under a hybrid network.
  • the square is 880 meters long from north to south, 500 meters wide from east to west, and covers an area of 440,000 square meters. It can accommodate up to 400,000 people for a grand gathering.
  • the small station can be arranged on the street lamp and managed by the centralized nodes; the small stations in the square are randomly deployed, and the small stations can be arranged on the communication engineering vehicle; there are deployments in the square or around the square.
  • the macro base station and the small station work in the same frequency band or in different frequency bands.
  • FIG. 8 is a schematic diagram showing the distribution of nodes under a hybrid networking, wherein the centralized node can manage the small station 1 and the small station 4; the nodes in the distributed networking include the small station 2 and the small station 3; the small station 3 and There is a backhaul link between the small stations 4, a wired backhaul between the macro base station and the centralized node, a wired backhaul between the centralized node and the small station 1, and a wired backhaul link between the centralized node and the small station 4, the macro base station and the small base station. Both station 1 and station 4 can negotiate and interact with the central node. There is a wireless backhaul between the small station 2 and the small station 3, and there is a wireless backhaul between the small station 3 and the small station 4, and both the small station 2 and the small station 4 can negotiate and interact with the small station 3.
  • Scenario 1 The centralized node configures the service policy for the small station 1.
  • the centralized node obtains the network sensing information reported by the small station 1.
  • the method for obtaining the network sensing information by the centralized node is the same as the method for obtaining the network sensing information in the centralized networking, and details are not described herein again.
  • the centralized node establishes an environment information map according to the acquired network perception information, and the small station 4 is used as the neighboring node of the small station 1 in the established environment information map, and the centralized node acquires the characteristic information reported by the small station 1 and the small station 4, according to The acquired characteristic information and the established environmental information map configure a service policy for the small station 1.
  • Scenario 2 Small station 2 configures service policy for itself
  • the small station 2 obtains the network sensing information of the neighboring nodes, including the small station 3.
  • the method for obtaining the network sensing information in the small station 2 is consistent with the method for obtaining the network sensing information in the distributed networking, and details are not described herein again.
  • the small station 2 establishes an environment information map according to the acquired network perception information, and the small station 3 is used as the adjacent node of the small station 2 in the established environment information map.
  • the small station 2 is located in a distributed network, and the small station 2 interacts with the small station 3 through a wireless backhaul with the small station 3 to acquire the characteristic information of the small station 3.
  • the small station 2 configures its own service policy according to the environment information map and the characteristic information of its neighbor nodes (including the small station 3).
  • the small station 3 acquires the network sensing information of the neighboring nodes including the small station 2 and the small station 4, wherein the manner in which the small station 3 acquires the network sensing information is consistent with the method for obtaining the network sensing information in the distributed networking, where No longer.
  • the small station 3 establishes an environmental information map according to the acquired network perception information. Since the small station 2 is a node in the distributed networking, the small station 3 can directly acquire the characteristic information of the small station 2 through the wireless backhaul link with the small station 2. The small station 3 can directly acquire the characteristic information of the small station 4 through the wireless backhaul link with the small station 4.
  • the small station 2 configures its own service policy according to the environment information map and the characteristic information of its neighbor nodes. The above situation is applicable to the case where the small station 4 has strong management capability, or the centralized node does not strictly manage the behavior of the small station 4, for example, the small station 4 is an AP or a home base station.
  • the small station 3 interacts with the small station 4 through the wireless backhaul with the small station 4, requests to acquire the characteristic information of the small station 4, and then the small station 4 passes the wired backhaul between the small station 4 and the centralized node.
  • the link request acquires its own characteristic information from the centralized node, and transmits its own characteristic information acquired from the centralized node to the small station 3, so that the small station 3 obtains the characteristic information of the small station 4.
  • the small station 3 configures its own service policy according to the environment information map and the characteristic information of the adjacent nodes and the characteristic information of the small station 4. This situation is applicable to the small station 4, such as the radio remote unit, or the situation where the centralized node needs to strictly manage the behavior of the small station 4.
  • Scenario 4 The centralized node configures the service policy for the small station 4
  • the centralized node acquires network sensing information of the small station 1, the small station 3, and the macro base station reported by the small station 4, and establishes an environmental information map according to the network sensing information.
  • the centralized node acquires characteristic information of the small station 1, the small station 3, and the macro base station, respectively.
  • the centralized node configures the service policy of the small station 4 according to the characteristic information of the small station 1, the small station 3, the small station 4, and the macro base station acquired as described above and the environmental information map.
  • the centralized node When the centralized node acquires the characteristic information of the small station 1 and the small station 4, since the small station 1 and the small station 4 are all managed by the centralized node, the small station 1 and the small station 4 can report the respective characteristic information directly to the centralized node. So that the centralized node can acquire the characteristic information of the small station 1 and the small station 4.
  • the wired node When the centralized node acquires the characteristic information of the macro base station, the wired node has a wired backhaul link between the central node and the macro base station, and the centralized node interacts with the macro base station by using a wired backhaul link with the macro base station to acquire the characteristic information of the macro base station.
  • the centralized node acquires the characteristic information of the small station 3, it can be divided into two cases:
  • Case 1 since there is a backhaul link between the small station 3 and the small station 4, the characteristic information can be mutually exchanged, so the small station 4 can acquire the characteristic information of the small station 3 through the wireless backhaul link with the small station 3 and send it to the Concentrate nodes.
  • the characteristic information of the small station 3 may be carried in the cooperation request message and sent to the small station 4, and the small station 4 transmits the cooperation request message to the centralized node.
  • the requesting central node decides whether to cooperate or not; or, when the small station 4 requests to cooperate with the small station 3, the cooperation request message may be sent to the small station 3, and the characteristic information carrying the small station 3 returned by the small station 3 is received.
  • the station 4 transmits the characteristic information of the station 3 to the central node.
  • the above only exemplifies an example.
  • the small station 4 can obtain the characteristic information of the small station 3 through the backhaul link and report it to the centralized node.
  • This situation applies to the small station 4 In the case of strong management capability, or the centralized node does not strictly manage the behavior of the small station 4, for example, the small station 4 is an AP or a home base station.
  • Case 2 The centralized node interacts with the small station 4 through the wired backhaul link with the small station 4, instructing the small station 4 to report the characteristic information of the small station 3, and the small station 4 passes the wireless communication with the small station 3 according to the indication.
  • the backhaul link acquires the characteristic information of the small station 3 from the small station 3, and the small station 4 reports the acquired characteristic information of the small station 3 to the centralized node.
  • This situation is applicable to the small station 4, such as the radio remote unit, or the situation where the centralized node needs to strictly manage the behavior of the small station 4.
  • Scenario 5 The macro base station configures a service policy for itself.
  • the macro base station obtains the sensing information, and the method for obtaining the network sensing information by the macro base station is consistent with the method for obtaining the network sensing information in the distributed networking, and details are not described herein again.
  • the macro base station establishes an environment information map according to the acquired sensing information, and the small station 4 is used as the neighboring node of the macro base station in the established environment information map.
  • the macro base station interacts with the centralized node through the backhaul link between the macro base station and the centralized node, and requests the centralized node to acquire the characteristic information of the small station 4 ( Prior to this, the small station 4 has reported its characteristic information to the centralized node.
  • the macro base station After the macro base station acquires the characteristic information of the neighboring node from the centralized node to the small station 4, according to the environmental information map established by the macro base station and the macro base.
  • the characteristic information of the station and its neighbors configures a service policy for the macro base station.
  • FIG. 9 shows a network device that can be applied to the flow shown in FIG. 2.
  • the device can be a centralized node or a base station.
  • the device includes:
  • the first obtaining module 901 is configured to acquire network sensing information of the first node.
  • the first processing module 902 is configured to establish an environment information map of the first node according to the network sensing information.
  • a second obtaining module 903, configured to acquire characteristic information of the first node
  • the second processing module 904 is configured to configure a service policy for the first node according to the environment information map and the characteristic information of the first node.
  • the network sensing information includes:
  • the measurement information obtained by the first node and/or the information obtained by the first node from the broadcast message of the adjacent node.
  • the measured measurement information includes one or any combination of the following information:
  • the information obtained from the broadcast message of the neighboring node includes one or any combination of the following information:
  • the second obtaining module 903 is further configured to: acquire characteristic information of a neighboring node of the first node; the second processing module 904 is specifically configured to: according to the environment information map, and the first The characteristic information of a node and the neighboring nodes of the first node configures a service policy for the first node.
  • the network device is a centralized node
  • the first node is included in the management scope of the centralized node.
  • the first obtaining module 901 is specifically configured to:
  • Receiving information reported by the first node where the reported information includes information obtained by the first node from a broadcast message sent by a neighboring node.
  • the second obtaining module 903 is specifically configured to:
  • the second obtaining module 903 is specifically configured to:
  • the second node is included in the neighboring node of the first node, the second node is not in the management scope of the centralized node, and a backhaul link exists between the second node and the centralized node, And interacting with the second node by using a backhaul link between the centralized node and the second node to obtain characteristic information of the second node.
  • the first node is within a management range of the centralized node
  • the second obtaining module 903 is specifically configured to:
  • the second node is included in the neighboring node of the first node, the second node is not in the management scope of the centralized node, and a backhaul link exists between the first node and the second node, then:
  • the network device is a first node.
  • the first obtaining module 901 is specifically configured to:
  • the second obtaining module 903 is specifically configured to:
  • a backhaul link exists between the first node and the centralized node, and the first node is not in the management scope of the centralized node;
  • the second obtaining module 903 is specifically configured to:
  • the second node is the centralized node management range An internal node, and there is no backhaul link between the first node and the second node, and the backhaul link between the first node and the centralized node interacts with the centralized node to Obtaining characteristic information of the second node.
  • the first node is not within the management scope of the centralized node
  • the second obtaining module 903 is specifically configured to:
  • the neighboring node of the first node includes a second node
  • the second node is within the management scope of the centralized node, and a backhaul link exists between the first node and the second node, then:
  • the environmental information map of the first node is used to represent one or any combination of the following information:
  • the first processing module 902 is further configured to:
  • the characteristic information comprises one or any combination of the following information:
  • Capability information for supported frequency points, supported bandwidth, type of backhaul link, and characteristics of the backhaul link.
  • FIG. 10 is a schematic structural diagram of another network device according to an embodiment of the present disclosure.
  • the device can implement the method provided by the foregoing embodiment of the present application.
  • the apparatus can include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1001 and various circuits of memory represented by memory 1003.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface, and the transceiver 1004 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 1001 is responsible for managing the bus architecture and general processing, and the memory 1003 can store data used by the processor 1001 in performing operations.
  • the display 1002 may be a display device such as a CRT (Cathode Ray Tube), a PDP (Plasma Display Panel), a DLP (Digital Light Procession), or an LCD (Liquid Crystal Display).
  • the processor 1001 is configured to read a program in the memory 1003, and perform the following process: acquiring, by the transceiver 1004, network sensing information of the first node, where the network sensing information includes measurement information measured by the first node and/or the first The information that the node obtains from the broadcast message of the neighboring node. Specifically, the transceiver 1004 receives the measurement report message reported by the first node, where the measurement report message includes part or all of the measurement information of the first node to the adjacent node; and/or the transceiver 1004 receives the The information reported by the first node includes the information obtained by the first node from the broadcast message sent by the neighboring node.
  • the processor 1001 may establish an environmental information map of the first node according to the network sensing information acquired by the transceiver 1004.
  • the environment information map is used to indicate one or any combination of the following information: a relative position between the first node and a neighboring node of the first node; a neighbor relationship of the first node; Spectrum usage of neighboring nodes of the first node.
  • the processor 1001 updates the environmental information map of the first node when receiving an indication that the neighboring node of the first node accesses or leaves, or detects that the neighboring node of the first node moves.
  • the transceiver 1004 acquires characteristic information of the first node and neighboring nodes of the first node. Specifically, if the neighboring node of the first node includes the second node, the second node is not in the management scope of the centralized node, and a backhaul chain exists between the second node and the centralized node. The transceiver 1004 interacts with the second node by using a backhaul link between the centralized node and the second node to obtain characteristic information of the second node.
  • the second node is included in the neighboring node of the first node, the second node is not in the management scope of the centralized node, and a backhaul link exists between the first node and the second node, then:
  • the transceiver 1004 instructs the first node to report the characteristic information of the second node, so that the first node passes the backhaul link between the first node and the second node according to the indication.
  • the second node interacts to acquire the characteristic information of the second node, and sends the acquired information to the centralized node; or the transceiver 1004 receives the second node sent by the first node. Characteristic information.
  • the processor 1001 configures a service policy for the first node according to the environment information map and characteristic information of the first node and neighboring nodes of the first node.
  • the memory 1003 is configured to store one or more executable programs, which are used to configure the processor 1001.
  • FIG. 11 is a schematic structural diagram of another network device according to an embodiment of the present disclosure.
  • the device can implement the method provided by the foregoing embodiment of the present application.
  • the apparatus can include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1101 and various circuits of memory represented by memory 1103.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface, and the transceiver 1104 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 1101 is responsible for managing the bus architecture and general processing, and the memory 1103 can store data used by the processor 1101 when performing operations.
  • the display 1102 can be a display device such as a CRT, PDP, DLP, or LCD.
  • the processor 1101 is configured to read the program in the memory 1103, and perform the following process: acquiring, by the transceiver 1104, network sensing information of the first node, where the network sensing information of the first node includes the measurement signal measured by the first node. Information and/or information obtained from broadcast messages of neighboring nodes. Specifically, the transceiver 1104 performs measurement on the neighboring node, obtains network sensing information of the first node according to the measurement information, and/or receives a broadcast message sent by the neighboring node, and acquires the first message according to the received broadcast message. Network awareness information of the node.
  • the processor 1101 may establish an environment information map of the first node according to the network sensing information acquired by the transceiver 1104.
  • the environment information map of the first node is used to represent one or any combination of the following information: a relative position between the first node and a neighboring node of the first node; a neighboring area of the first node Relationship; spectrum usage of neighboring nodes of the first node.
  • the transceiver 1104 receives an indication that the neighboring node of the first node accesses or leaves, or detects that the neighboring node of the first node moves, the processor 1101 updates the environment information of the first node. map.
  • the transceiver 1104 acquires characteristic information of the first node and neighboring nodes of the first node. Specifically, the transceiver 1104 interacts with the neighboring node of the first node by using a backhaul link between the first node and the neighboring node to obtain characteristic information of the neighboring node of the first node.
  • the two nodes are nodes in the centralized node management range, and there is no backhaul link between the first node and the second node, and the transceiver 1104 passes between the first node and the centralized node.
  • the backhaul link interacts with the centralized node to obtain characteristic information of the second node.
  • the first node is not in the management scope of the centralized node; if the neighboring node of the first node includes the second node, the second node is within the management scope of the centralized node, and the first node and the There is a backhaul link between the second nodes, then:
  • the transceiver 1104 interacts with the second node by using a backhaul link between the first node and the second node to request to acquire characteristic information of the second node;
  • the backhaul link between the two nodes and the centralized node acquires characteristic information of the second node from the centralized node and sends the characteristic information to the first node; or
  • the transceiver 1104 interacts with the second node by using a backhaul link between the first node and the second node to acquire characteristic information of the second node.
  • the processor 1101 configures a service policy for the first node according to the environment information map and characteristic information of the first node and neighboring nodes of the first node.
  • the memory 1103 is configured to store one or more executable programs, and is used to configure the processor 1101.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Abstract

本申请公开了一种基于网络感知的服务策略配置方法及网络设备,该方法包括首先获取第一节点的网络感知信息,根据所述网络感知信息建立第一节点的环境信息地图,然后获取第一节点的特性信息,再根据环境信息地图以及所述第一节点的特性信息,为所述第一节点配置服务策略,从而实现了根据网络感知信息以及节点特性为网络节点配置服务策略。

Description

一种基于网络感知的服务策略配置方法及网络设备
本申请要求在2014年12月10日提交中国专利局、申请号为201410757874.1、发明名称为“一种基于网络感知的服务策略配置方法及网络设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种基于网络感知的服务策略配置方法及网络设备。
背景技术
在现有的多RAT(Radio Access Technology,无线接入技术)网络中具有一个中心控制器,即RRME(Radio Resource Management Equipment,无线资源管理设备),主要提供切换、接纳控制、负荷均衡、干扰协调等多RAT间的资源管理和协调功能,无线资源管理设备和基站间可交互相应的无线资源管理信息,如图1所示的一种集中式组网的结构,其中,无线资源管理设备可以是OAM(Operation Administration and Maintenance,操作、管理和维护)节点。无论是集中式组网还是分布式组网,基站在OAM节点配置的频点和带宽下工作。
移动通信系统未来发展中,为了更好的满足用户需求,极大提升网络容量和吞吐量,必将会引入更多的低功率小覆盖的接入节点,即未来为超密集网络。由于超密集网络中,节点密集,数量众多,必然带来小区间干扰严重、系统性能降低的问题。超密集网络通过OAM配置邻区关系,其中的小区数量会非常多,不利于基站的邻区关系维护。同时,还存在基站的开关机、即插即用、小区接入/离开的情况,网络中的基站会发生变化,未来的组网是灵活多变的,因此,传统的OAM配置的方式适应不了网络的变化。
因此亟需一种可以实现根据网络情况灵活配置服务策略的方法。
发明内容
本申请实施例提供一种基于网络感知的服务策略配置方法及网络设备,用以实现根据网络感知信息以及节点特性为网络节点配置服务策略。
为了实现上述目的,本申请实施例提供了一种基于网络感知的服务策略配置方法,包括:
获取第一节点的网络感知信息;
根据所述网络感知信息建立所述第一节点的环境信息地图;
获取所述第一节点的特性信息;
根据所述环境信息地图以及所述第一节点的特性信息,为所述第一节点配置服务策略。
较佳地,所述网络感知信息,包括:
第一节点测量得到的测量信息和/或所述第一节点从相邻节点的广播消息中获取到的信息。
较佳地,所述测量得到的测量信息包括以下信息之一或任意组合:
信号强度、信号质量、工作的频点、工作的带宽、射频能力、地理位置坐标、小区标识;
所述从相邻节点的广播消息中获取到的信息包括以下信息之一或任意组合:
发射功率、射频能力、地理位置坐标、小区标识、时分双工(TDD)配置信息、多播/组播单频网络(MBSFN)配置信息。
较佳地,还包括:获取所述第一节点的相邻节点的特性信息;
所述为所述第一节点配置服务策略,包括:根据所述环境信息地图,以及所述第一节点以及所述第一节点的相邻节点的特性信息,为所述第一节点配置服务策略。
较佳地,所述获取第一节点的网络感知信息的步骤、所述根据所述网络感知信息建立第一节点的环境信息地图的步骤、所述获取所述第一节点以及所述第一节点的相邻节点的特性信息的步骤,以及所述为所述第一节点配置服务策略的步骤的执行主体均为集中节点;
所述集中节点的管理范围内包含所述第一节点。
较佳地,所述获取第一节点的网络感知信息,包括:
所述集中节点接收所述第一节点上报的测量报告消息,所述测量报告消息中包含所述第一节点对相邻节点的部分或全部测量信息;和/或
所述集中节点接收所述第一节点上报的信息,所上报的信息中包含所述第一节点从相邻节点发送的广播消息中获取到的信息。
较佳地,获取所述第一节点以及所述第一节点的相邻节点的特性信息,包括:
所述集中节点接收所述第一节点以及所述第一节点的相邻节点上报的各自节点的特性信息。
较佳地,获取所述第一节点的相邻节点的特性信息,包括:
若所述第一节点的相邻节点中包含第二节点,所述第二节点不在所述集中节点的管理范围内,且所述第二节点与所述集中节点之间存在回程链路,则所述集中节点通过所述集中节点与所述第二节点间的回程链路与所述第二节点进行交互,以获取所述第二节点的特性信息。
较佳地,所述第一节点在集中节点的管理范围内;
获取所述第一节点的相邻节点的特性信息,包括:
若所述第一节点的相邻节点中包含第二节点,所述第二节点不在集中节点的管理范围内,且所述第一节点与所述第二节点之间存在回程链路,则:
所述集中节点指示所述第一节点上报所述第二节点的特性信息,所述第一节点根据所述指示,通过所述第一节点与所述第二节点之间的回程链路与所述第二节点进行交互,以获取所述第二节点的特性信息,并将获取到的特性信息发送给所述集中节点;或者
所述第一节点将所述第二节点发送来的特性信息发送给所述集中节点。
较佳地,所述获取网络感知信息的步骤、所述根据所述网络感知信息建立环境信息地图的步骤、所述获取所述第一节点以及所述第一节点的相邻节点的特性信息的步骤,以及所述为所述第一节点配置服务策略的步骤的执行主体均为所述第一节点。
较佳地,所述获取第一节点的网络感知信息,包括:
所述第一节点对相邻节点进行测量,根据测量信息得到所述第一节点的网络感知信息;和/或
所述第一节点接收相邻节点发送的广播消息,根据接收到的广播消息获取所述第一节点的网络感知信息。
较佳地,所述获取所述第一节点的相邻节点的特性信息,包括:
所述第一节点通过所述第一节点与相邻节点间的回程链路与所述第一节点的相邻节点进行交互,以获取所述第一节点的相邻节点的特性信息。
较佳地,所述第一节点与集中节点之间存在回程链路,且所述第一节点不在所述集中节点的管理范围内;
所述获取所述第一节点的相邻节点的特性信息,包括:
若所述第一节点的相邻节点中包含第二节点,所述第二节点为所述集中节点管理范围内的节点,且所述第一节点与所述第二节点之间不存在回程链路,则所述第一节点通过所述第一节点与所述集中节点间的回程链路与所述集中节点进行交互,以获取所述第二节点的特性信息。
较佳地,所述第一节点不在集中节点的管理范围内;
所述获取所述第一节点的相邻节点的特性信息,包括:
若所述第一节点的相邻节点中包含第二节点,所述第二节点在集中节点的管理范围内,且所述第一节点与所述第二节点之间存在回程链路,则:
所述第一节点通过所述第一节点与所述第二节点间的回程链路与所述第二节点进行交互,以请求获取所述第二节点的特性信息;所述第二节点通过所述第二节点与所述集中节点之间的回程链路从所述集中节点获取所述第二节点的特性信息并发送给所述第一节 点;或者
所述第一节点通过所述第一节点与所述第二节点间的回程链路与所述第二节点进行交互,获取所述第二节点的特性信息。
较佳地,所述第一节点的环境信息地图用于表示以下信息中的一种或任意组合:
所述第一节点与所述第一节点的相邻节点间的相对位置;
所述第一节点的邻区关系;
所述第一节点的相邻节点的频谱使用情况。
较佳地,所述根据所述网络感知信息建立第一节点的环境信息地图,包括以下之一:
根据所述网络感知信息,确定所述第一节点与所述第一节点的相邻节点的相对位置,得到所述第一节点的环境信息地图;
根据所述网络感知信息,确定所述第一节点的邻区关系,得到所述第一节点的环境信息地图;
根据所述网络感知信息,确定所述第一节点的相邻节点的频谱使用情况,得到所述第一节点的环境信息地图;
根据所述网络感知信息,确定所述第一节点与所述第一节点的相邻节点间的相对位置,根据所述相对位置确定所述第一节点的邻区关系,根据所述相对位置以及所述第一节点的邻区关系得到所述第一节点的环境信息地图;
根据所述网络感知信息,确定所述第一节点与所述第一节点的相邻节点间的相对位置以及所述第一节点的相邻节点的频谱使用情况,得到所述第一节点的环境信息地图;
根据所述网络感知信息,确定所述第一节点的邻区关系,根据所述第一节点的邻区关系确定所述第一节点的相邻节点的频谱使用情况,根据所述第一节点的邻区关系以及所述第一节点的相邻节点的频谱使用情况,得到所述第一节点的环境信息地图;
根据所述网络感知信息,确定所述第一节点与所述第一节点的相邻节点间的相对位置,根据所述相对位置确定所述第一节点的邻区关系,根据所述第一节点的邻区关系确定所述第一节点的相邻节点的频谱使用情况,根据所述相对位置、所述邻区关系以及所述频谱使用情况得到所述第一节点的环境信息地图。
较佳地,所述方法还包括:
当接收到所述第一节点的相邻节点接入或离开的指示时,或者检测到所述第一节点的相邻节点移动时,更新所述第一节点的环境信息地图。
较佳地,所述特性信息包括以下信息之一或任意组合:
能力信息、支持的频点、支持的带宽、回程链路的类型、回程链路的特性。
本申请实施例还提供了一种网络设备,包括:
第一获取模块,用于获取第一节点的网络感知信息;
第一处理模块,用于根据所述网络感知信息建立所述第一节点的环境信息地图;
第二获取模块,用于获取所述第一节点的特性信息;
第二处理模块,用于根据所述环境信息地图以及所述第一节点的特性信息,为所述第一节点配置服务策略。
较佳地,所述网络感知信息,包括:
第一节点测量得到的测量信息和/或所述第一节点从相邻节点的广播消息中获取到的信息。
较佳地,所述测量得到的测量信息包括以下信息之一或任意组合:
信号强度、信号质量、工作的频点、工作的带宽、射频能力、地理位置坐标、小区标识;
所述从相邻节点的广播消息中获取到的信息包括以下信息之一或任意组合:
发射功率、射频能力、地理位置坐标、小区标识、TDD配置信息、MBSFN配置信息。
较佳地,所述第二获取模块还用于:获取所述第一节点的相邻节点的特性信息;
所述第二处理模块具体用于:根据所述环境信息地图,以及所述第一节点以及所述第一节点的相邻节点的特性信息,为所述第一节点配置服务策略。
较佳地,所述网络设备为集中节点;
所述集中节点的管理范围内包含所述第一节点。
较佳地,所述第一获取模块具体用于:
接收所述第一节点上报的测量报告消息,所述测量报告消息中包含所述第一节点对相邻节点的部分或全部测量信息;和/或
接收所述第一节点上报的信息,所上报的信息中包含所述第一节点从相邻节点发送的广播消息中获取到的信息。
较佳地,所述第二获取模块具体用于:
接收所述第一节点以及所述第一节点的相邻节点上报的各自节点的特性信息。
较佳地,所述第二获取模块具体用于:
若所述第一节点的相邻节点中包含第二节点,所述第二节点不在所述集中节点的管理范围内,且所述第二节点与所述集中节点之间存在回程链路,则通过所述集中节点与所述第二节点间的回程链路与所述第二节点进行交互,以获取所述第二节点的特性信息。
较佳地,所述第一节点在集中节点的管理范围内;
所述第二获取模块具体用于:
若所述第一节点的相邻节点中包含第二节点,所述第二节点不在集中节点的管理范围内,且所述第一节点与所述第二节点之间存在回程链路,则:
指示所述第一节点上报所述第二节点的特性信息,以使所述第一节点根据所述指示, 通过所述第一节点与所述第二节点之间的回程链路与所述第二节点进行交互,以获取所述第二节点的特性信息,并将获取到的特性信息发送给所述集中节点;或者
接收所述第一节点发送来的所述第二节点的特性信息。
较佳地,所述网络设备为第一节点。
较佳地,所述第一获取模块具体用于:
对相邻节点进行测量,根据测量信息得到所述第一节点的网络感知信息;和/或
接收相邻节点发送的广播消息,根据接收到的广播消息获取所述第一节点的网络感知信息。
较佳地,所述第二获取模块具体用于:
通过所述第一节点与相邻节点间的回程链路与所述第一节点的相邻节点进行交互,以获取所述第一节点的相邻节点的特性信息。
较佳地,所述第一节点与集中节点之间存在回程链路,且所述第一节点不在所述集中节点的管理范围内;
所述第二获取模块具体用于:
若所述第一节点的相邻节点中包含第二节点,所述第二节点为所述集中节点管理范围内的节点,且所述第一节点与所述第二节点之间不存在回程链路,则通过所述第一节点与所述集中节点间的回程链路与所述集中节点进行交互,以获取所述第二节点的特性信息。
较佳地,所述第一节点不在集中节点的管理范围内;
所述第二获取模块具体用于:
若所述第一节点的相邻节点中包含第二节点,所述第二节点在集中节点的管理范围内,且所述第一节点与所述第二节点之间存在回程链路,则:
通过所述第一节点与所述第二节点间的回程链路与所述第二节点进行交互,以请求获取所述第二节点的特性信息,并接收所述第二节点的特性信息;其中,所述第二节点通过所述第二节点与所述集中节点之间的回程链路从所述集中节点获取所述第二节点的特性信息并发送给所述第一节点;或者
通过所述第一节点与所述第二节点间的回程链路与所述第二节点进行交互,获取所述第二节点的特性信息。
较佳地,所述第一节点的环境信息地图用于表示以下信息中的一种或任意组合:
所述第一节点与所述第一节点的相邻节点间的相对位置;
所述第一节点的邻区关系;
所述第一节点的相邻节点的频谱使用情况。
较佳地,所述第一处理模块,还用于:
当所述第一获取模块接收到所述第一节点的相邻节点接入或离开的指示时,或者检测 到所述第一节点的相邻节点移动时,更新所述第一节点的环境信息地图。
较佳地,所述特性信息包括以下信息之一或任意组合:
能力信息、支持的频点、支持的带宽、回程链路的类型、回程链路的特性。
本申请实施例提供的另一种网络设备的结构,该设备可实现本申请上述实施例提供的方法。该设备可包括:处理器,用于读取存储器中的程序,执行下列过程:
通过收发机获取第一节点的网络感知信息;
根据收发机获取的所述网络感知信息建立第一节点的环境信息地图;
通过收发机获取所述第一节点的特性信息;
根据所述环境信息地图,以及所述第一节点的特性信息,为所述第一节点配置服务策略;
存储器,用于存储一个或多个可执行程序,被用于配置所述处理器;
收发机,用于在处理器的控制下接收和发送数据。
可选的,所述处理器还用于从存储器中读取程序,执行下列过程:通过收发机获取所述第一节点的相邻节点的特性信息;
为第一节点配置服务策略时,所述处理器具体用于从存储器中读取程序,执行下列过程:根据所述环境信息地图,以及所述第一节点以及所述第一节点的相邻节点的特性信息,为所述第一节点配置服务策略。
可选的,所述网络设备为集中节点;
所述集中节点的管理范围内包含所述第一节点。
可选的,所述处理器具体用于从存储器中读取程序,执行下列过程:
通过收发机接收所述第一节点上报的测量报告消息,所述测量报告消息中包含所述第一节点对相邻节点的部分或全部测量信息;和/或
通过收发机接收所述第一节点上报的信息,所上报的信息中包含所述第一节点从相邻节点发送的广播消息中获取到的信息。
可选的,所述处理器具体用于从存储器中读取程序,执行下列过程:
通过收发机接收所述第一节点以及所述第一节点的相邻节点上报的各自节点的特性信息。
可选的,所述处理器具体用于从存储器中读取程序,执行下列过程:
若所述第一节点的相邻节点中包含第二节点,所述第二节点不在所述集中节点的管理范围内,且所述第二节点与所述集中节点之间存在回程链路,则通过收发机与所述第二节点间的回程链路与所述第二节点进行交互,以获取所述第二节点的特性信息。
可选的,所述第一节点在集中节点的管理范围内;所述处理器具体用于从存储器中读取程序,执行下列过程:
若所述第一节点的相邻节点中包含第二节点,所述第二节点不在集中节点的管理范围内,且所述第一节点与所述第二节点之间存在回程链路,则:
通过收发机指示所述第一节点上报所述第二节点的特性信息,以使所述第一节点根据所述指示,通过所述第一节点与所述第二节点之间的回程链路与所述第二节点进行交互,以获取所述第二节点的特性信息,并将获取到的特性信息发送给所述集中节点;或者
通过收发机接收所述第一节点发送来的所述第二节点的特性信息。
可选的,所述网络设备为第一节点。
可选的,所述处理器具体用于从存储器中读取程序,执行下列过程:
通过收发机对相邻节点进行测量,根据测量信息得到所述第一节点的网络感知信息;和/或
通过收发机接收相邻节点发送的广播消息,根据接收到的广播消息获取所述第一节点的网络感知信息。
可选的,所述处理器具体用于从存储器中读取程序,执行下列过程:
通过所述第一节点的收发机与相邻节点间的回程链路与所述第一节点的相邻节点进行交互,以获取所述第一节点的相邻节点的特性信息。
可选的,所述第一节点与集中节点之间存在回程链路,且所述第一节点不在所述集中节点的管理范围内;所述处理器具体用于从存储器中读取程序,执行下列过程:若所述第一节点的相邻节点中包含第二节点,所述第二节点为所述集中节点管理范围内的节点,且所述第一节点与所述第二节点之间不存在回程链路,则通过所述第一节点的收发机与所述集中节点间的回程链路与所述集中节点进行交互,以获取所述第二节点的特性信息。
可选的,所述第一节点不在集中节点的管理范围内;所述处理器具体用于从存储器中读取程序,执行下列过程:
若所述第一节点的相邻节点中包含第二节点,所述第二节点在集中节点的管理范围内,且所述第一节点与所述第二节点之间存在回程链路,则:
通过所述第一节点的收发机与所述第二节点间的回程链路与所述第二节点进行交互,以请求获取所述第二节点的特性信息,并接收所述第二节点的特性信息;其中,所述第二节点通过所述第二节点与所述集中节点之间的回程链路从所述集中节点获取所述第二节点的特性信息并发送给所述第一节点;或者
通过所述第一节点的收发机与所述第二节点间的回程链路与所述第二节点进行交互,获取所述第二节点的特性信息。
可选的,所述处理器还用于从存储器中读取程序,执行下列过程:
当所述收发机接收到所述第一节点的相邻节点接入或离开的指示时,或者检测到所述第一节点的相邻节点移动时,更新所述第一节点的环境信息地图。
上述实施例中,首先获取第一节点的网络感知信息,根据所述网络感知信息建立第一节点的环境信息地图,然后获取第一节点的特性信息,再根据环境信息地图和第一节点的特性信息为所述第一节点配置服务策略从而实现网络节点间的节点类型和特性的信息交互,为网络节点配置服务策略。一方面,根据网络感知信息所建立的环境信息地图能够反映该节点周围的节点的情况,另一方面,获取到的节点的特性信息可以作为环境信息地图的进一步补充,在进行服务策略配置时,将环境信息地图以及节点的特性信息作为依据来确定服务策略,从而可以适应灵活多变的网络架构来确定出合适的服务策略。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中一种集中式组网的结构示意图;
图2为本申请实施例中的一种基于网络感知的服务策略配制流程示意图;
图3为本申请实施例中的一种集中式组网的示意图;
图4为发明实施例中的一种集中式组网中基于网络感知的服务策略配置流程示意图;
图5为本申请实施例中的一种分布式组网的示意图;
图6为本申请实施例中的一种分布式组网中基于网络感知的服务策略配置流程示意图;
图7为本申请实施例中的一种混合式组网中的场景示意图;
图8为本申请实施例中的一种混合式组网中节点分布示意图;
图9为本申请实施例中的一种网络设备的结构示意图;
图10为本申请实施例中的另一种网络设备的结构示意图;
图11为本申请实施例中的另一种网络设备的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述,显然,所描述的实施例仅仅是本申请一部份实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
本申请实施例提供了一种基于网络感知的服务策略配置方案,通过本申请实施例将节 点的环境信息地图以及节点的特性信息作为依据来确定服务策略,从而可以适应灵活多变的网络架构来确定出合适的服务策略。
本申请实施例可应用于多种架构或类型的组网,比如集中式组网、分布式组网,也可适用于集中式组网架构与分布式组网架构共存的混合式组网。在超密集网络中,网络节点密集,且类型多样,组网灵活多变,主要包括集中式组网、分布式组网和混合式组网等组网方式。
集中式组网是指由集中节点控制多个网络节点,由集中节点进行资源的管控和网络节点间的协调或协作。分布式组网是指无集中节点,通过回程链路协商进行网络节点间的协调或协作。混合式组网是两者的结合。
集中节点可以管理多个网络节点,是一个高层节点,可以是逻辑实体,也可以是独立的设备。例如,集中节点可以是独立的接入网节点,比如local gateway(本地网关)或local controller(本地控制器);集中节点也可以是核心网节点或者OAM节点;集中节点也可以是一个基站,该基站由于可以管理多个其他基站,可以看作超级基站;集中节点还可以是C-RAN(Centralized、Cooperative、Cloud Radio Access Network,基于集中化、协作、云化的无线接入网)架构中的基带池,集中处理多个RRH(Remote Radio Head,射频拉远头)的基带信号。
集中节点所管理的网络节点,以及分布式组网中的网络节点可以是多种类型的网络节点。比如,所述网络节点可以是基站,包括宏基站,如eNB、NB(Node B,第三代移动通信技术中的基站)等,也可以包括小站,如LPN(Low Power Node,低功率节点)pico(微微基站)、femto(家庭基站)等,还可以包括AP(Access Point,接入点);所述网络节点也可以是RRH;所述网络节点还可以是能力增强的UE(User Equipment,用户设备或终端),如有relay(中继)能力的UE。
一个基站下有一个或多个小区,密集部署场景下,通常一个基站下有一个小区,也可称为小小区。
如果基站工作在一个中心频点上,那么该基站被划分为一个小区,该小区的工作频点即基站的工作频点(中心频点)。如果基站工作在两个或者两个以上中心频点上,那么该基站被划分为两个或者两个以上小区,小区的数量为基站的工作频点数量,每个小区的工作频点为基站的一个工作频点。
超密集网络中,基站的工作频率为6GHz以下,典型的工作频段为3.4GHz~3.6GHz,也可以采用高频段,如工作频段42-48GHz及59-64GHz。
图2示出了一种基于网络感知的服务策略配置流程,该流程可适用于集中式组网、分布式组网或混合式组网,在不同的组网方式下,由不同的节点执行以下流程,比如在集中式组网或混合式组网中,可由集中节点执行,在分布式组网或混合式组网中,可由基站执 行。
在图2的流程中,为描述方便,以为第一节点配置服务策略为例进行描述,所述第一节点可以是网络架构中任意一个需要进行服务策略配置的网络节点。
如图所示,该流程具体步骤包括:
步骤S201,获取第一节点的网络感知信息。
优选地,所述第一节点的网络感知信息可以包括第一节点测量得到的测量信息和/或第一节点从相邻节点的广播消息中获取到的信息。所述第一节点测量得到的测量信息为第一节点的相邻节点的相关信息,根据测量配置的不同或测量方式的不同,第一节点测量到的测量信息可以包括多种类型的信息,比如可以包括以下信息之一或任意组合:信号强度(如RSRP(Reference Signal Received Power,参考信号接收功率))、信号质量(如RSRQ(Reference Signal Received Quality,参考信号接收质量),SINR(Signal-to-Interference plus Noise Ratio,信干噪比))、工作频点、工作带宽、射频能力、地理位置坐标、小区标识等。
所述第一节点从相邻节点的广播消息中获取到的信息为第一节点的相邻节点的相关信息,可以包括以下信息之一或任意组合:发射功率、射频能力、地理位置坐标、小区标识、TDD(Time Division Duplexing,时分双工)配置信息、MBSFN(Multimedia Broadcast multicast service Single Frequency Network,多播/组播单频网络)配置信息等。上述信息可以用于构建环境信息地图,也可以用来配置服务策略。
步骤S202,根据所述网络感知信息建立第一节点的环境信息地图。
其中,所述环境信息地图可以反映某个节点与它的相邻节点之间的关系和/或相邻节点的相关信息。比如,所述第一节点的环境信息地图可以用于表示以下信息中的一种或任意组合:所述第一节点与所述第一节点的相邻节点间的相对位置、所述第一节点的邻区关系、所述第一节点的相邻节点的频谱使用情况等。
由于环境信息地图包含的信息种类多种多样,相应地,根据所述网络感知信息建立环境信息地图的方式也多种多样,举例来说,所述第一节点的环境信息地图可采用以下方式确定:
方式1:根据所述网络感知信息,确定所述第一节点与所述第一节点的相邻节点的相对位置,得到所述第一节点的环境信息地图;其中,可通过地理位置坐标、路径损耗、接收信号强度等来表示相对位置;
方式2:根据所述网络感知信息,确定所述第一节点的邻区关系,得到所述第一节点的环境信息地图;其中,所述邻区关系可包括相邻邻区,干扰邻区,协作邻区等;
方式3:根据所述网络感知信息,确定所述第一节点的相邻节点的频谱使用情况,得到所述第一节点的环境信息地图;
方式4:根据所述网络感知信息,确定所述第一节点与所述第一节点的相邻节点间的 相对位置,根据所述相对位置确定所述第一节点的邻区关系,根据所述相对位置以及所述第一节点的邻区关系得到所述第一节点的环境信息地图;
方式5:根据所述网络感知信息,确定所述第一节点与所述第一节点的相邻节点间的相对位置以及所述第一节点的相邻节点的频谱使用情况,得到所述第一节点的环境信息地图;
方式6:根据所述网络感知信息,确定所述第一节点的邻区关系,根据所述第一节点的邻区关系确定所述第一节点的相邻节点的频谱使用情况,根据所述第一节点的邻区关系以及所述第一节点的相邻节点的频谱使用情况,得到所述第一节点的环境信息地图;
方式7:根据所述网络感知信息,确定所述第一节点与所述第一节点的相邻节点间的相对位置,根据所述相对位置确定所述第一节点的邻区关系,根据所述第一节点的邻区关系确定所述第一节点的相邻节点的频谱使用情况,根据所述相对位置、所述邻区关系以及所述频谱使用情况得到所述第一节点的环境信息地图。
步骤S203,获取所述第一节点的特性信息。
具体来说,除了获取所述第一节点的特性信息之外,还可以获取所述第一节点的相邻节点的特性信息,获取方式主要是通过回程链路(有线回程或无线回程)与相邻节点进行协商交互获取。上述特性信息可以用于为所述第一节点配置服务策略,所述第一节点可以通过上述特性信息得知其相邻节点的类型和特性。
其中,一个节点的特性信息通常是指该节点本身的一些固有的信息,比如该节点的配置信息、能力信息等。举例来说,一个节点的特性信息可以包括该节点的以下信息之一或任意组合:能力信息(如能力等级、发射功率、天线端口、射频能力、relay能力等)、支持的频点、支持的带宽、backhaul(回程链路)类型和backhaul特性(如理想/非理想backhaul,backhaul的时延和吞吐量特性,backhaul能力等级等)。
步骤S204,根据所述环境信息地图以及所述第一节点的特性信息,为所述第一节点配置服务策略。
具体的,根据所述环境信息地图以及步骤S203中所述的特性信息,为所述第一节配置服务策略。
其中,为一个节点配置的服务策略可以包含多种类型,比如,为一个节点配置该节点的工作频点、工作带宽、小区标识,还可以包括该节点在网络中的角色,以及与其它节点相互协调或协助的关系等。
举例来说,根据上述步骤S202中建立的环境信息地图中所述第一节点与所述第一节点的相邻节点间的相对位置、所述第一节点的邻区关系、所述第一节点的相邻节点的频谱使用情况中的一种或任意组合,以及上述步骤S203中获取的特性信息,可以为所述第一节点配置服务策略,比如,确定所述第一节点的工作的频点、工作的带宽,为所述第一节 点选择小区的标识,也可以确定所述第一节点在网络中的角色,与其它节点相互协调/协作的为用户服务,比如所述第一节点和其相邻节点相互协作,共同为用户服务,所述第一节点通过与其相邻节点进行协商,使得其相邻节点为所述第一节点提供backhaul服务。
上述图2所示的流程的步骤S201中,根据组网方式的不同,其具体实现过程也有所不同。
具体来说,在集中式组网中,集中节点向所述第一节点发送测量配置,所述第一节点根据测量配置对其相邻节点进行测量,并将测量报告消息上报给集中节点,测量报告消息中包括所述第一节点对相邻节点的部分或全部测量信息。所述第一节点也可以接收其相邻节点的广播消息,将从所述广播消息中获取到的信息上报给集中节点。
在分布式组网中,所述第一节点对其相邻节点进行测量,将从测量信息中获取到的信息进行存储;所述第一节点也可以接收其相邻节点的广播消息,从所述广播消息中获取信息并进行存储。
在混合式组网中,根据具体的网络架构,上述获取网络感知信息的方式可能并存。
上述图2所示的流程的步骤S201中,根据组网方式的不同,其具体实现过程也有所不同。
具体来说,在集中式组网中,集中节点管理下的网络节点与集中节点之间存在backhaul链路,该backhaul链路可以是有线链路,如基于X2接口的backhaul链路。集中节点管理下的网络节点通过与集中节点之间的backhaul链路向集中节点上报自己的特性信息。这样,集中节点可以获取到其管理范围内的网络节点各自的特性信息。
在分布式组网中,各网络节点可通过网络节点间的backhaul链路,如基于X2接口或S1接口的backhaul链路,进行交互,以获取对方节点的特性信息。
在混合式组网中,根据具体的网络架构,上述获取节点特性信息的方式可以并存。进一步地,如果一个节点(比如宏基站)虽然不是集中节点管理下的节点,但它与集中节点之间也可存在backhaul链路,这样可以通过集中节点获取到该集中节点管理下的某个节点的特性信息,或者集中节点管理下的某个节点也可通过集中节点获取该宏基站的特性信息。
进一步地,由于网络中的节点会随时发生变化,比如基站开机或关机,AP的即插即用、小区接入或离开,AP的移动等变化,因此可根据网络节点的接入或离开或移动等情况对环境信息地图进行更新。举例来说,当集中节点或第一节点本身接收到第一节点的相邻节点接入或离开的指示时,或者检测到第一节点的相邻节点移动时,更新所述第一节点的环境信息地图。
上述图2所示的流程的执行顺序没有严格要求,比如,集中节点管理范围内的网络节点可以在接入网络时,向集中节点上报自己的特性信息,以及进行测量并上报测量报告消 息。
上述实施例中,首先获取网络感知信息,根据所述网络感知信息建立环境信息地图,然后获取第一节点及其相邻节点的特性信息,再根据环境信息地图和第一节点及其相邻节点的特性信息为所述第一节点配置服务策略从而实现网络节点间的节点类型和特性的信息交互,为网络节点配置服务策略。一方面,由于网络感知信息可以包括一个节点测量到的测量信息和/或该节点从相邻节点的系统广播消息中获取到的信息,根据该信息所建立的环境信息地图能够反映该节点周围的节点的情况,另一方面,获取到的节点的特性信息可以作为环境信息地图的进一步补充,在进行服务策略配置时,将环境信息地图以及节点的特性信息作为依据来确定服务策略,从而可以适应灵活多变的网络架构来确定出合适的服务策略。
为了更好的解释本申请,以下结合具体的组网架构,提供了在具体应用场景下的实施过程。
(一)集中式组网场景下的应用
在集中式组网中,基站或AP由集中节点统一管理,图3示出了一种集中式组网的结构示意图,比如,同一个办公室区的AP都受集中节点管理。
图4示出了一种集中式组网时基于网络感知的服务策略配置流程,该流程由集中节点执行。该流程以集中节点为AP1配置服务策略为例描述,如图所示,该流程的具体步骤包括:
步骤S401,集中节点向AP1发送测量配置。
在AP1开机后,集中节点需要向AP1发送测量配置,用以指示AP1进行测量和上报。
步骤S402至步骤S403,AP1根据集中节点发送的测量配置,在自己能力范围内对周围的AP进行感知测量,然后将测量报告消息上报给集中节点,测量报告消息中包括AP1对周围AP的部分或全部的测量信息。
具体的,AP1开机后,在自己能力范围内自行对相邻AP进行测量,AP1在不同频点上对相邻AP的CRS(Cell-specific reference signals,小区专用导频信号)进行测量,将测量报告消息上报给集中节点,测量报告消息中包括AP1对AP测量得到的部分或全部测量信息。测量信息包括测量频点、相邻小区标识和RSRP的测量结果。其中,所述小区标识可包括PCI、ECGI(E-UTRAN Cell Global Identifier,小区全局标识符)等。
另一种实现方式中AP1根据集中节点发送的测量配置对相邻AP进行测量,将测量报告消息上报给集中节点,举例来说,AP1可根据集中节点配置测量频点对相邻AP进行测量,将相邻小区标识和RSRP的测量结果上报给集中节点。
AP1也可根据集中节点配置测量频点、RSRP门限对相邻AP进行测量,将满足RSRP门限的相邻小区的标识和RSRP的测量结果上报给集中节点。
AP1还可以根据集中节点配置测量频点、CSI-RS(Channel State Information-Reference Signal,信道状态信息参考信号,也称信道状态信息导频信号)资源对相邻AP进行测量,将CSI-RS RSRP的测量结果上报给集中节点。其中,不同AP使用不同的CSI-RS资源发送CSI-RS。
步骤S404,集中节点根据AP1上报的测量报告消息构建环境信息地图,测量报告消息中包括测量得到的部分或全部测量信息。其中,所述测量信息中可包括相邻AP的工作频点、PCI、ECGI以及其它的测量结果。
下面通过两种方式对测量报告消息中的测量信息作进一步说明。当然,下述两种方式只是具体举例,本申请并不局限于此。
方式1:自行测量,无集中节点的测量配置。
AP1在自己能力范围内(不同频点)对周围的AP进行感知测量,测量到8个相邻AP(检测能力8个),获得它们的工作频点、小区标识和RSRP的测量结果。
AP1将8个相邻AP的频点、小区标识和RSRP的测量结果全部上报给集中节点。即测量报告消息中包括测量得到的全部测量信息。
方式2:集中节点发送测量配置,测量配置里有测量频点和RSRP门限值。
AP1在配置的测量频点上对周围的AP进行感知测量,测量到8个相邻AP(检测能力8个),获得它们的小区标识和RSRP的测量结果。
AP1将8个相邻AP的RSRP测量结果和门限值比较,得到5个满足门限值的相邻AP。
AP1将5个相邻AP的小区标识和RSRP的测量结果上报给集中节点。此时,测量报告消息中只包括测量得到的部分测量信息。
集中节点可采用如下方式中的一种建立环境信息地图:
集中节点可根据RSRP的测量结果获得AP1和相邻AP间的接收信号强度,或者根据RSRP的测量结果和相邻AP的发射功率获得AP1和相邻AP间的路径损耗,或者根据相邻AP的标识查找获得它们的地理位置坐标(该地理位置坐标信息是集中节点先验获得并存储的),从而构建AP1和相邻AP间的相对位置。
集中节点也可以根据AP1和相邻AP间的相对位置信息或者是AP1上报的测量报告消息中的部分或全部测量信息,确定AP1的邻区关系,该邻区关系可包括邻区列表、干扰邻区集合、协作邻区集合等。例如,AP1测量上报的相邻AP组成邻区列表,RSRP的测量结果中满足RSRP门限的相邻AP组成干扰邻区集合,RSRP的测量结果中按照降序排列的前N个相邻AP组成协作邻区集合。
集中节点还可以根据AP1的邻区关系和测量报告消息中的相邻AP的工作的频点和工作带宽,确定AP1相邻AP的频谱使用情况。
步骤S405,集中节点管理范围内的网络节点通过回程链路向集中节点上报自己的特性 信息。
集中节点管理下的网络节点(包括AP1及其相邻节点)与该集中节点之间存在有线回程链路,比如光纤直连链路。AP1及其相邻节点可通过各自与集中节点的回程链路向集中节点上报各自的能力信息、支持的频点和带宽等。比如,AP1上报的能力信息包括:发射功率为24dBm、8个天线端口、2套射频链路等,支持的频点为3.4GHz~3.6GHz,支持的带宽为20MHz、40MHz。通常,集中节点管理下的网络节点在开机或小区开启时,向该集中节点上报特性信息。
步骤S406,集中节点根据环境地图信息和AP1的特性信息为AP1配置服务策略。
举例来说,集中节点可根据AP1的干扰邻区集合和它相邻AP的频谱使用情况,结合AP1支持的频点和支持的带宽,为AP1分配工作的频点和工作的带宽,使得AP1和相邻AP间的干扰减小,从而AP1下的用户吞吐量得到提高。
集中节点也可根据AP1的邻区列表和相邻小区的标识PCI,为AP1分配合适的小区标识PCI。
集中节点还可根据AP1的协作邻区集合,结合AP1和协作邻区集合中AP的负荷,为它们分配PRB(Physical Resource Block,物理资源块)、功率等资源,使得AP1和协作邻区集合中的AP相互协作共同为用户服务,从而用户频谱效率得到提高。
步骤S407,集中节点为AP1配置完服务策略后,向AP1发送服务策略指示,指示AP1进行服务策略配置。
进一步地,当AP1的相邻AP关机或相邻小区关闭时,该相邻AP或相邻小区会向集中节点发送离开指示。相应地,集中节点可更新AP1的环境信息地图。比如,当AP1的相邻节点AP2关闭时,集中节点将AP2在AP1的邻区列表中删除,将AP2使用的频谱标识为未使用;当有新的AP3开机时,如果AP3的邻区列表中包含AP1,那么集中节点更新AP1的环境信息地图,将AP3加入AP1的邻区列表中,将AP3使用的频谱标识为已使用。
进一步地,如果集中节点存储了一些先验的静态信息,例如AP的地理位置信息(如地理位置坐标),能力信息(如能力等级、发射功率、天线端口、射频能力、relay能力等),支持的频点和支持的带宽等信息,那么可以简化交互的过程,配置测量频点时可以考虑基站的工作的频点和工作的带宽能力。
通过上述实施例可以看出,在集中式组网中,集中节点获取AP1上报的测量报告消息和特性信息,然后根据AP1上报的测量报告消息建立AP1的环境信息地图,再根据AP1上报的特性信息和AP1的环境信息地图为AP1配置服务策略,从而实现AP1与相连AP进行节点类型和特性的交互,共同为用户服务,有效的接入灵活多变的网络的目的。
上述实施例是针对集中式组网,在集中式组网中,集中节点获取网络感知信息的方式 可以是:接收其所管理的节点上报的信息,比如接收AP1上报的信息,AP1上报的信息中包含AP1从相邻节点发送的广播消息中获取到的信息。其中,AP1相邻的节点可能是集中节点管理下的节点,也可能不是集中节点管理下的节点,后者属于混合式组网的情况。更优选地,可以将该方式与步骤S402的方式结合使用,即,集中节点获取网络感知信息的方式为:接收AP1上报的测量报告消息,以及接收AP1上报的该AP1从相邻节点发送的广播消息中获取到的信息。
(二)分布式组网场景下的应用
在分布式组网中,基站自己配置自己的服务策略。图5示出了一种分布式组网的结构示意图,多个房间内分布了多个AP,AP可以自己管理自己。图6示出了一种分布式组网时基于网络感知的服务策略配置流程,该流程由AP1执行,如图所示,该流程的具体步骤包括:
步骤S601,AP1开机后,在自己能力范围内对周围的AP进行感知,获取网络感知信息。
比如,AP1在不同频点上对相邻AP的CRS进行测量,获得相邻小区标识和RSRP的测量结果,并进行存储。其中,小区标识可包括PCI、ECGI、SIM(Subscriber Identity Module,用户身份识别卡)号、IPv6等信息。
AP1也可在不同频点上对相邻AP的CRS进行测量,将满足RSRP门限的相邻小区的标识和RSRP的测量结果进行存储。
AP1也可在不同频点上对相邻AP的CRS进行测量,将RSRP降序排序的前N个相邻小区的标识和RSRP的测量结果进行存储。
AP1还可读取相邻AP的广播消息,获得相邻AP的基本信息并进行存储。所述基本信息包括发射功率、工作的带宽、地理位置坐标、是否为CSG(Closed Subscriber Group,闭合用户组)等。
AP1还可定期对周围的AP进行测量,获得相邻AP是静止或者移动状态,并进行存储。
步骤S602,AP1根据获取到的网络感知信息识别它的相邻AP,构建环境信息地图。其中,获取到的网络感知信息可包括比如AP1的相邻节点的工作频点、PCI、ECGI、SIM卡号、测量结果、基本信息等。
AP1可采用如下方式中的一种建立环境信息地图:
AP1可根据RSRP的测量结果获得它和相邻AP间的接收信号强度,或者根据RSRP的测量结果和相邻AP的发射功率获得它和相邻AP间的路径损耗,或者根据相邻AP广播消息中获得的地理位置坐标,从而构建AP1和相邻AP间的相对位置。
AP1可根据网络感知信息或者与相邻AP的相对位置确定自己的邻区关系,该邻区关 系包括邻区列表、干扰邻区集合、协作邻区集合。例如,AP1测量到的相邻AP组成邻区列表,RSRP的测量结果中满足RSRP门限的相邻AP组成干扰邻区集合,RSRP的测量结果中降序排列的前N个相邻AP组成协作邻区集合;AP1根据它的邻区关系、测量的相邻AP的工作的频点和工作的带宽,确定它相连AP的频谱使用情况。
步骤S603,AP1通过和相邻AP间的回程链路与相邻AP进行交互,获取相邻AP的特性信息,它们之间的回程链路通常为无线回程。
AP1可以通过交互协商过程获得相邻节点的特性信息。举例来说,AP1在确定出它的相邻AP后,可向它的相邻AP发送请求消息,以请求获取相邻AP的特性信息,AP1的相邻AP根据该请求消息将各自的特性信息发送给AP1。一个节点的特性信息可包括该节点的能力信息、支持的频点和带宽、backhaul类型等信息。比如,AP1获取到它的相邻节点AP2的特性信息可包括:发射功率24dBm、4个天线端口、有relay能力,支持的频点为3.4GHz~3.6GHz,支持的带宽为100MHz,backhaul的时延单程为10~30ms,吞吐量为10Gbps。
步骤S604,AP1根据环境信息地图和相邻AP的特性信息,为自己配置服务策略,也可以同时与其他AP协调资源,从而更好的为用户服务。
举例来说,AP1可以根据自己的干扰邻区集合和相邻AP的频谱使用情况,结合自己支持的频点和支持的带宽,选择自己工作的频点和工作的带宽,使得AP1和相邻AP间的干扰减小,从而提高AP1下用户的吞吐量。
AP1也可以根据它的邻区列表和相邻小区的标识PCI,为自己选择合适的小区标识PCI。
AP1还可以根据AP2的relay能力、支持的频点和支持的带宽、backhaul类型和特性,结合自己的负荷和业务量情况,通过协商使得AP2为其提供backhaul服务。如果AP2不能提供足够的backhaul资源,AP1还可以和邻区关系中的其他AP协商,使得多个AP为其提供backhaul服务。
进一步地,AP1邻区关系的变化情况可以通过AP1定期的测量来发现,也可以通过相邻AP给AP1发送接入或离开指示来使AP1获知,这样AP1可根据它的邻区关系的变化情况更新它的环境信息地图。
例如,当AP1邻区列表中的相连节点AP2关机或小区关闭时,AP2向AP1发送离开指示。AP1将AP2在自己的邻区列表中删除,将AP2使用的频谱标识为未使用。
再例如,当有新的AP3开机或小区开放时,如果AP3的邻区列表中包含AP1,则AP3向AP1发送接入指示,AP1更新自己的环境信息地图,将AP3加入自己的邻区列表中,将AP3使用的频谱标识为已使用。
再例如,当AP1邻区列表中的AP4移动时,AP1更新自己的环境信息地图,将AP1 和AP4间的相对位置进行更新。
通过上述实施例可以看出,在分布式组网中,AP1获取相邻AP的网络感知信息,然后根据相邻AP的网络感知信息建立AP1的环境信息地图,再根据通过交互获得的相邻AP的特性信息和AP1的环境信息地图为自己配置服务策略,从而实现AP1与相连AP进行节点类型和特性的交互,共同为用户服务,有效的接入灵活多变的网络的目的。
(三)混合组网场景下的应用
在混合式组网中,分布式组网架构和集中式组网架构混合使用,比如,一部分基站由集中节点管理,一部分基站不受集中节点管理。图7为一种混合式组网下的场景示意图,其中广场南北长880米,东西宽500米,面积达44万平方米,最大可容纳40万人举行盛大集会。在广场边界小站密集部署,小站可以布置在路灯上,由集中节点统一管理;在广场内小站随机部署多个,小站可以布置在通信工程车上;在广场内或广场周围有部署宏基站,和小站同频段或异频段工作。
图8示出了一种混合式组网下节点分布示意图,其中,集中节点可以管理小站1和小站4;分布式组网中的节点包括小站2和小站3;小站3与小站4之间有回程链路,宏基站与集中节点间有有线回程,集中节点与小站1之间有有线回程,集中节点与小站4之间有有线回程链路,宏基站、小站1和小站4都可以与集中节点进行协商交互。小站2与小站3之间有无线回程,小站3与小站4之间有无线回程,小站2和小站4都可以与小站3进行协商交互。
下面基于图8所示的组网架构,结合几个具体场景进行描述。
场景一:集中节点为小站1配置服务策略
集中节点获取小站1上报的网络感知信息,其中,集中节点获取网络感知信息的方式与集中式组网中获取网络感知信息的方法一致,此处不再赘述。集中节点根据获取到的网络感知信息建立环境信息地图,所建立的环境信息地图中将小站4作为小站1的相邻节点,集中节点获取小站1和小站4上报的特性信息,根据所述获取的特性信息和所述建立的环境信息地图为小站1配置服务策略。
场景二:小站2为自己配置服务策略
小站2获取包括小站3在内的相邻节点的网络感知信息,其中,小站2获取网络感知信息的方式与分布式组网中获取网络感知信息的方法一致,此处不再赘述。小站2根据获取到的网络感知信息建立环境信息地图,所建立的环境信息地图中将小站3作为该小站2的相邻节点。小站2位于分布式组网中,小站2通过与小站3之间的无线回程与小站3进行交互,获取小站3的特性信息。小站2根据环境信息地图和它的相邻节点(包括小站3在内)的特性信息配置自己的服务策略。
场景三:小站3为自己配置服务策略
小站3获取包括小站2、小站4在内的相邻节点的网络感知信息,其中,小站3获取网络感知信息的方式与分布式组网中获取网络感知信息的方法一致,此处不再赘述。小站3根据获取到的网络感知信息建立环境信息地图。由于小站2为分布式组网中的节点,小站3可以通过与小站2间的无线回程链路直接获取小站2的特性信息。小站3可以通过与小站4间的无线回程链路直接获取小站4的特性信息。小站2根据环境信息地图和它的相邻节点的特性信息配置自己的服务策略。上述这种情况适用于小站4具有较强管理能力的情况下,或者集中节点对小站4的行为不进行严格管理的情况,比如小站4为AP或家庭基站等设备。
在另一种情况下,小站3通过与小站4之间的无线回程与小站4进行交互,请求获取小站4的特性信息,然后小站4通过其与集中节点之间的有线回程链路请求从集中节点中获取自己的特性信息,将从集中节点中获取的自己的特性信息发送给小站3,从而使得小站3获得小站4的特性信息。小站3根据环境信息地图和相邻节点的特性信息、小站4的特性信息配置自己的服务策略。这种情况适用于小站4的能力较弱,比如是射频拉远单元,或者适用于集中节点对小站4的行为需要进行严格管理的情况。
场景四:集中节点为小站4配置服务策略
集中节点获取小站4上报的小站1、小站3和宏基站的网络感知信息,根据网络感知信息建立环境信息地图。集中节点分别获取小站1、小站3和宏基站的特性信息。集中节点根据上述获取的小站1、小站3、小站4和宏基站的特性信息以及环境信息地图配置小站4的服务策略。
在集中节点获取小站1和小站4的特性信息时,由于小站1和小站4都是由集中节点管理,因此小站1和小站4可将各自的特性信息直接上报给集中节点,从而使集中节点可获取到小站1和小站4的特性信息。
在集中节点获取宏基站的特性信息时,由于集中节点与宏基站间存在有线回程链路,则集中节点通过与宏基站间的有线回程链路与宏基站进行交互,获取宏基站的特性信息。
在集中节点获取小站3的特性信息时,可以分为两种情况:
情况一,由于小站3与小站4之间存在回程链路,可以相互交互特性信息,因此小站4可以通过与小站3间的无线回程链路获取小站3的特性信息并发送给集中节点。举例来说,当小站3请求与小站4进行协作时,可以将小站3的特性信息携带在协作请求消息中发送给小站4,小站4将该协作请求消息发送给集中节点以请求集中节点对是否协作进行判决;或者,当小站4请求与小站3进行协作时,可以发送协作请求消息给小站3,并接收小站3返回的携带有小站3的特性信息的响应消息,小站4将小站3的特性信息发送给集中节点。以上仅列举了一种实例,只要小站3和小站4之间存在回程链路,小站4就可以通过该回程链路获得小站3的特性信息并上报给集中节点。这种情况适用于小站4具有 较强管理能力的情况下,或者集中节点对小站4的行为不进行严格管理的情况,比如小站4为AP或家庭基站等设备。
情况二:集中节点通过与小站4间的有线回程链路与小站4进行交互,指示小站4上报小站3的特性信息,小站4根据该指示,通过与小站3间的无线回程链路从小站3中获取小站3的特性信息,小站4将获取的小站3的特性信息上报给集中节点。这种情况适用于小站4的能力较弱,比如是射频拉远单元,或者适用于集中节点对小站4的行为需要进行严格管理的情况。
场景五:宏基站为自己配置服务策略
宏基站获取感知信息,其中,宏基站获取网络感知信息的方式与分布式组网中获取网络感知信息的方法一致,此处不再赘述。宏基站根据获取到的感知信息建立环境信息地图,所建立的环境信息地图中将小站4作为该宏基站的相邻节点。但由于宏基站与小站4之间没有回程链路,因此该宏基站通过该宏基站与集中节点之间的回程链路与集中节点进行交互,向集中节点请求获取小站4的特性信息(在此之前,小站4已将其特性信息上报给集中节点),宏基站从集中节点获取到小站4在内的相邻节点的特性信息后,根据宏基站建立的环境信息地图以及该宏基站及其相邻节点的特性信息,为该宏基站配置服务策略。
基于相同的技术构思,图9示出了一种网络设备,该设备可应用于图2所示的流程。该设备可以是集中节点,也可以是基站。该设备包括:
第一获取模块901,用于获取第一节点的网络感知信息;
第一处理模块902,用于根据所述网络感知信息建立所述第一节点的环境信息地图;
第二获取模块903,用于获取所述第一节点的特性信息;
第二处理模块904,用于根据所述环境信息地图以及所述第一节点的特性信息,为所述第一节点配置服务策略。
优选地,所述网络感知信息,包括:
第一节点测量得到的测量信息和/或所述第一节点从相邻节点的广播消息中获取到的信息。
优选地,所述测量得到的测量信息包括以下信息之一或任意组合:
信号强度、信号质量、工作的频点、工作的带宽、射频能力、地理位置坐标、小区标识;
所述从相邻节点的广播消息中获取到的信息包括以下信息之一或任意组合:
发射功率、射频能力、地理位置坐标、小区标识、TDD配置信息、MBSFN配置信息。
优选地,所述第二获取模块903还用于:获取所述第一节点的相邻节点的特性信息;所述第二处理模块904具体用于:根据所述环境信息地图,以及所述第一节点以及所述第一节点的相邻节点的特性信息,为所述第一节点配置服务策略。
优选地,所述网络设备为集中节点;
所述集中节点的管理范围内包含所述第一节点。
优选地,所述第一获取模块901具体用于:
接收所述第一节点上报的测量报告消息,所述测量报告消息中包含所述第一节点对相邻节点的部分或全部测量信息;和/或
接收所述第一节点上报的信息,所上报的信息中包含所述第一节点从相邻节点发送的广播消息中获取到的信息。
优选地,所述第二获取模块903具体用于:
接收所述第一节点以及所述第一节点的相邻节点上报的各自节点的特性信息。
优选地,所述第二获取模块903具体用于:
若所述第一节点的相邻节点中包含第二节点,所述第二节点不在所述集中节点的管理范围内,且所述第二节点与所述集中节点之间存在回程链路,则通过所述集中节点与所述第二节点间的回程链路与所述第二节点进行交互,以获取所述第二节点的特性信息。
优选地,所述第一节点在集中节点的管理范围内;
所述第二获取模块903具体用于:
若所述第一节点的相邻节点中包含第二节点,所述第二节点不在集中节点的管理范围内,且所述第一节点与所述第二节点之间存在回程链路,则:
指示所述第一节点上报所述第二节点的特性信息,以使所述第一节点根据所述指示,通过所述第一节点与所述第二节点之间的回程链路与所述第二节点进行交互,以获取所述第二节点的特性信息,并将获取到的特性信息发送给所述集中节点;或者
接收所述第一节点发送来的所述第二节点的特性信息。
优选地,所述网络设备为第一节点。
优选地,所述第一获取模块901具体用于:
对相邻节点进行测量,根据测量信息得到所述第一节点的网络感知信息;和/或
接收相邻节点发送的广播消息,根据接收到的广播消息获取所述第一节点的网络感知信息。
优选地,所述第二获取模块903具体用于:
通过所述第一节点与相邻节点间的回程链路与所述第一节点的相邻节点进行交互,以获取所述第一节点的相邻节点的特性信息。
优选地,所述第一节点与集中节点之间存在回程链路,且所述第一节点不在所述集中节点的管理范围内;
所述第二获取模块903具体用于:
若所述第一节点的相邻节点中包含第二节点,所述第二节点为所述集中节点管理范围 内的节点,且所述第一节点与所述第二节点之间不存在回程链路,则通过所述第一节点与所述集中节点间的回程链路与所述集中节点进行交互,以获取所述第二节点的特性信息。
优选地,所述第一节点不在集中节点的管理范围内;
所述第二获取模块903具体用于:
若所述第一节点的相邻节点中包含第二节点,所述第二节点在集中节点的管理范围内,且所述第一节点与所述第二节点之间存在回程链路,则:
通过所述第一节点与所述第二节点间的回程链路与所述第二节点进行交互,以请求获取所述第二节点的特性信息并接收所述第二节点的特性信息;其中,所述第二节点通过所述第二节点与所述集中节点之间的回程链路从所述集中节点获取所述第二节点的特性信息并发送给所述第一节点;或者
通过所述第一节点与所述第二节点间的回程链路与所述第二节点进行交互,获取所述第二节点的特性信息。
优选地,所述第一节点的环境信息地图用于表示以下信息中的一种或任意组合:
所述第一节点与所述第一节点的相邻节点间的相对位置;
所述第一节点的邻区关系;
所述第一节点的相邻节点的频谱使用情况。
优选地,所述第一处理模块902还用于:
当接收到所述第一节点的相邻节点接入或离开的指示时,或者检测到所述第一节点的相邻节点移动时,更新所述第一节点的环境信息地图。
优选地,所述特性信息包括以下信息之一或任意组合:
能力信息、支持的频点、支持的带宽、回程链路的类型、回程链路的特性。
图10为本申请实施例提供的另一种网络设备的结构示意图,该设备可实现本申请上述实施例提供的方法。该设备可包括:任意数量的互联的总线和桥,具体由处理器1001代表的一个或多个处理器和存储器1003代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口,收发机1004可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器1001负责管理总线架构和通常的处理,存储器1003可以存储处理器1001在执行操作时所使用的数据。显示器1002可以是CRT(Cathode Ray Tube,阴极射线管)、PDP(Plasma Display Panel,等离子显示器)、DLP(Digital Light Procession,数字光处理)或LCD(Liquid Crystal Display,液晶显示屏)等显示装置。
处理器1001,用于读取存储器1003中的程序,执行下列过程:通过收发机1004获取第一节点的网络感知信息,所述网络感知信息包括第一节点测量得到的测量信息和/或第一 节点从相邻节点的广播消息中获取到的信息。具体的,收发机1004接收所述第一节点上报的测量报告消息,所述测量报告消息中包含所述第一节点对相邻节点的部分或全部测量信息;和/或收发机1004接收所述第一节点上报的信息,所上报的信息中包含所述第一节点从相邻节点发送的广播消息中获取到的信息。
处理器1001可以根据收发机1004获取的所述网络感知信息建立第一节点的环境信息地图。所述环境信息地图用于表示以下信息中的一种或任意组合:所述第一节点与所述第一节点的相邻节点间的相对位置;所述第一节点的邻区关系;所述第一节点的相邻节点的频谱使用情况。当接收到所述第一节点的相邻节点接入或离开的指示时,或者检测到所述第一节点的相邻节点移动时,处理器1001更新所述第一节点的环境信息地图。
收发机1004获取所述第一节点以及所述第一节点的相邻节点的特性信息。具体的,若所述第一节点的相邻节点中包含第二节点,所述第二节点不在所述集中节点的管理范围内,且所述第二节点与所述集中节点之间存在回程链路,则收发机1004通过所述集中节点与所述第二节点间的回程链路与所述第二节点进行交互,以获取所述第二节点的特性信息。
若所述第一节点的相邻节点中包含第二节点,所述第二节点不在集中节点的管理范围内,且所述第一节点与所述第二节点之间存在回程链路,则:
收发机1004指示所述第一节点上报所述第二节点的特性信息,以使所述第一节点根据所述指示,通过所述第一节点与所述第二节点之间的回程链路与所述第二节点进行交互,以获取所述第二节点的特性信息,并将获取到的信息发送给所述集中节点;或者收发机1004接收所述第一节点发送来的所述第二节点的特性信息。
处理器1001根据所述环境信息地图,以及所述第一节点以及所述第一节点的相邻节点的特性信息,为所述第一节点配置服务策略。
存储器1003,用于存储一个或多个可执行程序,被用于配置所述处理器1001。
图11为本申请实施例提供的另一种网络设备的结构示意图,该设备可实现本申请上述实施例提供的方法。该设备可包括:任意数量的互联的总线和桥,具体由处理器1101代表的一个或多个处理器和存储器1103代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口,收发机1104可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器1101负责管理总线架构和通常的处理,存储器1103可以存储处理器1101在执行操作时所使用的数据。显示器1102可以是CRT、PDP、DLP或LCD等显示装置。
处理器1101,用于读取存储器1103中的程序,执行下列过程:通过收发机1104获取第一节点的网络感知信息,所述第一节点的网络感知信息包括第一节点测量得到的测量信 息和/或从相邻节点的广播消息中获取到的信息。具体的,收发机1104对相邻节点进行测量,根据测量信息得到所述第一节点的网络感知信息;和/或接收相邻节点发送的广播消息,根据接收到的广播消息获取所述第一节点的网络感知信息。
处理器1101可以根据收发机1104获取的所述网络感知信息建立第一节点的环境信息地图。所述第一节点的环境信息地图用于表示以下信息中的一种或任意组合:所述第一节点与所述第一节点的相邻节点间的相对位置;所述第一节点的邻区关系;所述第一节点的相邻节点的频谱使用情况。当收发机1104接收到所述第一节点的相邻节点接入或离开的指示时,或者检测到所述第一节点的相邻节点移动时,处理器1101更新所述第一节点的环境信息地图。
收发机1104获取所述第一节点以及所述第一节点的相邻节点的特性信息。具体的,收发机1104通过所述第一节点与相邻节点间的回程链路与所述第一节点的相邻节点进行交互,以获取所述第一节点的相邻节点的特性信息。
所述第一节点与集中节点之间存在回程链路,且所述第一节点不在所述集中节点的管理范围内;若所述第一节点的相邻节点中包含第二节点,所述第二节点为所述集中节点管理范围内的节点,且所述第一节点与所述第二节点之间不存在回程链路,则收发机1104通过所述第一节点与所述集中节点间的回程链路与所述集中节点进行交互,以获取所述第二节点的特性信息。
所述第一节点不在集中节点的管理范围内;若所述第一节点的相邻节点中包含第二节点,所述第二节点在集中节点的管理范围内,且所述第一节点与所述第二节点之间存在回程链路,则:
收发机1104通过所述第一节点与所述第二节点间的回程链路与所述第二节点进行交互,以请求获取所述第二节点的特性信息;所述第二节点通过所述第二节点与所述集中节点之间的回程链路从所述集中节点获取所述第二节点的特性信息并发送给所述第一节点;或者
收发机1104通过所述第一节点与所述第二节点间的回程链路与所述第二节点进行交互,获取所述第二节点的特性信息。
处理器1101根据所述环境信息地图,以及所述第一节点以及所述第一节点的相邻节点的特性信息,为所述第一节点配置服务策略。
存储器1103,用于存储一个或多个可执行程序,被用于配置所述处理器1101。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生 一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (48)

  1. 一种基于网络感知的服务策略配置方法,其特征在于,该方法包括:
    获取第一节点的网络感知信息;
    根据所述网络感知信息建立所述第一节点的环境信息地图;
    获取所述第一节点的特性信息;
    根据所述环境信息地图以及所述第一节点的特性信息,为所述第一节点配置服务策略。
  2. 如权利要求1所述的方法,其特征在于,所述第一节点的网络感知信息,包括:
    第一节点测量得到的测量信息和/或所述第一节点从相邻节点的广播消息中获取到的信息。
  3. 如权利要求2所述的方法,其特征在于,所述测量得到的测量信息包括以下信息之一或任意组合:
    信号强度、信号质量、工作的频点、工作的带宽、射频能力、地理位置坐标、小区标识;
    所述第一节点从相邻节点的广播消息中获取到的信息包括以下信息之一或任意组合:
    发射功率、射频能力、地理位置坐标、小区标识、时分双工TDD配置信息、多播/组播单频网络MBSFN配置信息。
  4. 如权利要求1至3任一所述的方法,其特征在于,还包括:
    获取所述第一节点的相邻节点的特性信息;
    所述为所述第一节点配置服务策略,包括:
    根据所述环境信息地图,以及所述第一节点以及所述第一节点的相邻节点的特性信息,为所述第一节点配置服务策略。
  5. 如权利要求4所述的方法,其特征在于,所述获取第一节点的网络感知信息的步骤、所述根据所述网络感知信息建立所述第一节点的环境信息地图的步骤、获取所述第一节点以及所述第一节点的相邻节点的特性信息的步骤,以及所述为所述第一节点配置服务策略的步骤的执行主体均为集中节点;
    所述集中节点的管理范围内包含所述第一节点。
  6. 如权利要求5所述的方法,其特征在于,所述获取第一节点的网络感知信息,包括:
    所述集中节点接收所述第一节点上报的测量报告消息,所述测量报告消息中包含所述第一节点对相邻节点的部分或全部测量信息;和/或
    所述集中节点接收所述第一节点上报的信息,所上报的信息中包含所述第一节点从相 邻节点发送的广播消息中获取到的信息。
  7. 如权利要求5所述的方法,其特征在于,获取所述第一节点以及所述第一节点的相邻节点的特性信息,包括:
    所述集中节点接收所述第一节点以及所述第一节点的相邻节点上报的各自节点的特性信息。
  8. 如权利要求5所述的方法,其特征在于,所述获取所述第一节点的相邻节点的特性信息,包括:
    若所述第一节点的相邻节点中包含第二节点,所述第二节点不在所述集中节点的管理范围内,且所述第二节点与所述集中节点之间存在回程链路,则所述集中节点通过所述集中节点与所述第二节点间的回程链路与所述第二节点进行交互,以获取所述第二节点的特性信息。
  9. 如权利要求5所述的方法,其特征在于,所述第一节点在集中节点的管理范围内;
    所述获取所述第一节点的相邻节点的特性信息,包括:
    若所述第一节点的相邻节点中包含第二节点,所述第二节点不在集中节点的管理范围内,且所述第一节点与所述第二节点之间存在回程链路,则:
    所述集中节点指示所述第一节点上报所述第二节点的特性信息,所述第一节点根据所述指示,通过所述第一节点与所述第二节点之间的回程链路与所述第二节点进行交互,以获取所述第二节点的特性信息,并将获取到的特性信息发送给所述集中节点;或者
    所述第一节点将所述第二节点发送来的特性信息发送给所述集中节点。
  10. 如权利要求4所述的方法,其特征在于,所述获取第一节点的网络感知信息的步骤、所述根据所述网络感知信息建立所述第一节点的环境信息地图的步骤、获取所述第一节点以及所述第一节点的相邻节点的特性信息的步骤,以及所述为所述第一节点配置服务策略的步骤的执行主体均为所述第一节点。
  11. 如权利要求10所述的方法,其特征在于,所述获取第一节点的网络感知信息,包括:
    所述第一节点对相邻节点进行测量,根据测量信息得到所述第一节点的网络感知信息;和/或
    所述第一节点接收相邻节点发送的广播消息,根据接收到的广播消息获取所述第一节点的网络感知信息。
  12. 如权利要求10所述的方法,其特征在于,所述获取所述第一节点的相邻节点的特性信息,包括:
    所述第一节点通过所述第一节点与相邻节点间的回程链路与所述第一节点的相邻节点进行交互,以获取所述第一节点的相邻节点的特性信息。
  13. 如权利要求10所述的方法,其特征在于,所述第一节点与集中节点之间存在回程链路,且所述第一节点不在所述集中节点的管理范围内;
    所述获取所述第一节点的相邻节点的特性信息,包括:
    若所述第一节点的相邻节点中包含第二节点,所述第二节点为所述集中节点管理范围内的节点,且所述第一节点与所述第二节点之间不存在回程链路,则所述第一节点通过所述第一节点与所述集中节点间的回程链路与所述集中节点进行交互,以获取所述第二节点的特性信息。
  14. 如权利要求10所述的方法,其特征在于,所述第一节点不在集中节点的管理范围内;
    所述获取所述第一节点的相邻节点的特性信息,包括:
    若所述第一节点的相邻节点中包含第二节点,所述第二节点在集中节点的管理范围内,且所述第一节点与所述第二节点之间存在回程链路,则:
    所述第一节点通过所述第一节点与所述第二节点间的回程链路与所述第二节点进行交互,以请求获取所述第二节点的特性信息;所述第二节点通过所述第二节点与所述集中节点之间的回程链路从所述集中节点获取所述第二节点的特性信息并发送给所述第一节点;或者
    所述第一节点通过所述第一节点与所述第二节点间的回程链路与所述第二节点进行交互,获取所述第二节点的特性信息。
  15. 如权利要求1所述的方法,其特征在于,所述第一节点的环境信息地图用于表示以下信息中的一种或任意组合:
    所述第一节点与所述第一节点的相邻节点间的相对位置;
    所述第一节点的邻区关系;
    所述第一节点的相邻节点的频谱使用情况。
  16. 如权利要求1所述的方法,其特征在于,所述根据所述网络感知信息建立所述第一节点的环境信息地图,包括以下之一:
    根据所述网络感知信息,确定所述第一节点与所述第一节点的相邻节点的相对位置,得到所述第一节点的环境信息地图;
    根据所述网络感知信息,确定所述第一节点的邻区关系,得到所述第一节点的环境信息地图;
    根据所述网络感知信息,确定所述第一节点的相邻节点的频谱使用情况,得到所述第一节点的环境信息地图;
    根据所述网络感知信息,确定所述第一节点与所述第一节点的相邻节点间的相对位置,根据所述相对位置确定所述第一节点的邻区关系,根据所述相对位置以及所述第一节 点的邻区关系得到所述第一节点的环境信息地图;
    根据所述网络感知信息,确定所述第一节点与所述第一节点的相邻节点间的相对位置以及所述第一节点的相邻节点的频谱使用情况,得到所述第一节点的环境信息地图;
    根据所述网络感知信息,确定所述第一节点的邻区关系,根据所述第一节点的邻区关系确定所述第一节点的相邻节点的频谱使用情况,根据所述第一节点的邻区关系以及所述第一节点的相邻节点的频谱使用情况,得到所述第一节点的环境信息地图;
    根据所述网络感知信息,确定所述第一节点与所述第一节点的相邻节点间的相对位置,根据所述相对位置确定所述第一节点的邻区关系,根据所述第一节点的邻区关系确定所述第一节点的相邻节点的频谱使用情况,根据所述相对位置、所述邻区关系以及所述频谱使用情况得到所述第一节点的环境信息地图。
  17. 如权利要求1至16任一所述的方法,其特征在于,所述方法还包括:
    当接收到所述第一节点的相邻节点接入或离开的指示时,或者检测到所述第一节点的相邻节点移动时,更新所述第一节点的环境信息地图。
  18. 如权利要求1至16任一所述的方法,其特征在于,所述特性信息包括以下信息之一或任意组合:
    能力信息、支持的频点、支持的带宽、回程链路的类型、回程链路的特性。
  19. 一种网络设备,其特征在于,包括:
    第一获取模块,用于获取第一节点的网络感知信息;
    第一处理模块,用于根据所述网络感知信息建立所述第一节点的环境信息地图;
    第二获取模块,用于获取所述第一节点的特性信息;
    第二处理模块,用于根据所述环境信息地图以及所述第一节点,为所述第一节点配置服务策略。
  20. 如权利要求19所述的设备,其特征在于,所述网络感知信息,包括:
    第一节点测量得到的测量信息和/或第一节点的从相邻节点的广播消息中获取到的信息。
  21. 如权利要求20所述的设备,其特征在于,所述测量得到的测量信息包括以下信息之一或任意组合:
    信号强度、信号质量、工作的频点、工作的带宽、射频能力、地理位置坐标、小区标识;
    所述第一节点的从相邻节点的广播消息中获取到的信息包括以下信息之一或任意组合:
    发射功率、射频能力、地理位置坐标、小区标识、时分双工TDD配置信息、多播/组播单频网络MBSFN配置信息。
  22. 如权利要求19至21任一所述的设备,其特征在于,所述第二获取模块还用于:获取所述第一节点的相邻节点的特性信息;
    所述第二处理模块具体用于:根据所述环境信息地图,以及所述第一节点以及所述第一节点的相邻节点的特性信息,为所述第一节点配置服务策略。
  23. 如权利要求22所述的设备,其特征在于,所述网络设备为集中节点;
    所述集中节点的管理范围内包含所述第一节点。
  24. 如权利要求23所述的设备,其特征在于,所述第一获取模块具体用于:
    接收所述第一节点上报的测量报告消息,所述测量报告消息中包含所述第一节点对相邻节点的部分或全部测量信息;和/或
    接收所述第一节点上报的信息,所上报的信息中包含所述第一节点从相邻节点发送的广播消息中获取到的信息。
  25. 如权利要求23所述的设备,其特征在于,所述第二获取模块具体用于:
    接收所述第一节点以及所述第一节点的相邻节点上报的各自节点的特性信息。
  26. 如权利要求23所述的设备,其特征在于,所述第二获取模块具体用于:
    若所述第一节点的相邻节点中包含第二节点,所述第二节点不在所述集中节点的管理范围内,且所述第二节点与所述集中节点之间存在回程链路,则通过所述集中节点与所述第二节点间的回程链路与所述第二节点进行交互,以获取所述第二节点的特性信息。
  27. 如权利要求23所述的设备,其特征在于,所述第一节点在集中节点的管理范围内;
    所述第二获取模块具体用于:
    若所述第一节点的相邻节点中包含第二节点,所述第二节点不在集中节点的管理范围内,且所述第一节点与所述第二节点之间存在回程链路,则:
    指示所述第一节点上报所述第二节点的特性信息,以使所述第一节点根据所述指示,通过所述第一节点与所述第二节点之间的回程链路与所述第二节点进行交互,以获取所述第二节点的特性信息,并将获取到的特性信息发送给所述集中节点;或者
    接收所述第一节点发送来的所述第二节点的特性信息。
  28. 如权利要求22所述的设备,其特征在于,所述网络设备为第一节点。
  29. 如权利要求28所述的设备,其特征在于,所述第一获取模块具体用于:
    对相邻节点进行测量,根据测量信息得到所述第一节点的网络感知信息;和/或
    接收相邻节点发送的广播消息,根据接收到的广播消息获取所述第一节点的网络感知信息。
  30. 如权利要求28所述的设备,其特征在于,所述第二获取模块具体用于:
    通过所述第一节点与相邻节点间的回程链路与所述第一节点的相邻节点进行交互,以 获取所述第一节点的相邻节点的特性信息。
  31. 如权利要求28所述的设备,其特征在于,所述第一节点与集中节点之间存在回程链路,且所述第一节点不在所述集中节点的管理范围内;
    所述第二获取模块具体用于:
    若所述第一节点的相邻节点中包含第二节点,所述第二节点为所述集中节点管理范围内的节点,且所述第一节点与所述第二节点之间不存在回程链路,则通过所述第一节点与所述集中节点间的回程链路与所述集中节点进行交互,以获取所述第二节点的特性信息。
  32. 如权利要求28所述的设备,其特征在于,所述第一节点不在集中节点的管理范围内;
    所述第二获取模块具体用于:
    若所述第一节点的相邻节点中包含第二节点,所述第二节点在集中节点的管理范围内,且所述第一节点与所述第二节点之间存在回程链路,则:
    通过所述第一节点与所述第二节点间的回程链路与所述第二节点进行交互,以请求获取所述第二节点的特性信息,并接收所述第二节点的特性信息;其中,所述第二节点通过所述第二节点与所述集中节点之间的回程链路从所述集中节点获取所述第二节点的特性信息并发送给所述第一节点;或者
    通过所述第一节点与所述第二节点间的回程链路与所述第二节点进行交互,获取所述第二节点的特性信息。
  33. 如权利要求19所述的设备,其特征在于,所述第一节点的环境信息地图用于表示以下信息中的一种或任意组合:
    所述第一节点与所述第一节点的相邻节点间的相对位置;
    所述第一节点的邻区关系;
    所述第一节点的相邻节点的频谱使用情况。
  34. 如权利要求19至33任一所述的设备,其特征在于,所述第一处理模块,还用于:
    当所述第一获取模块接收到所述第一节点的相邻节点接入或离开的指示时,或者检测到所述第一节点的相邻节点移动时,更新所述第一节点的环境信息地图。
  35. 如权利要求19至33任一所述的设备,其特征在于,所述特性信息包括以下信息之一或任意组合:
    能力信息、支持的频点、支持的带宽、回程链路的类型、回程链路的特性。
  36. 一种网络设备,其特征在于,包括:
    处理器,用于读取存储器中的程序,执行下列过程:
    通过收发机获取第一节点的网络感知信息;
    根据收发机获取的所述网络感知信息建立第一节点的环境信息地图;
    通过收发机获取所述第一节点的特性信息;
    根据所述环境信息地图,以及所述第一节点的特性信息,为所述第一节点配置服务策略;
    存储器,用于存储一个或多个可执行程序,被用于配置所述处理器;
    收发机,用于在处理器的控制下接收和发送数据。
  37. 根据权利要求36所述的网络设备,其特征在于,所述处理器还用于从存储器中读取程序,执行下列过程:通过收发机获取所述第一节点的相邻节点的特性信息;
    为第一节点配置服务策略时,所述处理器具体用于从存储器中读取程序,执行下列过程:根据所述环境信息地图,以及所述第一节点以及所述第一节点的相邻节点的特性信息,为所述第一节点配置服务策略。
  38. 根据权利要求37所述的网络设备,其特征在于,所述网络设备为集中节点;
    所述集中节点的管理范围内包含所述第一节点。
  39. 根据权利要求38所述的网络设备,其特征在于,所述处理器具体用于从存储器中读取程序,执行下列过程:
    通过收发机接收所述第一节点上报的测量报告消息,所述测量报告消息中包含所述第一节点对相邻节点的部分或全部测量信息;和/或
    通过收发机接收所述第一节点上报的信息,所上报的信息中包含所述第一节点从相邻节点发送的广播消息中获取到的信息。
  40. 根据权利要求38所述的网络设备,其特征在于,所述处理器具体用于从存储器中读取程序,执行下列过程:
    通过收发机接收所述第一节点以及所述第一节点的相邻节点上报的各自节点的特性信息。
  41. 根据权利要求38所述的网络设备,其特征在于,所述处理器具体用于从存储器中读取程序,执行下列过程:
    若所述第一节点的相邻节点中包含第二节点,所述第二节点不在所述集中节点的管理范围内,且所述第二节点与所述集中节点之间存在回程链路,则通过收发机与所述第二节点间的回程链路与所述第二节点进行交互,以获取所述第二节点的特性信息。
  42. 根据权利要求38所述的网络设备,其特征在于,所述第一节点在集中节点的管理范围内;所述处理器具体用于从存储器中读取程序,执行下列过程:
    若所述第一节点的相邻节点中包含第二节点,所述第二节点不在集中节点的管理范围内,且所述第一节点与所述第二节点之间存在回程链路,则:
    通过收发机指示所述第一节点上报所述第二节点的特性信息,以使所述第一节点根据 所述指示,通过所述第一节点与所述第二节点之间的回程链路与所述第二节点进行交互,以获取所述第二节点的特性信息,并将获取到的特性信息发送给所述集中节点;或者
    通过收发机接收所述第一节点发送来的所述第二节点的特性信息。
  43. 根据权利要求37所述的网络设备,其特征在于,所述网络设备为第一节点。
  44. 根据权利要求43所述的网络设备,其特征在于,所述处理器具体用于从存储器中读取程序,执行下列过程:
    通过收发机对相邻节点进行测量,根据测量信息得到所述第一节点的网络感知信息;和/或
    通过收发机接收相邻节点发送的广播消息,根据接收到的广播消息获取所述第一节点的网络感知信息。
  45. 根据权利要求43所述的网络设备,其特征在于,所述处理器具体用于从存储器中读取程序,执行下列过程:
    通过所述第一节点的收发机与相邻节点间的回程链路与所述第一节点的相邻节点进行交互,以获取所述第一节点的相邻节点的特性信息。
  46. 根据权利要求43所述的网络设备,其特征在于,所述第一节点与集中节点之间存在回程链路,且所述第一节点不在所述集中节点的管理范围内;所述处理器具体用于从存储器中读取程序,执行下列过程:若所述第一节点的相邻节点中包含第二节点,所述第二节点为所述集中节点管理范围内的节点,且所述第一节点与所述第二节点之间不存在回程链路,则通过所述第一节点的收发机与所述集中节点间的回程链路与所述集中节点进行交互,以获取所述第二节点的特性信息。
  47. 根据权利要求43所述的网络设备,其特征在于,所述第一节点不在集中节点的管理范围内;所述处理器具体用于从存储器中读取程序,执行下列过程:
    若所述第一节点的相邻节点中包含第二节点,所述第二节点在集中节点的管理范围内,且所述第一节点与所述第二节点之间存在回程链路,则:
    通过所述第一节点的收发机与所述第二节点间的回程链路与所述第二节点进行交互,以请求获取所述第二节点的特性信息,并接收所述第二节点的特性信息;其中,所述第二节点通过所述第二节点与所述集中节点之间的回程链路从所述集中节点获取所述第二节点的特性信息并发送给所述第一节点;或者
    通过所述第一节点的收发机与所述第二节点间的回程链路与所述第二节点进行交互,获取所述第二节点的特性信息。
  48. 根据权利要求36~47任一项所述的网络设备,其特征在于,所述处理器还用于从存储器中读取程序,执行下列过程:
    当所述收发机接收到所述第一节点的相邻节点接入或离开的指示时,或者检测到所述第一节点的相邻节点移动时,更新所述第一节点的环境信息地图。
PCT/CN2015/090194 2014-12-10 2015-09-21 一种基于网络感知的服务策略配置方法及网络设备 WO2016090987A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15867553.8A EP3232704B1 (en) 2014-12-10 2015-09-21 Network perception based service policy configuration method and network device
US15/534,473 US10341174B2 (en) 2014-12-10 2015-09-21 Network perception based service policy configuration method and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410757874.1A CN105744540B (zh) 2014-12-10 2014-12-10 一种基于网络感知的服务策略配置方法及网络设备
CN201410757874.1 2014-12-10

Publications (1)

Publication Number Publication Date
WO2016090987A1 true WO2016090987A1 (zh) 2016-06-16

Family

ID=56106629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/090194 WO2016090987A1 (zh) 2014-12-10 2015-09-21 一种基于网络感知的服务策略配置方法及网络设备

Country Status (4)

Country Link
US (1) US10341174B2 (zh)
EP (1) EP3232704B1 (zh)
CN (1) CN105744540B (zh)
WO (1) WO2016090987A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109891762A (zh) * 2016-11-04 2019-06-14 瑞典爱立信有限公司 用于处理波束故障的方法和装置
US10979158B2 (en) * 2017-08-03 2021-04-13 T-Mobile Usa, Inc. User equipment including spectrum analyzer, and network device
CN110419232A (zh) 2018-02-28 2019-11-05 慧与发展有限责任合伙企业 选择接入点的角色
WO2019210939A1 (en) * 2018-05-02 2019-11-07 Huawei Technologies Co., Ltd. Coordinator network node and access network nodes for resource allocation in a wireless communication system
CN112189322B (zh) * 2018-05-21 2022-07-22 华为技术有限公司 网络设备的配置方法及装置、存储介质
CN112312455B (zh) * 2019-07-31 2022-07-26 成都华为技术有限公司 波束测量方法及装置
CN115474162B (zh) * 2021-06-11 2023-08-15 极米科技股份有限公司 广播感知进程协商的方法、装置、设备、系统及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101658058A (zh) * 2006-10-10 2010-02-24 美国博通公司 感应rf环境以管理移动网络资源
CN101990197A (zh) * 2009-08-05 2011-03-23 中兴通讯股份有限公司 一种实现家庭基站中小区物理标识配置的方法及系统
CN102355680A (zh) * 2011-09-27 2012-02-15 华为技术有限公司 一种基站开站的方法及装置
CN102595416A (zh) * 2012-02-16 2012-07-18 北京邮电大学 蜂窝通信系统中的物理小区标识自适应分配方法
WO2014144079A2 (en) * 2013-03-15 2014-09-18 Amanna Ashwin System and method for heterogeneous spectrum sharing between commercial cellular operators and legacy incumbent users in wireless networks

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050254429A1 (en) * 2002-06-28 2005-11-17 Takeshi Kato Management node deice, node device, network configuration management system, network configuration management method, node device control method, management node device control method
CN101282569B (zh) * 2007-04-03 2012-11-14 中兴通讯股份有限公司 包含基站和无线中继站的无线传输网络的自适应管理方法
US8194611B2 (en) * 2009-03-19 2012-06-05 Clearwire Ip Holdings Llc System and method of automatically optimizing an operational radio access network
US9288690B2 (en) * 2010-05-26 2016-03-15 Qualcomm Incorporated Apparatus for clustering cells using neighbor relations
EP2418889A1 (en) * 2010-07-22 2012-02-15 Alcatel Lucent Telecommunications network node and methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101658058A (zh) * 2006-10-10 2010-02-24 美国博通公司 感应rf环境以管理移动网络资源
CN101990197A (zh) * 2009-08-05 2011-03-23 中兴通讯股份有限公司 一种实现家庭基站中小区物理标识配置的方法及系统
CN102355680A (zh) * 2011-09-27 2012-02-15 华为技术有限公司 一种基站开站的方法及装置
CN102595416A (zh) * 2012-02-16 2012-07-18 北京邮电大学 蜂窝通信系统中的物理小区标识自适应分配方法
WO2014144079A2 (en) * 2013-03-15 2014-09-18 Amanna Ashwin System and method for heterogeneous spectrum sharing between commercial cellular operators and legacy incumbent users in wireless networks

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3232704A4 *

Also Published As

Publication number Publication date
US10341174B2 (en) 2019-07-02
EP3232704A4 (en) 2017-11-15
CN105744540A (zh) 2016-07-06
US20170339012A1 (en) 2017-11-23
CN105744540B (zh) 2019-09-17
EP3232704A1 (en) 2017-10-18
EP3232704B1 (en) 2019-08-14

Similar Documents

Publication Publication Date Title
JP7335304B2 (ja) ハイブリッドモビリティおよび無線リソース管理機構
US10667191B2 (en) Autonomous LTE-WLAN interface setup and information exchange
WO2016090987A1 (zh) 一种基于网络感知的服务策略配置方法及网络设备
US11134427B2 (en) Terminal, base station, cell access method, and data transmission method for reconfiguring a wireless connection to communicate with a secondary cell
US9544827B2 (en) Enhanced local access in mobile communications with FDD resource allocation
US20170150412A1 (en) Location processing in small cells implementing multiple air interfaces
CN102625438B (zh) 一种进行同步的方法、系统和设备
CN106465258A (zh) 基于优先化的节点进行小区选择的系统、方法和设备
JP2016187213A (ja) セルラー無線ネットワークに対する未ライセンス無線スペクトラムのチャネルの測定結果の報告
WO2015018081A1 (zh) 测量方法及装置,信息交互方法及装置,驻留方法及装置技术领域
US20160192283A1 (en) Method for searching wireless lan and method for transferring wireless lan search information
WO2016180213A1 (zh) AP组信息处理方法及eNB
EP4042762A1 (en) Methods for determining a muting pattern of ssb transmission for iab node measurement
US9699670B2 (en) Method for configuring interface in mobile communication system supporting multiple wireless access technologies and apparatus for performing same
Chen et al. Ultra-dense network architecture and technologies for 5G
Zehl et al. Practical distributed channel assignment in home Wi-Fi networks
Wu et al. Overview of heterogeneous networks
CN107306381A (zh) Lwa网络中配置wlan移动集的方法
Levanti et al. A CAPWAP architecture for automatic frequency planning in WLAN
Sathya et al. Roaming Performance Analysis and Comparison between Wi-Fi and Private Cellular Network
KR20150030589A (ko) 무선랜 정보 전송 방법 및 네트워크 시스템
Collotta et al. PSmallcells: RECOMMENDATIONS FOR SMALL CELL DEVELOPMENT AND DEPLOYMENT BY NGMN ALLIANCE
Asadi et al. Document Properties Document Number: D 3.3

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15867553

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015867553

Country of ref document: EP