WO2012097631A1 - 一种实现超级小区下的空分多址接入的方法及基站 - Google Patents

一种实现超级小区下的空分多址接入的方法及基站 Download PDF

Info

Publication number
WO2012097631A1
WO2012097631A1 PCT/CN2011/081997 CN2011081997W WO2012097631A1 WO 2012097631 A1 WO2012097631 A1 WO 2012097631A1 CN 2011081997 W CN2011081997 W CN 2011081997W WO 2012097631 A1 WO2012097631 A1 WO 2012097631A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
multiple access
division multiple
cell
uplink
Prior art date
Application number
PCT/CN2011/081997
Other languages
English (en)
French (fr)
Inventor
耿鹏
张玉婷
王明华
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012097631A1 publication Critical patent/WO2012097631A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present invention relates to the field of mobile communication technologies, and in particular, to a spatial division multiple access (SDMA) method under a super cell (Super-Cell) in a Long Term Evolution (LTE) system. And base station.
  • SDMA spatial division multiple access
  • Super-Cell super cell
  • LTE Long Term Evolution
  • the LTE system is an evolution of the third generation (3G) mobile communication system, which uses Orthogonal Frequency Division Multiplexing (OFDM) and Multiple-Input Multiple Output (referred to as Multiple-Input Multiple Output). Based on core technologies such as MIMO, it provides users with higher data transmission rates, lower transmission delays and better quality of service. In view of this, the LTE system is being extensively researched and gradually applied to commercial networks.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Multiple-Input Multiple Output referred to as Multiple-Input Multiple Output
  • MIMO Multiple-Input Multiple Output
  • a super-cell is composed of a plurality of CPs (Cell-Portions), and each CP shares the resources of the Super-Cell, including a cell ID, a time domain resource, a frequency domain resource, and the like.
  • each CP has a unique identifier.
  • each Super-Cell is formed by combining multiple adjacent regular cells.
  • Each CP in the Super-Cell is recorded as a CP, and all CPs in the Super-Cell share resources in the cell, including a cell identifier, a time domain resource, a frequency domain resource, and the like.
  • SINR Signal to Interference plus Noise Ratio
  • the present invention provides a method for implementing space division multiple access under a super cell, including:
  • the base station acquires uplink receiving power of each uplink channel feature information of each user in each cell under the same super cell, and maintains a cell activation set of each user according to the uplink receiving power;
  • the step of the base station maintaining the cell activation set of each user according to the uplink receiving power includes: performing, for each user, the uplink receiving power corresponding to the uplink channel feature information of the user in all the cells in the super cell in descending order, Selecting the cell with the uplink received power in the first M1 as the cell activation set of the user, where 1 M1 is the number of cells in the super cell; or
  • the uplink receiving power of the uplink channel characteristic information corresponding to each user in all the cells in the super cell is based on the cell corresponding to the maximum uplink receiving power, and the remaining cells are according to the uplink receiving power and the maximum uplink receiving power.
  • the difference is performed in ascending order, and the first M2 cells whose difference is less than the predetermined value are selected as the cell activation set of the user, where 1 M2 is the number of cells in the super cell.
  • the step of the base station maintaining the cell activation set of each user according to the uplink received power includes: for each user, respectively, the downlink pilot transmit power of each cell under the super cell and the uplink channel feature information corresponding to the user The uplink received power is superimposed on the cell, and the cell activation set of the user is maintained by using the superposed power value.
  • the steps of selecting the space division multiple access primary scheduling user from the unscheduled users include:
  • the base station selects the user with the highest scheduling priority among the unscheduled users as the spatial division multiple access primary scheduling user.
  • the step of selecting an alternate user from the unscheduled candidate users as the space division multiple access from the scheduling user includes:
  • the uplink channel feature information includes: a channel sounding reference signal, a physical uplink shared channel, and a physical uplink control channel.
  • the present invention further provides a base station, including:
  • a power acquisition module configured to obtain uplink receiving power of each uplink channel characteristic information of each user in each cell under the same super d and area;
  • a maintenance module configured to maintain a cell activation set of each user according to an uplink received power acquired by the power acquisition module
  • a selection module configured to select a spatial division multiple access primary scheduling user from among unscheduled users, and select a spatial division multiple access slave scheduling user from among unscheduled users according to a predetermined rule
  • mapping module configured to map the spatial division multiple access primary scheduling user selected by the selection module and the spatial division multiple access from the resource of the scheduling user to the same time-frequency resource
  • the predetermined rule is: not intersecting with the cell activation set of the primary scheduled user of the space division multiple access, and the mutual interference with the space division multiple access primary scheduling user is less than a predetermined threshold.
  • one candidate user is selected as the space division multiple access from the scheduled user.
  • the maintenance module is configured to maintain a cell activation set of each user in the following manner: for each user, the uplink channel power information corresponding to the user is in descending order of uplink receiving power of all cells in the super cell, Selecting the cell with the uplink received power in the first M1 as the cell activation set of the user, where 1 M1 is the number of cells in the super cell; or
  • the uplink channel feature information corresponding to each user is on all cells in the super cell.
  • the uplink receiving power is based on the cell corresponding to the maximum uplink receiving power, and the remaining cells are arranged in ascending order according to the difference between the uplink receiving function and the maximum uplink receiving power, and the first M2 cells whose difference is less than a predetermined value are selected as the The cell activation set of the user, where 1 M2 is the number of cells in the super cell.
  • the maintenance module includes:
  • a superimposing unit configured to: superimpose, according to each user, a downlink pilot transmit power of each cell under the super cell and an uplink channel feature information corresponding to the user in an uplink received power of the cell;
  • a maintenance unit is arranged to maintain a cell activation set for each user using the superimposed power values of the superposition unit.
  • the selection module includes:
  • a first selecting unit configured to select a user with the highest scheduling priority among the unscheduled users as the primary scheduled user of the space division multiple access
  • a second selecting unit configured to: select, from the unscheduled candidate users, an alternate user that has the largest total throughput of the space division multiple access primary scheduling user as the space division multiple access Selecting the total throughput of the candidate user and the space division multiple access primary scheduling user, and selecting the candidate user with the largest total throughput of the space division multiple access primary scheduling user calculated within the predetermined time As the space division multiple access access from the scheduling user.
  • the uplink channel feature information includes: a channel sounding reference signal, a physical uplink shared channel, and a physical uplink control channel.
  • the present invention provides a method for implementing spatial division multiple access under a super cell and a base station, source utilization, and system capacity of the super cell.
  • FIG. 1 is a schematic diagram of a super cell
  • Figure 2 is a schematic diagram of the principle of SDMA
  • FIG. 3 is a schematic diagram of a base station according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for implementing space division multiple access in a super cell according to the present invention
  • FIG. 5 is a flow chart of a method for implementing space division multiple access in a super cell according to an embodiment of the present invention.
  • the present invention introduces SDMA technology.
  • the basic principle of SDMA technology is shown in Figure 2.
  • the base station eNodeB
  • the base station eNodeB
  • the base station eNodeB
  • the base station eNodeB
  • the base station eNodeB
  • the base station eNodeB
  • the base station of this embodiment includes: a power acquisition module, a maintenance module, a selection module, and a mapping module, where
  • the power acquisition module is configured to obtain uplink receiving power of each uplink channel characteristic information of each user in each cell under the same super cell;
  • the maintenance module is configured to maintain each user according to the uplink receiving power acquired by the power acquiring module Cell activation set;
  • the selection module is configured to select a spatial division multiple access primary scheduling user from among the unscheduled users, and select a spatial division multiple access from the unscheduled user according to a predetermined rule from the scheduled user;
  • the mapping module is configured to map the spatial division multiple access primary scheduling user selected by the selection module and the space division multiple access from the resource of the scheduling user to the same time-frequency resource,
  • the predetermined rule is: not intersecting with the cell activation set of the primary scheduled user of the space division multiple access, and the mutual interference with the space division multiple access primary scheduling user is less than a predetermined threshold.
  • One of the unscheduled candidate users selects an alternate user as the space division multiple access from the scheduled user.
  • the uplink channel feature information may include: a channel sounding reference signal, a physical uplink shared channel, and a physical uplink control channel.
  • the maintenance module maintains the cell activation set of each user according to the uplink received power acquired by the power acquisition module by:
  • the uplink receiving power of the uplink channel feature information of the user is all sorted in descending order on all cells in the super cell, and the cell with the uplink receiving power ranked in the first M1 is selected as the cell activation set of the user.
  • 1 M1 is the number of cells in the super cell; or
  • the remaining cells are sorted in ascending order according to the difference between the uplink received power and the maximum uplink received power, and the first M2 cells whose difference is less than the predetermined value are selected as the reference.
  • the cell activation set of the user where 1 M2 is the number of cells in the super cell.
  • the downlink pilot transmission powers of the respective CPs are not all equal, for each user, in the process of maintaining the cell activation set scheduled by the user, it is required to superimpose the uplink received power on each acquired cell.
  • the downlink pilot transmission power of the cell maintains the cell activation set scheduled by the user with the superposed power value.
  • the maintenance module may further include: a superimposing unit and a maintenance unit, where
  • the superimposing unit is configured to: for each user, respectively, the downlink pilot transmit power of each cell in the super cell and the uplink channel feature information corresponding to the user acquired by the power acquiring module are uplinked on the cell Receive power superposition;
  • the maintenance unit is arranged to maintain a cell activation set for each user using the superimposed power values of the superposition unit.
  • the selecting module may further include: a first selecting unit and a Two selection units, wherein
  • the first selection unit is configured to select, as the spatial division multiple access primary scheduling user, the user with the highest scheduling priority among the unscheduled users;
  • the second selecting unit is configured to: select, from the unscheduled candidate users, an candidate user with the largest total throughput of the space division multiple access primary scheduling user as the spatial division multiple access slave scheduling Using the total throughput of the user and the space division multiple access primary scheduling user, selecting an candidate user that is calculated within a predetermined time and having the largest total throughput of the space division multiple access primary scheduling user as the Space division multiple access is from the scheduling user.
  • FIG. 4 is a flowchart of a method for implementing space division multiple access in a super cell according to the present invention, as shown in FIG.
  • the method includes the following steps:
  • the base station acquires uplink receiving power of each uplink cell feature information of each user in each cell under the same super cell, and maintains a cell activation set of each user according to the uplink receiving power;
  • the base station selects a spatial division multiple access from the unscheduled user to access the primary scheduling user, and selects a spatial division multiple access from the unscheduled user according to a predetermined rule, and then accesses the spatial division multiple access to the primary user.
  • the scheduling user and the space division multiple access are mapped from the resources of the scheduling user to the same time-frequency resource.
  • the predetermined rule is: not intersecting with the cell activation set of the primary scheduled user of the space division multiple access, and the mutual interference with the space division multiple access primary scheduling user is less than a predetermined threshold.
  • One of the unscheduled candidate users selects an alternate user as the space division multiple access from the scheduled user.
  • Step 1 Obtain uplink receiving power of the uplink channel feature information of the user on each cell under the same super cell.
  • the base station side physical layer measures uplink channel characteristic information corresponding to the user.
  • the uplink channel feature information may include: an SRS (Sounding Reference Signal), a PUSCH (Physical Uplink Shared Channel), and a PUCCH (Physical Uplink Control Channel).
  • the physical layer measurement on the base station side reports the uplink received power value of each user on each CP.
  • the instantaneous received power value of the user k on the nth CP is recorded as the average received power PPu P Rx,k.
  • ⁇ UpRx,k (1 - "1 ) ⁇ ⁇ UpRx,k + "1 ⁇ ⁇ UpRx,k
  • w is the Wth CP
  • Step 2 The base station updates and maintains the CP activation set of each user;
  • the maintenance of the user's CP activation set includes but is not limited to the following two scenarios:
  • the CP with the highest received power value is used as the reference, and the remaining CPs are arranged in ascending order according to the difference between the uplink received power value and the maximum uplink received power value, and the difference is less than a certain threshold.
  • the first M2 CPs are used as the CP active set of the user.
  • the minimum value of M2 is 1, and the maximum value is the number of CPs in the super cell.
  • the CP active set of the uplink and downlink scheduling of the user may be uniformly updated and maintained, or may be updated separately.
  • the CP active set of the downlink scheduling needs to consider the difference of the downlink downlink transmit power of the CP.
  • a simple and feasible way is to superimpose the transmit power of the downlink pilot into the uplink received power value.
  • Step 3 Calculate the scheduling priority of each user and perform sorting.
  • the order of 5 users after H is not sorted is User 1, User 2, User 3, User 4..., and the priority is: User 1 > User 2 > User 3 > User 4 >...;
  • the calculation of the scheduling priority has a mature algorithm.
  • the base station determines the scheduling priority of the terminal according to the channel quality indicator reported by the terminal and the actual transmission rate of the terminal, or according to the normalized throughput of the user terminal.
  • the scheduling priority is calculated, etc., and the calculation of the scheduling priority 10 will not be described in detail here.
  • Step 4 Select the user with the highest scheduling priority among all unscheduled users as the SDMA primary scheduling user;
  • Step 5 Select SDMA slave scheduling user m among all unscheduled users according to the following rules; SDMA slave scheduling user selection rules include but are not limited to the following manners:
  • SDMA has no intersection from the CP active set of the scheduling user and the SDMA master scheduling user, ie
  • CPSet, and CPSet m have no intersection.
  • the mutual interference of the SDMA from the scheduling user and the SDMA primary scheduling user is less than a certain threshold, which is measured in an actual scenario or simulated by a system simulation platform. Assuming the threshold is ⁇ , the mutual interference judgment formula is:
  • the SDMA selected from the rules of a and b can be selected from the set of scheduling user alternative users as the SDMA slave scheduling user.
  • the SDMA selected by the rules of a and b may select an candidate user with the largest total throughput of the SDMA primary scheduling user as the SDMA slave from the set of scheduling user candidate users. Degree users.
  • the user may be sequentially calculated in the descending order of the scheduling priority in the candidate user set.
  • the total throughput of the space division multiple access primary scheduling user selecting a user with the largest total throughput of the space division multiple access primary scheduling user calculated within a predetermined time as the space division multiple access Access from the scheduled user.
  • Step 6 If the SDMA slave scheduling user can be found, it indicates that the SDMA pairing is successful, and the related scheduling information is updated, and the SDMA primary scheduling user and the SDMA resource from the scheduling user are mapped to the same time-frequency resource, and the process returns to the step. 4; If the SDMA slave scheduling user cannot be found, it indicates that the SDMA pairing is unsuccessful, only the primary scheduling user is scheduled, the related scheduling information is updated, and the process returns to step 4; if there are no users to be scheduled or resources have been allocated in step 4, Then the process ends.
  • Line signal transmission can improve the utilization of time-frequency resources and improve the system capacity of the super cell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种实现超级小区下的空分多址接入的方法和基站,该方法包括:基站获取每一个用户对应的上行信道特征信息在同一个超级小区下的各小区上的上行接收功率,根据所述上行接收功率维护每一个用户的小区激活集;以及,从未调度用户中选择空分多址接入主调度用户,并且根据预定规则从未调度用户中选择空分多址接入从调度用户,然后将所述空分多址接入主调度用户与所述空分多址接入从调度用户的资源映射到相同的时频资源。本发明能够提高时频资源的利用率,提高超级小区的系统容量。

Description

一种实现超级小区下的空分多址接入的方法及基站 技术领域
本发明涉及移动通信技术领域, 特别涉及到长期演进 (Long Term Evolution, 简称 LTE ) 系统中一种超级小区 ( Super-Cell ) 下的空分多址接入 ( Spatial Division Multiplex Access , 简称 SDMA )方法及基站。
背景技术
LTE系统是第三代( the third generation, 简称 3G )移动通信系统的演进, 其以正交频分复用( Orthogonal Frequency Division Multiplexing, 简称 OFDM ) 和多输入多输出 ( Multiple-Input Multiple Output, 简称 MIMO )等核心技术为 基础, 给用户提供更高的数据传输率, 更低的传输时延以及更优的服务质量。 鉴于此, LTE系统正在被广泛研究并逐步应用于商用网络。
超级小区 ( Super-Cell )由多个 CP ( Cell-Portion, 常规小区)组成, 每一 个 CP共享 Super-Cell的资源, 包括小区标识( Cell ID ) 、 时域资源、 频域资 源等等。 在一个 Super-Cell中, 每个 CP都有唯一的标识。
Super-Cell的基本原理如图 1所示, 从图中可以看出, 每一个 Super-Cell 由相邻的多个常规小区合并而成。 对于 Super-Cell 内的每一个常规小区记为 CP, Super-Cell内的所有 CP共享小区内的资源, 包括小区标识、 时域资源、 频域资源等等。 显然, 对于每一个用户而言, 其接收信号功率增强了, 邻区 干扰减弱了, 这样就可以明显提高用户的信干噪比( Signal to Interference plus Noise Ratio, 简称 SINR ) , 特别是边缘用户的 SINR, 从而达到提升用户控 制信道和业务信道的解调性能的目的。 但是, 由于每一个 Super-Cell需要覆 盖原来多个常规小区的范围, 总体资源相对减少了, 导致系统容量下降。
发明内容
本发明的目的是提供一种实现超级小区下的空分多址接入的方法及基 站, 以提升超级小区的系统容量。 为了解决上述技术问题, 本发明提供了一种实现超级小区下的空分多址 接入的方法, 包括:
基站获取每一个用户对应的上行信道特征信息在同一个超级小区下的各 小区上的上行接收功率, 根据所述上行接收功率维护每一个用户的小区激活 集; 以及
从未调度用户中选择空分多址接入主调度用户, 并且根据预定规则从未 调度用户中选择空分多址接入从调度用户, 然后将所述空分多址接入主调度 用户与所述空分多址接入从调度用户的资源映射到相同的时频资源, 其中, 所述预定规则为: 从与所述空分多址接入主调度用户的小区激活集没有 交集、 且与所述空分多址接入主调度用户的互干扰小于预定门限值的未调度 的备选用户中, 选择一个备选用户作为所述空分多址接入从调度用户。
基站根据所述上行接收功率维护每一个用户的小区激活集的步骤包括: 针对每一个用户, 将该用户对应的上行信道特征信息在所述超级小区下 所有小区上的上行接收功率进行降序排列, 选择上行接收功率排在前 Ml个 的小区作为该用户的小区激活集, 其中, 1 M1 所述超级小区内的小区的 个数; 或者
针对每一个用户对应的上行信道特征信息在所述超级小区下所有小区上 的上行接收功率, 以最大上行接收功率对应的小区为基准, 将其余小区按照 上行接收功率与所述最大上行接收功率的差值进行升序排列, 选择差值小于 预定值的前 M2个小区作为该用户的小区激活集, 其中, 1 M2 所述超级 小区内的小区的个数。
基站根据所述上行接收功率维护每一个用户的小区激活集的步骤包括: 针对每一个用户, 分别将所述超级小区下的每一个小区的下行导频发射 功率与该用户对应的上行信道特征信息在该小区的上行接收功率叠加, 利用 叠加得到的功率值维护该用户的小区激活集。
从未调度用户中选择空分多址接入主调度用户的步骤包括:
所述基站从未调度用户中选择调度优先级最高的用户作为空分多址接入 主调度用户。 所述预定规则中, 从未调度的备选用户中选择一个备选用户作为所述空 分多址接入从调度用户的步骤包括:
从所述未调度的备选用户中选择与所述空分多址接入主调度用户的总吞 吐量最大的备选用户作为所述空分多址接入从调度用户; 或者 所述空分多址接入主调度用户的总吞吐量, 选择预定时间内计算出的与所述 空分多址接入主调度用户的总吞吐量最大的备选用户作为所述空分多址接入 从调度用户。
所述上行信道特征信息包括: 信道探测参考信号、 物理上行共享信道和 物理上行控制信道。
为了解决上述问题, 本发明还提供了一种基站, 包括:
功率获取模块, 其设置成获取每一个用户对应的上行信道特征信息在同 一个超级 d、区下的各小区上的上行接收功率;
维护模块, 其设置成根据所述功率获取模块获取的上行接收功率维护每 一个用户的小区激活集;
选择模块, 其设置成从未调度用户中选择空分多址接入主调度用户, 并 且根据预定规则从未调度用户中选择空分多址接入从调度用户; 以及
映射模块, 其设置成将所述选择模块选择的空分多址接入主调度用户与 所述空分多址接入从调度用户的资源映射到相同的时频资源,
其中, 所述预定规则为: 从与所述空分多址接入主调度用户的小区激活 集没有交集、 且与所述空分多址接入主调度用户的互干扰小于预定门限值的 未调度的备选用户中,选择一个备选用户作为所述空分多址接入从调度用户。
所述维护模块是设置成通过如下方式维护每一个用户的小区激活集: 针对每一个用户, 将该用户对应的上行信道特征信息在所述超级小区下 所有小区上的上行接收功率进行降序排列, 选择上行接收功率排在前 Ml个 的小区作为该用户的小区激活集, 其中, 1 M1 所述超级小区内的小区的 个数; 或者
针对每一个用户对应的上行信道特征信息在所述超级小区下所有小区上 的上行接收功率, 以最大上行接收功率对应的小区为基准, 将其余小区按照 上行接收功能与所述最大上行接收功率的差值进行升序排列, 选择差值小于 预定值的前 M2个小区作为该用户的小区激活集, 其中, 1 M2 所述超级 小区内的小区的个数。
所述维护模块包括:
叠加单元, 其设置成: 针对每一个用户, 分别将所述超级小区下的每一 个小区的下行导频发射功率与该用户对应的上行信道特征信息在该小区的上 行接收功率叠加; 以及
维护单元, 其设置成利用所述叠加单元叠加后的功率值维护每一个用户 的小区激活集。
所述选择模块包括:
第一选择单元, 其设置成从未调度用户中选择调度优先级最高的用户作 为空分多址接入主调度用户; 以及
第二选择单元, 其设置成: 从所述未调度的备选用户中选择与所述空分 多址接入主调度用户的总吞吐量最大的备选用户作为所述空分多址接入从调 备选用户与所述空分多址接入主调度用户的总吞吐量, 选择预定时间内计算 出的与所述空分多址接入主调度用户的总吞吐量最大的备选用户作为所述空 分多址接入从调度用户。
所述上行信道特征信息包括: 信道探测参考信号、 物理上行共享信道和 物理上行控制信道。
综上, 本发明提供一种实现超级小区下的空分多址接入的方法及基站, 源的利用率, 提高超级小区的系统容量。 附图概述
图 1为超级小区的示意图; 图 2 为 SDMA的原理示意图;
图 3为本发明实施例的基站的示意图;
图 4为本发明的实现超级小区下的空分多址接入的方法的流程图; 图 5 为本发明实施例的实现超级小区下的空分多址接入的方法的流程 图。
本发明的较佳实施方式
为了弥补 Super-Cell带来的系统容量损失的问题, 本发明引入了 SDMA 技术, SDMA技术的基本原理如图 2所示, 从图中可以看出, 对于下行链路 的 SDMA而言, 当 UE1 ( User Equipment, 简称 UE )和 UE2之间由于穿透 损耗等原因导致互干扰较小时, 基站(eNodeB )可以在相同的时频域资源上 同时给 UE1和 UE2进行下行传输, 其中, UE1的信号在 RRU#1 ( Remote RF Unit , 无线远端单元)上下发, UE2的信号在 RRU#2上下发。 上行 SDMA 也是同样的原理。 在超级小区中引入了 SDMA技术, 可以使 UE1和 UE2釆 用相同的时频资源进行传输, 资源利用率明显提高了, 超级小区的系统容量 将大大提升。
为了更好地理解本发明, 下面结合附图和具体实施例对本发明作进一步 地描述。
图 3为本发明实施例的基站的示意图, 如图 3所示, 本实施例的基站包 括: 功率获取模块、 维护模块、 选择模块和映射模块, 其中,
功率获取模块设置成获取每一个用户对应的上行信道特征信息在同一个 超级小区下的各小区上的上行接收功率; 维护模块设置成根据所述功率获取模块获取的上行接收功率维护每一个 用户的小区激活集;
选择模块设置成从未调度用户中选择空分多址接入主调度用户, 并且根 据预定规则从未调度用户中选择空分多址接入从调度用户;
映射模块设置成将所述选择模块选择的空分多址接入主调度用户与所述 空分多址接入从调度用户的资源映射到相同的时频资源, 其中, 所述预定规则为: 从与所述空分多址接入主调度用户的小区激活 集没有交集、 且与所述空分多址接入主调度用户的互干扰小于预定门限值的 未调度的备选用户中选择一个备选用户作为所述空分多址接入从调度用户。
其中, 所述上行信道特征信息可以包括: 信道探测参考信号、 物理上行 共享信道和物理上行控制信道。
在各个 CP 的下行导频发射功率相等的情况下, 所述维护模块根据所述 功率获取模块获取的上行接收功率维护每一个用户的小区激活集通过以下方 式实现:
针对每一个用户, 将该用户的上行信道特征信息在所述超级小区中的所 有小区上的上行接收功率进行降序排列, 选择上行接收功率排在前 Ml个的 小区作为该用户的小区激活集, 其中, 1 M1 所述超级小区内的小区的个 数; 或者
针对每一个用户, 以最大上行接收功率对应的小区为基准, 将其余小区 按照上行接收功率与所述最大上行接收功率的差值进行升序排列, 选择差值 小于预定值的前 M2个小区作为该用户的小区激活集, 其中, 1 M2 所述 超级小区内的小区的个数。
在各个 CP 的下行导频发射功率不都相等的情况下, 针对每一个用户, 在维护该用户调度的小区激活集的过程中, 需要在获取到的每个小区上的上 行接收功率上叠加该小区的下行导频发射功率, 以叠加后的功率值来维护该 用户调度的小区激活集。
在一优选实施例中, 所述维护模块可以进一步包括: 叠加单元和维护单 元, 其中,
叠加单元设置成: 针对每一个用户, 分别将所述超级小区下的每一个小 区的下行导频发射功率与所述功率获取模块获取到的该用户 对应的上行信 道特征信息在该小区上的上行接收功率叠加;
维护单元设置成利用所述叠加单元叠加后的功率值维护每一个用户的小 区激活集。
在一优选实施例中, 所述选择模块可以进一步包括: 第一选择单元和第 二选择单元, 其中,
第一选择单元设置成从未调度用户中选择调度优先级最高的用户作为空 分多址接入主调度用户;
第二选择单元设置成: 从所述未调度的备选用户中选择与所述空分多址 接入主调度用户的总吞吐量最大的备选用户作为所述空分多址接入从调度用 用户与所述空分多址接入主调度用户的总吞吐量, 选择预定时间内计算出的 与所述空分多址接入主调度用户的总吞吐量最大的备选用户作为所述空分多 址接入从调度用户。
图 4为本发明的实现超级小区下的空分多址接入的方法的流程图, 如图
4所示, 本方法包括下面步骤:
S10、基站获取每一个用户对应的上行信道特征信息在同一个超级小区下 的各小区上的上行接收功率, 根据所述上行接收功率维护每一个用户的小区 激活集; 以及
S20、基站从未调度用户中选择空分多址接入主调度用户, 并且根据预定 规则从未调度用户中选择空分多址接入从调度用户, 然后将所述空分多址接 入主调度用户与所述空分多址接入从调度用户的资源映射到相同的时频资 源。
其中, 所述预定规则为: 从与所述空分多址接入主调度用户的小区激活 集没有交集、 且与所述空分多址接入主调度用户的互干扰小于预定门限值的 未调度的备选用户中选择一个备选用户作为所述空分多址接入从调度用户。
下面以超级小区下的下行 SDMA方案进行示例。 下行 SDMA方案的基 本流程如图 5所示。 H没各个 CP的下行导频发射功率相等,具体实施步骤如 下:
步骤 1 : 获取用户的上行信道特征信息在同一个超级小区下的每一个小 区上的上行接收功率;
对于每一个用户, 基站侧物理层测量与该用户对应的上行信道特征信息 在同一个超级小区下的每一个 CP上的上行接收功率值。 此处的上行信道特 征信息可以包括: SRS ( Sounding Reference Signal, 信道探测参考信号) , PUSCH ( Physical Uplink Shared Channel, 物理上行共享信道) 和 PUCCH ( Physical Uplink Control Channel, 物理上行控制信道) 。
基站侧物理层测量上报每一个用户在每一个 CP上的上行接收功率值。 例如,将用户 k在第 n个 CP上的瞬时接收功率值记为 平均接收功率 ϋ己为 PuPRx,k。
^UpRx,k = (1 - "1 ) · ^UpRx,k + "1 · ^UpRx,k
其中, 为平滑滤波因子; 为第 个用户;
w为第 W个 CP;
下标 UpR 为上行接收功率的缩写。 步骤 2: 基站更新维护每一个用户的 CP激活集;
用户的 CP激活集的维护包括但不限于下面两种方案:
1、 针对每一个用户, 将该用户对应的所有 CP上的上行接收功率值进行 降序排列, 选择上行接收功率值在排序中前 Ml个 CP作为该用户的 CP激活 集, 其中, Ml的最小取值为 1 , 最大取值为超级小区内 CP的个数;
2、 针对每一个 用户, 以上行接收功率值最大的 CP为基准, 将其余 CP 按照上行接收功率值与最大上行接收功率值的差值进行升序排列, 差值小于 某一设定门限值的前 M2个 CP作为用户的 CP激活集, 其中, M2的最小取 值为 1 , 最大取值为超级小区内 CP的个数。
本实施例中的用户上下行调度的 CP激活集可以统一更新维护, 也可以 分别更新维护。
如果下行 CP间导频的发射功率存在差异,则下行调度的 CP激活集需要 考虑 CP 下行导频发射功率的差异性。 一种简单可行的方式就是把下行导频 的发射功率叠加到上行接收功率值中。 找
PuP P = 用
Figure imgf000011_0001
户 的 CP激活集 CPSetk , CPSetk = [CPk Max ]。 步骤 3、 计算每一个用户的调度优先级, 并进行排序。 H没排序后的用 5 户顺序为用户 1、 用户 2、 用户 3、 用户 4... ... , 优先级为: 用户 1>用户 2> 用户 3>用户 4> ... ...;
现有技术中对调度优先级的计算有很成熟的算法, 例如, 基站根据终端 上报的信道质量指示及终端实际的传输速率确定终端的调度优先级, 或者根 据用户终端的归一化吞吐量来计算调度优先级等等, 对于调度优先级的计算 10 这里就不作详细的描述。
步骤 4、 选择所有未调度用户中调度优先级最高的用户 1为 SDMA主调 度用户;
步骤 5、 根据以下规则在所有未调度用户中选择 SDMA从调度用户 m; SDMA从调度用户选择规则包括但不限于以下方式:
15 a、 SDMA从调度用户与 SDMA主调度用户的 CP激活集没有交集, 即
CPSet,和 CPSetm没有交集。 b、 SDMA从调度用户与 SDMA主调度用户的互干扰小于某一门限值, 该门限值是在实际场景中测量得到, 或通过系统仿真平台仿真得到的。 假设 门限值为 Ω , 互干扰的判断公式为:
j Max j Max
UpRx'm Ω υ≠χλ Ω
Figure imgf000011_0002
可以从按 a和 b的规则选出的 SDMA从调度用户备选用户集合中选择一 个作为 SDMA从调度用户。
进一步地, 可以在按 a和 b的规则选出的 SDMA从调度用户备选用户集 合中选择与 SDMA主调度用户的总吞吐量最大的备选用户作为 SDMA从调 度用户。
进一步地, 若按 a和 b的规则选出的 SDMA从调度用户备选用户集合比 较大, 即备选用户多, 则可以在所述备选用户集合中按调度优先级降序顺序 依次计算各个用户与所述空分多址接入主调度用户的总吞吐量, 选择预定时 间内计算出的与所述空分多址接入主调度用户的总吞吐量最大的用户作为所 述空分多址接入从调度用户。
步骤 6、 如果能够找到 SDMA从调度用户, 则表示 SDMA配对成功, 更 新相关调度信息, 将所述 SDMA主调度用户与所述 SDMA从调度用户的资 源映射到相同的时频资源, 并返回到步骤 4; 若未能找到 SDMA从调度用户, 则表示 SDMA配对不成功, 仅仅调度主调度用户, 更新相关调度信息, 并返 回到步骤 4; 如果步骤 4 中已经没有待调度用户或者资源已经分配完, 则流 程结束。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
以上仅为本发明的优选实施例, 当然, 本发明还可有其他多种实施例, 在不背离本发明精神及其实质的情况下, 熟悉本领域的技术人员当可根据本 发明作出各种相应的改变和变形, 但这些相应的改变和变形都应属于本发明 所附的权利要求的保护范围。
工业实用性
行信号传输, 能够提高时频资源的利用率, 提高超级小区的系统容量。

Claims

权 利 要 求 书
1、 一种实现超级小区下的空分多址接入的方法, 包括:
基站获取每一个用户对应的上行信道特征信息在同一个超级小区下的各 小区上的上行接收功率, 根据所述上行接收功率维护每一个用户的小区激活 集; 以及
从未调度用户中选择空分多址接入主调度用户, 并且根据预定规则从未 调度用户中选择空分多址接入从调度用户, 然后将所述空分多址接入主调度 用户与所述空分多址接入从调度用户的资源映射到相同的时频资源, 其中, 所述预定规则为: 从与所述空分多址接入主调度用户的小区激活集没有 交集、 且与所述空分多址接入主调度用户的互干扰小于预定门限值的未调度 的备选用户中, 选择一个备选用户作为所述空分多址接入从调度用户。
2、 如权利要求 1所述的方法, 其中, 基站根据所述上行接收功率维护每 一个用户的小区激活集的步骤包括:
针对每一个用户, 将该用户对应的上行信道特征信息在所述超级小区下 所有小区上的上行接收功率进行降序排列, 选择上行接收功率排在前 Ml个 的小区作为该用户的小区激活集, 其中, 1 M1 所述超级小区内的小区的 个数; 或者
针对每一个用户对应的上行信道特征信息在所述超级小区下所有小区上 的上行接收功率, 以最大上行接收功率对应的小区为基准, 将其余小区按照 上行接收功率与所述最大上行接收功率的差值进行升序排列, 选择差值小于 预定值的前 M2个小区作为该用户的小区激活集, 其中, 1 M2 所述超级 小区内的小区的个数。
3、 如权利要求 1所述的方法, 其中, 根据所述上行接收功率维护每一个 用户的小区激活集的步骤包括:
针对每一个用户, 分别将所述超级小区下的每一个小区的下行导频发射 功率与该用户对应的上行信道特征信息在该小区的上行接收功率叠加, 利用 叠加得到的功率值维护该用户的小区激活集。
4、 如权利要求 1所述的方法, 其中, 从未调度用户中选择空分多址接入 主调度用户的步骤包括:
所述基站从未调度用户中选择调度优先级最高的用户作为空分多址接入 主调度用户。
5、 如权利要求 1所述的方法, 其中, 所述预定规则中, 从未调度的备选 用户中选择一个备选用户作为所述空分多址接入从调度用户的步骤包括: 从所述未调度的备选用户中选择与所述空分多址接入主调度用户的总吞 吐量最大的备选用户作为所述空分多址接入从调度用户; 或者
所述空分多址接入主调度用户的总吞吐量, 选择预定时间内计算出的与所述 空分多址接入主调度用户的总吞吐量最大的备选用户作为所述空分多址接入 从调度用户。
6、 如权利要求 1-5任一项所述的方法, 其中,
所述上行信道特征信息包括: 信道探测参考信号、 物理上行共享信道和 物理上行控制信道。
7、 一种基站, 包括:
功率获取模块, 其设置成获取每一个用户对应的上行信道特征信息在同 一个超级 d、区下的各小区上的上行接收功率; 维护模块, 其设置成根据所述功率获取模块获取的上行接收功率维护每 一个用户的小区激活集;
选择模块, 其设置成从未调度用户中选择空分多址接入主调度用户, 并 且根据预定规则从未调度用户中选择空分多址接入从调度用户; 以及
映射模块, 其设置成将所述选择模块选择的空分多址接入主调度用户与 所述空分多址接入从调度用户的资源映射到相同的时频资源,
其中, 所述预定规则为: 从与所述空分多址接入主调度用户的小区激活 集没有交集、 且与所述空分多址接入主调度用户的互干扰小于预定门限值的 未调度的备选用户中,选择一个备选用户作为所述空分多址接入从调度用户。
8、 如权利要求 7所述的基站, 其中, 所述维护模块是设置成通过如下方 式维护每一个用户的小区激活集: 针对每一个用户, 将该用户对应的上行信道特征信息在所述超级小区下 所有小区上的上行接收功率进行降序排列, 选择上行接收功率排在前 Ml个 的小区作为该用户的小区激活集, 其中, 1 M1 所述超级小区内的小区的 个数; 或者
针对每一个用户对应的上行信道特征信息在所述超级小区下所有小区上 的上行接收功率, 以最大上行接收功率对应的小区为基准, 将其余小区按照 上行接收功能与所述最大上行接收功率的差值进行升序排列, 选择差值小于 预定值的前 M2个小区作为该用户的小区激活集, 其中, 1 M2 所述超级 小区内的小区的个数。
9、 如权利要求 7所述的基站, 其中, 所述维护模块包括:
叠加单元, 其设置成: 针对每一个用户, 分别将所述超级小区下的每一 个小区的下行导频发射功率与该用户对应的上行信道特征信息在该小区的上 行接收功率叠加; 以及
维护单元, 其设置成利用所述叠加单元叠加后的功率值维护每一个用户 的小区激活集。
10、 如权利要求 7所述的基站, 其中, 所述选择模块包括:
第一选择单元, 其设置成从未调度用户中选择调度优先级最高的用户作 为空分多址接入主调度用户; 以及
第二选择单元, 其设置成: 从所述未调度的备选用户中选择与所述空分 多址接入主调度用户的总吞吐量最大的备选用户作为所述空分多址接入从调 备选用户与所述空分多址接入主调度用户的总吞吐量, 选择预定时间内计算 出的与所述空分多址接入主调度用户的总吞吐量最大的备选用户作为所述空 分多址接入从调度用户。
11、 如权利要求 7-10任一项所述的基站, 其中,
所述上行信道特征信息包括: 信道探测参考信号、 物理上行共享信道和 物理上行控制信道。
PCT/CN2011/081997 2011-01-17 2011-11-09 一种实现超级小区下的空分多址接入的方法及基站 WO2012097631A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110009819.0A CN102595625B (zh) 2011-01-17 2011-01-17 一种实现超级小区下的空分多址接入的方法及基站
CN201110009819.0 2011-01-17

Publications (1)

Publication Number Publication Date
WO2012097631A1 true WO2012097631A1 (zh) 2012-07-26

Family

ID=46483704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/081997 WO2012097631A1 (zh) 2011-01-17 2011-11-09 一种实现超级小区下的空分多址接入的方法及基站

Country Status (2)

Country Link
CN (1) CN102595625B (zh)
WO (1) WO2012097631A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106302270A (zh) * 2015-06-05 2017-01-04 普天信息技术有限公司 高铁通信系统中下行信息的传输方法及控制器
CN107404763A (zh) * 2016-05-20 2017-11-28 中兴通讯股份有限公司 超级小区的下行控制信道空分多址接入方法、装置及基站

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9173118B2 (en) 2012-12-28 2015-10-27 Huawei Technologies Co., Ltd. Method and base station for selecting working remote radio unit for user equipment
EP2838218A4 (en) * 2013-06-29 2015-10-14 Huawei Tech Co Ltd METHOD, DEVICE AND SYSTEM FOR SIGNAL MEASUREMENT
CN105744623A (zh) * 2014-12-09 2016-07-06 中兴通讯股份有限公司 超级小区下的空分多址接入方法及其基站
CN105792360B (zh) * 2014-12-24 2020-02-14 中兴通讯股份有限公司 超级小区下资源分配的方法及装置
CN106507386B (zh) * 2015-09-07 2021-08-24 中兴通讯股份有限公司 超级小区生成方法、拆分方法、装置及通信系统
CN108207035B (zh) * 2016-12-20 2022-12-06 中兴通讯股份有限公司 一种sdma调度流程优化方法、装置及小区
CN109286935B (zh) * 2017-07-19 2023-05-30 中兴通讯股份有限公司 资源协调方法、相关设备和计算机可读存储介质
CN113873665A (zh) * 2020-06-30 2021-12-31 中兴通讯股份有限公司 调度方法、基站和计算机可读存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2410872A (en) * 2004-02-06 2005-08-10 Nortel Networks Ltd Adaptive and constrained weighting in SDMA receivers
CN101764631A (zh) * 2008-12-23 2010-06-30 中兴通讯股份有限公司 长期演进时分双工的室内分布系统的下行信号发射方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101772176B (zh) * 2008-12-30 2012-05-02 电信科学技术研究院 干扰协调方法及接入网设备
CN101932099B (zh) * 2009-06-18 2013-10-02 电信科学技术研究院 支持sdma时的rot分配方法和装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2410872A (en) * 2004-02-06 2005-08-10 Nortel Networks Ltd Adaptive and constrained weighting in SDMA receivers
CN101764631A (zh) * 2008-12-23 2010-06-30 中兴通讯股份有限公司 长期演进时分双工的室内分布系统的下行信号发射方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106302270A (zh) * 2015-06-05 2017-01-04 普天信息技术有限公司 高铁通信系统中下行信息的传输方法及控制器
CN106302270B (zh) * 2015-06-05 2019-04-26 普天信息技术有限公司 高铁通信系统中下行信息的传输方法及控制器
CN107404763A (zh) * 2016-05-20 2017-11-28 中兴通讯股份有限公司 超级小区的下行控制信道空分多址接入方法、装置及基站
CN107404763B (zh) * 2016-05-20 2022-11-04 中兴通讯股份有限公司 超级小区的下行控制信道空分多址接入方法、装置及基站

Also Published As

Publication number Publication date
CN102595625A (zh) 2012-07-18
CN102595625B (zh) 2014-12-31

Similar Documents

Publication Publication Date Title
WO2012097631A1 (zh) 一种实现超级小区下的空分多址接入的方法及基站
KR101601585B1 (ko) 다운링크 CoMP 무선 통신을 위한 제어 시그널링
WO2016000556A1 (zh) 通信设备、基站和通信方法
JP5440802B2 (ja) リソース割当方法、特定方法、無線通信システム、基地局、移動局、及びプログラム
JP5669540B2 (ja) マルチユーザマルチ入力マルチ出力(mu−mimo)伝送方法
WO2013127324A1 (zh) 一种基站及进行tdd基站上下行子帧配置的方法
WO2010078854A1 (zh) 上行信息的传输方法、装置及系统
WO2017012397A1 (zh) 无线通信系统中的电子设备和无线通信方法
JP2012521105A (ja) ダウンリンクパワーを配分する方法、装置およびシステム
CN103718526B (zh) 导频配置方法、发送方法及装置
EP2587855B1 (en) Method and base station for adjusting carrier resources dynamically
JP5990331B2 (ja) 制御チャネル処理方法および装置
US20130089046A1 (en) Method and apparatus for distributed scheduling for enhancing link performance in wireless communication system
CN102821470B (zh) 一种物理下行控制信道资源分配方法及装置
JP6274220B2 (ja) 無線通信方法と無線通信デバイス
WO2012092754A1 (zh) 资源调度方法及基站
CN107404763B (zh) 超级小区的下行控制信道空分多址接入方法、装置及基站
JP2016523065A (ja) セルラネットワークのセルに位置するユーザデバイスに無線リソースブロックを割り当てるためのコントローラ
WO2012088835A1 (zh) 一种相邻小区间下行干扰的控制方法及系统
US8571589B2 (en) Wireless communication system, wireless communication method, and base station
CN102790739A (zh) 多小区联合上行协同调度方法和基站
Zhu et al. Cluster-based dynamic DL/UL reconfiguration method in centralized RAN TDD with dense deployment of remote radio units
WO2010075763A1 (zh) 多点协作传输中的载波映射方法
TWI744585B (zh) 資料傳輸方法及裝置、電腦存儲介質
WO2015085494A1 (zh) 基站及用户调度方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856372

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11856372

Country of ref document: EP

Kind code of ref document: A1