WO2016090936A1 - 超级小区下的空分多址接入方法及其基站、存储介质 - Google Patents

超级小区下的空分多址接入方法及其基站、存储介质 Download PDF

Info

Publication number
WO2016090936A1
WO2016090936A1 PCT/CN2015/086546 CN2015086546W WO2016090936A1 WO 2016090936 A1 WO2016090936 A1 WO 2016090936A1 CN 2015086546 W CN2015086546 W CN 2015086546W WO 2016090936 A1 WO2016090936 A1 WO 2016090936A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
multiple access
unscheduled
division multiple
space division
Prior art date
Application number
PCT/CN2015/086546
Other languages
English (en)
French (fr)
Inventor
王雯芳
秦洪峰
李玉洁
张新
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016090936A1 publication Critical patent/WO2016090936A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present invention relates to the field of mobile communications, and in particular, to a space division multiple access method under a super cell, a base station, and a storage medium.
  • LTE Long Term Evolution
  • MIMO Multiple Input Multiple Output
  • a super-cell is a cell form in an LTE system, and each super cell is composed of a plurality of CPs (Cell-Portions).
  • Each CP shares resources of a super cell, including a cell ID (Cell ID), a time domain resource, a frequency domain resource, and the like, and multiple CPs can jointly process signals of the same user.
  • a SDMA (Spatial Division Multiplex Access) method in a super cell in the prior art which measures the mutual interference between the primary user and the secondary user, only in the primary user and the secondary user.
  • the mutual interference is less than a certain threshold, the spatial division multiple access can be performed.
  • the matching rate between the primary user and the secondary user that meets this condition is not high, so the probability that the user can perform space division multiple access is low.
  • the calling user and the slave user must occupy the same time-frequency resources, which limits the flexibility of resource allocation.
  • the present invention provides a space division multiple access method under a super cell, a base station, and a storage medium, to solve the problem that the space division multiple access method under the existing super cell has low probability of space division multiple access. Technical issues with low resource allocation flexibility.
  • the present invention provides a spatial division multiple access method under a super cell, and the spatial division multiple access method under the super cell includes the following steps:
  • the step of acquiring a CP activation set of each unscheduled user includes:
  • the determined set of activated CPs of the unscheduled user is taken as the CP active set of the unscheduled user.
  • the step of acquiring a CP activation set of each unscheduled user includes:
  • the method further includes:
  • the unscheduled user after the space division multiple access in the unscheduled users with no intersection of the CP active sets between the unscheduled users is determined to be larger than the unscheduled user performing the throughput before the space division multiple access as the new space division multiple access user;
  • the step of allocating the same time-frequency resource or different time-frequency resource to the space division multiple access user is replaced by:
  • the method further includes:
  • Unscheduled users that do not have an intersection of CP active sets between unscheduled users are sorted according to scheduling priorities;
  • the step of allocating the same time-frequency resource or different time-frequency resource to the space division multiple access user is replaced by:
  • the unscheduled user that performs the space division multiple access in the unscheduled users that have no intersection between the CP active sets of the unscheduled users is determined to be greater than the unscheduled user that performs the throughput before the space division multiple access.
  • the new air separation multiple access user steps also include:
  • the determined new space division multiple access user is sorted according to the scheduling priority
  • the step of allocating the same time-frequency resource or different time-frequency resource to the new space division multiple access user is replaced by:
  • the present invention further provides a base station for space division multiple access in a super cell, where the base station of the space division multiple access under the super cell includes:
  • a CP activation set acquisition module configured to acquire a CP activation set of each unscheduled user
  • a space division multiple access user determining module configured to determine an unscheduled user that does not have an intersection of CP active sets between unscheduled users as a space division multiple access user
  • the resource allocation module is configured to allocate the same time-frequency resource or different time-frequency resources to the space division multiple access user.
  • the CP activation set acquisition module includes:
  • the signal parameter obtaining unit is configured to acquire a CP corresponding to the unscheduled user, and obtain a signal parameter value of the unscheduled user on each CP;
  • Activating the CP determining unit configured to determine that the CP is an active CP of the unscheduled user if the signal parameter value of the unscheduled user on each CP is greater than a preset signal parameter threshold;
  • the CP activation set determining unit is configured to use the determined set of activated CPs of the unscheduled user as the CP active set of the unscheduled user.
  • the CP activation set acquisition module includes:
  • the signal parameter obtaining unit is configured to acquire a CP corresponding to the unscheduled user, and obtain a signal parameter value of the unscheduled user on each CP;
  • Activating the CP determining unit configured to acquire the unscheduled user on the CP corresponding to the unscheduled user
  • the CP with the largest signal parameter value; the difference between the signal parameter value of the unscheduled user on the CP with the largest signal parameter value and the signal parameter value of the unscheduled user on the other CP; if the difference is smaller than the preset signal parameter a difference threshold, determining that the CP is an active CP of the unscheduled user;
  • the CP activation set determining unit is configured to use the determined set of activated CPs of the unscheduled user as the CP active set of the unscheduled user.
  • the space division multiple access user determining module is further configured to:
  • the unscheduled user after the space division multiple access in the unscheduled users with no intersection of the CP active sets between the unscheduled users is determined to be larger than the unscheduled user performing the throughput before the space division multiple access as the new space division multiple access user;
  • the resource allocation module is configured to:
  • the space division multiple access user determining module is further configured to:
  • Unscheduled users that do not have an intersection of CP active sets between unscheduled users are sorted according to scheduling priorities;
  • the resource allocation module is configured to:
  • the space division multiple access user determining module is further configured to:
  • the determined new space division multiple access user is sorted according to the scheduling priority
  • the resource allocation module is configured to:
  • a storage medium storing a computer program configured to perform the aforementioned spatial division multiple access method under a super cell.
  • the present invention determines the CP active set of each unscheduled user, and then determines the unscheduled user that does not have an intersection of the CP active sets between the unscheduled users as the air separation multiple access user, and then connects the space division multiple access.
  • the user allocates the same time-frequency resource or different time-frequency resources, which improves the probability of space-division multiple access and the flexibility of resource allocation under the super cell.
  • FIG. 1 is a schematic flowchart of a first embodiment of a method for spatial division multiple access in a super cell according to the present invention
  • FIG. 2 is a schematic diagram showing the refinement process of the first embodiment of the step of acquiring the CP activation set of each unscheduled user in FIG. 1;
  • FIG. 3 is a schematic diagram of a refinement process of the second embodiment of the step of acquiring a CP activation set of each unscheduled user in FIG. 1;
  • FIG. 4 is a schematic flowchart of a third embodiment of the step of acquiring a CP activation set of each unscheduled user in FIG. 1;
  • FIG. 5 is a schematic flowchart of a second embodiment of a method for accessing a spatial division multiple access in a super cell according to the present invention
  • FIG. 6 is a schematic flowchart of a third embodiment of a method for accessing a spatial division multiple access in a super cell according to the present invention.
  • FIG. 7 is a schematic flowchart of a fourth embodiment of a method for accessing a spatial division multiple access in a super cell according to the present invention.
  • FIG. 8 is a schematic diagram of functional modules of a base station for space division multiple access in a super cell according to the present invention.
  • the invention provides a space division multiple access method under a super cell.
  • FIG. 1 is a schematic flowchart diagram of a first embodiment of a spatial division multiple access method in a super cell according to the present invention.
  • the space division multiple access method under the super cell includes the following steps:
  • Step S11 acquiring a CP activation set of each unscheduled user
  • the base station acquires all CPs corresponding to the unscheduled user.
  • the signal values of the unscheduled users received on all the CPs corresponding to the unscheduled users are different.
  • some CPs have high performance in communicating with the unscheduled users.
  • Some CPs have low performance in communicating with the unscheduled user, and the high performance CP that communicates with the unscheduled user is determined as the active CP of the unscheduled user; otherwise, the inactive CP of the unscheduled user is determined.
  • the determined set of activated CPs of the unscheduled user is taken as the CP active set of the unscheduled user.
  • Step S12 Determine an unscheduled user that has no intersection of CP active sets between unscheduled users as a space division multiple access user;
  • the CP activation set of each unscheduled user in the super cell can be obtained in step S11, and the CP activation sets of the unscheduled users are compared, and the unscheduled users whose CP activation sets are not intersected among the unscheduled users are determined as the space division multiple access. Access users.
  • Step S13 Allocate the same time-frequency resource or different time-frequency resources to the space division multiple access user.
  • the same time-frequency resource or different time-frequency resource is allocated to each space-division multiple access user.
  • the demodulation reference signal sequence of the space division multiple access user satisfies a certain orthogonality, so that the base station can distinguish different space division multiple access.
  • the user demodulates the data of each space division multiple access user.
  • the spatial division multiple access method in the super cell provided in this embodiment first acquires a CP active set of each unscheduled user, and then determines an unscheduled user whose CP active set is not intersected among unscheduled users as an air score. The multiple access user then allocates the same time-frequency resource or different time-frequency resources to the space division multiple access user.
  • the space division multiple access method under the super cell disclosed in this embodiment can improve the probability of performing space division multiple access and the flexibility of resource allocation.
  • the foregoing step S11 includes:
  • Step S1111 Acquire a CP corresponding to the unscheduled user, and obtain a signal parameter value of the unscheduled user on each CP.
  • the signal of the unscheduled user is received on all the CPs corresponding to the unscheduled user, and the received signal of the unscheduled user includes signal quality, SINR, and SINR after interference cancellation. And other signal parameters.
  • the base station acquires all CPs corresponding to the unscheduled user and signal parameter values of the unscheduled user on each CP.
  • the base station acquires an SINR (Signal to Interference plus Noise Ratio) of the unscheduled user on each CP corresponding to the unscheduled user.
  • the base station may further acquire at least one of the signal parameters, such as the signal quality, the SINR, and the SINR after the interference cancellation, of the unscheduled user on each CP corresponding to the unscheduled user.
  • Step S1112 If the signal parameter value of the unscheduled user on each CP is greater than the preset signal parameter threshold, determine that the CP is an active CP of the unscheduled user;
  • the SINR value of the unscheduled user on each CP corresponding to the unscheduled user is compared with a preset SINR threshold, and if the SINR value of the unscheduled user on the CP is greater than the preset SINR gate
  • the limit value is determined to be the active CP of the unscheduled user. If the SINR value of the unscheduled user on the CP is less than or equal to the preset SINR threshold, the CP is determined to be the inactive CP of the unscheduled user.
  • the preset SINR threshold can be flexibly set according to the actual situation.
  • Step S1113 the determined set of activated CPs of the unscheduled user is taken as the unscheduled The user's CP activation set.
  • the activated CP of the unscheduled user in the CP corresponding to each unscheduled user in the super cell may be determined in step S1112, and the determined set of activated CPs of the unscheduled user is used as the CP active set of the unscheduled user.
  • the foregoing step S11 includes:
  • Step S1121 Acquire a CP corresponding to the unscheduled user, and obtain a signal parameter value of the unscheduled user on each CP.
  • the step of the base station acquiring all the CPs corresponding to the unscheduled users and the signal parameter values of the unscheduled users on each CP may refer to the foregoing step S1111, and details are not described herein again.
  • Step S1122 Acquire a CP with the largest signal parameter value of the unscheduled user on the CP corresponding to the unscheduled user;
  • step S1121 Obtaining, according to step S1121, all the CPs corresponding to the unscheduled users and the SINR values of the unscheduled users on each of the CPs, and comparing the SINR values of the unscheduled users on all the CPs corresponding to the unscheduled users, and determining the acquisition.
  • Step S1123 Calculate a difference between a signal parameter value of the unscheduled user on the CP with the largest signal parameter value and a signal parameter value of the unscheduled user on the other CP, and if the difference is less than the preset signal parameter difference threshold, determine The CP is an active CP of the unscheduled user;
  • the preset SINR difference threshold can be flexibly set according to the actual situation.
  • Step S1124 The determined set of activated CPs of the unscheduled user is used as the CP active set of the unscheduled user.
  • step of determining the determined set of activated CPs of the unscheduled user as the CP active set of the unscheduled user may be referred to the foregoing step S1113, and details are not described herein again.
  • the foregoing step S11 includes:
  • Step S1131 Acquire a CP corresponding to the unscheduled user, and obtain a signal parameter value of the unscheduled user on each CP.
  • the step of the base station acquiring all the CPs corresponding to the unscheduled users and the signal parameter values of the unscheduled users on each CP may refer to the foregoing step S1111, and details are not described herein again.
  • Step S1132 Acquire a CP with the largest signal parameter value of the unscheduled user on the CP corresponding to the unscheduled user;
  • the step of acquiring the CP with the largest signal parameter value of the unscheduled user on the CP corresponding to the unscheduled user may be referred to the foregoing step S1122, and details are not described herein again.
  • Step S1133 calculating a difference between a signal parameter value of the unscheduled user on the CP with the largest signal parameter value and a signal parameter value of the unscheduled user on the other CP, if the difference is less than a preset signal parameter difference threshold, and If the signal parameter value of the unscheduled user on the CP is greater than a preset signal parameter threshold, determining that the CP is an active CP of the unscheduled user;
  • the CP with the largest SINR value of the unscheduled user on the CP corresponding to the unscheduled user and calculating the SINR value of the unscheduled user on the CP with the largest SINR value and the SINR value of the unscheduled user on the other CP.
  • a difference if the difference is less than a preset SINR difference threshold, and the SINR value of the unscheduled user on the CP is greater than a preset SINR threshold, determining that the CP is an active CP of the unscheduled user; otherwise, It is determined that the CP is an inactive CP of the unscheduled user.
  • the preset SINR threshold and the preset SINR difference threshold can be flexibly set according to actual conditions.
  • Step S1134 the determined set of activated CPs of the unscheduled user is taken as the CP active set of the unscheduled user.
  • step of determining the determined set of activated CPs of the unscheduled user as the CP active set of the unscheduled user may be referred to the foregoing step S1113, and details are not described herein again.
  • FIG. 5 is a schematic flowchart diagram of a second embodiment of a spatial division multiple access method in a super cell according to the present invention.
  • the space division multiple access method under the super cell includes the following steps:
  • Step S21 Acquire a CP activation set of each unscheduled user
  • step of acquiring the CP activation set of each unscheduled user may be referred to step S11 of the first embodiment, and details are not described herein again.
  • Step S22 Determine an unscheduled user that has no intersection of CP active sets between unscheduled users as a space division multiple access user;
  • step S12 of the first embodiment the step of determining the unscheduled user that does not have an intersection of the CP active sets between the unscheduled users as the spatial division multiple access user may be referred to step S12 of the first embodiment, and details are not described herein again.
  • Step S23 Estimating the throughput of the unscheduled users in the CP active set between the unscheduled users after the space division multiple access and before performing the space division multiple access;
  • step S22 Determining, according to step S22, that the unscheduled user that does not have an intersection of the CP active sets between the unscheduled users is a space division multiple access user, and then calculating the determined throughput of the space division multiple access user after performing space division multiple access and Throughput before space division multiple access.
  • the throughput of the space division multiple access user after the space division multiple access and the calculation of the throughput before the space division multiple access there are already mature algorithms in the prior art, and will not be described in detail here.
  • Step S24 determining that the unscheduled user after the space division multiple access in the unscheduled user that has no intersection of the CP active sets between the unscheduled users is greater than the throughput before the space division multiple access is determined as the new air separation.
  • Step S25 Allocating the same time-frequency resource or different time-frequency resource to the new space division multiple access user.
  • the step of allocating the same time-frequency resource or the different time-frequency resource to the new spatial-division multiple-access user may be referred to the step S13 of the first embodiment, and details are not described herein again.
  • the spatial division multiple access method in the super cell provided by this embodiment first acquires a CP active set of each unscheduled user; and then determines an unscheduled user whose inter-scheduled CP active set has no intersection as an air score.
  • the multiple access user estimates the throughput of the unscheduled users in the CP active set between the unscheduled users after the space division multiple access and the space before the space division multiple access, and the CP between the unscheduled users
  • the unscheduled user after the space division multiple access in the unscheduled user whose active set has no intersection is determined to be larger than the unscheduled user before the space division multiple access is determined as the new space division multiple access user;
  • the space division multiple access user allocates the same time-frequency resource or different time-frequency resources.
  • the space division multiple access method under the super cell disclosed in this embodiment can improve the probability of performing space division multiple access and the flexibility of resource allocation.
  • FIG. 6 is a schematic flowchart diagram of a third embodiment of a spatial division multiple access method in a super cell according to the present invention.
  • the space division multiple access method under the super cell includes the following steps:
  • Step S31 Acquire a CP activation set of each unscheduled user.
  • step of acquiring the CP activation set of each unscheduled user may be referred to step S11 of the first embodiment, and details are not described herein again.
  • Step S32 determining an unscheduled user that does not have an intersection of CP active sets between unscheduled users as a space division multiple access user;
  • step S12 of the first embodiment the step of determining the unscheduled user that does not have an intersection of the CP active sets between the unscheduled users as the spatial division multiple access user may be referred to step S12 of the first embodiment, and details are not described herein again.
  • Step S33 the unscheduled user that does not have an intersection of the CP activation sets between the unscheduled users is pressed. Sort by scheduling priority;
  • the scheduling priority of the unscheduled users whose CP active sets are not intersected between each unscheduled user is calculated, and the scheduling priorities are sorted from high to low.
  • scheduling priorities there are already mature algorithms in the prior art.
  • the base station determines the scheduling priority of the terminal according to the channel quality indicator reported by the terminal and the actual transmission rate of the terminal, or calculates the scheduling priority according to the normalized throughput of the user terminal, etc., and the calculation of the scheduling priority is not performed here. Detailed description.
  • Step S34 determining the top unscheduled user as the new spatial division multiple access user in turn until the determined new space division multiple access user reaches the allowed number of space division multiple access users;
  • the scheduling priority of the unscheduled users whose CP active sets are not intersected between the unscheduled users calculated in step S33 is: User 1 > User 2 > User 3 > ..., between the unscheduled users after sorting
  • the order of the unscheduled users that do not have an intersection of the CP active set is: user 1, user 2, user 3, ..., which will be the top user 1, user 2, user 3 in order... It is determined to be a new space division multiple access user until the determined new space division multiple access user reaches the number of allowed space division multiple access users.
  • the number of allowed space division multiple access users can be flexibly configured according to system processing capabilities.
  • Step S35 Allocate the same time-frequency resource or different time-frequency resource to the new space division multiple access user.
  • the step of allocating the same time-frequency resource or the different time-frequency resource to the new spatial-division multiple-access user may be referred to the step S13 of the first embodiment, and details are not described herein again.
  • the spatial division multiple access method in the super cell provided by this embodiment first acquires a CP active set of each unscheduled user; and then determines an unscheduled user whose inter-scheduled CP active set has no intersection as an air score.
  • a multiple access user which sorts the unscheduled users whose CP activation sets are not between the unscheduled users according to the scheduling priority, and sequentially ranks the first unscheduled users.
  • the user is determined to be a new space division multiple access user until the determined new space division multiple access user reaches the allowed number of space division multiple access users; and the new space division multiple access Users allocate the same time-frequency resources or different time-frequency resources.
  • the space division multiple access method under the super cell disclosed in this embodiment can improve the probability of performing space division multiple access and the flexibility of resource allocation.
  • FIG. 7 is a schematic flowchart diagram of a fourth embodiment of a spatial division multiple access method in a super cell according to the present invention.
  • the space division multiple access method under the super cell includes the following steps:
  • Step S41 acquiring a CP activation set of each unscheduled user
  • step of acquiring the CP activation set of each unscheduled user may be referred to step S11 of the first embodiment, and details are not described herein again.
  • Step S42 Determine an unscheduled user that does not have an intersection of CP active sets between unscheduled users as a space division multiple access user;
  • step S12 of the first embodiment the step of determining the unscheduled user that does not have an intersection of the CP active sets between the unscheduled users as the spatial division multiple access user may be referred to step S12 of the first embodiment, and details are not described herein again.
  • Step S43 estimating the throughput of the unscheduled users in the CP active set between the unscheduled users after the space division multiple access and before performing the space division multiple access;
  • the step of estimating the throughput of the unscheduled user that does not have an intersection between the unscheduled users and the unscheduled users after performing the space division multiple access and performing the space division multiple access may refer to step S23 of the second embodiment. As mentioned, it will not be repeated here.
  • Step S44 determining that the unscheduled user after the space division multiple access in the unscheduled user having no intersection of the CP active sets between the unscheduled users is greater than the throughput before the space division multiple access is determined as the new air separation point.
  • the unscheduled user after the space division multiple access in the unscheduled users in which the CP active sets between the unscheduled users are not intersected is determined to be new than the unscheduled user that performs the throughput before the space division multiple access.
  • the step of accessing the user by the space division multiple access can be referred to the step S24 of the second embodiment, and details are not described herein again.
  • Step S45 the determined new space division multiple access user is sorted according to the scheduling priority
  • the scheduling priorities of each of the determined new spatial division multiple access users are calculated and sorted according to the scheduling priority from high to low.
  • the step of sorting the determined new spatial division multiple access users according to the scheduling priority may be referred to step S33 of the third embodiment, and details are not described herein again.
  • Step S46 sequentially determining the top unscheduled user as the final spatial division multiple access user until the determined final space division multiple access user reaches the allowed number of air-division multiple access users;
  • the top unscheduled user is determined as the final spatial division multiple access user in turn until the determined final air separation multiple access user reaches the allowed number of air separation multiple access users.
  • Step S47 Allocate the same time-frequency resource or different time-frequency resources to the final spatial division multiple access user.
  • step S13 of the first embodiment the step of allocating the same time-frequency resource or different time-frequency resources to the final spatial division multiple access user may be referred to step S13 of the first embodiment, and details are not described herein again.
  • the spatial division multiple access method in the super cell provided by this embodiment first acquires a CP active set of each unscheduled user; and then determines an unscheduled user whose inter-scheduled CP active set has no intersection as an air score.
  • the multiple access user estimates the throughput of the unscheduled users in the CP active set between the unscheduled users after the space division multiple access and the space before the space division multiple access, and the CP between the unscheduled users
  • the unscheduled user after the space division multiple access in the unscheduled user whose active set has no intersection is determined to be the new air separation multiple access user determined by the unscheduled user before the space division multiple access, and the determined new one is determined.
  • Space division multiple access users sorted according to scheduling priority, in turn Determining the top unscheduled user as the final air-division multiple access user until the determined final space-division multiple access user reaches the allowed number of air-division multiple access users;
  • the new space division multiple access users allocate the same time-frequency resources or different time-frequency resources.
  • the space division multiple access method under the super cell disclosed in this embodiment can improve the probability of performing space division multiple access and the flexibility of resource allocation.
  • the present invention further provides a base station for space division multiple access under a super cell.
  • FIG. 8 is a schematic diagram of functional blocks of a base station for space division multiple access in a super cell according to the present invention.
  • the base station of the space division multiple access under the super cell includes:
  • the CP activation set acquisition module 10 is configured to acquire a CP activation set of each unscheduled user
  • the space division multiple access user determining module 20 is configured to determine, as an air separation multiple access user, an unscheduled user that does not have an intersection of CP active sets between unscheduled users;
  • the resource allocation module 30 is configured to allocate the same time-frequency resource or different time-frequency resources to the space division multiple access user.
  • the spatial division multiple access user determination module 20 determines that the unscheduled users whose CP activation sets are not intersected among the unscheduled users are determined to be space division multiple access. Accessing the user, then the resource allocation module 30 allocates the same time-frequency resource or different time-frequency resources to the space division multiple access user.
  • the CP active set acquiring module 10 includes:
  • the signal parameter obtaining unit 101 is configured to acquire a CP corresponding to the unscheduled user, and obtain a signal parameter value of the unscheduled user on each CP;
  • the activation CP determining unit 102 is configured to determine that the CP is an active CP of the unscheduled user if the signal parameter value of the unscheduled user on each CP is greater than a preset signal parameter threshold;
  • the CP activation set determining unit 103 is configured to use the determined set of activated CPs of the unscheduled user as the CP active set of the unscheduled user.
  • the activation CP determining unit 102 is further configured to:
  • the activation CP determining unit 102 is further configured to:
  • the space division multiple access user determining module 20 is further configured to: predict that the unscheduled users whose CP active sets are not intersected between the unscheduled users perform space division multiple access and perform air separation multiple Throughput before the address;
  • the unscheduled user after the space division multiple access in the unscheduled users with no intersection of the CP active sets between the unscheduled users is determined to be larger than the unscheduled user performing the throughput before the space division multiple access as the new space division multiple access user;
  • the resource allocation module 30 is configured to allocate the same time-frequency resource or different time-frequency resources to the new spatial division multiple access user.
  • the space division multiple access user determining module 20 is further configured to: sort the unscheduled users whose CP active sets are not intersected among the unscheduled users according to the scheduling priority;
  • the resource allocation module 30 is configured to allocate the same time to the new space division multiple access user Frequency resources or different time-frequency resources.
  • the space division multiple access user determining module 20 is further configured to: predict that the unscheduled users whose CP active sets are not intersected between the unscheduled users perform space division multiple access and perform air separation multiple Throughput before the address;
  • the unscheduled user after the space division multiple access in the unscheduled users with no intersection of the CP active sets between the unscheduled users is determined to be larger than the unscheduled user performing the throughput before the space division multiple access as the new space division multiple access user;
  • the determined new space division multiple access user is sorted according to the scheduling priority
  • the resource allocation module 30 is configured to allocate the same time-frequency resource or different time-frequency resources to the final spatial division multiple access user.
  • the space division multiple access access user determination module is between unscheduled users.
  • the CP active set selects a space division multiple access user among the unscheduled users that do not have an intersection, and then the resource allocation module allocates the same time-frequency resource or different time-frequency resources to the space division multiple access user.
  • the base station of the space division multiple access in the super cell disclosed in this embodiment can improve the probability of performing space division multiple access and the flexibility of resource allocation.
  • the embodiment of the invention further describes a storage medium in which a computer program is stored, the computer program being configured to perform the spatial division multiple access method under the super cell of the foregoing embodiments.
  • the present invention determines the CP active set of each unscheduled user, and then determines the unscheduled user that does not have an intersection of the CP active sets between the unscheduled users as the air separation multiple access user, and then connects the space division multiple access.
  • the user allocates the same time-frequency resource or different time-frequency resources, which improves the probability of space-division multiple access and the flexibility of resource allocation under the super cell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种超级小区下的空分多址接入方法,该超级小区下的空分多址接入方法中,首先获取每个未调度用户的CP激活集,然后将未调度用户之间的CP激活集没有交集的未调度用户确定为空分多址接入用户,再对所述空分多址接入用户分配相同的时频资源或不同的时频资源。本发明还公开了一种超级小区下的空分多址接入的基站、存储介质。本发明公开的超级小区下的空分多址接入方法,提高了进行空分多址接入的概率和资源分配的灵活性。

Description

超级小区下的空分多址接入方法及其基站、存储介质 技术领域
本发明涉及移动通信领域,尤其涉及超级小区下的空分多址接入方法及其基站、存储介质。
背景技术
随着通信技术的不断演进,LTE(Long TermEvolution,长期演进)系统被广泛研究并逐步应用于商用网络。LTE系统以OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)和MIMO(Multiple-Input Multiple Output,多输入多输出)等核心技术为基础,为用户提供更高的数据传输率、更低的传输时延以及更优的服务质量。超级小区(Super-Cell)是LTE系统中的一种小区形式,每个超级小区由多个CP(Cell-Portion,子小区单元)组成。每一个CP共享超级小区的资源,包括小区标识(Cell ID)、时域资源、频域资源等等,多个CP可联合处理同一个用户的信号。
现有技术中的一种超级小区下的SDMA(Spatial Division Multiplex Access,空分多址接入)方法,通过测量主调用户和从调用户的互干扰,只有在主调用户和从调用户的互干扰小于一定的门限值时,才可以进行空分多址接入,满足此条件的主调用户和从调用户的匹配率不高,因此用户可以进行空分多址接入的概率低。并且现有SDMA方法中主调用户和从调用户必须占用完全相同的时频资源,限制了资源分配的灵活性。
发明内容
本发明提供一种超级小区下的空分多址接入方法及其基站、存储介质,以解决现有的超级小区下的空分多址接入方法进行空分多址接入概率低、 资源分配灵活性低的技术问题。
本发明提供了一种超级小区下的空分多址接入方法,所述超级小区下的空分多址接入方法包括以下步骤:
获取每个未调度用户的CP激活集;
将未调度用户之间的CP激活集没有交集的未调度用户确定为空分多址接入用户;
对所述空分多址接入用户分配相同的时频资源或不同的时频资源。
作为一种实现方式,所述获取每个未调度用户的CP激活集的步骤包括:
获取未调度用户对应的CP;
获取每个CP上该未调度用户的信号参数值;
若每个CP上该未调度用户的信号参数值大于预设信号参数门限值,则确定该CP为该未调度用户的激活CP;
将所确定的该未调度用户的激活CP的集合作为该未调度用户的CP激活集。
作为一种实现方式,所述获取每个未调度用户的CP激活集的步骤包括:
获取未调度用户对应的CP;
获取每个CP上该未调度用户的信号参数值;
获取未调度用户对应的CP上该未调度用户的信号参数值最大的CP;
计算信号参数值最大的CP上该未调度用户的信号参数值与其他CP上该未调度用户的信号参数值的差值;
若所述差值小于预设信号参数差阈值,则确定该CP为该未调度用户的激活CP;
将所确定的该未调度用户的激活CP的集合作为该未调度用户的CP激 活集。
作为一种实现方式,所述将未调度用户之间的CP激活集没有交集的未调度用户确定为空分多址接入用户的步骤之后还包括:
预估所述未调度用户之间的CP激活集没有交集的未调度用户进行空分多址后及进行空分多址前的吞吐量;
将未调度用户之间的CP激活集没有交集的未调度用户中进行空分多址后的吞吐量大于进行空分多址前的吞吐量的未调度用户确定为新的空分多址接入用户;
所述对所述空分多址接入用户分配相同的时频资源或不同的时频资源的步骤替换为:
对所述新的空分多址接入用户分配相同的时频资源或不同的时频资源。
作为一种实现方式,所述将未调度用户之间的CP激活集没有交集的未调度用户确定为空分多址接入用户的步骤之后还包括:
将未调度用户之间的CP激活集没有交集的未调度用户,按照调度优先级进行排序;
依次将排在最前面的未调度用户确定为新的空分多址接入用户,直到所确定的新的空分多址接入用户达到允许的空分多址接入用户数目;
所述对所述空分多址接入用户分配相同的时频资源或不同的时频资源的步骤替换为:
对所述新的空分多址接入用户分配相同的时频资源或不同的时频资源。
作为一种实现方式,所述将未调度用户之间的CP激活集没有交集的未调度用户中进行空分多址后的吞吐量大于进行空分多址前的吞吐量的未调度用户确定为新的空分多址接入用户的步骤之后还包括:
将所确定的新的空分多址接入用户,按照调度优先级进行排序;
依次将排在最前面的未调度用户确定为最终的空分多址接入用户,直到所确定的最终的空分多址接入用户达到允许的空分多址接入用户数目;
所述对所述新的空分多址接入用户分配相同的时频资源或不同的时频资源的步骤替换为:
对所述最终的空分多址接入用户分配相同的时频资源或不同的时频资源。
此外,本发明还提供一种超级小区下的空分多址接入的基站,所述超级小区下的空分多址接入的基站包括:
CP激活集获取模块,配置为获取每个未调度用户的CP激活集;
空分多址接入用户确定模块,配置为将未调度用户之间的CP激活集没有交集的未调度用户确定为空分多址接入用户;
资源分配模块,配置为对所述空分多址接入用户分配相同的时频资源或不同的时频资源。
作为一种实现方式,所述CP激活集获取模块包括:
信号参数获取单元,配置为获取未调度用户对应的CP,获取每个CP上该未调度用户的信号参数值;
激活CP确定单元,配置为若每个CP上该未调度用户的信号参数值大于预设信号参数门限值,则确定该CP为该未调度用户的激活CP;
CP激活集确定单元,配置为将所确定的该未调度用户的激活CP的集合作为该未调度用户的CP激活集。
作为一种实现方式,所述CP激活集获取模块包括:
信号参数获取单元,配置为获取未调度用户对应的CP,获取每个CP上该未调度用户的信号参数值;
激活CP确定单元,配置为获取未调度用户对应的CP上该未调度用户 的信号参数值最大的CP;计算信号参数值最大的CP上该未调度用户的信号参数值与其他CP上该未调度用户的信号参数值的差值;若所述差值小于预设信号参数差阈值,则确定该CP为该未调度用户的激活CP;
CP激活集确定单元,配置为将所确定的该未调度用户的激活CP的集合作为该未调度用户的CP激活集。
作为一种实现方式,所述空分多址接入用户确定模块还配置为:
预估所述未调度用户之间的CP激活集没有交集的未调度用户进行空分多址后及进行空分多址前的吞吐量;
将未调度用户之间的CP激活集没有交集的未调度用户中进行空分多址后的吞吐量大于进行空分多址前的吞吐量的未调度用户确定为新的空分多址接入用户;
所述资源分配模块配置为:
对所述新的空分多址接入用户分配相同的时频资源或不同的时频资源。
作为一种实现方式,所述空分多址接入用户确定模块还配置为:
将未调度用户之间的CP激活集没有交集的未调度用户,按照调度优先级进行排序;
依次将排在最前面的未调度用户确定为新的空分多址接入用户,直到所确定的新的空分多址接入用户达到允许的空分多址接入用户数目;
所述资源分配模块配置为:
对所述新的空分多址接入用户分配相同的时频资源或不同的时频资源。
作为一种实现方式,所述空分多址接入用户确定模块还配置为:
将所确定的新的空分多址接入用户,按照调度优先级进行排序;
依次将排在最前面的未调度用户确定为最终的空分多址接入用户,直 到所确定的最终的空分多址接入用户达到允许的空分多址接入用户数目;
所述资源分配模块配置为:
对所述最终的空分多址接入用户分配相同的时频资源或不同的时频资源。
一种存储介质,所述存储介质中存储有计算机程序,所述计算机程序配置为执行前述的超级小区下的空分多址接入方法。本发明通过获取每个未调度用户的CP激活集,然后将未调度用户之间的CP激活集没有交集的未调度用户确定为空分多址接入用户,再对所述空分多址接入用户分配相同的时频资源或不同的时频资源,提高了超级小区下进行空分多址接入的概率和资源分配的灵活性。
附图说明
图1为本发明超级小区下的空分多址接入方法第一实施例的流程示意图;
图2为图1中获取每个未调度用户的CP激活集步骤的第一实施例的细化流程示意图;
图3为图1中获取每个未调度用户的CP激活集步骤的第二实施例的细化流程示意图;
图4为图1中获取每个未调度用户的CP激活集步骤的第三实施例的细化流程示意图;
图5为本发明超级小区下的空分多址接入方法第二实施例的流程示意图;
图6为本发明超级小区下的空分多址接入方法第三实施例的流程示意图;
图7为本发明超级小区下的空分多址接入方法第四实施例的流程示意图;
图8为本发明超级小区下的空分多址接入的基站的功能模块示意图。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供一种超级小区下的空分多址接入方法。
参照图1,图1为本发明超级小区下的空分多址接入方法第一实施例的流程示意图。
在第一实施例中,该超级小区下的空分多址接入方法包括以下步骤:
步骤S11,获取每个未调度用户的CP激活集;
具体的,对于超级小区下的每一个未调度用户,基站获取该未调度用户对应的所有CP。在该未调度用户对应的所有CP上接收到的该未调度用户的信号值是有差异的,在该未调度用户对应的所有CP中,有些CP与该未调度用户进行通信的性能高,而有些CP与该未调度用户进行通信的性能低,将与该未调度用户进行通信的性能高的CP判定为该未调度用户的激活CP;反之则判定为该未调度用户的非激活CP。将所确定的该未调度用户的激活CP的集合作为该未调度用户的CP激活集。
步骤S12,将未调度用户之间的CP激活集没有交集的未调度用户确定为空分多址接入用户;
通过步骤S11可以获取超级小区下各个未调度用户的CP激活集,对各个未调度用户的CP激活集进行比较,将未调度用户之间CP激活集没有交集的未调度用户确定为空分多址接入用户。
步骤S13,对所述空分多址接入用户分配相同的时频资源或不同的时频资源。
通过步骤S12确定了空分多址接入用户后,对各空分多址接入用户分配相同的时频资源或不同的时频资源。其中,空分多址接入用户的解调参考信号序列满足一定的正交性,以使基站能够区分不同的空分多址接入用 户,并对各空分多址接入用户的数据进行解调。
本实施例提供的超级小区下的空分多址接入方法,首先获取每个未调度用户的CP激活集,然后将未调度用户之间的CP激活集没有交集的未调度用户确定为空分多址接入用户,再对所述空分多址接入用户分配相同的时频资源或不同的时频资源。本实施例公开的超级小区下的空分多址接入方法,可以提高进行空分多址接入的概率和资源分配的灵活性。
作为一种实现方式,如图2所示,上述步骤S11包括:
步骤S1111,获取未调度用户对应的CP,获取每个CP上该未调度用户的信号参数值;
对于超级小区下的每一个未调度用户,该未调度用户对应的所有CP上都接收到该未调度用户的信号,接收到的该未调度用户的信号包括信号质量、SINR、干扰消除后的SINR等信号参数。基站获取该未调度用户对应的所有CP以及在每个CP上该未调度用户的信号参数值。在本实施例中,基站获取该未调度用户对应的每个CP上该未调度用户的SINR(Signal to Interference plusNoise Ratio,信干噪比)。在其他实施例里,基站还可以获取该未调度用户对应的每个CP上该未调度用户的信号质量、SINR、干扰消除后的SINR等信号参数中的至少一个信号参数。
步骤S1112,若每个CP上该未调度用户的信号参数值大于预设信号参数门限值,则确定该CP为该未调度用户的激活CP;
本实施例中,将获取的该未调度用户对应的每个CP上该未调度用户的SINR值与预设SINR门限值进行比较,若CP上该未调度用户的SINR值大于预设SINR门限值,则确定该CP为该未调度用户的激活CP;若CP上该未调度用户的SINR值小于或者等于预设SINR门限值,则确定该CP为该未调度用户的非激活CP。预设SINR门限值可根据实际情况进行灵活设置。
步骤S1113,将所确定的该未调度用户的激活CP的集合作为该未调度 用户的CP激活集。
通过步骤S1112可以确定超级小区下每一个未调度用户对应的CP中该未调度用户的激活CP,将所确定的该未调度用户的激活CP的集合作为该未调度用户的CP激活集。
作为一种实现方式,如图3所示,上述步骤S11包括:
步骤S1121,获取未调度用户对应的CP,获取每个CP上该未调度用户的信号参数值;
具体地,基站获取未调度用户对应的所有CP以及在每个CP上该未调度用户的信号参数值的步骤可参照上述步骤S1111所述,在此就不再赘述。
步骤S1122,获取未调度用户对应的CP上该未调度用户的信号参数值最大的CP;
根据步骤S1121获取到每个未调度用户对应的所有CP以及每个CP上该未调度用户的SINR值,将获取的未调度用户对应的所有CP上该未调度用户的SINR值进行比较,确定获取到该未调度用户对应的所有CP上该未调度用户的SINR值最大的CP。
步骤S1123,计算信号参数值最大的CP上该未调度用户的信号参数值与其他CP上该未调度用户的信号参数值的差值,若所述差值小于预设信号参数差阈值,则确定该CP为该未调度用户的激活CP;
计算该SINR值最大的CP上该未调度用户的SINR值与其他CP上该未调度用户的SINR值的差值,若所述差值小于预设SINR差阈值,则确定该CP为该未调度用户的激活CP;若所述差值大于或者等于预设SINR差阈值,则确定该CP为该未调度用户的非激活CP。预设SINR差阈值可根据实际情况进行灵活设置。
步骤S1124,将所确定的该未调度用户的激活CP的集合作为该未调度用户的CP激活集。
具体地,将所确定的该未调度用户的激活CP的集合作为该未调度用户的CP激活集的步骤可参照上述步骤S1113所述,在此就不再赘述。
作为一种实现方式,如图4所示,上述步骤S11包括:
步骤S1131,获取未调度用户对应的CP,获取每个CP上该未调度用户的信号参数值;
具体地,基站获取未调度用户对应的所有CP以及在每个CP上该未调度用户的信号参数值的步骤可参照上述步骤S1111所述,在此就不再赘述。
步骤S1132,获取未调度用户对应的CP上该未调度用户的信号参数值最大的CP;
具体地,获取未调度用户对应的CP上该未调度用户的信号参数值最大的CP的步骤可参照上述步骤S1122所述,在此就不再赘述。
步骤S1133,计算信号参数值最大的CP上该未调度用户的信号参数值与其他CP上该未调度用户的信号参数值的差值,若所述差值小于预设信号参数差阈值,且所述CP上该未调度用户的信号参数值大于预设信号参数门限值,则确定该CP为该未调度用户的激活CP;
根据步骤S1132获取到未调度用户对应的CP上该未调度用户的SINR值最大的CP,计算该SINR值最大的CP上该未调度用户的SINR值与其他CP上该未调度用户的SINR值的差值,若所述差值小于预设SINR差阈值,且所述CP上该未调度用户的SINR值大于预设SINR门限值,则确定该CP为该未调度用户的激活CP;否则,确定该CP为该未调度用户的非激活CP。预设SINR门限值和预设SINR差阈值可根据实际情况进行灵活设置。
步骤S1134,将所确定的该未调度用户的激活CP的集合作为该未调度用户的CP激活集。
具体地,将所确定的该未调度用户的激活CP的集合作为该未调度用户的CP激活集的步骤可参照上述步骤S1113所述,在此就不再赘述。
作为一种实现方式,参照图5,图5为本发明超级小区下的空分多址接入方法第二实施例的流程示意图。
在第二施例中,该超级小区下的空分多址接入方法包括以下步骤:
步骤S21,获取每个未调度用户的CP激活集;
具体地,获取每个未调度用户的CP激活集的步骤可参照第一实施例的步骤S11所述,在此就不再赘述。
步骤S22,将未调度用户之间的CP激活集没有交集的未调度用户确定为空分多址接入用户;
具体地,将未调度用户之间的CP激活集没有交集的未调度用户确定为空分多址接入用户的步骤可参照第一实施例的步骤S12所述,在此就不再赘述。
步骤S23,预估所述未调度用户之间的CP激活集没有交集的未调度用户进行空分多址后及进行空分多址前的吞吐量;
根据步骤S22确定未调度用户之间的CP激活集没有交集的未调度用户为空分多址接入用户,然后计算出所确定的空分多址接入用户进行空分多址后的吞吐量以及进行空分多址前的吞吐量。对空分多址接入用户进行空分多址后的吞吐量以及进行空分多址前的吞吐量的计算,现有技术中已经有很成熟的算法,这里就不作详细的描述。
步骤S24,将未调度用户之间的CP激活集没有交集的未调度用户中进行空分多址后的吞吐量大于进行空分多址前的吞吐量的未调度用户确定为新的空分多址接入用户;
比较步骤S23中计算出的所确定的空分多址接入用户进行空分多址后的吞吐量和进行空分多址前的吞吐量的大小,将所确定的空分多址接入用户中进行空分多址后的吞吐量大于进行空分多址前的吞吐量的未调度用户确定为新的空分多址接入用户。
步骤S25,对所述新的空分多址接入用户分配相同的时频资源或不同的时频资源。
具体地,对所述新的空分多址接入用户分配相同的时频资源或不同的时频资源的步骤可参照第一实施例的步骤S13所述,在此就不再赘述。
本实施例提供的超级小区下的空分多址接入方法,首先获取每个未调度用户的CP激活集;然后将未调度用户之间的CP激活集没有交集的未调度用户确定为空分多址接入用户,预估所述未调度用户之间的CP激活集没有交集的未调度用户进行空分多址后及进行空分多址前的吞吐量,将未调度用户之间的CP激活集没有交集的未调度用户中进行空分多址后的吞吐量大于进行空分多址前的吞吐量的未调度用户确定为新的空分多址接入用户;再对所述新的空分多址接入用户分配相同的时频资源或不同的时频资源。本实施例公开的超级小区下的空分多址接入方法,可以提高进行空分多址接入的概率和资源分配的灵活性。
作为一种实现方式,参照图6,图6为本发明超级小区下的空分多址接入方法第三实施例的流程示意图。
在第三施例中,该超级小区下的空分多址接入方法包括以下步骤:
步骤S31,获取每个未调度用户的CP激活集;
具体地,获取每个未调度用户的CP激活集的步骤可参照第一实施例的步骤S11所述,在此就不再赘述。
步骤S32,将未调度用户之间的CP激活集没有交集的未调度用户确定为空分多址接入用户;
具体地,将未调度用户之间的CP激活集没有交集的未调度用户确定为空分多址接入用户的步骤可参照第一实施例的步骤S12所述,在此就不再赘述。
步骤S33,将未调度用户之间的CP激活集没有交集的未调度用户,按 照调度优先级进行排序;
计算每一个未调度用户之间的CP激活集没有交集的未调度用户的调度优先级,并按照调度优先级从高到低进行排序。对调度优先级的计算,现有技术中已经有很成熟的算法。例如,基站根据终端上报的信道质量指示及终端实际的传输速率确定终端的调度优先级,或者根据用户终端的归一化吞吐量来计算调度优先级等等,对于调度优先级的计算这里就不作详细的描述。
步骤S34,依次将排在最前面的未调度用户确定为新的空分多址接入用户,直到所确定的新的空分多址接入用户达到允许的空分多址接入用户数目;
假设步骤S33计算的未调度用户之间的CP激活集没有交集的未调度用户的调度优先级为:用户1>用户2>用户3>......,排序后的未调度用户之间的CP激活集没有交集的未调度用户的顺序为:用户1、用户2、用户3......,依次将排在最前面的用户1、用户2、用户3......确定为新的空分多址接入用户,直到所确定的新的空分多址接入用户达到允许的空分多址接入用户数目。允许的空分多址接入用户数目可以根据系统处理能力进行灵活配置。
步骤S35,对所述新的空分多址接入用户分配相同的时频资源或不同的时频资源。
具体地,对所述新的空分多址接入用户分配相同的时频资源或不同的时频资源的步骤可参照第一实施例的步骤S13所述,在此就不再赘述。
本实施例提供的超级小区下的空分多址接入方法,首先获取每个未调度用户的CP激活集;然后将未调度用户之间的CP激活集没有交集的未调度用户确定为空分多址接入用户,将未调度用户之间的CP激活集没有交集的未调度用户,按照调度优先级进行排序,依次将排在最前面的未调度用 户确定为新的空分多址接入用户,直到所确定的新的空分多址接入用户达到允许的空分多址接入用户数目;再对所述新的空分多址接入用户分配相同的时频资源或不同的时频资源。本实施例公开的超级小区下的空分多址接入方法,可以提高进行空分多址接入的概率和资源分配的灵活性。
作为一种实现方式,参照图7,图7为本发明超级小区下的空分多址接入方法第四实施例的流程示意图。
在第四施例中,该超级小区下的空分多址接入方法包括以下步骤:
步骤S41,获取每个未调度用户的CP激活集;
具体地,获取每个未调度用户的CP激活集的步骤可参照第一实施例的步骤S11所述,在此就不再赘述。
步骤S42,将未调度用户之间的CP激活集没有交集的未调度用户确定为空分多址接入用户;
具体地,将未调度用户之间的CP激活集没有交集的未调度用户确定为空分多址接入用户的步骤可参照第一实施例的步骤S12所述,在此就不再赘述。
步骤S43,预估所述未调度用户之间的CP激活集没有交集的未调度用户进行空分多址后及进行空分多址前的吞吐量;
具体地,预估所述未调度用户之间的CP激活集没有交集的未调度用户进行空分多址后及进行空分多址前的吞吐量的步骤可参照第二实施例的步骤S23所述,在此就不再赘述。
步骤S44,将未调度用户之间的CP激活集没有交集的未调度用户中进行空分多址后的吞吐量大于进行空分多址前的吞吐量的未调度用户确定为新的空分多址接入用户;
具体地,将未调度用户之间的CP激活集没有交集的未调度用户中进行空分多址后的吞吐量大于进行空分多址前的吞吐量的未调度用户确定为新 的空分多址接入用户的步骤可参照第二实施例的步骤S24所述,在此就不再赘述。
步骤S45,将所确定的新的空分多址接入用户,按照调度优先级进行排序;
计算每一个所确定的新的空分多址接入用户的调度优先级,并按照调度优先级从高到低进行排序。具体地,将所确定的新的空分多址接入用户,按照调度优先级进行排序的步骤可参照第三实施例的步骤S33所述,在此就不再赘述。
步骤S46,依次将排在最前面的未调度用户确定为最终的空分多址接入用户,直到所确定的最终的空分多址接入用户达到允许的空分多址接入用户数目;
具体地,依次将排在最前面的未调度用户确定为最终的空分多址接入用户,直到所确定的最终的空分多址接入用户达到允许的空分多址接入用户数目的步骤可参照第三实施例的步骤S34所述,在此就不再赘述。
步骤S47,对所述最终的空分多址接入用户分配相同的时频资源或不同的时频资源。
具体地,对所述最终的空分多址接入用户分配相同的时频资源或不同的时频资源的步骤可参照第一实施例的步骤S13所述,在此就不再赘述。
本实施例提供的超级小区下的空分多址接入方法,首先获取每个未调度用户的CP激活集;然后将未调度用户之间的CP激活集没有交集的未调度用户确定为空分多址接入用户,预估所述未调度用户之间的CP激活集没有交集的未调度用户进行空分多址后及进行空分多址前的吞吐量,将未调度用户之间的CP激活集没有交集的未调度用户中进行空分多址后的吞吐量大于进行空分多址前的吞吐量的未调度用户确定为新的空分多址接入用户,将所确定的新的空分多址接入用户,按照调度优先级进行排序,依次 将排在最前面的未调度用户确定为最终的空分多址接入用户,直到所确定的最终的空分多址接入用户达到允许的空分多址接入用户数目;再对所述新的空分多址接入用户分配相同的时频资源或不同的时频资源。本实施例公开的超级小区下的空分多址接入方法,可以提高进行空分多址接入的概率和资源分配的灵活性。
本发明进一步提供一种超级小区下的空分多址接入的基站。参照图8,图8为本发明超级小区下的空分多址接入的基站的功能模块示意图。该超级小区下的空分多址接入的基站包括:
CP激活集获取模块10,配置为获取每个未调度用户的CP激活集;
空分多址接入用户确定模块20,配置为将未调度用户之间的CP激活集没有交集的未调度用户确定为空分多址接入用户;
资源分配模块30,配置为对所述空分多址接入用户分配相同的时频资源或不同的时频资源。
CP激活集获取模块10获取每个未调度用户的CP激活集后,空分多址接入用户确定模块20将未调度用户之间的CP激活集没有交集的未调度用户确定为空分多址接入用户,然后资源分配模块30对所述空分多址接入用户分配相同的时频资源或不同的时频资源。
具体地,上述超级小区下的空分多址接入的基站中,CP激活集获取模块10包括:
信号参数获取单元101,配置为获取未调度用户对应的CP,获取每个CP上该未调度用户的信号参数值;
激活CP确定单元102,配置为若每个CP上该未调度用户的信号参数值大于预设信号参数门限值,则确定该CP为该未调度用户的激活CP;
CP激活集确定单元103,配置为将所确定的该未调度用户的激活CP的集合作为该未调度用户的CP激活集。
作为一种实现方式,激活CP确定单元102还用于:
获取未调度用户对应的CP上该未调度用户的信号参数值最大的CP;计算信号参数值最大的CP上该未调度用户的信号参数值与其他CP上该未调度用户的信号参数值的差值;若所述差值小于预设信号参数差阈值,则确定该CP为该未调度用户的激活CP。
作为一种实现方式,激活CP确定单元102还配置为:
获取未调度用户对应的CP上该未调度用户的信号参数值最大的CP;计算信号参数值最大的CP上该未调度用户的信号参数值与其他CP上该未调度用户的信号参数值的差值,若所述差值小于预设信号参数差阈值,且所述CP上该未调度用户的信号参数值大于预设信号参数门限值,则确定该CP为该未调度用户的激活CP。
作为一种实现方式,空分多址接入用户确定模块20还配置为:预估所述未调度用户之间的CP激活集没有交集的未调度用户进行空分多址后及进行空分多址前的吞吐量;
将未调度用户之间的CP激活集没有交集的未调度用户中进行空分多址后的吞吐量大于进行空分多址前的吞吐量的未调度用户确定为新的空分多址接入用户;
资源分配模块30配置为:对所述新的空分多址接入用户分配相同的时频资源或不同的时频资源。
作为一种实现方式,空分多址接入用户确定模块20还配置为:将未调度用户之间的CP激活集没有交集的未调度用户,按照调度优先级进行排序;
依次将排在最前面的未调度用户确定为新的空分多址接入用户,直到所确定的新的空分多址接入用户达到允许的空分多址接入用户数目;
资源分配模块30配置为:对所述新的空分多址接入用户分配相同的时 频资源或不同的时频资源。
作为一种实现方式,空分多址接入用户确定模块20还配置为:预估所述未调度用户之间的CP激活集没有交集的未调度用户进行空分多址后及进行空分多址前的吞吐量;
将未调度用户之间的CP激活集没有交集的未调度用户中进行空分多址后的吞吐量大于进行空分多址前的吞吐量的未调度用户确定为新的空分多址接入用户;
将所确定的新的空分多址接入用户,按照调度优先级进行排序;
依次将排在最前面的未调度用户确定为最终的空分多址接入用户,直到所确定的最终的空分多址接入用户达到允许的空分多址接入用户数目;
资源分配模块30配置为:对所述最终的空分多址接入用户分配相同的时频资源或不同的时频资源。
上述各功能模块的具体工作过程可参照前面方法实施例所述,在此就不再赘述。
本实施例提供的超级小区下的空分多址接入的基站,CP激活集获取模块获取每个未调度用户的CP激活集后,空分多址接入用户确定模块从未调度用户之间的CP激活集没有交集的未调度用户中选择空分多址接入用户,然后资源分配模块对所述空分多址接入用户分配相同的时频资源或不同的时频资源。本实施例公开的超级小区下的空分多址接入的基站,可以提高进行空分多址接入的概率和资源分配的灵活性。
本发明实施例还记载了一种存储介质,所述存储介质中存储有计算机程序,所述计算机程序配置为执行前述各实施例的超级小区下的空分多址接入方法。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接 或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
工业实用性
本发明通过获取每个未调度用户的CP激活集,然后将未调度用户之间的CP激活集没有交集的未调度用户确定为空分多址接入用户,再对所述空分多址接入用户分配相同的时频资源或不同的时频资源,提高了超级小区下进行空分多址接入的概率和资源分配的灵活性。

Claims (13)

  1. 一种超级小区下的空分多址接入方法,所述超级小区下的空分多址接入方法包括以下步骤:
    获取每个未调度用户的CP激活集;
    将未调度用户之间的CP激活集没有交集的未调度用户确定为空分多址接入用户;
    对所述空分多址接入用户分配相同的时频资源或不同的时频资源。
  2. 如权利要求1所述的超级小区下的空分多址接入方法,其中,所述获取每个未调度用户的CP激活集的步骤包括:
    获取未调度用户对应的CP;
    获取每个CP上该未调度用户的信号参数值;
    若每个CP上该未调度用户的信号参数值大于预设信号参数门限值,则确定该CP为该未调度用户的激活CP;
    将所确定的该未调度用户的激活CP的集合作为该未调度用户的CP激活集。
  3. 如权利要求1或2所述的超级小区下的空分多址接入方法,其中,所述获取每个未调度用户的CP激活集的步骤包括:
    获取未调度用户对应的CP;
    获取每个CP上该未调度用户的信号参数值;
    获取未调度用户对应的CP上该未调度用户的信号参数值最大的CP;
    计算信号参数值最大的CP上该未调度用户的信号参数值与其他CP上该未调度用户的信号参数值的差值;
    若所述差值小于预设信号参数差阈值,则确定该CP为该未调度用户的激活CP;
    将所确定的该未调度用户的激活CP的集合作为该未调度用户的CP激 活集。
  4. 如权利要求1所述的超级小区下的空分多址接入方法,其中,所述将未调度用户之间的CP激活集没有交集的未调度用户确定为空分多址接入用户的步骤之后还包括:
    预估所述未调度用户之间的CP激活集没有交集的未调度用户进行空分多址后及进行空分多址前的吞吐量;
    将未调度用户之间的CP激活集没有交集的未调度用户中进行空分多址后的吞吐量大于进行空分多址前的吞吐量的未调度用户确定为新的空分多址接入用户;
    所述对所述空分多址接入用户分配相同的时频资源或不同的时频资源的步骤替换为:
    对所述新的空分多址接入用户分配相同的时频资源或不同的时频资源。
  5. 如权利要求1所述的超级小区下的空分多址接入方法,其中,所述将未调度用户之间的CP激活集没有交集的未调度用户确定为空分多址接入用户的步骤之后还包括:
    将未调度用户之间的CP激活集没有交集的未调度用户,按照调度优先级进行排序;
    依次将排在最前面的未调度用户确定为新的空分多址接入用户,直到所确定的新的空分多址接入用户达到允许的空分多址接入用户数目;
    所述对所述空分多址接入用户分配相同的时频资源或不同的时频资源的步骤替换为:
    对所述新的空分多址接入用户分配相同的时频资源或不同的时频资源。
  6. 如权利要求4所述的超级小区下的空分多址接入方法,其中,所述 将未调度用户之间的CP激活集没有交集的未调度用户中进行空分多址后的吞吐量大于进行空分多址前的吞吐量的未调度用户确定为新的空分多址接入用户的步骤之后还包括:
    将所确定的新的空分多址接入用户,按照调度优先级进行排序;
    依次将排在最前面的未调度用户确定为最终的空分多址接入用户,直到所确定的最终的空分多址接入用户达到允许的空分多址接入用户数目;
    所述对所述新的空分多址接入用户分配相同的时频资源或不同的时频资源的步骤替换为:
    对所述最终的空分多址接入用户分配相同的时频资源或不同的时频资源。
  7. 一种超级小区下的空分多址接入的基站,所述超级小区下的空分多址接入的基站包括:
    CP激活集获取模块,配置为获取每个未调度用户的CP激活集;
    空分多址接入用户确定模块,配置为将未调度用户之间的CP激活集没有交集的未调度用户确定为空分多址接入用户;
    资源分配模块,配置为对所述空分多址接入用户分配相同的时频资源或不同的时频资源。
  8. 如权利要求7所述的超级小区下的空分多址接入的基站,其中,所述CP激活集获取模块包括:
    信号参数获取单元,配置为获取未调度用户对应的CP,获取每个CP上该未调度用户的信号参数值;
    激活CP确定单元,配置为若每个CP上该未调度用户的信号参数值大于预设信号参数门限值,则确定该CP为该未调度用户的激活CP;
    CP激活集确定单元,配置为将所确定的该未调度用户的激活CP的集合作为该未调度用户的CP激活集。
  9. 如权利要求7或8所述的超级小区下的空分多址接入的基站,其中,所述CP激活集获取模块包括:
    信号参数获取单元,配置为获取未调度用户对应的CP,获取每个CP上该未调度用户的信号参数值;
    激活CP确定单元,配置为获取未调度用户对应的CP上该未调度用户的信号参数值最大的CP;计算信号参数值最大的CP上该未调度用户的信号参数值与其他CP上该未调度用户的信号参数值的差值;若所述差值小于预设信号参数差阈值,则确定该CP为该未调度用户的激活CP;
    CP激活集确定单元,配置为将所确定的该未调度用户的激活CP的集合作为该未调度用户的CP激活集。
  10. 如权利要求7所述的超级小区下的空分多址接入的基站,其中,所述空分多址接入用户确定模块还配置为:
    预估所述未调度用户之间的CP激活集没有交集的未调度用户进行空分多址后及进行空分多址前的吞吐量;
    将未调度用户之间的CP激活集没有交集的未调度用户中进行空分多址后的吞吐量大于进行空分多址前的吞吐量的未调度用户确定为新的空分多址接入用户;
    所述资源分配模块配置为:
    对所述新的空分多址接入用户分配相同的时频资源或不同的时频资源。
  11. 如权利要求7所述的超级小区下的空分多址接入的基站,其中,所述空分多址接入用户确定模块还配置为:
    将未调度用户之间的CP激活集没有交集的未调度用户,按照调度优先级进行排序;
    依次将排在最前面的未调度用户确定为新的空分多址接入用户,直到 所确定的新的空分多址接入用户达到允许的空分多址接入用户数目;
    所述资源分配模块配置为:
    对所述新的空分多址接入用户分配相同的时频资源或不同的时频资源。
  12. 如权利要求10所述的超级小区下的空分多址接入的基站,其中,所述空分多址接入用户确定模块还配置为:
    将所确定的新的空分多址接入用户,按照调度优先级进行排序;
    依次将排在最前面的未调度用户确定为最终的空分多址接入用户,直到所确定的最终的空分多址接入用户达到允许的空分多址接入用户数目;
    所述资源分配模块配置为:
    对所述最终的空分多址接入用户分配相同的时频资源或不同的时频资源。
  13. 一种存储介质,所述存储介质中存储有计算机程序,所述计算机程序配置为执行权利要求1至6任一项所述的超级小区下的空分多址接入方法。
PCT/CN2015/086546 2014-12-09 2015-08-10 超级小区下的空分多址接入方法及其基站、存储介质 WO2016090936A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410749381.3 2014-12-09
CN201410749381.3A CN105744623A (zh) 2014-12-09 2014-12-09 超级小区下的空分多址接入方法及其基站

Publications (1)

Publication Number Publication Date
WO2016090936A1 true WO2016090936A1 (zh) 2016-06-16

Family

ID=56106599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/086546 WO2016090936A1 (zh) 2014-12-09 2015-08-10 超级小区下的空分多址接入方法及其基站、存储介质

Country Status (2)

Country Link
CN (1) CN105744623A (zh)
WO (1) WO2016090936A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108207035B (zh) * 2016-12-20 2022-12-06 中兴通讯股份有限公司 一种sdma调度流程优化方法、装置及小区
CN109547079B (zh) * 2017-09-21 2021-02-12 华为技术有限公司 空分复用多址接入方法、装置及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102572863A (zh) * 2012-02-03 2012-07-11 中兴通讯股份有限公司 一种无线通信覆盖的方法及系统
CN102595625A (zh) * 2011-01-17 2012-07-18 中兴通讯股份有限公司 一种实现超级小区下的空分多址接入的方法及基站
CN102711187A (zh) * 2012-05-18 2012-10-03 中兴通讯股份有限公司 一种控制超级小区中部分小区的激活状态的方法及装置
CN102916732A (zh) * 2011-08-02 2013-02-06 中兴通讯股份有限公司 一种实现超级小区数据传输的方法、系统及控制站
CN103516410A (zh) * 2012-06-19 2014-01-15 中兴通讯股份有限公司 一种利用有源天线系统实现下行数据发射方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102595625A (zh) * 2011-01-17 2012-07-18 中兴通讯股份有限公司 一种实现超级小区下的空分多址接入的方法及基站
CN102916732A (zh) * 2011-08-02 2013-02-06 中兴通讯股份有限公司 一种实现超级小区数据传输的方法、系统及控制站
CN102572863A (zh) * 2012-02-03 2012-07-11 中兴通讯股份有限公司 一种无线通信覆盖的方法及系统
CN102711187A (zh) * 2012-05-18 2012-10-03 中兴通讯股份有限公司 一种控制超级小区中部分小区的激活状态的方法及装置
CN103516410A (zh) * 2012-06-19 2014-01-15 中兴通讯股份有限公司 一种利用有源天线系统实现下行数据发射方法及装置

Also Published As

Publication number Publication date
CN105744623A (zh) 2016-07-06

Similar Documents

Publication Publication Date Title
CN109526056B (zh) 多载波下的资源选择方法、装置及计算机设备、存储介质
US10129840B2 (en) Method, device, and system for notifying terminal type supported by current cell
CN108633052B (zh) 一种资源配置方法、装置和设备
CN106685494B (zh) 一种mu-mimo系统中的分组调度方法和装置
RU2014122142A (ru) Способ и устройство обратной связи для кооперативной многоточечной связи в системе связи
US8976749B2 (en) Method and base station for dynamic adjustment of carrier resource
US9621309B2 (en) Joint scheduling method and apparatus
CN102067661A (zh) 资源分配方法、识别方法、基站、移动站以及程序
CN104780032B (zh) 一种自适应的下行CoMP传输方法和装置
WO2015139651A1 (zh) 一种资源调度分配方法及装置
JP2016502769A5 (zh)
WO2012097631A1 (zh) 一种实现超级小区下的空分多址接入的方法及基站
JP2017533667A (ja) リソーススケジューリング方法及び装置
CN105553608A (zh) 一种基于非正交多址方式的数据传输方法、装置及系统
CN108352925A (zh) 一种发送或者接收信道状态信息csi的方法、终端及基站
US11277828B2 (en) Method, device and system for resource allocation, and computer-readable storage medium
CN107404763B (zh) 超级小区的下行控制信道空分多址接入方法、装置及基站
WO2016090936A1 (zh) 超级小区下的空分多址接入方法及其基站、存储介质
CN109982439B (zh) 基于蜂窝网络的d2d通信系统的信道资源分配方法
CN106507461B (zh) 一种上行多用户系统中的功率调整方法和装置
CN102547997B (zh) 在无线通信系统中基于干扰进行自适应调度的方法与设备
CN106034325B (zh) 一种下行公共信道的发送和接收方法及装置
CN105307210B (zh) 一种小区间的协作方法和装置
CN105515718B (zh) 一种多业务控制信道发送的方法和装置
CN102958178B (zh) 一种频率选择性调度方法、cqi上报方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15867149

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15867149

Country of ref document: EP

Kind code of ref document: A1